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ABSTRACT OF THE THESIS 

RELATIVE ROLE OF DISPERSAL DYNAMICS AND COMPETITION IN NICHE 

BREADTH 

by 

Robin N. Abbey-Lee 

Florida International University, 2012 

Miami, Florida 

Professor Joel Trexler, Major Professor 

Among-individual variation in resource use is pervasive and may have ecosystem-wide 

effects.  This variation between individuals can affect population niche breadth.  My 

study determined if niche breadth was best explained by dispersal of individuals from 

locations with different prey resources driven by ecosystem level disturbance regimes or 

competition among individuals inhabiting a site, resulting in dietary partitioning.  I used 

structural equation modeling to examine the direct and indirect effects of several 

environmental variables spanning gradients of disturbance, competition strength, and 

food availability on niche breadth of the Eastern Mosquitofish (Gambusia holbrooki). I 

evaluated two complementary models 1) allowing for only direct effects of disturbance 

on niche breadth and 2) limiting effects of disturbance on niche breadth to indirect effects 

via food availability and competitor densities. The partitioning hypothesis excluding 

direct effects of disturbance on niche breadth was best supported by my data.  
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INTRODUCTION 

Among-individual variation in diet has important implications for population stability, 

the strength of intra-specific competition, and the rate of local adaptation (Bolnick et al. 

2011, Bolnick et al. 2003, Violle et al. 2012). Accurate modeling of among-individual 

variation requires greater understanding of the causes and consequences of this variation. 

Optimal foraging theory and the niche variation hypothesis can provide a framework for 

understanding among-individual variation in diet and the resulting changes in niche 

breadth of populations (e.g., Bolnick et al. 2010, Svanback and Bolnick 2005, Van Valen 

1965). All niche-use theories assume that past conditions at a site affect current 

conditions, and are the basis for predicting future actions of individuals (Beckerman et al. 

2002, Ehrlen 2000, Helle et al. 2012, Tanner et al. 1996, Tanner et al. 2011).  However, 

among mobile species inhabiting landscapes with multiple ‘sites,’ a simple alternative 

explanation for among-individual variation is that diet resources differed in the 

environments from which they dispersed (Tilman 1994).  Research is needed that 

examines the effects of past and present local environmental factors and competitive 

interactions on among-individual variation, as well as changes in niche breadth associated 

with these factors.  My study is a preliminary examination of these factors in shaping the 

isotopic niche breadth of fish inhabiting a fluctuating environment. 

 The niche variation hypothesis proposes that populations have constrained niche 

breadth when exposed to strong inter-specific competition, and have broad niche breadth 

when released from inter-specific competition and subject only to intraspecific 

competition (Bolnick et al. 2010, Van Valen 1965).  The increased niche breadth in 
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species released from inter-specific competition can arise in two general ways: 1) all 

individuals in a population increase their niche width, or 2) variation among individuals 

in the population increases.  The second mechanism is proposed by the niche variation 

hypothesis and is often referred to as partitioning, as individuals partition resources 

among themselves.  Early studies often found no support for the niche variation 

hypothesis (e.g., Soule and Stewart 1970). However, the lack of support is generally a 

result of these studies using morphology as a proxy for diet variation (Bolnick et al. 

2010).  Recent studies using more direct measures of diet variation, such as gut content 

and stable isotope analyses, are generally supportive of the niche variation hypothesis 

(Arajuo et al. 2008, Bolnick et al. 2010, Bolnick et al. 2007, Codron et al. 2011, Costa et 

al. 2008, Jack and Wing 2011, Svanback and Bolnick 2007).  

 Optimal foraging theory provides insight into potential mechanisms for among-

individual variation.  According to MacArthur and Pianka (1966), optimal foraging 

theory states that an activity should be maintained as long as the gains from the activity 

are greater than the costs, including missed opportunity costs.  Other authors have 

expanded on the original tenets of optimization theory by evaluating how individuals 

maximize the relationship E/ (S+H), with E being energy gain, S being time searching, 

and H being handling time (Stephen and Krebs 1986, Svanback and Bolnick 2005). Local 

environmental factors (e.g., relative abundance of food sources, quality of food, predation 

risk) can affect handling time and search time, altering the energy income rate, and 

causing alternate foraging strategies to be favored with varying local conditions (Schmitz 

et al. 1998, Staniland et al. 2010, Svanback and Bolnick 2005, Tinker et al. 2009). These 

studies show that local environmental conditions can affect the foraging strategy and, 
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therefore, diet of individuals.  Also, if individuals vary in their efficiency of searching 

for, capturing, or handling prey items, then the energy intake ratio will be different 

among individuals (Ehlinger 1990).  These individual differences allow for variation in 

diet among individuals exposed to the same local conditions.  

 Past events can influence the current state of individuals and alter their feeding 

needs and diets (Beckerman et al. 2002, Ehrlen 2000, Helle et al. 2012, Tanner et al. 

1996, Tanner et al. 2011).  Also, variation in prey in local environments can affect 

among-individual variation in consumers (Matthews and Mazumder 2004). Many species 

move between microhabitats that can vary substantially in the abundance and types of 

food available (Heithaus et al. 2006, Polis et al. 1997, Sargeant et al. 2007, Tilman 1994).  

Therefore, for mobile animals, dispersal can potentially affect niche breadth of a 

population (Thompson et al. 2012).  Consequently, models of current population niche 

breadth need to account for dispersal patterns of individuals and the variation among 

individuals exposed to different prior conditions, as well as the among-individual 

variation in diet preference.  

Methodological Reasoning 

 Stable isotope data are often used to determine isotopic niche breadth. Stable 

isotope techniques are appropriate for this type of study because they provide information 

on long-term average diet, as opposed to gut contents that provide snap-shot information.  

