
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

2012

Herbivore and Nutrient Impact on Primary
Producer Assemblages in a Tropical Marine
Environment
Elizabeth Lacey
Florida International University, elacey@fiu.edu

DOI: 10.25148/etd.FI12080701
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Lacey, Elizabeth, "Herbivore and Nutrient Impact on Primary Producer Assemblages in a Tropical Marine Environment" (2012). FIU
Electronic Theses and Dissertations. 694.
https://digitalcommons.fiu.edu/etd/694

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/694?utm_source=digitalcommons.fiu.edu%2Fetd%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


 

 

 

FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

 

 

HERBIVORE AND NUTRIENT IMPACT ON PRIMARY PRODUCER 

ASSEMBLAGES IN A TROPICAL MARINE ENVIRONMENT 

 

 

 

A dissertation submitted in partial fulfillment of 

the requirements for the degree of 

DOCTOR OF PHILOSOPHY  

in 

BIOLOGY 

by 

Elizabeth Anne Lacey 

 

 

2012 

 



 

ii 

To:   Dean Kenneth G. Furton 
 College of Arts and Sciences  

 
This dissertation, written by Elizabeth Anne Lacey, and entitled Herbivore and Nutrient 
Impact on Primary Producer Assemblages in a Tropical Marine Environment, having 
been approved in respect to style and intellectual content, is referred to you for judgment. 

 
We have read this dissertation and recommend that it be approved. 

 
 

_______________________________________ 
Deron Burkepile 

 
_______________________________________ 

Jennifer Rehage 
 

_______________________________________ 
James Heffernan 

 
_______________________________________ 

James Fourqurean, Co-Major Professor 
 

_______________________________________ 
Ligia Collado-Vides, Co-Major Professor 

 
 

 
Date of Defense: June 22, 2012 

 
The dissertation of Elizabeth Anne Lacey is approved. 

 
 
 

_______________________________________ 
  DeanDean Kenneth G. Furton 

College of Arts and Sciences 
 

 
_______________________________________ 

Dean Lakshmi N. Reddi 
University Graduate School 

 
 
 

Florida International University, 2012 



 

iii 

ACKNOWLEDGMENTS 

 This dissertation was greatly improved through the dedication of co-major 

advisors: Dr. James Fourqurean and Dr. Ligia Collado-Vides and the committee: Dr. 

Deron Burkepile, Dr. James Heffernan and Dr. Jennifer Rehage.  Funding was provided 

by the University Graduate School Doctoral Evidence Acquisition and Teaching 

Assistant Fellowships, Latin American and Caribbean Center Tinker Field Grant, 

Professional Association of Diving Instructors, International Phycological Society and 

Phycological Society of America.  Sea urchin settlement racks were provided by Dr. 

Margaret Miller and isotopic analysis was completed by Dr. David Baker.  Logistical and 

fieldwork support were supplied by Centro Ecológico Akumal, Universidad Autonóma 

de México and many volunteers.



 

iv 

ABSTRACT OF THE DISSERTATION 
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Globally, human populations are increasing and coastal ecosystems are becoming 

increasingly impacted by anthropogenic stressors.  As eutrophication and exploitation of 

coastal resources increases, primary producer response to these drivers becomes a key 

indicator of ecosystem stability. Despite the importance of monitoring primary producers 

such as seagrasses and macroalgae, detailed studies on the response of these benthic 

habitat components to drivers remain relatively sparse.   

Utilizing a multi-faceted examination of turtle-seagrass and sea urchin-

macroalgae consumer and nutrient dynamics, I elucidate the impact of these drivers in 

Akumal, Quintana Roo, Mexico.  In Yal Ku Lagoon, macroalgae bioindicators signified 

high nutrient availability, which is important for further studies, but did not consistently 

follow published trends reflecting decreased δ15N content with distance from suspected 

source.  In Akumal Bay, eutrophication and grazing by turtles and fishes combine to 

structure patches within the seagrass beds.  Grazed seagrass patches had higher structural 

complexity and productivity than patches continually grazed by turtles and fishes.  
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Results from this study indicate that patch abandonment may follow giving-up density 

theory, the first to be recorded in the marine environment.  As Diadema antillarum 

populations recover after their massive mortality thirty years ago, the role these echinoids 

will have in reducing macroalgae cover and altering ecosystem state remains to be clear.  

Although Diadema antillarum densities within the coral reef ecosystem were comparable 

to other regions within the Caribbean, the echinoid population in Akumal Bay was an 

insufficient driver to prevent dominance of a turf-algal-sediment (TAS) state.  After a 

four year study, declining coral cover coupled with increased algal cover suggests that the 

TAS-dominated state is likely to persist over time despite echinoid recovery. Studies on 

macroalgal diversity and nutrients within this same region of echinoids indicated 

diversity and nutrient content of macroalgae increased, which may further increase the 

persistence of the algal-dominated state.   

