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ABSTRACT OF THE DISSERTATION

IMPROVING STORAGE WITH STACKABLE EXTENSIONS

by

Jorge Guerra

Florida International University, 2012

Miami, Florida

Professor Raju Rangaswami, Major Professor

Storage is a central part of computing. Driven by exponentially increasing content

generation rate and a widening performance gap between memory and secondary

storage, researchers are in the perennial quest to push for further innovation. This

has resulted in novel ways to “squeeze” more capacity and performance out of current

and emerging storage technology. Adding intelligence and leveraging new types of

storage devices has opened the door to a whole new class of optimizations to save

cost, improve performance, and reduce energy consumption.

In this dissertation, we first develop, analyze, and evaluate three storage exten-

sions. Our first extension tracks application access patterns and writes data in the

way individual applications most commonly access it to benefit from the sequential

throughput of disks. Our second extension uses a lower power flash device as a

cache to save energy and turn off the disk during idle periods. Our third extension

is designed to leverage the characteristics of both disks and solid state devices by

placing data in the most appropriate device to improve performance and save power.

In developing these systems, we learned that extending the storage stack is a

complex process. Implementing new ideas incurs a prolonged and cumbersome de-

velopment process and requires developers to have advanced knowledge of the entire

system to ensure that extensions accomplish their goal without compromising data

recoverability. Futhermore, storage administrators are often reluctant to deploy

vi



specific storage extensions without understanding how they interact with other ex-

tensions and if the extension ultimately achieves the intended goal. We address

these challenges by using a combination of approaches. First, we simplify the stor-

age extension development process with system-level infrastructure that implements

core functionality commonly needed for storage extension development. Second, we

develop a formal theory to assist administrators deploy storage extensions while

guaranteeing that the given high level goals are satisfied. There are, however, some

cases for which our theory is inconclusive. For such scenarios we present an experi-

mental methodology that allows administrators to pick an extension that performs

best for a given workload. Our evaluation demostrates the benefits of both the

infrastructure and the formal theory.
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CHAPTER 1

INTRODUCTION

Every day we create an increasing amount of data including emails, photos, and

videos, all of which must be accessible in a timely and reliable manner. This data

can be stored in our personal computers or in data centers around the world. On

account of the growing data requirements, storage is rapidly becoming an important

component in data center IT equipment. A recent survey by Gartner, Inc. [Gar10]

reveals that data growth is the biggest challenge for large enterprises. However,

storage not only needs to scale in size, but also in performance, reliability, and

power efficiency, among others; all these challenges must be met while minimizing

deployment and administration efforts. Enterprises are actively taking measures to

mitigate the growing data problem.

Recent years have witnessed substantial innovation in storage systems exten-

sions that provide critical improvements in meeting some of these storage system

goals [FMK+07, GPK+07, LCSZ04, MAC+08, Nar08, NDT+08, SWS05, ZLP08].

However, many challenges remain unmet. In this dissertation, we illustrate the

opportunities and challenges present in developing storage extensions with first-

hand experiences from building three extensions of practical importance. First, in

BORG [BGU+09] we present a self-optimizing storage extension that performs au-

tomatic block reorganization based on the observed I/O workload. BORG manages

a small, dedicated partition on the disk drive, with the goal of servicing a majority

of the I/O requests from within this partition to significantly reduce seek and rota-

tional delays. This work shows improvements of up to 60% reduction in application

execution time. Our second extension, EXCES [UGB+08] presents the design and

implementation of an extension that employs prefetching, caching, and buffering

of disk data for reducing disk activity. Our evaluation showed overall system en-

1



ergy savings to lie in the modest 2-14% range, depending on the workload. Finally,

we designed and implemented Extent based Dynamic Tiering (EDT) [GPG+11], a

system that dynamically optimizes data placement among storage tiers to improve

performance and save power. The evaluation revealed that multi-tier systems using

EDT have a device mix that saves between 5% to 45% in cost, consumes up to 54%

less peak power at a better or comparable performance compared to a homogeneous

SAS storage system.

During our experience building these extensions, we found the development to

be a cumbersome process which can take months or even years. Adding to this

complexity is the fact that in most cases it requires modifying an operating system

kernel, an inherently complex task. We believe that creating an infrastructure that

addresses these issues will ease the development of storage extensions and provides

a crucial step towards the rapid development and adoption of novel ideas. Such

infrastructure provides functionality commonly used in block layer extension devel-

opment, including mechanisms to safely move data and interact with the kernel I/O

path. We also found that extensions typically create and manage internal metadata

that must be persistent for ensuring correctness of recovery from failures. For in-

stance, EXCES maintains a mapping indicating which blocks are in the cache. In

most cases this metadata must be made persistent and durable to protect against

crashes and other system failures. Achieving this durability has been no easy task

[RO91, PADAD05, PBA+05]. We create a system that automatically discovers data

that must be made persistent. Developers only need to specify which data structures

to persist, and our system automates storing and restoring the data. We demostrate

that by using this infrastructure developers are able to write less amount of code

allowing them to focus on effectively implementing their core solution.
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Creating new storage extensions only solves part of the problem. System ad-

ministrators then need to deploy these extensions. In many cases they need to

choose from various extensions that accomplish the same goal, for instance SSD-

based caching and multi-tiering (EDT). Both extensions leverage the benefits from

different types of storage devices, each employing a different set of techniques to ac-

complish its goal. Thus, determining which extension is a better choice for a given

scenario is not straight forward. We present an empirical study that illustrates how

administrators can select the extension that better enables meeting the high level

goal, in this case performance.

Finally, once the administrator has chosen which extensions to deploy, the exten-

sions still need to be added to the storage stack and interact with other extensions

which are already deployed. Understanding such interactions is not a trivial task.

For example, if we want to deploy an extension that caches popular blocks in memory

and a RAID1 extension, putting the caching extension on top may reduce reliability,

but placing it below the RAID1 will lead to a cache that has duplicates for every

block. In most cases developers have to be aware of how the extension would be

deployed while administrators need to be be aware of how the extension works to

determine the appropriate stacking order. This slows adoption of novel ideas in stor-

age systems. We believe that extension stack composition should be driven by the

ability to satisfy service goals given to the system. Thus, we develop a formal theory

that allows administrators to quickly determine a stacking order that performs best

according to a specified high level goal, such as improving performance or saving

power. We demostrate this theory to be useful in a set of real life scenarios when

administrators want to improve their storage systems, which gives them the ability

to know the influence of the extensions to be deployed on the storage system.
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The rest of this thesis is structured as follows. In chapter 2 we identify the the-

sis statement and discuss its significance. We study the related work in chapter 3.

Later we present three novel storage system extensions and comment on the lessons

learned while developing these in chapter 4. In chapter 5 we propose an infras-

tructure to develop storage system extensions based on a formal theory that helps

administrators deploy such extensions. We complement this theory with an empiri-

cal methodology to determine which extension is more appropriate for a workload in

chapter 6. Next, we present a persistent memory system that will further facilitate

storage extension development in chapter 7. In chapter 8 we discuss possible future

work directions. We end with some concluding remarks in chapter 9.
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CHAPTER 2

PROBLEM STATEMENT

This section introduces the core research problem addressed in this proposal. We

start with a clear statement of the thesis, elaborate on its significance, introduce

specific challenges that we address, and our unique contributions.

2.1 Thesis Statement

In this dissertation, we improve the state-of-the-art in block layer storage by:

(i) designing and implementing several self-managed block layer extensions that

utilize existing and emerging storage technology in novel ways,

(ii) creating an infrastructure to simplify the development of block layer extensions,

and

(iii) developing a theory that simplifies the deployment and management of the

extensions in production systems.

2.2 Thesis Statement Description

The past 20 years have seen a significant amount of innovation in storage systems

both from industry and academia. Some of these innovations became very successful

and are now ubiquitous, e.g. RAID [PGK88]. But there is still substantial work to

done. Demand for storage is increasing exponentially and newer types of devices

are being added to the storage stack. These shifts bring additional possibilities for

improvement.

The first contribution of this thesis are the lessons learned from designing and

implementing several self-managed block layer extensions that utilize existing and

emerging storage technology in novel ways. One area of interest is the widening
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performance gap between main memory and disks. This gap is making disk I/O

the bottleneck for a wide range of workloads. However, a significant source of the

problem is accessing disks in a non-sequential manner; doing so can degrade I/O

performance by up-to a factor of 100x. We built and evaluated a system that dy-

namically adapts to the observed workload by tracking per application requests and

optimizing these for sequential access. Another area of particular interest is how

to effectively leverage the characteristics of new types of storage devices. The sec-

ond extension studied considers reducing power consumption by adding inexpensive

flash devices as cache trying to capture as much I/O as possible to the flash device

and spindown the disks. Third, we build a dynamic system that incorporates three

storage tiers (SATA disks drives, SAS/FC disks drives, and solid state drives) and

moves data between devices depending on access characteristics to improve perfor-

mance and/or save energy. Finally, we build a modular caching infrastructure that

allows us to evaluate the performance implications of the different design decisions

one taken when building a storage caching system.

Based on our lessons developing those extensions, the second contribution of

this thesis is creating an infrastructure to simplify the development of block layer

extensions. In our studies, we have noticed that although many storage extensions

have been developed through the years, their mainstream adoption has been slow

in most cases. We believe this is due to several reasons. Developers must create ex-

tensions for storage systems which are very complex and find themselves spending

significantly more time than originally scheduled to bring a simple idea to real-

ity. The implementation and testing processes are also cumbersome because of the

complexity of the storage stack. What further complicates the process is the fact

that possible interactions with other systems have to be considered, always keeping

in mind the unforgiving requirement of data consistency. We build a block stor-
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age development infrastructure which simplifies the extension building process by

providing commonly used functionality and support for persistent data structures.

The third contribution of this thesis is developing a theory that simplifies the de-

ployment and management of the extensions in production systems. Administrators

are responsible for maintaining data consistent and readily accessible. They often

fear adding more functionality to their systems without a definitive understanding

of how it is going to interact with their current system. This is limiting widespread

deployment of novel storage extensions. We believe that if administrator are pro-

vided with a concrete method to reason about the effect of incorporating a particular

extension to the current stack and its overall effect on the system we would evidence

more innovations in storage systems being adopted. We create a extension stacking

theory to help them decide how to incorporate extensions to a given stack in order

to accomplish established high level goals.

2.3 Thesis Significance

The demand for storage is growing at an extraordinary rate. With this growth

users are demanding storage systems that are faster, more efficient, and have higher

capacity. Storage system developers bear the responsibility for creating systems

that accommodate for all the users needs and bring innovation to users in a timely

fashion insuring at all times data consistency. And finally, administrators require

storage systems that are reliable and easy to manage.

This dissertation presents solutions that simplify the tasks of both developers

and administrator, and by extension provide a better experience for the user. First,

we present a series of novel storage system extensions that improve the system’s

performance; this for the benefit of the users. For developers, we build an infras-

tructure the simplifies the storage extension development process thereby potentially
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accelerating the pace at which new innovations are added to the storage system. We

formalize reasoning to help administrators deploy these extensions to obtain a better

performing system and in accordance with their goals.
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CHAPTER 3

RELATED WORK

In this section we examine the existing work for the systems we present in the

later sections. Previous work for this proposal covers a wide range, from storage

extensions with similar functionality to kernel development infrastructures to per-

sistent memory systems. This section is structured as follows. First, we examine the

literature for work related to the extensions that we have built and identify what

differentiates us. Next, we look into previous work regarding in-kernel development

libraries. We conclude by reviewing work for persistent memory systems.

3.1 Extensions that Improve the Storage System

There is an extensive amount of previous work regarding developing extensions for

systems. On the optimizations for data layout we find various approaches. Early

work [Won80, SGM91] argued for placing the frequently accessed data in the center

of the disk. More recently, other researchers have focus on optimizing application

startup [Int98, Mic06, hfs04]. BORG is a generic solution in comparison to the

above approaches, since it creates a block reorganization mechanism that can adapt

to an arbitrary workload. Perhaps the closest work to BORG is FS2 [HHS05], which

proposes replication of frequently accessed blocks based on disk access patterns in

file system free space. This strategy, unfortunately, also restricts the degree of seek

and rotational-delay optimization due to the distribution of free space. Since FS2

may create multiple copies of a block simultaneously, staleness, and consequently,

space and I/O bandwidth wastage, become important concerns; BORG maintains

at most one extra copy of each block and its strength is in being a non-intrusive,

storage-stack friendly, and file system independent (portable) solution.
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Regarding, previous work on external caching, Marsh et. al [MDK94] was the

first who proposed incorporating an external device as part of the memory stack

between the disk and memory. Chen et. al [CJZ06] proposed to use the cache to

buffer writes, as well as prefetch and cache popular data. Others have solutions that

address the issue of reducing disk energy consumption include adaptive disk spin

down policies [DKB95, HLS96, LKHA94], exploiting multi-speed drives [GSKF00,

PB04, ZCT+05, ZDD+04], using data migration across drives [CPB03, CG02], and

energy-aware prefetching and caching techniques [PS04, WBB02]. The above studies

evaluate their techniques on simulated models of disk operation and power consump-

tion, we evaluate an actual implementation of EXCES with real-world benchmarks

that realistically demonstrate the extent of power-savings as well as impact to ap-

plication performance. More recently we have witnessed a substantial amount of

research has focused on specializing caching algorithms for known disk access pat-

terns [MM03, JS94, OOWZ93, ZCL04, WW02, JZ02].

Driven by advances of solid state memories multiple storage vendor have began

to incorporate SSDs as caches for disks. Some of the solutions with caching include

NetApp’s FlashCache [Pet09b], Oracle (via Sun) ZFS storage appliances 7000 se-

ries [Ora10], and Nimble storage CS-series [Nim10]. The design differences between

these systems can be significant. For instance, while FlashCache and Nimble favor

using flash-based storage as a read-only cache, Oracle’s Unified Storage solution

uses SSDs to cache both reads (L2ARC) and writes (ZIL) [Gre08]. However, it is up

for debate if this is the most effective way to incorporate SSDs into the storage for

enterprise workloads [Mar10, Owe10] since other researchers and storage companies

are pushing for multi-tiering based solutions.

Among the commercially available multi-tier systems we find 3PAR [Pet10],

IBM’s EasyTier [Tan10], EMC’s FAST [Lal09], and Compellent [Pet09a] systems
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to incorporate SSDs in storage tiering solutions. Nevertheless, since technical de-

tails of these approaches are not published, the extent based dynamic tiering (EDT)

that we propose is the first to provide insight into design choices and components, de-

tailed evaluation across workloads, and analysis of benefits and challenges in building

SSD-based multi-tier systems. Moreover, the publicly available documents of these

products indicate that although they achieve cost savings and performance improve-

ments, there is little focus on tools aiding admins/customers to configure the right

device mix for their workload or on incorporating algorithms that target dynamic

energy savings. EDT addresses these limitations.

Regarding the storage configuration creation problem, systems such as Hippo-

drome [AHK+02], Minerva [ABG+01], and DAD [ASS+05] address the issue of opti-

mizing storage configuration by iteratively applying several steps such as configuring

a low cost storage system, choosing RAID levels and other array parameters, and

assigning entire volumes to arrays. EDT’s configuration advisor focuses on obtain-

ing the right mix of storage devices to minimize cost is similar to the configuration

step in these systems. The key difference is that our approach is inherently aware

of, and utilizes the flexibility afforded by EDT’s dynamic extent placement.

3.2 Storage Infrastructures

This work is mainly motivated by several proposals on self-managing systems, no-

tably early work on stackable file systems [Ros90] and extensible, self-managing

operating systems [BSP+95, GPRA98, SS97], as well as the more recent HP Self-

managing Storage project [ABG+01, AHK+02], IBM autonomic computing [KC03]

proposal, and CMU Self-∗ storage systems proposal [Gan03]. In what follows, we

examine the related literature.
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Block layer virtualization There is abundant work on block layer virtualiza-

tion from the open source community [dIMO97, Leh99, Pra02, The07] and storage

vendors (HP Openview, EMC Enginuity, Symantec/Veritas Volume Manager, and

NetApp FlexVol). Typically, these systems allow the administrator to choose from a

few pre-existing virtualized configurations (e.g., mapping devices to a logical space

and setting up RAID levels). Of the open source initiatives, the GEOM block

layer infrastructure is an initial step to what we propose. GEOM classes can per-

form transformations on I/O requests passing through the block layer. The Violin

project [FB05] is similar to GEOM in that it proposes a mechanism for block layer

interposition that enables storage virtualization by means of a hierarchy of “virtual

devices”. While we believe that both GEOM and Violin are steps in the right di-

rection, they still leave a wide chasm to cross for both the developer and the system

administrator. GEOM classes and Violin virtual devices must both be implemented

from scratch thus fully exposed to the fatalities of kernel-space development. Un-

der these frameworks, extension developers must implement basic block-level I/O

primitives themselves (such as cloning, splitting, copying, indirection, replication,

etc.) and ensure block consistency in these implementations, thereby leaving sig-

nificant room for developer error. Further, system administrators must manually

consider various possibilities, reason behavior, and configure their storage systems

from scratch.

Extensible file systems The framework we propose has similarities at an archi-

tectural level to the early 90’s work of Rosenthal et al. [Ros90] on stackable vn-

ode extensions. Both stackable vnode extensions and block-layer extensions in the

framework support seamless extension of the storage stack. WrapFS [Zad99] advo-

cates writing file system extensions as kernel modules and provides a rich support

infrastructure.
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3.3 Persistent Memory

Persistence techniques can be classified into system-managed, application-managed,

and application-directed. System-managed persistence is usually handled by a li-

brary with optional OS support. In some solutions, it involves writing a process’s

entire execution state to persistent storage [GSJ+05, HD06, BMP+04]. Other solu-

tions implement persistently mapped memories for programs with pointer swizzling

at page fault time [SKW92]. While transparent to developers, this approach lacks

the flexibility of separating persistent and non-persistent data required by many

applications and systems software. With application-managed persistence [EP04,

OAT+07], application developers identify and track changes to persistent data and

build serialization-based persistence and restoration routines. Some hybrid tech-

niques implemented either as persistent memory libraries and persistent object

stores have combined reliance on extensive developer input about persistent data

with system-managed persistence [CDF+94, Epp89, LAC+96, LLOW91, PBK95,

SMK+93]. However, these solutions involve substantial development complexity,

are prone to developer error, and in some cases demand extensive tuning of per-

sistence implementations to the storage system making them less portable. For

instance, ObjectStore[LLOW91] requires developers to specify which allocations are

persistent and their type by overloading the new operator in C++ [obj].

Application-directed persistence provides a middle ground. The application

chooses what data needs to be persistent, but a library implements the persistence.

The earliest instances were persistent object storage systems [CAC+84] based on

Atkinson’s seminal orthogonal persistence proposal [Atk78]. Applications create ob-

jects and explicit inter-object references, and the object storage system (de)serializes

entire objects and (un)swizzles reference pointers [Mos92]. Some persistent object
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systems (e.g., Versant Persistent Objects [ver], SSDAlloc [BP09], Dali [JLR+94])

eliminate object serialization but they require (varying degrees of) careful develop-

ment that includes identifying and explicitly tagging persistent objects, identifying

and (un)swizzling pointers, converting strings and arrays in the code to custom

persistent counterpart types, and tagging functions that modify persistent objects.

Recoverable Virtual Memory (RVM) [SMK+93] was one of the first to demon-

strate the potential for memory-like interfaces to storage. However, its approach

has some key limitations when compared to the persistent memory library provided

under the Active Block Layer Extensions (ABLE) project. First, RVM’s interface

still requires substantial developer involvement. Developers must track all persistent

data, allocate these within RVM’s persistent region, and ensure that dependence re-

lations among persistent data are satisfied (e.g., if persistent structure a points to

b, then b must also be made persistent). Manually tracking such relations is tedious

and error-prone. Further, developers must specify the address ranges to be modified

ahead of time to optimize performance. These requirements were reported to be

the source of most programmer bugs when using RVM [MSSL97]. Second, RVM’s

static mapping of persistent memory segments makes it too rigid for contemporary

systems that demand flexibility in managing address spaces [LNBZ08, The09]. In

particular, this approach is not encouraged in today’s commodity operating sys-

tems that employ address-space layout randomization for security [BDS03, The09].

Finally, RVM is also restrictive in dynamically growing and shrinking persistent

segments and limits the portability of a persistent segment due to its address range

restrictions.

The recent Mnemosyne [VTS11] and NV-Heaps [CCA+11] projects also provide

persistent memory abstractions similar to ABLE. However, there are at least two

key differences. First, both of the solutions are explicitly designed for non-volatile
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memories or NVM (e.g., phase-change memory) that are not yet commercially avail-

able. Most significantly, these devices are intended to be CPU accessible and byte

addressable which eliminates copying data in/out of DRAM [CNF+09]. Thus, the

focus of these systems is on providing consistent updates to NVM-resident persis-

tent memory via transactions. On the other hand, ABLE targets currently available

commodity technology. Second, neither of these systems provide the orthogonal per-

sistence that ABLE enables; rather, they require the developer to explicitly identify

individual allocations as persistent or not and track and manage changes to these

within transactions. For instance, the NV-Heaps work argues that explicit tracking

and notification of persistent data ensures that the developer does not inadvertently

include more data than she intends [CCA+11]. We take the converse position that

besides making persistence vastly simpler to use, automatic discovery ensures that

the developer will not inadvertently exclude data that does need to be persistent

for correctness of recovery, while simultaneously retaining the ability to explicitly

exclude portions of data when unnecessary. Further, ABLE’s design, which relies

on interposing on application memory allocations, ensures that pointers to library

structures (e.g., files or sockets) are reset to NULL upon container restoration by de-

fault, thus relieving the developer of explicitly excluding such OS dependent data;

such OS specific data is typically re-initialized upon application restart. Finally,

feedback about automatically discovered persistent containers from ABLE can help

the developer in reasoning about and eliminating inadvertently included data.

Single level persistent stores as used in the Grasshopper OS [DdBF+94] employ

pointer swizzling to convert persistent store references to in-memory addresses at the

page granularity [VD92, WD92] by consulting an object table within the object store

or OS. Updates to persistent pointers are batch-updated (swizzled) when writing
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pages out. ABLE fixes pointer addresses when persistent containers get loaded into

memory but is free of swizzling during container writing time.

Finally, Java objects can be serialized and saved to persistent storage, from where

it can be later loaded and recreated. Further, the Java runtime uses its access to

the object’s specification, unavailable in other lower-level imperative languages that

ABLE targets.
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CHAPTER 4

BLOCK LAYER EXTENSIONS

In this chapter we present our experiences developing storage extensions. We

showcase three extensions. BORG which optimizes the data layout to reduce I/O

latencies based on observed access patterns. EXCES which uses an external caching

device to place frequently accessed data in an effort to reduce I/Os to the hard

disks to save power. And finally, EDT, a dynamic multi-tier system that leverages

the benefits of each storage tier by placing data in the tier where its best served

according to observed I/O characteristics.

After developing these extensions we found that there is a substantial amount of

auxiliary functionality shared by all three. For instance, in all cases we required a

mechanism to correctly migrate data, either when creating the new layout in BORG

or when moving data between devices in the case of EXCES and EDT. Doing this

correctly requires a delicate ordering of I/O operations. Many complications could

arise when the migration is underway, which we will discuss later.

The rest of this chapter is structured as follows, we start by motivating the de-

velopment of self-optimizing storage extensions at the block layer. Next, we present

three self-optimizing storage extensions we have built, namely, BORG (§4.2) which

optimizes data layout based on observed I/O patterns, EXCES (§4.3) which lowers

disk power consumption by caching popular blocks on a low power device, and EDT

(§4.4) a two component system which helps design and deploy multi-tier storage

systems that improve performance and save energy. We end with a summary of the

lessons we take away from the developing these extensions.
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Available Missing

VFS file, process, page cache device, layout

File System file, process, layout device, not generalizable

Block Layer file, process, device layout

I/O
Scheduler

file, process, device layout

Disk Drive device file, process, layout

Figure 4.1: Storage Layers and information available.

4.1 A Block Layer Solution.

Our choice of the block layer as the building block for the storage system extensions

is prompted by several requirements both from a development and administration

stand-point. First, numerous solutions in the research literature attest that the block

layer provides a conducive environment for storage self-management, starting from

well-established software RAID implementations [dIMO97, Cou96] to several recent

optimizations [ASV06, FMK+07, GPK+07, LCSZ04, MAC+08, Nar08, NDT+08,

QD02, SWS05, ZLP08]. Second, the block abstraction is a prevalent abstraction in

storage architectures. Figure 4.1 summarizes the storage stack layers of most systems

as well as the information available in each layer. Notice that for network-attached

SAN [Phi98] devices, the block layer includes the bottom layer at the initiator and

the top layer of the target. For NAS [GV00] and object-based storage [MGR03],

this layer resides within the target’s OS, as in stand-alone storage. Third, several

requirements for a self-management infrastructure building-block, from both devel-

oper and administrator stand-points, are satisfactorily met as listed below:
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1. Access to system state Self-management solutions rely on sensing the system

state continuously. The block layer provides temporal, process-level, and block-

level attributes for each block I/O request as well as device and I/O state,

including failed I/O operations or devices.

2. A simple interface The block layer virtualizes storage as a logical block ad-

dress space and adheres to a simple block consistency contract which requires

that a block read contains the exact same data that was last written to it.

A functionally simple layer allows arbitrarily complex self-management exten-

sions to be built on top of it as long as the extensions adhere to its interface

and contract. Most importantly, this simplicity in semantics also allows us to

build a theory of block layer extensions.

3. File system independence The block layer enables self-management solutions

that can work with multiple heterogeneous file systems without changes to

their implementations. This gains importance given the variety of designs and

implementations of file systems.

4. File system accessibility A block layer development infrastructure can be easily

made available to the file system instance(s) above it. Thus, file system layer

innovations can tap into ABLE infrastructure for support. We elaborate on

this further in § 5.2.3.

5. I/O scheduler leverage Self-management extensions may generate additional

I/O traffic which automatically leverage scheduling optimizations such as re-

quest merging and ordering. This feature frees the developer from generic

concerns of I/O handling, allowing her to focus on developing the functional

core of the extension.
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6. Control and arbitration of storage resources Due to its position in the storage

stack, the block layer can easily serve as an arbitrator block storage resources.

For instance, self-management extensions can request and use dedicated stor-

age, distinct from file system volumes or allocations of other ABLE extensions.

Caveat Building self-management extensions at the block layer has a strong list of

advantages, but by no means we suggest the block layer as the ideal building block

for all self-management storage extensions. Extensions that closely depend on the

semantic properties of other layers are probably best suited elsewhere in the stack.