Stable isotope data describe the integrated diet of an individual (Bearhop et al. 2004, 

Tieszen et al. 1983, Weidel et al. 2011) .  For the Eastern Mosqutitofish, stable isotope 

data reflect approximately 50 days, or one-third of an individual’s lifespan (Green 2007). 
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Thus, stable isotope data are able to answer questions regarding long-term among-

individual variation in diet.  

 Many studies include prey isotopic data and previous studies have shown that the 

range of prey species isotopic values is potentially a confounding factor with niche 

breadth of consumers (Matthews and Mazumder 2004). However, previous work in the 

Everglades has shown that there is very low variance in the range of prey isotopic values 

among sites separated at a similar scale to those sampled for this study (Table 1, Williams 

and Trexler 2006). The specific isotope values vary across the Everglades, but the 

variation in range covered by the potential prey of Eastern Mosquitofish does not.   Thus, 

in this study prey isotope data were not included. 

 This study, like many others, was designed using the method of substituting space 

for time.  Over 20 sites were chosen across a hydrologic gradient.  By choosing sites that 

encompass long and short hydroperiod areas, sampling can be done at one time, but 

patterns can be inferred for the entire season.  Sites with short hydroperiods and low 

water depths are indicative of dry season patterns.  Conversely, sites with long 

hydroperiods and high water depths are indicative of wet season patterns.   

 Structural equation modeling (SEM) is an important tool for ecological model 

evaluation because it allows examination of hypotheses that involve a network of 

interrelated variables (Arhonditsis et al. 2006, Austin 2007, Grace and Pugesek 1998, 

Sargeant et al. 2011). The SEM technique allows for analysis of both direct and indirect 

effects, as opposed to traditional regression models that only allow analysis of user 

defined direct effects.  Indirect effects are essential for full understanding of niche 

breadth dynamics.  For example, disturbance variables can directly affect niche breadth, 
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but can also indirectly affect niche breadth via effects on food availability and quality. 

Consequently, SEM is the optimal analytic technique for evaluating the intricacies of 

these hypotheses.   

Specific Aims 

 I examine two potential mechanisms for determining diet niche breadth of a 

freshwater fish species, Eastern Mosquitofish (Gambusia holbrooki), in an environment 

characterized by seasonal disturbance events leading to dispersal. 

 The first hypothesis, Dispersal, assumes that isotopic niche breadth is affected 

solely by dispersal patterns driven by disturbance (Figure 1). The Dispersal hypothesis 

assumes that the observed variation in isotope values of Eastern Mosquitofish results 

from the past spatial distribution, and subsequent mixing during marsh drying, of 

individuals and variation in diet options at this regional scale.  The Dispersal hypothesis 

assumes that all Eastern Mosquitofish individuals adopt the same foraging strategy of 

consuming food in relative proportion to its abundance in the local environment. 

Therefore variation among individuals in diet is caused by spatially differing local prey 

availability.  Sites with large isotopic niche breadth contain individuals who migrated 

from different areas that had different prey resources.  Sites with such variation could 

arise from seasonal drying events that concentrate individuals in a few deep refuge areas. 

The Dispersal hypothesis predicts that areas with long hydroperiods, and therefore high 

water depth, will have increased isotopic niche breadth because they will have 

individuals from disparate locations.  Also key to this hypothesis is the assumption that 

there is no relationship between Eastern Mosquitofish isotopic niche breadth and food 

availability at the collection site, since fish are assumed to have recently moved from 
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other areas and therefore have not yet incorporated the local food conditions into their 

diets.  

 The second hypothesis, Partitioning, assumes that isotopic niche breadth is 

determined by intraspecific competition pressure, and that the observed variation in 

isotope values of Eastern Mosquitofish is a result of partitioning of food resources 

(Figure 1).  The Partitioning hypothesis assumes that individuals adopt an optimal 

foraging strategy involving partitioning of resources in order to decrease intraspecific 

competition.  Thus, in contrast to the Dispersal hypothesis, the Partitioning hypothesis 

predicts that fish densities and food sources have direct effects on isotopic diet breadth 

(Figure 2).  The Partitioning hypothesis also allows for indirect effects of hydroperiod 

and water depth through their effects on food availability and competitor density.    

 A third model, Full, combines the paths associated with both the Dispersal and 

Partitioning hypotheses (Figure 1).  The Full model evaluates the hypothesis that both 

mechanisms are working in conjunction, and that direct and indirect effects of 

disturbance can cause variation among individuals and therefore influence isotopic niche 

breadth.    

MATERIALS AND METHODS 

Study System 

 Understanding mechanisms of among-individual variation in diet in the Florida 

Everglades is of particular importance because there is a proposed large-scale project to 

restore water flow in the Everglades.  This project would increase the hydroperiod of 

many areas of the Everglades and also increase nutrient levels.  Therefore, it is essential 

to understand the role of hydrology and nutrients, as well as interactions between the two, 
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in the structuring of communities.  The development of better predictive models requires 

a better understanding of how biotic and abiotic factors interact with among-individual 

variation.  

 The Eastern Mosquitofish is an ideal study species for this system because they 

are meso-consumers and are known for having diverse and variable diets (Blanco et al. 

2004, Geddes and Trexler 2003, Loftus 2000, Pyke 2005, Specziar 2004, Table 2).  

Having a broad potential feeding niche means that there is an opportunity for among-

individual variation in diet.  Eastern Mosquitofish are also a practical choice for this 

study because they are found across the Everglades in relatively high numbers.  Therefore 

it was possible to collect enough individuals for analysis at a number of sites across 

environmental gradients in the Everglades. Finally, Eastern Mosquitofish are known to 

disperse and colonize newly flooded areas (Alemadi and Jenkins 2008, Obaza et al. 2011, 

Trexler et al. 2001), possibly driven by changing food availability (DeAngelis et al. 

2010).  