  This study provides valuable insight into the variable effects of herbivores and 

nutrients on primary producers within a tropical coastal ecosystem.  Results from this 

work challenge many of the currently accepted theories on primary producer response to 

nutrients and herbivory while providing a framework for further studies into these 

dynamics. 
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CHAPTER I:  Introduction 

Human populations are rapidly increasing and altering nearshore marine 

environments, particularly as 60% of the population  is concentrated within 100km of the 

coast (Vitousek et al. 1997).  With these high densities, record high levels of nitrogen and 

phosphorus are being  introduced to the coastal ecosystems and resources such as 

fisheries are becoming increasingly exploited (Cloern 2001, Halpern et al. 2008).  As 

41% of marine ecosystems are impacted by multiple drivers (e.g., both eutrophication 

and overharvesting), rates of ecosystem loss have increased for nearshore ecosystems 

such as seagrasses, mangroves and coral reefs (Vitousek et al. 1997).  These losses are of 

great importance both ecological and economically as shallow marine ecosystems 

provide tourism and fisheries income, stabilize sediment, protect shorelines and cycle 

nutrients, among many other important roles (Costanza et al. 1997, Waycott et al. 2009).  

For these reasons, marine ecosystem managers have an urgent need to identify indicators 

and quantify responses of primary producers to these drivers over time, as it is the 

primary producers which form the base of the food web and can efficiently indicate 

ecosystem health.  There is also a need to assess ecosystem status and determine the 

influence of these drivers on ecosystem status or the potential for a phase shift to a 

different ecosystem state. 

A phase shift is what occurs when an ecosystem experiences a fundamental 

change in core processes in response to drivers (Figure 1; Scheffer et al. 2001, Collie et 

al. 2004, Andersen et al. 2008).  Each ecosystem has a unique capacity to buffer 

perturbations and return to the original state without experiencing a permanent phase shift 

to an alternative state (Nystrom et al. 2000).  This capacity, termed resilience, can be 
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influenced by the relative dominance of each ecosystem component as it changes with 

different ecosystem processes (e.g., resource availability, herbivore disturbance), further 

examples are explored in Scheffer et al. (2001).  Dominance of one species can be driven 

by the abundances of other species as they interact through factors such as population 

dynamics, competition and predation (Knowlton 1992), which may also operate as 

positive feedback mechanisms.  Positive feedback mechanisms are self-stabilizing actions 

that serve to increase the resilience of the system’s current state (Scheffer et al. 2001).  In 

addition to external drivers, removal or reduction of these internal positive-feedbacks is 

often necessary for a phase shift to an alternative state to occur (Petraitis & Latham 

1999).   

 

Figure 1:  Drivers to phase shifts on coral- or seagrass-dominated ecosystems.  

Drivers (dashed lines) decrease the resilience of the current state while positive feedbacks 

(arrows with plus signs) increase the resilience of the current state. 

 

 
 

 

 

 

 

 

 

 

 

Seagrass 
or Coral 

Dominate
d State 

Alternative 
State:   

Epiphytic 
Microalgae or 
Macroalgae 
Dominated 

Sand or Bare 
Rock 

Driv
er 2 

Drive
r 1 

 

+ 

 

+  

+ 

Driv
er 3 



 

  3 

Coastal marine ecosystems 

Seagrasses are marine vascular plants common in coastal waters worldwide.  

They are the base of marine food webs, forming a trophic connection including sirenians 

(manatees and dugongs), turtles, herbivorous fish, sea urchins and waterfowl (Valentine 

& Heck 1999).  Seagrass bed state dynamics include a clear, seagrass dominated state and 

a turbid, epiphytic microalgae dominated state characterized by phytoplankton blooms 

(Gunderson 2001).  The epiphytic microalgae state is used to refer to those conditions in 

which seagrass have high epiphyte loads and the water is turbid with high phytoplankton 

biomass.  The relative dominance of each of these alternative states is driven by nutrient 

availability and herbivory.  For shifts from seagrass dominated states to epiphytic states, 

perturbations from eutrophication alter seagrass abundance, resource use and productivity 

(Borum 1985, Orth et al. 2006), parameters that can be monitored to indicate ecosystem 

state.   Positive feedbacks to the resilience of a clear, seagrass dominated state occur 

through the stabilization of sediments by seagrass rhizomal mats (Ginsburg & 

Lowenstam 1958, Scoffin 1970).  In a nutrient replete system, the benthos would be 

expected to exist as a turbid, epiphytic microalgal-covered state rather than a clear water, 

seagrass dominated state.  In Florida Bay, nutrients have driven the seagrass system from 

a clear to turbid state with frequent sediment resuspension and algal blooms as the 

positive feedback mechanisms by which this turbid state exists (Fourqurean & Robblee 

1999).  Opportunistic epiphytic overgrowth reduces light penetration to seagrass blades 

and limits successful seagrass recolonization (Ferreira et al. 2007), thus increasing the 

resilience of this alternative turbid state as seagrasses are competitively excluded  

