
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-16-2012

Optimizing Storage and Memory Systems for
Energy and Performance
Luis Enrique Useche
Florida International University, luis@cs.fiu.edu

DOI: 10.25148/etd.FI12080621
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Useche, Luis Enrique, "Optimizing Storage and Memory Systems for Energy and Performance" (2012). FIU Electronic Theses and
Dissertations. 698.
https://digitalcommons.fiu.edu/etd/698

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/698?utm_source=digitalcommons.fiu.edu%2Fetd%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

OPTIMIZING STORAGE AND MEMORY SYSTEMS FOR ENERGY AND

PERFORMANCE

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Luis Useche

2012

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Luis Useche, and entitled Optimizing Storage and
Memory Systems for Energy and Performance, having been approved in respect to
style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Giri Narasimhan

Ming Zhao

Kaushik Dutta

Ajay Gulati

Raju Rangaswami, Major Professor

Date of Defense: July 16, 2012

The dissertation of Luis Useche is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2012

ii

DEDICATION

To Barbi and Elsi

iii

ACKNOWLEDGMENTS

This dissertation would not have been possible without the collaboration, support,

and help of many people. I want to thank every person that in one way or another

helped me in the last six years to complete my work.

I cannot thank enough my wife, Barbara, for all her love, care, encouragement,

and even dissertation related discussions throughout this period. Without you, this

big step in my life would have been unachievable.

I want to thank my advisor, Prof. Raju Rangaswami, for giving me this chance

and guiding me through this journey. Raju, thanks for always motivating me when

I needed it the most. I very much enjoyed the brainstorming sessions and mini-pcs

we always had. I am very grateful for all your mentoring and specially for having

the patience to teach a non-English speaker how to write and speak in English. For

this and much more, thank you.

A big thanks goes to my co-authors: Ricardo Koller, Jorge Guerra, Akshat

Verma, and Jesus Ramos for helping me with my projects at FIU. Especially, I

want to thank Ricardo Koller for helping me with many intellectual discussions,

code sessions, and experiments.

I want to thank all my dissertation committee for their insightful feedback that

made this work much better.

I wish to thank all the people in the department, especially Olga, for helping me

with all the bureaucratic paperwork that a Ph.D. requires.

To all of you, thanks.

iv

ABSTRACT OF THE DISSERTATION

OPTIMIZING STORAGE AND MEMORY SYSTEMS FOR ENERGY AND

PERFORMANCE

by

Luis Useche

Florida International University, 2012

Miami, Florida

Professor Raju Rangaswami, Major Professor

Electrical energy is an essential resource for the modern world. Unfortunately, its

price has almost doubled in the last decade. Furthermore, energy production is also

currently one of the primary sources of pollution. These concerns are becoming

more important in data-centers. As more computational power is required to serve

hundreds of millions of users, bigger data-centers are becoming necessary. This

results in higher electrical energy consumption. Of all the energy used in data-

centers, including power distribution units, lights, and cooling, computer hardware

consumes as much as 80%. Consequently, there is opportunity to make data-centers

more energy efficient by designing systems with lower energy footprint. Consuming

less energy is critical not only in data-centers. It is also important in mobile devices

where battery-based energy is a scarce resource. Reducing the energy consumption

of these devices will allow them to last longer and re-charge less frequently.

Saving energy in computer systems is a challenging problem. Improving a sys-

tem’s energy efficiency usually comes at the cost of compromises in other areas

such as performance or reliability. In the case of secondary storage, for example,

spinning-down the disks to save energy can incur high latencies if they are accessed

while in this state. The challenge is to be able to increase the energy efficiency while

keeping the system as reliable and responsive as before.

v

This thesis tackles the problem of improving energy efficiency in existing systems

while reducing the impact on performance. First, we propose a new technique to

achieve fine grained energy proportionality in multi-disk systems; Second, we design

and implement an energy-efficient cache system using flash memory that increases

disk idleness to save energy; Finally, we identify and explore solutions for the page

fetch-before-update problem in caching systems that can: (a) control better I/O

traffic to secondary storage and (b) provide critical performance improvement for

energy efficient systems.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction . 1

2. Problem Statement . 5
2.1 Thesis Statement . 5
2.2 Thesis Statement Description . 5
2.3 Thesis Significance . 9

3. Energy Proportional Storage . 11
3.1 Proportionality Matters . 11
3.2 Design Goals . 13
3.3 Storage Workload Characteristics . 15
3.4 Background and Rationale . 19
3.5 Design Overview . 22
3.5.1 Load Monitor . 23
3.5.2 Replica Placement Controller . 24
3.5.3 Active Disk Manager . 24
3.5.4 Consistency Manager . 25
3.5.5 Replica Manager . 25
3.6 Algorithms and Optimizations . 26
3.6.1 Replica Placement Algorithm . 26
3.6.2 Active Disk Identification . 30
3.6.3 Key Optimizations to Basic SRCMap 32
3.7 Evaluation . 34
3.7.1 Prototype Results . 37
3.7.2 Simulator Results . 40
3.7.3 Resource overhead of SRCMap . 45
3.8 Summary . 46
3.9 Credits . 46

4. Energy-efficient Storage using Flash . 47
4.1 Overview . 47
4.2 Profiling Energy Consumption . 50
4.3 System Architecture . 51
4.4 System Design . 53
4.4.1 Page Access Tracker . 53
4.4.2 Indirection . 54
4.4.3 Reconfiguration Trigger . 56
4.4.4 Reconfiguration Planner . 57
4.4.5 Reconfigurator . 58
4.4.6 Other Design Issues . 59

vii

4.5 System Implementation . 60
4.5.1 Maintaining the Top-k Ranked Pages 60
4.5.2 Indirector Implementation Issues . 62
4.5.3 Modularization and Consistency . 63
4.6 Evaluation . 64
4.6.1 Choosing the Disk Spin-down Timeout 66
4.6.2 Energy Savings . 67
4.6.3 Performance Impact of External Caching 69
4.6.4 Resource Overhead . 70
4.7 Summary . 72
4.8 Credits . 73

5. Controlling I/O Traffic with Non-blocking Writes 74
5.1 The Fetch-before-update Behavior . 74
5.2 Motivating Non-blocking Writes . 77
5.2.1 Solution Impact . 78
5.3 Non-blocking Writes . 82
5.3.1 Approach Overview . 83
5.3.2 Write Interposition . 85
5.3.3 Page Patching . 88
5.3.4 Non-blocking Reads . 89
5.3.5 Scheduling with Non-blocking writes 90
5.4 Optimizations . 93
5.4.1 Alternative Page Fetching Modes . 93
5.4.2 To Fetch or Not to Fetch and When 96
5.5 Correctness . 97
5.6 Estimating Benefits . 100
5.6.1 Virtual Memory Simulation . 101
5.6.2 Fraction of Non-blocking Write Faults 102
5.6.3 Outstanding Write Fetches . 102
5.6.4 Estimating Overall Savings . 103
5.7 Evaluation . 104
5.7.1 Experimental setup . 104
5.7.2 Performance Improvements . 106
5.7.3 Memory Sensitivity . 110
5.7.4 Optimizations with Patches . 111
5.8 Summary . 112
5.9 Credits . 113

6. Related Work . 114
6.1 Energy Proportionality in Storage Systems 114
6.2 Energy Efficient Storage with Flash . 117
6.3 fetch-before-update Problem . 119

viii

7. Conclusions . 122

8. Future Work . 125

BIBLIOGRAPHY . 130

VITA . 139

ix

LIST OF TABLES

TABLE PAGE

3.1 Summary statistics of one week I/O workload 15

3.2 Workload and storage system details. 35

3.3 SRCMap experimental settings . 37

4.1 Various laptop configurations used in profiling experiments. 50

4.2 Specifications of the machines used in the experiments 66

4.3 EXCES memory overhead . 71

5.1 Time benefit estimation for non-blocking writes 79

5.2 Full system memory traces workloads 100

5.3 Non-blocking writes evaluation workloads 105

5.4 Performance improvements due to patch optimizations 111

6.1 Comparison of Power Management Techniques 114

x

LIST OF FIGURES

FIGURE PAGE

2.1 Diagram depicting the thesis contributions 9

3.1 Variability in I/O workload intensity . 16

3.2 Overlap in daily working sets . 17

3.3 Distribution of read-idle times . 18

3.4 SRCMap integrated into a Storage Virtualization Manager 22

3.5 Replica Placement Model . 28

3.6 Active Disk Identification . 29

3.7 Logical view of experimental setup . 35

3.8 Power and active disks time-line. 38

3.9 Impact of consolidation on response time. 39

3.10 SRCMap prototype results . 41

3.11 Load and power consumption for each disk. 42

3.12 Sensitivity to over-provisioned space. 44

3.13 Energy proportionality with load. 45

4.1 Energy consumption profiles of various ECD types and interfaces. 50

4.2 EXCES system architecture. 52

4.3 Page rank decay function . 54

4.4 Indirection example . 56

4.5 The page ranker structure . 60

4.6 Example Top-k matrix . 61

4.7 Alignment problem example . 62

4.8 Effect of the disk spin-down timeout value on energy savings 66

4.9 Energy consumption with different workloads 67

4.10 Performance impact of EXCES with various workloads 70

xi

5.1 A non-blocking write in action . 75

5.2 Page fetch asynchrony with non-blocking writes. 78

5.3 Estimate of fetches that benefit from non-blocking writes 79

5.4 Page fetch parallelism with non-blocking writes 82

5.5 State diagram for out-of-core page access. 83

5.6 State diagram for out-of-code page access with non-blocking writes. . . . 84

5.7 Example of non-blocking writes scheduling problem 90

5.8 Current and new process state diagrams 92

5.9 A non-blocking write with lazy fetch. 94

5.10 A non-blocking write with scheduled fetch. 94

5.11 Expected OWF for various workloads 102

5.12 Execution time change in single-threaded applications 106

5.13 Execution time change in multi-threaded applications 107

5.14 SPEC SFS2008 and SPEC Power2008 response times 109

5.15 Sensitivity of non-blocking writes performance with memory size 110

xii

CHAPTER 1

INTRODUCTION

The U.S. Enviromental Protection Agency reported in 2007 that the energy cost

of U.S. Government servers and data-centers was $450 million in 2006 [Age07]. This

cost may be higher in the future if electrical energy prices continue to increase at

the same rate as the last decade: 45% in total [Adm11]. Barroso et al. estimate

that 50% of the energy used by data-centers is consumed by IT hardware [BH09].

In highly efficient data-centers, this number has increased to 80% [DMR+11]. Re-

ducing the energy consumption of computer systems will have an important impact

on data-center cost. Saving energy is important not only in data-centers. It is also

important in mobile devices where battery-based energy is a scarce resource. Re-

ducing the energy footprint on these devices will allow them to last longer, re-charge

less frequently, and replace batteries less often.

In this dissertation we address two of the most energy consuming devices in

computer systems: memory and disk. In data-centers, memory and disk account

for 30% and 10% of the total hardware energy consumption respectively [BH09].

On mobile devices, memory and disk usually are the most energy consuming de-

vices after display and CPU with up to 6% and 15% share of the overall energy

consumption [MV04].

Unfortunately, reducing the energy consumption on data-centers and mobile de-

vices is not easy task. Saving energy usually trades-off performance for energy

efficiency. Hence, designing energy-efficient systems must go beyond reducing their

energy footprint and take into account performance implications. DRAM, for in-

stance, continuously consumes energy in order to refresh its banks of memory even

when not in use [DMR+11] (static energy consumption). DRAM’s static energy

consumption can be reduced if a portion of memory is replaced with a slower but

1

bigger and more energy efficient flash. Although energy will be saved, this would

induce higher paging activity and, consequently, increase the latency of accesses to

data. As a second example let us consider hard disk drives. They can only save

energy while spun-down. While applications usually do not offer many periods of

idleness, requests to disks that are spun-down can incur delays of several seconds (up

to 10) while the disk starts spinning up again. These two examples illustrate the

energy-performance trade-off challenge that should be considered when designing

energy efficient systems. Moreover, it also highlights the importance of comple-

mentary performance optimizations as a critical catalyst to increase the viability of

energy efficient systems in production deployments.

Researchers have tackled these challenges using various methods. On the stor-

age side, previous work has provided techniques to create various levels of energy

consumption in multi-disks systems despite their individual two energy level lim-

itations [WOQ+07]. Moreover, researchers have also explored keeping disks in-

active for long periods of time by adding energy-efficient flash to cache popular

data [MDK94, CJZ06] or off-loading writes to a single disk in multi-disks sys-

tems [NDR08]. For memory, researchers have explored keeping a large portion of

DRAM inactive by increasing locality in accesses [SCN+10]. Others have proposed

to add more power-levels to DRAM given that applications usually do not use their

peak bandwidth [DMR+11].

In this thesis, we address these challenges by exploring three complementary

directions. First, we design and evaluate a new low-overhead fine-grained energy

proportional multi-disk storage system. Disks are unable to consume power propor-

tionally to their load due to their small number of power modes. We propose and

evaluate a new energy proportional multi-disk storage system called SRCMap (see

§3). SRCMap selectively replicates blocks among disks to create multiple sources for

2

the same data. Then, as less load is received, SRCMap spins-down disks whose data

can be served from another device. On the other hand, when the load increases,

SRCMap spins-up disks as needed.

Second, we design, implement, and evaluate an external cache system to increase

disk idleness and save energy. Applications typically do not contain long idle periods

of time that allow disks to spin-down and save energy. We design and implement

a new external caching storage system that caches popular data to create long

idle periods of time and lets the disk spin-down (see §4). This energy-efficient

external device absorbs requests that would otherwise need to be serviced from

disk, interrupting its low-power state mode.

Finally, we identify the fetch-before-update problem in caching systems and

present a solution and implementation to evaluate its benefits. Fetch-before-update

refers to the behavior of commodity operating systems where a page fetch from disk

is required when an application updates an out-of-core page. Such fetches block

applications while the I/O is completed resulting in an execution slowdown. This

occurs mainly due to the differences in access granularity of memory and disk. Fetch-

before-update can be eliminated by temporarily buffering the update elsewhere in

memory while the I/O is being performed, and merging it in once the page is in

memory. We explore this new solution to the fetch-before-update problem as an

opportunity to better control I/Os to secondary storage (see §5). Filtering I/Os

to inactive disks will help to keep them in low-power state longer. Moreover, this

solution has the potential to maintain performance when system memory is reduced

for energy efficiency purposes.

This thesis is organized as follows. Chapter 2 states the dissertation problem and

gives an overview of each of the solutions being proposed. Chapters 3, 4, 5 detail

3

each of the solutions. Chapter 6 presents related work. Chapter 7 draws conclusions

from this work. Finally, Chapter 8 presents future research directions.

4

CHAPTER 2

PROBLEM STATEMENT

In this chapter we detail each of the problems and solutions we address in this

dissertation. First, we provide a formal thesis statement. Next, we describe in

more detail each of the problems and overview our proposed solutions. Finally, we

describe the impact that this dissertation has in the energy-efficient systems area

and how this benefits current systems.

2.1 Thesis Statement

In this dissertation we aim to reduce the energy consumption of computer systems

by pursuing three complementary research directions:

• designing a multi-disk energy proportional storage system using commodity

devices,

• designing and implementing energy-efficient storage systems using flash de-

vices as an external cache to reduce energy consumption in disks, and

• designing and implementing a new mechanism to eliminate blocking read page

operations due to page writes that could, otherwise, disturb disks in their low-

power state and slowdown applications.

2.2 Thesis Statement Description

This thesis starts by addressing the energy consumption of disks disproportional

to their load. Commodity disks can only handle requests while operating in their

active state even if the accesses require only a small fraction of the maximum band-

width provided by the device. This problem is especially important in multi-disk

systems where the aggregate bandwidth provisioned is typically much higher than

5

the average load to mitigate peaks in load[BH09]. Hence, creating a solution to use

energy proportional the load has the potential to save energy in multi-disks systems

provisioned for peak load.

Multi-disks systems offer the possibility of serving data from a subset of disks

when their maximum performance is not required. An ideal solution should have low

space overhead and support heterogeneous devices with different performance-power

ratio.

In our first contribution, we investigate the problem of creating an energy propor-

tional storage system through power-aware dynamic storage consolidation. Our pro-

posal, Sample-Replicate-Consolidate Mapping (SRCMap), is a storage virtualization

layer optimization that enables energy proportionality for dynamic I/O workloads

by consolidating the cumulative workload on a subset of physical volumes propor-

tional to the I/O workload intensity. Instead of migrating data across physical

volumes dynamically or replicating entire volumes, both of which are prohibitively

expensive, SRCMap samples a subset of blocks from each data volume that consti-

tutes its working set and replicates these on other physical volumes. During a given

consolidation interval, SRCMap activates a minimal set of physical volumes to serve

the workload and spins down the remaining volumes, redirecting their workload to

replicas on active volumes. We present both theoretical and experimental evidence

to establish the effectiveness of SRCMap in minimizing the energy consumption

of enterprise storage systems. We present all the details of SRCMap in Section 3

including the design and evaluation of the system based on emulation.

Single-disks systems include embedded systems and portable computers. Saving

energy on these devices allow them to last longer with the same energy charge.

Unlike multi-disk systems, single-disk systems, having only two power modes, do

not provide the benefit of proportionally adapting to the access load. Moreover,

6

the disk has to be completely undisturbed to save energy. Consequently, operating

systems have to do their best and create long periods of idle time for disks. Usually,

this is done by keeping popular data in higher level caches to absorb all the load

that disks will observe otherwise. Extending this cache with a persistent low-energy

external cache device (ECD), like flash, will allow for longer idle time as more cache

is available to disks that can absorb most of the I/O operations. In our second

contribution, we designed and implemented EXCES, an external caching system that

employs prefetching, caching, and buffering of disk data for reducing disk activity.

EXCES addresses important questions related to external caching, including the

estimation of future data popularity, I/O indirection, continuous reconfiguration of

the ECD contents, and data consistency.

We evaluated EXCES with both micro- and macro-benchmarks that address

idle, I/O intensive, and real-world workloads. Overall system energy savings were

found to lie in the modest 2-14% range, depending on the workload, in somewhat

of a contrast to the higher values predicted by earlier studies. Furthermore, while

the CPU and memory overheads of EXCES were well within acceptable limits, we

found that flash-based external caching can substantially degrade I/O performance.

We believe that external caching systems hold promise. Further improvements in

flash technology, both in terms of their energy consumption and performance char-

acteristics can help realize the full potential of such systems. Section 4 details our

design, implementation, and results for EXCES.

Both of the systems we proposed above may have performance degradation when

applications access data not available in the active devices: disks that are active in

SRCMap, or flash in EXCES. While this accesses are unavoidable for reads, we found

that it is possible to delay or even eliminate them for writes. Writing data to an out-

of-core page causes the operating system to first fetch the page into memory before

7

it can be written into. Such fetch-before-update behavior incurs in unnecessary I/O

operations that can wake up a disk in low-power state, thus, increasing energy usage.

Moreover, fetch-before-update can also degrade performance by blocking the writing

process during the page fetch operation. Fetch-before-update can especially hurt

performance on energy efficient systems with low memory and high paging activity.

In our final contribution, we develop non-blocking writes which delays such I/Os

by buffering the written data temporarily elsewhere in memory and unblocking the

writing process immediately. Non-blocking writes has the opportunity to delay

the fetch operation to a later time (e.g. when the disk is active again), or issue

it asynchronously to be handled immediately. Once the I/O request is done, the

updates are applied to the page. The benefits of non-blocking writes are two-fold.

It can save energy by delaying read accesses due to fetch-before-update on sleeping

disks. Or it can allow processes to overlap computation with I/O to a greater

extent and improve the parallelism of page fetch operations leading to greater page

fetch throughput from storage. Notably, non-blocking writes works seamlessly inside

the OS requiring no changes to applications. When used for proportionality, non-

blocking writes will avoid spinning up a disk when the data is not available in the

active disks. In case of flash caching for disks, when the block written is not in

flash we can use non-blocking writes to hold the data until the disk is active again.

We present our design, implementation, and evaluation of non-blocking writes in

Chapter 5.

We summarize all these contributions in Figure 2.1. The figure shows the ar-

eas we improve: energy in multi-disk systems with SRCMap, energy in single-disk

systems with EXCES, and performance with non-blocking writes. Additionally, it

depicts possible improvements that we discuss in the chapters to follow. For ex-

ample, we explain how non-blocking writes can help to increase the effectiveness

8

����
� �

SRCMap

EXCES

Non-blocking Writes

improves

can improve

Figure 2.1: Diagram depicting the thesis contributions. It shows the areas we im-
prove as well as the areas we have the potential to enhance. The lightning (�)
represents the energy of various systems: multi-disk, single-disk, and memory sys-

tems. The watch (�) represents performance.

of energy efficient caching systems like SRCMap and EXCES as well as how the

performance improvement of non-blocking writes can be used to reduce the energy

used by DRAM.

2.3 Thesis Significance

The ideas proposed in this dissertation can be used seamlessly in data-centers and

personal computing to save energy. They also improve the viability of energy efficient

systems by closing their performance gap with commodity systems. Since all our

systems are implemented at the operating system level or below, applications do

not have to be modified. This will allow users to immediately avail of more energy

efficient systems without changing the way they use computers.

With our new energy proportional storage system, data-centers do not have to

worry about using more energy when over-provisioning to prepare for high peak

loads. With only a few configuration knobs, SRCMap will automatically use the

9

available resources, increasing the energy consumption only when the load is higher.

In data-centers, this has the advantage of freeing the administrator from energy

concerns while at the same time lowering the energy costs.

For single-disk systems like portable computers, EXCES allows users to increase

energy efficiency of their mobile devices by simply plugging in an energy efficient

external device. This could result in new mobile devices that already include an

internal flash to make batteries last longer. This contribution can also help in

reducing the weight of mobile devices by reducing the battery size.

Solving the fetch-before-update behavior helps to increase the feasibility of SR-

CMap and EXCES by keeping disks longer in their energy saving state and reduced

their performance impact. Consequently, it will increase the energy efficiency with-

out adding new hardware. This will allow executing more tasks with the same energy

consumption as before. Finally, it will also reduce the response times of accesses by

decreasing their dependency on the performance of the backing store.

By using caching techniques we are able to save energy in both multi-disk

systems—mostly available in data-centers—and single-disks systems–available in

portable systems. We also present solutions to control I/O activity that could save

energy in caching systems, increase the performance in low-memory but energy effi-

cient systems, and increase performance in general. Overall, the solutions proposed

in this dissertation substantially advance the state of the art in the energy efficiency

of data-centers and portable devices.

10

CHAPTER 3

ENERGY PROPORTIONAL STORAGE

We have seen in Chapter 2 that disks consume the same amount of energy

regardless of their current load. This is particularly troublesome for data centers,

where plenty of disks are typically provisioned in order to handle peak loads, whereas

a fraction of them is needed to meet service levels in the average case. In this

chapter we present the design and evaluation of a solution for achieving energy

proportionality in multi-disk systems with a low overhead. This solution has the

potential to improve the energy efficiency in data centers for the average load without

hurting the system performance during peak loads.

3.1 Proportionality Matters

Energy Management has emerged as one of the most significant challenges faced by

data center operators. The current power density of data centers is estimated to be

in the range of 100 W/sq.ft. and growing at the rate of 15-20% per year [HP06].

Barroso and Hölzle have made the case for energy proportional computing based

on the observation that servers in data centers today operate at well below peak

load levels on an average [BH07]. A popular technique for delivering energy propor-

tional behavior in servers is consolidation using virtualization [BKB07, TWM+08,

VAN08, VDN+09]. These techniques (a) utilize heterogeneity to select the most

power-efficient servers at any given time, (b) utilize low-overhead live Virtual Ma-

chine (VM) migration to vary the number of active servers in response to workload

variation, and (c) provide fine-grained control over energy consumption by allowing

the number of active servers to be increased or decreased one at a time.

Storage consumes roughly 10-25% of the power within computing equipment at

data centers depending on the load level, consuming a greater fraction of the energy

11

when server load is lower [BH09]. Energy proportionality for the storage subsystem

thus represents a critical gap in the energy efficiency of future data centers. In this

work, we the investigate the following fundamental question: Can we use a storage

virtualization layer to design a practical energy proportional storage system?

Storage virtualization solutions (e.g., EMC Invista [EMC], HP SVSP [Cor], IBM

SVC [IBM], NetApp V-Series [Net]) provide a unified view of disparate storage

controllers thus simplifying management [IDC06]. Similar to server virtualization,

storage virtualization provides a transparent I/O redirection layer that can be used

to consolidate fragmented storage resource utilization. Similar to server workloads,

storage workloads exhibit significant variation in workload intensity, motivating dy-

namic consolidation [LPGM08]. However, unlike the relatively inexpensive VM mi-

gration, migrating a logical volume from one device to another can be prohibitively

expensive, a key factor disrupting storage consolidation solutions.

Our proposal, Sample-Replicate-Consolidate Mapping (SRCMap), is a storage

virtualization layer optimization that makes storage systems energy proportional.

The SRCMap architecture leverages storage virtualization to redirect the I/O work-

load without any changes in the hosts or storage controllers. SRCMap ties together

disparate ideas from server and storage energy management (namely caching, repli-

cation, transparent live migration, and write off-loading) to minimize the energy

drawn by storage devices in a data center. It continuously targets energy pro-

portionality by dynamically increasing or decreasing the number of active physical

volumes in a data center in response to variation in I/O workload intensity.

SRCMap is based on the following observations in production workloads detailed

in §3.3: (i) the active data set in storage volumes is small, (ii) this active data set

is stable, and (iii) there is substantial variation in workload intensity both within

and across storage volumes. Thus, instead of creating full replicas of data volumes,

12

SRCMap creates partial replicas that contain the working sets of data volumes. The

small replica size allows creating multiple copies on one or more target volumes or

analogously allowing one target volume to host replicas of multiple source volumes.

Additional space is reserved on each partial replica to offload writes [NDR08] to

volumes that are spun down.