However, as evidenced by recent research, we do claim that a large set of storage

solutions can be implemented most conveniently at the block layer.

Now that we have argued for the block layer as our preferred place in the storage

stack for extension development, we discuss the design of three novel extensions.

4.2 Optimizing Data Layout for Performance

Present day file systems, which control space allocation on the disk drive, employ

static data layouts [HD96, KBBA, MJLF84, Nam, Twe98, Cus94]. However if file

systems were able to adapt and optimize to the dynamic characteristics of I/O

workload performance could be greatly improved.

To validate this hypothesis we conducted experiments to reconcile past observa-

tions about the nature of I/O workloads [RW93a, GS02, HSY05] in the context of

current-day systems including end-user and server-class systems, Table 4.1 presents

a summary of the workloads studied, more details on the workloads can be found

in [BGU+09]. Our key observations are: (i) on-disk data exhibit a non-uniform

access frequency distribution; the “frequently accessed” data is usually a small frac-

tion of the total data stored when considering a coarse-granularity time-frame. For
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the traces that we collected where less than 4.5-22.3% of the file system data were

accessed over the duration of an entire week (shown in Table 4.1). Further, the top

20% most frequently accessed blocks contributed to a substantially large (∼45-66%)

percentage of the total accesses across the workloads depicting a skewed data access

frequency. (ii) considering a fine-granularity time-frame, the “on-disk working-set”

of typical I/O workloads is dynamic; nevertheless, workloads exhibit temporal lo-

cality in the data that they access. Figure 4.2 (bottom row) depicts the changes in

the per-day working-sets of the I/O workload. The two end-user I/O workloads and

the web server workload exhibit large overlaps in the data accessed across successive

days of the week-long trace with the first day of the trace. (iii) I/O workloads exhibit

partial determinism in their disk access patterns; besides sequential accesses to por-

tions of files, fragments of the block access sequence that lead to non-sequential disk

accesses also repeat. Table 4.1, we present the partial determinism for each work-

load calculated as the percentage of non-sequential accesses that repeat at least once

during the week. The partial determinism percentages are high for the two end-user

and the SVN server workloads.

Workload File System Memory Reads [GB] Writes [GB] File System Top 20% Partial

type size [GB] size [GB] Total Unique Total Unique accessed data access determinism

office 8.29 1.5 6.49 1.63 0.32 0.22 22.22 % 51.40 % 65.42 %

developer 45.59 2.0 3.82 2.57 10.46 3.96 14.32 % 60.27 % 61.56 %

SVN server 2.39 0.5 0.29 0.17 0.62 0.18 14.60 % 45.79 % 50.73 %

web server 169.54 0.5 21.07 7.32 2.24 0.33 4.51 % 59.50 % 15.55 %

Table 4.1: Summary statistics of week-long traces obtained from four different sys-
tems.

Based on the above observations, we believe that dynamically optimizing the disk

layout has potential to improve I/O performance, given that: (i) it is reasonable to

expect that co-locating frequently accessed data in a small area of the disk would

help reduce seek times [AS95]. (ii) optimizing layout based on past I/O activity can
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Figure 4.2: Rank-frequency, heatmap, and working-set plots for week-long traces
from four different systems. The heatmaps (middle row) depict frequency of accesses in

various regions of the disk, each cell representing a region. Six normalized, exponentially-

increasing heat levels are used in each heatmap where darker cells represent higher fre-

quency of accesses to the region. Disk areas are mapped to cells in row-major order.
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improve future I/O performance for some workloads. (iii) there is ample scope for

optimizing the repeated non-sequential access patterns.

BORG is an online Block-reORGanizing storage system to comprehensively ad-

dress the above issues. BORG correlates disk blocks based on block access patterns

to capture the I/O workload characteristics. It dynamically copies working-set data

blocks (possibly spread over the entire disk) in their relative access sequence con-

tiguously to a BORG OPtimized Target (BOPT) partition, thus simultaneously

reducing seek and rotational delays. In addition, it assimilates all write requests

into the BOPT partition’s write buffer. Since BORG operates in the background it

presents little interference to foreground applications. Next, we present its design.

4.2.1 BORG System Architecture

Applications

VFS

Page Cache

File System:

EXT3, JFS,

· · ·

BORG

I/O Scheduler

Device Driver

Analyzer Planner

I/O Profiler Reconfigurator

I/O Indirector

: New components : Existing Components : Control Flow

Figure 4.3: BORG System Architecture.

Abstractly, BORG follows a four-stage process:

1. profiling application block I/O accesses,

2. analyzing I/O accesses to derive access patterns,

3. planning a modification to the data layout, and
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4. executing the plan to reconfigure the data layout.

In addition, an I/O indirection mechanism runs continuously re-directing requests

to the partition that it optimizes as required. Figure 4.3 presents the architec-

ture of BORG in relation to the storage stack within the operating system. The

modification to the existing storage stack is in the form of a new layer, which we

term BORG layer, that implements three major components: the I/O profiler, the

BOPT reconfigurator and the I/O Indirector. A secondary throttle-friendly user-

space component implements the analyzer and the planner stages of BORG and

performs computation and memory-intensive tasks. While profiling and indirection

are both continuous processes, the other stages run periodically and in succession

culminating in a reconfiguration operation.

For the I/O profiler, we use a low-overhead kernel tool called blktrace [Axb07].

The analyzer reads the I/O trace collected by the profiler periodically (based on

a configurable reconfiguration interval) and derives data access patterns. Subse-

quently, the planner uses these data access patterns and generates a new reconfig-

uration plan for the BOPT partition, which it communicates to the BOPT recon-

figurator component. The user-space analyzer and planner components run as a

low-priority process, utilizing only otherwise free system resources. Under heavy

system load, the only impact to BORG is that generating the new reconfiguration

plan would be delayed.

The BOPT reconfigurator is responsible for the periodic reconfiguration of the

BOPT partition, per the layout plan specified by the planner. The reconfigurator

issues low-priority disk I/Os to accomplish its task, minimizing the interference

to foreground disk accesses. Finally, the I/O indirector continuously directs I/O

requests either to the FS partition or the BOPT partition, based on the specifics of

the request and the contents of the BOPT.
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4.2.2 BORG Evaluation Results

BORG was evaluated and shown to offer performance gains in the average case

for varied workloads including office and developer class end-user systems, a web

server, an SVN server, and a virtual machine monitor; we present a summary of

those results below; please refer to the full BORG paper for more detailed results

and findings [BGU+09]. Average disk busy times reduction with BORG across

these workloads range from 6% (for the VM workload) to 50% (for the developer

server workload). Occasionally BORG performs worse than a vanilla system, specif-

ically when a read-mostly workload (e.g., a web server) drastically shifts its working

set. BORG is able to easily address changing working-sets with a (possibly non-

sequential) write workload (e.g. an SVN server), since it has the ability to absorb

and sequentialize writes inside the BOPT. A sensitivity analysis revealed the im-

portance of choosing the right configuration parameters for reconfiguration interval,

BOPT size, and the write-buffer fraction. Fortunately, simple iterative algorithms

can be quite effective in identifying the right parameter combination; a formal in-

vestigation of such an approach is an avenue for future work. The memory and

CPU overheads incurred by BORG are modest and with ample scope for further

optimization.

4.2.3 BORG Summary

BORG is a self-optimizing layer in the storage stack that automatically reorganizes

disk data layout to adapt to the workload’s disk access patterns. It was designed to

optimize both read and write traffic dynamically by making reads and writes more

sequential and restricting majority of head movement within a small optimized disk

partition. BORG offers a novel and practical approach to building self-optimizing
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storage systems that can offer large I/O performance improvements in commodity

environments.

Researchers have suggested layout optimizations that reduce I/O latencies can

contribute to power savings since they reduce the time the disk is busy [HHS05].

However, we feel it is best to use low power storage devices as a cache for disk and

thereby amplify for the potential for energy savings. We discuss an extension which

implements this below.

4.3 Lowering Power Consumption with External Caching

The next extension we discuss tackles the issue of build energy-efficient storage

systems for personal computing. The key argument is that the disk drive, the

sole mechanical device in modern computers, is also one of its most power consum-

ing [Int02]. Previous simulation based work [BBL06, CJZ06, MDK94] suggests using

a power lower non-volatile storage device [IBM, Tec], which refer to external caching

device (ECD), as a cache to the hard disk and spindown the disk during idle periods

to save power. While these studies serve to make the case for further research in

external caching systems, they still leave several key questions unanswered. First,

these studies do not evaluate the power consumption of the system as a whole, but

only focus on the reduction in disk power consumption. Second, existing studies

do not evaluate an important artifact of external caching, which is the impact on

application performance. Third, the existing approaches base their evaluation of

external caching on simulation models [BBL06, CJZ06, MDK94]. While simulation-

based evaluation may be well-suited for an approximate evaluation of a system,

they also sidestep key design and implementation complexities as well as preclude

evaluating the overhead contributed by the system itself.
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Config. Disk State Iozone Data ECD Specification ECD Interface

No Disk Standby N/A N/A N/A

Disk Active On disk N/A N/A

ECD 1 Standby On ECD SanDisk Cruzer Micro USB USB interface

ECD 2 Standby On ECD SanDisk Ultra CF Type II eFilm Express Card 34 CF Adapter

ECD 3 Standby On ECD SanDisk Ultra CF Type II SanDisk Ultra PC Card Adapter

Table 4.2: Various laptop configurations used in profiling experiments.

To understand the power consumption characteristics of ECD relative to disk

drives, we experimented with two different NAND-flash ECDs and three different

ECD interfaces on two laptop systems (see Table 4.2). We measured the overall

system power consumption for four states: when the system was idle with each

device merely being active, and with the Iozone [NC], an I/O intensive benchmark,

generating a read intensive, write intensive, and read-write workload. Figure 4.4

depicts the individual power consumption profiles for each storage device on two

different laptops: shiriu and beer. A detailed experimental setup is given in

[UGB+08]. We see that both types of flash memory consume less power than the disk

in all the Iozone benchmarks, except for ECD 3. More importantly, for both systems,

even in configurations when the disk is powered down completely, we observe that

the power savings are bound within 10% for an I/O intensive benchmark. Further,

when the system is idle, the ECD subsystems consumes as much power as the disk

drive. While the laptop workload would be somewhere in between idle and I/O

intensive, these findings nevertheless call to question the effectiveness of external

caching systems in saving power. Our goal in this study is to address this question

comprehensively.

We present EXternal Caching system for Energy Savings (EXCES), it operates

by utilizing an ECD for prefetching, caching, and buffering of disk data to enable

the disk to be spun-down for large periods of time and saving power. EXCES

adapts to workload changes by identifying popular data continuously, reconfiguring
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Figure 4.4: Power consumption profiles of various ECD types and interfaces.

the contents of the ECD (as and when appropriate) to maximize ECD hits on

both read and write operations. To prefetch popular data to the ECD, EXCES

opportunistically reconfigures the ECD contents, when the disk is woken up on an

ECD read miss. EXCES always redirects writes to the ECD, regardless of whether

the written blocks were prefetched/cached in the ECD; this is particularly important

since most systems perform background write IO operations, even when idle [CJZ06,

PADAD05, Sam04]. All of the above optimizations minimize disk accesses and

prolong disk idle periods, consequently conserving energy.

4.3.1 EXCES: System Architecture

User Applications

VFS

File System:

EXT3, JFS, . . .

EXCES

I/O Scheduler

EXCES

Page Access Tracker

Reconfig

Trigger

Reconfig

Planner

Indirector Reconfigurator

yes

read-miss

Legend: : New components : Existing Components : Control Flow

Figure 4.5: EXCES system architecture.
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EXCES consists of five major components as shown in Figure 4.5. Every block

I/O request issued by the upper layer to the disk drive is intercepted by EXCES.

The page access tracker receives each request and maintains updated popularity

information at a 4KB page granularity. Control subsequently passes to the indirector

component which redirects the I/O request to the ECD as necessary. Read requests

to ECD cached blocks and all write requests are indirected to the ECD. A read-miss

occurs for blocks not present on the ECD and the read request is then indirected

to the disk drive. The reconfiguration trigger module is invoked which decides if

the state of the system necessitates a reconfiguration operation. If a reconfiguration

is required, the reconfiguration planner component uses the page rank information

maintained by the page access tracker to generate a new “reconfiguration plan”

which contains the popular data based on recent activity. The reconfigurator uses

this plan and performs the corresponding operations to achieve the desired state

of the ECD. EXCES continuously iterates through this process until the EXCES

module is unloaded from the kernel.

4.3.2 EXCES Summary

EXCES is an external caching system that reduces system power consumption by

prefetching, caching, and buffering disk data on a less power consuming, persistent,

external caching device. While external caching systems have been proposed in the

past, EXCES is the first implementation and evaluation of such a system. We con-

ducted a systematic evaluation of the EXCES system to determine overall energy

savings and the impact on application performance. EXCES delivered overall sys-

tem energy savings in the modest range of ∼2-14% across the BLTK and Postmark

benchmarks. Further, we demonstrated that external caching systems can substan-

tially impact application performance, especially for a write-intensive workload.
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We believe that external caching systems offer a new direction for building en-

ergy saving storage systems. Improvements in ECD technology, especially in the

performance dimension, can help accelerate the adoption of such systems. Opti-

mizations that address random write performance on the ECD will gain significant

importance in such systems. Recently released flash based solid state disks (SSD),

such as the Intel R© X-25m, partially address the random write problem using an

intelligent translation layer. In the next section we look into a system that leverages

this newer flash based devices.

4.4 Improving Performance with Dynamic Multi-tier Systems

Previously in § 4.3 we designed an external caching system for low end flash de-

vices. We saw the EXCES system was able to achieve modest power savings, but

could also suffer from performance degradation due mostly to random writes. In

this work, we continue on to multi-tier systems, those that incorporate multiple

types of storage devices. These systems strive to provide performance and relia-

bility at minimum capital and operating cost. Typically, these systems use high

performance disk drives (e.g. SCSI/SAS/FC) to provide that performance. How-

ever, solid-state drives (SSDs) offering superior random access capability per GByte

have become increasingly affordable. On the other hand, SATA drives offering su-

perior cost per GByte are also attractive for mass storage. Systems with only SSDs

are still too expensive, and those built using only SATA would not provide enough

performance/GByte for most enterprise workloads. Multi-tier systems containing a

mix of devices can provide high performing and lower cost storage by utilizing SSDs

only for the subset of the data that needs SSD performance.

Current commercial SSD-based multi-tier systems from Compellent [Pet09a],

IBM [Tan10], 3PAR [Pet10], and EMC [Lal09] provide performance gains and cost
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savings. However, customer adoption has been slow. One of the reasons for this is

the difficulty in determining what mix of devices will perform well at minimum cost

in the customer’s data center. This optimization task is highly complex because of

the number of device types available along with the variability of workloads in the

data center.

To address this challenge, two things are needed: configuration tools to assist

in building such systems and to demonstrate potential benefits based on customer

workload, and capabilities in the storage systems that can optimize placement of

data in the tiers of storage. The placement should ensure that actively accessed data

is co-located to minimize latency while lightly accessed data is placed most econom-

ically. There is also an opportunity to improve operating cost by placing data on the

minimum set of devices that can serve the workload while powering down the rest.

Current products address some but not all of these challenges. Determining which

mix of devices to buy remains a difficult problem, and improvement of operating

cost by consolidation and power management has not yet been tackled.

To address these gaps, we develop an Extent-based Dynamic Tiering (EDT)

system that includes: 1) a Configuration Adviser tool EDT-CA to calculate cost-

optimized mixes of devices that will service a customer’s workload, and 2) a Dynamic

Tier Management EDT-DTM component that runs in the configured storage system

to place data by dynamically moving extents (fixed-size portions of a volume) to

the most suitable tiers given current workload. EDT-CA works by simulating the

dynamic placement of extents within tiers that offer the lowest cost to meet an

extent’s I/O requirements as they change over time, and thus suitably size each tier.

EDT-DTM monitors active workload and manages extent placement and migration

in such a way that performance goals are met while optimizing operating cost where
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feasible by consolidating data into fewer devices within each tier and powering off

the rest.

This work makes the following contributions:

• EDT is the first publicly available work that formalizes and explores the design

space for storage configuration and dynamic tier management in SSD-based

multi-tier systems. (§ 4.4.1)

• EDT consists of a novel configuration algorithm for dynamic tiered systems

that outputs lower cost configurations. (§ 4.4.2, § 4.4.3)

• EDT proposes a novel dynamic placement algorithm to satisfy performance

requirements while minimizing dynamic power. (§ 4.4.4)

• EDT outperforms SAS-only and other simpler extent-based tiering approaches

across a variety of workloads in both cost and power. (§ A.1)

4.4.1 Multi-Tiering Design Choices

This section describes important design choices for a multi-tier system that enable

efficient use of the tiers.

Extent-based Tiering

The first we consider the granularity of data placement. As we saw in § 4.2 and

previous studies [GPG+09], I/O activity is highly variable across LBAs in a volume.

Therefore, if data were placed at a volume level based on average volume workload

characteristics, a large percentage of the tier will hold data that does not require

the tier’s capabilities. Thus, we perform data placement at the granularity of an

extent, a fixed-size portion of a volume. The smaller the extent size, the more

efficient will be the data placement. However, the amount of metadata overhead
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required to keep track of extent locations and other statistics increases as extent size

is decreased. We choose an extent size with an acceptable system overhead (details

in § A.1.2).

Dynamic Tiering

Regarding the time scale at which extents move across tiers, one choice involves

placing extents once during system instantiation or moving them at coarse grain

intervals of the order of days or months. However, studies show that I/O rates of

a workload are typically below peak most of the time [KR10, LPGM08], this static

or semi-static placement is not optimal —a placement that configures for the peaks

pays extra in both cost and energy for a system that is over-provisioned at off-peak

times; and a placement that mitigates cost from over-provisioning by configuring for

the average I/O rate suffers from decreased performance during peaks.

The alternate choice is to plan extent movement at intervals on the order of

minutes or hours. We refer to this time interval as an epoch. Such a system exploits

variation in extent I/O rate to improve its efficiency; an extent is on a SATA tier

when inactive, and moves to the SAS or SSD tier as its I/O rate goes up. This

achieves cost-effective use of resources and/or dynamic energy savings. Similarly,

when the performance demanded of a single tier is below its peak capacity, extents

placed on the tier can be consolidated into fewer devices for power savings. Often,

the set of heavily loaded extents changes over time [GPG+09]. Dynamic migration

of the heavily loaded extents into SAS or SSD when required enables cost-effective

use of the resources. Thus, we choose to perform dynamic data placement with an

epoch length of the order of minutes/hours.

The drawback of such a dynamic system, however, is the cost of data migra-

tion, i.e., the potential adverse effect on foreground I/O latency and the migration
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latency itself before the desired outcome. Longer epoch durations allow more time

to execute migrations and amortize overhead better. Thus, we pick an epoch dura-

tion whose estimated migration overhead is below the allowable system migration

overhead (details in § A.1.2). Additionally, it is important to ascertain that the

overhead of migrating data does not overwhelm its benefit. This depends on the

stability of the workload—extents that relocate often benefit less from migration

compared to extents that stay longer in a particular tier. The workloads we have

studied indicate that dynamic migration is typically beneficial, but we believe that a

dynamic system must also be able to back off when lack of workload stability causes

dynamic migration to interfere with performance.

Beyond I/O Rate Based Tiering

This design choice determines the extent-level statistics required to match an extent

with the right tier. The available public documentation about commercial extent-

based multi-tier products indicates use of IOPS to measure load; in these systems

high IOPS regions are placed onto SSD while leaving the remainder of the data on

SAS or SATA. Although this method is intuitively correct, our preliminary anal-

ysis reveals significant drawbacks: IOPS-based placement does not factor in the

bandwidth requirement of an extent. For example, consider an extent with a long

sequential access pattern consisting of small I/Os to contiguous locations. Such an

extent will have high IOPS and bandwidth requirements. Our analysis of production

and SPC-1 [spc] like workload traces (§ A.1), collected after the I/O scheduler show

such patterns. Using I/O rate statistics for this stream causes sequential streams,

which are more cost-effectively served on SAS or even SATA, to be inappropriately

placed on SSD. IOPS placement also ignores capacity of the extent. An extent
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with high IOPS relative to other extents may not have high enough I/O density

(IOPS/GByte) to justify the high $/GByte cost of the SSD.

Our approach is to collect more than just I/O counts. We employ a heuristic as

in [NTD+09] to break down an extent’s workload: I/Os that access LBAs within 512

KBytes of the previous ones are taken as part of a sequential stream and contribute

to an extent’s bandwidth requirement. I/Os further apart are characterized as

random I/Os and are used to compute a random I/O rate. Thus, for each extent,

we collect a random I/O rate and bandwidth. Other methods for separating the

I/Os into random and sequential may also be applicable.

4.4.2 Design Overview
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Figure 4.6: EDT system architecture.

EDT consists of two elements as depicted in Figure 4.6: a Configuration Adviser

(EDT-CA) that determines the right number of devices per tier to install into a

storage system, and a Dynamic Tier Manager (EDT-DTM) that operates inside a

running system and continuously manages extent placement across tiers. EDT is

expected to be deployed in a commercial storage system as shown in Figure 4.6

which exports many volumes, includes a virtualization layer that allows volumes
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to be made up of extents stored in arrays of different device types, is capable of

collecting and exporting statistics about extent workloads, and can execute requests

to non-disruptively move extents between storage devices.

An example usage scenario is as follows: A user wishes to replace a SAS based

storage array with a new, tiered storage system with twice the capability. He col-

lects a trace of his workload over a 24 hour period that he thinks is representative.

The trace is then run through EDT-CA which produces the minimum cost configu-

ration of SSD, SAS, and SATA that can provide 2x the performance of the existing

system. EDT-CA is aware of the runtime migration capabilities of EDT-DTM and

takes them into account when determining the configuration. The user installs the

new system. During operation of the new system, EDT-DTM manages migration

between tiers by continuously collecting extent level statistics, consolidates data

onto lower-power tiers when possible, and monitors the system to ensure that the

workload performance is not throttled.

In general, EDT-CA starts by determining the workload requirements for the

system it is going to configure. This can either be done with a user generated

general description of requirements including IOPS, seq/random mix, length of I/O

requests, and their distribution across extents, or by using time series data collected

from a workload running on an existing system. For the scope of this work, we

assume availability of time series statistics. In this approach, EDT-CA takes a

epoch-granularity trace of extent workload statistics sampled at times when storage

system usage is high. It then estimates the resources required in different tiers to

satisfy that workload by simulating placement of each extent in a tier that minimizes

its incurred cost while meeting its performance requirements. It repeats this process

every epoch and assigns extents to their lowest cost tier based on their performance

requirements in that epoch. At the end of this simulation, EDT-CA determines the
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set of devices that are needed based on the maximum number of devices needed

in each tier over all the epochs. This configuration determines the set of devices

purchased by the user.

Once the new tiered system is up and running, EDT-DTM manages extent place-

ment. It collects extent level statistics, estimates extents’ resource consumption in

different tiers, and then plans and executes migrations. EDT-DTM implements

a throttling correction mechanism to ensure that performance requirements are

satisfied as they vary over time; it constantly monitors array performance and if

performance throttling is detected relocates extents to restore performance. EDT-

DTM’s placement algorithm seeks to place each extent into the lowest-energy tier

that satisfies its performance requirement and then to further minimize energy by

consolidating extents in the same tier into fewer devices allowing unused devices to

be powered down. Both these algorithms use a Migrator module to move extents.

EDT-CA and EDT-DTM work together to minimize cost. EDT-CA minimizes

acquisition cost, and EDT-DTM minimizes operating cost. As our results will show,

configurations based on static extent placement are more expensive both to acquire

and operate.

Common Components

EDT-CA and EDT-DTM share components that collect statistics and calculate

resource consumption.

Data Collector The Data Collector receives information about I/O completion

events including the transfer size, response time, logical block address (LBA) , the

volume ID to which the I/O was issued, and the array which executed the I/O.

The collector then maps the (LBA, volume id) pair of each I/O to a unique extent
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in the system, and compiles for each extent, the number of random I/Os and the

number of transferred bytes. It then periodically (every minute in our implemen-

tation) computes instantaneous bandwidth and random IOPS per extent as well as

an exponentially-weighted moving average. In addition to the extent statistics, the

collector aggregates statistics per array. It maps each I/O to its array and compiles

its IOPS and average response time. These measurements are used by EDT-DTM

to determine if I/Os on an array are being throttled. For a very large system the

amount of data collected by the data collector may be significant. If this is an issue,

the the extent size can be made larger to reduce the volume of statistical data.

Resource Consumption Model The Resource Consumption Model uses the ex-

tent statistics to estimate the resources it consumes when placed on a device of a

given type. Resources are allocated based on the observed capacity and performance

requirements at the device level. Therefore, any workload optimizations like dedu-

plication, compression, and caching do not need to be considered in these models as

their effects will be captured by the usage statistics.

An extent consumes the resources of a device along capacity and performance

dimensions. Consider an extent of size Ec and a performance requirement Ep de-

termined by its random IOPS rate (RIOR) and bandwidth measured in previ-

ous epochs. The fraction of capacity required to host an extent E in device D

(RC(Ec, D)) is straightforward:

RC(Ec, D) =
Capacity required by extent

Total space in device

For performance utilization, we use a simplified model based on Uysal et al.’s

work [UAM01]. The performance resource consumption of extent E, when placed

on device D (RC(Ep, D)) is:

RC(Ep, D) = RIOR · Rtime + Bandwidth · Xtime
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Figure 4.7: Lowest cost tier for extents with different characteristics.

Here RIOR is the number of random I/Os sent to an extent in a second (IO/s)

and Rtime is the expected response time of the device (s/IO). Bandwidth is the

bandwidth requested from the device (MB/s), and Xtime is the average transfer

time (s/MB). The result of this equation is the fraction of the device performance

utilized by an extent. Note that the Rtime and Xtime values are averages and

may need to be adjusted depending on the expected workload. For example an

SSD with a mostly random write workload would have significantly higher Rtime

than the same SSD with a mostly random read workload. The overall resource

required by an extent is then the maximum of the capacity utilization fraction and

the performance utilization fraction:

RC(E,D) = max(RC(Ep, D), RC(Ec, D))

The resource consumption model determines the most efficient tier for an extent.