(Tomasko & Lapointe 1991).   
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An additional driver is through herbivore grazing disturbance.  In the absence of 

herbivory, areas experiencing high nutrient loads would be expected to shift from 

relatively clean seagrass blades to blades dominated by epiphytic microalgae (Neckles et 

al. 1993, McGlathery 1995).  However, grazing stimulates seagrass productivity from the 

extensive networks of belowground biomass to offset the loss of aboveground biomass 

(Valentine et al. 1997).  Resource allocation is mobilized from storage in rhizomes to the 

production of new leaves aboveground.  The status of the seagrass ecosystem is reflected 

in rates of primary production, seagrass abundance and measurements of nutrient reserves 

in rhizomes (carbon, nitrogen, phosphorus and soluble carbohydrates), but the direct 

effects of grazing behaviors on these parameters is not well known although it has been 

modeled in mesotrophic environments (Figure 2).  

 

Figure 2: Grazer disturbance model for seagrass ecosystems (modeled after a 

mesotrophic environment; Fourqurean et al. 2010).  Low grazing intensity leads to 

seagrasses that are nutrient limited with higher soluble carbohydrate content relative to 
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aboveground nutrient content.  High grazing intensity results in reduced carbon fixation 

and declining soluble carbohydrates with the potential for seagrass bed collapse. 

Relative dominance of coral reef alternative states is also driven by nutrient 

availability and herbivory (Hughes 1994, Lapointe 1999, Szmant 2002).  These 

ecosystems are also impacted by coral diseases and ocean acidification but as it is not 

feasible for marine ecosystem managers to mitigate for these indirect drivers (McManus 

& Polsenberg 2004), it become more important to focus on these top-down (herbivory) 

and bottom-up (nutrient) drivers.  Shifts from coral- to algal-dominated states can occur 

when there is an increase in nutrients to the system, which favors the growth of 

macroalgae as they competitively exclude corals (Idjadi et al. 2006).  Nutrients impact 

macroalgal productivity and this can be measured in tissue concentrations of nitrogen and 

phosphorus.  For many macroalgae species, their relationship with nutrients is not well 

established and warrants further consideration.  Information on nutrient dynamics will be 

of particular interest as a parameter by which to monitor the effects of nutrient 

enrichment on the coral-algal relationship.  Positive feedbacks to the macroalgae state 

include reductions in habitat complexity (Lee 2006), decreased coral recruitment from the 

Allee effect, and increased turbidity and sedimentation that commonly occurs in algal-

dominated systems (Knowlton 1992).   

Alterations in grazers impact the dominant benthic cover and therefore the state of 

the coral reef ecosystem.  Herbivores directly impact macroalgal dominance through the 

removal of biomass, which provides space for coral recruitment.  Events like the massive 

mortality of the herbivore Diadema antillarum throughout the Caribbean in the 1980s, 

released macroalgae from herbivory pressure, which increased algal abundance.  After 
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the loss of this herbivore, many reefs experienced a dramatic shift to increased 

macroalgal cover from formerly coral-dominated reefs (Lessios et al. 1984a, de Ruyter 

van Steveninck & Bak 1986).  As the sea urchin population begins to recover, their 

grazing may serve as a buffer to excessive nutrients in a similar manner as sea turtles in 

seagrass beds.  Correlations between parameters such as sea urchin density and 

macroalgal abundance and distribution are especially important when considering these 

ecosystems are under an additional stress of high nutrient availability.   

 

Figure 3: Grazer disturbance model for coral reef ecosystems based upon the 

Littler and Littler Relative Dominance Model (Littler et al 2006).  Benthic covers turf and 

frondose macroalgae are prevalent at low grazing intensities while high grazing 

intensities reduces these covers and provides space for coral and crustose coralline algae 

cover.  In a high nutrient environment, the Relative Dominance Model would predict 

frondose macroalgae and crustose coralline algae be present rather than turf and coral. 

Understanding the drivers underlying resilience in nutrient replete environments 

is crucial to preventing continued degradation.  There are many gaps in the ecological 

theory of herbivore- and nutrient-induced changes to primary producer assemblages and 
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no known studies which consider multiple systems (seagrass and coral) within the same 

shallow marine environment.  Studying multiple systems provides interesting insight into 

the responses of primary producers to similar nutrient scenarios and is a mechanism by 

which similar questions can be asked in these different ecosystems.  An expansion in our 

understanding of the mechanisms affecting dominant benthic habitat and potentially 

ecosystem resilience can be beneficial for marine park management decisions and 

priorities.  During this research, I first considered the macroalgal response to nutrients 

and the importance of their use as nutrient bioindicators within my study region of 

Akumal, Mexico (Chapter II).  These data can determine the relative nutrient availability 

to the primary producer community within the Mesoamerican coastal region and the 

accuracy in designating this system as nutrient replete rather than nutrient limited.  I then 

sought to evaluate the impact of green sea turtles, Chelonia mydas, and herbivorous fish 

on dominant seagrass state as the primary producers are impacted by high nutrient 

availability (Chapter III).  There are many unanswered questions regarding the 

physiological and morphological response of seagrasses to grazing in a eutrophic 

environment as well as how these parameters relate to observed grazer behavior.  In a 

similar manner to herbivores in seagrass beds, I also considered the role of herbivorous 

black-spined sea urchins, Diadema antillarum, on structuring the algal dominant state in 