Field Sampling Protocol 

 Eastern Mosquitofish were sampled following the procedure described in 

Sargeant et al. (2010) in November and December 2005, during the late wet season, when 

marshes are near peak water depths.  Approximately 50 sites were sampled from a subset 

of sites generated using a generalized random tessellation stratified survey design 

(Stevens & Olsen 2003). All sites were located in wet prairie slough habitats.  Of these 

sites, only 21 yielded enough Eastern Mosquitofish to be included in this study (Figure 

3).  Fish and large invertebrates were collected by throw-trap sampling as described in 

Jordan et al. (1997) and Sargeant et al. (2011).  Three replicate samples were collected at 
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each site. From each throw trap, all small fishes (<8 cm) and large invertebrates (>5mm) 

were collected.  An MS-222 (tricaine methanesulfonate) bath was used to euthanize all 

collected vertebrates following standard procedures (Nickum et al. 2003). All collected 

organisms were placed on ice in the field and then frozen at −17.7oC before sample 

processing. Two periphyton samples were collected.  One periphyton sample was 

processed to determine total phosphorous for use as an indicator of nutrient enrichment 

(Gaiser et al. 2006).  Another periphyton sample was collected for analysis of 

macroinvertebrate infauna following methods in Liston and Trexler (2005). Both depth 

and day since dry (DSD) were used as measure of disturbance.  Average depth was to the 

nearest centimeter for each throw trap at the time of sampling and the number of days 

since the site re-flooded following the most recent drying event (DSD) was calculated 

using the Everglades Depth Estimation Network’s hydrological estimation tool (EDEN, 

http://sofia.usgs.gov/eden/).  The DSD variable is defined as the number of days since the 

area was first flooded (water level > 5cm) after the most recent drying event, defined as 

water depth  < 5 cm).   

Laboratory Protocol 

 In the lab, Eastern Mosquitofish samples were processed for isotope analysis 

following the protocol described in Sargeant et al. (2010). Muscle tissue was removed 

from the caudal region (on both sides) of each individual and the tissue was then rinsed in 

deionized water and dried at 55-60o C for at least 24 hours.  After drying, the tissue was 

ground into fine powder and analyzed for δ13 C and δ15 N using an isotope ratio mass 

spectrometer at the FIU Stable Isotope Laboratory.  Pee Dee Belemnite was used for δ13 

C standard, and air was used as δ15 N standard.  Tissues were not subject to lipid 
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extraction prior to analysis because previous studies (Williams and Trexler 2006) show 

little impact of lipid extraction on Everglades consumers.  Also, Eastern Mosquitofish 

have a low C:N value, so lipid extraction is generally thought to be unnecessary (Post et 

al. 2007).  

 In order to analyze food availability, periphyton cores were processed for 

macroinvertebrates following the protocol described in Sargeant et al. (2011).  Periphyton 

cores were thawed and all macroinvertebrates were removed, identified, and enumerated 

using a light microscope.  After identification, all individuals were classified into dietary 

functional groups (herbivores, carnivores, detritivores, and omnivores) on the basis of 

previous studies (Belicka et al. 2012, Loftus 2000, Thorp and Covich 2001).  After the 

macroinvertebrates were removed, the remaining periphyton was dried at 80 °C for 48 

hours, then incinerated at 500 °C for 3 hours to determine Ash Free Dry Mass (AFDM) 

of the sample (Liston 2006).  Total infauna density was determined by calculating the 

number of macroinvertebrates in the sample divided by the AFDM of the sample. The 

density of each functional group was tallied separately.  The relative density of each 

functional group was determined by dividing the density of the functional group by the 

total density of infauna.   

Analytical Methods 

Niche Parameters 

 I used the SIAR package in R to calculate the niche parameters for each site (R 

Development Core Team 2012).  Metrics calculated for each site are: δ13 C and δ15 N 

range, mean nearest neighbor distance (NND), mean distance to centroid (CD) and total 

area (TA) (Table 3).  For all metrics, individuals were plotted in isotope bi-plot space 
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using the δ13 C values for the x-axis and δ15 N values for the y-axis. For the range 

calculations, the lowest δ13 C and δ15 N value at each site is subtracted from the highest 

value. This measure gives an indication of the spread of the individuals at a site.  A larger 

range indicates more among-individual variation.  Nearest neighbor distance was 

calculated by taking the mean of the Euclidean distances between each individual and its 

nearest neighbor (the next closest individual in the isotope bi-plot space). The NND is an 

estimate of packing of individuals in niche space; a short distance indicates closer 

packing, and therefore more similar and more closely grouped diets among individuals. 

The centroid is calculated for each site separately, and its coordinates are the average δ13 

C and δ15 N for the individuals at the site.  Centroid distance was calculated by taking the 

mean of the Euclidean distances between each individual and the centroid.  The CD is 

also an estimate of the spread of individuals, with short distances meaning less among-

individual variation. Total area was calculated using the convex hull method described in 

Cornwell et al. (2006).  A larger TA means that the individuals cover more space and 

therefore there is more among-individual variation.   

 Eastern Mosquitofish were divided into three classes: adult males, adult females, 

and juveniles.  I used ANOVAs on δ13 C and δ15 N to determine if all three classes 

differed systematically in isotopic values, or could be grouped together for subsequent 

analysis (SAS Institute 2007).  I used factor analysis to develop a single factor score 

combining all niche metrics because they were highly correlated (Table 4).  The factor 

score was used as a proxy for niche breadth in analyses.  I used bivariate Pearson product 

moment correlations and linear regressions to explore the patterns of relationships among 

the variables before conducting SEM analyses. Bivariate correlations were run to 
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determine basic relationships between each pair of variables without considering shared 

variance with other variables. Linear regression can be a useful preliminary step prior to 

conducting SEM analyses because it is a strategy for parsimoniously looking at 

simultaneous direct effects without concern for the other requirements of SEM (Berk 

2010). 