SRCMap enables a high degree of flexibility in spinning down volumes because it

activates either the primary volume or exactly one working set replica of each volume

at any time. Based on the aggregate workload intensity, SRCMap changes the set

of active volumes in the granularity of hours rather than minutes to address the

reliability concerns related to the limited number of disk spin-up cycles. It selects

active replica targets that allow spinning down the maximum number of volumes,

while serving the aggregate storage workload. The virtualization layer remaps the

virtual to physical volume mapping as required thereby replacing expensive data

migration operations with background data synchronization operations. SRCMap

is able to create close to N power-performance levels on a storage subsystem with

N volumes, enabling storage energy consumption proportional to the I/O workload

intensity.

In this chapter we propose design goals for energy proportional storage systems

(§3.2), analyze storage workload characteristics (§3.3) that motivate design choices

(§3.4), provide detailed system design, algorithms, and optimizations (§3.5 and §3.6),

and evaluate for energy proportionality (§3.7).

3.2 Design Goals

In this section, we identify the goals for a practical and effective energy proportional

storage systems.

13

1. Fine-grained energy proportionality: Energy proportional storage systems

are uniquely characterized by multiple performance-power levels. True energy pro-

portionality requires that for a system with a peak power of Ppeak for a workload

intensity ρmax, the power drawn for a workload intensity ρi would be:

Ppeak ×
ρi

ρmax

(3.1)

2. Low space overhead: Replication-based strategies could achieve energy pro-

portionality trivially by replicating each volume on all the other N − 1 volumes.

This would require N copies of each volume, representing an unacceptable space

overhead. A practical energy proportional system should incur minimum space

overhead; for example, 25% additional space is often available.

3. Reliability: Disk drives are designed to survive a limited number of spin-up

cycles [KS07]. Energy conservation based on spinning down the disk must ensure

that the additional number of spin-up cycles induced during the disks’ expected

lifetime is significantly lesser than the manufacturer specified maximum spin-up

cycles.

4. Workload shift adaptation: The popularity of data changes, even if slowly

over time. Energy management for storage systems that rely on caching popular

data over long intervals should address any shift in popularity, while ensuring energy

proportionality.

5. Heterogeneity support: A data center is typically composed of several sub-

stantially different storage systems (e.g., with variable numbers and types of drives).

An ideal energy proportional storage system should account for the differences in

their performance-power ratios to provide the best performance at each host level.

14

Workload Size Reads [GB] Writes [GB] Volume

Volume [GB] Total Uniq Total Uniq accessed

mail 500 62.00 29.24 482.10 4.18 6.27%

homes 470 5.79 2.40 148.86 4.33 1.44%

web-vm 70 3.40 1.27 11.46 0.86 2.8%

Table 3.1: Summary statistics of one week I/O workload. traces obtained from three
different volumes.

3.3 Storage Workload Characteristics

In this section, we characterize the nature of I/O access on servers using workloads

from three production systems, specifically looking for properties that help us in

our goal of energy proportional storage. The systems include an email server (mail

workload), a virtual machine monitor running two web servers (web-vm workload),

and a file server (homes workload). The mail workload serves user INBOXes for

the entire Computer Science department at FIU. The homes workload is that of a

NFS server that serves the home directories for our research group at FIU; activities

represent those of a typical researcher consisting of software development, testing,

and experimentation, the use of graph-plotting software, and technical document

preparation. Finally, the web-vm workload is collected from a virtualized system

that hosts two CS department web-servers, one hosting the department’s online

course management system and the other hosting the department’s web-based email

access portal.

In each system, we collected I/O traces downstream of an active page cache for

a duration of three weeks. Average weekly statistics related to these workloads are

summarized in Table 3.1. The first thing to note is that the weekly working sets

(unique accesses during a week) is a small percentage of the total volume size (1.5-

6.5%). This trend is consistent across all volumes and leads to our first observation.

15

 1
 10

 100
 1000

 10000
 100000
 1e+06

 0 100 200 300 400 500
B

lo
ck

s
ac

ce
ss

ed
Hour

mail web-vm homes

Figure 3.1: Variability in I/O workload intensity

Observation 1. The active data set for storage volumes is typically a small fraction

of total used storage.

Dynamic consolidation utilizes variability in I/O workload intensity to increase

or decrease the number of active devices. Figure 3.1 depicts large variability in I/O

workload intensity for each of the three workloads over time, with as much as 5-6

orders of magnitude between the lowest and highest workload intensity levels across

time. This highlights the potential of energy savings if the storage systems can be

made energy proportional.

Observation 2. There is a significant variability in I/O workload intensity on stor-

age volumes.

Based on our first two observations, we hypothesize that there is room for pow-

ering down physical volumes that are substantially under-utilized by replicating a

small active working-set on other volumes which have the spare bandwidth to serve

accesses to the powered down volumes. This motivates Sample and Replicate in

SRCMap. Energy conservation is possible provided the corresponding working set

replicas can serve most requests to each powered down volume. This would be true

if working sets are largely stable.

16

1 days
3 days
5 days
7 days
14 days
20 days

80

85

90

95

100

i−m ii−m iii−m i−h ii−h iii−h i−w ii−w iii−w

H
it

ra
tio

 %

Figure 3.2: Overlap in daily working sets for the mail (m), homes (h), and web-vm
(w) workloads.(i) Reads and writes against working set , (ii) Reads against working
set and (iii) Reads against working set, recently offloaded writes, and recent missed
reads.

We investigate the stability of the volume working sets in Fig. 3.2 for three

progressive definitions of the working set. In the first scenario, we compute the

classical working set based on the last few days of access history. In the second

scenario, we additionally assume that writes can be offloaded and mark all writes

as hits. In the third scenario, we further expand the working set to include recent

writes and past missed reads. For each scenario, we compute the working set hits

and misses for the following day’s workload and study the hit ratio with change in

the length of history used to compute the working set. We observe that the hit

ratio progressively increases both across the scenarios and as we increase the history

length leading us to conclude that data usage exhibits high temporal locality and

that the working set after including recent accesses is fairly stable. This leads to

our third observation (also observed earlier by Leung et al. [LPGM08]).

Observation 3. Data usage is highly skewed with more than 99% of the working

set consisting of some ’really popular’ data and ’recently accessed’ data.

The first three observations are the pillars behind the Sample, Replicate and Con-

solidate approach whereby we sample each volume for its working set, replicate these

working sets on other volumes, and consolidate I/O workloads on proportionately

fewer volumes during periods of low load. Before designing a new system based on

17

 0
 20
 40
 60
 80

R
ea

d-
id

le
 (

%
)

Interval Length
1sec 1min 2min 5min 8min 30min 60min

homes
web-vm

mail

Figure 3.3: Distribution of read-idle times

the above observations, we study the suitability of a simpler write-offloading tech-

nique for building energy proportional storage systems. Write off-loading is based

on the observation that I/O workloads are write dominated and simply off-loading

writes to a different volume can cause volumes to be idle for a substantial fraction

(79% for workloads in the original study) of time [NDR08]. While write off-loading

increases the fraction of idle time of volumes, the distribution of idle time durations

due to write off-loading raises an orthogonal, but important, concern. If these idle

time durations are short, saving energy requires frequent spinning down/up of the

volumes which degrades reliability of the disk drives.

Figure 3.3 depicts the read-idle time distributions of the three workloads. It is

interesting to note that idle time durations for the homes and mail workloads are

all less than or equal to 2 minutes, and for the web-vm the majority are less than or

equal to 5 minutes are all are less than 30 minutes.

Observation 4. The read-idle time distribution (periods of writes alone with no

intervening read operations) of I/O workloads is dominated by small durations, typ-

ically less than five minutes.

This observation implies that exploiting all read-idleness for saving energy will

necessitate spinning up the disk at least 720 times a day in the case of homes and

mail and at least 48 times in the case of web-vm. This can be a significant hurdle

18

to reliability of the disk drives which typically have limited spin-up cycles [KS07].

It is therefore important to develop new techniques that can substantially increase

average read-idle time durations.

3.4 Background and Rationale

Storage virtualization managers simplify storage management by enabling a uni-

form view of disparate storage resources in a data center. They export a storage

controller interface allowing users to create logical volumes or virtual disks (vdisks)

and mount these on hosts. The physical volumes managed by the physical storage

controllers are available to the virtualization manager as managed disks (mdisks)

entirely transparently to the hosts which only view the logical vdisk volumes. A

useful property of the virtualization layer is the complete flexibility in allocation of

mdisk extents to vdisks.

Applying server consolidation principles to storage consolidation using virtual-

ization would activate only the most energy-efficient mdisks required to serve the

aggregate workload during any period T . Data from the other mdisks chosen to be

spun down would first need to be migrated to active mdisks to effect the change.

While data migration is an expensive operation, the ease with which virtual-to-

physical mappings can be reconfigured provides an alternative approach. A näıve

strategy following this approach could replicate data for each vdisk on all themdisks

and adapt to workload variations by dynamically changing the virtual-to-physical

mappings to use only the selected mdisks during T . Unfortunately, this strategy

requires N times additional space for a N vdisk storage system, an unacceptable

space overhead.

SRCMap intelligently uses the storage virtualization layer as an I/O indirection

mechanism to deliver a practically feasible, energy proportional solution. Since it op-

19

erates at the storage virtualization manager, it does not alter the basic redundancy-

based reliability properties of the underlying physical volumes which is determined

by the respective physical volume (e.g., RAID) controllers. To maintain the redun-

dancy level, SRCMap ensures that a volume is replicated on target volumes at the

same RAID level. While we detail SRCMap’s design and algorithms in subsequent

sections (§ 3.5 and § 3.6), here we list the rationale behind SRCMap’s design deci-

sions. These design decisions together help to satisfy the design goals for an ideal

energy proportional storage system.

I. Multiple replica targets. Fine-grained energy proportionality requires the

flexibility to increase or decrease the number of active physical volumes one at

a time. Techniques that activate a fixed secondary device for each data volume

during periods of low activity cannot provide the flexibility necessary to deactivate

an arbitrary fraction of the physical volumes. In SRCMap, we achieve this fine-

grained control by creating a primary mdisk for each vdisk and replicating only

the working set of each vdisk on multiple secondary mdisks. This ensures that (a)

every volume can be offloaded to one of multiple targets and (b) each target can

serve the I/O workload for multiple vdisks. During peak load, each vdisk maps

to its primary mdisk and all mdisks are active. However, during periods of low

activity, SRCMap selects a proportionately small subset of mdisks that can support

the aggregate I/O workload for all vdisks.

II. Sampling. Creating multiple full replicas of vdisks is impractical. Drawing

from Observation 1 (§ 3.3), SRCMap substantially reduces the space overhead of

maintaining multiple replicas by sampling only the working set for each vdisk and

replicating it. Since the working set is typically small, the space overhead is low.

III. Ordered replica placement. While sampling helps to reduce replica sizes

substantially, creating multiple replicas for each sample still induces space overhead.

20

In SRCMap, we observe that all replicas are not created equal; for instance, it is more

beneficial to replicate a lightly loaded volume than a heavily loaded one which is

likely to be active anyway. Similarly, a large working set has greater space overhead;

SRCMap chooses to create fewer replicas aiming to keep it active, if possible. As

we shall formally demonstrate, carefully ordering the replica placement helps to

minimize the number of active disks for fine-grained energy proportionality.

IV. Dynamic source-to-target mapping and dual data synchronization.

From Observation 2 (§ 3.3), we know that workloads can vary substantially over a

period of time. Hence, it is not possible to pre-determine which volumes need to

be active. Target replica selection for any volume being powered down therefore

needs to be a dynamic decision and also needs to take into account that some

volumes have more replicas (or target choices) than others. We use two distinct

mechanisms for updating the replica working sets. The active replica lies in the

data path and is immediately synchronized in the case of a read miss. This ensures

that the active replica continuously adapts with change in workload popularity. The

secondary replicas, on the other hand, use a lazy, incremental data synchronization

in the background between the primary replica and any secondary replicas present

on active mdisks. This ensures that switching between replicas requires minimal

data copying and can be performed fairly quickly.

V. Coarse-grained power cycling. In contrast to most existing solutions that

rely on fine-grained disk power-mode switching, SRCMap implements coarse-grained

consolidation intervals (of the order of hours), during each of which the set of active

mdisks chosen by SRCMap does not change. This ensures normal disk lifetimes are

realized by adhering to the disk power cycle specification contained within manu-

facturer data sheets.

21

C.2

Load Monitor

Placement
 Controller

 Replica Active

Manager
 Disk

Manager
Consistency

Storage Virtualization Manager

Initialization/Reconfiguration

Virtual to Physical Mapping

A.0

RDM

A.1

A.2

Replica

Miss C.0

C.1

B.3

B.1

B.0

B.4

Manager
Replica

B.2

Updates

Time Trigger

Figure 3.4: SRCMap integrated into a Storage Virtualization Manager. Arrows
depict control flow. Dashed/solid boxes denote existing/new components.

3.5 Design Overview

SRCMap is built in a modular fashion to directly interface with storage virtualization

managers or be integrated into one as shown in Figure 3.4. The overall architecture

supports the following distinct flows of control:

(i) the replica generation flow (Flow A) identifies the working set for each vdisk and

replicates it on multiple mdisks. This flow is orchestrated by the Replica Placement

Controller and is triggered once when SRCMap is initialized and whenever a config-

uration change (e.g., addition of a new workload or new disks) takes place. Once a

trigger is generated, the Replica Placement Controller obtains a historical workload

trace from the Load Monitor and computes the working set and the long-term work-

load intensity for each volume (vdisk). The working set is then replicated on one

or more physical volumes (mdisks). The blocks that constitute the working set for

the vdisk and the target physical volumes where these are replicated are managed

using a common data structure called the Replica Disk Map (RDM).

(ii) the active disk identification flow (Flow B) identifies, for a period T , the active

mdisks and activated replicas for each inactive mdisk. The flow is triggered at the

22

beginning of the consolidation interval T (e.g., every 2 hours) and orchestrated by

the Active Disk Manager. In this flow, the Active Disk Manager queries the Load

Monitor for expected workload intensity of each vdisk in the period T . It then uses

the workload information along with the placement of working set replicas on target

mdisks to compute the set of active primary mdisks and a active secondary replica

mdisk for each inactive primary mdisk. It then directs the Consistency Manager

to ensure that the data on any selected active primary or active secondary replica

is current. Once consistency checks are made, it updates the Virtual to Physical

Mapping to redirect the workload to the appropriate mdisk.

(iii) the I/O redirection flow (Flow C) is an extension of the I/O processing in

the storage virtualization manager and utilizes the built-in virtual-to-physical re-

mapping support to direct requests to primaries or active replicas. Further, this

flow ensures that the working-set of each vdisk is kept up-to-date. To ensure this,

whenever a request to a block not available in the active replica is made, a Replica

Miss event is generated. On a Replica Miss, the Replica Manager spin-ups the

primary mdisk to fetch the required block. Further, it adds this new block to the

working set of the vdisk in the RDM. We next describe the key components of

SRCMap.

3.5.1 Load Monitor

The Load Monitor resides in the storage virtualization manager and records ac-

cess to data on any of the vdisks exported by the virtualization layer. It provides

two interfaces for use by SRCMap – long-term workload data interface invoked by

the Replica Placement Controller and predicted short-term workload data interface

invoked by the Active Disk Manager.

23

3.5.2 Replica Placement Controller

The Replica Placement Controller orchestrates the process of Sampling (identifying

working sets for each vdisk) and Replicating on one or more target mdisks. We

use a conservative definition of working set that includes all the blocks that were

accessed during a fixed duration, configured as the minimum duration beyond which

the hit ratio on the working set saturates. Consequently, we use 20 days for mail,

14 days for homes and 5 days for web-vm workload (Fig. 3.2). The blocks that

capture the working set for each vdisk and the mdisks where it is replicated are

stored in the RDM. The details of the parameters and methodology used within

Replica Placement are described in Section 3.6.1.

3.5.3 Active Disk Manager

The Active Disk Manager orchestrates the Consolidate step in SRCMap. The

module takes as input the workload intensity for each vdisk and identifies if the pri-

mary mdisk can be spun down by redirecting the workload to one of the secondary

mdisks hosting its replica. Once the target set of active mdisks and replicas are

identified, the Active Disk Manager synchronizes the identified active primaries or

active secondary replicas and updates the virtual-to-physical mapping of the storage

virtualization manager, so that I/O requests to a vdisk could be redirected accord-

ingly. The Active Disk Manager uses a Consistency Manager for the synchronization

operation. Details of the algorithm used by Active Disk Manager for selecting active

mdisks are described in Section 3.6.2.

24

3.5.4 Consistency Manager

The Consistency Manager ensures that the primary mdisk and the replicas are

consistent. Before an mdisk is spun down and a new replica activated, the new

active replica is made consistent with the previous one. In order to ensure that the

overhead during the re-synchronization is minimal, an incremental point-in-time

(PIT) relationship (e.g., Flash-copy in IBM SVC [IBM]) is maintained between the

active data (either the primary mdisk or one of the active replicas) and all other

copies of the same data. A go-to-sync operation is performed periodically between

the active data and all its copies on active mdisks. This ensures that when anmdisk

is spun up or down, the amount of data to be synchronized is small.

3.5.5 Replica Manager

The Replica Manager ensures that the replica data set for a vdisk is able to mimic

the working set of the vdisk over time. If a data block unavailable at the active

replica of the vdisk is read causing a replica miss, the Replica Manager copies the

block to the replica space assigned to the active replica and adds the block to the

Replica Metadata accordingly. Finally, the Replica Manager uses a Least Recently

Used (LRU) policy to evict an older block in case the replica space assigned to a

replica is filled up. If the active data set changes drastically, there may be a large

number of replica misses. All these replica misses can be handled by a single spin-

up of the primary mdisk. Once all the data in the new working set is touched,

the primary mdisk can be spun-down as the active replica is now up-to-date. The

continuous updating of the Replica Metadata enables SRCMap to meet the goal of

Workload shift adaptation, without re-running the expensive replica generation flow.

25

The replica generation flow needs to re-run only when a disruptive change occurs

such as addition of a new workload or a new volume or new disks to a volume.

3.6 Algorithms and Optimizations

In this section, we present details about the algorithms employed by SRCMap. We

first present the long-term replica placement methodology and subsequently, the

short-term active disk identification method.

3.6.1 Replica Placement Algorithm

The Replica Placement Controller creates one or more replicas of the working set of

each vdisk on the available replica space on the target mdisks. We use the insight

that all replicas are not created equal and have distinct associated costs and benefits.

The space cost of creating the replica is lower if the vdisk has a smaller working

set. Similarly, the benefit of creating a replica is higher if the vdisk (i) has a stable

working set (lower misses if the primary mdisk is switched off), (ii) has a small

average load making it easy to find spare bandwidth for it on any target mdisk,

and (iii) is hosted on a less power-efficient primary mdisk. Hence, the goal of both

Replica Placement and Active Disk Identification is to ensure that we create more

replicas for vdisks that have a favorable cost-benefit ratio. The goal of the replica

placement is to ensure that if the Active Disk Manager decides to spin down the

primary mdisk of a vdisk, it should be able to find at least one active target mdisk

that hosts its replica, captured in the following Ordering Property.

Definition 1. Ordering Property: For any two vdisks Vi and Vj, if Vi is more likely

to require a replica target than Vj at any time t during Active Disk Identification,

then Vi is more likely than Vj to find a replica target amongst active mdisks at time

t.

26

The replica placement algorithm consists of (i) creating an initial ordering of

vdisks in terms of cost-benefit tradeoff (ii) a bipartite graph creation that reflects

this ordering (iii) iteratively creating one source-target mapping respecting the cur-

rent order and (iv) re-calibration of edge weights to ensure the Ordering Property

holds for the next iteration of source-target mapping.

Initial vdisk ordering The Initial vdisk ordering creates a sorted order amongst

vdisks based on their cost-benefit tradeoff. For each vdisk Vi, we compute the

probability Pi that its primary mdisk Mi would be spun down as

Pi =
w1WSmin

WSi

+
w2PPRmin

PPRi

+
w3ρmin

ρi
+

wfmmin

mi

(3.2)

where the wk are tunable weights, WSi is the size of the working set of Vi, PPRi

is the performance-power ratio (ratio between the peak IO bandwidth and peak

power) for the primary mdisk Mi of Vi, ρi is the average long-term I/O workload

intensity (measured in IOPS) for Vi, and mi is the number of read misses in the

working set of Vi, normalized by the number of spindles used by its primary mdisk

Mi. The corresponding min subscript terms represent the minimum values across

all the vdisks and provide normalization. The probability formulation is based on

the dual rationale that it is relatively easier to find a target mdisk for a smaller

workload and switching off relatively more power-hungry disks saves more energy.

Further, we assign a higher probability for spinning down mdisks that host more

stable working sets by accounting for the number of times a read request cannot be

served from the replicated working set, thereby necessitating the spinning up of the

primary mdisk.

27

N

1V

REPLICA SPACE

W

iP

WORKINGSET

1,2

1,N

Target mdisks

N

vdisks

PRIMARY DATA

M

M

MV

2

N

1

W

WORKINGSET1

Figure 3.5: Replica Placement Model

Bipartite graph creation Replica Placement creates a bipartite graph G(V →

M) with each vdisk as a source node Vi, its primary mdisk as a target node Mi,

and the edge weights e(Vi,Mj) representing the cost-benefit trade-off of placing a

replica of Vi on Mj (Fig. 3.5). The nodes in the bipartite graph are sorted using Pi

(disks with larger Pi are at the top). We initialize the edge weights wi,j = Pi for

each edge e(Vi,Mj) (source-target pair). Initially, there are no replica assignments

made to any target mdisk. The replica placement algorithm iterates through the

following two steps, until all the available replica space on the target mdisks have

been assigned to source vdisk replicas. In each iteration, exactly one target mdisk’s

replica space is assigned.

Source-Target mapping The goal of the replica placement method is to achieve

a source target mapping that achieves the Ordering property. To achieve this goal,

28

INACTIVE MDISKS

M

M

M

M

V

V

V

V

Pi
WORKLOAD REDIRECTION

1

2

k

k+1

NM

1

2

k

k+1

NV

ACTIVE MDISKS

Figure 3.6: Active Disk Identification

the algorithm takes the top-most target mdisk Mi whose replica space is not yet

assigned and selects the set of highest weight incident edges such that the combined

replica size of the source nodes in this set fills up the replica space available in Mi

(e.g, the working sets of V1 and VN are replicated in the replica space of M2 in

Fig. 3.5). When the replica space on a target mdisk is filled up, we mark the target

mdisk as assigned. One may observe that this procedure always gives preference to

source nodes with a larger Pi. Once an mdisk finds a replica, the likelihood of it

requiring another replica decreases and we factor this using a re-calibration of edge

weights, which is detailed next.

Re-calibration of edge weights We observe that the initial assignments of

weights ensure the Ordering property. However, once the working set of a vdisk

Vi has been replicated on a set of target mdisks Ti = M1, . . . ,Mleast (Mleast is the

29

mdisk with the least Pi in Ti) s.t. Pi > Pleast, the probability that Vi would require

a new target mdisk during Active Disk Identification is the probability that both

Mi and Mleast would be spun down. Hence, to preserve the Ordering property, we

re-calibrate the edge weights of all outgoing edges of any primarymdisks Si assigned

to target mdisks Tj as

∀k wi,k = PjPi (3.3)

Once the weights are recomputed, we iterate from the Source-Target mapping step

until all the replicas have been assigned to target mdisks. One may observe that the

re-calibration succeeds in achieving the Ordering property because we start assigning

the replica space for the top-most target mdisks first. This allows us to increase the

weights of source nodes monotonically as we place more replicas of its working set.

We formally prove the following result in the appendix.

Theorem 1. The Replica Placement Algorithm ensures ordering property.

3.6.2 Active Disk Identification

We now describe the methodology employed to identify the set of active mdisks

and replicas at any given time. For ease of exposition, we define the probability

Pi of a primary mdisk Mi equal to the probability Pi of its vdisk Vi. Active disk

identification consists of:

I: Active mdisk Selection: We first estimate the expected aggregate workload to

the storage subsystem in the next interval. We use the workload to a vdisk in

the previous interval as the predicted workload in the next interval for the vdisk.

The aggregate workload is then estimated as sum of the predicted workloads for

all vdisks in the storage system. This aggregate workload is then used to identify

the minimum subset of mdisks (ordered by reverse of Pi) such that the aggregate

bandwidth of these mdisks exceeds the expected aggregate load.

30

II: Active Replica Identification: This step elaborated shortly identifies one (of the

many possible) replicas on an active mdisk for each inactive mdisk to serve the

workload redirected from the inactive mdisk.

III: Iterate: If the Active Replica Identification step succeeds in finding an active

replica for all the inactive mdisks, the algorithm terminates. Else, the number

of active mdisks are increased by 1 and the algorithm repeats the Active Replica

Identification step.

One may note that since the number of active disks are based on the maximum

predicted load in a consolidation interval, a sudden increase in load may lead to

an increase in response times. If performance degradation beyond user-defined ac-

ceptable levels persists beyond a user-defined interval (e.g, 5 mins), the Active Disk

Identification is repeated for the new load.

S = set of disks to be spun down
A = set of disks to be active
Sort S by reverse of Pi

Sort A by Pi

For each Di ∈ S

For each Dj ∈ A

If Dj hosts a replica Ri of Di AND
Dj has spare bandwidth for Ri

Candidate(Di) = Dj , break

End-For
If Candidate(Di)==null return Failure

End-for
∀i, Di ∈ S return Candidate(Di)

Algorithm 1: Active Replica Identification algorithm

Active Replica Identification Fig. 3.6 depicts the high-level goal of Active

Replica Identification, which is to have the primary mdisks for vdisks with larger

Pi spun down, and their workload directed to few mdisks with smaller Pi. To do

so, it must identify an active replica for each inactive primary mdisk, on one of the

31

active mdisks. The algorithm uses two insights: (i) The Replica Placement process

creates more replicas for vdisks with a higher probability of being spun down (Pi)

and (ii) primary mdisks with larger Pi are likely to be spun down for a longer time.