Akumal Bay (Chapter IV).  Beginning with a consideration of the recovery dynamics of 

the sea urchin, I also sought to analyze the impact of this driver on benthic cover 

functional groups and what changes in benthic cover over time mean to overall coral reef 

ecosystem state.  Finally, I analyzed how high nutrient availability could impact changes 

in generic diversity and nutrient content of macroalgae (Chapter V).  These data are 
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considered with results on herbivory found during Chapter IV in order to determine the 

trajectory of this highly impacted coral reef ecosystem as it is impacted by the 

increasingly common drivers of eutrophication and fishing exploitation.  Results from the 

research produced during these studies answers ecological questions on the relative 

importance of these drivers on primary producer assemblages in nutrient-replete 

ecosystems.  Results can also provide important information to assist marine park 

managers in their quest to protect these important ecosystems. 
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CHAPTER II:  Challenges in using marine macroalgae tissue chemistry for assessing 

nutrient pollution in the Mexican Caribbean 

Abstract 

 Rising coastal populations are rapidly driving changes in nearshore marine 

environments through increased anthropogenic nutrient loading.  Monitoring the response 

of primary producers such as macroalgae to these nutrients is an important management 

priority yet data are lacking on even the most basic ranges to be expected for tissue 

nutrients. My study was designed to add to the paucity of nutrient literature as well as 

utilize two different bioindicator methodologies to determine the fate of nutrients on 

δ15N, nitrogen and phosphorus content within Yal Ku Lagoon, Akumal, Quintana Roo, 

Mexico, an ecosystem considered to be heavily impacted by anthropogenic nutrients.   

Bioindicators are continuous samplers of the aquatic environment and provide data on the 

bioavailability of nutrients to primary producers, such as macroalgae.  In July 2009 and 

2010, nitrogen, phosphorus and δ15N content of Acanthophora spicifera were used as an 

active bioindicator bioassay to record nutrients within the water column while a 

collection of macroalgae was also completed as passive macroalgae indicators to record 

nutrients available at the benthos.  While the bioassay of A. spicifera did signify some 

dilution of nutrient content with distance in 2010, clear isotopic indications of this pattern 

were absent in 2009.  Tracking nitrogen (maximum 4% dry weight) and phosphorus 

(maximum 0.18% dry weight) tissue content in both active and passive macroalgal 

bioindicators suggest Yal Ku Lagoon is a nutrient replete ecosystem but data are highly 

variable.  While macroalgae bioindicators can indicate the relative nutrient status and 

bioavailability within the system, the diffuse sources of nutrients coming from this karstic 
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environment may not allow clear tracking of gradients in nutrient pollution.  My study 

contributes valuable data which can be used to increase our understanding on the 

fluctuating ranges of δ15N and nitrogen content within marine macroalgae.  My study also 

illustrates the variability between bioindicator methodologies and parameters and 

therefore their use and interpretation for management purposes. 

Introduction 

Globally, human populations are rapidly increasing and altering nearshore marine 

environments with anthropogenic nutrient loading (Cloern 2001).  Increased nutrients, 

such as nitrogen from fertilizers and sewage, increases primary productivity (Doering et 

al. 1995, Thornber et al. 2008) and can cause the formation and proliferation of 

macroalgal blooms (Lapointe 1997, Stimson et al. 2001).  Effective monitoring of 

indicators preceding such macroalgal blooms could allow for corrective actions to reduce 

nutrient loading prior to detrimental blooms.  Traditionally, testing of the water column 

has been used to monitor levels of nutrients available within an ecosystem (Burford et al. 

2003, Biao et al. 2004).  However, when terrestrial nitrogen arrives in spatially or 

temporally variable pulses, measurements of short-term water column chemistry do not 

represent the long-term influence or bioavailability of these nutrients (Fong et al. 1998, 

Fong et al. 2004).  Measurements of primary producer tissue chemistry represent time-

integrated nutrient availability which dampens short-term fluctuations (Fourqurean et al. 

1997).  These primary producer measurements also allow an understanding of 

eutrophication to be developed in an ecologically relevant way (Savage & Elmgren 

2004).   
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While macroalgal response may differ depending on species as there are 

physiologically different uptake rates and storage capacities (Wallentinus 1984), internal 

content generally reflects external conditions (Gerloff & Krombholz 1966, Lyngby 1990, 

Lapointe et al. 1992).  As such, tissue chemistry is a function of spatial and temporal 

patterns in nutrient availability and the demand from the primary producer for those 

nutrients for growth (Redfield 1958, Gerloff & Krombholz 1966, Atkinson & Smith 

1983).  Macroalgae are also easy to collect and prepare, can integrate available nutrients 

over time (Cohen & Fong 2005, Costanzo et al. 2005) and their fast uptake rates make 

them ideal for bioassay techniques (Wallentinus 1984, Costanzo et al. 2001).  Tissue 

nitrogen and phosphorus concentration, δ15N and productivity are part of the suite of 

parameters considered in the use of macroalgae as a method by which to estimate relative 

availability of nutrients within an ecosystem (Horrocks et al. 1995, Fong et al. 1998, 

Umezawa et al. 2002, Lin & Fong 2008, Dailer et al. 2010).  Algal tissue chemistry can 

be used passively through the sampling of species present naturally within the 

environment or actively through the deployment of bioassay species that are transplanted 

from their natural environment and incubated in areas under observation (Costanzo et al. 