Structural Equation Modeling 

 I used structural equation modeling (SEM) in Mplus to compare the nested 

hypotheses (Muthén and Muthén 2005).  The SEM technique was selected because it 

allows researchers to examine hypotheses that involve a network of interrelated predictor 

and outcome variables (Sargeant et al. 2011).  Structural equation modeling provides 

parameter estimates associated with specific paths that are partial regression coefficients, 

as well as measures of direct, indirect, and total effects.  Another strength of SEM is that 

it provides fit indices that allow determination of which model (e.g., set of hypotheses) 

fits the data best (Bentler 1990, Browne and Cudeck 1993, Chou and Bentler 1995).  I 

used the Bollen-Stine (1992) bootstrapping approach for determining probability values 

because this simulation technique is appropriate for non-normal data.  It creates multiple 

subsamples randomly with replacement from the original sample so that bias in the fit 

indices and parameter estimates can be evaluated (Bollen and Stine 1992, Ievers-Landis 

et al. 2011).  The bootstrap technique is appropriate for small samples, although the 

findings should be viewed as exploratory and need to be replicated (Ievers-Landis et al. 

2011, Ory and Mokhtarian 2010).    
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 Prior to conducting the SEM analyses, I calculated Cook’s D to determine the 

influence of each site on the model (Cook 1977, Cook and Weisberg 1982).  No sites had 

overly high influence on the model, so all 21 sites were kept in the final model.  

 A base model with all paths was developed to describe my trophic hypotheses  

(Figure 1).  Different paths were removed by setting betas to 0 for subsequent models to 

define alternative hypotheses.  For the Dispersal hypothesis, the links between infauna 

variables and niche and from percent edible periphyton to niche were removed (Figure 3).  

I tested the hypothesis of dispersal explaining inter-site differences in niche breadth by 

comparing the AIC of this model to the other models. The path from depth or DSD to 

niche was removed (Figure 1) and the resulting AIC was compared to the other models to 

evaluate the Partitioning hypothesis. The Dispersal hypothesis was derived from the 

assumption that variation among individuals will increase with increasing water depth 

and DSD.  Areas with increased depth and DSD are refuge areas; therefore they are the 

most likely to contain individuals that have been mixed together from disparate sites.  

Previous work on Eastern Mosquitofish genetics has supported this hypothesis (McElroy 

et al. 2011).  Under this hypothesis, no effect of infauna densities or percent edible 

periphyton on niche is expected because these factors were measured at the capture site.  

The Dispersal hypothesis assumes that the Eastern Mosquitofish were not feeding at the 

capture site until recently, and therefore food availability at the capture site should have 

little correlation with Eastern Mosquitofish isotope signatures. In contrast, the 

Partitioning hypothesis is derived from the assumption that among-individual variation 

arises from individual differences in foraging strategies, preferences, or success. Each 

individual is hypothesized to use a subset of the available resources.  With these 
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assumptions, density of competitors and food availability should influence niche 

variation. Therefore, it is expected that the paths from infauna density and percent edible 

periphyton to niche should be different from zero (Figure 1).  Also, indirect paths 

influenced by both heterospecific and conspecific competitors should increase among-

individual variation in niche.  Model fit was determined using a Chi Square Test of 

Model Fit, only models with p > 0.05 were considered (Bentler 1990, Browne and 

Cudeck 1993, Chou and Bentler1995).  Akaike information criterion (AIC) was 

compared between models to determine the best model(s).   

RESULTS 

Preliminary Analyses  

 The δ13 C and δ15 N values of individuals did not differ by sex/age group (δ13 C: 

F2,609 = 2.81 p = 0.06; δ15 N: F2,609 = 1.03 p = 0.36).  Thus, for each site, all juvenile, adult 

male, and adult female individuals were grouped together for isotope metric calculations. 

 I examined the frequency distributions and univariate statistics for each variable 

to determine if they met the assumptions of normality.  All of the variables except depth 

were skewed and were therefore ln +1 transformed (Tabachnick and Fidell 2007).  After 

transformation, only DSD remained skewed and therefore the SEM was run using depth 

as the disturbance variable.   

 Many of the isotope metrics were strongly correlated (Table 4) so they were 

condensed into a single variable using varimax rotation in principal components analysis 

(Table 5).  Only one factor had an eigenvalue greater than 1.00, so only one factor was 

formed using factor scores (Table 6).  My study encompassed sites spanning a range of 
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disturbance (water depth), nutrient (periphyton TP), food availability (infauna density and 

edible periphyton) and competition (fish density) gradients (Table 7).  

 Two factors were correlated with niche breadth: heterospecific fish density, and 

conspecific density (Table 8).  The Full model was tested using a linear regression model 

of niche predicted by the variables hypothesized to have direct effects in the SEM model: 

depth, percent edible periphyton, and relative density of all infauna groups (F6,14 = 3.2, p 

= 0.03, R2 = 0.58).  Of the independent variables considered, the percent edible 

periphyton contributed the most support to this model.  Niche breadth increased with 

increasing percent edible periphyton. Linear regressions of the Partitioning (no depth 

variable) and Dispersal (only depth variable) models were not significant (p > 0.08). 

Structural Equation Modeling Results  

 For all models using depth as an indicator of disturbance (Dispersal, Partitioning, 

Full), the Bollen-Stine χ2 test indicated no lack-of-fit (p ≥0.20). The Full model provided 

the lowest AIC (709.4), followed by the Partitioning model (713.2) and then the 

Dispersal model (715.2). All variables with direct links to niche breadth, except for 

omnivore density, had approximately equal effect sizes (β =0.40 to 0.61). Detritivore 

density and herbivore density negatively affected niche breadth, whereas carnivore 

density, percent edible periphyton, and depth positively affected niche breadth (Figure 4). 