To utilize the first insight, we first allow primary mdisks with small Pi, which

are marked as inactive, to find an active replica, as they have fewer choices available.

To utilize the second insight, we force inactive primary mdisks with large Pi to use

a replica on active mdisks with small Pi. For example in Fig. 3.6, vdisk Vk has the

first choice of finding an active mdisk that hosts its replica and in this case, it is

able to select the first active mdisk Mk+1. As a result, inactive mdisks with larger

Pi are mapped to active mdisks with the smaller Pi (e.g, V1 is mapped to MN).

Since an mdisk with the smallest Pi is likely to remain active most of the time, this

ensures that there is little to no need to ‘switch active replicas’ frequently for the

inactive disks. The details of this methodology are described in Fig. 1.

3.6.3 Key Optimizations to Basic SRCMap

We augment the basic SRCMap algorithm to increase its practical usability and

effectiveness as follows.

Sub-volume creation SRCMap redirects the workload for any primary mdisk

that is spun down to exactly one target mdisk. Hence, a target mdisk Mj for a

primary mdisk Mi needs to support the combined load of the vdisks Vi and Vj in

order to be selected. With this requirement, the SRCMap consolidation process

may incur a fragmentation of the available I/O bandwidth across all volumes. To

elaborate, consider an example scenario with 10 identical mdisks, each with capacity

C and input load of C/2 + δ. Note that even though this load can be served using

10/2 + 1 mdisks, there is no single mdisk can support the input load of 2 vdisks.

32

To avoid such a scenario, SRCMap sub-divides each mdisk into NSV sub-volumes

and identifies the working set for each sub-volume separately. The sub-replicas

(working sets of a sub-volume) are then placed independently of each other on target

mdisks. With this optimization, SRCMap is able to subdivide the least amount of

load that can be migrated, thereby dealing with the fragmentation problem in a

straightforward manner.

This optimization requires a complementary modification to theReplica Place-

ment algorithm. The Source-Target mapping step is modified to ensure that sub-

replicas belonging to the same source vdisk are not co-located on a target mdisk.

Scratch Space for Writes and Missed Reads SRCMap incorporates the basic

write off-loading mechanism as proposed by Narayanan et al. [NDR08]. The current

implementation of SRCMap uses an additional allocation of write scratch space

with each sub-replica to absorb new writes to the corresponding portion of the data

volume. A future optimization is to use a single write scratch space within each

target mdisk rather than one per sub-replica within the target mdisk so that the

overhead for absorbing writes can be minimized.

A key difference from write off-loading, however, is that on a read miss for

a spun down volume, SRCMap additionally offloads the data read to dynamically

learn the working-set. This helps SRCMap achieve the goal ofWorkload Shift Adap-

tation with change in working set. While write off-loading uses the inter read-miss

durations exclusively for spin down operations, SRCMap targets capturing entire

working-sets including both reads and writes in replica locations to prolong read-

miss durations to the order of hours and thus places more importance on learning

changes in the working-set.

33

3.7 Evaluation

In this section, we evaluate SRCMap using a prototype implementation of SRCMap-

based storage virtualization manager and an energy simulator seeded by the proto-

type. We investigate the following questions:

1. What degree of proportionality in energy consumption and I/O load can be

achieved using SRCMap?

2. How does SRCMap impact reliability?

3. What is the impact of storage consolidation on the I/O performance?

4. How sensitive are the energy savings to the amount of over-provisioned space?

5. What is the overhead associated with implementing an SRCMap indirection

optimization?

Workload The workloads used consist of I/O requests to eight independent data

volumes, each mapped to an independent disk drive. In practice, volumes will likely

comprise of more than one disk, but resource restrictions did not allow us to create

a more expansive testbed. We argue that relative energy consumption results still

hold despite this approximation. These volumes support a mix of production web-

servers from the FIU CS department data center, end-user homes data, and our

lab’s Subversion (SVN) and Wiki servers as detailed in Table 3.2.

Workload I/O statistics were obtained by running blktrace [ABO07] on each

volume. Observe that there is a wide variance in their load intensity values, creating

opportunities for consolidation across volumes.

Storage Testbed For experimental evaluation, we set up a single machine (Intel

Pentium 4 HT 3GHz, 1GB memory) connected to 8 disks via two SATA-II con-

trollers A and B. The cumulative (merged workload) trace is played back using

34

Volume ID Disk Model Size [GB] Avg IOPS Max IOPS

home-1 D0 WD5000AAKB 270 8.17 23

online D1 WD360GD 7.8 22.62 82

webmail D2 WD360GD 7.8 25.35 90

webresrc D3 WD360GD 10 7.99 59

webusers D4 WD360GD 10 18.75 37

svn-wiki D5 WD360GD 20 1.12 4

home-2 D6 WD2500AAKS 170 0.86 4

home-3 D7 WD2500AAKS 170 1.37 12

Table 3.2: Workload and storage system details.

Power Supply
Power
Meter

AoE

SRCMap

A

B
110V

Workload Modifier

BTReplay

Simulated Testbed

Data Collection and Reporting

Mapping

Traces

Workload

Power Model

Calibration

Workload

Monitored
Information

Real Testbed

(0)

(1)

(2)
(2)

(3)(3)
(3)

Figure 3.7: Logical view of experimental setup

btreplay [ABO07] with each volume’s trace played back to the corresponding disk.

All the disks share one power supply P that is dedicated only for the experimental

drives; the machine connects to another power supply. The power supply P is con-

nected to a Watts up? PRO power meter [Wat09] which allows us to measure power

consumption at a one second granularity with a resolution of 0.1W. An overhead of

6.4W is introduced by the power supply itself which we deduct from all our power

measurements.

Experimental Setup We describe the experimental setup used in our evaluation

study in Fig. 3.7. We implemented an SRCMap module with its algorithms for

35

replica placement and active disk identification during any consolidation interval.

An overall experimental run consists of using the monitored data to (1) identify the

consolidation candidates for each interval and create the virtual-to-physical mapping

(2) modify the original traces to reflect the mapping and replaying it, and (3) power

and response time reporting. At each consolidation event, the Workload Modifier

generates the necessary additional I/O to synchronize data across the sub-volumes

affected due to active replica changes.

We evaluate SRCMap using two different sets of experiments: (i) prototype

runs and (ii) simulated runs. The prototype runs evaluate SRCMap against a real

storage system and enable realistic measurements of power consumption and impact

to I/O performance via the reporting module. In a prototype run, the modified I/O

workload is replayed on the actual testbed using btreplay [ABO07].

The simulator runs operate similarly on a simulated testbed, wherein a power

model instantiated with power measurements from the testbed is used for reporting

the power numbers. The advantage with the simulator is the ability to carry out

longer duration experiments in simulated time as opposed to real-time allowing us to

explore the parameter space efficiently. Further, one may use it to simulate various

types of storage testbeds to study the performance under various load conditions.

In particular, we use the simulator runs to evaluate energy-proportionality by sim-

ulating the testbed with different values of disk IOPS capacity estimates. We also

simulate alternate power management techniques (e.g., caching, replication) for a

comparative evaluation.

All experiments with the prototype and the simulator were performed with the

following configuration parameters. The consolidation interval was chosen to be 2

hours for all experiments to restrict the worst-case spin-up cycles for the disk drives

to an acceptable value. Two minute disk timeouts were used for inactive disks; active

36

Volume L(0) L(1) L(2) L(3) L(4)

ID [IOPS] [IOPS] [IOPS] [IOPS] [IOPS]

D0 33 57 74 96 125

D1-D5 52 89 116 150 196

D6, D7 38 66 86 112 145

(a)

0 1 2 3 4 5 6 7 8

19.8 27.2 32.7 39.1 44.3 49.3 55.7 59.7 66.1

(b)

Table 3.3: Experimental settings: (a) Estimated disk IOPS capacity levels. (b)
Storage system power consumption in Watts as the number of disks in active mode
are varied from 0 to 8.All disks consumed approximately the same power when
active. The disks not in active mode consume standby power which was found to
be the same across all disks.

disks within a consolidation interval remain continuously active. Working sets and

replicas were created based on a three week workload history and we report results

for a subsequent 24 hour duration for brevity. The consolidation is based on an

estimate of the disk IOPS capacity, which varies for each volume. We computed an

estimate of the disk IOPS using a synthetic random I/O workload for each volume

separately (Level L1). We use 5 IOPS estimation levels (L0 through L4) to (a)

simulate storage testbeds at different load factors and (b) study the sensitivity of

SRCMap with the volume IOPS estimation. The per volume sustainable IOPS at

each of these load levels is provided in Table 3.3(a). The power consumption of

the storage system with varying number of disks in active mode is presented in

Table 3.3(b).

3.7.1 Prototype Results

For the prototype evaluation, we took the most dynamic 8-hour period (4 consoli-

dation intervals) from the 24 hours and played back I/O traces for the 8 workloads

described earlier in real-time. We report actual power consumption and the I/O

response time (which includes queuing and service time) distribution for SRCMap

37

 20
 30
 40
 50
 60
 70

W
at

ts

Baseline - On

L0

L3

 0
 2
 4
 6

 0 1 2 3 4 5 6 7 8

D

is
ks

 O
n

Hour

Figure 3.8: Power and active disks time-line.

when compared to a baseline configuration where all disks are continuously active.

Power consumption was measured every second and disk active/standby state in-

formation was polled every 5 seconds. We used 2 different IOPS levels; L0 when a

very conservative (low) estimate of the disk IOPS capacity is made and L3 when a

reasonably aggressive (high) estimate is made.

We study the power savings due to SRCMap in Figure 3.8. Even using a con-

servative estimate of disk IOPS, we are able to spin down approximately 4.33 disks

on an average, leading to an average savings of 23.5W (35.5%). Using an aggressive

estimate of disk IOPS, SRCMap is able to spin down 7 disks saving 38.9W (59%)

for all periods other than the 4hr-6hr period. In the 4-6 hr period, it uses 2 disks

leading to a power savings of 33.4W (50%). The spikes in the power consumption

relate to planned and unplanned (due to read misses) volume activations, which are

few in number. It is important to note that substantial power is used in maintaining

standby states (19.8W) and within the dynamic range, the power savings due to

SRCMap are even higher.

We next investigate any performance penalty incurred due to consolidation.

Fig. 3.9 (upper) depicts the cumulative probability density function (CDF) of re-

sponse times for three different configurations: Baseline - On – no consolidation

38

 0.85
 0.9

 0.95
 1

 0

 0.2

 0.4

 0.6

 0.8

L0
L3

Baseline - On

 0.85
 0.9

 0.95
 1

 0

 0.2

 0.4

 0.6

 0.8

10-1 100 101 102 103 104

P
(R

es
po

ns
e

T
im

e
<

 x
)

Response Time (msec)

L0 w/o sync I/O
L3 w/o sync I/O

L0 sync I/O only
L3 sync I/O only

Figure 3.9: Impact of consolidation on response time.

and all disks always active, SRCMap using L0, and L3. The accuracy of the CDFs

for L0 and L3 suffer from a reporting artifact that the CDFs include the latencies

for the synchronization I/Os themselves which we were not able to filter out. We

throttle the synchronization I/Os to one every 10ms to reduce their interference

with foreground operations.

First, we observed that less than 0.003% of the requests incurred a spin-up hit

due to read misses resulting in latencies of greater than 4 seconds in both the L0

and L3 configurations (not shown). This implies that the working-set dynamically

updated with missed reads and offloaded writes is a fairly at capturing the active

data for these workloads. Second, we observe that for response times greater than

1ms, Baseline - On demonstrates better performance than L0 and L3 (upper plot).

For both L0 and L3, less than 8% of requests incur latencies greater than 10ms, less

than 2% of requests incur latencies greater than 100ms. L0, having more disks at

its disposal, shows slightly better response times than L3. For response times lower

39

than 1ms a reverse trend is observed wherein the SRCMap configurations do better

than Baseline - On . We conjectured that this is due to the influence of the low

latency writes during synchronization operations.

To further delineate the influence of synchronization I/Os, we performed two

additional runs. In the first run, we disable all synchronization I/Os and in the

second, we disable all foreground I/Os (lower plot). The CDFs of only the syn-

chronization operations, which show a bimodal distribution with 50% low-latency

writes absorbed by the disk buffer and 50% reads with latencies greater than 1.5ms,

indicate that synchronization reads are contributing towards the increased latencies

in L0 and L3 for the upper plot. The CDF without synchronization (’w/o synch’) is

much closer to Baseline - On with a decrease of approximately 10% in the number

of request with latencies greater than 1ms. Intelligent scheduling of synchronization

I/Os is an important area of future work to further reduce the impact on foreground

I/O operations.

3.7.2 Simulator Results

We conducted several experiments with simulated testbeds hosting disks of capac-

ities L0 to L4. For brevity, we report our observations for disk capacity levels L0

and L3, expanding to other levels only when required.

Comparative Evaluation We first demonstrate the basic energy proportionality

achieved by SRCMap in its most conservative configuration (L0) and three alternate

solutions, Caching-1, Caching-2, and Replication. Caching-1 is a scheme that uses 1

additional physical volume as a cache. If the aggregate load observed is less than the

IOPS capacity of the cache volume, the workload is redirected to the cache volume.

If the load is higher, the original physical volumes are used. Caching-2 uses 2 cache

40

 0
 90

0 2 4 6 8 10 12 14 16 18 20 22 24

Lo
ad

Hour

 0
 2

R
em

ap
s

 30

 60

 90

P
ow

er
 (

W
at

ts
) SRCMap(L0)

Replication
Caching-1
Caching-2

Figure 3.10: Power consumption, remap operations, and aggregate load across time
for a single day.

volumes in a similar manner. Replication identifies pairs of physical volumes with

similar bandwidths and creates replica pairs, where all the data on one volume is

replicated on the other. If the aggregate load to a pair is less than the IOPS capacity

of one volume, only one in the pair is kept active, else both volumes are kept active.

Figure 3.10 evaluates power consumption of all four solutions by simulating the

power consumed as volumes are spun up/down over 12 2-hour consolidation inter-

vals. It also presents the average load (measured in IOPS) within each consolidation

interval. In the case of SRCMap, read misses are indicated by instantaneous power

spikes which require activating an additional disk drive. To avoid clutter, we do not

show the spikes due to read misses for the Cache-1/2 configurations. We observe

that each of solutions demonstrate varying degrees of energy proportionality across

the intervals. SRCMap (L0) uniformly consumes the least amount of power across

all intervals and its power consumption is proportional to load. Replication also

demonstrates good energy proportionality but at a higher power consumption on

an average. The caching configurations are the least energy proportional with only

two effective energy levels to work with.

41

0 6 12 18

D
7

0 6 12 18 0 6 12 18

D
6

D
5

D
4

D
3

D
2

D
1

D
0

Load (IOPS) Modified load (IOPS) Power (Watts)

SRCMap(L3)
Baseline - On

Figure 3.11: Load and power consumption for each disk.. Y ranges for all loads is
[1 : 130] IOPS in logarithmic scale. Y ranges for power is [0 : 19] W.

We also observe that SRCMap remaps (i.e., changes the active replica for) a

minimal number of volumes – either 0, 1, or 2 during each consolidation interval.

In fact, we found that for all durations the number of volumes being remapped

equaled the change in the number of active physical volumes. indicating that the

number of synchronization operations are kept to the minimum. Finally, in our

system with eight volumes, Caching-1, Caching-2, and Replication use 12.5%, 25%

and 100% additional space respectively, while as we shall show later, SRCMap is

able to deliver almost all its energy savings with just 10% additional space.

Next, we investigate how SRCMap modifies per-volume activity and power con-

sumption with an aggressive configuration L3, a configuration that demonstrated

interesting consolidation dynamics over the 12 2-hour consolidation intervals. Each

row in Figure 3.11 is specific to one of the eight volumes D0 through D7. The left

and center columns show the original and SRCMap-modified load (IOPS) for each

volume. The modified load were consolidated on disks D2 and D3 by SRCMap.

42

Note that disks D6 and D7 are continuously in standby mode, D3 is continuously

in active mode throughout the 24 hour duration while the remaining disks switched

states more than once. Of these, D0, D1 and D5 were maintained in standby

mode by SRCMap, but were spun up one or more times due to read misses to their

replica volumes, while D2 was made active by SRCMap for two of the consolidation

intervals only.

We note that the number of spin-up cycles did not exceed 6 for any physi-

cal volume during the 24 hour period, thus not sacrificing reliability. Due to the

reliability-aware design of SRCMap, volumes marked as active consume power even

when there is idleness over shorter, sub-interval durations. For the right column,

power consumption for each disk in either active mode or spun down is shown with

spikes representing spin-ups due to read misses in the volume’s active replica. Fur-

ther, even if the working set changes drastically during an interval, it only leads to

a single spin up that services a large number of misses. For example, D1 served ap-

proximately 5 ∗ 104 misses in the single spin-up it had to incur (Figure omitted due

to lack of space). We also note that summing up power consumption of individual

volumes cannot be used to compute total power as per Table 3.3(b).

Sensitivity with Space Overhead We evaluated the sensitivity of SRCMap

energy savings with the amount of over-provisioned space to store volume working

sets. Figure 3.12 depicts the average power consumption of the entire storage system

(i.e., all eight volumes) across a 24 hour interval as the amount of over-provisioned

space is varied as a percentage of the total storage space for the load level L0. We

observe that SRCMap is able to deliver most of its energy savings with 10% space

over-provisioning and all savings with 20%. Hence, we conclude that SRCMap can

deliver power savings with minimal replica space.

43

 25
 30
 35
 40
 45
 50
 55
 60

 5 10 15 20 25 30

P
ow

er
 (

W
at

ts
)

Overprovisioned space (%)

Figure 3.12: Sensitivity to over-provisioned space.

Energy Proportionality Our next experiment evaluates the degree of energy

proportionality to the total load on the storage system delivered by SRCMap. For

this experiment, we examined the power consumption within each 2-hour consolida-

tion interval across the 24-hour duration for each of the five load estimation levels

L0 through L4, giving us 60 data points. Further, we created a few higher load lev-

els below L0 to study energy proportionality at high load as well. Each data point

is characterized by an average power consumption value and a load factor value

which is the observed average IOPS load as a percentage of the estimated IOPS

capacity (based on the load estimation level) across all the volumes. Figure 3.13

presents the power consumption at each load factor. Even though the load factor

is a continuous variable, power consumption levels in SRCMap are discrete. One

may note that SRCMap can only vary one volume at a time and hence the different

power-performance levels in SRCMap differ by one physical volume. We do observe

that SRCMap is able to achieve close to N -level proportionality for a system with

N -volumes, demonstrating a step-wise linear increase in power levels with increasing

load.

44

 25

 30

 35

 40

 45

 50

 55

 60

 0 10 20 30 40 50 60 70 80 90

P
ow

er
 (

W
at

ts
)

Load factor (%)

25.65 + 0.393*x

Figure 3.13: Energy proportionality with load.

3.7.3 Resource overhead of SRCMap

The primary resource overhead in SRCMap is the memory used by the Replica

Metadata (map) of the Replica manager. This memory overhead depends on the

size of the replica space maintained on each volume for storing both working-sets

and off-loaded writes. We maintain a per-block map entry, which consists of 5 bytes

to point to the current active replica. 4 additional bytes keep what replicas contain

the last data version and 4 more bytes are used to handle the I/Os absorbed in the

replica-space write buffer, making a total of 13 bytes for each entry in the map. If

N is the number of volumes of size S with R% space to store replicas, then the

worst-case memory consumption is approximately equal to the map size, expressed

as N×S×R×13
212

. For a storage virtualization manager that manages 10 volumes of total

size 10TB, each with a replica space allocation of 100GB (10% over-provisioning),

the memory overhead is only 3.2GB, easily affordable for a high-end storage virtu-

alization manager.

45

3.8 Summary

This chapter presented the design and evaluation of SRCMap, a storage virtual-

ization solution for energy-proportional storage in multi-disk systems. SRCMap

establishes the feasibility of an energy proportional storage system with fully flexi-

ble dynamic storage consolidation. SRCMap is able to meet all the desired goals of

fine-grained energy proportionality, low space overhead, reliability, workload shift

adaptation, and heterogeneity support.

SRCMap makes energy-proportionality attainable in multi-disk system by pro-

viding one energy-level per disk. The benefits are directly proportional to the num-

ber of disks available in the system. Consequently, SRCMap is unable to offer

benefits in the case of single-disk systems. Saving energy in single-disk systems

can still have a high impact due to the widespread use of portable devices. In the

next chapter we explore a new technique for reducing energy consumption in such

devices.

3.9 Credits

SRCMap was first published in the proceedings of the USENIX Conference on File

and Storage Technologies in February 2010 [VKUR10] and was presented by Luis

Useche. Akshat Verma contributed the initial formulation of the SRCMap optimiza-

tion framework and algorithms for the initial replica placement and active volume

identification. All the authors helped to refine the initial design of the system.

Ricardo Koller implemented a simulator and used it to evaluate the optimization

framework and algorithms. Luis Useche designed and implemented a prototype of

SRCMap and used it to evaluate the system on real hardware.

46

CHAPTER 4

ENERGY-EFFICIENT STORAGE USING FLASH

Chapter 3 demonstrated the feasibility of energy proportional multi-disk systems.

However, because disks operate on only one energy level, such energy proportionality

cannot be achieved in single-disk systems. In this chapter we present the design,

implementation, and evaluation of a new technique to save energy when only one

disk is available. This solution uses a persistent external caching device that absorbs

I/O activity, providing the disk with longer periods of idle time where the disk can be

spun down. The benefits are particularly relevant for the widely available portable

systems where energy is usually scarce.

4.1 Overview

The need for energy-efficient storage systems for both personal computing and data

center environments has been well established in the research literature. The key

argument is that the disk drive, the sole mechanical device in modern computers, is

also one of its most energy consuming [BH09]. The varied proposals for addressing

this problem include adaptive disk spin down policies [HLSS00, DKB95], exploiting

multi-speed drives [GSKF03], using data migration across drives [PB04], and energy-

aware prefetching and caching techniques [PS04, Sam04].

A different approach, complementary to most of the above techniques, is external

caching1 on a non-volatile storage device, which we shall henceforth refer to as ex-

ternal caching device (ECD). An ECD can be any non-volatile device that consumes

less energy than a disk drive, such as flash. Recent technological advancements,

adoption trends, and economy-of-scale benefits have brought the non-volatile flash-

based storage devices into the mainstream. Recent work on external caching have

1We term this as “external caching” to primarily differentiate it from in-memory
caching.

47

presented the merits of such systems. While these studies serve to make the case for

further research in external caching systems, they still leave several key questions

unanswered. First, these studies do not evaluate the energy consumption of the

system as a whole, but only focus on the reduction in disk energy consumption. It

is important to refine this evaluation criteria since the ECD subsystem itself can

consume a considerable amount of energy. Second, existing studies do not evaluate

an important artifact of external caching, which is the impact on application per-

formance. Flash-based devices handle random reads much better than disk drives,

but perform slightly worse than disk drives for sequential accesses and substantially

worse for random writes [EM05]. Third, the existing approaches base their eval-

uation of external caching on simulation models [BBL06, CJZ06, MDK94]. While

simulation-based evaluation may be well-suited for an approximate evaluation of a

system, they also sidestep key design and implementation complexities as well as

preclude evaluating the overhead contributed by the system itself.

In this chapter we describe the design and implementation of EXCES, an ex-

ternal caching system for energy savings, that comprehensively addresses the above

questions and advances the state of our understanding of external caching systems.

EXCES operates by utilizing an ECD for prefetching, caching, and buffering of disk

data to enable the disk to be spun-down for large periods of time and save energy.

EXCES is an online system — it adapts to the changing workload by identifying

popular data continuously, reconfiguring the contents of the ECD (as and when ap-

propriate) to maximize ECD hits on both read and write operations. To prefetch

popular data which are not present in the ECD, EXCES opportunistically reconfig-

ures the ECD contents, when the disk is woken up on an ECD read miss. EXCES

always redirects writes to the ECD, regardless of whether the written blocks were

prefetched/cached in the ECD; this is particularly important since most systems per-

48

form background write IO operations, even when idle [CJZ06, PADAD05, Sam04].

All of the above optimizations minimize disk accesses and prolong disk idle periods,

consequently conserving energy.

We implement EXCES as a Linux kernel module to demonstrate the suitability

of external caching in production systems. EXCES operates between the file system

and I/O scheduler layers in the storage stack, making it independent of the filesystem

and availing kernel I/O scheduling automatically. EXCES provides strong block-

layer data consistency for all blocks managed by upper layers, by maintaining a

persistent page-level indirection map. It successfully addresses the challenges of page

indirection, including partial/multiple block reads and writes, optimally flushing

dirty pages to the disk drive during reconfiguration, correctly handling foreground

accesses to pages that are undergoing reconfiguration, and ensuring “up-to-dateness”

of the indirection map under all these conditions.

We evaluated EXCES for different workloads including both micro-benchmarks

and laptop-specific benchmarks. In most cases, EXCES was able to save a rea-

sonable amount of energy (∼2-14%). However, we found that using a flash-based

ECD can substantially degrade I/O performance and careful consideration is needed

before deploying external caching, especially in performance-centric data center en-

vironments. Finally, we measured the resource overheads incurred due to EXCES

and found these well within acceptable limits.

In Section 4.2, we profile the energy consumption of disk drives, ECDs and ECD

interfaces, on two different systems. Section 4.3 presents the architecture of EXCES.

Section 4.4 presents the detailed design and Section 4.5 overviews our Linux kernel

implementation of EXCES. In Section 4.6, we conduct an extensive evaluation of

EXCES.