For instance, when minimizing cost, the most suitable tier is the one where the ex-

tent incurs the lowest cost (the product of the device cost and the extent’s resource

consumption on that device). Figure 4.7 confirms the advantage of multi-tier sys-

tems since the most cost-effective tier changes with extent characteristics, namely

the total IOPS and the percentage of sequential accesses among three classes of

storage devices specified in Section A.1. As expected, we observe that mostly idle

extents favor SATA, medium IOPS favor SAS, and high IOPS favor SSD. Further,

as expected, more sequential extents favor HDDs.
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4.4.3 Configuration Adviser

EDT-CA builds on the Data Collector and the Resource Consumption Model de-

scribed above. Since configuration is an NP-Hard packing problem, we propose a

light-weight heuristic to achieve low cost extent placement:

1. Binning. For each extent E, and device type D, we compute the cost of

allocating the extent to that device as extent cost(E, D) = cost(D) ·RC(E,D).

The extent is then placed in the tier that meets its performance with the

lowest cost. Iterating over all the extents, the above computation separates

the extents into bins, one per each tier.

2. Sizing a bin. For each bin, we obtain its performance and capacity resource

consumption as RCp =
∑

RC(Ep, D) ∀E, and RCc =
∑

RC(Ec, D) ∀E.

The maximum of these two values gives the total bin resources required, and

the number of required devices of this bin type are computed by rounding up

this sum to the nearest integer value.

3. This process is independently repeated for each epoch to identify the number

of devices per tier that yields minimum cost for that epoch.

4. The last step consists of combining these different configurations to obtain a

final system configuration valid across time. For the scope of this work, we

achieve the final configuration by allocating the maximum number of devices

of each type used across all epochs. That is, if at epoch t0 2 devices of type D

and 1 of type D′ are the most cost effective, but at epoch t1 1 of type D and

2 of D′ is better, then our method will indicate that we need 2 of type D and

2 of D′.
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Our current method of combining configurations across epochs is fairly conser-

vative and could potentially result in an over-provisioned system. However, as our

current algorithm already results in lower cost configurations (Section A.1), we rel-

egate exploring more efficient ways of combining configurations over time to future

work. Also note that when we compute tiered configuration for each epoch inde-

pendently, we assume that the extents can be suitably migrated between epochs if

required. As part of our future work, we intend to model the required number of

migrations, and suitably adjust the provisioning if the required migrations exceed

the maximum number of migrations a system can support in a chosen interval of

time. Finally, our Configuration Algorithm can also be used to upgrade a multi-tier

system to meet upcoming performance demands.

4.4.4 Dynamic Tier Manager

EDT-DTM combines three new modules with the Data Collector and the Resource

Consumption Model to continuously optimize extent placement: (1) a Tiering and

Consolidation module, (2) a Throttling Detector/Corrector module, and (3) a Mi-

grator module.

Tiering and Consolidation Algorithms

At the end of every epoch, the Tiering and Consolidation (TAC) algorithms gener-

ate an extent placement to satisfy extent performance requirements and minimize

dynamic system power. Such an energy efficient placement can be achieved both

by leveraging the strengths (i.e. performance or capacity per watt) of the hetero-

geneous underlying hardware (SSD, SAS, and SATA drives), and by consolidating

data into fewer devices when possible and turning off the unused devices.
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Similar to the configuration problem, placement for power minimization is also

NP-Hard, and we propose a heuristic solution. TAC requires two inputs: (1) current

random I/O rate and bandwidth for each extent from the actively running system,

and (2) size (in bytes) and the random I/O rate and bandwidth capability for each

array in the storage system. It then uses a two-step process to output a new extent

placement that aims to adapt to the changes in the workload as follows:

(1) Tiering. For each extent E, and device type D, we compute the “fractional

power burden” of allocating the extent to that device as extent power(E, D) =

power(D)·RC(E,D). The extent is then placed on the tier that meets its performance

with the lowest power consumption. Doing so allows EDT to reduce active power

via consolidation (described next). Iterating over all the extents results in one bin

per tier. The assignment of extents to a tier is performed locally on an extent by

extent basis, irrespective of the total performance needs or available space in that

tier.

(2) Consolidation. Extents assigned to each tier are then sorted using their RC

values and placed in arrays using the First Fit Decreasing heuristic, a good approxi-

mation algorithm to the optimal solution for extent packing [Yue91]. When extents

already assigned to the tier under consideration exceed its available performance

(i.e., resource consumption metric for the assigned extents exceeds 1) or the tier

runs out of space in the available arrays, the remaining extents in the extent list are

demoted to the tier with the next lower power burden for that extent. This pack-

ing process is now repeated for all the tiers, consolidating extents into a minimum

number of arrays in a tier. Extents already in the right tier and on an array that

will remain powered on in this epoch retain their position from the previous epoch,

thereby saving migrations. Any unused arrays from the extent placement are set to

a lower power state to conserve energy.
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Throttling Detector and Corrector

While the TAC mechanisms enable dynamic performance and power optimization,

unexpected load and working set changes can suddenly alter the performance re-

quirements of extents. However, tracking this performance change, especially when

an extent’s I/O rate increases, is challenging. Extents placed in a low performance

tier cannot exhibit high I/O rates even when the application above may desire it.

This causes throttling of the true IOPS requirement of the extent, artificially limiting

it to a low value. The Throttling Detector overcomes this limitation by monitoring

the average response time of each active array every minute.

If the average response time of I/Os from an array indicates that undesirably high

request queuing is occurring in the array, EDT decides that the array is throttling

the true IOPS requirement of applications and causing delays. When throttling

is detected, pending migrations driven by TAC are immediately halted and EDT-

DTM switches to a throttling correction mode to perform recovery. To respond

rapidly and minimize the possibility of future throttling in the same array, the load

on the throttled array is shed by migrating a minimum set of extents responsible

for at least half of its current total performance resource consumption.

To select the target array(s), we first start by considering the best possible tier

for each extent being migrated, and within that tier we first examine arrays which

are already active to see if they can absorb the new extent. If none can host the

new extent, we consider arrays that are not in use in that tier if any are available.

If the best tier can not accommodate the extent we try the same approach on tiers

with the next higher power burden for that extent. If the array continues to remain

throttled after half the load on the array has been migrated, the extent migration

process is repeated, until the system is no longer throttled. The entire system stays

in recovery mode while an array remains throttled, suspending energy optimizing
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migrations. When no arrays are throttled, the system switches back to the TAC

placement after an epoch elapses.

Migrator

The Migrator handles the data movement requests from TAC and the throttling al-

gorithms. It compares the new placement of the extents from the above algorithms

to their old placement, and identifies extents that need to be migrated. It then

schedules and optimizes these migrations. On one hand, migrations that relieve

throttling must be completed quickly. On the other hand, migrations cause addi-

tional I/O traffic, and care must be taken so that they do not affect the foreground

I/O performance.

Our migration scheme achieves this tradeoff as follows. We allow every device

to be involved in only one migration operation at a time. Thus, before issuing a

migration request, the Migrator performs admission control by allowing requests

only if the source and target device are both available. If they are not, the request

is re-queued and it moves onto the next request. Further, the Migrator controls

its migration-related resource consumption by decomposing an extent into smaller

transfer units and pacing the transfer requests to match the minimum of the available

or the desired I/O rate. Further if the migration is being performed to relieve throt-

tling, once a transfer unit is migrated, any foreground I/O requests to it are handed

by the destination array. Note that because of this pacing not all planned migra-

tions may be completed before the next epoch. In such cases, the migration queue is

flushed, and requests resulting from the new epoch’s computation are queued. We

further optimize by retaining the old location of the extent if it is already in the right

tier during the consolidation step. Finally, we could potentially incorporate other

44



optimizations [AHH+01, DGJ+05, VKUR10, ZCD+10] such as multiple locations

for the same extent [VKUR10], and proactive migrations [ZCD+10].

4.4.5 EDT Summary

The increasing availability of solid-state drives has ushered in a new era of multi-

tiered primary storage systems. With EDT, we have formalized the configuration

and dynamic tier management problems and have systematically explored the design

choices available when building such systems. We presented the design, implemen-

tation, and evaluation of EDT’s Configuration Adviser (EDT-CA) and Dynamic

Tier Manager (EDT-DTM). EDT lowers capital cost by configuring less expensive

tiered storage and operating costs by dynamically optimizing power consumption

via consolidation whenever feasible. We also demonstrated that EDT is successfully

able to address the data migration overheads of dynamic tiering and respond rapidly

and effectively to unexpected changes in the workload.

Experimental results show EDT has significant benefit. Evaluation performed

using both a production workload and industry-standard synthetic workload re-

vealed that multi-tier systems using EDT have a device mix that saves between 5%

to 45% in cost, consume up to 54% less peak power, and an additional 15-30% lower

dynamic power (instantaneous power averaged over time), at a better or compara-

ble performance compared to a homogeneous SAS storage system. Experimental

results also demonstrated that EDT is superior to simpler alternatives for extent-

based tiering, providing lower cost and better performance, and consuming similar

or lesser power.

45



Data chunk: B0 B1 B2

DEV1: . . . B0 B1 B2 . . . DEV2: . . . B0 B1 B2 . . .

Transfer Status: : Done : Current : Future

Figure 4.8: Possible cases when migrating data

4.5 Lessons Learned from Implementing Storage Extensions

In this section, we discuss the particularly challenging aspects of implementation

storage extensions and what we have learned thus far.

4.5.1 Correctly Migrating Data

Moving data between devices is a core part of all our extensions. EXCES moves

popular data to an ECDto save power, BORG re-arranges the data layout to op-

timize for sequential access, and EDTmoves data among different tiers to improve

both performance and save power. But, doing this correctly and efficiently is not

straight forward. In an optimistic case we migrate a piece of data and no I/Os are

issued to it while this migration is ongoing. However, in reality this not always the

case.

When and I/O comes to a chunk of data that is currently being migrated we

consider three cases, as illustrated in Figure 4.8. Let DEV1 and DEV2 be the source

and destination devices respectively. First, the data involved has been migrated then

the I/O needs to be issue to DEV2. Second, the data is currently being migrated,

here we must for the I/O to complete and then send it to DEV2. And third, the

data is yet to be migrated, in which case we send it to DEV1.
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DEV1 pages: 0 8 16 . . . DEV2 pages: . . . 24 32 40 . . .

Legend: : Request

mapped to
mapped to

Figure 4.9: Alignment problem example

4.5.2 Indirection Implementation Issues

All the storage systems we have built so far group data in some unit. While this

optimization allows us to cut down on metadata memory requirement, it complicates

the implementation of the I/O indirection component. Since I/Os may be issued

at unaligned block granularity, the indirector component must carefully handle I/O

requests whose sizes are not multiples of the page-size and/or which are not page-

aligned to the beginning of the target partition. We address this issue via I/O

request splitting and page-wise indirection.

Figure 4.9 shows an example of the alignment problem that the indirector must

handle. Notice that two pages from DEV1 are mapped to DEV2. The first page

on the disk that starts at block 0, is mapped to the fifth page on DEV2 that starts

from block 40. Also, the third page in the DEV1 (starting at block 16), is mapped

to the fourth page of DEV2, starting at block 24. The second page in DEV1 is not

mapped to DEV2 at all.

Consider an application I/O request as represented by the shaded region. This

request covers a part of the first, the entire second page, and a part of the third

page on disk. The indirection operation is complicated because the I/O request is

not page-aligned. The indirector must individually redirect each part of the request

to their appropriate locations. The above can occur with both read and write I/O

requests. To address I/O splitting, we create one new request per page. After

the splitting and issuing each “sub-I/O”, the indirector waits for all sub-I/Os to
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complete before notifying the requester about the completion of the original I/O

operation.

4.5.3 Maintaining a Persistent Indirection Map

Since the systems that we propose modify data location on disk, we require some

structure that allows us to mapping particular data to a device. This mapping

requires strong consistency guarantees. We must ensure that reads are always up-

to-date versions of data, including after a clean shutdown or a system crash.

In our system, map entries on-disk are updated (along with their in-memory

version) each time the data is migrated or when a new map entry is added. But

we have identified at least two problems with this approach. First, a write barrier

is used to ensure that the on disk map is updated before additional entries are

modified, this substantially reduces the performance. Second, and perhaps more

importantly, sometimes we need to atomically write multiple data structures. For

instance, a map update actually requires two writes; one for the free space bitmap,

and other for the updated entry. Coordinating this two operations further degrades

performance and complicates the indirection map update process. We believe that a

generic mechanism that provides atomically updateable and durable data structures

is possible. Such a mechanism should simplify the development of these extensions.

4.5.4 Programming Inside the OS Kernel

We implemented both BORG and EXCES as a Linux kernel module that can be

dynamically inserted and removed without any changes to the kernel source. In

the case of EDT, we chose to implement the intelligence of the system outside the

kernel. However, we still relied on a kernel component that exported a virtual block
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device and fowarded all I/Os to the user level component. Since the block layer

interface of the Linux kernel is very stable, these systems can run “out of the box”

on the latest 2.6 series kernels. The current implementation utilize native kernel

data structures such as radix trees and red-black trees which are very likely to be

retained in the future kernel versions.

Writing code inside the kernel is no easy task. It requires a substantial amount

of skill and deep understanding of the workings the operating system as a whole.

Additionally the kernel is a fragile programming environment, where a simple bug

or program error can easily corrupt the entire system. Moreover, in many cases

the documentation was non-existent and we would have to spend countless hours

browsing through code in search of possible explanations of the observed behaviour.

One particular case was an error occurring while unloading the kernel module.

While removal/unload we must ensure that the system is restored to consistent

and usable state and foreground I/O handled correctly. For instance, EXCES must

flush on-ECD dirty blocks to their original positions on disk. Initially we issued a

write operation for every dirty block and invoked the module unload routine. But

this naive approach had a problem and we were causing a system crash. Upon

completion I/Os need to invoke part of the extension code. But, this code had

just been removed from the running OS kernel thus the I/O interruption handler

was trying to invoke non-existent code. We solved this problem by waiting for all

extension related pending I/Os to complete and then we proceed with the module

unload operation. This way we ensure that there are no in-flight extension I/Os by

the time the extension is removed from the kernel. The solution seems obvious but

finding the source of the problem was the hard part.

Apart from issues like this, we also notice that there was a substantial overlap

in parts of the core functionality of the extensions. Code for inderecting I/Os,
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migrating data, among others was largely the same. This simplified the development

but also lead us to believe that a more efficient path is possible, where we have the

common part of extensions grouped into a stable and easy to use library. We look

into this in the following chapter.

4.6 Summary

In this chapter we argued for the block layer as an adequeate place to develop

storage system extensions namely: a simple interface, file system independence,

control of storage resources, among others. To illustrate that novel improvements

that can be done at the block layer we presented the design and implementation

of three extensions. In all cases the extensions provided quantifiable benefits when

compared to the current practices. But, more important for our study were the

lessons taken for the development experience. We learned that developing such

extensions is no easy task. However, substantial part of the development process

could be simplified provided developer abstractions for common functionality in

storage extensions (e.g. consistently storing and retrieving extension metadata).

In the next chapter we present an intrastructure with such abstractions that help

relieve part of the burden of the storage extension developer.
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CHAPTER 5

BUILDING AND STACKING STORAGE EXTENSIONS

Recent years has seen a significant amount of innovation in self-management ex-

tensions to storage systems [FMK+07, GPK+07, LCSZ04, MAC+08, Nar08, NDT+08,

SWS05, ZLP08]. We can add to this list the self-managed block layer storage ex-

tensions we discussed in the previous chapter, namely BORG, EXCES, and EDT.

However, wide-spread adoption of this innovation has been slow. Based on this

experiences, we have identified two broad factors holding back large-scale adoption.

First, developing storage extensions is a cumbersome and time consuming process.

As we learned in the previous chapter, the operating system, the typical develop-

ment environment for self-management extensions, is a complex building block that

makes extensions extremely difficult to develop and validate. Adding to this are a

host of scenarios and corner that developers need to take into account to guarantee

consistency and recoverability. Second, reasoning about how deployed extensions

affect the stored data and access it is an undeveloped science; consequently, ad-

ministrators find themselves ill-equipped to make sound deployment decisions and

choose “not to deploy what they don’t understand”.

The Active Block Layer Extensions (ABLE) project develops a theory and a

systems infrastructure to address the two challenges outlined above. ABLE supports

self-management extensions that built at the block layer that export a logical block

interface to storage clients (e.g. file systems) for accessing an underlying local or

remote block device. Block layer extensions automatically inherit several desirable

properties such as access to both process and device context of I/O operations, file-

system independence and accessibility and among others which we examine in detail

in § 5.2.
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The ABLE project makes two contributions. The first is an an evolvable block-

layer software infrastructure that implements a suite of block layer primitive func-

tionality, commonly used by self-management extensions, as an in-kernel library.

These primitives raise the level of abstraction for developing self-management ex-

tensions, helping developers build robust self-management extensions faster. The

second contribution is a theory of block layer extensions that provides a logic frame-

work for understanding how storage extensions affect the data path. This theory

enables modeling the behavior of individual extensions and analyzing the influence

of extension aggregates on data and data accesses. In this work, we assume that

each extension ensures block consistency for data that it handles. Analysis tools

based on this theory can help administrators make sound deployment decisions that

accurately reflect high-level policies when composing a storage system using self-

management extensions as building blocks.

In the rest of the section, we first present the motivation behind ABLE’s design

decisions (§ 5.1) and elaborate on the key elements of the architecture and design

(§ 5.2). We then develop a novel theory to reason stacking of block layer exten-

sions (§ 5.3) and evaluate its use in practise (§ 5.4). We quantify the reduction in

development complexity when using ABLE (§ 5.5).

5.1 Infrastructure Requirements

This section examines the requirements for an storage self-management infrastruc-

ture from the standpoint of both developers and administrators of storage systems.

5.1.1 Requirements of the Developer

Storage systems extensions typically extend storage stack implementations for min-

imizing overhead. However, the storage stacks are cumbersome to extend. The de-
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velopment abstraction is low and an overwhelming amount of detail of a pre-existing

codebase must be mastered prior to development. Moreover, the highly concurrent

environment with multiple priority levels of process and interrupt contexts make

thread-safe data manipulation and blocking operations complex [ABB+86]. These

factors make the development experience poor and lower the confidence on the cor-

rectness of developed extensions.

Our experiences with storage extensions revealed (§ 4.5) that a software in-

frastructure within the storage stack can factor out a substantial fraction of non-

functional extension complexity [Dav93] into a common codebase or library. These

non-functional components require in-depth understanding of I/O handling inside

the kernel and are often the main source of bugs during development. Non-functional

components that are commonly desirable across storage extension development pro-

cesses include support for: (i) interposition on I/O operations both in the issue and

completion paths, (ii) monitoring system state, (iii) common storage operations of

data manipulation, I/O manipulation, and data movement, (iv) exclusive access

to system resources (e.g., memory and disk space), and (v) simple and dynamic

management of extensions in an active storage stack.

5.1.2 Requirements of the Administrator

Managing self-management extensions has the potential to substantially increase

the incidental complexity [CHIK03] involved in system administration. Since stor-

age self-management extensions impact the access path to persistent data, a system

administrator would need to evaluate the impact of a candidate extension on I/Os

issued to each data volume. When deploying multiple extensions, she must be able

to reason about the impact of each extension, on each managed volume. However,

no formal theory exists that would help confidently reason about how multiple ex-
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tensions inter-operate. In the absence of precise knowledge about the operation

of a each extension, the administrator must either employ anecdotal evidence or

use trial-and-error. Since the number of possible ways to stack extensions grows

exponentially with the number of extensions and each combination may have a

completely different behavior (as we shall illustrate in § 5.3.1), these combinations

must be analyzed individually. We identify the following capabilities for a storage

system infrastructure to simplify administration: (i) clearly describe the impact of

an extension to target data volumes, (ii) automate and/or provide sound hints for

extension deployment that reflect admin-specified system policies, and (iii) monitor

resource usage characteristics of live extensions.

5.2 ABLE Architecture and Design

The requirements laid out above motivate the architecture and design of ABLE.

5.2.1 ABLE Architecture and Design

Applications

VFS

File System

ABLE

Kernel Space

User Space

Extension

Stack

Extension

1

Extension

n

ABLE Primitives

I/O

Library

Workload

Profiler

Resource

Manager

Device

Manager

Extension

Registrar

Extension

Profiler

I/O Router
Reasoning

Engine

I/O Scheduler

Figure 5.1: ABLE architecture. Arrows depict control flow.
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Figure 5.1 presents the architecture of ABLE, designed as an extension of the

block layer in the storage stack. ABLE’s interaction with other layers is handled

by the I/O Router, which directs each block I/O request through individual exten-

sions in the Extension Stack, based on the attributes of the I/O request and the

configuration of the extensions. Each extension processes I/Os routed to it; that

may include invoking ABLE Primitives. The ABLE primitives may interact with

the Reasoning Engine to manage the stack correctly. Next we present a detailed

description of each component.

Extension Stack Comprises currently deployed self-management extensions. Ex-

tensions are stacked according to rules that we describe in § 5.3 by the reasoning

engine. Each extension has an input and an output domain of operation configured

by the system administrator; the input domain specifies the data volume(s) that the

extension is configured to operate upon, while the output domain specifies the data

volume(s) to which these block I/O requests are directed by the extension.

I/O Router Manages ABLE’s interaction with other layers in the storage stack

as well as internal routing of I/O requests and I/O completion events between ex-

tensions. For each I/O request made by the layer above, the I/O router checks if

its destination matches the input domain of individual extensions in the stack in

top-down order. If yes, the appropriate I/O handler for the extension is invoked.

After an extension finishes processing an I/O request, it registers an I/O completion

handler and returns control to the I/O router which decides the next extension to

route the I/O to. Upon I/O completion, the I/O router invokes the I/O completion

handlers of individual extensions in the reverse order of their invocation during the

forward path, finally invoking the the handler of the layer above. Additional I/Os

may be issued by an extension; in such cases, the I/O router will route such requests

only via the ones stacked below the generating extension.
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Sub-Component Interface

I/O Library clone bio, submit bio, submit bio nonblock,

copy blocks, gather blocks, scatter blocks

Resource Manager persistent malloc/free, persistent restore,

get resource usage

Workload Profiler set/get request information, block accessed,

get popular blocks

Device Manager get device characteristics, get device state,

alloc/free simulated disk

Extension Registrar [un]register extension, register extension at,

query register extension

Extension Profiler total/avg extension processing time,

total/avg generated IOs

Table 5.1: ABLE primitives (not a complete list).

Reasoning Engine In typical usage, the system administrator will use the ABLE

infrastructure to deploy multiple self-management extensions that may be written

by independent developers. Apart from choosing which extensions to deploy, she will

configure their input and output domains and specify the system’s self-management

policies. This component provides a tool for automatically analyzing and composing

extension stacks to reflect administrator-defined self-management policies, based on

the properties and operational domains of individual extensions (formalized in § 5.3).

5.2.2 The ABLE Primitives

The ABLE primitives extend storage stacks to (i) simplify development of robust

self-management extensions and (ii) aid administrators in deploying extensions to

best reflect defined system priorities and policies. Table 5.1 list the key ABLE

primitives, categorized based on its six sub-components. These primitives provide

core support for extension development and administration.

The I/O library provides support for extension development with a set of func-

tions for commonly performed block I/O operations. These include primitives
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to copy blocks using source and destination locations specified by the caller,

submit bio nonblock so that the caller may issue an I/O operation from an in-

terrupt context, gather blocks that are spread across a volume to a contiguous

defined area efficiently given a map of source and target block addresses, etc. Some

of the above primitives generate new I/O requests (e.g., copy blocks), which are

handled by the I/O Router and considered as issued by the caller extension.

The Resource Manager provides primitives to allocate resources from the system.

The persistent malloc and persistent free primitives allocate and free

respectively a contiguous piece of memory and automatically maintains it persistent

by mapping such memory to persistent disk locations. To restore an in-memory

data structure (due to a system restart, crash, or power-failure), the caller invokes

persistent restore. The design and techniques employed to handle memory

persistence are discussed in Chapter 7.

The Workload Profiler manages information about the requests being produced

by the system and the extensions. This data can be utilized by individual ex-

tensions and other components for decision making. For instance, a caller can

obtain the top-K frequently accessed blocks using an appropriately parameterized

get popular blocks invocation. The Device Manager controls allocation of

storage resources so extensions can request and independently manage storage space,

both real and simulated. A developer can use alloc simulated disk to allocate

a simulated volume to test her extension; such simulated volumes can be fully-

simulated (for quickly exploring various code-paths) or memory-simulated (for data

consistency testing). Extensions can also query the state and current usage of both

physical and virtual devices using get device state. Extensions may also regis-

ter handlers with the Device Manager to be notified of important changes in device

state (e.g. plug, unplug). In a similar way, the Extension Profiler keeps track of
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extension resource usage and other statistics, which can be used by the Reasoning

Engine to infer changes in the system and take necessary action based on system

goals, and can also be used directly for guiding manual administration.

The Extension Registrar handles extension registration and deregistration. In a

request for extension insertion to the registrar, the administrator may either choose

a specific position in the stack to place it (using register extension at) or

allow the position to be determined by ABLE (using register extension). In

the latter case, Reasoning Engine primitives are invoked to determine its position in

the stack. Subsequent actions ensure that the new extension is successfully incorpo-

rated to the system, including initializing extension variables, loading of persistent

metadata, and marking the extension as usable.

5.2.3 ABLE and File Systems

The ABLE infrastructure can also aid file system layer optimizations in a straight-

forward manner. Particularly, file system extensions can readily use the I/O library,

workload profiler, and resource manager sub-components of the ABLE primitives

to simplify their development. Requests generated due to invocations of the I/O

library API are handled by the I/O router in the same as I/Os generated directly

within the file system. Further, complex file system optimizations can isolate block-

level concerns within an ABLE extension. For instance, recent abstractions that

aid reliability and performance in file systems (e.g., I/O shepherding [GPK+07],

patches [FMK+07]), can largely be encapsulated as ABLE extensions, creating a

generalized capability inside the OS that other file system implementations as well

as other storage clients (e.g. virtual memory) can use.
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5.3 A Theory of Block Layer Extensions

Our primary goal for developing a theory of block layer extensions was for use

in administrative tasks. Consequently, we were primarily interested in reasoning

about the influence of storage extensions on data volumes, the administrative units of

storage management, rather than storage devices. Further, we simplify the reasoning

framework to focus on steady-state system behavior and thus exclude considerations

of extension operation during their initialization and finalization phases.