The indirect effects of heterospecific fish density and depth on niche breadth were the 

greatest of the indirect effects (β = 0.21, -0.22 respectively).  The model was able to 

predict 67 percent of the variance in niche breadth (R2 = 0.67) and 49 percent of the 

variance in percent edible periphyton (R2 = 0.49).  The model was able to predict less 

than 36 percent of the variance for all of the other parameters.   
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 An identical SEM was run using DSD instead of depth and a similar pattern was 

observed.  For all models the Bollen-Stine χ2 test indicated no lack-of-fit.  The Full model 

had lowest AIC (615.5), then Partitioning (616.5), then the Dispersal model (618.5).  

DISCUSSION 

 The present study evaluated two hypothetical explanations for variation in 

isotopic niche breadth of Eastern Mosquitofish in an environment with seasonal 

fluctuations in hydrology.  I examined two possible determinants of isotopic niche 

breadth by comparing overall model fit of 1) a model using disturbance and dispersal 

dynamic as independent variables and 2) a model using competition and partitioning of 

resources as independent variables.  In the present exploratory study of isotopic niche 

breadth, the Partitioning model that excluded a direct link between water depth at the site 

fit better than the Dispersal model that included the direct link between these two 

variables.  Thus, these findings do not support the Dispersal hypothesis, which required a 

direct link between depth and niche.  However, the Full model, with both direct and 

indirect paths had the lowest AIC value and described the most variance in niche breadth. 

In a complementary model that uses days since dry as a measure of disturbance at the site 

instead of depth, the same pattern of results was found. Although depth and DSD are 

often correlated and used as measures of disturbance, they are not synonymous.  In the 

current study, depth was correlated with DSD (r = 0.38) but there were much stronger 

correlations between other variables. The DSD variable is a measure of time since 

disturbance, but depth is more nuanced. Water depth can have multiple effects on a site. 

Increased depth is indicative of increased hydroperiod length, but also of a potential 

increase in predation pressure, competition, and food availability.  Therefore, since the 
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models with DSD did not explain as much of the observed variance in isotopic niche 

breadth as the models with depth, the role of disturbance in shaping isotopic niche 

breadth is further decreased. 

  In the SEM model that represented the Full hypothesis, the largest direct effect 

on niche variability was detritivore density, although percent edible periphyton, depth, 

carnivore density, and herbivore density had similarly strong effects as well.  Detritivore 

density and herbivore density were negatively related to isotopic niche breadth, such that 

increases in their density caused a decrease in Eastern Mosquitofish isotopic niche 

breadth.  In contrast, carnivore density, percent edible periphyton, and depth had positive 

relationships with isotopic niche breadth, indicating that increases in these variables lead 

to increased Eastern Mosquitofish isotopic niche breadth. Heterospecific fish density and 

depth had the largest indirect effects on niche variability, through their effects on prey 

availability.  Heterospecific fish density was positively related to isotopic niche breadth.  

The direct effects of depth on isotopic niche breadth were positive, however the indirect 

effects were negative.   

 The bivariate correlations indicated that isotopic niche breadth was positively 

correlated with both heterospecific and conspecific fish densities.  These correlations 

support the conclusions of the SEM and partially support the Partitioning hypothesis.  

The Partitioning hypothesis assumes that Eastern Mosquitofish individuals use different 

foraging tactics and feed on a subset of the available food sources.  Niche partitioning is 

often attributed to both intra- and inter-specific competition (Chesson 2000, Emmons 

1980, Langeland et al. 1991, Wiens 1977).  Optimal foraging theory suggests that 

increased competitors can induce niche partitioning to decrease competitive effects 
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among individuals (Svanback and Bolnick 2005). However, the niche variation 

hypothesis predicts that increased inter-specific competition will decrease niche breadth, 

and this study found a positive relationship of heterospecific fish on isotopic nice breadth.  

The similar response to both inter- and intra-specific competition may be a result of 

similarities among fish species in the Everglades. The SEM did not allow direct effects of 

fish densities on isotopic niche breadth because their effects are thought to be mediated 

through their effects on food availability (Marks et al. 2000, Wootton and Power 1993).  

Therefore, only the indirect effects of fish density on isotopic niche breadth were 

examined in the SEM.  The indirect effect of Eastern Mosquitofish density on niche was 

slightly smaller than that of heterospecific fish, but both effect sizes were about half the 

strength of the direct effects, indicating that the level of both conspecific and 

heterospecific competition may influence Eastern Mosquitofish feeding strategies and 

increase niche partitioning in this study. Also, the indirect effects of fish densities were 

approximately equal to the indirect effects of depth, supporting the Full model and 

indicating that food availability and hydrology are equally important in predicting 

isotopic niche breadth in this study.   

 The Partitioning hypothesis also predicts that the indirect effects of hydroperiod 

on isotopic niche breadth via increased fish density and food sources are more important 

than the direct effects.  The SEM and bivariate correlation results do not support this 

assumption.  The food availability variables were not strongly correlated with depth or 

DSD, indicating little possibility for indirect effects of disturbance on isotopic niche 

breadth.  The SEM also showed a very small negative indirect effect of disturbance on 

isotopic niche breadth and a strong positive direct effect.  The difference in sign of these 
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effects is likely a result of depth’s myriad effects on the environment.  Depth directly 

increases isotopic niche breadth as supported by the sign of the bivariate correlations and 

linear regressions.  However, when the interactions of depth with fish densities and 

infauna densities are considered, the sign changes. Future research is needed to tease 

apart the contrasting effects of depth on the system.  A linear regression model of isotopic 

niche breadth defined by the full suite of parameters (depth, percent edible periphyton, 

and infauna group relative densities) explained 13% more of the variance in isotopic 

niche breadth as compared to a model with all the parameters but depth. However, depth 

had the smallest effect size of the parameters in the model.  Even though the indirect 

effects of depth were small, the effects of depth on isotopic niche breadth via food 

availability was approximately an order of magnitude greater than the effects of depth on 

isotopic niche breadth via fish densities via food availability. The results suggest that 

depth likely influences isotopic niche breadth in this study by affecting food availability, 

not fish densities.  The results support previous work showing that hydroperiod length 

and/or water depth is positively correlated with increased infauna densities (Leeper and 