49

Configuration Disk State Iozone Data ECD Specification

No Disk Standby N/A N/A
Disk Active On disk N/A

ECD 1 Standby On ECD SanDisk Cruzer Micro USB
ECD 2 Standby On ECD SanDisk Ultra CF Type II
ECD 3 Standby On ECD SanDisk Ultra CF Type II

Table 4.1: Various laptop configurations used in profiling experiments.

No Disk
Disk
ECD 1
ECD 2

 15

 16

 17

 18

 19

 20

 21

 22

Idle Iozone_Write Iozone_Read Iozone_R/W

E
ne

rg
y

C
on

su
m

ed
 (

W
h)

(a) The shiriu system

No Disk
Disk
ECD 1
ECD 3

 15

 16

 17

 18

 19

 20

 21

 22

Idle Iozone_Write Iozone_Read Iozone_R/W

E
ne

rg
y

C
on

su
m

ed
 (

W
h)

(b) The beer system

Figure 4.1: Energy consumption profiles of various ECD types and interfaces.

4.2 Profiling Energy Consumption

To understand the energy consumption characteristics of ECD relative to disk drives,

we experimented with two different NAND-flash ECDs and three different ECD

interfaces on two laptop systems. Table 4.1 shows the different configurations of the

devices used in the profiling experiments.2 All ECD devices were 2GB in size. We

measured the overall system energy consumption for four states: when the system

was idle with each device merely being active, and with the Iozone [NC], an I/O

intensive benchmark, generating a read intensive, write intensive, and read-write

workload.

Figure 4.1 depicts the individual energy consumption profiles for each storage

device on two different laptops: shiriu and beer. A detailed setup of each machine

2We also tried using an SD NAND flash device. Unfortunately its Linux driver is
still under development and performs poorly for writes (<4 KB/s); consequently, we
discontinued experiments with that device.

50

is given in Section 4.6 (Please see Table 4.2). During each experiment exactly one

device is turned on. These experiments were conducted using a Knoppix Live CD

to enable complete shutdown of the disk when not being tested.

It can be observed that each machine has a distinct behavior. On the shiriu

system, the USB subsystem consumes substantially more energy than the disk sub-

system when the system is idle; we believe this is partly due to an unoptimized driver

for the Linux kernel [Bro04]. However, both types of flash memory consume less

energy than the disk in all the Iozone benchmarks. On the beer system, the findings

were somewhat surprising. Although the exact same flash device was used in the

ECD 2 and ECD 3 configurations, the PC Card interface in the ECD 3 configuration

negatively impacted energy consumption in all the Iozone benchmarks. While we do

not know the exact cause, we postulate this could be due to an unoptimized device

driver.

More importantly, for both systems, even in configurations when the disk is

powered down completely, we observe that the energy savings are bound within

10% for an I/O intensive benchmark. Further, when the system is idle, the ECD

subsystems consumes as much energy as the disk drive. While the laptop workload

would be somewhere in between idle and I/O intensive, these findings nevertheless

call to question the effectiveness of external caching systems in saving energy. Our

goal in this study is to address this question comprehensively.

4.3 System Architecture

Figure 4.2 presents the architecture of EXCES in relation to the storage stack within

the operating system. Positioning EXCES at the block layer is important for several

reasons. First, this allows EXCES coarse-grained monitoring and control over sys-

tem devices, at the block device abstraction. Additionally, the relatively simple block

51

User Applications

VFS

File System:

EXT3, JFS, . . .

EXCES

I/O Scheduler

EXCES

Page Access Tracker

Reconfig

Trigger

Reconfig

Planner

Indirector Reconfigurator

yes

read-miss

Legend: : New components : Existing Components : Control Flow

Figure 4.2: EXCES system architecture.

layer interface allows easy I/O interception and indirection, and also allows EXCES

to be designed as a dynamically loadable kernel module, with no modifications to

the kernel. Second, by operating at the block layer, EXCES becomes independent

of the file system, and can thereby work seamlessly with any file system type, and

support multiple active file systems and mount-points simultaneously. Third, in-

ternal I/Os generated by EXCES itself leverage the I/O scheduler, automatically

addressing the complexities of block request merging and reordering.

EXCES consists of five major components as shown in Figure 4.2. Every block

I/O request issued by the upper layer to the disk drive is intercepted by EXCES.

The page access tracker receives each request and maintains updated popularity

information at a 4KB page granularity. Control subsequently passes to the indirector

component which redirects the I/O request to the ECD as necessary. Read requests

to ECD cached blocks and all write requests are indirected to the ECD. A read-miss

occurs for blocks not present on the ECD and the read request is then indirected

to the disk drive. The reconfiguration trigger module is invoked which decides if

the state of the system necessitates a reconfiguration operation. If a reconfiguration

is required, the reconfiguration planner component uses the page rank information

maintained by the page access tracker to generate a new reconfiguration plan which

52

contains the popular data based on recent activity. The reconfigurator uses this

plan and performs the corresponding operations to achieve the desired state of the

ECD. EXCES continuously iterates through this process until the EXCES module

is unloaded from the kernel.

4.4 System Design

In designing EXCES, we used the following behavioral goals as guidelines: (i) in-

crease disk inactivity periods through data prefetching, caching, and write buffering

on the ECD, (ii) make more effective use of the ECD by continuously adapting to

workload changes, (iii) ensure block-level data consistency under all system states,

and (iv) minimize the system overhead introduced due to EXCES itself. In the rest

of this section, we describe how the various architectural components of EXCES

work towards realizing these design goals.

4.4.1 Page Access Tracker

The page access tracker continuously tracks the popularity of the pages accessed by

applications. We track popularity at the page granularity (instead of block granu-

larity, the unit of disk data access) to utilize the fact that file systems access the

disk at the larger page granularity for most operations. This reduces the amount of

EXCES metadata by a factor of 8X.

Page popularity is tracked by associating with each page a page rank. In our

initial study we found that while accounting for recency of access was important

for a high ECD hit ratio, there were certain pages that were accessed periodically.

LRU-type main memory caching algorithms, tuned to minimize the total number of

disk accesses, typically end up evicting such pages prematurely for large working-

set sizes. In the case of external caching systems, if this page is not present in the

53

accesses

time elapsed since access

value per access

Figure 4.3: Page rank decay function

ECD the disk will need to be woken up to service it periodically, thereby leaving

little opportunity for energy savings. Consequently, the page ranking mechanism in

EXCES provides importance to both recency and frequency of accesses to determine

the rank of a page.

For each page P , the page ranking mechanism splits time into discrete quanta

(ti) and records the number of accesses to the page within each quantum (aPi).

When the rank for a page must be updated, the page ranking mechanism weights

page accesses over the time-line using an exponential decay function (f) as shown in

Figure 4.3. The rank of a page P is obtained as rank(P) =
∑

aPi · f(ti). The page

ranking mechanism thus awards a higher value for recent accesses, but also takes

into account frequency of accesses, by retaining a non-trivial value for accesses in

the past.

4.4.2 Indirection

The indirector is a central component of EXCES. Similar to the page access tracker,

it gets activated upon each I/O request to appropriately redirect it to the ECD if

required.

54

Require: Page Request: req, Indirection Map: map.
1: if req does not contain an entry in map then
2: if req is write then
3: if disk state is STANDBY then
4: find free (alternatively clean) page in ECD
5: if page in ECD is found then
6: add new entry in map (mark dirty)
7: change the req location as per map entry

8: else
9: change the req location as per map entry

10: send request req

Algorithm 2: Indirection Algorithm

The indirector maintains an indirection map data structure to keep track of disk

pages that have been prefetched, cached, or buffered in the ECD. Each entry in the

indirection map includes the disk page mapped, the corresponding ECD page where

it is mapped to, and whether the copy in the ECD is dirty or not. The data structure

is implemented so that we can find a specific entry, either given the page information

on the ECD or the page on disk. EXCES uses native kernel data structures that

allow constant time operations for the above.

For each I/O request, the indirector component first checks to see if it is larger

than a page. If so, it splits it into multiple requests, one for each page. Each page

request is handled based on four factors: (i) type of operation (read or write), (ii)

the disk power state, (iii) indirection map entry, and (iv) presence of free/clean

page in the ECD. Algorithm 2 shows the algorithm followed by the indirector for

each page request. The algorithm attempts to keep the disk in idle state as long as

possible, to maximize energy savings. This is feasible in two cases - if there is a free

or clean page in the ECD (line 5) to absorb a page write request, or if the page is

already mapped (line 9).

In the rest of the cases, the disk is either active or would have to be spun up

owing to an ECD miss. In each such case, the ECD miss counter is incremented;

55

Legend: : reads : writes

Requests: A C D

Indirector Disk

Disk Page ECD Page Dirty Bit

.
A A′ 1
B B′ 0
∅ D′

∅

.

ECD

A

fr
e
e
p
a
g
e
fo
r
D

C

A
′

D
′

Figure 4.4: Indirection example

this counter is used by the reconfiguration trigger component of EXCES (described

shortly). In the example of Figure 4.4, there are three page requests: A, C and

D. In the case of A, there is an entry in the indirection map; consequently, it gets

indirected to the corresponding page in the ECD. In the case of C, the page does

not have an entry in the indirection map; the indirector lets the request continue to

the disk. Finally, the write request D is handled differently than the above. There is

no map entry for D. However, having found a free page in the ECD, the indirector

creates a new map entry and redirects the request to the ECD, thereby avoiding

spinning up the disk.

4.4.3 Reconfiguration Trigger

Upon each ECD miss, the indirector invokes the reconfiguration trigger, which deter-

mines if a reconfiguration of the ECD contents would be appropriate at the current

time. If yes, it invokes the reconfiguration planner component (described next);

otherwise, it does nothing.

The appropriateness of a reconfiguration operation depends on three necessary

conditions: (i) the target state of the ECD contents is different than the current

56

one; (ii) the current ECD miss rate (per unit of time) has exceeded a threshold,

and (iii) a threshold amount of time has elapsed since the previous reconfiguration

operation. If the above hold true, the reconfiguration trigger concludes that the

current state of ECD contents is not favorable to energy saving, and consequently

must be reconfigured to reflect recent changes in the workload.

4.4.4 Reconfiguration Planner

The reconfiguration planner creates a list of operations, which constitute the recon-

figuration plan, to be performed during the next reconfiguration operation. To be

able to create such a list whenever invoked, it continuously maintains a top-k matrix

data structure, that holds the “top k” ranked pages. Choosing k as the size of the

ECD in pages, this matrix can then be used to identify the target contents for the

ECD that the reconfiguration operation must achieve.

The top-k matrix continuously incorporates the page rank updates provided by

the page access tracker. The threshold for being inserted into the top-k matrix is

set by its lowest ranked page. (We present and analyze this data structure in detail

in Section 4.5).

The reconfiguration plan is constructed in two parts. The first are the “outgoing”

pages which must be flushed to the disk; these are no longer popular enough to be

in the ECD and are dirty. The second are the “incoming” pages which now have a

sufficiently high rank to be in the ECD but are not currently in it. These constitute

the pages to be prefetched to ensure a high ECD hit ratio in the future.

Construction of the reconfiguration plan occurs upon invocation by the recon-

figuration trigger. The outgoing and incoming lists are then created based on the

top-k matrix contents and the indirection map. The reconfiguration planner walks

through each page of the ECD, creating an entry in the outgoing list for each page

57

that is no longer in the top-k matrix. Next, it walks through each entry in the top-k

matrix, creating an entry in the incoming list for each page that is currently not

in the ECD. Once these two stages are completed, the new reconfiguration plan is

obtained.

4.4.5 Reconfigurator

The reconfigurator component of EXCES performs the actual data movement be-

tween the disk and ECD. Broadly, the goal of each reconfiguration operation is to

reorganize the ECD contents based on changes in the application I/O workload, so

that disk idle periods are prolonged. This is done simply by following the reconfig-

uration plan as created by the planner component.

Require: Phase: phase, Origin: orig, Destination: dest, Indirection Map: map Table:
map

1: if phase = DISK TO ED then
2: add a new entry [orig, dest] in the map

3: mark the new entry as “clean”

4: read from orig

5: write to dest

6: if phase = ED TO DISK then
7: delete the entry for dest from the map

Algorithm 3: Algorithm used for a single operation during reconfiguration.

The reconfiguration operation is managed in two distinct “phases”: ECD to

Disk and Disk to ECD. These two phases are treated differently, and are detailed in

Algorithm 3. The first phase, ECD to Disk, addresses operations in the outgoing list

of the reconfiguration plan. For each entry in the list, the data movement operation

is followed by deleting the corresponding entry in the indirection map. The second

Disk to ECD phase, handles the incoming list in a similar way, except that a new

entry is added to the indirection map, prior to the actual data movement.

58

Indirection during reconfiguration Indirecting I/O requests issued by applica-

tions during the reconfiguration operation must be carefully handled due to implicit

race conditions. A race condition arises if an application accesses a page currently

being reconfigured. While it is perhaps simpler to postpone servicing the applica-

tion I/O request until the reconfiguration operation for the page is completed (to

ensure data consistence), this delay can be avoided. We designed separate policies to

handle read and write operations issued by the application. If the application issued

a read request, the indirector issues the read to the origin page location so it pro-

vides the most up-to-date data. For a write request by the application, the request

is issued to the dest location and the reconfiguration for the page is discontinued.

These policies help to alleviate the overhead the reconfiguration causes to the user

level applications by minimizing I/O wait time for foreground I/O operations.

4.4.6 Other Design Issues

Disk spin-down policy Researchers have proposed two classes of policies: dy-

namic and static [HLSS00, DKB95]. In dynamic policies, the system dynamically

varies the time the disk needs to stay idle before being put on standby. In EXCES

we chose to use a static policy with a fixed timeout for spin-down. In the evaluation

section, we experiment with various values for this timeout parameter.

Data Consistency Data consistency is always an important issue whenever mul-

tiple copies of the same information exist. In EXCES, data is replicated in the ECD.

We need to ensure that the system reads up-to-date versions of data after rebooting

the machine as well as in case of system crash or sudden power failure. We reserve

the first portion of the ECD to maintain a persistent copy of the indirection map.

59

typedef struct {
unsigned int rank;

unsigned int tmp rank;

unsigned short last acc[H SIZE];

unsigned int disk lbn;

} page ranker t

Figure 4.5: The page ranker structure

This persistent copy of the indirection map is updated each time the map is

changed and gets invalidated if the EXCES kernel module is unloaded cleanly. In

case of a power failure or system crash, all entries contained in the persistent indi-

rection map are assumed to be dirty.

4.5 System Implementation

We implemented EXCES as a Linux kernel module that can be dynamically in-

serted and removed without any changes to the kernel source. Since the block layer

interface of the Linux kernel is very stable, EXCES can run “out of the box” on

the latest 2.6 series kernels. The current implementation of EXCES utilizes native

kernel data structures such as radix trees and red-black trees which are very likely

to be retained in the future kernel versions. In this section, we elaborate on key

aspects of the EXCES system implementation that are novel and those which were

particularly challenging to “get right”.

4.5.1 Maintaining the Top-k Ranked Pages

The EXCES page ranking mechanism (described in Section 4.4.1) considers both

recency and frequency of page accesses. Figure 4.5 shows the page ranker t struc-

ture that is used to encapsulate the rank of a page. This structure allows us to

efficiently capture the history of page rank values updated due to accesses over

60

20 12 7 5

18 11 10 4

16 14 8 3

15 13 7 6

1 3 2 4

(a) movements needed

20 12 11 5

18 15 10 4

17 14 8 7

16 13 7 6

1 2 1 3

(b) after insertion

Figure 4.6: The Top-k matrix. Figure 4.6(a) shows the matrix before the insertion
and indicates the necessary movements and the resulting matrix after inserting the
entry 17 is shown in Figure 4.6(b).

time. disk lbn stores the starting on-disk logical block number of the page and

last acc array contains the timestamps of the last H SIZE accesses (default is 4).

Each time the last acc array is filled up, it is passed to the ranking decay function

(Figure 4.3); the resulting values are stored in tmp rank using a compact representa-

tion and the last acc array is reset. Before overwriting the tmp rank, its previous

value is decomposed and added to the historical rank of the page contained in rank.

The actual rank of a page at any time is given by the sum of decomposed tmp rank

and rank values.

To be able to access the top-k ranked pages (whenever required by the reconfig-

uration planner), we implemented the top-k matrix, a novel matrix data structure

of dimensions (
√
k+1)× (

√
k), which stores the top-k ranked pages. Since k can be

large (as much as 108 for gigabyte-sized ECDs), operations on the top-k matrix must

be highly efficient. While regular sorted matrices are good for lookups (O(log(
√
k))

using binary search in both columns and rows), insertions are expensive at O(k)

since all the lower (or upper) values must be shifted. To reduce the insertion cost,

we use an extra row to store an offset that indicates where the maximum value of

the column is located; all the elements of that column are also sorted according to

that offset. (Please see Figure 4.6(b) for an example.) By maintaining this extra in-

61

Disk pages: 0 8 16 . . . ECD pages: . . . 24 32 40 . . .

Legend: : Request

mapped to

mapped to

Figure 4.7: Alignment problem example

formation we retain O(log(
√
k)) lookups and can also perform insertions in O(

√
k).

This is because, in the worst case, we need to shift elements in exactly half a column

and transfer its minimum to the next column where it becomes the maximum, and

so on, until we reach the last column. A detailed example of the worst-case insertion

process into the top-k matrix is presented in Figure 4.6.

Detecting if a page belongs in the top-k highest ranked pages is as easy as

checking if its rank is greater than the minimum rank in the top=k matrix, in

which case the page must be inserted, and marked for inclusion in the next round

of reconfiguration.

4.5.2 Indirector Implementation Issues

As mentioned earlier, in EXCES we chose to maintain metadata about data pop-

ularity and data replication at the granularity of a page. While this optimization

allows us to drastically cut down on metadata memory requirement (by 8X), it

complicates the implementation of the indirector component. Since I/Os may be

issued at the block granularity, the indirector component must carefully handle I/O

requests whose sizes are not multiples of the page-size and/or which are not page-

aligned to the beginning of the target partition. In EXCES, we address this issue

via I/O request splitting and page-wise indirection.

Figure 4.7 shows an example of the alignment problem that the indirector must

handle. Notice that two pages on the disk mapped to the ECD. The first page on

the disk that starts at block 0, is mapped to the fifth page on the ECD that starts

62

from block 40. Also, the third page in the disk (starting at block 16), is mapped to

the fourth page of the ECD, starting at block 24 of the ECD. The second page in

the disk is not mapped to the ECD at all.

Consider an application I/O request as represented by the shaded region. This

request covers a part of the first, the entire second page, and a part of the third

page on disk. The indirection operation is complicated because the I/O request is

not page-aligned. The indirector must individually redirect each part of the request

to their appropriate locations. The above can occur with both read and write I/O

requests.

In EXCES, to address I/O splitting, we create new requests using the Linux

kernel block I/O structure called bio, one per page. All attributes of the bio

structure are automatically populated based on lookups to the indirection map,

including the sector, offset, and length within the page that will be filled/emptied

depending of the operation. After the splitting and issuing each “sub-I/O”, the

indirector waits for all sub-I/Os to complete before notifying the requester about

the completion of the original I/O operation.

There is a special case while handling write requests that are not already mapped

to ECD and that are not page-aligned. If EXCES buffers such writes in the ECD (as

it does with other page-aligned writes), there will be inconsistency since a portion

of the page will hold invalid data. For this special case, we let the request continue

to disk.

4.5.3 Modularization and Consistency

EXCES utilizes the design of the block layer inside the Linux kernel to enable its

operation as a dynamically loadable kernel module. Specifically, each instantiated

block device registers a kernel function called make request that is used to handle

63

the requests to the device. EXCES is dynamically included in the I/O stack by

substituting the make request function of the disk device targeted for energy sav-

ings. This allows us to easily and directly modify any I/O requests before they are

forwarded to the disk.

While module insertion is simple enough, module removal/unload must bear the

additional responsibility of ensuring data consistency. Upon removal, EXCES must

flush on-ECD dirty blocks to their original positions on disk. In EXCES, the I/O

operations required to flush dirty pages upon module unload are handled using the

reconfigurator through the ECD to Disk phase. In addition, EXCES must address

race conditions caused when an application issues an I/O request to a page that

is being flushed to disk at that exact instant. To handle such races, EXCES stalls

(via sleep) the foreground I/O operation until the specific page(s) being flushed

are committed to the disk. Since we expect module unload to be a rare event and

the probability that a request for a page at the exact time it is being flushed to be

low, the average response time for application I/O remains virtually not affected.

4.6 Evaluation

In our evaluation of the EXCES system, we answer the following questions in se-

quence: (i) What is an appropriate spin-down timeout for EXCES? (ii) How much

energy does EXCES save? (iii) What is the impact on application I/O performance

when EXCES is used? and (iv) what is the overhead of the EXCES system in terms

of memory and computation?

To assess the above, we conducted experiments on two laptops, shiriu and beer

(Table 4.2), both running Linux kernel 2.6.20. The experiments utilized the ECDs

described in Table 4.1. The hard drives on both laptops were running the Linux

ext3 file system and the ECDs used ext2.

64

To quantify the system’s energy dissipation we used the battery information

provided by ACPI, and took readings of the energy level at 10 seconds intervals, the

default ACPI update interval. The display brightness was reduced to its minimum

visible level in all experiments.

For comparison purposes, in each experiment we set up various configurations

including a default system with no optimizations, a system configured with the

laptop-mode energy saving solution [Sam04], a system configured with EXCES, and

a system configured with both laptop-mode and EXCES. Laptop-mode is a setting

for the Linux kernel that forces much larger read-aheads (default 4MB) and holds

off writes to the disk by buffering them in memory for a much longer time period.

In all experiments, EXCES was configured to use an ECD miss rate threshold of

1000 misses-per-minute to trigger reconfiguration and a minimum duration of one

minute between two reconfiguration operations.3

We used the BLTK (Linux Battery Life Tool Kit) [BKL+07] as our primary

benchmark for system evaluation. This benchmark focuses specifically on laptop-

specific workloads, targeted for evaluating battery life of laptop systems in realistic

usage scenarios. Specifically, we use the BLTK Office and the BLTK Developer

benchmarks in our experiments. Additionally, we use the Postmark [Kat97] file

system benchmark, designed to simulate small file workloads, typical of an email

server. While we do not suggest the use of EXCES on the server-side (as yet), this

benchmark allows us to evaluate the impact of I/O intensive workloads on external

caching systems.

3While we used these static values (based on preliminary experimentation) for sim-
plicity, subsequent versions of EXCES will be able to dynamically adapt these thresholds
based on application workload.

65

Name Model CPU RAM HD Specifications

shiriu Dell E1505 Intel Core 2 @ 1.83 GHz 1 GB Toshiba MK1234GSX
(5400 RPM, 120 GB)

beer Dell 600m Intel Pentium M @ 1.6
GHz

512 MB Western Digital
WD400VE (5400 RPM,
40 GB)

Table 4.2: Specifications of the machines used in the experiments

 20.5
 21

 21.5
 22

 22.5
 23

 23.5
 24

 24.5
 25

 25.5
 26

5 10 15 30 ∞

E
ne

rg
y

C
on

su
m

ed
 (

W
h)

Timeout (seg)

PostMark LM
PostMark EX

PostMark EX+LM
Office LM

Office EX
Office EX+LM

Figure 4.8: Effect of the disk spin-down timeout value on energy savings

4.6.1 Choosing the Disk Spin-down Timeout

While researchers have suggested the benefits of using adaptive disk spin-down time-

outs [HLSS00, DKB95], the current version of EXCES uses a static disk spin-down

timeout value. We used two benchmark workloads to determine the effect of the

spin-down timeout on energy savings, using the shiriu system. We compared the

system when configured with EXCES, laptop-mode [Sam04], and a combination of

EXCES with laptop-mode. We used the ECD 2 configuration from Table 4.1 for

this experiment. The BLTK Office benchmark, which automates the activities of

opening and editing OpenOffice.org documents, spreadsheets, and drawings, was

our first workload. The second workload used was the PostMark benchmark.

66

Base
Laptop mode
EXCES (USB)
EXCES (CF)
EXCES+LM (USB)
EXCES+LM (CF)

 20

 21

 22

 23

 24

 25

 26

 27

 28

Idle Devel_BLTK Office_BLTK PostMark

E
ne

rg
y

C
on

su
m

ed
 (

W
h)

Figure 4.9: Energy consumption with different workloads

Figure 4.8 shows the results using timeout intervals of 5, 10, 15, 30 seconds and

no timeout (∞ seconds). We used hdparm to set the timeout intervals in the disk’s

firmware, restricted to a minimum value of 5 seconds. A general trend observed

when using EXCES (with and without laptop-mode) is that smaller timeout values

allowed for greater energy savings, except for the BLTK Office workload which

reaches its optimum at 10 seconds. All subsequent experiments use a 5 second disk

spin-down timeout.

4.6.2 Energy Savings

To evaluate EXCES savings, we measure the energy consumption with six different

system configurations: the system “as is” with no energy saving solution (Base),

system running Laptop mode, EXCES using a USB and CF as ECD respectively,

and EXCES with Laptop mode activated, using a USB and CF as ECD respectively.

These experiments were conducted on the shiriu system, using configurations ECD

1 for USB and ECD 2 for CF (per Table 4.1).

67

We evaluated four different workloads: (i) an idle system, (ii) the BLTK Devel-

oper benchmark, (iii) the BLTK Office benchmark, and (iv) the Postmark bench-

mark. Figure 4.9 shows that on an idle system, all energy saving systems consume

more energy that the Base configuration. The laptop-mode configuration uses addi-

tional energy because of its aggressive prefetching mechanism, which ends up waking

the disk for unnecessary data fetch operations. A similar behavior is observed when

using EXCES in combination with laptop-mode. When EXCES is used by itself,

since the disk is mostly spun-down anyway, any small disk energy savings is negated

by the extra energy consumed due to the ECD device itself.