5.3.1 An Illustrative Example

To illustrate the importance of extension stacking order, let us consider two real-

world self-management extensions. Extension IS improves the reliability of data

stored and accessed on a local disk volume D via an I/O Shepherding [GPK+07]

optimization. Extension EX uses a volume F on a locally-attached, low power flash

device to prefetch, cache, and buffer data stored on D so the local disk may be

powered down whenever possible to save energy [UGB+08]. Both extensions gener-

ate additional I/O operations besides the application-generated I/Os to accomplish

their respective tasks; IS, for instance, retries failed I/O operations, while EX

moves data between D and F . If both extensions are chosen to be deployed, two

possible stacking choices exist (showed in Figure 5.2): (i) IS above EX , or (ii) EX

above IS. With the first option, substantial additional traffic, including duplicate

“Mirror” writes and “Retry” reads from IS is handled by EX , favoring reliability

over energy saving. Alternatively, placing EX above IS, IS reliability mechanisms

are not invoked when applications access data cached in F , thus compromising re-

liability for energy saving.
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IS

EX

D F

(a) IS above EX

EX

IS

D F

(b) EX above IS

Legend: Regular I/O, EX I/O, IS I/O

Figure 5.2: Stacking options for extensions IS and EX . Lines represent I/O request

flow, thicker lines indicate greater I/O flow, gray and dashed lines indicate requests created

by IS and EX respectively. D is the disk drive and F is a flash device.

An administrator, typically not versed with the intricacies of how the extensions

operate, would be ill-equipped to perform the above analysis to lead to a correct

deployment choice. However, what the administrator can determine confidently is

system priorities, in terms of the relative importance of data reliability over power-

savings at any given time and for a given data volume.

5.3.2 Concepts and Definitions

We begin by formalizing the concept of extension goal.

Definition 5.3.1 The goal of an extension is the system metric that the extension

improves.

An extension goal can be any of the system metrics of interest such as perfor-

mance, reliability, energy savings, security, etc. For instance, the goal of the IS

and EXq extensions introduced previously are reliability and energy savings respec-

tively. These goals are specified by the developer of the extension, chosen from a

standardized set. Likewise, the system administrator can maintain a prioritized list

of system goals for each data volume.
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The domain of operation for an extension is the set of data volumes that may

be affected by the extension during its steady-state operation. More formally, we

define the concepts of input and output domains.

Definition 5.3.2 The input domain of an extension is the set of data volumes

on which the extension operates in its steady-state; its output domain is the set of

volumes to which I/O operations, both incoming and self-generated, may be directed

by the extension in steady-state.

Thus, an extension interposes on each I/O operation targeted to data volumes

in its input domain, and directs I/Os to data volumes in its output domain. For

instance, the input and output domains for the EX extension described previously

would be {D} and {D,F} respectively. We anticipate that the administrator would

define the input and output domains of any extensions she may wish to deploy.

Extensions may alter the I/O traffic in distinct ways; some can be non-intrusive,

observing requests to collect statistics, while others may divert the I/O stream to

a different volume. Data accesses to any data volume depends on the influences

of various extensions on the I/O traffic to that volume. We model an extension’s

influence on I/O traffic with three categories of extension properties: accessors,

mutators, and generators.

Definition 5.3.3 Extensions with the accessor property only observe the I/O stream

and do not modify the requests in any way (e.g., an I/O profiling extension).

Definition 5.3.4 Mutator extensions may modify any part of the individual re-

quests within the I/O stream, including the data payload, or the target location of

the I/O request (e.g., a block encryption extension).

Definition 5.3.5 Generator extensions may create additional I/O requests, trig-

gered by workload, system changes or failures (e.g., a read-after-write extension).
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Extensions will have one or more of these properties. Using such properties we

can further characterize extension behavior by specifying the output of an extension.

Let K be an extension, OK the output domain of K. Let AK , MK , and GK be the

subsets of the output domain OK that were exclusively accessed (part of the input

not modified in any way), mutated (part of the input modified), and generated (not

part of the input, created new output) by the extension respectively. More formally

we have,

AK 6= ∅ ⇒ K has the accessor property

AK ⊆ OK

MK 6= ∅ ⇒ K has the mutator property

MK ⊆ OK

GK 6= ∅ ⇒ K has the generator property

GK ⊆ OK

AK ∩MK ∩GK = ∅

AK ∪MK ∪GK ⊆ OK

The block consistency contract requires that each block read contains the exact

same data that was last written to it. This contract dictates safety in implementation

for extension property class. An accessor is safe by definition. A mutator must

ensure that each mutation of block written is reversible; it must restore the original

contents upon a read operation. A generator must ensure that any additional write

requests it issues do not overwrite blocks owned by other entities (e.g., file systems,

other ABLE extensions). While the above properties are useful for formalizing

extension behavior, some extensions may possess more than one property at once.
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For instance, a RAID-1 extension which mirrors each write request on two volumes

and redirects read traffic depending on head position in each drive has both generator

and mutator properties.

Two final concepts, effectiveness and dominance, formalize the relative influence

of individual extensions on data volumes.

Definition 5.3.6 An extension within a given stack of extensions is said to be ef-

fective over a specific data volume if its operational goal is met for all I/Os ulti-

mately directed to the data volume.

Definition 5.3.7 An extension within a given stack of extensions is said to be dom-

inant over a specific data volume if it is the final handler of all I/Os ultimately

directed to the data volume.

Both effectiveness and dominance address I/Os to the data volume both from the

application and due to other extensions in the stack, but excluding application

I/Os originally directed to the data volume but that have been redirected by other

extensions to other data volume(s). We observe that an extension E that is dominant

over a data volume V is also effective over V , but the converse is not necessarily

true. For instance, in Figure 5.2(a), IS is effective over volumes D and F but is not

dominant over either, while EX is dominant (and also effective) over both volumes

D and F .

Given a specific extension stack configuration with the domains and operational

goals of each extension (e.g., reliability, performance, etc.), we develop a theory

that comprehensively establishes dominance of extensions over the managed data

volumes. While effectiveness of extensions is also important to reason about to

fully understand the influence of extensions on volumes managed, our theory is

incapable of reasoning about effectiveness comprehensively. The partial reasoning
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about effectiveness that we do explore serves to articulate the limitations of our

theory.

OA ∩ IB = ∅ OA ⊆ IB
OA * IB∧

OA ∩ IB 6= ∅

IA ∩ IB = ∅
A is dominant ∀x ∈ IA iff.

OB ∩ IA = ∅;
B is dominant ∀x ∈ IA ∪ IB

B is dominant ∀x s.t. x ∈ IB ∨

fA(x) ∈ IB ;

B is dominant ∀x ∈ IB A is dominant ∀x s.t. fA(x) /∈ IB iff.

OB ∩ IA = ∅

IA ⊇ IB A is dominant ∀x ∈ IA B is dominant ∀x ∈ IA
B is dominant ∀x s.t. fA(x) ∈ IB ;

A is dominant ∀x s.t. fA(x) /∈ IB iff.

OB ∩ IA = ∅

IA + IB∧ A is dominant ∀x ∈ IA iff

OB ∩ IA = ∅;
B is dominant ∀x ∈ IA ∪ IB

B is dominant ∀x s.t. x ∈ IB − IA ∨

fA(x) ∈ IB ;

IA ∩ IB 6= ∅ B dominates ∀x ∈ IB − IA A is dominant ∀x s.t. fA(x) /∈ IB iff.

OB ∩ IA = ∅

Figure 5.3: Extension Stacking Rules Grid. These rules assume there are only two

extensions in the stack, A and B, with A stacked over B. x is a block (represented by its

address) within some data volume managed by A and B. IK and OK represent the input

and output domains of an extension K respectively. fK(x) is the resultant request after

x is processed by extension K.

5.3.3 Generalized Extension Stacking

The generalized stacking rules are the cornerstone of the ABLE theory. These

rules establish dominance relationships between extensions and data volumes and

can be applied to a collection of extensions, regardless of their properties or goals.

ABLE uses these rules to generate automatic hints for the administrator on stack

configurations that reflect the prioritized list of goals for each data volume. These

rules can also be used by an administrator to reason about the overall behavior of

alternative extension stack configurations.

We simplify the rule-set by considering a pair of extensions A and B, where A is

stacked above B, and establish dominance for their target data volumes. This sim-

plification is made without loss of generality because larger stacks can be reasoned

piece-wise using the simplified rule-set by partitioning the stack recursively into two

groups, one with a single extension at one end of the stack (say at the top) and the
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rest grouped into a single unit. Dominance information for the single extension at

the top can be immediately established, while such information for each extension

in the group of extensions can be obtained recursively.

Figure 5.3 presents nine possible cases based on the relationship between the

input and output domains of extensions A and B, which together comprise the

stacking rules grid. The purpose of the rules is to enable reasoning about the

impact of the extensions on a request (represented by the variable x to denote a

logical block) to data volumes. Rules grid element (i,j) represents the rule defined

at row i and column j. Owing to space constraints, we provide the formal proofs for

each of these rules in an online document [GR] and only briefly explore the insights

behind some of the rules next.

When examined columnwise, we observe that if the output domain of A is disjoint

of the input domain of B, dominance is primarily determined by the relationship

between the input domains, with a additional constraints in some cases as described

below. In case the extensions operate on disjoint input domains, i.e., (1, 1), B is

dominant over its input volume. However, A is dominant over its input volume iff.

the output domain of B (OB) and the input domain of A (OA) are disjoint as well;

otherwise, I/O requests redirected by B towards IA are not handled by A thereby

compromising the dominance of A over IA. In the next column, when the output

domain of A is a subset of the input domain of B, i.e., (2, ∗), regardless of extension

A’s manipulation of the request stream, all resultant requests are squarely directed

within the input domain of B; extension B is thus dominant over the input domain

of both extensions. For the last column, i.e., (3, ∗), since a subset of the output

domain of A is not in the input domain of B, not all requests processed by A will be

observed by B and thus, a single argument cannot be made about the entire output

domain A. If more information about the function fA that maps elements (data
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volumes) in the input domain of A to its output domain is available, we can argue

that B is dominant for those elements in the input domain of A that are mapped

to the input domain of B, while A is dominant for the rest of its input domain iff.

the output domain of B is disjoint of the input domain of A.

5.3.4 On Effectiveness and Theory Limitations

While the stacking rules described above do not reason about effectiveness, we make

the following additional observations to address some scenarios where additional

knowledge can be inferred. Given extensions A and B, let us assume that A is

stacked above B.

Theorem 1 If AB ⊆ OA and (IA ∪OA) ∩ (GB ∪MB) = ∅, then A is effective.

The above theorem states that A is effective over its input domain if B does not

modify requests handled by A or generate additional requests to A’s target data

volume. From an abstract point of view this theorem is simply stating that if B

does not modify in any way the data domains of extension A, then A is effective.

We can observe that a particular instance of the above theorem occurs when B only

has the accessor property in which case A is always effective. This can be formalized

as follows:

Corollary 1 If GB ∪ MB = ∅, then B only has the accessor property and A is

effective.

When B is a generator or mutator, A’s effectiveness is dependent on the seman-

tics of extension B. While B may further modify the request stream handled by A,

it may do so in a complementary fashion and thereby retain the effectiveness of A

for its target data volumes. For instance, in the example presented in Figure 5.2(a),
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although rules grid element (2, 2) applies, IS is still effective over volumes D and F

when stacked over a extension EX , because EX ’s mutation/generation of requests

are complementary to those of IS. This reasoning for the effectiveness of an exten-

sion A when an underlying extension B is a generator or mutator finely articulates

the limitations of our theory.

Finally, there is one additional case where we can argue about an extension being

ineffective. Again let us assume that A is stacked above B. If the input of B is

nullified due to the actions of A, then B is ineffective under this stacking order.

This is formally stated in theorem bellow.

Theorem 2 If IA ⊇ IB and OA ∩ IB = ∅, then B is ineffective.

5.3.5 An Illustration of Stacking Rules

We provide more insight into the practical implications of the stacking rules using

six ABLE extensions considered for deployment on a target system. The target

system has two local persistent storage devices, a disk drive (D), and a flash-based

solid-state drive (F ), and a remote iSCSI target used as a backup drive (Dr). We

also consider the system memory (M) as a storage device, since it is used as a

first-class resource by one of the extensions described below.

Block Versioning [MG03, FB04] (BV): Provides data backup by continuously

maintaining all versions of blocks written to local devices D and F , on the remote

iSCSI target Dr for reliability.

Data Deduplication [QD02] (DD): Deduplicates data blocks on the remote drive

D to reduce used space.
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I/O Off-Loading (extends write off-loading [Nar08] to reads as well) (IO): Tem-

porarily transfers all I/O activity on D to a remote drive Dr (serving as mirror or

versioning-block store) so the local disk can be turned off to save energy.

Managed Flash Technology [Eas08] (MF): Implements a log-structured block-

layer for the local flash device F to address the performance of random writes..

I/O Shepherd [GPK+07] (IS): Improves reliability of data accessed on local

devices D and F by using a clearly defined set of policies to deal with different

types of I/O errors. Examples include retrying failed I/O operations and automatic

block mirroring.

Local Cache (LC): Uses the memory device M to cache frequently accessed blocks

from the slow local disk drive D to improve system performance.

Most of the extensions above are hybrid extensions that satisfy both mutator and

generator properties, except for BV , which is only a generator, and LC, which is only

a mutator. Further, accurately identifying properties requires careful analysis; for

instance, extensionDD may appear to be a pure mutator (it modifies block addresses

of I/O requests), but closer examination would reveal that it generates additional

I/O operations to keep its metadata up-to-date. Properties of the extension are

therefore best specified by its developer. Figure 5.4 presents the input and output

domains of these sample extensions.

Ext
BV DD IO MF IS LC

Dom
Input D,F Dr D F D,F D

Output D,F,Dr Dr Dr F D,F D,M

Figure 5.4: Domains definitions for sample extensions.

Using these extensions we exemplify the 9 rules in terms of input and output

domains using in each case, a pair of extensions, as shown in Figure 5.5. Due to space
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OA ∩ IB = ∅ OA ⊆ IB
OA * IB∧

OA ∩ IB 6= ∅

IA ∩ IB = ∅
MF IO BV
LC DD DD

IA ⊇ IB
IO IS BV
LC BV IS

IA + IB∧ IO MF LC
IA ∩ IB 6= ∅ IS IS BV

Figure 5.5: Sample stack configurations illustrating the stacking rules grid elements
depicted in Figure 5.3.

constraints, we only examine three stack configurations corresponding to elements

(2,1), (3,2), and (1,3) respectively of the stacking rules grid.

(2,1) IO is stacked above LC. Per the rules grid, IO is dominant; its operation is

preserved. This is easily confirmed by noting that since the I/O offloading extension

intercepts all I/O requests to D the block layer first, it diverts all the accesses to D

instead to the remote device Dr; the caching extension, does not observe any I/O

traffic at all, and is thus not dominant.

(3,2) MF is stacked above IS. Per the rules grid, IS is dominant. We observe

first that read operations pass through the Managed Flash extension unaffected.

Second, while write operations are possibly redirected to a different location on F

by MF , these are still intercepted by the I/O shepherding extension which applies

its reliability policies. On the other hand, any additional write I/O operations

generated by IS are not observed by MF thus compromising MF ’s dominance.

(1,3) BV is stacked above DD. Per the rules grid, DD is dominant for all additional

write operations generated by the block versioning extension, i.e., those directed to

the remote drive Dr, the input domain of DD. This is easily confirmed since each

of the write I/O generated by BV are processed by DD, which is lower in the stack.
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5.4 Putting Theory into Practice

Deploying self-management storage extensions raises several questions conclusively:

(i) how does a deployed extension X affect data volume V ?, (ii) how will extensions

interact when deployed?, and (iii) how can extensions be configured so per-data-

volume goals are met? In the absence of in-depth knowledge about the extensions

and the inherent complexity of the required reasoning, administrators would much

rather prefer such questions to be answered comprehensively by a tool that provides

deployment decisions.

The Reasoning Engine (RE) component of ABLE is based on the theoretical

foundations developed in § 5.3 and implements the logic framework to formally

reason about these questions and thus compose storage stacks correctly. The RE

is responsible for adding extensions to the stack correctly and can be used in two

modes: automatic and querying. In automatic mode, ABLE automatically suggests

the stack configuration that maximizes the dominance of extensions that meet goals

with higher priority, with prioritized system goals defined by the administrator.

This process and dominance maximization are further elaborated in § 5.4.4. In

querying mode, the administrator can query the RE with a candidate extension

being considered for deployment. The RE will list all possible positions in the

current stack, where the extension could be added and identify the goals that are

accomplished in each scenario, as well as a list of which extensions are dominant for

each data volume. mechanisms) in a practical administration scenario.

5.4.1 The Administration Scenario

Suppose an administrator manages a system with a locally-attached data volume

(D) and a remote iSCSI target volume (Dr) with large storage capacity and inbuilt
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redundancy. The system is set up with a continuous block versioning mechanism

that for each block written to D, synchronously generates an additional write oper-

ation to the remote volume Dr. However, currently the administrator must address

two immediate concerns with the system’s operation: free space on the target volume

Dr is being consumed at a much faster rate than anticipated, and power consumption

(and resulting heat) of the system is consistently exceeding acceptable levels. She

considers dealing with these issues by deploying two ABLE-based self-management

extensions. First is a data deduplication (DD) extension for Dr to reduce its space

utilization. Second, is an I/O offloading (IO) extension that periodically offloads

I/O operations entirely to Dr so that the local disk D can be powered-down for long

periods to reduce the system’s power consumption.

5.4.2 Configuring Extensions and System Goals

The goals of the two extensions, DD and IO, have been specified by their respective

developers as space utilization and energy savings respectively. The first task for

the administrator is to define the operational domains for DD and IO. This is a

straightforward task since she is very clear about the intended use of the extensions.

She sets up the I/O domain configurations as seen in Table 5.2.

Extension Input Domain Output Domain
DD Dr Dr

IO D Dr

Table 5.2: I/O domain configurations for DD and IO.

Next, the administrator must define a prioritized list of system goals. She chooses

to prioritize space utilization (on Dr) over power savings (for D), since the space

utilization on Dr is a more urgent concern.
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5.4.3 Identifying the Stacking Order

For simplicity, let us assume that extensions DD and IO must be stacked below the

already active block versioning extension. Consequently, I/O traffic to both volumes

(D and Dr) must be routed appropriately via the new extensions DD and IO. To

decide the stacking order for deploying DD and IO, the administrator consults the

ABLE’s RE-based tool in automatic mode which recommends stacking IO above

DD, given the prioritized system goal of space utilization. It further informs that

with the above stacking order, the space saving DD would be dominant over volume

Dr. While this recommendation simplifies the task of the administrator, a curious

administrator can additionally explore dominance for the alternative stacking option

with the tool’s querying mode.

To validate the correctness of the tool’s recommendation, let us further analyze

both stacking options — DD above IO, and IO above DD. Considering DD stacked

above IO, the (1, 1) element of the rules grid (Figure 5.3) applies, indicating that

while IO is dominant for D, DD is not dominant for Dr since OIO ∪ ODD 6= ∅.

To understand the above outcome, let us consider a sequence of two write I/O

operations. The first is to the local volume D – let us name this request d1. The

second write request – named dr2 – is to the remote volume Dr, but the content

being written is a duplicate of d1.

Figure 5.6(a) depicts how the first stacking option will handle this sequence of

two writes. Request d1 will only be processed by IO, which will redirect it to the

remote volume Dr – let us call this modified write dr1; in addition, IO will generate

a meta-data write request to keep track of the dirty block (not up-to-date on D)

in Dr to ensure consistency. On the other hand, dr2 will only be processed by DD

which will record its content-hash [QD02] and let it proceed to its destination Dr.
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DD

IO

D Dr

dr2

dr2
d1

dr1

(a) DD over IO

IO

DD

D Dr

d1

dr1 dr2

dr1

(b) IO over DD

Legend: Regular I/O, DD I/O, IO I/O

Figure 5.6: I/O handling with alternative stacking of extensions IO and DD. Ar-

rows represent I/O requests. d1 and dr2 are two writes with identical contents originally

addressed to the local and remote volumes respectively.

Thus, with this stacking option, extensions observe distinct I/O requests and at a

high level seem not affect each other, but IO does generate requests for Dr that are

not handled by DD, thus compromising the effectiveness of DD.

Let us now examine the second stacking option, IO above DD (Figure 5.6(b)).

This time we apply rule (1,2) from the stacking rules grid indicating that extension

DD is dominant for both local (D) and remote volumes (Dr). As before, IO will

redirect d1 to the remote volume Dr, thus creating dr1. However, this time dr1 will be

processed by DD since it falls within its input domain. DD, in turn, will record its

content-hash before letting it proceed to the remote volume Dr. When the second

request dr2 arrives, only DD will process it based on its input domain specification.

Based on dr2’s content-hash, it is a write request with duplicate content. DD will

not forward it to the target device, effectively deduplicating content, and creating

free space. Instead it will generate a meta-data write request to update an entry

in its persistent indirection map to denote that read requests to location dr2 must

henceforth be redirected to dr1.

Considering a contrary scenario, if the administrator had prioritized power re-

duction over space utilization, the recommendation of ABLE’s RE would be the
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alternative stacking order, DD above IO, with IO being the dominant extension

for D the local disk.

5.4.4 Automatic Extension Stack Composition

There are two alternative methods supported by the RE to automatically compose

extension stacks in ABLE. The first enables deploying a new extension without

modifying the order of the extensions that have already been deployed. An alternate

use supports the composition of the stack from scratch to deploy several extensions

at once.

In the first usage, given a stack with n extensions, ABLE considers all n + 1

possible positions for the new extension, resulting in n + 1 candidate stacks. It

recursively partitioning each candidate stack as described in § 5.3.3 and applies

stacking rules are applied to infer dominance of extensions on each data volume.

From these candidate stacks, ABLE selects the one(s) that maximize the dominance

of extensions that meet higher priority goals, before attempting to maximize the

dominance of extensions that meet lower priority goals. Maximizing dominance

of an extension requires maximizing the number of data volumes for which the

extension is dominant. This metric is used with the assumption that lower-priority

goals can be sacrificed in favor of higher-priority goals across all data volumes. This

stacking approach can also be adapted to support independent goal priorities per

data volume. If multiple such candidates are found, ABLE chooses the one with the

largest number of lower priority goals being accomplished.

The above approach may not yield the best solution (in terms of accomplishing

the desired goals) since a reduced solution space is considered. If we allow modifying

the order of extensions currently in the stack, an optimal solution can be guaranteed.

In this alternate use of RE, ABLE considers all (n + 1)! permutations of the n + 1
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extensions, calculating in each case the dominance of extensions per volume using

the stacking rules, and selecting based on the dominance maximization criteria as

used in the previous method.

5.5 Evaluating the ABLE Infrastructure

In this section, we evaluate the benefits of the ABLE infrastructure using several

ABLE-based extensions. For each extension, we compare two variants, one imple-

mented without using the ABLE primitives (called vanilla) and the other based on

ABLE primitives.

5.5.1 Complexity Metrics

In each evaluation, we measure the difference in lines of code (LOC), and analyze the

factors contributing to the difference. We also use the McCabe cyclomatic complex-

ity (CC) [McC76], that measures the number of linearly-independent paths through

a program. While the LOC and CC provide high-level comparative mechanisms, de-

velopment of code inside the kernel is a substantially more intricate process. First, a

line of code that requires consulting complex data structures and function definitions

within several kernel source files can be arbitrarily more complex to develop than

one that does not. Second, developing code that runs in interrupt context requires

more consideration than code that does not. Finally, synchronization is inherently

complex inside the kernel due to multiple levels of interrupt and user contexts.

To account for these factors, we designed three new complexity metrics that

quantify the lines of code that demonstrate the above complexity. These measure

respectively the number of lines of code that (i) make references to kernel-defined

structures and functions (kernel reference), (ii) get invoked in interrupt context, and
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(iii) synchronize or belong within a critical section. For each complexity metric we

report the absolute values and the percentage reduction.

5.5.2 ABLE Implementation Details

We implemented ABLE as a kernel module for the Linux kernel version 2.6.24. We

start by reporting in Figure 5.7 the lines of code and cyclomatic complexity metrics

per component of ABLE itself. The ABLE code-base currently totals 2274 LOC.

Component LOC CC

I/O Router 92 16

ABLE Primitives

I/O Library 528 74

Workload Profiler 195 35

Resource Manager 1074 96

Device Manager 166 21

Extension Registrar 34 2

Extension Profiler 65 8

Reasoning Engine 120 18

Figure 5.7: ABLE component statistics.

5.5.3 Simple RAID-1 Illustration

We implemented vanilla and ABLE versions of a reduced functionality RAID-1

system, which we call Simple RAID-1. Simple RAID-1 only provides write request

mirroring (with retry for failed write operations) and read dispatching based on

closest head position. Drive reconstruction is not addressed.

Figure 5.8 presents the functions implemented (with high-level pseudo-code) in

the Simple RAID-1 system, along with a comparison of LOC used in each version

(other complexity metrics are presented later). ABLE provides full support for most

of the functionality required; in such cases only an ABLE API call is necessary. To

implement mirroring write requests (as implemented by function handle write), the

76



Functions (with pseudo-code)
ABLE Vanilla ABLE

support LOC LOC

handle write:

Create new (cloned) I/O request ∼ 34 2

Stack completion functions X 6 1

Issue I/O request X 1 1

write complete:

Check if unsuccessful � 1 1

Reissue write X 124 1

Report write success X 2 0

handle read:

Obtain drive head position X 16 2

Obtain drive head direction X 16 2

Calculate closest head � 13 13

Legend: Xfull support, ∼ partial support, � no support

Figure 5.8: Function pseudo-code and LOC comparison for Simple RAID-1 exten-
sion.

vanilla version must create a full copy of the block I/O write request and assign the

mirror device as its destination. The I/O completion handler (write complete) must

be stacked on top of the default I/O completion handler by explicitly modifying

structures associated with each request. The new I/O request is then dispatched

while the original request continues along its default path.

The write complete function is invoked within the I/O completion interrupt han-

dler for write requests. Checking if a write request failed requires a simple check of

a variable; if yes, the I/O request must be reissued. However, this function runs in

interrupt context and does not allow blocking operations. We addressed this issue

by having a dedicated kernel thread that resends failed write requests, funneling

request information to this thread via a shared FIFO queue. This increased the

complexity of the vanilla version.

In the ABLE version, creating new I/O requests is supported by an ABLE prim-

itive that clones all the fields of an I/O request; the only additional task for the

developer is to manually modify the target device. Stacking a completion han-
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dler and issuing the new I/O request also used ABLE provided primitives. ABLE

provides an API to submit I/O requests from interrupt context, thus drastically

simplifying the ABLE version.

For handling read requests (function read complete), we implemented a greedy

strategy to select the head closest to the request. The ABLE version uses the

approximate head position and direction collected by the ABLE device manager.

However, for the vanilla version this information is not available, hence a method

for collecting device head position and direction was needed.

Even though the Simple RAID-1 functionality is very easy to describe and un-

derstand, the actual vanilla implementation used more than 450 LOC and yielded

a high complexity (discussed next). Further, most of this complexity comes from

pieces of code that handle complicated kernel level operations which are easily en-

capsulated within ABLE’s library functions.