Taylor 1998, Liston 2006, Murkin and Kadlec 1986) and edible periphyton (Gottlieb et 

al. 2006). Detritivore and carnivore density and percent edible periphyton were, in turn, 

correlated with hetero- and conspecific fish densities.  Therefore, depth likely influences 

isotopic niche breadth by affecting food availability, which alters the strength of 

competition and, therefore, isotopic niche breadth.    

 The present study had some limitations that influence the generalizability of the 

findings.  Data were collected in the wet season, meaning that many areas of the marsh 

were near peak water depths for the year.  I chose to sample during the wet season to 
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have sites that spanned a larger gradient in hydroperiod and water depth.  I used the space 

for time substitution method so that a snapshot study could provide season level 

predictions.  However, the high water conditions may have affected my ability to detect 

the effects of dispersal dynamics on niche partitioning.  Evidence for dispersal effects 

should be stronger in the dry season when fish are condensed in few refuge areas 

(Kushlan 1974, Lake 2003, McElroy et al. 2011, Parkos et al. 2011, Perry and Bond 

2009, Ruetz et al. 2005).  Or just after marsh re-flooding when individuals from the 

refuges are still moving through the marsh in a mixed dispersal front. Therefore, the 

current study may have missed evidence for the Dispersal hypothesis because of the 

increased connectivity during the wet season.  Further work examining these 

relationships in the dry season is needed to determine if the same drivers of among-

individual variation in diet are important throughout the year. Furthermore, replication of 

these findings in other ecosystems with other species would increase confidence that 

these findings are not unique to the Everglades or Eastern Mosquitofish. 
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Table 1. Comparison of variance in magnitude of δ13 C and δ15 N range among sites 

across the Everglades collected by Williams and Trexler (2006).  

  
Average 
Range 

Variance Std.Dev Std. Error CV 

Wet Season     

δ15 N 2.34 0.35 0.60 0.18 0.15 

δ13 C -2.42 0.79 0.89 0.27 0.32 

Dry Season     

δ15 N 1.90 0.93 0.96 0.27 0.49 

δ13 C -2.54 1.55 1.24 0.34 0.61 
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Table 2. Eastern Mosquitofish stomach content analysis from a) Loftus (2000) and b) 

Stober et al. (1998). A) reports the number of each food item found in all stomachs, the 

number of fish the food item appeared in (frequency), the total volume of each prey 

category (mililiters), and the percentages of the totals for these three measures for each 

food item category. Trace indicates volumes less than 0.0003 mililiters. B) reports the 

number of each food item found in all stomachs, the weight of each prey category, and 

the percentages of the totals for these two measures for each food item category.   

A) 

Food Item Number 
% 

Number 
Frequency 

% 
Frequency  

Volume 
% 

Volume 
Vegetation       
Periphyton - - 25 48.08 0.006 7.60 
Invertebrates       
Rotatoria 148 23.13 17 32.69 Trace  
Nematoda 2 0.31 2 3.85 Trace  
Bryozoa 3 0.47 3 5.77 Trace  
Crustacea       
Cladocera 133 20.78 37 71.15 0.004 5.07 
Copepoda 32 5.00 15 28.85 0.0005 0.63 
Ostracoda 1 0.16 1 1.92 Trace  
Hyalella azteca 12 1.88 11 21.15 0.004 5.07 
Arachnoidea       
Araneae 5 0.78 5 9.61 0.004 5.07 
Spider 4 0.63 4 7.69 0.003 3.80 
Insecta       
Collembola 90 14.06 34 65.38 0.007 8.87 
Coleoptera 1 0.16 1 1.92 0.0005 0.63 
Tipulidae 3 0.47 3 5.77 0.0005 0.63 
Zygoptera 1 0.16 21 40.38 0.004 5.07 
Hemiptera 5 0.78 4 7.69 0.001 1.27 
Notonectidae 4 0.63 2 3.85 0.001 1.27 
Coleoptera larvae 1 0.16 1 1.92 0.0005 0.63 
Chronomid pupae/adult 106 16.56 41 78.85 0.03 38.02 
Chironomidae 68 10.63 17 32.69 0.007 8.62 
Tanypodinae 5 0.78 4 7.69 0.0006 0.76 
Orthocladiinae 3 0.47 2 3.85 0.0003 0.38 



 30

Ceratopogonidae 4 0.63 4 7.69 0.001 1.52 
Unid. insects 6 0.94 3 5.77 0.001 1.27 
Pisces       
Fish scales* 160 - 12 23.08 0.001 1.27 
Larval fish 1 0.16 1 1.92 0.001 1.27 
Miscellaneous       
Unid. animals 2 0.31 2 3.85 0.001 1.27 
Unid. animal material - - 2 3.85 Trace   
n = 52       

  

B) 

  Count % Count Weight % Weight 

Cladoceran 499 0.18 0.01 0.02 

Mite 177 0.06 0.01 0.03 

Dipteran 1123 0.39 0.10 0.34 

Chironomid 238 0.08 0.03 0.09 

Periphyton 621 0.22 0.11 0.35 

Other 192 0.07 0.05 0.17 

n = 1270     
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Table 3. Stable isotope metrics for all sampling sites. N range is the range of δ15 N values 

at the site. C range is the range of δ13 C values at the site. TA is total area of the convex 

hull polygon encompassing all individuals at the site. CD is the mean distance to centroid 

for the site.  NND is the mean nearest neighbor distance for the site.  