2000).  As passive bioindicators have holdfasts within the sediment, these indicate the 

benthic availability of nutrients while the positioning of active bioindicators above the 

substrate more accurately sample water column nutrient availability.  The use of both 

techniques can provide a more accurate understanding of the temporal and spatial pattern 

in nutrient availability within an ecosystem and could be used to infer potential nutrient-

driven macroalgal blooms.   
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Specific stable isotope signatures can be used to trace sources of nutrients within 

an ecosystem (Heaton 1986, Peterson & Fry 1987).  For instance, high ratios of 15N: 14N 

can indicate the presence of sewage while naturally high δ15N can also occur through 

denitrification, fractionation during nitrate uptake and overlapping or multiple nutrient 

sources (Heaton 1986, Fourqurean et al. 1997).  For this reason, interpretation of δ15N 

data should be done utilizing corroborating data for perceived trends and potential 

sources.  For instance, spatial patterns comparing nitrogen content and δ15N can indicate 

variation in signals arising from nutrient sources rather than differences in nutrient uptake 

processes (Leichter et al. 2003, Savage & Elmgren 2004).  While research does suggest 

that many macroalgal species do not fractionate nitrogen isotopes (Cohen & Fong 2005), 

interpretation of δ15N data requires corroboration with other nutrient data.  

I examined nitrogen, phosphorus and δ15N content of macroalgae in both an active 

and passive bioassay methodology to determine the impact nitrogen loading had on the 

benthic assemblages in a region where nitrogen impact had been recorded in octocorals 

(Baker et al. 2010).  I ask the question: Do parameters of macroalgae tissue chemistry 

(nitrogen, phosphorus, δ15N) in active and passive macroalgae bioindicators reflect 

spatial patterns in reference to suspected nutrient source?  Utilization of both active and 

passive bioindicator methodology allowed me to determine if trends differed between 

methods as both have been presented in literature but no comparisons have been 

previously published.  I also wanted to contribute to the paucity of literature reporting 

nitrogen and δ15N values for marine macroalgae.  Despite the prevalence of literature 

suggesting 15N isotopic data can be used to detect anthropogenic nutrients, isotopic data 

with corroborating nitrogen content are lacking.   
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Methodology 

Study system 

Millions of tourists visit the Mayan Riviera region of Mexico’s Yucatan Peninsula 

and rapid coastal development has intensified sewage inputs to coastal areas (Murray 

2007).  The Yucatan Peninsula is characterized by karstic geology, where stream flow of 

pollutants directly into the water is uncommon and groundwater is conducted from inland 

into the nearshore environment through submarine groundwater discharge.  While most 

resorts have on-site wastewater treatment, many residences lack proper sewage disposal 

methods (Pacheco et al. 2001) and groundwater is commonly contaminated with 

pollutants indicative of human waste (Baker et al. 2010, Metcalfe et al. 2011).  Yal Ku 

Lagoon, Akumal, Quintana Roo, Mexico (20º 24.702 N, -87º 18.27 W) is a popular 

tourist destination as clear water and submerged aquatic vegetation provide a suitable 

habitat for abundant fish and frequent visits by manatees, stingrays and turtles.  The L-

shaped lagoon has a rocky coast interspersed with red mangroves (Rhizophora mangle).  

Yal Ku Lagoon is 300 meters in length and turns sharply east before continuing 300 

meters to the ocean entrance (Figure 1).  Within my study region, Thalassia testudinum 

and Gorgonia ventalina isotopic ratios, phosphorus and nitrogen concentrations, as well 

as water quality of the underground cave system, indicate groundwater sources of 

nutrients and pollutants (Carruthers et al. 2005, Mutchler et al. 2007, Baker et al. 2010, 

Metcalfe et al. 2011).  Previous research in Yal Ku Lagoon has documented decreasing 

δ15N of octocorals, and water column Enterococcus coliform bacteria, an organism 

indicative of human sewage, with increasing distance from the suspected lagoon spring 

source (Baker et al. 2010).   
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Active bioindicator bioassay 

Acanthophora spicifera was used as an active bioindicator as this species is 

ubiquitous on the adjacent reefs and has proven hardy to these types of bioassay 

experiments taking place within the water column (Lin & Fong 2008).  Acanthophora 

spicifera was collected in Akumal Bay and gently cleaned of epiphytes.  In order to 

reduce macroalgal initial nutrient content, macroalgae were placed in a plastic tub with 

two electric air stones while water was changed every two days for six days (Fong et al. 