The BLTK Developer benchmark performs a moderate amount of I/O. Its be-

havior mimics the operations of a developer who creates new files, edits files using

the vi editor, and compiles the Linux kernel source tree, all of these interspersed

with appropriate “human like” idle periods. We notice that moderate energy savings

can be obtained for all the energy-optimized solutions. The configuration with EX-

CES alone provides the most energy savings (∼14% with CF and ∼8% with USB).

The configurations that use laptop-mode deliver relatively lesser energy savings; we

attribute this to a fraction of the prefetching operations turning out to be ineffective.

For the BLTK Office benchmark, we note that there is no substantial energy

saving in any of the configurations, and energy consumption is somewhat increased

when using a USB device as a ECD. We believe that this is due to the behavior of the

benchmark which opens large executables from the OpenOffice suite, typically stored

sequentially on the disk drive. These are subsequently cached in main memory,

resulting in very few I/O operations after the executables have been loaded, reducing

the opportunity for energy saving.

Finally, energy consumption for the Postmark benchmark follows a similar trend

to the BLTK Office. However, in this case, we believe the reasoning is different.

68

Postmark is an I/O intensive workload, with a large fraction of sequential write

operations. These sequentially written blocks to disk get absorbed as random writes

in the ECD, owing to the current implementation of write buffering which does not

attempt to sequentialize buffered writes. Random writes on flash-based storage

are the least efficient, both in performance and energy consumption [EM05]. We

believe that a better implementation of write buffering in EXCES which improves

the sequentiality of buffered writes, can result in better energy savings for a write

intensive workload.

It is interesting to note that in almost all the cases using the USB as ECD

makes the energy saving system to consume more energy than the base case. On

the other hand, using the CF leads to a better results for EXCES. Further, our

findings point to a range of ∼2-14% for the cases when EXCES was indeed able

to reduce energy consumption, in somewhat of a contrast to earlier results from

simulation studies [BBL06, CJZ06, MDK94] that predicted energy savings of ∼20-

46%4. This difference is primarily because the energy-consumption of the ECD was

considered negligible and ignored in those studies.

4.6.3 Performance Impact of External Caching

While ECDs offer better performance than disk drives for random reads, they per-

forms worse for other workloads. To evaluate performance, we focus on two metrics:

(i) the average I/O (completion) time, and (ii) overall benchmark execution time.

These provide complementary information and allow us insight into I/O perfor-

mance. The average I/O time was obtained by using the Linux kernel tool blk-

trace [ABO07]. The benchmark execution time was measured using the Bash time

command. Each benchmark was run several times and the results averaged.

4extrapolated to address whole system energy consumption

69

Base
Laptop mode
EXCES (USB)
EXCES (CF)
EXCES+LM (USB)
EXCES+LM (CF)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Devel_BLTK Office_BLTK PostMark

A
ve

ra
ge

 I/
O

 ti
m

e
(m

se
c)

(a) Average I/O time

Base
Laptop mode
EXCES (USB)
EXCES (CF)
EXCES+LM (USB)
EXCES+LM (CF)

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

Devel_BLTK Office_BLTK PostMark

E
xe

cu
tio

n
T

im
e

(s
ec

)

(b) Benchmark Execution time

Figure 4.10: Performance impact of EXCES with various workloads

Figure 4.10 shows the results of these experiments. In both the BLTK bench-

marks, the average I/O time increases substantially for the ECD based solutions,

due to a large fraction of the I/O workload being sequential, allowing the disk drive

to perform better. However, the increase in the overall benchmark execution time

is negligible, due to substantial idle periods between I/O operations. This indicates

that the impact to user perceived performance is minimal, thereby making the case

for using external caching with these laptop-oriented workloads. On the other hand,

an interesting anomaly is observed for the write intensive server-oriented Postmark

benchmark. While the average I/O times with most of the ECD based solutions are

lower, the total execution times are higher. We believe that this counter-intuitive

result is because of writes being reported as completed by the ECD when they are

written to the cache on the ECD but before they are actually committed to the

flash medium. This reporting mechanism gives the false impression of fast individ-

ual write operations, when in reality the overall write I/O performance is severely

throttled as the ECD commits these writes to the persistent flash with high latency.

4.6.4 Resource Overhead

In EXCES, we paid special attention to how we used the scarce kernel-space memory.

The memory usage for each of the EXCES’s data structures is presented in the Table

70

Pages/GB Dirty-bit
array

Indirection
map

Phase ta-
ble

Top-k ma-
trix

Page
ranker

218 · S S
25

S 13·S
22

S + 1
218

22 ·D

Table 4.3: Size in megabytes for each EXCES data structure. S and D are the
ECD and the disk sizes in GB respectively. The Phase Table is a temporary data
structure used only during reconfiguration.

4.3. The calculated sizes are for the worst case, i.e., when the ECD is completely

filled of data. These formulas give us permanent memory usage of 0.1% and a

temporary usage of 0.3% (during reconfiguration) relative to the ECD size. We

believe these values are well-within acceptable limits.

To measure the CPU overhead due to EXCES, we used the following microbench-

mark on the beer system. The microbenchmark issues a grep operation for a non-

existent string on the EXCES source directory 100 times, that created a total of

21264 I/O operations. We divide the CPU overhead into two parts: the processing

of the request before it is issued to the storage device (either ECD or disk), and

the processing after the completion of the request. On an average, for each I/O

operation, the corresponding numbers were 52 µs and 0.58 µs. Based on these,

EXCES adds an average latency of 0.05 ms to the processing of each I/O request,

which is relatively small compared to disk latency (≥ 1 ms) and ECD latency (≥

0.5ms) [GF07]. While our current implementation of EXCES optimizes several op-

erations, we believe that there is room for further improving this overhead time.

Finally, we measured the reconfiguration overhead for the moderately I/O inten-

sive BLTK developer benchmark. The average per-page reconfiguration time was

measured to be 722 µs, an acceptable value for an infrequent operation.

71

4.7 Summary

In this chapter we present EXCES, an external caching system that reduces system

energy consumption by prefetching, caching, and buffering disk data on a less energy

consuming, persistent, external caching device. While external caching systems

have been proposed in the past, EXCES is the first implementation and evaluation

of such a system. We conducted a systematic evaluation of EXCES to determine

overall energy savings and the impact on application performance. EXCES delivered

overall system energy savings in the modest range of ∼2-14% across the BLTK and

Postmark benchmarks. Further, we demonstrated that external caching systems

can substantially impact application performance, especially for a write-intensive

workload.

Note that the energy savings of EXCES and SRCMap (see §3) can be further

improved by eliminating page fetch-before-update operations that would otherwise

disturb spun down disks. Furthermore, we can also save energy by reducing the

amount of memory required by the system, whereas the solutions that we have dis-

cussed so far focused on reducing energy utilization by the disk. In light of these

observations, the next chapter presents non-blocking writes, a technique for eliminat-

ing fetch-before-update operations. Non-blocking writes can be used in conjunction

with both SRCMap and EXCES, to improve the disk idle time without degrading

the performance of the system. Furthermore, we explain how non-blocking writes

has the potential to increase performance on systems with reduced memory to save

energy.

72

4.8 Credits

EXCES was first published in the proceedings of the IEEE International Symposium

on High-Performance Computer Architecture in February 2008 [UGB+08] and was

presented by Luis Useche. Luis Useche contributed the initial design of EXCES

including each component and their interactions. All the authors contributed in

subsequent iterations of the system design. Luis Useche, Jorge Guerra, Mauricio

Alarcon, and Medha Bhadkamkar implemented the system for the Linux kernel.

Luis Useche and Jorge Guerra executed all the experiments to evaluate the system.

73

CHAPTER 5

CONTROLLING I/O TRAFFIC WITH NON-BLOCKING WRITES

Chapters 3 and 4 presented techniques for improving the energy efficiency of

storage systems. These solutions achieve energy efficiency by replicating popular

data and spinning down the primary data stores. The effectiveness of these tech-

niques increases as spun-down disks are kept undisturbed for longer periods of time.

The page fetch-before-update behavior in commodity operating systems can reduce

the disk idle time for write operations. Hence, eliminating fetch-before-update oper-

ations offers a chance to keep disks idle for longer periods of time. In this chapter,

we present the design, implementation, and evaluation of non-blocking writes, a

solution for eliminating the fetch-before-update behavior. Non-blocking writes tem-

porarily buffer write operations—while delaying fetch operations—and immediately

returns control to the application. This technique can not only increase the en-

ergy efficiency of caching systems like EXCES and SRCMap but also improve the

performance of low-memory but energy-efficient systems with high paging rates.

5.1 The Fetch-before-update Behavior

Writing data to main memory is not always fast. When using demand-paged virtual

memory and file systems, the main memory caches a subset of the data contained

within a backing store, typically a hard disk or SSD (array) device. However, mem-

ory references are done at a much smaller granularity (32 or 64 bit words) than is

possible in backing stores. When data not present in memory is read or modified by

a process, the operating system (OS) must fetch an entire page, typically 4KB or

8KB in commodity OSes, that contains the few bytes referenced by the processor.

Page fetches occur in two scenarios: (1) a page mapped to the process address space

(anonymous or file system page cache page) not resident in physical memory gets

74

PageProcess OS

Patch

Backing Store

1. Write(failed) 2. Miss

3. Buffer

4. I
ssu

e

pag
e fetc

h

5. Return

6. Complete

7. M
erge

Figure 5.1: A non-blocking write in action. The first step, a write reference, fails
because the page is not yet in memory. The dashed boxes are non-active entities.

accessed by a machine instruction (e.g., LOAD or STORE) causing a page fault, or (2)

a system call accesses the OS page cache (e.g. OPEN, READ, or WRITE). Since a page

fetch blocks the process, the performance of the running process during that time

is limited by the performance of the backing store.

For read references, such blocking cannot be avoided since there is no other

provision to correctly generate the data being read. Interestingly, the same block-

ing approach has been applied to handle write references in commodity operating

systems and hypervisors till today (e.g., see recent Linux 2.6.34.5 and Xen 4.1.0 ker-

nels). These include write references to swap-backed process memory or disk-backed

file system pages, either directly (for anonymous and memory mapped pages) or via

system calls (for OS cached pages). Thus, the writing process blocks in case the page

being referenced is not in core memory until the referenced page is synchronously

read from the backing store, leading to a fetch-before-update requirement [MBKQ96].

We demonstrate that writes can and should be handled differently and propose an

approach to eliminate blocking for all write references to memory. We observe that

in case of write references, instead of blocking the process to read in the page, the

operating system can absorb such writes in temporary buffer pages and allow the

process to continue executing immediately. The operating system can issue the page

75

read I/O to the backing store asynchronously and merge the update later when the

page has been read into memory. A graphical representation of this process appears

in Figure 5.1.

The proposed approach improves system performance in two ways. First, it im-

mediately unblocks the process which is then free to execute subsequent instructions

and make progress; the originally blocking page fetch operation can now overlap with

useful computation. Second, it improves the parallelism of data retrieval from the

backing store by creating the ability to keep many outstanding I/O (OIO) opera-

tions to handle multiple page fetches by a single process at the same time. Doing so

leads to better throughput for both SSD and hard disk based backing stores, both

of which offer better I/O throughput with multiple outstanding I/O operations.

On the energy side, eliminating the fetch-before-update has the potential to im-

prove the effectiveness of current energy efficient systems. First, the gain in perfor-

mance helps to improve their practical usability. For instance, systems that exchange

DRAM with a larger but more energy efficient flash have a higher paging rate that

can potentially benefit from delaying fetches when applications update pages. Sec-

ond, for storage, the flexibility offered by non-blocking operations can save energy

by serving page fetches in batches and increasing the disk idleness as opposed to

individual requests interspersed by a very small amount of idleness.

Although our approach can be used to save energy, in this chapter we start

with an early design focused on performance. The proposed design can be easily

combined with minimal changes in any energy efficient system like SRCMap (see

§3) or EXCES (see §4) and improve their effectiveness even further.

76

5.2 Motivating Non-blocking Writes

Technology trends indicate that page fetch rates are likely to increase in the future on

many platforms. On the server end, multi-core systems and virtualization now en-

able more co-located workloads leading to larger memory working sets in systems. A

recent report from VMWare indicated that of the four main computing resources for

a typical system, the average utilization rates for memory are the highest (at 40%)

compared to average utilization rates of less than 10% for the other resources [VMw].

On the personal computing end, increasingly data intensive desktop/laptop applica-

tions continue to place greater I/O demands [HDV+11]. Recent findings also show

that page fetches and storage I/O also affect the performance of the increasingly

data-intensive applications on mobile platforms significantly [KAU12]. Flash-based

hybrid memory systems and storage caching and tiering systems are also motivated

by these trends [CKZ11, GPG+11, SS10a, KM06, WR10]. This additional high-

performance SSD layer in the storage stack combined with the increasingly data

intensive nature of many workloads support a move to higher page fetch rates in

future systems.

To better understand the potential impact of non-blocking writes, it is useful to

evaluate the significance of the blocking page fetch problem in real-world workloads.

We start by using a trace-driven virtual memory simulator that gives us an initial

estimates of non-blocking fetches. Then, we use an instrumented Linux to measure

the amount of time processes spent waiting for blocking page fetch operations as

well as the fraction of page fetches due to writes that could be made non-blocking.

We ran on both systems a broad range of workloads that exercise process anony-

mous memory as well as the file system page cache and present our analysis in this

section. Additionally, we examine the alternate process execution model enabled

77

Blocking write

Non-blocking write

Write P Read P

Write P Read P
Time

Wating I/O: Thinking:

Figure 5.2: Page fetch asynchrony with non-blocking writes.. When the out-of-core

page P is written, the application waits for the completion of the I/O. A brief thinktime

is followed by a read to P . With non-blocking writes, since the write returns immediately,

computation and I/O are performed in parallel.

by non-blocking writes to understand how it improves process execution and I/O

performance.

5.2.1 Solution Impact

Non-blocking writes are designed to eliminate the fetch-before-update requirement.

By eliminating fetch-before-update, non-blocking writes improves the performance

by first, eliminating the synchronous page fetch latency for all out-of-core page writes

and many out-of-core page reads, and second, parallelizing independent page fetches

that would otherwise be serviced sequentially. While we discuss detailed design in

the next section, we now consider how non-blocking writes alters process execution

conceptually and quantify to what extent applications can benefit from them.

We show the potential for non-blocking writes for anonymous memory by ana-

lyzing two sets of benchmarks. Fist, we analyze a sub-set of the DaCapo benchmark

suite as well as SPEC Power with our virtual memory simulator. Then, we study

a subset of the SPEC CPU2006 benchmark suite designed to stress the memory

subsystem, CPU, and compiler.

78

 0

 20

 40

 60

 80

 100

BT EC FP H2 JT PD SS SP
100

SP
20

SP
40

SP
60

SP
80

TC TB TS

%
 N

on
-B

lo
ck

 F
au

lts

Workload

50%
25%

Figure 5.3: Fraction of page faults that benefit from non-blocking writes for various
workloads with two memory sizes: 50% and 25% of each workload’s footprint. We
excluded those non-blocking writes that were followed by a non-blocking read.

omnetpp astar gcc xalancbmk
Memory Provisioned (MB) 200 250 300 270 300 320

% Asynchronous Fetches 1.3 22.1 15.5 8.7 10.3 10.3
% Time Waiting I/O 5.9 28.1 37.5 70.9 47.7 30.5
% Possible Improvement 0.08 6.2 5.8 6.2 4.9 3.14

Table 5.1: Time benefit estimation for non-blocking writes. Two statistics to es-
timate the amount of time that can be saved with non-blocking writes for four
benchmarks of the SPEC CPU2006 suite: (a) Fraction of page fetches that can be
handled asynchronously and (b) Fraction of time spent by the benchmark waiting
for I/O. The product of both quantities represents the expected time savings we
could have for these benchmarks using non-blocking writes.

79

Page Fetch Asynchrony. With non-blocking writes, page fetches are made asyn-

chronous. When an application writes to a page not available in memory, operating

systems issue the read request, block, and return control to the application only

after the page is fetched and updated. In the same situation, non-blocking writes

buffers the written data in memory and returns control to the application, allowing

the application to make progress immediately. Figure 5.2 depicts this improve-

ment graphically. To have an initial estimation of possible asynchronous fetches, we

fed our virtual memory simulator with full system memory traces of heterogeneous

workloads summarized in Table 5.2. Figure 5.3 shows that with a DRAM provi-

sioned for storing 50% of the total memory pages referenced, there is a substantial

fraction—as much as 80%—of the total page faults (including both read and write

faults) that can benefit from non-blocking writes for a variety of workloads. We also

instrumented Linux to measure the fraction of page fetches that can be performed

asynchronously with a full implementation of non-blocking writes. Table 5.1 shows

this information for a subset of the SPEC CPU2006 benchmark workloads summa-

rized in Table 5.3. In the case of xalancbmk, we also show the same information

varying the amount of memory provisioned. We see a decrease in the number of

page fetches that can be asynchronous when memory is reduced for xalancbmk.

This indicates that most of the additional fetches are due to reads. Furthermore, we

found that in the best case, non-blocking writes can make up to 22% of the major

faults asynchronous.

The results for both benchmark suites, SPEC CPU2006 and DaCapo, were ob-

tained using two different methods, real implementation and simulation. Despite

their difference in how they were estimated, their results show similar number of pos-

sible asynchronous fetches, 13% and 19% on average respectively. Both benchmark

suites are workloads to simulate real applications that exercise CPU and virtual

80

memory sub-system. Based on this evidence, we can conclude that it is common

for computing and memory intensive applications to have a substantial amount of

fetches that can be serviced asynchronously.

Preliminary Estimations. Applications can only benefits from asynchronous

fetches if they spend a significant amount of time waiting for I/O. In our four

SPEC CPU2006 benchmarks, we calculated the fraction of time each application

is blocked while waiting for I/O completion. We show these results in Table 5.1.

Since non-blocking writes decrease only the I/O waiting time and we know what

fraction of the I/Os can be serviced asynchronously, we can calculate an expected

improvement due to non-blocking writes by combining these two statistics. Table 5.1

shows the expected time savings for all benchmarks. Non-blocking writes will be

able to save at most 6.2% of time from these benchmarks. Moreover, in the case

of xalancbmk, we see that as the memory is reduced the potential benefits of non-

blocking writes increases. This is due to the fact that the amount of time waiting for

I/O increases when the memory is reduced. We report the actual results of running

these benchmarks using non-blocking writes in Section 5.7.2.

Page Fetch Parallelism. Applications that access multiple pages not resident

in memory during their execution are typically blocked by the operating system,

once for each page while fetching it. Following this approach, operating systems

end up sequentializing page fetches for accesses that are independent of each other.

With non-blocking writes, the operating system is able to fetch pages in parallel

taking better advantage of the typically available I/O parallelism at the device level.

Higher levels of I/O parallelism typically lead to greater device I/O throughput

which ultimately improves page fetch throughput for the application. Figure 5.4

depicts this improvement graphically.

81

Blocking write

Non-blocking write

Write P Write Q Read P

Write P

Write Q

Read P

Time

Blocking I/O: Background I/O:

Figure 5.4: Page fetch parallelism with non-blocking writes. Two out-of-core pages,
P and Q, are written in sequence and the page fetches get serialized by default.
With non-blocking writes, P and Q get fetched in parallel increasing device I/O
parallelism and thus page fetch throughput. Note that the read to P must still
block until the page is fetched.

Shaping Resource Utilization. The page fetch and merge steps in non-blocking

writes (Figure 5.1) are not necessary for continued process execution. As we shall

discuss in §5.4, by delaying and/or intelligently scheduling page fetch operations,

we can reduce and shape both memory consumption and the page fetch I/O traffic

to storage due to out-of-core page accesses. These variant designs for non-blocking

writes present previously unavailable knobs to shape application memory and stor-

age resource consumption at a fundamental level. Such knobs can then be set to

better match the dynamic availability of resources in the system.

5.3 Non-blocking Writes

Out-of-core page fetching is a central mechanism in commodity operating systems

that enables demand paging for virtual memory and a file system page cache. When

an out-of-core page is accessed either directly by the application or within the file

system, the OS goes through a process of completing this access as depicted in

Figure 5.5. In the Check Page state, it gathers all the information required to

find the page and performs the look-up in memory first and, if necessary, external

82

App/FS
Check

Page

I/O

Wait

Update

Page

Out-of-core

write

Page not in memory;

Issue I/O

Page in memory

Unlock

page

Return Control

Up-to-date Accessible

I/O

Complete Unlock

P
a
g
e
S
ta
te

Figure 5.5: Process and page state diagram for out-of-core page access. The solid
line states occur in kernel mode. The solid line rectangle frames the state of the
page while the fault is handled.

storage. If the page is already in memory (as a result of recent loading), it jumps

directly to the Update Page state. If the page is on the disk, it issues an I/O and

waits for the I/O to complete and for the page to be set to the up-to-date state in

memory (Wait state). When the I/O completes, the page is up-to-date and ready

to be unlocked (states Up-to-date and Accessible of page state diagram). In the

Update Page state, the OS sets up the page table (if applicable) and makes the

page accessible. Finally, the control flow reverts to the original entity performing

the out-of-core access.

In this section we present the design of non-blocking writes to eliminate the

waiting state from the out-of-core page access processing. We present the challenges

of non-blocking writes and their solutions along with new optimizations to further

reduce the processing blocking.

5.3.1 Approach Overview

Non-blocking writes work by buffering updates to pages not available in memory.

The basic approach modifies the out-of-core page fetch path as illustrated in Fig-

83

App/FS
Check

Page

Update

Page

Out-of-core

write Page in memory

Page not in memory;

Create patch/

Mode switch

Return Control

Outdated Up-to-date Accessible

I/O

complete

Apply

patches Unlock

P
a
g
e
st
a
te

Figure 5.6: Process and page state diagram for out-of-core page access with non-
blocking writes.

ure 5.6. In contrast to current systems, non-blocking writes eliminates the I/O

Wait state that blocks the process until the page is available in memory. Instead,

non-blocking writes returns immediately once a patch of the update is created and

queued to the list of pending page updates. Additionally, non-blocking writes adds

a new state in the page state, Outdated, that reflects the state of the page after it

is read into memory but before pending patches are applied. The page transitions

into the Up-to-date state once all the pending patches are applied. Within this

framework, several questions must be addressed:

1. How should the OS extract the information required to populate each patch

in the Pre Fault state?

2. How should the OS manage pending updates to an out-of-core page to ensure

consistent data access?

3. How should the OS handle out-of-core page reads?

The rest of the section addresses these questions in the context of general systems

design as well as implementations specific to Linux and the Intel architecture.

84

5.3.2 Write Interposition

Interposing on writes to out-of-core pages is a prerequisite for non-blocking writes.

It enables recording of the data update to the page and subsequent unblocking of the

process, thereby deviating from the normal control flow of the OS when handling

out-of-core writes. Operating systems allow data writes via two common access

interfaces: memory mapped and system call. Memory mapping allows backing up

a portion of the process address space using either a file or the swap partition

(anonymous memory). The processor can then write directly to memory without

OS intervention (i.e., in user-mode). If the page is not available in memory at

the moment of access, the processor generates a fault that is handled by the OS

by fetching the page from its backing store. This operation is available in UNIX

systems with the mmap system call. We call such writes unsupervised ; the application

writes to the memory page directly without requesting the OS.

Write access to files is also provided through system calls and this is the more

common access path to filesystem data. In order to reduce the number of accesses

to disk, the OS uses a buffer cache of file pages in memory from which the data

is read in case it is available. When the accessed page is not cached, it is fetched

from the backing store, updated, and stored in the OS buffer cache in anticipation

of future accesses. We call such writes supervised and these are invoked using the

write system call.

Supervised Writes

For handling supervised writes to an out-of-core page, the OS has all the information

it needs to set up the non-blocking write. The system call arguments include the

address of the data buffer to be written, the size of the data, and the file (and

85

implicitly, the offset) to write to. The OS resolves this to a page write internally

and determines that the page is not cached.

In current systems, the OS allocates a page of memory to read in the out-of-core

data. It then issues a blocking fetch of the out-of-core page, applies the update once

the page is in memory, and only then unblocks the writing process. Contrarily, with

non-blocking writes, the OS simply extracts the data update from the system call

invocation using the address and size of the data buffer arguments, creates a patch,

and queues it for later use. This patch is applied later when the data page is read

into memory.

Unsupervised Writes

Handling unsupervised over-writes to an out-of-core page is substantially more in-

volved. Modern ISAs (e.g., Intel) provide the reference address and the instruction

that generated the page fault to the OS. Unfortunately, the amount of data written

by the instruction generating the page fault varies across instructions and is not

available directly. Moreover, the data written is not trivially obtained since the

source could be a memory address, a CPU register, or a constant value, depending

on the instruction.

Solution I. Our first solution combines partial disassembly with using a temporarily

mapped page for single stepping the instruction to precisely extract the written data.

This technique consists of the following steps:

1. First, we disassemble the instruction that caused the page fault. This step

determines the number of bytes written which typically requires only a partial

disassembly of the instruction for most CISC ISA’s as well as RISC.

2. The faulting page is temporarily remapped to a free memory frame.

86

3. The faulting instruction is executed again using single stepping which will now

successfully write to the temporarily mapped frame without faulting.

4. The data written by the single step execution is extracted from the temporarily

mapped frame using the page offset in the faulting address provided by the

processor and the size extracted in Step 1.

5. Once the single step is complete we restore the old page table entry to trap

further faults on the original out-of-core page.

This approach is a general solution and will work for any architecture supporting

the single stepping feature. It requires a minimum amount of information from

the faulting instruction increasing the decoupling between this solution and the

target ISA. Compared to page diff-merge, this solution requires only one additional

execution of the faulting instruction and the space overhead is much lower as the

temporary page can be freed once the data is extracted. On the downside, single

stepping still requires two additional mode switches for every fault handled and a

TLB flush to restore the original page table mapping. Both of these operations

result in sub-optimal performance.