Site N Range C Range TA CD NND 
148 1.16 0.83 0.60 0.37 0.13 
151 1.86 4.27 3.05 0.87 0.35 
161 1.50 1.51 1.60 0.50 0.21 
167 1.73 1.91 1.91 0.47 0.13 
172 1.56 2.29 2.54 0.61 0.18 
180 1.17 4.32 4.26 0.86 0.24 
185 1.27 2.53 2.31 0.61 0.14 
188 1.42 2.21 1.96 0.51 0.18 
192 2.11 1.43 1.70 0.52 0.24 
198 1.96 2.10 2.15 0.62 0.25 
199 1.60 9.13 7.94 0.84 0.38 
205 1.22 2.26 2.16 0.60 0.24 
213 1.20 1.90 1.20 0.42 0.20 
217 2.20 2.44 2.86 0.58 0.19 
219 1.49 2.22 1.67 0.61 0.20 
222 2.12 2.23 2.95 0.64 0.22 
223 1.29 1.22 1.10 0.44 0.11 
227 2.00 1.61 2.34 0.57 0.11 
244 0.95 2.49 1.51 0.53 0.21 
251 1.46 1.96 1.56 0.48 0.16 
256 1.99 3.04 3.55 0.55 0.18 
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Table 4. Bivariate correlations between all isotope metrics. Reported values are Pearson 

correlation coefficients. N range is the range of δ15 N values at the site. C range is the 

range of δ13 C values at the site. TA is total area of the convex hull polygon 

encompassing all individuals at the site. CD is the mean distance to centroid for the site.  

NND is the mean nearest neighbor distance for the site.  

 

  N Range C Range TA CD 

C Range 0.03 - - - 

TA 0.23 0.95* - - 

CD 0.18 0.77* 0.77* - 

NND 0.18 0.76* 0.68* 0.76* 

* p < .05 
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Table 5. Factors found in principal components analysis.  

Component Eigenvalue Proportion Cumulative

1 3.45 0.69 0.69 

2 0.98 0.20 0.89 

3 0.38 0.08 0.96 

4 0.17 0.03 0.99 

5 0.03 0.01 1.00 
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Table 6. Results from principal components factor analysis used to form indicator of 

niche breadth used in structural equation modeling analyses.  Loading values are rotated 

standardized factor loadings.  N range is the range of δ15 N values at the site. C range is 

the range of δ13 C values at the site. TA is total area of the convex hull polygon 

encompassing all individuals at the site. CD is the mean distance to centroid for the site.  

NND is the mean nearest neighbor distance for the site.   

Factor Loading 

N Range 0.09 

C Range 0.87 

TA 0.90 

CD 0.63 

NND 0.39 
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Table 7. A) Descriptive statistics for measured parameters included in structural equation 

models.  Depth is depth of water at time of sampling. Herbivore density through 

detritivore density are the densities of each infauna functional group, calculated by 

dividing the number of individuals in a sample by the ash free dry mass of the periphyton 

sample.   Periphyton TP is the total phosphorus in the periphyton at each site, reported as 

μg/g dry mass. Percent edible periphyton is the percent of the periphyton that is diatom 

and green algae, found to be more palatable to consumers (Geddes & Trexler, 2003). 

Conspecific density is the density of Eastern Mosquitofish at the collection site.  

Heterospecific density is the density of all other fish species at the site.  B) 

Untransformed data. 

A) 

Variables 
Minimum 

Value 
Maximum 

Value 
Mean ± SE 

Depth (cm) 30 93 59 ± 3.3 

Omnivorous Infauna Density 3.2 990 250 ± 71 

Carnivorous Infauna Density 0.0 580 67 ± 28 

Herbivorous Infauna Density 0.0 740 120 ± 47 

Detritivorous Infauna Density 0.0 170 28 ± 8.6 

Periphyton total phosphorus         
(μg g dry -1) 

59 760 310 ± 46 

% Edible Periphyton 16 89 45 ± 3.5 

Conspecific density         
(number m-2) 

0.0 38 9.0 ± 2.0 

Heterospecific fish density 
(number m-2) 

0.3 92 14 ± 4.3 
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B) 

Site Longitude Latitude 
Management 

Area 
Depth DSD 

Periphyton 
TP 

% Edible 
Periphyton

148 522064 2827223 ENP 42 178 279.2 47 

151 533946 2829412 ENP 38 174 58.9 16 

161 523007 2841503 ENP 50 179 93.8 40 

167 525989 2848534 ENP 61 160 243.3 48 

172 516901 2852383 WCA3A 93 2164 617.1 16 

180 552930 2866473 WCA3A 67 1653 495.9 59 

185 534712 2871878 WCA3A 62 1656 366.4 54 

188 526958 2875445 WCA3A 60 1655 134.8 48 

192 525654 2879218 WCA3A 51 212 267.1 54 

198 522838 2881704 WCA3A 55 274 187.4 37 

199 536594 2884041 WCA3A 64 1653 351.8 46 

205 546747 2891594 WCA3A 78 1657 690.4 26 

213 527780 2896559 WCA3A 51 267 92.2 45 

217 545499 2899782 WCA3A 59 212 372.8 59 

219 567320 2900755 WCA3A 47 510 425.4 31 

222 523268 2904903 WCA3A 30 183 133.1 58 

223 558362 2905685 WCA2A 80 266 158.0 34 

227 553918 2908303 WCA2A 79 183 132.2 46 

244 561491 2931042 LOX 50 1652 549.8 51 

251 529024 2830516 ENP 58 181 100.7 35 

256 531525 2849087 ENP 71 249 760.0 89 
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Site 
Conspecific 

density 
(fish/m2) 