2003, Lin & Fong 2008, Dailer et al. 2010) with water collected offshore.  The bucket of 

macroalgae was placed inside a larger plastic bin of water to decrease the potential for 

overheating from ambient temperatures and received diffuse natural light for 

approximately ten hours each day.  Thirty-six A. spicifera replicates were created with six 

replicates retained in order to determine the initial concentrations of nitrogen, phosphorus 

and δ15N.  Six replicates per site were sewn inside mesh bags and placed at five locations 

throughout the lagoon at increasing distances from the suspected lagoon source in July 

2009 and twice in July 2010 (Figure 1, black stars).  All bags were placed along the 

bottom at the same depth and attached to rocks using cable ties.  After seven days, 

samples were recovered, removed from the mesh bags and gently cleaned of epiphytes.  

Seven days was determined to be adequate deployment length on the basis of previous 

studies (Fong et al. 1998, Lin & Fong 2008).  Samples placed at the lagoon source (0m) 

and at the juncture of the ocean entrance and source lagoon (300m) were lost therefore 

only the samples at 400m, 550m and 700m are presented (sample sizes are indicated in 

Table 1).  My initial design included increased spatial coverage and productivity 

measurements utilizing Alizarin Red S dye (Wefer 1980), however the reality of working 
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in this tourist destination precluded data collection as these samples were removed from 

the lagoon before researchers could retrieve them.   

All samples were dried to a constant weight at 60ºC and ground to a fine powder 

using a mortar and pestle.  Samples were analyzed in duplicate for nitrogen content using 

a CHN analyzer and for phosphorus using dry-oxidation acid-hydrolysis extraction 

followed by colorimetric analysis.  Dry weight elemental content was calculated as (mass 

of element/dry weight of sample) x 100%.  As simple measures of tissue nutrients do not 

take into consideration initial nutrient concentrations (Fong et al. 1998), percent change 

of nitrogen and phosphorus was also calculated.  Isotopic analysis (δ15N) was completed 

with a CN analyzer and Finnigan MAT 252 mass spectrometer and are expressed using 

the standard δ15N notation (Peterson & Fry 1987).  Samples from both bioassay 

deployments in July 2010 were pooled because samples were not significantly different 

from each other (Student’s t-test, p = 0.889).  An ANOVA was used to test for significant 

differences between bioassay sites during each sampling event after examination of 

standardized residuals showed data conformed to assumptions of normality. 

Passive bioindicator survey 

To determine if trends in nitrogen, phosphorus and δ15N differed depending on 

bioindicator methodology, a passive bioindicator survey was also completed.  A survey 

of all macroalgae present along the lagoon was completed.  Four to five samples of each 

macroalgae species present were collected at the source and along a sampling transect in 

50 m increments from the juncture of the ocean entrance and source lagoon (400m) to the 

ocean entrance (700m) in July 2009 and 2010 (Figure 1, solid black line).  For Caulerpa 

species, only three replicates could be collected because of the paucity of samples and the 
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relatively small size of these macroalgae.  Samples were processed in an identical manner 

for nitrogen, phosphorus and δ15N as during the bioassay.  When the same genera were 

found along the transect in the same year and standardized residuals established that data 

conformed to normality assumptions, an ANOVA was used to test for significant 

differences between locations.  When the same genera only appeared twice along the 

transect, a Student’s t-test was used to test for significant differences.   

Results 

 Macroalgae within the first 400 meters from the suspected source of Yal Ku 

Lagoon were limited to sparse Halimeda opuntia and Caulerpa verticillata.  From 400m 

– 700m, the benthos changed and included other calcareous green macroalgae (e.g., 

Udotea, Penicillus), red macroalgae (e.g., Laurencia) and brown macroalgae (e.g., 

Stypopodium, Dictyota).  From 550m to the ocean entrance (700m), there were 

octocorals, Gorgonia ventalina, and zoanthids, Palythoa caribaeorum. 

Active bioindicator bioassay 

 In 2009, tissue chemistry of the active bioindicator bioassay increased 

significantly from 400 – 550m from the suspected source before values significantly 

decreased (Table 1) and this pattern was reflected in all measured nutrient parameters (P, 

N and δ15N).  During the 2010 bioassays, nitrogen content, nitrogen: phosphorus and 

δ15N decreased away from the suspected source while phosphorus content did not change 

significantly (Table 1).  Acanthophora spificera tissue nitrogen (N) ranged from 0.8 – 1.0 

(%DW), tissue phosphorus (P) ranged 0.04-0.06 (%DW), nitrogen:phosphorus (N:P) 

were 39-57 and δ15N values were 2.4-6.2‰ (Table 1).  In 2010, there was a positive trend 

between change in nitrogen content and change in δ15N as nutrient and δ15N decreased 
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with increasing distance from suspected source.  The trend was not observed in 2009 

(Figure 2). 