5.5.4 Quantitative Complexity Evaluation

We implemented four extensions to more broadly evaluate the ABLE infrastructure.

The RAW extension performs a Read-After-Write to verify writes to medium. The

Encryptor extension simply uses the built-in kernel DES implementation to en-

crypt written and decrypt read data. The Borg extension implements a block reor-

ganizer on disk based on observed access patterns [BGU+09]. The Exces extension

performs caching of popular disk data in a low-power flash device to power-down

the disk and save energy [UGB+08]. The Borg and Exces extensions both include

substantial non-kernel components for performing data mining; thus, we distinguish

between the full version and a version that only accounts for code dependent on

core kernel functionality.
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Extension
Lines of Code McCabe’s CC Kernel Reference Interrupt Context Critical Section

Vanilla ABLE Reduction Vanilla ABLE Reduction Vanilla ABLE Reduction Vanilla ABLE Reduction Vanilla ABLE Reduction

Simple RAID-1 473 115 76% 109 12 89% 95 10 90% 145 54 63% 88 12 86%

RAW 184 97 47% 19 7 63% 44 20 55% 71 7 90% 16 0 100%

ENCRYPTOR 121 107 12% 10 8 20% 15 10 33% 13 13 0% 4 0 100%

BORG 2888 2564 11% 631 567 10% 271 147 46% 127 51 60% 129 71 45%

BORG-KERNEL 1255 913 27% 201 137 32% 271 147 46% 127 51 60% 129 71 45%

EXCES 1114 946 15% 186 145 22% 230 126 45% 69 43 38% 175 125 29%

EXCES-KERNEL 761 593 22% 118 77 35% 230 126 45% 69 43 38% 175 125 29%

Table 5.3: Development complexity statistics for extensions.

Table 5.3 presents the five complexity metrics introduced earlier for all the ex-

tensions. The LOC required to develop the extension using ABLE were fewer by

11% (for BORG full-version) to 76% (for Simple RAID-1). Reduction in CC was

noticeably higher than reduction in LOC for all extensions, except BORG vanilla,

indicating that in most cases cyclomatically complex code was eliminated in favor of

non-complex code. More importantly, when we examine the three metrics address-

ing kernel development complexity metrics, even greater reductions are apparent.

Reduction in LOC involving kernel references ranged from 33% (for Encryptor which

uses a substantial kernel DES encryption algorithm for both variant implementa-

tions) to 90% (for Simple RAID-1). Reduction in LOC involving interrupt context

ranged from 0% (for Encryptor) to 90% (for RAW which does substantial processing

in the write and read I/O completion handlers). Critical section LOC was reduced

by 29% (for the EXCES variants) and were completely eliminated for the RAW and

Encryptor extensions.

These findings indicate that the ABLE infrastructure can help developers by

simplifying their development effort for a variety of self-management extensions.
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Figure 5.9: Normalized extension processing times. Prefixes V and A refer to the

vanilla and ABLE versions respectively. Results are averaged over five runs.

5.6 ABLE Runtime Overheads

We quantify the runtime overhead that ABLE-based extensions incur by examining

two extensions – Encryptor representing the lowest use of the ABLE API, and

two RAW and Simple RAID-1 which make extensive use of it. We benchmarked

overhead using PostMark configured to do 1000 transactions on files of size varying

from 1 MB to 10 MB, on an Intel Pentium 4 2.00 GHz with 512MB of RAM and

three 20 GB MAXTOR 6L020L1 hard drives running Linux 2.6.24. Figure 5.9 depict

normalized extension processing time, accounting only for the times spent within the

extension logic (including within ABLE API invocations) and excluding time spent

in the rest of the I/O stack such as application logic, file system logic, and device I/O

time. Notice that when the ABLE API is barely used (Encryptor), most of the

time is consumed by the extension and ABLE only adds a 1.25% overhead. However,

even when the extension logic mostly involves ABLE’s API invocations (upto 83%

of extension processing time spent within ABLE library functions for Simple RAID-

1), there is only a 2.18% and 4.46% increase in total extension processing time for

RAW and Simple RAID-1 respectively. Further if we compare the extension runtime

with the I/O time for the benchmark, ABLE only adds a 0.38%, 0.08% and 0.14%
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respectively for the Encryptor, RAW and Simple RAID-1 extensions. These

numbers indicate acceptable overheads attributable to functionality encapsulation

with ABLE.

5.7 Summary

The ABLE project develops an evolvable block layer infrastructure that substantially

reduces developer effort while implementing self-managing storage systems. This

infrastructure achieved a reduction of 11% to 76% in LOC and 10% to 89% in CC

metrics across five block-layer extensions that we implemented, while incurring in

less than 1% runtime overhead. Average reduction across the three new metrics

designed specifically for measuring kernel complexity were even higher, averaging a

reduction in the range of 22% to 93%.

ABLE also develops a novel theory of block layer storage extensions that creates a

logic framework within which the extension stacks can be analyzed; this substantially

simplifies the task of systems administrators who compose storage systems using self-

management extensions as building blocks. This stacking theory is meant only to

serve administrators decide on stacking extension orders, choosing which extension

to deploy is out of reach of this theory since it requires to reason about extension

effectiveness. In the following chapter we address an instance of this problem, in

which there are two extensions with the same high level goal and the administrator

must chose which one to deploy using an experimental based approach.
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CHAPTER 6

COMPARING EXTENSIONS

In Chapter 5 we discussed a formal mechanism to determine appropriate exten-

sion stacking orders to meet an administrator defined goal. We presented use cases

where ABLE helped administrators pick a stacking order for a set of storage exten-

sions to accomplish a desired goal. However, this formal reasoning is insufficient in

choosing among extensions that accomplish the same goal. Such decision is depen-

dent on both the internal behavior of the extension as well as the properties of the

workload. Capturing the complex characteristics of internal extension behavior and

the workload all within a formal reasoning process seems exceedingly difficult.

In this chapter we present an empirical methodology to compare and contrast

two extensions that storage administrators can use to achieve the same goal. This

approach takes into account both workload and extension characteristics in the

comparison. In particular, we focus on comparing two extensions that reorder data

between storage tiers one using a caching based approach and the second multi-

tiering (also known as tiering), we explain both techniques bellow. To determine

which extension is more appropriate for a given workload we will first study the

workload (6.2), next describe the inter workings and variables that affect the per-

formance of both systems in 6.3; later, in 6.4, we evaluate both systems under a

set of axis to determine with is most appropriate under a given load.

6.1 Problem Background

There is substantial interest in both the industry and academia about ways to

integrate flash-based storage into existing disk-based storage systems due to their

complementary cost, performance, and power characteristics. There are two primary

camps or schools of thought about doing flash storage integration:
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• Caching argues for managing flash-based storage as a large caching layer in

the storage hierarchy to capture the working set of the data stored in the disk

layer.

• Multi-tiering argues for managing SSDs as the front-tier of the disk drive

based storage, as a primary data store.

Both camps are well represented in industry solutions. Some of the solutions with

caching include NetApp’s FlashCache [Pet09b], Oracle (via Sun) ZFS storage appli-

ances 7000 series [Ora10], and Nimble storage CS-series [Nim10]. Similarly, some of

the storage vendors with multi-tiering based storage systems include IBM [Tan10],

EMC FAST [Lal09], 3PAR [Pet10], Compellent [Pet09a], and Avere [Ave10]. Both

camps claim to provide performance gains and cost savings by using SSDs as part

of the storage layer.

The plethora of solutions in both of these classes (caching and tiering) has

led to online debates about the superiority of each technique for enterprise work-

loads [Mar10, Owe10]. Even within the same technique, multiple variants exist. For

instance, while NetApp FlashCache favors using flash-based storage as a read-only

cache, Oracle’s Unfied Storage solution uses SSDs to cache both reads (L2ARC) and

writes (ZIL). Tiering solutions from different vendors also operate at different time

and space granularities — hourly vs. daily migration and whole volumes, files, or

large chunks migrations — leading to very different performance outcomes for the

same workload.

Meanwhile, many enterprises are yet unsure of how to make best use of SSDs in

their environment. Comprehensively characterizing each technique and understand-

ing the impact of various parameters on storage performance is critical for efficient

use. For example, in case of caching, the cache replacement technique needs to be

aware of the specific characteristics of SSDs in terms of reads vs. writes as well as

83



new load imbalance issues (see Table 6.1). This is quite different from previous main

memory caching solutions where it was sufficient to exclusively focus on improving

the hit rate.

Level
Access Time

Random Read Random Write Sequential Read/Write

Register < 1 ns < 1 ns < 1 ns

Level 1 Cache 2 ns 2 ns 2 ns

Level 2 Cache 7 ns 7 ns 7 ns

Level 3 Cache 15 ns 15 ns 15 ns

DRAM 45 ns 45 ns 45 ns

OCZ PCI-e SSD 25,000 ns 1,500,000 ns 1,000,000 ns

Intel X25-M SSD 75,000 ns 4,000,000 ns 2,500,000 ns

SATA Disk 7,000,000 ns 7,000,000 ns 2,000,000 ns

Table 6.1: Access times throughout the memory hierarchy. Numbers reported are
approximations taken from the device specification sheets.

We start off with a basic description of caching and multi-tiering based solu-

tions. This is based on the existing literature as well as our own experience in build-

ing a multi-tiering solution in the recent past [GPG+11]. We then compare these

two approaches across various performance dimensions such as their adaptability to

workload changes, SSD effectiveness, leveraging of device heterogeneity, metadata

overhead, and reliability. For this comparison, we have used real workload traces

and both a simulation and Linux based implementation of each approach. Our goal

in this chapter is to present an empirical methodology that gives insights into how

would an administrator choose tiering over caching, or vice-versa. More concretely,

we seek to answer the following two questions:

1. Are caching and tiering fundamentally different in how they operate and what

they can achieve or are they, in fact, two sides of the same coin? In other

words, by controlling the tunable parameters in each solution class carefully,

can we make caching approaches lead to tiering-like outcomes and vice-versa?
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2. If caching and tiering are fundamentally different in their operation, which

solution best under which circumstances? In other words, how do we tell when

is better to deploy one solution over the other? And equally as important,

how should we configure such solution to achieve the best performance for the

given load?

6.2 Understanding Workload Characteristics

Before we decide on design aspects of the caching and multi-tiering solutions we ana-

lyze two real life storage system workloads. We study traces collected by researchers

at Microsoft Research Cambridge [NDR08], it contains block level I/O traces of 36

independent NTFS volumes of diverse types used within an industrial research lab.

The second trace we study was obtained from a storage server at the FIU computer

science department, this storage server contains user’s homes and email for faculty

and graduate students. Next we present some of the workload characteristics we

found in the traces.

Trace Length # I/Os(x106) Vol. Size % Accessed R/W Ratio

MSR 7 days 433 6.12 TB 53% 3.21
FIU 7 days 697 20 TB 48% 3.99

Table 6.2: Summary of Traces Studied

Table 6.2 summarizes some of the characteristics of the traces. In both cases

around half of the total space is accessed in the period observed. This amount might

be considered high compared to data reported in previous studies [BGU+09, GS02].

We attribute this to two factors. First, since we don’t have information regarding the

original size of the volumes thus we are relying on the last block accessed to calculate

their size which may possibly be an underestimate. Second, it might be possible

that these traces contain access made by maintenance tasks, such as backups and
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RAID scrubbing. These tasks typically access all data in the volume, leading to

an inflation on the percentage of data accessed. The other important factor is that

both workloads exhibit a read intensive pattern, more than 75% and 80% of the

I/Os are reads for the MSR and FIU workloads respectively. This is a point in favor

of adding SSDs to the storage since they have significant lower read latencies than

HDD, as seen in Table 6.1.

Systems that incorporate different types of storage are designed with two as-

sumptions in mind. The first is that I/Os are not distributed uniformly across the

data. Previous studies [BGU+09, RW93a, GS02, HSY05] have pointed out that not

all portions of data receive the same I/O load. It is common to find workloads that

exhibit a logarithmic distribution of the I/O load, with a small subset of the data

receiving a great number of I/Os and the remaining I/Os spread through a large

amount of data. If this assumption holds true for a given workload, then systems

that leverage multiple storage tiers (such as SSD and SATA disks) are very likely

to be more cost effective than single tiered systems for the workload.

The second assumption is that I/O load is not constant but varies though time.

This assumption is based on the observation that many systems are not utilized

uniformly across time. Two well known examples that produce periods of high I/O

activity are bootstorms (when many computers boot simultaneously at the start of

the work day), and batch processes (e.g. backups) where large amounts of data are

processed sequentially. However these periods typically do not span more than a

couple of hours. Hence, systems that leverage multiple storage tiers offer a great

potential at improving performance while requiring less physical resources. Next,

we examine the workloads to see if these characteristics are present.
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Figure 6.1: I/O distribution through the data. The bars depict the % of I/Os the
issued to the top X% of data accessed. The solid curve depicts the same information
as a cumulative distribution.

6.2.1 Storage I/O Distribution

It is well know that stored data is accessed non-uniformly [RW93b]. In Figure 6.1(a)

we see that for the MSR workload the top 1% (which equates to 3 GB) of the data

accessed gets 62% of the entire week’s I/Os load. Additionally we notice that the

top 20% of data contribute towards more than 90% of the accesses. For the FIU

workload we observe similar trends. In this case more than 35% and 85% of all

I/Os are to the top 1% and 20% of the data respectively. This shows a very skewed

pattern in which a very large portion of the load could be serviced using a small

fraction of the space.

This data supports our assumption that I/Os are not distributed uniformly across

the data and motivates the need for dynamic heterogeneous systems, which have

been shown to reduce cost and energy as shown in chapter 4.4.
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Figure 6.2: I/O operations per second across time for the MSR and FIU workloads.

6.2.2 I/O Distribution Through Time

Workloads that have variability in I/O activity and skewed data access distribution

are good candidates for multi-tiered storage systems. These systems can benefit

from the periods of low activity in multiple ways. For instance, they can use this

time to destage data from the SSD tier into the HDD tier, so that the SSD has a

reserve of free space to mitigate peaks in load.

Figure 6.2 depicts the I/O load through time for both workloads. For the MSR

workload we observe a couple of interesting behaviors. First, there are 12 hour

periods of “high” load (e.g. 0-12, 24-36), and followed by other 12 hour periods of

“low” load (e.g. 12-24, 36-48). Further study in [GPG+11] reveals that high and

low load periods correspond periods of predominantly sequential and random I/O

activity respectively. Second, we observe that the highest peak period (evidenced

in hours: 6, 30, 54, etc) repeats every 24 hours. For the FIU workload is harder to

detect any visible pattern. However, we do see that the workload has a mix of long

periods of high I/O activity and short periods of low activity. These observations
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support our second assumption that I/O load is not constant, and varies through

time.

6.3 Overview of Two Approaches

In this section, we present an overview of SSD integration solutions which follow

either the caching or the multi-tiering approach. These solutions are based on the

well known literature in both areas and serve to illustrate both the strengths of each

approach as well as the baselines that we evaluate in later sections. To put these

solutions in context, it is important to understand the usual assumptions behind

flash integration solutions. Figure 6.3 illustrates two system models for flash (SSD)

storage integration. In Figure 6.3(a), SSDs are part of a networked storage array

and thus shared across hosts, whereas in Figure 6.3(b), each host (storage client)

has a local SSD. In both cases, SSDs can be either used for caching or tiering. We

refer to these topologies as shared SSDs and local SSDs respectively. In this study

we focus on evaluating the design space for shared SSDs solutions. Next, we discuss

the design choices for our implementation of both caching and tiering solutions.

Hosts

Storage Array

Hard

Disks

SSDs

. . .

(a) Shared SSDs

Hosts

Storage Array

Hard

Disks

. . .

(b) Local SSDs

Figure 6.3: System architecture with (a) shared and (b) local SSDs
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Figure 6.4 depicts the high level architectural diagrams of both caching and

tiering. In abstract terms, caching populates the SSD while the I/O is in-flight,

that is, when the I/O operation is underway. Tiering on the other side, collects

statistics during a given time frame and later migrates data to the SSD based on

the observed I/O access pattern. For the results presented in this and later sec-

tions we implemented both a caching and tiering systems in Linux, additionally we

also implemented a caching and tiering simulator to allow us to conduct long term

analysis on system behavior. For all experiments in this section both systems were

configured using 2x120 GB Intel 320 Series SSD configured as a RAID 0, and 12x1

TB ST31000524NS SATA disks also configured as a RAID 0.

SSD

Memory

HDD

(a) Caching (b) Multi-tiering

Figure 6.4: Architecture diagrams of the proposed caching and tiering schemes
incorporating SSDs.

6.3.1 Caching

Caching is based on maintaining a portion of the workload from a slow (and typ-

ically much larger) memory device within a faster and smaller memory device, in

anticipation that such data will be used again in the future and those later accesses

be made faster. Multiple variants of caching are already incorporated in different

layers of the system, for instance between CPU and DRAM.
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In caching systems every time an I/O is received we check the upper level memory

or storage layer (also known as the cache) to see if the data is present. If present,

data is serviced from it and a hit is reported. If false, also called a miss, an I/O

is issued to the lower storage layer to fetch the data. If the cache is full, we would

need to evict old data from it before we are able to bring in the new data. Selecting

the data to be removed is the task of the caching algorithm. Typically every entry

in the cache (chunk) has the same size.

There are many factors that affect the performance of caching systems, in this

work we focus on analyzing four, namely: cache size, chunk size, caching algorithm,

and write policy.

Caching Algorithm

There is a very large number of known cache replacement algorithms (or caching al-

gorithms). Researchers have proposed using frequency based replacement algorithms

for second level caches arguing that recency is mostly captured by the first level cache

leading to the inter-reference gaps being much higher for second level caches, such

algorithms include LRU-K [OOWZ93], 2Q [JS94], LIRS [JZ02], ARC [MM03], and

MQ [ZCL04]. Using these type of algorithms the overall space consumed by meta-

data maintained by a cache replacement algorithm is typically of the order of cache

size + the number of ghost buffers (used to track chunks that are currently not in

the cache but were accessed in recent past).

We implemented and tested LRU which represents the simplest and most widely

used caching algorithm, and MQ which represents an algorithm specifically designed

for storage level caches. MQ classifies the chunks into different queues depending on

the amount of times it is accessed. Chunks can be promoted to a higher queue if its

access counter increases and demoted to a lower queue if it is not reuse promptly. We
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Figure 6.5: Hit rate of LRU and MQ caching algorithms for the 7 day period, using
16 KB chunks and a 100 GB cache.

use the same algorithmic parameters as those presented by the authors in the MQ

paper[ZCL04], namely 8 queues plus a ghost buffer of 2X the size of the cache and

log(# access) to assign items to queues on access. Figure 6.5 depicts the average hit

rate and response time of LRU and MQ for different periods of the MSR workload.

In all cases the MQ algorithm was able to achieve a higher overall hit ratio.

Cache Size

One of the simplest way to improve the effectiveness of a cache is by increasing

its size. Bigger caches are able to capture a larger portion of the workload, and

thus incur more hits thus a higher hit ratio. However, as we saw in Figure 6.1 the

distribution of I/Os to data is very skewed, with a large percentage of the I/Os

focused on a very small portion of the workload. This property implies that with

a relatively small cache we might be able to service a significant portion of the

workload. But, after some point, we would need increase the size of the cache

significantly to obtain a noticeable increase in performance.

In order to the quantify the relation between cache size and hit ratio we ran

both workloads through a cache simulator based on the LRU algorithm. Figure 6.6

depicts the hit ratio for both the MSR and FIU workloads when using 16 KB chunks
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Figure 6.6: Hit ratio for different cache sizes.

and varying the cache size. For the MSR workload there is are noticeable jumps in

hit ratio with every as we increase the cache size, the highest increase come from

increase of 1 GB to 10 GB and 100 GB to 1 TB. For the FIU workload we see no

significant difference in the hit ratio as we increase the cache from 1 GB to 100 GB,

only after 100 GB the hit ratio starts to increase in a perceivable way. However, it

is important to point that in this experiment we increased the size of the cache by

10X each time. Such increase will likely come at a significant capital cost.

Chunk Size

Another important factor for dynamic heterogeneous storage systems is the size of

the unit of data at which it operates. For caching systems this unit of data is referred

to as chunk size. The size of the elements of the cache will have a direct impact on

its effectiveness. Intuitively small chunks can potentially be more efficient by only

storing precisely the data that gets accessed, but they will incur higher metadata

overheads which could potentially complicate its reliability. On the other hand,

bigger chunks will be have less metadata overheads but might provide reduced hit

ratio due to a less effective utilization of the cache. Therefore, we should pick a

chunk size that balances both adaptability and metadata overhead.
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The best way to see the impact of the chunk size would be to run multiple

instances of the algorithm varying both the chunk size and cache capacity. Previ-

ously, researchers have simulated LRU with an unlimited cache to obtain the hit

ratio curves [MGST70, ZPS+04], but this doesn’t scale well to storage sized caches

as it is slow and requires a significant amount of memory.

One alternative approach to implement LRU is to use count for every access

the number of unique chunks referenced between now and the last time it was

access (including itself). This is typically know as reuse distance. For instance in

Figure 6.7(a) the reuse distance between the first and second accesses of A is 2 and

between the second and third access of B is 3. The important observation here is

that a distance of X indicates that given a cache of at least X items one would get

a hit for items with reuse distance of X or lower. But again, calculating the number

of unique chunks accessed requires us to maintain a stack of all previous accesses

and traverse the stack for every I/O searching for the previous occurrence of the

item counting the number of distinct items accessed.

Cache Accesses
Size A B B A C B

1-item × × X × × ×
2-item × × X X × ×
3-item × × X X × X

Legend: ×miss Xhit

(a) Access Sequence

1 2 3

1
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Reuse Distance
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u
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(b) Reuse Distance
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(c) Hit Ratio Curve

Figure 6.7: Obtaining the miss hit rate curve from an access sequence. (a) Access
sequence and actual hit ratio for caches of different sizes, (b) Reuse distance of
the sequence, (c) Hit ratio estimate calculated using the reuse distance, dotted line
indicates actual hit ratio.
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If we were to relax the definition of reuse distance and only count the num-

ber of accesses instead of the number of unique chunks accessed, the computation

and memory requirements would be significantly less since we would only need to

maintain information about when particular chunks where last accessed. Now going

back to the example in Figure 6.7(a), using our relaxed reuse distance metric we

get that the distance between the first and second accesses of A is 3. It’s easy to

see that this would likely introduce error in the hit ratio calculation, leading to an

overestimation of the amount of cache required (as seen in Figure 6.7(c)). However,

overestimating the size of the cache will not result in any performance degradation

and may in fact improve performance by augmenting the hit ratio. The negative

part of overestimating the cache size is the increased capital expenditure to acquire

the extra cache storage. If this is a concern we can simply use this technique as a

reference to get an initial estimation and later use simulation to obtain the actual

hit ratio for a given size.
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Figure 6.8: Hit ratios for different cache line sizes for the MSR and FIU workloads.
Lines depict the cache line size.

Having found an efficient way of calculating the hit ratio curves we ran both

workloads through the cache simulator using different chunk sizes to obtain the hit

ratio curves, which are depicted in Figure 6.8. Notice that for cache sizes smaller
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than 1 TB having 1 MB chunks will provide the highest hit rate at a very low

metadata overhead. This finding can be corroborated in Figure 6.9(a), where we see

that > 60% of the I/Os fall within a 1 MB region of previous one, thus using larger

chunks benefits from the locality of access in the workload. For caches larger than

1 TB, 4 KB chunks provided the highest hit rate. However, at a 100X increase in

metadata overhead compared with 1 MB chunks.

These findings contradict our intuition that smaller chunks will always provide

a higher hit ratio. However, there are two complementary reasons for this. First,

the working set is large, thus there is a very low probability that the same data will

be requested in a short time spawn. Second, there is a significant amount of spatial

locality. Hence, while the chance of accessing the exactly same the 4 KB piece of

data in the near future is small there is a high probability to access data that is

close (in terms of LBA distance).

Figure 6.9 shows the cumulative distribution probability of the distance between

two I/Os (in terms of LBA). We observe there is a small (< 10%) probability that

the next I/O is to exactly the next 4KB page, but if we consider a range of 1MB we

see the probability of a hit jump to 60% and 80% for the MSR and FIU workloads

respectively. This suggests that a majority of the I/Os will fall within 1 MB the

previous I/O. Thus, we observed higher hit ratio when using 1 MB chunks because

we were, in a way, prefetching data that is going to be accessed in the near future.

Write Policy

Given the asymmetric I/O and write endurance properties of the SSDs, many re-

searchers have expressed concern about the potentially shorten lifespawn of SSDs

when used as caches for workloads that experience a write intensive load. SSD man-

ufacturers have responded by providing strong minimum lifespawn guarantees for
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Figure 6.9: Distribution of inter I/O distance for the MSR and FIU workloads.

their products, in many cases recurring to throttling writes when the workload is

write heavy [LKKK12]. Some researchers have even proposed extending the lifetime

of SSDs by using disks as write caches [SPBW10].

In this work we consider two basic write policies for the SSD cache. When using

the write back policy both reads and writes are treated equal. This approach might

hurt performance for write intensive workloads and shorten the lifespawn of SSDs

for write intensive workloads. On the other hand with the write through policy, all

write I/O is diverged to the disk, after the write completes the I/O is reported as

done and a new write sent to the SSD. However, using the write through policy can

also hurt performance since an extra I/O is generated for every write.

To measure the performance difference between both write policies we replayed

two different periods of the MSR trace. For the hours 6 to 12, that represents the

period of highest I/O activity and also that of a high read to write ratio, write

through has 9% lower average service time. In this case the performance advantage

comes mainly from the fact that eviction in write through case are “free” since all

data in the cache is always clean. But, for a period where the read to write ratio is

low, represented in hours 42 to 48 of the trace we notice how the write amplification
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of the write through policy negatively impacts performance resulting in 15% worst

performance compared to write back.

6.3.2 Multi-Tiering

Multi-tiering involves periodic data migrations among the available storage tiers to

accommodate for changes in the workload. Upper tiers correspond to faster but

smaller tiers, while lower tiers are bigger but slower. Typically, data is initially

placed in a lower tier and promoted or demoted based on its access pattern. In

such cases data can either be replicated or moved across tiers. In this study we

focus in the case when data is moved, meaning there is a single copy of the data

active at all times. The granularity of movement is a chunk of data (sometimes

referred to as an extent) of the order of megabytes in size. We do not consider

volume-based multi-tiering in this study which is relatively unattractive for primary

storage [GAW09].