Solution II. In order to overcome the drawbacks of single stepping, we developed

a solution based on full instruction disassembly to obtain the written data directly

from the source, namely, register, memory, or constant value. Next, we simply skip

the instruction that generated the fault and return control to the application. This

solution does not require an additional buffer page nor does it incur a TLB flush

every time a new page patch is created. However, it does require a full disassem-

bly implementation for every ISA. If full disassembly is not practically feasible for

specific instructions, the implementation could use partial disassembly with single-

stepping or revert to blocking on the write without loss of correctness.

87

5.3.3 Page Patching

After patch information is extracted using write interposition, this information is

temporarily saved. We now discuss how patch information is stored and applied to

correctly update the page after it is fetched into memory.

Patch Creation

The data written needs to be stored along with additional information including the

target location and size so that patches can be applied correctly upon page fetch.

Since commodity operating systems handle data at the granularity of pages, we

chose a design where each patch will apply to a single page. Thus, we abstract an

update with a page patch data structure that contains all the information to patch

and bring the page up-to-date.

To handle multiple disjoint overwrites to the same page, we implement per-

page patch queues wherein page patches are queued and later applied to the page;

adjacent patches get merged and overwrites to page locations overwrite the existing

patch(es). It is important to note here that there is a one-to-one mapping of pages

to physical memory frames in target environments (e.g., struct page in Linux or

struct vm page in OpenBSD) so memory sharing via page tables or otherwise is

handled correctly. Consequently, shared pages share patch queues as well. Per-page

patch queues also addresses consistency and ordering of updates to pages shared

by several processes when using non-blocking writes. On operating systems with a

unified buffer cache, this design decision also ensures consistency and ordering of

page updates regardless if the write interposition occurred in memory mapped or

file system page cache data. If two writes occur to an out-of-core page, one directly

via memory mapping and the other to a file system managed page cache page via

88

the write system call, both patches will be queued and applied to the same page in

the invocation order of the corresponding writes.

Patch Application

Patch application is rather straightforward. When a page is read in, first of all

patches, if any, are applied to the page to bring it up-to-date before the page is

made accessible. Patches are applied by simply copying patch data to the target

page location. We then set the page flag indicating that the page is dirty (if any

patches were applied) so that if the page needs to be swapped out it is correctly

written to the backing store. Once all patches are applied, the page is unlocked

which also unblocks the processes waiting on the page.

5.3.4 Non-blocking Reads

Reads to out-of-core pages block the process in current systems. However, with

non-blocking writes, a new opportunity to perform non-blocking reads to out-of-

core pages becomes available. Specifically, if the read is serviceable from one of the

patches queued on the page, then the reading process can be unblocked immediately

without having to block for a page fetch I/O. This occurs with no loss of correctness

since the patch contains the most recent data written to the page.

Unsupervised reads are once again more challenging than supervised ones. For

supervised reads, the page locations being read from and the target area to read

into are both available as system call arguments. Since this is a read operation to

a contiguous area, a simple lookup into the patch queue determines if the read is

serviceable using the queued patches. The read is not serviceable if all data for the

read is not contained within the patch queue and the reading process must block.

If all data being requested is contained in the patch queue, the data is copied into

89

CPUP1P2

Ready to Run

Initial State

P2

Blocking Writes

P1

Waiting

P1

Non-blocking Writes

P2

Ready to Run

Figure 5.7: Example of non-blocking writes scheduling problem. This figure presents
how the system would schedule the CPU when using blocking and non-blocking
writes starting from the same initial state. The initial state has two processes ready
to run, P1 and P2. P1 is the next process to run. P1 only writes to pages not in
memory while P2 progresses without operating system intervention.

the target buffer and the reading process is unblocked. Unsupervised reads are

handled either using partial disassembly (to retrieve the source address size) and

single-stepping via a temporarily mapped page or via full disassembly to additionally

extract target memory are to copy the patch data into.

5.3.5 Scheduling with Non-blocking writes

Non-blocking writes is able to eliminate much of the I/O waiting time from appli-

cations. This leads processes to hold the CPU longer than they would normally do

when writes to out-of-core pages block and lead the process to a context switch. An

example of this behavior is graphically represented in Figure 5.7. We start with an

initial state of two processes ready to run on a one CPU system. P1 continuously

generates faults by writing to pages not available in memory, while P2 does not

incur any faults. In the blocking writes configuration, after P1 generates the first

fault, the operating system will set it aside and schedule P2 to use the CPU. In the

non-blocking writes case, since P1 can continue running while creating patches, it

90

continues to occupy the CPU until its time slot expires. Unfortunately, the progress

of P1 is inefficient given that every memory access requires kernel intervention.

Meanwhile, P2 is forced to wait for the CPU even though it would be able to oper-

ate faster as no additional overhead is incurred due to its memory accesses. In this

example, the blocking writes configuration is more efficient given that it is forced

to dedicate the CPU to the process that can progress faster. With non-blocking

writes, the system is unable to detect the inefficiency of P1 and ends up using the

CPU to create patches while other processes waiting to be schedule can progress

with no additional overhead.

Fortunately, the CPU scheduler can be redesigned to eliminate this problem

by introducing a new process state. Figure 5.8 shows the current, as well as our

proposed new process state diagram. We introduced a new process state called NBW

(non-blocking writes) that applies to all processes currently creating patches. After

a process write-faults on a page and before it creates its first patch, we move it to

the NBW state and reschedule the CPU. A process can create patches for more than

one page while it runs, hence, we need to keep track of all these pages in a per-page

list we call G. We move a process from the NBW to the ready to run state when

the I/Os to all pages in G are completed. The new scheduler will select processes to

run in the NBW state only if there are no processes ready to run. Moreover, when a

process is moved to the ready to run state, we make sure to reschedule the CPU if the

running process is creating patches. The benefits of this new scheduling is two-fold.

First, it solves the problem described in Figure 5.7 by giving priority to processes

ready to run and have not created patches. Second, it guarantees that applications

using non-blocking writes have, in the worst case, the same performance as current

blocking writes while still exploiting unutilized CPU cycles when possible. The idea

is that non-blocking writes is effectively moving some of the processes that were in

91

Ready
to Run

Running

Waiting

Current Scheduler

Ready
to Run

Running

Waiting

NBW

Non-blocking writes New Scheduler

Figure 5.8: Current and new process state diagrams. The top figure shows the
current process state diagram: ready to run, running, and waiting for I/O. The
bottom figure shows the new proposed state diagram with one additional state
(NBW) that applies to processes creating patches. When no process is ready to
run, the scheduler can select processes in the NBW state to run in the CPU. When
all pages for which a process was creating patches are fetched into memory, the
process is moved to the ready state.

92

the waiting state to the new schedulable NBW state. Since we are running processes

from this state only when there are no processes ready to run, we are using CPU

cycles that would otherwise be wasted in the blocking writes configuration. This

also ensures that processes in the NBW state do not use cycles that may be used

by processes not creating patches.

5.4 Optimizations

Let us consider the page fetch operation issued in Step 4 when performing a non-

blocking write as depicted in Figure 5.1. This operation requires both a physical

memory allocation and a subsequent asynchronous fetch of the page so that the

newly created patch and possibly subsequently created ones can be applied to the

page. However, we note that since blocking is avoided, process execution is not

dependent on the page being available in memory. This raises a key question:

if process execution is not contingent on the availability of the entire page, can

page allocation and fetch be deferred or even eliminated? Page fetch deferral and

elimination are appealing because they allow reduction and shaping of both memory

consumption and the page fetch I/O traffic to storage. Following this, we now

explore optimizations of the basic approach to non-blocking writes presented in

the previous section. These variants highlight the scope of possibilities that non-

blocking writes enable which further optimize resource consumption and improve

performance.

5.4.1 Alternative Page Fetching Modes

Asynchronous fetch as detailed in the previous section issues the page fetch I/O

asynchronously before unblocking the writing process. The appeal of this approach

is both in its simplicity and in the property that since the page is brought into

93

PageProcess OS

Patch

Backing Store

1. Write(failed) 2. & 6. Miss

3. Buffer

4. Return

5. Read(failed)

7. I
ssu

e

pag
e fetc

h
8. Complete

9. M
erge

Figure 5.9: A non-blocking write with lazy fetch.. The Read operation in Step 5
optionally occurs after a time delay.

PageProcess OS

Oracle

Patch

Backing Store

1. Write(failed) 2. Miss

3. Buffer

4. Return

5. Trigger6. I
ssu

e

pag
e fetc

h
7. Complete

8. M
erge

Figure 5.10: A non-blocking write with scheduled fetch.. An oracle triggers the page
fetch operation.

memory in a timely fashion similar to the synchronous fetch, timer-based durability

mechanisms such as dirty page flushing [Bac86] and file system journaling [Hag87]

remain unaffected. However, asynchronously fetching pages immediately upon out-

of-core write accesses indiscriminately uses system memory and storage I/O band-

width both of which can be optimized. Relaxing this requirement of fetching pages

immediately, new page fetching modes for non-blocking writes become possible.

Lazy Page Fetch

The first and obvious alternative is lazy fetch where the OS does not issue a page

fetch I/O at all upon the out-of-core write access. Thus, the page would not be

94

fetched unless it becomes unavoidable as in cases discussed shortly. Figure 5.9

depicts this alternative graphically. Lazy fetch is an aggressive optimization which

has the potential to further reduce the system’s resource consumption in the correct

circumstances. However, lazy fetch does not add any mechanism to flush patches

not used recently. This could result in infrequently used patches taking memory that

can potentially increase the major faults of the application as less space is available

for new allocations.

Scheduled Page Fetch

Inspired by the shortcomings of lazy fetch, we designed a second alternative called

scheduled fetch wherein the issuing of the page fetch I/O is scheduled at a later,

more opportune time. Figure 5.10 depicts this alternative graphically. The design

is similar to lazy fetch with the inclusion of a new component, Oracle, that dictates

the policies of when to fetch the page. The policies enable better control over

the system’s resource consumption. Consequently, these page fetch policies should

mitigate shortage of memory, high number of patch reads, or high load in the backing

store.

First, to solve the shortage of memory, a thread can periodically scan the list of

patch queues in memory in LRU order, and fetch the pages whose patches are using

more memory than a given threshold. This threshold can be adjusted proportionally

to the memory pressure currently present in the system.

Second, when an application is reading frequently from a patch, it is introducing

all the kernel mode switch time in the total execution. We plan to mitigate this

problem by fetching pages whose patches has been accessed repeatedly. The idea is

to estimate the time spent by the application reading the same patch and issue the

fetch once this time is equal to the average I/O time. This guarantees a maximum

95

degradation of performance of twice compared to fetching the page immediately

after the patch is created.

Finally, in case where the memory is not under pressure and the backing store

is under low-load, it is a convenient time to fetch the page. The load of the backing

store can be calculated based on the number of outstanding I/Os it currently has.

This will reduce the waiting time of the fetch as well as the memory usage while the

I/O is completed.

5.4.2 To Fetch or Not to Fetch and When

The alternative page fetch modes create new scenarios under which page fetching

must be evaluated. The first scenario occurs if a future page read cannot be served

using the patches queued on the out-of-core page. The solution is obvious; since

the page fetch is unavoidable, we fetch it synchronously and patches are applied

first before the reading process is allowed to proceed with the read. The second

scenario occurs if the page gets overwritten in its entirety (i.e., the patches created

for the page are sufficient to fully reconstruct page data) and all page reads in the

interim are satisfiable using the data contained in the patches associated with the

page. In this scenario, if page durability is not necessary until the time the page gets

entirely overwritten, the original page fetch is eliminated entirely. A third scenario

occurs if there are no reads to the page or the page reads are satisfiable using the

data contained in the patches associated with the page. In this scenario, if page

durability is not necessary, the page fetch can be eliminated.

In scenarios 2 and 3 above, if page durability becomes a necessity at any point,

the page is fetched synchronously at that point. Let us examine mechanisms in the

OS that require data durability. Again, here we do not consider metadata durability

96

since non-blocking writes is not engaged for metadata pages and therefore they use

the conventional durability mechanisms.

Data durability becomes necessary in the following instances: (i) memory recla-

mation by the virtual memory system [Tan07], (ii) synchronous file write by an

application, and (iii) periodic flushing of dirty pages by the OS [Bac86], or page

writes to a write-ahead log in a journaling file system [Hag87, PADAD05]), the The

first case relates to process anonymous memory. Over time, it is possible with de-

ferred and lazy fetching that patches to anonymous pages consume a substantial

fraction of memory and many of these patches may relate to pages that are not in

active use. Under memory pressure, for the virtual memory system to be able to

reclaim the memory used to store such patches, the modifications contained within

those patches must be made durable for correctness since these pages may become

actively used again at some later point. The second and third cases relates to file

system buffer cache data durability operations initiated synchronously by the appli-

cation and by the file system respectively. In both of these cases, the page is fetched

synchronously before being flushed to disk with no loss of correctness.

5.5 Correctness

Non-blocking writes alters the behavior and control flow of current systems. We

now discuss how it preserves semantic correctness despite this change.

OS-initiated page accesses. Our current design does not implement non-blocking

writes for all accesses (writes and reads) to out-of-core memory pages that are

initiated internally by the OS. These include file system metadata page updates,

and updates performed by kernel threads (e.g., the bdflush dirty page flushing

thread and the kjournald journaling thread for the ext3 file system in Linux). For

instance, when a journaling thread writes a file data page to storage, the thread is

97

blocked until it is first read into memory (if not present), updated by merging any

pending patches, and only then unblocked to write the page out to storage. This

design decision trivially provides the durability properties expected by OS services

to preserve semantic correctness.

Synchronizing page operations. From the moment a non-blocking write op-

eration starts and until it finishes, multiple operations like read, prefetching, syn-

chronous write, and flush can be issued to the page. Operating systems need to

synchronize these operations to keep the consistency and return only up-to-date

data to applications. We achieve synchronization trivially by complying with the

locking mechanism already existent within the operating system. Before setting the

page as a non-blocking write page, we lock and setup the page just as before any

other operation. This will block other operations as they would normally do until

the data is up-to-date, i.e., the page is fetched into memory and patches applied.

The only exception to this mechanism lies in the operation of writing to a page

already in the non-blocking write state. In this case, we do not lock the page to

queue a new patch as it was locked when the non-blocking write was first setup.

In our implementation we comply with the Linux page locking protocol. First, we

index the new allocated page in the page cache tree to make it public to other kernel

subsystems. Second, we lock the page to block other operations until all the patches

are applied.

Multiple pages. When distinct memory pages get written to by two processes (or

threads), current operating systems do not provide ordering guarantees and neither

does non-blocking writes. However, when distinct memory pages get written to by

the same process sequentially, operating systems ensure that the updates to these

pages occur in the correct sequence. If the first page written to is not in memory, the

process is blocked to fetch it in first before allowing it to proceed on to writing the

98

second page. With non-blocking writes, in contrast, the second update can indeed

occur prior to the first one. Such alternate ordering can also occur in the case when

neither page is in memory and the fetch for the second page completes earlier than

that of the first.

Alternate ordering as described above does not affect correctness. First, for all

practical purposes, the creation of a patch constitutes updating the page in memory

since processes reading from these locations will always see the most up-to-date data

for either page (due to reading from patches) regardless of whether the page is in

memory or not; thus, control flow dependent on the sequence of these updates is

not altered at all. Second, these writes are to memory and are not guaranteed to

be reflected to persistent storage in any particular sequence; therefore, the ordering

violations are crash-safe. If a process would like explicit disk ordering for these

memory page updates, the process would execute blocking flush operation (e.g.,

fsync) subsequent to each operation. The flush operation would cause the OS

to wait for the page fetch and apply any outstanding patches before flushing and

returning control to the application; ordering of disk writes would thus be preserved

with non-blocking writes.

Handling of disk errors Non-blocking writes changes the semantics of the OS

with respect to notification of errors to a process that writes to an out-of-core page.

Since non-blocking writes performs page fetches asynchronously, disk I/O errors

(e.g., EIO returned for the UNIX write system call) during the asynchronous page

fetch operation would not get reported to the process. If the application were to

take differential action under such states, such action may be engaged with a delay

or not at all. We believe that this is just different semantics for the write system

calls and not an actual error. Semantically speaking, the write itself was not made

to persistent storage and only to memory and therefore the write was not in error

99

Workload ID Footprint Exec. Time # References

(MB) (secs) (×106)

batik BT 149 17.60 25

eclipse EC 223 7.20 11

fop FP 144 11.16 32

h2 H2 722 44.19 386

jython JT 540 49.68 128

pmd PD 170 20.86 60

tomcat TC 215 33.39 118

tradebeans TB 337 23.84 87

tradesoap TS 335 31.56 84

postmark SS 256 9.9 69

specpower-20 SP20 218 22 44

specpower-40 SP40 224 22 48

specpower-60 SP60 214 22 53

specpower-80 SP80 214 22 60

specpower-100 SP100 211 22 63

Table 5.2: Workloads include a mix of DaCapo benchmark suite 9.12 [Bla06], Post-
Mark [Kat97], and SPECpower [Lan09]. SPX X indicates the percentage of load in the

system. PM is set to the small-small configuration used by Riska et al.[RLLR07].

in the first place; the reporting of a disk I/O error (such as EIO) when the semantics

guarantee only a write to memory is convoluted as well. More importantly, if the

write were to be made persistent at any point via a flush issued by the process or

the OS, any I/O errors during page flushing would get reported to the user of the

system. Therefore, we believe that this change in semantics does not introduce a

consistency violation.

5.6 Estimating Benefits

In this section, we quantify the potential benefits of non-blocking writes using a

virtual memory simulator along with full-system memory traces of several hetero-

geneous workloads.

100

5.6.1 Virtual Memory Simulation

We built a virtual memory simulator that given a memory size and a memory trace,

simulates hits, misses, and evictions of memory pages. As input, we employed

full system memory traces of heterogeneous workloads summarized in Table 5.2.

On every memory reference, the simulator reports the timestamp, operation mode

(read or write), and event (hit, miss, or evict). More importantly, the simulator is

designed to report the number of write faults that can benefit from non-blocking

writes. To do so, the simulator must (i) be able to distinguish over-writes from

allocation-writes, and (ii) determine which write fetches can really benefit from

non-blocking writes.

Allocation-writes do not trigger I/O operations while over-writes may. Unfortu-

nately, we do not have sufficient information in our traces to entirely distinguish one

from the other. In order to minimize the occurrence of false positives when detecting

over-writes, we use two heuristics. First, we consider the first write access to every

page in the trace conservatively as an allocation write by default. Second, we use

both the virtual and physical addresses to uniquely identify a page, instead of just

the virtual address or the physical address alone. This eliminates false positives in

detecting overwrites when the same virtual address is reused to map to a different

physical address or vice-versa.

Finally, the simulator also employs a model to predict I/O latency for various

values of OIO which is then used to determine when an asynchronous read related to

a non-blocking write would complete. Using an approximation proposed by Gulati

et al. that latency varies linearly with OIO [GKAK10] and training this model on a

few points with a real SSD (PCIe OCZ Revodrive 160GB), we were able to predict

the latency of the device for any arbitrary OIO value.

101

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

BT EC FP H2 JT PD SS SP
100

SP
20

SP
40

SP
60

SP
80

TC TB TS
E

[O
W

F
]

Workload

50% 25%

Figure 5.11: Expected OWF for various workloads with two different memory sizes:
50% and 25% of workload footprint.

5.6.2 Fraction of Non-blocking Write Faults

We measured the fraction of page faults that benefit from non-blocking writes for

all workloads in Table 5.2. Figure 5.3 shows these results. When the provisioned

DRAM is half of the total memory footprint (total size of memory referenced) for

each workload, 2-88% of the faults are write fetches that benefit from non-blocking

writes. When the provisioned DRAM is reduced to a fourth of the memory foot-

prints, the fraction of non-blocking write faults is 7-42%. This implies that there

is substantial potential for improving the overall performance of page fault related

work for many of these workloads. For some workloads, a reduction in memory size

causes a reduction in the percentage of non-blocking writes. For these workloads,

higher page fault rates (as reduced memory sizes) lead to more of the pages involved

in non-blocking writes being selected for eviction. Our simulator correctly revokes

the non-blocking write status for such pages given that they must now block for the

completion of the background read before they can be evicted.

5.6.3 Outstanding Write Fetches

While the fraction of non-blocking write faults are partially indicative, they do not

suggest how the absolute number of simultaneous non-blocking writes vary over

102

time. To address this consideration, we define the outstanding write fetches (OWF)

as the number of write faults that can still benefit from non-blocking writes at any

time during the execution of a process. OWF gets incremented each time there is a

write to an out-of-core page. An asynchronous read to the page is also initiated at

that time and the page is marked as in-io. When there is a read reference by the

process to an in-io page, or an in-io page is evicted, or if the simulated asynchronous

read due to an in-io page completes, the OWF value gets decremented.

Figure 5.11 reports the expected value (time-weighted average) of the OWF for

each of the workloads when the DRAM size is configured to be 50% or 25% of the

total memory footprint. First, we note that all workloads show values greater than

zero, indicating that each can benefit from non-blocking writes. For most workloads,

the OWF ranges from 2 to 33, indicating a healthy opportunity for parallelizing the

asynchronous reads due to non-blocking writes. The two exceptions are EC, which

has the lowest OWF value (0.005), and H2, which has an exceptionally high OWF

value (1259.07).

5.6.4 Estimating Overall Savings

To estimate how non-blocking writes would impact execution times for the DaCapo

workloads, we revisit the percentage of page fetches that can benefit from non-

blocking writes (discussed earlier in Figure 5.3). This gives an upper bound on the

savings in running time that our set of benchmarks could have with non-blocking

writes. With 50% DRAM provisioning relative to memory footprint size, half of

the workloads show 20% or less page fetches that benefit from non-blocking writes.

However, the range is 30% to 80% for the remaining half which incur more paging

activity. Combining this finding with those from previous studies which show that

applications using paging and are heavily optimized spend more than 40% on disk

103

I/O [SS10a], we could estimate an overall reduction of 12% to 32% in application

execution times for these workloads.

5.7 Evaluation

In this section, we describe an evaluation of our implementation of asynchronous

page fetch variant of non-blocking writes. We did not evaluate lazy and sched-

uled page fetch variants to focus deeper on the asynchronous fetch mode. We will

evaluate lazy and scheduled fetch as a second iteration over the design and imple-

mentation of non-blocking writes. For performance evaluation, we used a subset of

the DaCapo, SPEC CPU2006, SPEC Power2008, and SPEC SFS2008 benchmark

suites [Sta]. The SPEC CPU subset was chosen to exclude floating point work-

loads (our disassembly engine does not handle floating point instructions currently)

and benchmarks with small memory footprints (< 200MB). We ran the (subsets)

DaCapo, SPEC CPU2006 and SPEC Power2008 benchmarks on a Dell PowerEdge

T105 with a single Quad-Core AMD Opteron 2.3GHz and an Intel SSD with 160GB

of storage. The SPEC SFS2008 benchmark were run on the same hardware except

we used a 500GB SATA hard drive for better representation of a real file server.

5.7.1 Experimental setup

We implemented non-blocking writes in the Linux kernel 2.6.34.5. Our implemen-

tation includes the following features:

• Full instruction disassembly for unsupervised writes.

• Single-stepping with temporal buffer page when instruction disassembly is not

possible.

104

Workload Working-set Size Memory Provisioned Workload
(GB) (MB) Type

speccpu-omnetpp 0.6 200 memory
speccpu-astar 1.3 250 memory
speccpu-gcc 3.5 300 memory
speccpu-xalancbmk 1.6 300 memory
specsfs 12 512 filesystem
batik 0.14 72 memory
fop 0.14 72 memory
pmd 0.17 85 memory
h2 0.71 384 memory

Table 5.3: Mix of heterogeneous workloads to evaluate non-blocking writes.

• Patch merging when writing to adjacent locations or overwriting existing

patches.

• Non-blocking reads when data is available in patches.

To simplify our implementation, we disabled SMP and kernel preemption in the

kernel configuration. We ran Gentoo Linux on top of our customized kernel. We

used workloads that stress both the virtual memory and the file system. These

workloads range from interpreters and compilers to file and application servers. To

exercise non-blocking writes, we configured the memory size for each workload so

that it incurs I/O activity. We calculated this value by starting with a memory

equal to the workload’s working-set and progressively decreased its size until the

system started paging. Table 5.3 summarize the workloads we used along with its

working-set sizes and the amount of physical memory provisioned for each. The type

of workload indicates if the benchmark exercises the virtual memory subsystem or

the file system path.

We ran the SPEC CPU2006 benchmarks with the ref dataset, its representation

of a real workload for five iterations. We set up SPEC SFS2008 with a target

of 100 operations per second and noted the response time from the NFS server,

105

omnetpp
asta

r gcc

xalancb
mk

Workloads

−2

−1

0

1

2

3

4

%
 I
m

p
ro

v
e
m

e
n
t

E
xe

c.
 T

im
e

Total

I/O

CPU

Figure 5.12: Execution time change in single-threaded applications. Percentage of
improvement in execution time separated by total, I/O waiting, and CPU.

mounting the file system in async mode in each case. SPEC Power2008 ran its

default three adjustment rounds and one final round with 100% load which is the

one we evaluated. We provisioned the DaCapo benchmarks with 50% of memory to

be able to compare with our virtual simulator results. We evaluated performance

when running default and non-blocking writes kernels for each workload.

5.7.2 Performance Improvements

We measured the performance improvements due to non-blocking writes along three

dimensions: execution time, latency, and throughput. For the SPEC CPU2006

benchmarks, we measured the improvements in average execution time of five runs

and reported these in the white bars of Figure 5.12. In all the experiments, the

coefficient of variation was below 2%. The average improvement in execution time

across these benchmarks was 1%, with as much as 2.1% reduction in the best case,

and a degradation of less than 0.3% in the worst case.

106

batik
 16KB

batik fop
pmd h2

Workloads

−40

−30

−20

−10

0

10

%
 I
m

p
ro

v
e
m

e
n
t

E
xe

c.
 T

im
e

Total

I/O

CPU

Figure 5.13: Execution time change in multi-threaded applications. Percentage of
improvement in execution time separated by total, I/O waiting, and CPU.