Passive bioindicator survey 

 During the 2009 and 2010 passive benthic bioindicator survey, Caulerpales 

(Caulerpa and Halimeda) were the common macroalgae present.  Trendlines of nitrogen 

content and δ15N along transect length are presented for these macroalgae genera to 

determine trends in these parameters with increasing distance from suspected source.  In 

2009, Halimeda tissue nitrogen significantly decreased with distance from source (p < 

0.05) while Caulerpa tissue nitrogen content did not significantly change (p = 0.977; 

Figure 3a).  In 2010, Caulerpa tissue nitrogen significantly decreased with distance from 

source (p < 0.05) while Halimeda did not significantly change (p = 0.897; Figure 3b).  

Further trends could not be determine because of a lack of replicate genera along the 

transect.  In 2009, δ15N of Caulerpa and Halimeda significantly increased with distance 

from source (p < 0.05; Figure 4a) while in 2010, Caulerpa δ15N significantly increased 

with distance from source (p < 0.05; Figure 4b).   

Discussion 

Tracking nitrogen, phosphorus and isotopic content through the use of 

Acanthophora spicifera active bioindicators and a diversity of macroalgae genera as 

passive bioindicators indicate macroalgae response to nutrients in Yal Ku Lagoon is 

highly variable.  However, as distance from suspected nutrient source increased, a 

decrease in nutrient content of both bioassay and sampled macroalgae occurred, but 

patterns were year and genera specific.  In 2010, the bioassay of A. spicifera within the 

water column indicated a decrease in nitrogen availability and δ15N with distance from 
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the suspected source of anthropogenic nutrient input but this trend did not occur in 2009.  

Data from this study can be used to provide evidence for the macroalgal uptake of 

nitrogen and phosphorus nutrients and the importance of using both tissue nitrogen and 

isotopic data to understand the fate of anthropogenic nutrients into a system.  My study 

contributes valuable data which can be used to increase our understanding on the 

fluctuating ranges of δ15N and nitrogen content within marine macroalgae.  

Tissue content of nutrients and ratios of these nutrients when compared to 

standards can determine nutrient limitation to macroalgae growth.  In general, 

macroalgae nitrogen content greater than 1.2 percent dry weight (% DW), phosphorus 

content less than 0.02 (% DW) and nitrogen:phosphorus higher than 30 can indicate a 

phosphorus-limited system (Atkinson & Smith 1983, Duarte 1992).  However, 

macroalgae have proven to be highly variable rather than conforming to these established 

‘baselines.’  Prior to this study, few studies have reported nutrient content on such a 

diverse group of macroalgae within the Mexican Caribbean from which to infer relative 

nutrient status.  For those references within the literature in Akumal Bay Mutchler and 

Dunton (2007) reported Halimeda nitrogen of 1 (% DW) while my sampled Halimeda 

had nitrogen maximum 1.6 (% DW).  Tissue nitrogen content of Acanthophora spicifera 

used in a bioassay directly adjacent to shrimp farms was 1.2 (% DW) and decreased to 

0.8 (% DW) 400m from the shrimp farm (Lin & Fong 2008).  In this study A. spicifera 

peaked at 1.0 (% DW), which while not greater than those measured next to the shrimp 

farm, are comparably higher than those areas deemed ‘less impacted’ by the shrimp 

effluent.  Records of marine macroalgae nutrient content are sparse and this study adds to 
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our understanding on the ranges of nutrients possible within an ecosystem considered 

impacted by anthropogenic effluent. 

Use of δ15N in bioindicators has frequently been cited as clear evidence to the 

presence of sewage near outfalls and an effective way to measure increased pollutant 

dilution with increased distance from source (Costanzo et al. 2001, Costanzo et al. 2005, 

Lin & Fong 2008, Dailer et al. 2010).  Elevated δ15N values can occur through spatial 

differences in NO3
- enrichment, denitrification and the mixing that occurs during 

groundwater transport (Fourqurean et al. 1997) in addition to the presence of sewage 

(Heaton 1986).  In some research, δ15N was the most sensitive indicator when compared 

to other parameters such as tissue nitrogen (Lin & Fong 2008), while in other published 

datasets, parameters such as tissue nitrogen, amino acids and chlorophyll a concentrations 

have provided adequate indicators of nutrient status (Costanzo et al. 2000).  For studies 

on marine macroalgae, values of 3‰ have previously been reported for Akumal Bay 

Halimeda and 3.0-8.0‰ for multiple genera in southeast Florida with global ranges from 

4-25.7‰ in reported sewage impacted areas (Lapointe et al. 2004, Mutchler et al. 2007, 

Dailer et al. 2010).  Most often, as was found during my study, it is a combinations of 

multiple parameters that should be used to make statement regarding nutrient status and 

impacts (Fong et al. 2001). 