Contrary to caching systems, in multi-tiering chunks are not migrated on every

I/O, rather a set of statistics are collected (per chunk) and later analyzed. Such

analysis yields a possibly new chunk to tier assignment, which indicates the chunks

that need to be migrated between tiers. We refer to the time lapse between successive

analysis/data-migration operations as an epoch. The length of epochs range from

a few hours (30 minutes in the EDT system [GPG+11]) to an entire day across

commercial solutions.

As with caching, many factors affect the performance of multi-tiering systems

this work focuses on studying: the multi-tiering algorithm, chunk size, and recon-

figuration interval.
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Figure 6.10: I/O Service times for the tiering system varying the algorithm during
hours 6-8 of the MSR workload, using 16MB chunk and 30min epochs.

Multi-Tiering Algorithm

Tiering relies on figuring out a chunk placement that improves the current per-

formance. The tiering algorithm decides chunk placement within individual tiers,

based on chunk level statistics collected in an online manner over several epochs.

For this work we considered two approaches. First, placement based solely in IOPS,

which we term greedy, where chunks are sorted by IOPS and assigned to the highest

(fastest) tier with free space. Our second approach is taken from EDT [GPG+11]

and is based in per chunk resource utilization. The idea is to place each chunk in

the tier where it utilizes the least amount of resources. Here utilization is a multi

axis metric that includes space, IOPS, and throughput. We name this approach

utilization. Figure 6.10 depicts the 5th, 25th, 50th, and 95th percentiles of I/O ser-

vice times. Notice that both algorithms perform very similarl. However, the greedy

algorithm incurs in longer latency for the slower I/O (as seen by the 95th percentile).

This leads the utilization algorithm to perform 10% better on average in this case.

However, given that tiering only changes the chunk layout after epochs, we added

a mechanism that identifies chunks that are over demanding resources from their

present tier and migrates them to a different tier that can account for its I/O de-
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mands. We refer to this mechanism as throttling detection. We see in Figure 6.10

that the algorithms with throttling detection enabled (identified with the “+thr”

suffix) reduced the maximum latency in both cases. In particular, for the utiliza-

tion algorithm adding throttling detection improved average response time by 12%.

Therefore, for subsequent tiering experiments we will use the utilization based al-

gorithm in combination with throttling detection.

Chunk Size

Multi-Tiering solutions have argued for a fixed chunk granularity within each solu-

tion [Sil11]. Since a chunk metadata access is involved in the data path, it must be

cached in memory to minimize the overhead and its in-memory footprint must be

controlled. Notice that we need to maintain metadata for each chunk of data, this

number is in the order of
∑

i size of tier i. Given a tiered storage system with a

fixed amount of available memory to store metadata, the solutions in the literature

suggest picking a large chunk size so that per-chunk metadata for all chunks would

fit in the system memory [Tan10, Lal09]. However, larger chunks take longer to

migrate. This makes the system slower to adapt to changes in the workload. On

the other hand, choosing smaller chunks makes the system more adaptable, but

increases metadata.

In order to evaluate the impact of different chunk sizes on the performance of

the tiering system we trained the system with the first 5 days of the MSR workload

to obtain a chunk mapping and replay the following 2 hours. Figure 6.11 depicts

the response time distribution for the replay using various chunk sizes. We see that

performance always improves as chunk sizes decrease with 1 MB chunks observing

the best overall performance. This is mainly due to smaller chunks being able to
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Figure 6.11: Cumulative distribution of response time for the multi-tier system
during hours 120-122 of the MSR workload.

adapt quicker to changes in the workload by using less time to migrate between

tiers. Similar behavior was observed when replaying other periods of the workload.

Chunk Size Amount of Metadata (per TB)

64 MB 0.3 MB

16 MB 1.25 MB

1 MB 20 MB

Table 6.3: Amount of the metadata for the multi-tier. Assuming 20 byte per extent
metadata.

As mentioned earlier we must also consider the metadata load imposed on the

system. In Table 6.3, we see that the amount of metadata grows quickly. For

instance, if we were to deploy our example multi-tier on system hosting 1 PB of data

and use 1 MB chunks, we would use 20 GB of metadata. Although it is common

to find servers with sufficient memory to host such amount of metadata, keeping

it persistent and consistent may become complicated if the amount of metadata

becomes too large. Additionally, allowing large amounts of memory to be used for

chunk metadata will have negative performance side effects since less amount of

memory will be available for other task (e.g. read caching or write buffering).
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Epoch Length

The next parameter we study is the time between epochs. If this period is too long,

then we might miss opportunities to improve performance. If is too short, we might

incur an excessive number of migrations which could negatively affect performance.

However, tuning the epoch length to the optimal value can be a difficult task. For

instance the workload could be using different working sets at different times of the

day. Further the length of these periods could also vary.

Many tiered systems opt to set the epoch length based based on the selected

chunk size. The larger the chunk the more time taken to move it among tiers and

thus systems using chunks in the order of hundreds of megabytes to gigabytes tend

to have epochs in the 12 to 24 hour range. On the other hand, smaller chunks (tens

of megabytes) will use shorter epochs ranging from tens of minutes to a couple of

hours.

Figure 6.12 depicts the the 5th, 25th, 50th and 95th percentiles of response time

for the tiering system when using 16 MB chunks. We see that larger epochs lead

to better median response times. This is mainly due to having less percentage of

time invested in data migrations. However, having less migrations makes the system

more susceptible to workload changes. Thus, when we examine the overall mean

response time we find the best performing epoch length to be 30 minutes.

6.4 Caching vs. Multi-tiering

In chapter 5 we presented a formal theory for storage administrators to compose

extension stacks that achieve the desired goal. However, this theory does not allow

the administrator to decide which extensions to deploy, it only proceeds once the

extensions have been chosen. In particular, if the administrator disposes of more
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Figure 6.12: I/O Service times for the 5th, 25th, 50th and 95th percentiles for the
tiering system varying the algorithm during hours 6-10 of the MSR workload, using
16MB chunk and varying the epochs length.

than one extension that achieve the wanted high level goal which one does she choose.

To make this decision we would need to be able to deterministically determine how

each extension acts to deduct which is better suited for the given workload.

In this section, we present an empirical methodology that allows us to gather

more information on extension behavior. The study is based on comparing tiering

and caching extensions across several dimensions such as workload adaptability, SSD

effectiveness, leveraging device heterogeneity, metadata overhead, and reliability.

For all experiments in this section we use a 200 GB SSD tier and 12 TB SATA

HDD tier. In the previous section we studied the influence of different parameters

on both systems, this allowed us to find a parameter configuration that is most

adequate for a workload. Caching is configured to use the MQ algorithm with a

write back policy and 1 MB chunks. Tiering is configured to use the utilization

algorithm, 1 MB chunks and 30 minute epochs.

6.4.1 SSD Effectiveness

To quantify and contrast the effectiveness of the SSD device in both solution classes

we used the MSR workload. In particular we use the first 5 days of the trace
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Figure 6.13: SSD hit ratio for a replay of hours 120 to 122 of the MSR traces using
a 200 GB SSD.

to “train” the system (e.g. warm the caches, populate the tiers) and present the

percentage of I/Os issued to the SSD for a replay of the hours 120 to 122 of the

trace in Figure 6.13.

When interpreting the above result, is important to bear in mind that the goals

of the caching and tiering solutions are quite different in principle. The primary

goal with tiering is to meet performance objectives for data access choosing the best

possible location for the data given long-term trends. With caching, the primary

goal is to maximize the hit ratio in the higher performing SSD device. This is

not necessarily optimal in terms of overall performance, in fact Wu, et al. [WR10]

showed that better performance can be achieved by load balancing between the SSD

and HDD tiers.

This is an important distinction from traditional DRAM caches which continue

to improve performance at higher cache hit ratios because (a) the difference in

performance between DRAM and the backing stores was always several orders of

magnitude (irrespective of the nature of access, see Table 6.1), and (b) one DRAM

access was mandatory anyway as data can not be read directly from disk to a CPU

register. In case of an SSD cache, the performance difference between an SSD and

a high performance (SAS) array backing store is not that significant for sequen-

tially accessed data and in fact, using a $/MB/s metric, it is more optimal to have
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frequently accessed sequential data in the SAS device instead [GPG+11, WR10].

Nevertheless, as SSD continue to get cheaper and improve performance we believe it

will become the unconditional best choice for both random and sequential accesses.

In fact, Table 6.4 shows that while HDD price to performance ratio has almost

stagnated in the past two years, newer SSD models provide 2X the throughput and

close to 10X more IOPS than previous models. The trends also suggests that hard

drive will continue to provide the lowest cost per GB for years to come, thus leaving

room for load-balancing approaches [WR10] to mitigate possible over-subscription

issues.

Device 2010 2012
Cost $/GB $/Mb/s $/IOPS Cost $/GB $/Mb/s $/IOPS

SSD $430 $1.8 $1.46 $0.13 $180 $1.5 $0.78 $0.01
SAS $325 $0.65 $1.62 $1.11 $310 $0.62 $1.55 $1.06
SATA $170 $0.16 $1.61 $1.24 $110 $0.10 $1.05 $0.80

Table 6.4: Device Cost Comparison from 2010 to 2012. SSD’10 is a 120GB Intel
x25 MLC, SSD’12 is a 120GB Intel 320 MLC, SAS is a 450GB 3.5in 15K RPM
SAS, and SATA is a 1TB 3.5in 7.2K RPM SATA

6.4.2 Workload Adaptability

Cache replacement algorithms are designed to adapt quickly to a changing workload

by bringing the current working set of data into the faster caching device on demand.

However, data access patterns may involve longer term trends that are not easily

captured using the limited (shorter term) memory. For instance, if typical reuse

distances of hot data are large (e.g., cache lines are accessed hourly), a simple

approach that only tracks the most recent block accesses may prove inadequate. In

order to capture longer term trends, one can use ghost buffers which would increase

the metadata requirement proportionately. Alternatively, one can use slow aging of

cache lines. For example, MQ [ZCL04] algorithm uses a tunable lifetime parameter
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to demote cache lines from higher frequency queues to the lower ones which allows for

this optimization. Both of these techniques allow caching algorithms to potentially

mimic the behavior of tiering solutions, that are discussed next.

Dynamic tiering algorithms are designed to perform data movement at the gran-

ularity of tens of minutes to hours to capture long-term trends in data usage. This

design choice is driven by the chunk granularity of data movement, typically much

larger than the line granularity employed in caching. Doing so implies substantial

additional data moved for each data block accessed if conducted in-band. Conse-

quently, out-of-band data movement is often used, in contrast to the in-band data

movement in caching. To optimize data movement, tiering algorithms typically

employ aging-based characterization of data access patterns to determine the most

appropriate tier over a longer duration of time.

While long term stable trends are useful, tiering solutions can miss short term

working set changes. Particularly, tiering solutions must add mechanisms to address

short term hotspots and I/O bursts. For instance, the EDT system presented in 4.4

uses a throttling correction mechanism to alleviate unexpected hotspots on arrays

that get temporally over-subscribed. However, such a reactive mechanism would

incur a delay before throttling is detected and performance is restored via corrective

actions. An alternate approach here is to provision for continuous data movement (as

opposed to epoch-based) in tiering solution with quicker or dynamically chosen aging

of extent characteristics. Further, as we shall argue shortly, chunk sizes can also

be chosen to be smaller without substantially increasing the in-memory metadata

footprint to perform data movement more efficiently.

Figure 6.14 shows the cumulative response time for two different workloads, we

ran both caching and tiering algorithms using different chunk sizes. We we only

include results for 1 MB for caching since they represent the best performance ob-
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Figure 6.14: Distribution of response time for a (a) workload that exhibits a chance
in its working set, and (b) one the honors long term trends.

tained. For tiering we show two chunk sizes which represent the overall trend. Figure

6.14(a) depicts the response time when replaying hours 120-122 of the MSR work-

load, after a the algorithms have gathered a 5 five day knowledge of the workload

and have reach a steady state for a 200 GB SSD. We see a couple of interesting

behaviors. Most notably it appears the size of the chunk has a notable impact on

tiering even once the long term pattern have been captured and the data placed in

its appropriate tier. When comparing the response of tiering and caching we see

that tiering has similar performance to write through caching. Write back exhibits

an average 25% better performance than tiering.

When the systems are faced with changes in the workload we see a different

behavior. Figure 6.14(b) depicts a workload experiencing a change in its working

set, which corresponds to replaying hours 6-8 of the MSR workload driven by great

amounts of data being read semi-sequentially. We see that the best performing tier-

ing configuration (1 MB) achieves comparable performance to the best performing

caching counterpart. This might seem a bit surprising, since caching systems are de-

signed to be quick to adapt to workload changes. However, further analysis revealed

that tiering benefited from a combination of two factors, the throttling detection
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mechanism employed by tiering quickly correcting performance degradation and the

fact that tiering uses out of band data migrations. Nevertheless, we believe the data

migration scheme in caching could be improved. Currently on every cache miss a

the system waits for a 1 MB read I/O to HDD to complete, before returning to the

user. If we issued only the I/O being requested to the HDD, returned to the user,

and allow the migration to occur out of band we could reduce potentially reduce

latency by a noticeable margin.

6.4.3 Leveraging Device Heterogeneity

Typical caching techniques can degrade performance by oversubscribing the SSD,

while aiming to provide a higher hit rate [WR10]. This is due to a failure to balance

the load among the available devices in an effective manner. Tiering solutions, on

the other hand, are built precisely to leverage heterogeneous cost-performance-power

characteristics across many device types. In the EDT work described earlier in this

thesis, we proposed a three tier systems composed of SSDs, SAS, and SATA disks

and argue that each device type has a place in the storage hierarchy for enterprise

workloads [GPG+11]. Particularly, we showed that each tier is optimal with respect

to one of the three metrics ($/GB, $/MB/s, and $/IOPS) and that sequential data

access is served more cost effectively using either SAS or SATA drives depending

on the I/O intensity of the sequential access. We have revisited the numbers and

recalculated them according device prices as of Jun 2012. Table 6.4 depicts the

device prices according to cost and the other three metrics presented in [GPG+11].

The most significant change comes in the SSD devices, where the price has decreased

by more than half, making this device type also attractive in terms of $/Mb/s as

well as $/IOPS.
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Figure 6.15: Average service time per device for the Caching and Tiering systems
for the 120-122 hour period.

The distinction with respect to leveraging device heterogeneity seems central to

the caching vs. tiering comparison. Figure 6.15 depicts the average response times

for the replay of hours 120-122 of the MSR workloads. Notice that caching is able

to achieve better overall response time, even though both its averages for SSD and

HDD are worst that those of tiering. This is because the caching solution only sends

1 of every 33 I/Os to the HDD but incurring in a very high penalty for those I/Os.

Tiering is being somewhat more proportional about half of the load to the SSD.

However, since it is also taking into account other workload characteristics the its

placement decisions appear to be yield a balanced load among devices. In the future,

we envision that researchers will look into considering additional workload charac-

teristics in caching algorithms, such as access pattern and I/O type, to leverage the

benefits of distinct device types.

6.4.4 Metadata Overhead

Both caching and tiering solutions incur metadata overhead. Access to such meta-

data must be quick and therefore it is usually kept in fast, but limited, DRAM

memory. The metadata maintained by caching is largely statistics related to lines

in the cache, and ghost buffers which are typically few times bigger than the size
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of cache. Thus, metadata requirement is a factor of the size of the cache and the

amount of metadata per cache line, that is O(cache size × line size). Tiering on

the other hand stores information about each chunk that is accessed. Over time,

this could be close to the total size of the back-end store, O(total store size ×

chunk size). To reduce metadata overhead, chunk sizes are typically large, of the

order of few megabytes. Figure 6.16 provides a comparison of metadata overhead

for the two approaches. We see that tiering could use up to 10X the amount of

metadata as caching depending on how much space is used.
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Figure 6.16: Metadata overheads for the two techniques. The calculations assume
the SSD is 10% the total size of the data; 3x ghost buffer size, with 8 byte metadata
per chunk for caching. For tiering we assume 20 bytes of metadata per chunk. (a)
Assumes that 50% chunks are never accessed, (b) Assumes chunk size of 64 KB.

In the future, we envision that chunk sizes in tiering would become smaller, while

the metadata overhead is mitigated by storing it on the SSD and caching only a sub-

set of it in DRAM. Given that there is locality in accesses to data, the same locality

can also be exploited to cache chunk metadata in memory efficiently. Alternate

optimizations are also possible. Chunks that do not get accessed frequently can be

collapsed into a single piece of metadata. The effectiveness of these optimizations is

yet to be seen and we expect research community to try out these and other similar

solutions that exploit workload characteristics and reduce the overhead for tiering

based solutions.
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6.4.5 Reliability

We evaluate the reliability implications of caching and tiering using the shared SSD

architecture shared (Figure 6.3(a)). In this case exclusive tiering is an attractive

option, especially if the tiering implementation can exploit workload as well as de-

vice characteristics for best performance. Caching can also be employed with the

additional ability to use the SSD as a read as well as persistent write cache. Finally,

if one is using a reliable SSD layer, it is more cost-effective to use it as an exclusive

layer instead of inclusive.

Apart from the previously mentioned reliability concerns, both caching and

multi-tier systems depend on a mapping of data to devices. Mappings are updated

after data is moved and it is crucial that this mapping be always consistent and

durable. Caching, will typically perform map updates when bringing data to the

cache. Thus, if the hit ratio is low and many new lines are being brought into the

cache, we would be required to provide persistence in the order on tens or hundreds

of transactions per second only for the keeping an updated copy of the mapping on

a persistent medium. Tiering will update the map when data is being moved, which

typically occurs in batches in the scale of minutes. Hence, enforcing less pressure to

maintain an updated persistent version of the mapping.

Tiering

Caching

 1  10  100

Number of Migrations (x1000)

Figure 6.17: Amount of 1 MB data movements between SSD and HDD incurred by
caching and multi-tiered systems during the reply of hours 120-122.
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To validate the above hypothesis that tiering incurs in less data movements

between the SSD and HDD tiers (or migrations) than caching we look at the number

of migrations performed by both systems during hours 120-122. Figure 6.17 shows

that tiering does less migrations almost an order of magnitude less migrations than

the caching systems, even though the caching system achieves more than 95% hit

ratio for the observed period. This leads us to think that designers of caching

systems need to be very cautious handling updates to the persistent mappings,

more so if using write back caching where there is only one update-to-date copy

of the chunk. Particular attention must be given to misses on a write, given that

it will trigger both a write to the SSD and an update on the map and both most

occur simultaneously to ensure correctness and avoid losing data. This however is

a hard task and current systems lack mechanisms that provide persistence of data

structures (like maps), while guaranteeing consistency of their updates.

6.5 Discussion and Summary

Heterogeneous storage systems composed of a mix of SSD and HDD devices are

becoming increasingly popular. Two alternate designs are caching and multi-tiering.

Both systems take quite distinct approaches to managing distinct types of storage

devices. We found that each of them have strengths and weaknesses.

We have to start by pointing out that our implementations of either caching

and tiering systems by no means represent solutions available in the market. Many

improvements can be made to both implementations which could potentially increase

their performance significantly. Our focus in this study was to understand the

differences between to two approaches and how each operates.

Our most important finding is that caching implementation continuously out-

performed the tiering counterpart. In summary, caching adapts quicker to workload
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changes while using less metadata. Nevertheless, caching systems need to handle

more reliability concerns that tiering.

One of our most unexpected findings was the fact that bigger cache lines lead to

increase hit rate and improved performance. We found this due mainly to the spatial

locality within the workload, indicating a high probability of subsequent I/Os being

within a 1 MB region of the previous. We found this not to be true for tiering, in

which case the smallest chunk size tested (1 MB) provided the best performance, at

a significant metadata overhead penalty though. On the other side, one potential

advantage that tiering can have over caching is the ability to load balance among the

different device types. However, we believe the performance gap between SSD and

HDD will continue to widen, with SSDs becoming increasingly faster and cheaper.

This would play down the need for load balancing. Also, since tiering approaches

maintain metadata about every chunk ever accessed they might be able to decide on

a better placement of data. Nevertheless, we did not evidence this to be true for the

workloads we tested. We feel that more advanced chunk placement algorithms yield

better results by further exploiting the load balancing among the different arrays.

Finally, both approaches present challenges in maintaining persistent metadata.

For multi-tiering the challenge is keeping track of metadata to account for all data

ever accessed; for caching is the high amount of updates in the cache triggered by

moving in and out of the cache. Thus, in each case developers face significant compli-

cations making system metadata persistent. In the next chapter we address present

a system that frees developers from to manually taking care of such metadata.
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CHAPTER 7

MAKING EXTENSION DATA PERSISTENT

Previously in chapter 4 we presented three self-managed storage extensions. We

concluded this section with the lessons learned while developing these systems.

Among those lessons were the need for an easier method for developers to cre-

ate self-managed storage extensions including providing support to create persistent

data structures. As and indication of the importance of such support, all the ex-

tensions that we have discussed in this thesis thus far require persistence for some

of their in-memory data structures. In this chapter, we present the design and

implementation of a system that enables this much needed feature.

Operating systems offer developers two abstractions for managing data. A mal-

loc style abstraction allows developers to flexibly allocate volatile memory for com-

putation, and a file abstraction which provides data persistence. To make data

persistent, developers write in-memory structures to non-volatile storage; likewise,

they read such information into memory before use. The above practice is not ideal

for development. Developers must carefully track persistent data structures in their

code and ensure the atomicity of persistent modifications to related data struc-

tures. Developers are also required to implement serialization/deserialization for

their structures which implies creating and managing additional metadata whose

modifications must also be made consistent with the data they represent. These

requirements increase code complexity, reduce code reliability and maintainability,

and prolong the development time. Additionally, since processes directly interact

with the storage system, the developer must be acutely aware of storage system

operation to optimize the I/O. Given the diversity of storage and file systems, any

storage-specific optimizations can hardly be universal.
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Software Persistent Memory (SoftPM), is a lightweight abstraction for persistent

memory. Unlike solutions in the literature, SoftPM provides a novel form of orthog-

onal persistence [Atk78], whereby the persistence of data (the how) is seamless to

the developer, while providing a substantial degree of control over when and what

data persists. SoftPM enables developers to allocate and interact with persistent

memory in much the same way as they do with volatile memory. To use SoftPM,

developers create one or more persistent containers to house a subset of in-memory

data that they wish to make persistent and define container root structures. The

developer only needs to ensure that a container’s root structure house pointers to

the data structures they wish to make persistent (e.g. head of a list or root of a

tree). SoftPM automatically discovers new data reachable from a container’s root

structure (by recursively following pointers) and makes all new and modified data

persistent when the application specifies a persistence point. Restoring a container

returns the container root structure from which all originally reachable data can be

accessed. SoftPM thus obviates the need for explicitly managing persistent data and

places no restrictions on persistent data size or location(s) in the process’ address

space, while itself optimizing for I/Os via modular, back-end specific I/O drivers.

Next, we discuss the the design and architecture of SoftPM

7.1 Persistence of Memory

In this section we identify design goals for a persistent memory system, examine the

literature, and discuss how SoftPM differs from existing solutions.

7.1.1 Design Goals

Flexibility: Persistence is often necessary for only a fraction of the address space.

– e.g.,10-50% in high-end computing (HEC) applications [OAT+07] and much lesser
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Container Root Struct Usage

struct c root { id = pCAlloc(m,sizeof(*cr),&cr);

list t *l; cr->l = list head;

} *cr; cv = pPoint(id);

Figure 7.1: Implementing a persistent list.

for metadata persistence in systems software [FB04, GPK+07, KR10, LTSY+07,

LCSZ04, MKM+10, MAC+08, MG03, QD02, RCP08, SWS05, ZLP08]. By providing

developers the flexibility to control what data must be made persistent, the minimal

set of data needed to recover state can be chosen to reduce the size of persistence

points.

Usability: Providing developers the necessary flexibility can introduce complexity.

Candidate solutions may require developers to write additional code to track alloca-

tions and modifications to persistent data and/or explicitly map persistent data into

immovable segments. An easy to use interface that automates much of the above,

represents a near zero learning curve, and places minimal restrictions on persistent

memory locations is desirable.

Performance: Creating persistence points is resource intensive and solutions that

optimize I/O better are more relevant. Further, persistence solutions that minimize

blocking of the application can directly lead to application visible performance gains.

Portability: The I/O characteristics of storage back-ends can be quite different.

Specific storage back end optimizations may need to be substantially modified to for

different back-ends. Portable persistence solutions are more desirable to developers.

7.2 SoftPM Overview

SoftPM implements a persistent memory abstraction called container. To use this

abstraction, applications create one or more containers and associate a root structure

with each. When the application requests a persistence point, SoftPM calculates a
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Function Description

int pCAlloc(int magic,int cSSize,void

∗∗cStruct)

create a new container; returns a container identifier

int pCSetAttr(int cID, struct cattr

∗attr)

set container attributes; reports success or failure

struct cattr ∗pCGetAttr(int magic) get attributes of an existing container; returns container

attributes

void pPoint(int cID) create a persistence point asynchronously

int pSync(int cID) sync-commit outstanding persistence point I/Os; reports

success or failure

int pCRestore(int magic, void

∗∗cStruct)

restore a container; populates container struct, returns

a container identifier

void pCFree(int cID) free all in-memory container data

void pCDelete(int magic) delete on-disk and in-memory container data

void pExclude(int cID, void ∗ptr) do not follow pointer during container discovery

Table 7.1: The SoftPM application programmer interface.
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Figure 7.2: The SoftPM architecture.

memory closure that contains all data reachable (recursively via pointers) from the

container root and writes it to storage atomically and (optionally) asynchronously.

The container root structure serves two purposes: (i) it frees developers from

the burden of explicitly tracking persistent memory areas, and (ii) it provides a

simple mechanism for accessing all persistent memory data after a restore operation.

Table 7.1 summarizes the SoftPM API. In the simplest case, an application would

create one container and create persistence points as necessary (Figure 7.1). Upon

recovery, a pointer to a valid container root structure is returned.
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7.2.1 System Architecture

The SoftPM API is implemented by two components: the Location Independent

Memory Allocator (LIMA), and the Storage-optimized I/O Driver (SID) as depicted

in Figure 7.2. LIMA’s container manager handles container creation. LIMA man-

ages the container’s persistent data as a collection of memory pages marked for

persistence. When creating a persistence point, the discovery and allocator mod-

ule moves any data newly made reachable from the container root structure and

located in volatile memory to these pages. Updates to these pages are tracked by

the write handler at the granularity of multi-page chunks. When requested to do so,

the flusher creates persistence points and sends the dirty chunks to the SID layer in

an asynchronous manner. Restore requests are translated into chunks requests for

SID.

The SID layer atomically commits container data to persistent storage and tunes

I/O operations to the underlying storage mechanism. LIMA’s flusher first notifies

the transaction handler of a new persistence point and submits dirty chunks to SID.