Heterospecific 
fish density 

(fish/m2) 

Omni-
vorous 
Infauna 
Density 

Carni-
vorous 
Infauna 
Density 

Herbi-
vorous 
Infauna 
Density 

Detriti-
vorous 
Infauna 
Density

148 2 2 472.4 94.0 282.9 38.8 

151 1 2 40.4 20.5 18.8 0.0 

161 3 0 74.6 13.3 141.3 3.1 

167 15 15 592.0 26.7 55.9 8.3 

172 4 12 6.9 9.0 0.0 2.7 

180 15 7 340.0 48.6 109.3 24.3 

185 25 22 68.4 165.6 75.6 61.2 

188 7 22 40.5 20.3 33.8 8.4 

192 6 15 990.6 139.2 233.4 70.0 

198 1 4 829.0 24.5 704.6 20.7 

199 9 15 3.2 2.1 0.0 0.0 

205 0 4 35.6 0.0 0.0 14.2 

213 4 12 65.7 15.2 30.3 0.0 

217 4 20 39.1 0.0 0.0 13.0 

219 5 1 140.7 9.6 0.0 5.8 

222 5 4 47.3 6.4 23.6 0.0 

223 12 8 30.7 15.4 10.2 46.1 

227 22 9 214.3 24.1 64.5 72.6 

244 10 29 986.0 580.1 741.6 31.3 

251 4 5 6.3 0.9 0.9 0.9 

256 38 92 191.6 189.3 16.1 166.5 

 



 38

Table 8. Bivariate correlations. Displayed numbers are Pearson correlation coefficients 

from the SAS output. Depth is depth of water at time of sampling in cm. Herbivore 

density through detritivore density are the densities of each infauna functional group, 

calculated by dividing the number of individuals in a sample by the ash free dry mass of 

the periphyton sample.   Periphyton TP is the total phosphorus in the periphyton at each 

site, reported as μg/g dry mass. Percent edible periphyton is the percent of the periphyton 

that is diatom and green algae, found to be more palatable to consumers (Geddes & 

Trexler, 2003). Conspecific density is the density of Eastern Mosquitofish at the 

collection site, reported as fish/m2.  Heterospecific density is the density of other fish 

species at the site, reported as fish/m2.  

  Niche Depth DSD 
Periphyton 

TP 

Omnivore 
Infauna 
Density 

Detritivore 
Infauna 
Density 

Depth 0.32 - - - - - 

DSD 0.16 0.38 - - - - 

Periphyton 
TP 

0.35 0.44 0.51 - - - 

Omnivore 
Infauna 
Density 

-0.41 -0.28 -0.09 0.15 - - 

Detritivore 
Infauna 
Density 

-0.14 0.36 0.16 0.48 0.60 - 

Carnivore 
Infauna 
Density 

-0.14 -0.16 0.08 0.16 0.70 0.57 
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  Niche Depth DSD 
Periphyton 

TP 

Omnivore 
Infauna 
Density 

Detritivore 
Infauna 
Density 

Herbivore 
Infauna 
Density 

-0.38 -0.36 -0.10 -0.20 0.79 0.41 

Percent 
Edible 

Periphyton 
0.24 -0.18 -0.08 0.20 0.40 0.44 

Hetero-
specific 
Density 

0.49 0.35 0.26 0.44 0.07 0.41 

Con-specific 
Density 

0.47 0.29 0.04 0.25 0.15 0.46 

 

  
Carnivore 
Infauna 
Density 

Herbivore 
Infauna 
Density 

Percent 
Edible 

Periphyton

Hetero-
specific 
Density 

Herbivore 
Infauna 
Density 

0.77 - - - 

Percent 
Edible 

Periphyton 
0.35 0.36 - - 

Heterospecific 
Density 

0.36 0.02 0.52 - 

Conspecific 
Density 

0.49 0.15 0.62 0.67 
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FIGURE CAPTIONS 

Figure 1. Full model of predicted factors influencing isotopic niche breadth. Rectangles  

represent measured variables of interest. Lines represent predicted effects and point in 

direction of causation. Infauna are broken into functional groups but for ease of view 

single lines are used. However, in the SEM, separate paths were used between each 

infauna group and each variable.  For the Dispersal model, the betas for the dotted lines 

are set at 0 (allowing for no direct effect of food availability on niche, nor for indirect 

effects of disturbance (depth or day since dry) on niche).  For the Partitioning model, the 

beta for the dashed line is set at 0 (allowing for no direct effect of disturbance on niche). 

 

Figure 2. Full model of predicted factors influencing isotopic niche breadth. Rectangles 

represent measured variables of interest. Lines represent predicted effects and point in the 

direction of hypothesized causation.  Infauna are broken into functional groups but for 

ease of view, single lines are used between infauna and other variables. However, in the 

SEM, separate paths were used between each infauna group and each variable. The 

dotted lines indicate the indirect effects of depth on niche via fish densities and food 

availability.  If the bold line has a larger effect on isotopic niche breadth, then the 

Dispersal hypothesis is supported.  If the dotted lines have a larger effect, then the 

Partitioning hypothesis is supported.  

 

Figure 3. Map of the study area in the Florida Everglades.  Sampling sites indicated by 

points.    
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Figure 4. Results of Full model with depth as the disturbance variable. Rectangles 

represent measured variables of interest and the R2 value is reported for each endogenous 

variable. Lines represent predicted effects, and point in direction of causation. Infauna are 

broken into functional groups but for ease of view single lines are used and each figure 

B-E highlights a single infauna functional group. Reported numbers next to lines are 

standardized betas. A shows betas for all paths unrelated to infauna.  B shows the 

omnivorous infauna betas. C shows the herbivorous infauna betas. D shows the 

carnivorous infauna betas.  E shows the detritivorous infauna betas.  
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Figure 3. 
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