To understand better the source of improvements, we separated CPU time from

I/O waiting time as shown in the gray and striped bars of Figure 5.12. As expected,

non-blocking writes is able to reduce the time that the application is waiting for I/O.

However, we also see an increase in the CPU time of the application. The reason

for this is that, while current systems blocks when accessing an out-of-core page,

non-blocking writes is able to stay active creating patches for pages not available

in memory. In particular, workloads that create long queues of patches do worse in

CPU time since it takes more time to perform the writes compared to blocking writes

when the page is in memory. Note that this increase in computation time may also

increases the amount of energy used by the CPU. While in use, the CPU is not able

to transition into a energy saving state. In the future, we plan to compare the energy

efficiency achieved by non-blocking writes with the additional energy consumed by

the CPU and check if we still have a positive balance in energy savings.

All the SPEC CPU2006 benchmarks are single-threaded. We expanded our eval-

uation by exercising non-blocking writes with the DaCapo multi-threaded applica-

107

tions. We picked four of the benchmarks presented in Table 5.2: batik, fop, pmd,

and h2. Similarly to the SPEC CPU2006 experiments, we measured the improve-

ment in average execution time of five runs. We report the results in Figure 5.13

separating the change in time into I/O and CPU. Due to their non-deterministic

nature, these results have a large variance, with the coefficient of variation reaching

25% in the worst case. In contrast with the predicted improvements in Section 5.6,

non-blocking writes was not able to improve the performance for all benchmarks.

In all cases, except batik, non-blocking writes reduces the time that the applica-

tion has to wait for I/O. However, non-blocking writes increments the CPU time

considerably. In fact, the increase in CPU time surpasses the benefits obtained by

waiting less time for I/O. We believe this is the result of sub-optimal scheduling of

the resources when using non-blocking writes with multi-threaded applications and

this only occurs on non-blocking writes operations for memory mapped accesses. In

Section 5.3.5 we detail the problem and present a new CPU scheduling technique

that, in the worst case, guarantees applications the same performance as current

blocking writes.

Finally, we see an anomaly in the behavior of batik. For this benchmark, non-

blocking writes not only uses more CPU, but it also increases the time the appli-

cation is waiting for I/O. For this application, we observed an increase of 27% in

the number of major faults. Although we found that non-blocking writes with batik

uses on average 15KB of memory to store patch data, we ran additional experiments

where we limit the memory used by non-blocking writes to a maximum of 16KB

and eliminate potential issues with peak memory usage. The results are in Fig-

ure 5.13 under the batik 16KB workload name. Although the new times decreased,

non-blocking writes still increase the time spent waiting for I/O in batik 16KB. We

observed that this behavior occurred only in one of the ten workloads we tested with

108

specsf
s

specsf
s-w

rite

specsf
s-r

ead

specp
ower

Workloads

−5

0

5

10

15

20

R
e
sp

o
n
se

 t
im

e
 (

m
se

c) Blocking Writes

Non-blocking Writes

Figure 5.14: SPEC SFS2008 and SPEC Power2008 response times.

non-blocking writes. In the future, we plan to investigate further the source of the

time increase waiting for I/O in this particular benchmark.

Next, we evaluated non-blocking writes in the context of file system workloads.

We measured and reported the response time latency for the SPEC SFS2008 and

SPEC Power2008. SPEC SFS2008 uses an NFS client-server configuration. We

configured the server end to optionally use either the non-blocking writes or the

default (Vanilla) kernel. SPEC Power2008 runs at a target throughput level specified

by the user and we measured improvement in response time. Figure 5.14 shows the

improvements in response time (latency) across these workloads. As expected, non-

blocking writes is able to reduce the average write latency of SPEC SFS2008 by

50% while reads are mostly unchanged. Furthermore, non-blocking writes is able to

decrease the variation in latency as writes are now less dependent on disk.

109

240 250 260 270 280 290 300 310 320
Memory Size (MB)

500

1000

1500

2000

2500

3000

3500

4000

E
xe
cu
ti
o
n
 T
im

e
 (
se
cs
)

Vanilla

Non-blocking Writes

Figure 5.15: Sensitivity of performance due to non-blocking writes to the amount
of memory available in the systems. We used the xalancbmk benchmark from the
SPEC CPU2006 suite.

5.7.3 Memory Sensitivity

To check the effectiveness of non-blocking writes with memory availability, we made

a set of experiments varying memory size, from 240MB to 320MB in 5MB incre-

ments, and noted the execution time for the xalancbmk SPEC CPU2006 benchmark.

Figure 5.15 depicts the execution time when varying memory for blocking as

well as non-blocking writes. First, as expected, non-blocking writes has its lowest

benefit—0.76% time improvement—when memory is well provisioned at 320MB.

This is due to the fact that, as more memory is available, less fetch-before-update op-

erations are required. In contrast, when the memory is set to 250MB, non-blocking

writes shows its maximum benefits—8.7% time improvement—due to an increased

chance to make more fetches asynchronous as more fetch-before-update operations

are needed. It is clear from these experiments that non-blocking writes shows more

benefits as less memory is available. This makes non-blocking writes a good can-

didate to improve the practical usability of systems with high paging rate that

exchange DRAM with a large but more energy efficient flash.

110

Optimization Exec. Time (sec) % Improvement % Occurence

No Optmization 2340.7 – 4.8
Patch Read 2233.1 4.6 2.5

Patch Merging 2229.6 7.7 92.7
Patch Read + Merging 2060.9 12 95.2

Table 5.4: Performance improvements due to patch optimizations. Four experiments
of xalancbmk with memory provisioned at 260MB varying the patch optimizations.
Each experiment enables only the optimization being evaluated. For each experi-
ment, the table shows its execution time, its improvement compared to the no op-
timizations configuration, and percentage of occurrences when they are all enabled
relative to the total non-blocking reads and writes.

5.7.4 Optimizations with Patches

We implemented two optimizations directly related to patches in non-blocking writes.

First, we implemented the non-blocking read operations as explained in §5.3.4. Sec-

ond, to reduce meta-data memory, we also implemented an optimization that merges

updates that are adjacent or overwrite patches already in queue.

To understand the benefits of each of these optimizations, we ran four exper-

iments of the benchmark xalancbmk with memory provisioned at 260MB varying

the optimizations we used. We show the results in Table 5.4. We found the highest

benefit of 7.7% for the patch merging optimization. Moreover, patch read alone

improves execution time by 4.6%. Additionally, we found that 92.7% of all patches

created were merged with a previous patch in the queue. When used in conjunc-

tion, all the optimizations accounted for a total of 12% decrease in the execution

time of the benchmark when compared to non-blocking writes without these patch

optimizations.

111

5.8 Summary

Since their original design, operating systems have blocked processes that write to

out-of-core pages—both in file system and virtual memory—while fetch operations

are being performed. In this chapter, we revisited the well-established design of the

write primitive and demonstrated that such blocking is not just unnecessary but

also detrimental to performance.

Our solution, non-blocking writes, decouples the process of writing data to a

page from its presence in memory by buffering page updates and merging them

later asynchronously once the page is fetched into memory. It achieves this decou-

pling with a self-contained operating system improvement that is transparent to the

application and preserves semantic correctness. We proposed asynchronous, lazy,

and scheduled page fetch variants, each design intended to progressively improve

upon the previous.

We implemented non-blocking writes with a basic asynchronous page fetch design

in Linux for x86 processors with very encouraging results. Our evaluation using

single-threaded memory and file system intensive workloads revealed performance

improvements of up to 8.7% in terms of execution time and a reduction of 50% in the

average write response time in a file-server workload. However, when evaluated with

multi-threaded benchmarks, non-blocking writes showed a degradation in execution

time. We believe this is due to sub-optimal scheduling of the CPU. Threads creating

patches have a slower rate of progress than those that do not require non-blocking

writes to continue execution. Since non-blocking writes eliminates blocking due to

I/O, these threads can occupy the CPU for long periods of time preventing processes

with potential to progress faster from running. We proposed a CPU scheduler

optimization to eliminate this problem by preferentially scheduling threads that do

112

not create patches. Moreover, this optimization guarantees that the performance

will be comparable to the blocking writes configuration in the worst case.

We also tested the sensitivity of non-blocking writes to the amount of available

memory in the systems with a set of experiment of SPEC CPU2006 xalancbmk. We

found that the benefits of non-blocking writes increase as memory is reduced, up to

8.7% in execution time improvement when the memory is provisioned at 250MB.

This demonstrates the potential of non-blocking writes to improve the practical

usability of energy efficient systems with high paging rates.

The following chapter discusses other energy efficient systems from the literature,

as well as additional existing works that explore methods for achieving asynchronous

fetches that can also reduce the fetch-before-update I/O operations.

5.9 Credits

A preliminary design and evaluation of non-blocking writes by means of a simu-

lation was published in the proceedings of the USENIX Workshop on Hot Topics

in Storage and File Systems in June 2011 [UKRV11] and was presented by Luis

Useche. Luis Useche, Ricardo Koller, Raju Rangaswami, and Akshat Verma con-

tributed the preliminary design of non-blocking writes. Luis Useche, Ricardo Koller,

Raju Rangaswami, and Jesus Ramos substantially refined the preliminary design of

non-blocking writes for its implementation in commodity operating systems. Luis

Useche, Ricardo Koller, and Jesus Ramos implemented non-blocking writes for file

system and memory mapped writes on the Linux kernel. Luis Useche designed and

executed the experiments to evaluate the implementation of non-blocking writes.

113

CHAPTER 6

RELATED WORK

There is a large body of work in systems energy optimization as well as possible

performance optimization that could mitigate the fetch-before-update problem. We

divided the related work in three main categories: energy proportionality storage

systems previous work, flash caching for energy efficient storage systems previous

work, and possible solutions to mitigate the fetch-before-update problem.

6.1 Energy Proportionality in Storage Systems

It has been shown that the idleness in storage workload is quite low for typical server

workloads [ZCT+05]. We examine several classes of related work that represent

approaches to increase this idleness for energy minimization and evaluate the extent

to which they address our design goals. We next discuss each of them and summarize

their relative strengths in Table 6.1.

Singly redundant schemes The central idea used by these schemes is spinning

down disks with redundant data during periods of low I/O load [GLM+08, PBD06,

WYZ08]. RIMAC [WYZ08] uses memory-level and on-disk redundancy to reduce

passive spin ups in RAID5 systems, enabling the spinning down of one out of the

N disks in the array. The Diverted Accesses technique [PBD06] generalizes this

Design Write Caching Singly Geared

Goal offloading systems Redundant RAID

Proportionality ∼ × × ∼

Space overhead X X × ×

Reliability × × X X

Adaptation × X X X

Heterogeneity ∼ ∼ ∼ ×

Table 6.1: Comparison of Power Management Techniques. ∼ indicates the goal is
partially addressed.

114

approach to find the best redundancy configuration for energy, performance, and

reliability for all RAID levels. Greenan et al. propose generic techniques for man-

aging power-aware erasure coded storage systems [GLM+08]. The above techniques

aim to support two energy levels and do not address fine-grained energy proportion-

ality.

Geared RAIDs PARAID [WOQ+07] is a gear-shifting mechanism (each disk

spun down represents a gear shift) for a parity-based RAID. To implement N − 1

gears in a N disk array with used storage X , PARAID requires O(X logN) space,

even if we ignore the space required for storing parity information. DiskGroup [LVW07]

is a modification of RAID-1 that enables a subset of the disks in a mirror group to

be activated as necessary. Both techniques incur large space overhead. Further,

they do not address heterogeneous storage systems composed of multiple volumes

with varying I/O workload intensities.

Caching systems This class of work is mostly based on caching popular data

on additional storage [CG02, LLN08, UGB+08] to spin down primary data drives.

MAID [CG02], an archival storage system, optionally uses additional cache disks for

replicating popular data to increase idle periods on the remaining disks. PDC [PB04]

does not use additional disks but rather suggests migrating data between disks

according to popularity, always keeping the most popular data on a few active

disks. EXCES [UGB+08] uses a low-end flash device for caching popular data and

buffering writes to increase idle periods of disk drives. Lee et al. [LLN08] suggest

augmenting RAID systems with an SSD for a similar purpose. A dedicated storage

cache does not provide fine-grained energy proportionality; the storage system is

able to save energy only when the I/O load is low and can be served from the cache.

115

Further, these techniques do not account for the reliability impact of frequent disk

spin-up operations.

Write Offloading Write off-loading is an energy saving technique based on redi-

recting writes to alternate locations. The authors of write-offloading demonstrate

that idle periods at a one minute granularity can be significantly increased by off-

loading writes to a different volume. The reliability impact due to frequent spin-up

cycles on a disk is a potential concern, which the authors acknowledge but leave

as an open problem. In contrast, SRCMap increases the idle periods substantially

by off-loading popular data reads in addition to the writes, and thus more com-

prehensively addressing this important concern. Another important question not

addressed in the write off-loading work is: with multiple volumes, which active vol-

ume should be treated as a write off-loading target for each spun down volume?

SRCMap addresses this question clearly with a formal process for identifying the

set of active disks during each interval.

Other techniques There are orthogonal classes of work that can either be used

in conjunction with SRCMap or that address other target environments. Hiberna-

tor [ZCT+05] uses DRPM [GSKF03] to create a multi-tier hierarchy of futuristic

multi-speed disks. The speed for each disk is set and data migrated across tiers

as the workload changes. Pergamum is an archival storage system designed to be

energy-efficient with techniques for reducing inter-disk dependencies and staggering

rebuild operations [SGMV08]. Gurumurthi et al. propose intra-disk parallelism on

high capacity drives to improve disk bandwidth without increasing power consump-

tion [GSS09]. Finally, Ganesh et al. propose log-structured striped writing on a

disk array to increase the predictability of active/inactive spindles [GWBB07].

116

6.2 Energy Efficient Storage with Flash

We classify research related to EXCES into three categories: energy-saving external

caching techniques, energy-saving in-memory caching techniques, and other appli-

cations of external caching.

External caching for energy saving Early work on external caching was pi-

oneered by Marsh et. al [MDK94], who proposed incorporating an ECD as part

of the memory stack between the disk and memory. They proposed that all I/O

traffic to the disk drive be cached/buffered in the ECD before continuing on its

normal path. This technique, while having the potential to reduce the number of

disk accesses, does not effectively utilize the ECD space by choosing carefully what

to cache/buffer. Much more recently, Chen et. al [CJZ06] also propose to use the

ECD to buffer writes, as well as prefetch and cache popular data. Their solution di-

vides the ECD into zones dedicated for each optimization, as opposed to the unified

buffer/cache technique of EXCES. Additionally, since they propose using read-ahead

values at the VFS layer to anticipate future accesses, their solution does not have a

clear presence in the I/O stack, with both block- and file- level concerns. Similarly,

Bisson and Brandt proposed NVCache, an external caching system for energy sav-

ings [BBL06]. While the design of EXCES has some similarities to both NVCache

and SmartSaver, EXCES differs in its implementation-oriented techniques to effi-

ciently ensure data consistency under all conditions, its use of a novel page-rank

algorithm tailored for increasing disk inactivity periods, and continuous and timely

reconfiguration capability. More importantly, while all of the above studies evaluate

their techniques on simulated models of disk operation and power consumption, we

evaluate an actual implementation of EXCES with real-world benchmarks that re-

117

alistically demonstrate the extent of power-savings as well as impact to application

performance.

In-memory caching for energy saving Weissel et. al [WBB02] and Papathana-

siou et. al [PS04] propose to use cooperation/hints between the applications and

the operating system. While Weissel et al. propose hints at the system call API for

read/write operations, Papathanasiou propose using high-level hints about applica-

tion I/O semantics such as sequentiality/randomness of access inside the operating

system. Researchers have also looked at adaptive disk spin-down policies to com-

plement in-memory caching techniques [PS04, HLS96, LKHA94]. We believe that

all of the above can complement EXCES to further improve energy savings. Specif-

ically, in this study, we compared EXCES against the open-source Laptop-mode

tool [Sam04], and demonstrate that the Laptop-mode techniques complement EX-

CES well for some workloads to improve energy savings.

Other applications of external caching External caching has been used to

improve I/O performance and reliability. Researchers have long argued for utilizing

battery-backed caching (providing similar functionality as an ECD) for improving

both reliability and performance [OD89]. Wang et al. [WRPH02] suggest using a

Disk-ECD hybrid file system for improving application I/O performance by parti-

tioning file system data into two portions, one stored on disk and the other on an

ECD. More recently, the ReadyBoost [Mic] feature in the Windows Vista operating

system utilizes an ECD if available to cache data. Since its primary objective is

performance improvement, ReadyBoost directs small random read requests to the

ECD and all other operations to the disk drive.

118

6.3 fetch-before-update Problem

Non-blocking writes, in concept, has existed for almost three decades for CPU cache

lines. Observing that entire cache lines do not need to be fetched on a word write-

miss in the cache, stalling the processor when doing so, additional registers that

temporarily store these word updates to later be merged with the cache line was

investigated. This idea was first introduced in the early eighties by Kroft [Kro81]

to be used in CPU caches. Nowadays, this technique is widely used within modern

CPU’s like Intel Nehalem and Sun Niagara [LCBJ11].

We now discuss two simple approaches to mitigate the fetch-before-update prob-

lem. First is the simple approach of provisioning adequate DRAM to minimize

out-of-core page writes. However, for both process memory and file system writes,

the footprint of a workload over time is unpredictable and potentially unbounded.

Moreover, technology trends do not support this as a viable solution; increasingly

larger memory working sets are being supported with faster devices that serve as

more cost effective and energy-efficient replacement for DRAM to store relatively

cold data. Second, prefetching [SSS99] is an alternative approach that can reduce

blocking by anticipating future memory accesses and prefetching necessary pages to

eliminate page faults. Unfortunately, the use of prefetching is typically limited to

sequential accesses to pages and it can incur both false positive and false negative

page fetches that pollute memory. Non-blocking writes uses memory judiciously

and only fetches those pages that are necessary for process execution. Ultimately

however, prefetching and non-blocking writes are not exclusive and can be used in

conjunction.

There are several approaches proposed in the literature that reduce process block-

ing specifically for system call induced page fetches. The goal of the asynchronous

119

I/O library (e.g., POSIX AIO [Ame94]) available on Linux and a few BSD variants

is to make file system writes asynchronous; a helper library thread blocks on behalf

of the process. While the original implementation of AIO had a partial implementa-

tion for one file system (ext2) with support for file system page caching [BPPM03],

the current state of Linux AIO is that it only works with the O DIRECT flag, i.e.,

it does not work when file pages get cached in Linux [Sou] while FreeBSD and IRIX

writes return only when the write I/O is queued implying that an out-of-core page

write would still block for the page to be fetched first before it can be modified and

written out to storage [BSD, *ni]. LAIO [ECCZ04] is a generalization of the basic

AIO idea to make all system calls asynchronous; a library checkpoints execution

state and relies on scheduler activation’s to get notified about the completion of

blocking I/O operations initiated inside the kernel. More recently, FlexSC [SS10b]

proposed asynchronous exception-less system calls wherein system calls are queued

by the process in a page shared between user and kernel space; these calls are ser-

viced asynchronously by syscall kernel threads which report completion back to the

user process using a similar mechanism.

The scope of non-blocking writes in relation to the above proposals is different.

It eliminates the blocking for memory writes to out-of-core pages in case of both

supervised (system call based) as well as unsupervised (direct memory update in

user-mode) access. However, unlike the above approaches, it is narrower in scope in

the sense that does not eliminate blocking due to synchronous writing of resident

memory pages to the backing store. A non-blocking write can be considered rela-

tively lightweight since it does not use additional threads (often a limited resource

in systems) to block on behalf of the running process nor does it need to checkpoint

state thereby consuming lesser system resources. Finally, unlike these approaches

120

which require application modifications to use specific interfaces within libraries,

non-blocking writes runs seamlessly in the OS transparent to applications.

Finally, there are some works that seem similar to non-blocking writes, but are

actually quite different in their accomplished goal. First, speculative execution (or

Speculator) as proposed by Nightingale et al. [NCF06] eliminates the blocking when

synchronously writing cache in-memory page modifications to a network file server

using a process checkpoint and rollback mechanism. Xsyncfs [NVCF06] eliminates

the blocking upon performing synchronous writes of in-memory pages to disk by

creating a commit dependency for the write and allows the process to make progress

but does not allow it to externalize output before the write is committed to disk.

Featherstitch [FMK+07] improves the performance of synchronous file system page

updates by scheduling these page writes to disk more intelligently. While these

approaches optimize the writing of in-memory pages to disk they do not eliminate the

blocking page fetch before in-memory modifications to a file page can be made prior

to committing the page to disk. Non-blocking writes thus presents a complementary

improvement to the above body of work.

121

CHAPTER 7

CONCLUSIONS

In this thesis we designed and evaluated two complementary techniques to save

energy in storage as well as a new technique to reduce the performance gap between

commodity and energy efficient systems.

We began by presenting a new method to achieve fine-grained proportionality on

multi-disk storage systems with reliability, workload shift adaptation, heterogeneity

support, and low space overhead. SRCMap establishes the feasibility of such sys-

tems despite the few levels of energy consumption currently available in commodity

disks. After implementing a prototype of the system, we found that SRCMap is

able to save at least 35.5% of energy by spinning-down half of the disks on average

when running 8 server-like workloads. We also found that the storage response time

was not severely affected by having fewer disks spinning and that only 0.003% of

the I/Os incurred in spin-up due to read misses. However, the synchronization I/Os

can negatively affect the performance, implying that better scheduling techniques

should be used to minimize this effect. Thanks to its dynamic adaptation to load,

SRCMap requires nothing more than an initial manual tuning, freeing administra-

tors of additional burden while still saving power. SRCMap has the potential for

achieving even better results in data-centers where the scale of storage systems is

typically much larger than what we used in our prototype.

We demonstrated that by caching and prefetching popular data in flash, single-

disk systems were able to keep the disk spun-down longer. We implemented and

tested our systems with several desktop-like workloads and found that EXCES was

able to save between 2% and 14% of energy compared to the vanilla system, much

lower savings that what previous works predicted. However, we found that the

energy savings came at the cost of decreased performance due to the characteristics

122

of flash media. EXCES gives users the opportunity to increase the efficiency of their

mobile devices by simply plugging in a common but energy efficient external device.

Finally, we presented non-blocking writes, a new method that eliminates the page

fetch-before-update behavior by buffering writes to pages not available in memory

and updating their content once they are loaded from disk. After implementing

and evaluating non-blocking writes, we found a reduction of 50% in the average

write latency of a file server benchmark. Moreover, when tested in single-threaded

memory-intensive workloads, non-blocking writes was able to achieve a modest av-

erage reduction of 1% and a maximum of 8.7% in execution time. However, when

exercised with multi-threaded benchmarks, non-blocking writes showed a degrada-

tion in the execution time compared to vanilla. We think this is due to sub-optimal

scheduling of the CPU when using non-blocking writes with multi-threaded appli-

cations. In this situation, threads that only create patches occupy the CPU while

preventing other threads from executing that are ready to run and have the poten-

tial to progress faster. To solve this problem, we proposed a new scheduler that

gives higher priority to threads that have not created patches. This new scheduler

guarantees that non-blocking writes will have the same execution time of vanilla in

the worst case while using previously unutilized CPU cycles to increase performance.

We also evaluated non-blocking writes with different memory sizes and found

that it is able to achieve higher benefits when memory is scarce. Due to its benefits

in terms of execution time and latency reduction, non-blocking writes has the poten-

tial to close the performance gap between energy efficient systems and commodity

systems. However, in the future, we need to find if energy efficient systems using

non-blocking writes still have a positive balance in energy savings even though they

have higher utilization of CPU.

123

To summarize, in this thesis, we demonstrated how caching techniques can be

used to save energy both in multi-disk and single-disk systems. Moreover, we

showed a solution to carefully control I/O activity that could further reduce the

energy footprint of caching systems and improve the performance of low-memory

energy-efficient systems. Overall, these solutions combined help advance the field

of energy-efficient systems for both large-scale and personal computing. Observe

that all the techniques presented herein may deliver better energy-efficiency and

performance results when complemented with redesigned CPU schedulers, replace-

ment algorithms, synchronization I/O schedulers, and specialized block allocation

techniques optimized to use the underlying storage device according to their unique

characteristics. Furthermore, future work should include a thorough evaluation of

the benefits of combining the techniques we have presented in practical scenarios.

Finally, as new storage technologies emerge, it would also be relevant to study the

applicability and possible benefits of using these techniques in the newer devices.

In the next chapter, we discuss several directions for future research to follow up

the work contained in this thesis.

124

CHAPTER 8

FUTURE WORK

The next challenge in energy efficient systems is memory. As energy efficient

SSDs become more widely available, the energy share of storage in computer systems

will start to decrease. In contrast, memory energy consumption continues to increase

in response to applications demands for bigger DRAM. Hence, it is important to

have a deeper understanding of how energy is consumed by DRAM and how to make

it more efficient.

As discussed in previous chapters, DRAM energy consumption can be divided

into idle and active power. The former accounts for the energy drawn by DRAM to

constantly refresh its banks of memory. The later is used when data in memory is

accessed.

Researchers have focused mostly on reducing the memory’s active power by in-

creasing locality or proposing new hardware changes. However, although DRAM

idle power represents up to 30% of the memory’s total energy used, operating sys-

tem techniques to reduce memory idle power remain mostly unexplored. Idle power

can only be decreased by reducing DRAM size. With less memory banks to refresh,

the idle power is effectively reduced. Unfortunately, less memory also implies perfor-

mance degradation. With less memory available, applications may incur in higher

paging rates that would increase data access time. New energy efficient systems

that reduce the memory idle power need to minimize this performance impact by:

(a) making sure the working set of applications fits in the available DRAM and

(b) decoupling the performance of backing store from the performance of memory

accesses.

The first promising direction for future work is to hold the working set of ap-

plications by keeping in memory only the necessary data as opposed to full pages.