The chunk remapper implements a novel I/O technique which uses the property

that all container data is memory resident and trades writing additional data for

reducing overall I/O latency. We designed and evaluated SID implementations for

hard drive, SSD, and memcached back-ends.

7.3 LIMA Design

Persistent containers build a foundation to provide seamless memory persistence.

Container data is managed within a contiguous container virtual address space, a

self-describing unit capable of being migrated across systems and applications run-

ning on the same hardware architecture. The container virtual address space is
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Container 0 Container 1 Volatile Page Unused Page
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Page Table

Chunk

Ind. Map

LIMA Virtual Volume

...

<container>

...
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SID Physical Volume

<chunk>

...

Process Virtual
Address Space

<page>

Figure 7.3: Container virtual address spaces in relation to process virtual address
space and LIMA/SID volumes. The container virtual address space is chunked, con-

taining a fixed number of pages (three in this case).

composed solely of pages marked for persistence including those containing appli-

cation data and others used to store LIMA metadata. This virtual address space

is mapped to logically contiguous locations within the virtual volume managed by

LIMA. SID remaps LIMA virtual (storage) volumes at the chunk granularity to the

physical (storage) volume it manages. This organization is shown in Figure 7.3.

The indirection mechanism implemented by SID simplifies persistent storage man-

agement for LIMA which can use a logically contiguous store for each container.

7.3.1 Container Manager

The container manager implements container allocation and restoration. To allocate

a new container (pCAlloc), an in-memory container page table, that manages

both application persistent data and LIMA metadata, is first initialized. Next, the

container root structure and other internal LIMA metadata structures are initialized

to be managed via the container page table. To restore a container, an in-memory

container instance is created and all container data and metadata loaded. Since

container pages would likely be loaded into different portions of the process’ address
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Figure 7.4: Container Discovery. Grey boxes indicate freed memory.

space, two classes of updates must be made to ensure consistency of the data. First,

the container metadata must be updated to reflect the new in-memory data locations

after the restore operation. Second, all memory pointers within data pages need to

be updated to reflect the new memory addresses (pointer swizzling). To facilitate

this, pointer locations are registered during process execution; we discuss automatic

pointer detection in §7.5.

7.3.2 Discovery and Memory Allocation

A core feature of SoftPM is its ability to discover container data automatically. This

allows substantial control over what data becomes persistent and frees the devel-

oper from the tedious and error-prone task of precisely specifying which portions

of the address space must be allocated persistently. SoftPM implements automatic

container discovery and persistent memory allocation by automatically detecting

pointers in process memory, recursively moving data reachable from the container

root to the container data pages, and fixing any back references (other pointers) to

the data that was moved. In our implementation, this process is triggered each time

a persistence point is requested by the application and is executed atomically by

blocking all threads of a process only until the container discovery phase is com-

pleted; disk I/O is performed asynchronously (§7.3.4).

To make automatic container discovery possible, SoftPM uses static analysis

and automatic source translation to register both pointers and memory allocation
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requests (detailed in §7.5). At runtime, pointers are added either to a persistent

pointer set or a volatile pointer set as appropriate, and information about all mem-

ory allocations is gathered. Before creating a persistence point, if a pointer in the

persistent pointer set (except those excluded using pExclude) references memory

outside the container data pages, the allocation containing the address being refer-

enced is moved to the persistent memory region. Forward pointers contained within

the moved data are recursively followed to similarly move other new reachable data

using an edge-marking approach [KW99]. Finally, back references to all the data

moved are updated. This process is shown in Figure 7.4. There are two special

cases for when the target is not within a recognized allocation region. If it points to

the code segment (e.g. function pointers), the memory mapped code is registered

so that we can “fix” the pointer on restoration. Otherwise, the pointer metadata is

marked so that its value is set to NULL when the container gets restored; this allows

SoftPM to correctly handle pointers to OS state dependent objects such as files and

sockets within standard libraries. If allocations made by library code are required to

be persistent, then the libraries must also be statically translated using SoftPM; the

programmer is provided with circumstantial information to help with this. In many

cases, simply reinitializing the library upon restoration is sufficient, for instance, we

added one extra line in SQLite (see § 7.6.3) for library re-initialization.

7.3.3 Write Handler

To minimize disk I/O, SoftPM commits only modified data during a persistence

point. The write handler is responsible for tracking such changes. First, sets of

contiguous pages in the container virtual address space are grouped into fixed-size

chunks. At the beginning of a persistence point, all container data and metadata

pages are marked read-only. If any of these pages are subsequently written into, two
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alternatives arise when handing the fault: (i) there is no persistence point being

created currently – in this case, we allow the write, mark the chunk dirty, and its

pages read-write. This ensures at most one write page fault per chunk between

two consecutive persistence points. (ii) there is a persistence point being created

currently – then we check if the chunk has already been made persistent. If so, we

simply proceed as in the first case. If it has not yet been made persistent, a copy of

the chunk is first created to be written out as part of the ongoing persistence point,

while write to the original chunk is handled as in the first case.

7.3.4 Flusher

Persistence points are created asynchronously (via pPoint) as follows. First, the

flusher waits for previous persistence points for the same container to finish. It then

temporarily suspends other threads of the process (if any) and marks all the pages of

the container as read-only. If no chunks were modified since the previous persistence

point, then no further action is taken. If modifications exist, the flusher spawns a

new thread to handle the writing, sets the state of the container to persistence point

commit, and returns to the caller after unblocking all threads. The handler thread

first identifies all the dirty chunks within the container and issues write operations

to SID. Once all the chunks are committed to the persistent store, SID notifies

the flusher. The flusher then reverts the state of the container to indicate that

persistence point has been committed.

7.4 SID Design

LIMA maps chunks and containers to its logical volume statically and writes out

only the modified chunks during persistence points. If a mechanical disk drive is
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used directly to store this logical volume, I/O operations during a persistence point

can result in large seek and rotational delay overheads due to fragmented chunk

writes within a single container; if multiple containers are in use simultaneously, the

problem compounds causing disk head movement across multiple container bound-

aries. If a solid-state drive (SSD) were used as the persistent store, the LIMA volume

layout will result in undesirable random writes to the SSD that is detrimental to

both I/O performance and wear-leveling [GT05, KNM95]. The complementary re-

quirement of ensuring atomicity of all chunk writes during a persistence point must

be addressed as well. The SID component of SoftPM is an indirection layer below

LIMA and addresses the above concerns.

7.4.1 SID Basics

SID divides the physical volume into chunk-sized units and maps chunks in the

LIMA logical volume to physical volume locations for I/O optimization. The chunk

remapper utilizes the property that all container data is memory resident and trades

writing additional data (chunk granularity writes) for reducing I/O latency using

device-specific optimizations.

Each physical volume stores volume-level SID metadata at a fixed location. This

metadata includes for each container the address of a single physical chunk which

stores two of the most recent versions of metadata for the container to aid crash

recovery (elaborated later). To support chunk indirection,SID maintains a chunk

indirection map as part of the container metadata. Finally, SID also maintains both

an in-memory and on-disk per-container free chunk bitmap to locate the chunks

utilized by a container. We chose to store per-container free chunk bitmaps to make

each container self-describing and as a simple measure to eliminate race conditions

when persisting multiple containers simultaneously.
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During SID initialization, the free chunk bitmaps for each container stored on

the physical volume are read into memory. An in-memory global free chunk bitmap

obtained by merging the per-container free chunk bitmaps is used to locate free

chunks in the physical volume quickly during runtime.

Atomic Persistence. To ensure atomicity of all chunk writes within a persistence

point, SID uses persistence version numbers. When SID receives a request to create

a persistence point, it goes through several steps in sequence. First, it writes all

the dirty data chunks; chunks are never updated in place to allow recovery of the

previous version of the chunks in case the persistence operation cannot be completed.

Once the data chunk writes have all been acknowledged, SID writes the updated

free chunk bitmap. Finally, it writes the container’s metadata. This metadata

includes, the chunk indirection map, the location of the newly written free chunk

bitmap, and a (monotonically increasing) version number to uniquely identify the

persistence point. Writing the last block of the metadata (the version number) after

an I/O barrier commits the persistence point to storage; we reasonably assume that

this block gets written to the storage device atomically.

Recovery. SID recovers the same way after both normal shutdowns and crashes. In

either case, it identifies the most recent metadata for each container by inspecting

their version numbers. It then reads the per-container free chunk bitmaps, and

builds the global free chunk bitmap by merging all per-container bitmaps. When

the application requests to restore a container, the most recent version of the chunk

indirection map is used to reconstruct the container data in memory.
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7.4.2 Device-specific optimizations

Disk Drives. Since sequential access to disk drives is orders of magnitude more

efficient than random, we designed a mechanical disk SID driver to employ mostly-

sequential chunk layout. The design assumes that the storage device will be perfor-

mance rather than capacity bound, justifying a fair degree of space over-provisioning

for the SID physical volume. Every chunk is written to the nearest free location suc-

ceeding the previously written location, wrapping around in a circular fashion. The

greater the over-provisioning of the SID physical volume, the higher the probability

of finding an adjacent free chunk. For instance, a 1.5X over-provisioning of capacity

will result in every third chunk being free on average. Given sufficient outstanding

chunk requests in the disk queue at any time, chunks can be written with virtually

no seek overhead and minimum rotational delay. Reclaiming free space is vastly sim-

pler than a log-structured design [RO91] or that of other copy-on-write systems like

WAFL [HLM94] because (i) the design is not strictly log-structured and does not

require multiple chunk writes to be sequential, and (ii) reclaiming obsolete chunks

is as simple as updating a single bit in the free space bitmap without the need for

log cleaning or garbage collection that can affect performance.

Flash drives. An SSD’s logical address space is organized into erase units which

were hundreds of kilobytes to a few megabytes in size for the SSD units we tested.

If entire erase units are written sequentially, free space can be garbage collected

using inexpensive switch merge operations rather than more expensive full merge

operations that require data copying [KNM95]. SID writes to the SSD space one

erase unit at a time by tuning its chunk size to a multiple of the erase unit size. The

trade-off between the availability of free chunks and additional capacity provisioning

follows the same arguments as those for disk drives above.
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7.5 Pointer Detection

As discussed in §7.3, LIMA must track pointers in memory for automatic container

discovery and updating pointer values during container restoration. The life-cycle

of a pointer can be defined using the following stages: (i) allocation: when memory

to store the pointer is allocated, (ii) initialization: when the value of the pointer is

initialized, (iii) use: when the pointer value is read or written, and (iv) deallocation:

when the memory used to store the pointer is freed. Note that, a pointer is al-

ways associated with an allocation. In SoftPM, we detect pointers at initialization,

both explicitly (via assignment) or implicitly (via memory copying or reallocation).

Hence, if programs make use of user-defined memory management mechanisms (e.g.,

allocation, deallocation, and copy), these must be registered with SoftPM to be cor-

rectly accounted for.

SoftPM’s pointer detection works in two phases. At compile time, a static an-

alyzer based on CIL (C Intermediate Language) [NMRW02] parses the program’s

code looking for instructions that allocate memory or initialize pointers. When such

instructions are found, the analyzer inserts static hints so that these operations are

registered by the SoftPM runtime. At runtime, SoftPM maintains an allocation ta-

ble with one entry per active memory allocation. Each entry contains the address of

the allocation in the process’ address-space, size, and a list of pointers within the al-

location. Pointers are added to this list upon initialization which can be done either

explicitly or implicitly. A pointer can be initialized explicitly when it appears as an

l-value of an assignment statement. Second, during memory copying or moving, any

initialized pointers present in the source address range are also considered as implic-

itly initialized in the destination address range. Additionally, the source allocation
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and pointers are deregistered on memory moves. When memory gets deallocated,

the entry is deleted from the allocation table and its pointers deregistered.

Notes. Since SoftPM relies on static type information to detect pointers, it cannot

record integers that may be (cast and) used as pointers by itself. However, developers

can insert static hints to the SoftPM runtime about the presence of additional

“intentionally mistyped” pointers to handle such oddities. Additionally, SoftPM is

agnostic to the application’s semantics and it is not intended to detect arbitrary

memory errors. However, SoftPM itself is immune to most invalid states. For

example, SoftPM checks whether a pointer’s target is a valid region as per the

memory allocation table before following it when computing the memory closure

during container discovery. This safeguard avoids bloating the memory closure due

to “rogue” pointers. We discuss this further detail in § 6.5.

Related work. Pointer detection is an integral part of garbage collectors [Wil92].

However, for languages that are not strongly typed, conservative pointer detection

is used [BW88]. This approach is unsuitable for SoftPM since it is necessary to

swizzle pointers. To the best of our knowledge, the static-dynamic hybrid approach

to exact pointer detection presented in this paper, is the first of its kind. Finally,

although pointer detection seems similar to points-to analysis [Hin01], these are

quite different in scope. The former is concerned about if a given memory location

contains a valid memory address, while the latter is concerned about exactly which

memory addresses a memory location can contain.

7.6 Evaluation

Our evaluation seeks to address the correctness, ease of use, and performance impli-

cations of using SoftPM. We compare SoftPM to conventional solutions for persis-

tence using a variety of different application benchmarks and microbenchmarks. In
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cases where the application had a built-in persistence routine, we compared SoftPM

against it using the application’s default configuration. Where such an implementa-

tion was not available, we used the TPL serialization library [tpl] v1.5 to implement

the serialization of data structures. All experiments were done on one or more 4-

Core AMD Opteron 1381 with 8 GB of RAM using WDC WD5002ABYS SATA

and MTRON 64GB SSD drives running Linux 2.6.31.

7.6.1 Workloads

We discuss workloads that are used in the rest of this evaluation and how we vali-

dated the consistency of persistent containers stored using SoftPM in each case.

Data Structures. For our initial set of experiments we used the DragonFly

BSD [dra] v2.13.0 implementation of commonly used data structures including ar-

rays, lists, trees, and hashtables. We populated these with large number of entries,

queried, and modified them, creating persistence points after each operation.

Memcachedb [memb]. A persistent distributed cache based on memcached [mema]

which uses Berkeley DB (BDB) [OBS99] v4.7.25 to persistently store elements of

the cache. Memcachedb v1.2.0 stores its key-value pairs in a BDB database, which

provides a native persistent key value store by using either a btree or a hash ta-

ble. We modified memcachedb to use a hash table which we make persistent using

SoftPM instead of using BDB, and compared its performance to the native version

using default configurations of the software. To use SoftPM with memcachedb, we

modified the file which interfaced with BDB, reducing the LOC from 205 to 40. The

workload consisted of inserting a large number of key-value pairs into memcachedb

and performing a number of lookups, inserts, and deletes of random entries, creating

persistence points after each operation.
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SQLite [sql]. A popular serverless database system with more than 70K LOC.

We modified it to use SoftPM for persistence and compared it against its own

persistence routines. SQLite v3.7.5 uses a variety of complex data structures to

optimize inserts and queries among other operations; it also implements and uses

a custom slab-based memory allocator. A simple examination of the SQLite API

revealed that all the database metadata and data is handled through one top-level

data structure, called db. Thus, we created a container with just this structure and

excluded an incorrectly detected pointer resulting from casting an int as a void*.

In total, we added 9 LOC to make the database persistent using SoftPM which

include a few more code to re-initialize a library.

MPI Matrix Multiplication. A recoverable parallel matrix multiplication that

uses Open MPI v1.3.2 and checkpoints state across processes running on multiple

machines.

7.6.2 Correctness Evaluation

To evaluate the correctness of SoftPM for each of the above applications, we crashed

processes at random execution points and verified the integrity of the data when

loaded from the SoftPM containers. We then compared what was restored from

SoftPM to what was loaded from the native persistence method (e.g. BDB or

file); in all cases, the contents were found to be equal. Finally, given that we were

able to examine and correctly analyze complex applications such as SQLite with a

large number of dynamically allocated structures, pointers, and a custom memory

allocation implementation, we are confident that our static and dynamic analysis

for pointer detection is sound.
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Systems Arrays Lists
Hash

Trees O
Tables

BORG [BGU+09] X X X X

CDP [LTSY+07] X

Clotho [FB04] X X

EXCES [UGB+08] X X X X

Deduplication [ZLP08] X X

FlaZ [MKM+10] X X X

Foundation [RCP08] X X

GPAW [MHJ05] X

I/O Shepherd [GPK+07] X X

I/O Dedup [KR10] X X X

Venti [QD02] X

Table 7.2: Persistent structures used in application and systems software. Arrays are
multidimensional in some cases. O indicates other (e.g., graphs) and/or hybrid structures.

In some cases, we assume an implementation based on design descriptions. This summary

is created based on descriptions within respective articles and/or direct communication

with the developers of these systems.

7.6.3 Case Studies

In this section, we perform several case studies including (i) a set of SoftPM-based

persistent data structures, (ii) an alternate implementation of memcachedb [memb]

which uses SoftPM for persistence, (iii) a persistent version of SQLite [sql], a server-

less database based on SoftPM, and (iv) a recoverable parallel matrix multiplication

application that uses MPI.

Making Data Structures Persistent

We examined several systems that require persistence of in-memory data and re-

alized that these systems largely used well-known data structures to store their

persistent data such as arrays, lists, trees, and hashtables. A summary of this in-

formation is presented in Table 7.2. We constructed several microbenchmarks that

create and modify several types of data structures using SoftPM and TPL [tpl],

a data structure serialization library. To quantify the reduction in development
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Data
Structure

Array

Linked List
RB Tree

Hash Table
SQLite

memcachedb

Original LOC for LOC to use
LOC Persistence SoftPM

102 17 3

188 24 3
285 22 3

396 21 3
73042 6696 9

1894 205 40

Table 7.3: Lines of code to make structures (or applications) persistent and recover
them from disk. We used TPL for Array, Linked List, RB Tree, and Hash Table; SQLite

and memcachedb implement custom persistence.

complexity we compared the lines of code necessary to implement persistence for

various data structures using both solutions. We report in Table 7.3 the lines of

code (LOC) without any persistence and the additional LOC when implementing

persistence using TPL and SoftPM respectively.

For each data structure we perform several operations (e.g modify) and make

the data structure persistent. Note that the TPL version writes entire structures to

disk, whereas SoftPM writes only what was modified. For create, SoftPM calculates

the memory closure, move the discovered data to persistent memory, and write to

disk and overhead is proportional to this work. The query operation doesn’t modify

any data and SoftPM clearly outperforms TPL in this case. modify only changes

existing data values, remove reduces the amount of data written by TPL and involves

only metadata updates in SoftPM, and add increases the size of the data structure
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increasing both the amount of data and metadata writes with SoftPM. Figure 7.5

presents the execution times of the SoftPM version relative to the TPL version. Two

interesting points are evidenced here. First, for add operations SoftPM outperforms

TPL for all data structures except RB Tree, this is due to balancing of the tree

modifying almost the entire data structure in the process requiring expensive re-

discovery, data movement, and writing. Second, the remove operations for Hashtable

are expensive for SoftPM since its implementation uses the largest number of pointer;

removing involves a linear search in one of our internal data structures and we are

currently working on optimizing this.

Comparing with Berkeley DB

memcachedb is an implementation of memcached which periodically makes the key

value store persistent by writing to a Berkeley DB (BDB) [OBS99] database. BDB

provides a persistent key value store using a btree (BDB-Btree) or hash table (BDB-

HT), as well as incremental persistence by writing only dirty objects, either syn-

chronously or asynchronously. We modified memcachedb to use a hash table which

we make persistent using SoftPM instead of using BDB. In Figure 7.6 we compare

the operations per second achieved while changing the persistence back-end. SoftPM

outperforms both variants of BDB by upto 2.5X for the asynchronous versions and

by 10X for the synchronous.

Making an in Memory Database Persistent

SQLite is a production-quality highly optimized serverless database, it is embedded

within many popular software such as Firefox, iOS, Solaris, and PHP. We imple-

mented a benchmark which creates a database and performs random insert, select,

update, and delete transactions. We compare the native SQLite persistence to that
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Figure 7.7: SQLite transactions per second comparison when using SoftPM and the
native file persistence.

using SoftPM; transactions are synchronous in both cases. Figure 7.7 shows that

SoftPM is able to achieve 55% to 83% higher transactions rate depending on the

size of the database. We believe this is a significant achievement for SoftPM given

two facts. First, SQLite is a large and complex code base which includes a complete

stand alone database application and second, SQLite’s file transactions are heavily

optimized and account for more than 6K LOC. Further analysis revealed that most

of SoftPM’s savings arise from its ability to optimize I/O operations relative to

SQLite. The reduction in performance improvement with a larger number of rows

in the database is largely attributable to a sub-optimal container discovery imple-

mentation; by implementing incremental discovery to include only those pointers

within dirty pages, we expect to scale performance better with database size in

future versions of SoftPM. Figure 7.8 shows a breakdown of the total overhead in-
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Figure 7.9: Contrasting application execution times for MPI matrix multiplication
using 9 processes.

cluding I/O time incurred by SoftPM which are smaller than the time taken by the

native version of SQLite. Finally, all of this improvement was obtained with only 9

additional LOC within SQLite to use SoftPM, a significant reduction relative to its

native persistence implementation (6696 LOC).

Recoverable Parallel Matrix Multiplication

To compare SoftPM’s performance to conventional checkpointing methods, we im-

plemented a parallel matrix multiplication application using Cannon’s algorithm [GS94].

We evaluated multiple solutions, including a no checkpoint non-recoverable imple-

mentation, a serialization-based implementation which serializes the matrices to

files, and sync and async versions of SoftPM, in all cases a checkpoint is made after

calculating each sub-matrix. For the file-based checkpointing version we added 79

LOC to serialize, write the matrix to a file, and recover from the file. In the SoftPM
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version, we added 44 LOC, half of them for synchronization across processes to make

sure all processes restored the same version after a crash.

Figure 7.9 compares the total execution time across these solutions. Synchronous

SoftPM and the serialization solution have similar performance. Interestingly, be-

cause of unique ability of overlapping checkpoints with computation, the asyn-

chronous version of SoftPM performs significantly better than either of the above, in

fact, within a 1% difference (for large matrices) relative to the memory-only solution.

7.6.4 Microbenchmarks

In this section, we evaluate the sensitivity of SoftPM performance to its configuration

parameters using a series of microbenchmarks. For these experiments, we used a

persistent linked list as the in-memory data structure. Where discussed, SoftPM

represents a version which uses a SoftPM container for persistence; TPL represents

an alternate implementation using the TPL serialization library. Each result is

averaged over 10 runs, and except when studying its impact, the size of a chunk in

the SID layer is set to 512KB. To make the linked list persistent, SoftPM and TPL

add 5 and 28 LOC, respectively.

Incremental Persistence. Usually, applications modify only a subset of the in-

memory data between persistence points. SoftPM implements incremental per-

sistence by writing only the modified chunks, which we evaluated by varying the

locality of updates to a persistent linked list, shown in Figure 7.10. As expected,

TPL requires approximately the same amount of time regardless of how much data

is modified; it always writes the entire data structure. The SoftPM version requires

less time to create persistence points as update locality increases.
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Chunk Size. SoftPM tracks changes and writes container data at the granularity

of a chunk to create persistence points. When locality is high, smaller chunks lead

to lesser data written but greater SID metadata overhead because of a bigger chunk

indirection map and free chunk bitmap. On the other hand, larger chunks imply

more data written but less SID metadata. Figure 7.11 shows the time taken to

create persistence points and the size of the SID metadata at different chunk sizes.

Parallel Persistence Points. The SID layer optimizes the way writes are per-

formed to the underlying store, e.g. writing to disk drives semi-sequentially. Figure

7.12 depicts the performance of SoftPM in relation to TPL when multiple processes

create persistence points to different containers at the same time. We vary the num-

ber of processes, but keep the total amount of data persisted by all the processes a

constant. The total time to persist using SoftPM is a constant given that the same
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Figure 7.12: Time to create persistence points for multiple parallel processes. Every
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amount of data is written. On the other hand, the time for TPL increases with the

number of threads, because of lack of optimization of the interleaving writes to the

different container files at the storage level.

Percentage of Pointers in Data. Creating a persistence point requires computing

a transitive memory closure, an operation whose time complexity is a function of the

number of pointers in container data. We varied the fraction of the memory (used by

the linked list) that is used to store pointers (quantified as “percentage pointers in

data”) and measured the time to create a full (non-incremental) persistence point.

We compare performance with a TPL version of the benchmark that writes

only the contents of the elements of the list to a file in sequence without having

to store pointers. A linked list of total size 500MB was used. Figure 7.13 shows

the persistence point creation times when varying the percentage pointers in data.

SoftPM is not always more efficient in creating persistence points than TPL, due

to the need to track and store all the pointers and the additional pointer data and

SoftPM metadata that needs to be written to storage. The linked list represents

one of the best case scenarios for the TPL version since the serialization of an entire

linked list is very simple and performs very well due to sequential writing. We also

point out here that we are measuring times for registering pointers in the entire list,

a full discovery and (non-incremental) persistence, a likely worst case for SoftPM;
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in practice, SoftPM will track pointers incrementally and persist incrementally as

the list gets modified over time. Further, for the complex programs we studied the

percentage pointers in data is significantly lower; in SQLite this ratio was 4.44%

and for an MPI-based matrix multiplication this ratio was less than 0.04%. Finally,

the amount of SoftPM metadata per pointer can be further optimized; instead of

64 bit pointer locations (as we currently do), we can store a single page address and

multiple 16 bit offsets.
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centage of pointers in data. The total size is fixed at 500MB and node sizes are varied
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7.7 Discussion

Several issues related to the assumptions, scope, and current limitations of SoftPM

warrant further discussion and also give us direction for future work.

Programmer errors. SoftPM’s automatic discovery of updated container data

depends on the programmer having correctly defined pointers to the data. One con-

cern might be that if the programmer incorrectly assigned a pointer value, that could

result in corrupt data propagating to disk or losing portions of the container. This

is a form of programmer error to which SoftPM seems more susceptible to. How-

ever, such programmer errors would also affect other classes of persistence solutions

including those based on data structure serialization since these also require navigat-
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ing hierarchies of structures. Nevertheless, SoftPM does provide a straightforward

resolution when such errors get exercised. While not discussed in this paper, the

version of SoftPM that was evaluated in this paper implements container versioning

whereby previously committed un-corrupted versions of containers can be recovered

when such errors are detected. Additionally, we are currently implementing simple

checks to warn the developer of unexpected states which could be indicators of such

errors; e.g., a persistent pointer points to a non-heap location.

Container sharing. Sharing container data across threads within a single address-

space is supported in SoftPM. Threads sharing the container would have to synchro-

nize updates as necessary using conventional locking mechanisms. Sharing memory

data across containers within a single address-space is also supported in SoftPM.