125

Commodity systems are limited to a minimum page size of 4KB even though appli-

cations may be using only a small portion of the page. With non-blocking writes we

can effectively reduce the page size by keeping patches that correspond to the por-

tions of a page that applications are actually using. Although this reduces memory

requirements and idle power, it comes at the price of additional meta-data and pos-

sibly higher minor faults if used with virtual memory. Further research is necessary

to understand the access pattern of applications and evaluate the feasibility of this

approach.

A second research direction would be to increase the performance, and hence

viability, of energy efficient systems that off-load low bandwidth memory accesses

to flash devices. The idea is to explore how much the resident memory requirement

can be reduced if we use flash cache systems (e.g. ZFS L2ARC) with non-blocking

writes while maintaining the same performance as the non-flash cache configuration.

New optimizations like a re-designed replacement algorithm that takes into account

the difference in cost between read and write misses are also likely to be useful.

A final research direction involves exploring new techniques that leverage emerg-

ing technologies to dynamically power-off and power-on portions of DRAM as re-

quested by the operating system. New techniques that continuously adapt the

amount of DRAM while achieving a given applications’ target performance become

necessary. This approach also has the potential to increase the energy proportion-

ality of memory. This idea can be combined with both of the previously proposed

research directions to achieve even higher gains in energy efficiency.

Next, we present several additional follow up research directions to each of our

proposed systems as well as further considerations when these systems are combined.

126

Energy Proportional Storage Our SRCMap work opens up new directions for

further research. SRCMap can greatly benefit from better models of I/O workload

intensity and correlation to reduce the performance impact of consolidated logical

volumes. Further, improving the scheduling of synchronization I/Os can reduce the

impact on foreground I/Os and increase the feasibility of SRCMap in commodity

storage systems.

Energy-efficient Storage using Flash We believe that external caching systems

offer a new direction for building energy saving storage systems. Improvements in

ECD technology, especially in the performance dimension, can help accelerate the

adoption of such systems. Our future work on EXCES will be directed towards the

performance-sensitive server environment, where, in the absence of a display device,

disk-drives would be the second highest power consuming component. Optimizations

that address random write performance on the ECD will gain significant importance

in such systems.

Controlling I/O Traffic in EXCES and SRCMap EXCES and SRCMap

achieves energy efficiency by redirecting most of the I/Os to low-power caching de-

vices. Their effectiveness is lost when applications start accessing data not contained

in the cache. We can combine EXCES and SRCMap with non-blocking writes par-

tially mitigate this problem and further improve their efficiency. If an application

attempt to partially update a block, non-blocking writes could create patches of the

updates and keep the primary device containing the full block undisturbed. More-

over, reads to any of the recently written data can be served as a read from patch

case further increasing the idleness of the primary device. Since we found an increase

in the CPU usage of non-blocking writes, we need to also evaluate the additional

energy consumed and check that it does not surpass the benefits obtained.

127

Non-blocking writes and Multi-threading In previous chapters we discussed

how non-blocking writes can harm multi-threaded applications if the CPU schedul-

ing is not re-designed accordingly. Applications creating patches can deny the CPU

to waiting threads that could potentially progress faster. This problem can be mit-

igated in two ways. First, we can implement a new CPU scheduling policy where

threads are assigned priorities based on their rate of progress measured by instruc-

tions completed per unit of time. This will give threads with faster completion a

bigger share of the CPU compared to threads creating mostly patches. Second, we

can extend our implementation to include SMP. This will give ready-to-run threads

more cores to execute rather than waiting until the time-slot of the offending thread

expires.

Non-blocking writes and Page Replacement Non-blocking writes changes

the relative importance of pages in memory fundamentally. There is less incentive

to cache pages that are mostly written into in main memory. Even if the page

were out-of-core, writes to these pages can be handled without synchronous demand

paging or without demand paging at all. This observation can be built into page

replacement algorithms which can now decrease the relative importance of pages

that are frequently accessed but only (or mostly) written to.

Non-blocking Instructions Patches are a mechanism to define a data update

in non-blocking writes when the data itself is available. There are certain machine

instructions which generate a write fault but themselves do not contain the data to

be written to. For instance, increment and decrement of a memory word (INC/DEC

in x86 ISA) load the word from memory, increment it by 1, and then store the word

back to memory. Creating a data patch from the instruction is not feasible. Creating

an instruction patch on the other hand, is. The patch describes the instruction that

128

needs to be executed and the target memory address. Once the page is read in, the

instruction patch can be applied by single-stepping the process with the instruction

to generate the data update. This approach can also be applied to (INC/DEC with

LOCK prefix in x86 ISA).

Non-blocking writes Additional Uses While file systems (including local and

networked) and virtual memory systems are obvious use cases for non-blocking

writes, there are other less obvious ones. The first use case is non-blocking writes at

the hypervisor level. When memory is over-subscribed by virtual machines (VMs),

the hypervisor starts an additional level of demand paging to maintain the illusion

of available physical memory for the VMs [Wal02]. When the hypervisor takes a

fault, the entire VCPU blocks and no process of the VM can run on the core, a

situation worse than an OS taking a fault on account of a process. Non-blocking

writes can reduce such VCPU blocking. The second use case is non-blocking writes

is in post-copy live VM migration. Post-copy live VM migration is an optimization

wherein the VM being migrated from a source to a target host starts running at

the target without its state being migrated entirely to the target [HDG09]. This

optimization allows us to migrate load away from an over-subscribed source host

and thus mitigate performance issues earlier. During the initial execution at the

target, many of the un-migrated state corresponds to pages that have been recently

dirtied at the source and therefore not migrated in the iteration prior to the VM

execution getting switched over to the target. As these pages continue to be written

to at the target, the writes induce page fetches over the network since the source

has more up-to-date versions of these pages.

129

BIBLIOGRAPHY

[ABO07] Jens Axboe, Alan D. Brunelle, and Others. blktrace user guide, Febru-
ary 2007.

[Adm11] U.S. Energy Information Administration. Monthly energy review, June
2011.

[Age07] U.S. Environmental Protection Agency. Report to congress on server
and data center energy efficiency, August 2007.

[Ame94] American National Standards Institute. IEEE standard for information
technology: Portable Operating Sytem Interface (POSIX). Part 1, sys-
tem application program interface (API) — amendment 1 — realtime
extension [C language]. IEEE, 1994. IEEE Std 1003.1b-1993 (formerly
known as IEEE P1003.4; includes IEEE Std 1003.1-1990). Approved
September 15, 1993, IEEE Standards Board. Approved April 14, 1994,
American National Standards Institute.

[Bac86] Maurice J. Bach. The Design of the UNIX Operating System. Prentice
Hall Press, 1st edition, 1986.

[BBL06] Timothy Bisson, Scott A. Brandt, and Darrell D. E. Long. Nvcache:
Increasing the effectiveness of disk spin-down algorithms with caching.
In Proceedings of the International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, pages
422–432, September 2006.

[BH07] Luiz André Barroso and Urs Hölzle. The case for energy proportional
computing. In IEEE Computer, 2007.

[BH09] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture, Morgan & Claypool Publishers,
May 2009.

[BKB07] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic place-
ment of virtual machines for managing sla violations. In IEEE Conf.
Integrated Network Management, 2007.

130

[BKL+07] Len Brown, Konstantin A. Karasyov, Vladimir P. Lebedev, Alexey Y.
Starikovskiy, and Randy P. Stanley. Linux laptop battery life: Mea-
surement tools, techniques, and results, February 2007.

[Bla06] Blackburn, S. M. et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proc. of OOPSLA, pages 169–190, New
York, NY, USA, October 2006. ACM Press.

[BPPM03] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty, and Janet
Morgan. Asynchronous I/O Support in Linux 2.5. In Proc. of the
Ottawa Linux Symposium, July 2003.

[Bro04] David Brownell. Linux usb “On-The-Go” (OTG) on OMAP H2, 2004.

[BSD] BSD. BSD System Calls Manual (aio write).
http://www.unix.com/man-page/FreeBSD/2/aio_write/.

[CG02] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage
archives. In High Performance Networking and Computing Conference,
2002.

[CJZ06] Feng Chen, Song Jiang, and Xiaodong Zhang. Smartsaver: Turning
flash drive into a disk energy saver for mobile computers. In ISLPED
’06: Proceedings of the 2006 international symposium on Low power
electronics and design, pages 412–417, New York, NY, USA, 2006.
ACM Press.

[CKZ11] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Hystor: making
the best use of solid state drives in high performance storage systems.
In Proceedings of the international conference on Supercomputing, ICS
’11, May-June 2011.

[Cor] HP Corporation. Hp storageworks san virtualization services platform:
Overview & features. http://h18006.www1.hp.com/products/storage/
software/sanvr/index.html.

[DKB95] Fred Douglis, P. Krishnan, and Brian N. Bershad. Adaptive disk spin-
down policies for mobile computers. In Proceedings of the 2nd Sympo-
sium on Mobile and Location-Independent Computing, pages 121–137,
Berkeley, CA, USA, 1995. USENIX Association.

131

http://www.unix.com/man-page/FreeBSD/2/aio_write/

[DMR+11] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F. Wenisch, and
Ricardo Bianchini. Memscale: Active low-power modes for main mem-
ory. In Proceedings of the Sixteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’11, pages 225–238, New York, NY, USA, 2011. ACM.

[ECCZ04] Khaled Elmeleegy, Anupam Chanda, Alan L. Cox, and Willy
Zwaenepoel. Lazy asynchronous i/o for event-driven servers. In Pro-
ceedings of the annual conference on USENIX Annual Technical Con-
ference, 2004.

[EM05] Jörn Engel and Robert Mertens. Logfs - finally a scalable flash file
system, 2005.

[EMC] EMC Corporation. EMC Invista.
http://www.emc.com/products/software/ invista/invista.jsp.

[FMK+07] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los
Reyes, Shant Hovsepian, Andrew Matsuoka, and Lei Zhang. General-
ized File System Dependencies. Proc. of ACM SOSP, pages 307–320,
October 2007.

[GF07] Jim Gray and Bob Fitzgerald. Flash disk opportunity for server-
applications. Online,, http://research.microsoft.com/∼Gray/papers/
FlashDiskPublic.doc, January 2007.

[GKAK10] Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. Basil:
Automated io load balancing across storage devices. In FAST, pages
169–182, 2010.

[GLM+08] K. Greenan, D. Long, E. Miller, T. Schwarz, and J. Wylie. A spin-
up saved is energy earned: Achieving power-efficient, erasure-coded
storage. In HotDep, 2008.

[GPG+11] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini,
and Raju Rangaswami. Cost effective storage using extent-based dy-
namic tiering. In Proc. of the USENIX Conference on File and Storage
Technologies, February 2011.

[GSKF03] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mahmut Kandemir,
and Hubertus Franke. DPRM: Dynamic speed control for power man-

132

agement in server class disks. In Proceedings of the 30th International
Symposium on Computer Architecture (ISCA’03), June 2003.

[GSS09] S. Gurumurthi, M. R. Stan, and S. Sankar. Using intradisk parallelism
to build energy-efficient storage systems. In IEEE MICRO Top Picks,
2009.

[GWBB07] Lakshmi Ganesh, Hakim Weatherspoon, Mahesh Balakrishnan, and
Ken Birman. Optimizing power consumption in large scale storage
systems. In HotOS, 2007.

[Hag87] Robert Hagmann. Reimplementing the Cedar File System using Log-
ging and Group Commit. In Proc. of the ACM Symposium on Operating
systems principles, November 1987.

[HDG09] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy
live migration of virtual machines. SIGOPS Oper. Syst. Rev., 43:14–26,
July 2009.

[HDV+11] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. A file is not a file: under-
standing the i/o behavior of apple desktop applications. In Proc. of
the ACM Symposium on Operating Systems Principles, October 2011.

[HLS96] David P. Helmbold, Darrell D. E. Long, and Bruce Sherrod. A dynamic
disk spin-down technique for mobile computing. In Mobile Computing
and Networking, pages 130–142, 1996.

[HLSS00] David P. Helmbold, Darrell D. E. Long, Tracey L. Sconyers, and Bruce
Sherrod. Adaptive disk spin-down for mobile computers. Mobile Net-
works and Applications, page 297, 2000.

[HP06] HP. Control power and cooling for data center efficiency
- hp thermal logic technology. an hp bladesystem innova-
tion primer. http://h71028.www7.hp.com/ERC/downloads/4AA0-
5820ENW.pdf, 2006.

[IBM] IBM Corporation. Ibm system stor-
age san volume controller. http://www-
03.ibm.com/systems/storage/software/virtualization/svc/.

133

[IDC06] IDC. Virtualization across the enterprise, Nov 2006.

[Kat97] Jeffrey Katcher. PostMark: A New File System Benchmark. Technical
Report TR3022. Network Appliance Inc., October 1997.

[KAU12] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting Stor-
age for Smartphones. In Proc. of USENIX File and Storage Technolo-
gies (to appear), February 2012.

[KM06] Taeho Kgil and Trevor Mudge. Flashcache: A nand flash memory file
cache for low power web servers. In Proceedings of the 2006 interna-
tional conference on Compilers, architecture and synthesis for embedded
systems, CASES ’06, pages 103–112, New York, NY, USA, 2006. ACM.

[Kro81] David Kroft. Lockup-free instruction fetch/prefetch cache organization.
In ISCA, pages 81–88, 1981.

[KS07] Patricia Kim and Mike Suk. Ramp load/unload technology in hard
disk drives. Hitachi Global Storage Technologies White Paper, 2007.

[Lan09] Klaus-Dieter Lange. Identifying shades of green: the specpower bench-
marks. computer, 42:95–97, 2009.

[LCBJ11] Sheng Li, Ke Chen, Jay B. Brockman, and Norman P. Jouppi. Perfor-
mance impacts of non-blocking caches in out-of-order processors. Tech-
nical report, Hewlett-Packard Labs and University of Notre Dame, July
2011.

[LKHA94] Kester Li, Roger Kumpf, Paul Horton, and Thomas E. Anderson. A
quantitative analysis of disk drive power management in portable com-
puters. In Proceedings of the USENIX Winter Conference, 1994.

[LLN08] H. Lee, K. Lee, and S. Noh. Augmenting raid with an ssd for energy
relief. In HotPower, 2008.

[LPGM08] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L.
Miller. Measurement and analysis of large-scale network file system-
workloads. In Usenix ATC, 2008.

134

[LVW07] Lanyue Lu, Peter Varman, and Jun Wang. Diskgroup: Energy efficient
disk layout for raid1 systems. Networking, Architecture, and Storage,
International Conference on, 0:233–242, 2007.

[MBKQ96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S.
Quarterman. The Design and Implementation of the 4.4 BSD Operat-
ing System, pages 163, 196. Addison Wesley, 1996.

[MDK94] B. Marsh, F. Douglis, and P. Krishnan. Flash memory file caching for
mobile computers. In Proceedings of the 27th Hawaii Conference on
Systems Science, 1994.

[Mic] Microsoft Corporation. Windows Readyboost. Online,
http://www.microsoft.com/windows/products/windowsvista/ fea-
tures/details/readyboost.mspx.

[MV04] Aqeel Mahesri and Vibhore Vardhan. Power consumption breakdown
on a modern laptop. In PACS, pages 165–180, 2004.

[NC] William D. Norcott and Don Capps. The Iozone File System Bench-
mark. http://www.iozone.org/.

[NCF06] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. Speculative
execution in a distributed file system. ACM Trans. Comput. Syst, pages
361–392, 2006.

[NDR08] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write
off-loading: Practical power management for enterprise storage. In Pro-
ceedings of the 6th USENIX Conference on File and Storage Technolo-
gies, FAST’08, pages 17:1–17:15, Berkeley, CA, USA, 2008. USENIX
Association.

[Net] Network Appliance, Inc. NetApp V-Series for Heterogeneous Storage
Environments. http://media.netapp.com/documents/v-series.pdf.

[*ni] *nix Documentation Project. IRIX Man Pages (aio write).
http://nixdoc.net/man-pages/IRIX/man3/aio_write.3.html.

[NVCF06] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and
Jason Flinn. Rethink the Sync. Proc. 7th USENIX OSDI, Nov 2006.

135

http://nixdoc.net/man-pages/IRIX/man3/aio_write.3.html

[OD89] John K. Ousterhout and Fred Douglis. Beating the i/o bottleneck:
A case for log-structured file systems. Operating Systems Review,
23(1):11–28, 1989.

[PADAD05] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Analysis and Evolution of Journaling File Sys-
tems. In The Proceedings of the USENIX Annual Technical Conference
(USENIX ’05), pages 105–120, Anaheim, CA, April 2005.

[PB04] Eduardo Pinheiro and Ricardo Bianchini. Energy conservation tech-
niques for disk array-based servers. In Proceedings of the 18th annual
international conference on Supercomputing, ICS ’04, pages 68–78, New
York, NY, USA, 2004. ACM.

[PBD06] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploiting redundancy to
conserve energy in storage systems. In SIGMETRICS, 2006.

[PS04] Athanasios E. Papathanasiou and Michael L. Scott. Energy efficient
prefetching and caching. In Proceedings of the USENIX Annual Techni-
cal Conference 2004 on USENIX Annual Technical Conference, pages
22–22, Berkeley, CA, USA, 2004. USENIX Association.

[RLLR07] Alma Riska, James Larkby-Lahet, and Erik Riedel. Evaluating block-
level optimization through the io path. In 2007 USENIX Annual Tech-
nical Conference on Proceedings of the USENIX Annual Technical Con-
ference, pages 19:1–19:14, Berkeley, CA, USA, 2007. USENIX Associ-
ation.

[Sam04] Bart Samwel. Kernel korner: extending battery life with laptop mode.
Linux J., 2004(125):10, 2004.

[SCN+10] Kshitij Sudan, Niladrish Chatterjee, David W. Nellans, Manu Awasthi,
Rajeev Balasubramonian, and Al Davis. Micro-pages: Increasing dram
efficiency with locality-aware data placement. In James C. Hoe and
Vikram S. Adve, editors, ASPLOS, pages 219–230. ACM, 2010.

[SGMV08] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar
Voruganti. Pergamum: Replacing tape with energy efficient, reliable
disk-based archival storage. In Usenix FAST, 2008.

[Sou] Sourceforge. Kernel Asynchronous I/O (AIO) Support for Linux.
http://lse.sourceforge.net/io/aio.html.

136

http://lse.sourceforge.net/io/aio.html

[SS10a] Mohit Saxena and Michael M. Swift. Flashvm: Virtual memory man-
agement on flash. In Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, USENIXATC’10, pages 14–14,
Berkeley, CA, USA, 2010. USENIX Association.

[SS10b] Livio Soares and Michael Stumm. Flexsc: flexible system call schedul-
ing with exception-less system calls. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, OSDI’10,
pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[SSS99] Elizabeth Shriver, Christopher Small, and Keith A. Smith. Why does
file system prefetching work? In Proc. of USENIX ATC, 1999.

[Sta] Standard Performance Evaluation Corporation (SPEC). SPEC Bench-
marks. http://www.spec.org/benchmarks.html.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2007.

[TWM+08] Niraj Tolia, Zhikui Wang, Manish Marwah, Cullen Bash,
Parthasarathy Ranganathan, and Xiaoyun Zhu. Delivering En-
ergy Proportionality with Non Energy-Proportional Systems –
Optimizing the Ensemble. In HotPower ’08: Workshop on Power
Aware Computing and Systems. ACM, December 2008.

[UGB+08] Luis Useche, Jorge Guerra, Medha Bhadkamkar, Mauricio Alarcon, and
Raju Rangaswami. Exces: External caching in energy saving storage
systems. In HPCA, 2008.

[UKRV11] Luis Useche, Ricardo Koller, Raju Rangaswami, and Akshat Verma.
Truly non-blocking writes. In Proceedings of the 3rd USENIX confer-
ence on Hot topics in storage and file systems, pages 8–8. USENIX
Association, 2011.

[VAN08] A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and migration
cost aware application placement in virtualized systems. InMiddleware,
2008.

[VDN+09] A. Verma, G. Dasgupta, T. Nayak, P. De, and R. Kothari. Server work-
load analysis for power minimization using consolidation. In Usenix
ATC, 2009.

137

http://www.spec.org/benchmarks.html

[VKUR10] Akshat Verma, Ricardo Koller, Luis Useche, and Raju Rangaswami.
Srcmap: Energy proportional storage using dynamic consolidation. In
Proceedings of the 8th USENIX conference on File and storage tech-
nologies, FAST’10, pages 20–20, Berkeley, CA, USA, 2010. USENIX
Association.

[VMw] VMware. The Role of Memory in VMware ESX Server 3.
http://www.vmware.com/pdf/esx3_memory.pdf.

[Wal02] Carl A. Waldspurger. Memory resource management in vmware esx
server. SIGOPS Oper. Syst. Rev., 36:181–194, December 2002.

[Wat09] Wattsup Corporation. Watts up? PRO Meter.
https://www.wattsupmeters.com/secure/products.php?pn=0, 2009.

[WBB02] Andreas Weissel, Björn Beutel, and Frank Bellosa. Cooperative i/o -
a novel i/o semantics for energy-aware applications. In Proceedings of
the Fifth Symposium on Operating Systems Design and Implementation
(OSDI’02), December 2002.

[WOQ+07] Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang, Peter L.
Reiher, and Geoffrey H. Kuenning. Paraid: A gear-shifting power-
aware raid. TOS, 3(3), 2007.

[WR10] Xiaojian Wu and A. L. Narasimha Reddy. Exploiting Concurrency
to Improve Latency and Throughput in a Hybrid Storage System. In
Proc. of IEEE MASCOTS, September 2010.

[WRPH02] An-I A. Wang, Peter Reiher, Gerald J. Popek, and Geoffrey
H.Kuenning. Conquest: Better performance through a disk/persistent-
ram hybrid file system. In Proceedings of the USENIX Annual Technical
Conference, June 2002.

[WYZ08] J. Wang, X. Yao, and H. Zhu. Exploiting in-memory and on-disk
redundancy to conserve energy in storage systems. In IEEE Tran. on
Computers, 2008.

[ZCT+05] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes. Hiber-
nator: helping disk arrays sleep through the winter. In SOSP, 2005.

138

http://www.vmware.com/pdf/esx3_memory.pdf

VITA

Luis Useche

July 27th, 1983 Born, Caracas, Venezuela

2006 B.A., Computer Science Engeneering
Simón Boĺıvar University
Caracas, Venezuela

PUBLICATIONS AND PRESENTATIONS

Luis Useche, Ricardo Koller, Raju Rangaswami, Akshat Verma, (2011). Truly Non-
blocking Writes. Proceedings of USENIX 3rd Workshop on Hot Topics in Storage
and File Systems (HotStorage).

Akshat Verma, Ricardo Koller, Luis Useche, Raju Rangaswami, (2010). SRCMap:
Energy Proportional Storage Using Dynamic Consolidation. Proceedings of File and
Storage Technologies (FAST).

Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam Burnett, Jason Liptak, Raju
Rangaswami and, Vagelis Hristidis, (2009). BORG: Block-reORGanization for Self-
optimizing Storage Systems. Proceedings of File and Storage Technologies (FAST).

Luis Useche, Jorge Guerra, Medha Bhadkamkar, Mauricio Alarcon, and Raju Ran-
gaswami, (2008). EXCES: EXternal Caching in Energy Saving Storage Systems.
Proceedings of IEEE International Symposium on High-Performance Computer Ar-
chitecture (HPCA).

Jorge Guerra, Luis Useche, Medha Bhadkamkar, Ricardo Koller, and Raju Ran-
gaswami, (2008). The Case for Active Block Layer Extensions. Proceedings of
IEEE International Workshop on Storage and I/O Virtualization, Performance, En-
ergy, Evaluation and Dependability (SPEED).

139

	Florida International University
	FIU Digital Commons
	7-16-2012

	Optimizing Storage and Memory Systems for Energy and Performance
	Luis Enrique Useche
	Recommended Citation

	Introduction
	Problem Statement
	Thesis Statement
	Thesis Statement Description
	Thesis Significance

	Energy Proportional Storage
	Proportionality Matters
	Design Goals
	Storage Workload Characteristics
	Background and Rationale
	Design Overview
	Load Monitor
	Replica Placement Controller
	Active Disk Manager
	Consistency Manager
	Replica Manager

	Algorithms and Optimizations
	Replica Placement Algorithm
	Active Disk Identification
	Key Optimizations to Basic SRCMap

	Evaluation
	Prototype Results
	Simulator Results
	Resource overhead of SRCMap

	Summary
	Credits

	Energy-efficient Storage using Flash
	Overview
	Profiling Energy Consumption
	System Architecture
	System Design
	Page Access Tracker
	Indirection
	Reconfiguration Trigger
	Reconfiguration Planner
	Reconfigurator
	Other Design Issues

	System Implementation
	Maintaining the Top-k Ranked Pages
	Indirector Implementation Issues
	Modularization and Consistency

	Evaluation
	Choosing the Disk Spin-down Timeout
	Energy Savings
	Performance Impact of External Caching
	Resource Overhead

	Summary
	Credits

	Controlling I/O Traffic with Non-blocking Writes
	The Fetch-before-update Behavior
	Motivating Non-blocking Writes
	Solution Impact

	Non-blocking Writes
	Approach Overview
	Write Interposition
	Page Patching
	Non-blocking Reads
	Scheduling with Non-blocking writes

	Optimizations
	Alternative Page Fetching Modes
	To Fetch or Not to Fetch and When

	Correctness
	Estimating Benefits
	Virtual Memory Simulation
	Fraction of Non-blocking Write Faults
	Outstanding Write Fetches
	Estimating Overall Savings

	Evaluation
	Experimental setup
	Performance Improvements
	Memory Sensitivity
	Optimizations with Patches

	Summary
	Credits

	Related Work
	Energy Proportionality in Storage Systems
	Energy Efficient Storage with Flash
	fetch-before-update Problem

	Conclusions
	Future Work
	BIBLIOGRAPHY
	VITA