These containers can be independently checkpointed and each container would store

a persistent copy of its data. However, sharing container data persistently is not

supported. Further, in our current implementation, containers cannot be simulta-

neously shared across process address-spaces. In the future, such sharing can be

facilitated by implementing the SoftPM interface as library system calls so that

container operations can be centrally managed.

Non-trivial types. SoftPM currently does not handle pointers that are either

untyped or ambiguously typed. This can occur if a programmer uses a special

integer type to store a pointer value or if a pointer type is part of a union. These

can be resolved in the future with additional hints to SoftPM’s static translator

from the programmer. Additionally, the runtime could hint to SoftPM about when

a union type resolves to a pointer and when it is no longer so.

Unstructured data. The utility of SoftPM in simplifying development depends on

the type of the data that must be made persistent. Unstructured data (e.g., audio

or video streams) are largely byte streams and do not stand to benefit as much from
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SoftPM as data that has structure containing a number of distinct elements and

pointers between them. Specifically, unstructured data tends not to get modified in

place as much as structured data and consequently they may not benefit from the

incremental change tracking that SoftPM implements.

7.8 Summary

Storage system extensions, as well as many other classes of applications, rely on a

portion of their state being persistent to ensure correctness for continued operation,

the availability of a lightweight and simple solution for memory persistence becomes

increasingly important. From our previous experiences building storage system ex-

tensions we witnessed the difficulties that arise to maintain extension metadata in

a consistent state. With SoftPM, we believe that we have found a radical solution

to provide memory persistence that is both practical and effective. Developers use

existing memory interfaces as-is, needing only to instantiate persistent containers

and container root structures besides requesting persistence points. SoftPM auto-

mates persistence by automatically discovering data that must be made persistent

for correct recovery and ensures the atomic persistence of all modifications to the

container. Recovery of persistent memory is equally simple with SoftPM returning

a pointer to the container root via which the entire container can be accessed.

We implemented a prototype user-level version of SoftPM and evaluated it us-

ing a range of microbenchmarks, an MPI application, SQLite database, and a dis-

tributed memcachedb application. Development complexity as measured using lines

of code was substantially reduced when using SoftPM relative to native application

level persistence or using an off-the-shelf serialization library. Performance results

were also very encouraging with improvements of up to 10X, with SoftPM’s asyn-

chronous persistence feature demonstrating the potential for performing at close to
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memory speeds. An in-kernel library version for SoftPM will allow storage exten-

sions to benefit from it as well. We believe this to be a worthwhile future direction.
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CHAPTER 8

FUTURE WORK

In previous chapters we have seen how to improve both storage extension devel-

opment and administration. Practically all of our research has focused on centralized

storage, where all the storage devices are contained within a single box and access

is provided through the network (see Figure 8.1(a)). These systems are currently

the preferred storage architecture, given that they are stable, have an existing set

of management tools and their behavior is well understood. However, there are

also some important drawbacks of this approach. First, scalability; adding more

storage will also demand careful planning from storage administrators to get the

most benefits. Second, although these systems are very reliable they still present a

single point of failure. Third, they are usually very expensive. Centralized storage

solutions are widely available from multiple storage vendors like EMC, IBM, and

NetApp, among others.

Hosts

Storage Array

Hard

Disks

SSDs

. . .

(a) Centralized

Hosts

Storage Array

Hard

Disks

. . .

(b) Mixed

Hosts

(c) Distributed

Figure 8.1: Different storage architectures

Over the past decade solid state devices have become ubiquitous in enterprise

storage systems [Lal09, Tan10, Pet09b]. With this addition came significant per-

formance and power savings. While these improvements have been substantial, re-

searchers are noticing network access as a factor limiting latency improvements, and
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that further improvements could be obtained by having the storage devices closer

to the where data is accessed. This has led to a resurgence of interest in mixed

and fully distributed storage architectures (depicted in Figures 8.1(b) and 8.1(c)

respectively). These types of architecture offer many benefits over the centralized

approach. First, they can substantially reduce access latency by eliminating most

of the network accesses. Second, they promise better scalability; users can increase

overall performance by simply adding more physical resources. Finally, they can

reduce capital cost by providing smaller, more compact, building blocks.

We believe that the mixed and distributed architectures present unique oppor-

tunities for storage systems research as many challenges remain to be addressed. In

particular we identify three research opportunities related to the content discussed

in this dissertation. First, current administration tools for distributed architectures

are very rudimentary in comparison to those available for centralized storage. One

of the points in favor of distributed architectures is their ability to reduce latency.

For this to be true, data must be physically close to where it is accessed. However,

providing an effective solution for this is not trivial. Data access patterns can change

through time making a previous data layout ineffective. Having storage administra-

tors analyze such information can be overwhelming. Hence, we believe that tools

that automatically optimize data placement depending on where it is accessed are

a necessary first step for these systems to be successful.

Additionally, ensuring data reliability in distributed architectures is much more

complicated. Not only can individual devices fail but also we additionally have

to deal with host failures and network connectivity issues. Expanding ABLE to

provide development tools for distributed environments will reduce developer effort

and seems like a viable next improvement. These augmented development tools

must allow developers to tune their systems by configuring their systems in terms of
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reliability (e.g. number of data replicas to maintain), consistency (e.g. how frequent

to write data in volatile memory to disk) and performance (e.g. when and how to

update the replicas) guarantees.

Finally, maintaining metadata consistent is a particular hard task in distributed

storage architectures. Our current techniques to handle persistent memory have to

be adapted and potentially redesigned to be able to work in distributed settings.

Among the issues that must be addressed are deciding when to persist the data.

Should we persist changes in all hosts or only in a subset? If only in a subset,

how do we ensure that changes will achieve a consistent state? Providing concrete

answers to these questions, as well as the other issues mentioned above, involves a

significant thought process and will prove valuable towards enabling efficient dis-

tributed architectures.
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CHAPTER 9

CONCLUSIONS

Storage is one of the most rapidly growing systems in the data center since the

pace at which we generate information and the number of users grows every year.

Hence, storage administrators face a harder challenge to make it work efficiently.

We believe that future storage systems will need to support multiple extensions that

improve properties of the storage system such as performance, energy efficiency, or

reliability. Most of the work in this dissertation has focused on the development,

support, and correct deployment of self-managed storage extensions. From what

we learned in this process we deduced the need for a storage development and

deployment infrastructure, this lead to the creation of ABLE.

The current ABLE system has two main features. First, it providers developers

with a well defined and commonly used block functionality, including the ability

to provide memory persistence. Second, the extension stacking theory which aids

administrators decide how to order sets of extensions to achieve high level system

goals. However, as stated before, this theory has some limitations. For instance, if

the administrator wants to improve storage system performance and has multiple

extensions to choose from, which one should she deploy? In these cases the current

stacking rules will not provide much insight to help the administrator since the

decision needs to be based on the semantics of the extensions and the characteristics

of the workload that the system observes.

To help administrator choose the more appropriate extension between those that

accomplish the same goal, we provide an empirical methodology that considers both

the internal workings of the extension and the characteristics of the workload it will

be subject to. We developed and evaluated two independent storage extensions,

caching andmulti-tiering, and analyzed their behavior under a variety of scenarios to
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determine when is either one more favorable. This enabled us to deduct meaningful

observations about the effects of particular workload patterns on the extensions and

infer which will perform the best under the workload studied.

Finally, when developing all of the storage extensions that were discussed in this

thesis we faced challenges to make extension metadata persistent. We designed and

developed software persistent memory (SoftPM) to provide a simple and easy to

use interface for arbitrary data structures to be made persistent upon user request.

Using a combination of static and runtime analysis SoftPM largely frees develop-

ers from creating the mechanisms necessary for making in-memory data structures

persistent.

In conclusion, we believe this is a crucial time for storage systems. During much

of the past decade we saw the performance between CPUs and disk-based storage

widen. CPU performance improved following Moore’s Law but disk-based storage

stagnated only making improvements in capacity and sequential throughput. But,

recently a mix factors have came together that are revolutionizing the ways in which

we build storage. First, workload consolidation driven by the success of virtualiza-

tion has substantially increased the demand for IOPS from storage systems. Second,

the proliferation of solid state disk as a viable alternative to provide needed IOPS is

gaining momentum. Third, the rate at which we generate and store data is increas-

ing more than ever. These factors and other factors are forcing storage companies

to quickly add functionality (in the form of extensions) to their systems. We believe

this dissertation provides fundamental solutions that will ensure the timely adoption

of these critical extensions in future storage systems.
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A EDT EVALUATION AND DISCUSSION

A.1 Evaluation

Our evaluation uses both a SPC-1-like [spc] benchmark workload and multiple pro-

duction enterprise workloads from MSR [NDR08] to demonstrate that:

• In comparative evaluation, EDT-CA works to minimize cost, and EDT-DTM

satisfies performance requirements while lowering power consumption.

• EDT’s dynamic behavior and detailed resource consumption model help achieve

its goal.

• Extent based dynamic optimization and consolidation are feasible in practice

with little overhead.

A.1.1 Methodology

Comparison candidates.

We compare EDT to three alternate solutions:

1. SAS is chosen to represent current enterprise storage system deployments that

predominantly use only high performance SAS drives. The configuration is derived

player
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Figure A.1: Storage subsystem platform for evaluating EDT-CA and EDT-DTM.
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using the capacity and peak performance (IOPS and bandwidth) requirements of

the workload. Volumes are statically assigned to SAS arrays in a load-balanced

manner.

2. EST (Extent-based Static Tiering) places extents on tiers statically to quantify

the benefit from tiering. Configuration is performed as follows: at every epoch,

the cost to place each extent on each tier is computed as done by EDT-CA using

capacity, IOPS, and bandwidth requirements. An extent is then permanently

placed on the tier that minimizes the sum of its instantaneous costs over all epochs.

Once extents are binned into tiers, the number of devices for each tier is determined

using that tier’s peak resource consumption.

3. While SAS and EST illustrate the benefit from EDT’s design choices incre-

mentally (going from a homogeneous system to static tiering and then to dynamic

tiering), we propose a third candidate to illustrate a different design decision in

dynamic multi-tier systems—IDT (IOPS Dynamic Tiering) implements extent-

based dynamic configuration and placement using a greedy IOPS-only criteria

where higher IOPS extents move to higher IOPS tiers. This is in contrast to

EDT that uses a combination of capacity, IOPS, and bandwidth in its placement

algorithm.

Implementation.

Our test system is shown in Figure A.1. In addition to EDT, we implemented

an I/O dispatcher that receives block I/O requests from applications, maps the

logical block address to the physical device address, performs the corresponding

I/Os, and communicates with the EDT components. Our trace player application

issues block I/Os from a trace via a socket to the I/O dispatcher. To support real-

world applications without modification, we implemented a pseudo block device
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Device
Cost Power Random BW Rtime Xtime
($) (Idle, Active) IOPS (MB/s) (ms/IO) (ms/KB)

SSD 430 0.5, 1 5000 90 0.2 0.01
SAS 325 12.4, 17.3 290 200 3.75 0.004

SATA 170 8.0, 11.6 135 105 9 0.009

Table A.1: Characteristics of devices used in the testbed.

interface. For the scope of this work, we use Linux’s default deadline scheduler,

and our measurement of context switch overhead when running through the pseudo

device driver was negligible (< 10µs).

Experimental Testbed.

Our experimental platform consists of an IBM x3650 with 4 Intel Xeon cores and 4

GB memory acting as the I/O dispatcher. It is connected via internal and external

SAS ports to 12 1 TB 7200 rpm 3.5” SATA drives, 12 450 GB 15K rpm 3.5” SAS

drives, and 4 180 GB Intel X25-M SSD drives. Table A.1 shows the characteristics

of these devices. The enclosures containing the drives are connected to a Watts up?

Pro power meter. We report the disk power obtained by subtracting the baseline

power used by the non-disk components of the enclosure (154 W).

Metrics.

To compare solutions, we evaluate static configuration results using capital cost and

peak power consumption, and we evaluate dynamic behavior using the average and

distribution of I/O latency along with dynamic power consumption. Peak power

consumption is obtained using disk drive data sheets. Dynamic power consumption

is measured using the power meter.
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A.1.2 Parameter Selection

Extent size. Smaller extents use tier and migration-related resources more ef-

ficiently and enable faster response to workload changes, but also incur greater

metadata overhead. Our approach was to pick the smallest extent size that in-

curs acceptable metadata overhead. Assuming metadata can have a reasonably

small overhead of at most 0.0001% of the total storage capacity, and given 200

bytes/extent for metadata overhead (mostly from recording extent-level statistics)

in our implementation, the smallest extent size our storage system can support is

20 MB. To introduce some slack we used 64 MB extents for our experiments.

Epoch duration. Shorter epochs allow quicker response to workload changes, but

can also result in increased extent migration. As the epoch duration increases, the

stability of extent characteristics increases due to averaging over longer periods and

consequently the migration bandwidth overhead decreases. We picked epoch dura-

tions that resulted in migration bandwidth limited to a 10% fraction of the available

array-pair bandwidth in the system1. This prevents migration from significantly de-

grading performance and ensures that migrations complete early within each epoch.

For the MSR workloads this calculation resulted in a 30 minute epoch.

A.1.3 Synthetic Workload

This SPC1-like workload was chosen because it simulates an industry standard

benchmark and provides a contrast to the MSR trace workloads. We ran the SPC1-

like workload generator on a 1 TB volume at 100 BSUs for 30 min using an over-

provisioned configuration (a 12 SAS RAID-0 array). We chose 30 min because the

1Medium to large scale tiered storage systems would typically perform simultaneous
extent migrations across multiple array-pairs.
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System # of Disks Energy Cost Avg RT

SAS (0, 6, 0) 103.8 W $1950 28 ms

EST (2, 2, 1) 46.6 W $1680 15 ms
IDT (2, 1, 1) 29.3 W $1355 21 ms

EDT (2, 2, 1) 46.6 W $1680 15 ms

Table A.2: Configuration for synthetic workload. The number of disks per tier is
specified as (SSD, SAS, SATA). The average response time is obtained from running
the configuration with 100 BSUs .

workload is quite static after a short startup period. The resulting trace was used

to obtain the number of devices required per tier for different methods (Table A.2).

We observe that all the extent-based tiering configurations outperform SAS con-

figurations in both capital cost and peak power consumption. EDT reduces cost by

14%, and peak power by 55% compared to SAS. Cost incurred to configure EST and

EDT for this relatively static workload are similar. Although the IDT configura-

tion seems to provide the least cost configuration, this is an artifact of rounding up

required devices to the next higher integer. Using fractional devices, costs for EDT

and IDT are much closer ($890 vs. $920). Note that in larger systems rounding

effects will be less significant.

To confirm that EDT’s lower cost is not at the expense of performance, we

ran the SPC1-like workload for 30 minutes at 100 BSUs. Given the stability of

the workload, migration overhead was minimal. We therefore chose an epoch of 5

minutes to complete the experiments quickly. The SAS scheme used 6 SAS RAID-

0 array. Other schemes operated on individual disks. We started EDT and IDT

with the entire volume in the SATA tier and allowed dynamic extent migration

to reach optimal configurations over time. EST, which does not support extent

migration, was started with extents in their most suitable locations as per the EST

configuration.
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Config System # of Disks Energy Cost

SAS (0, 16, 0) 276.8 W $5200
Equal EST (5, 2, 4) 82 W $3480

Performance IDT (4, 1, 4) 64.5 W $2725
EDT (3, 2, 4) 81.6 W $2620

Equal Cost

SAS (0, 12, 0) 204 W $3900
EST (4, 4, 4) 116 W $3700
IDT (4, 4, 4) 116 W $3700
EDT (4, 4, 4) 116 W $3700

Table A.3: Configuration for MSR-combined. Configurations achieving equal per-
formance depict improvement in cost and peak power. Configurations at equal cost
are created for experimental ease. Number of disks in each tier specified as (SSD,
SAS, SATA).
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Figure A.2: I/O rate and power consumption (left) and response time distribution
(right) for MSR-combined.

The last column of Table A.2 shows the average response times for 100 BSUs

measured starting at the end of the first epoch, once the extent placements of the

dynamic tiering configurations become effective. Given the workload’s stability,

results for EDT and EST are identical. They both achieve a 40% lower response

time compared to SAS, and improve on IDT’s IOPS only placement by 20%. Note

that the dynamic power consumption in these experiments is similar to the peak

power due to the lack of workload variation.

Production Workload Our next workload (MSR-combined) represents the more

interesting class of real-world workloads, obtained by combining the I/Os to the 31
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(out of 36) most active volumes of a production storage system [NDR08] for a total

of 4580 GB. Including the remaining 5 volumes was not feasible given the hardware

restrictions of our testbed.

Configuration outcomes. Configuration outcomes based on six days of the MSR-

combined workload, shown as the “Equal Performance” group in Table A.3, indicate

that the tiering configurations have lower cost compared to SAS. EDT incurs the

lowest cost (50% reduction compared to SAS and 25% relative to EST). EDT’s

ability to effectively time share high-cost, high-performance tiers across extents and

satisfy sequentially accessed ones with the SAS tier (instead of the SSD tier) results

in more cost-effective configurations. Extents placed in the SATA tier (4336 GB)

are mostly idle with random IOPS below 0.32, those in SAS (69 GB) are dominated

by bandwidth higher than 1.45 MB/s and random IOPS less than 1.43, and the SSD

extents (175 GB) have random IOPS between 1.45 and 858. Tiered configurations

substantially reduce peak power when compared with SAS; IDTs greater use of the

SSD tier (relative to SAS) makes it the most power-efficient.

Performance and Power outcomes. Not all of the equal performance configu-

rations listed in Table A.3 were feasible on our experimental testbed due to hard-

ware limitations. Consequently, we decided to switch to equal cost configurations

(shown in Table A.3) to contrast performance at equal cost instead of cost at equal

performance only for the MSR-combined workload. Later, we shall explore equal

performance configurations for feasible subsets of volumes (Figure A.4). EDT’s con-

figuration was chosen as the base for all the tiering systems, and its configuration

requirements were rounded up to integer number of arrays, each array consisting of

4 devices. SAS used only SAS drives for the same cost, split into 4 disk RAID 0

arrays. We then replayed day one from the seven day trace, the most active 24 hour
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period of the MSR-combined workload. Both EDT and IDT were bootstrapped

using a load balanced volume placement.

Figure A.2 summarizes the results of this experiment for the candidate solutions.

First, we notice that the I/O response time distribution of EDT is clearly superior to

the other three solutions, highlighting the importance of considering random IOPS,

bandwidth, and capacity when making tiering choices. The average response time

with EDT was 2.94 ms while those for the SAS, EST, and IDT were 5.12, 9.33,

and 5.93 ms respectively. Further, the 95th percentile response time for EDT was

under 7.86 ms while the same for SAS, EST, and IDT were 19.31, 37.06, and 17.891

ms respectively. On average, EDT decreased the dynamic power consumption by

13% relative to its peak power, 55% relative to SAS and at least 10% relative to

IDT and EST. This dynamic power savings result is likely to underestimate power

savings observed in real deployments given that the workload was generated by

consolidating multiple uncorrelated workload traces, which tended to reduce the

workload variability that would enable dynamic power savings. Additionally, the

experiment was done over the most active period, which required most devices to

be active for performance. Further, all the configurations here are sized to meet the

observed workload. Typically, however, storage purchases are made to accommodate

future growth and hence over-provisioned to begin with, resulting in more dynamic

power savings.

Analysis. We illustrate how EDT achieves its superior performance using two

example extents chosen from the experiment and contrasting them with IDT. Fig-

ure A.3 shows the sequential and random IOPS over time for two extents along with

the tier they are placed in. For extent A (top graph), both IDT and EDT move

the extent from the SATA tier (the default initial location) to higher performing

tiers when the total IOPS requirements increase. However, IDT allocates the SSD
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Figure A.3: Contrasting extent migrations for EDT and IDT. The two upper lines

denote extent placement for the different algorithms. Black is SSD tier, dark grey SAS

and light grey SATA.

tier starting from hour 3 on account of the exponentially weighted moving average

(EWMA) of total IOPS whereas EDT allocates the SSD tier only when the EWMA

of random IOPS of the extent is high. Thus, EDT can better capitalize on the

superior sequential performance of the SAS tier to minimize capital costs during

configuration and sustain performance during operation. Extent B (bottom graph)

illustrates similar behavior during predominantly sequential accesses. Further, both

EDT and IDT rightly move extent B into the SATA tier when it becomes idle,

aiding in power savings. Thus, EDT is successfully able to pick the best tier for

an extent’s workload and relocate it when the requirements change. Regarding the

overheads for this migrations, both EDT and IDT migrated around 120 extents per

epoch, using an average bandwidth of 42 MB/s which only represents 3% of the

total available.

Workload Volumes Cap (GB) Accessed

server hm, mds, prn, prxy, stg, ts, wdev, web 1650 30%
data proj, rsch, usr 3719 34%

srccntl src1, src2 904 29%

Table A.4: Sub-workloads derived from MSR.

Varying the workload. To analyze the sensitivity of the various algorithms to

workload characteristics, we grouped volumes from the MSR workload as specified

in Table A.4 to create the server, data and srccntl (source code control) workloads.
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Workload System # of Disks Energy Cost

server

SAS (0, 6, 0) 103.8 W $1950
EST (2, 1, 2) 42.5 W $1525
IDT (2, 1, 1) 30.9 W $1355
EDT (1, 2, 1) 47.2 W $1250

data

SAS (0, 10, 0) 173 W $3250
EST (2, 2, 3) 71.4 W $2020
IDT (1, 2, 4) 82 W $1760
EDT (1, 2, 4) 82 W $1760

srccntl

SAS (0, 6, 0) 103.8 W $1950
EST (2, 3, 1) 65.5 W $2005
IDT (2, 2, 2) 59.8 W $1850
EDT (2, 2, 2) 59.8 W $1850

Table A.5: Configuration for MSR sub-workloads. Number of disks in each tier
specified as (SSD, SAS, SATA).

Configuration outcomes for each sub-workload using SAS, IDT, and EDT are pre-

sented in Table A.5. As with MSR-combined, the dynamic tiering solutions are able

to configure both lower-cost and lower-energy systems when compared with SAS

and EST. Further, in the case of the server workload, EDT optimizes the configured

system cost with a single SSD relative to the two SSDs recommended using IDT.

Given that EST had significantly inferior performance for MSR-combined, we did

not consider it for further analysis.

Figure A.4 shows EDT’s dynamic power consumption and extent distribution

across tiers over time, as well as its response time distribution relative to IDT and

SAS. First, unlike MSR-combined, these workloads do have substantial periods of

lower utilization. Consequently, in addition to improving the capital cost and peak

power consumption, EDT’s dynamic consolidation allows dynamic power savings of

as much as 15-31% relative to its peak power across the three workloads. The extent

distribution is quite different across the workloads. EDT uses the SSD tier substan-

tially for the srccntl workload. IOPS-wise one would think that the workload should

be completely consolidated to the SATA; however, EDT leverages the fact that the
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(a) EDT’s extent distribution, I/O rate, and EDT’s power consumption over time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

P
[R

e
s
p

o
n

s
e

 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 4.52 ms)
IDT (Avg 9.25 ms)

SAS (Avg 6.92 ms)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

P
[R

e
s
p

o
n

s
e

 t
im

e
 <

 x
]

Response Time (msecs)

EDT(Avg 3.82 ms)
IDT (Avg 3.58 ms)

SAS (Avg 3.57 ms)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

P
[R

e
s
p

o
n

s
e

 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 3.91 ms)
IDT (Avg 3.71 ms)

SAS (Avg 3.40 ms)
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Figure A.4: Replaying 6 hours of the MSR sub-workloads. First column is server,

second data, and third srccntl.

SSD tier offers improved energy efficiency for up to 40% of the extents. The SAS tier

was most used for server, in particular between hours 2-4 when sequential activity

dominates. The data workload predominantly utilizes the SATA tier (as evidenced

in the configuration outcome) since the IOPS per extent for most extents is very

low, easily accommodated using SATA devices. Finally, in this equal performance

configuration experiment, the response time performance with EDT is either similar

or better than the SAS and IDT schemes across the workloads.

Adversarial Workloads Finally, we measure the impact of using EDT with

workloads completely different than the one it is provisioned for. We used the

configuration obtained for the srccntl workload (in Table A.5), and instead of the

trace from that workload, we ran two separate synthetic workloads for two hours

each: (1) a uniformly random workload at 400 IOPS, where each I/O is issued to a
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Figure A.5: Extent distribution and CDF for the adversarial workload.

random page in the system. (2) a workload at 500 IOPS, where I/Os are issued to

a chosen set of 10 hot extents initially in the SATA tier and this set changes every

minute.

Figure A.5 depicts the distribution of response times for both workloads. The

uniformly random workload yields a 31% higher average response time for EDT

and IDT compared to SAS. This can be attributed to the constant migration I/O

moving extents away from the throttled SATA tier to both SAS and SSD tiers. In-

terestingly, we see only a 21% penalty for EDT in the second workload. Analysis

shows that throttling of the newly active extents was promptly detected and the

extents were migrated quickly to the SSD before they became cold. As illustrated

by these examples, EDT can handle unexpected workloads using its throttling de-

tection/correction techniques without major performance penalties.

A.2 Discussion

Extending the resource consumption model In this work we assumed RAID-0

arrays when estimating how much resource on a tier is consumed by a given work-

load. In commercial applications of EDT, more sophisticated models will be needed

to estimate resource consumption in arrays with different RAID levels. Such models

do already exist in the industry, so we believe incorporating this capability will be

straightforward. Also, for the scope of this work, we assume that all arrays are at
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the same reliability level, and hence migrating data across arrays is not restricted.

However, it is feasible to remove this constraint by observing policies to limit the

migration targets of extents. Finally, the resource model may need be enhanced to

better model the behavior of disks servicing multiple sequential IO streams in paral-

lel. The current model does not account for degradation in sequential performance

that may occur when a disk needs to service multiple sequential streams at once.

Disk power fraction in the overall energy of a storage system. The chief

dynamic energy-saving technique proposed in this work is powering down empty disk

drives. However, we find that in today’s commercial storage systems, disk drives

typically consume ∼50% of the total storage system energy [IBM10] while the rest

is consumed by other components which do not currently have the capability of

varying their energy consumption according to workload. As these components

overcome this limitation, our energy-saving techniques can be extended to include

them, leading to a more energy proportional system and lower overall operating

costs.

Applicability. The target domain for EDT is primary storage systems where re-

sponse time is critical. Archival applications where response time is not as criti-

cal may be better served with existing solutions using policy-based migration and

power-saving storage such as spun-down disk or tape. Also, EDT will be most

effective when the working set and I/O intensity are somewhat stable with some

variation. When the workload is static, dynamic migration will not take place but

consolidation will still be beneficial if the system is not capacity bound.
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