Interpretation of data from passive bioindicators can be difficult as differential 

responses of each macroalgae species impact the nutrient signature.  Differences in 

nitrogen content can be driven by chemical defenses, pigmentation (Delgado et al 1996) 

or growth morphologies (Littler & Littler 1980, Fong et al. 2001).  These types of 

relationships are unknown for many of the genera found during this study and pooling 



 

  20 

data by genera may mean important nuances to trends are missed.  In addition, species or 

genera were not consistently present along the entire length of the sampling transect, 

making determinations of any nutrient dilution with distance difficult to establish.  When 

the same genera was present at multiple locations along the sampling transect (e.g., 

Halimeda, Caulerpa), trends in nitrogen content did not clearly indicate a dilution of 

nutrients with increasing distance from suspected source.  Despite the multitude of 

factors that can influence any comparisons between macroalgae genera within an 

ecosystem, it is important to note that nitrogen content was sensitive enough to detect 

changes at short distances through time while δ15N did not detect these same changes.   

In karstic environments such as the Mexican Caribbean, fissures can create a 

diffuse delivery of nutrients into the environment rather than creating distinct point 

sources (Metcalfe et al. 2011).  The identification of the sources is important not only to 

the interpretation of nutrient data, but also to the management strategies developed to 

address the sources of these nutrients.  It is conceivable that because the underground 

cave system beneath Yal Ku Lagoon is not completely mapped, fissures away from my 

suspected source location may contribute nutrients along the transect.  Although this 

hypothesis is compounded by the fact that a distance effect was recorded in 2010 and in 

previous studies (Baker et al. 2010).  As shoreline development continues along the 

Mayan Riviera (Murray 2007), the importance of each of these potential sources into the 

adjacent coastal ecosystem increases.  The lack of baseline information mapping all 

potential sources and the pathways through subterranean cavern systems may limit our 

understanding of nutrients within Yal Ku Lagoon, and therefore the ability to manage 

these influences. 
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In highly eutrophic locations, macroalgae sensitivity to nitrogen availability is 

compromised as the macroalgae is saturated with nutrients (Cohen & Fong 2005).  

Alternatively, in some studies macroalgae indicators failed to respond to low levels of 

nutrient pollution (Costanzo et al. 2000).  The ideal scenario at which these bioindicators 

can be used is highly variable and dependant on the questions being asked and the 

historic information available regarding the study system.  In order to determine the 

dilution of nutrient sources in Yal Ku Lagoon, the ideal usage of macroalgae may be to 

use genera such as Acanthophora or Enteromorpha in active bioassay methodology 

rather than passive sampling of benthic communities, which differed in presence along 

the transect.  The active bioassay sampled the water column and detected trends in δ15N 

and nitrogen content that passive bioindicators sampling along the benthos did not detect.  

It may be that processes occurring within the sediment reduce 15N and therefore its 

presence in macroalgae.  Many factors exist that can influence nitrogen and phosphorus 

of macroalgae within an ecosystem including actual differences in nutrient availability 

from localized nutrient sources and variations in macroalgal nutrient uptake mechanisms.  

In using a bioassay approach, factors can be standardized although this methodology may 

require more work than passive bioindicator surveys.  My study utilized a comparison 

between these different methodologies and nutrient parameters to illustrate the important 

role variability of macroalgal response have in the interpretation of data on nutrient 

impact within an ecosystem.   
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Table 1: Yal Ku Lagoon nutrient content (nitrogen, phosphorus, N:P) and isotopic 

content of Acanthophora spicifera bioassay in July 2009 and 2010.  DW: dry weight.  

Values are means ± SE.  Significant differences between sites were assessed with 

ANOVAs and differences determined by pairwise comparisons.  Superscripted letters 

indicate significant difference (p < 0.01). 

 

 

 

 

 

 

 

  

 
Site 

% Nitrogen 
(DW) 

% Phosphorus 
(DW) N:P δ15N (‰) 

July 
2009 

Initial 0.7 ± 0.01a 0.02 ± 0.00a 38 ± 0.2a 4.0 ± 0.02a 

400m (n=5) 0.7 ±  0.04a 0.04 ± 0.00b 42 ± 0.4b 5.3 ± 0.04b 

550m (n=6) 1.3 ± 0.03b 0.06 ± 0.01c 52 ± 0.8c 6.2 ± 0.04c 

700m (n=6) 0.8 ± 0.02a 0.05 ± 0.00b,c 39 ± 0.3a,b 5.4 ± 0.02b 

July 
2010 

Initial 0.7 ± 0.02a 0.04 ± 0.00a 42 ± 1.2a 4.1 ± 0.03a 

0m (n=8) 1.5 ± 0.04b 0.06 ± 0.00b 57 ± 0.4b 6.0 ± 0.04b 

550m (n=11) 1.0 ± 0.03c 0.05 ± 0.01a,b 49 ± 0.1c 5.3 ± 0.03c 

700m (n=10) 0.8 ± 0.03a,c 0.05 ± 0.01a,b 39 ± 0.2a 2.4 ± 0.83a 



 

  23 

Figure 1: Map of Yal Ku Lagoon, Quintana Roo, Mexico 

Figure 2: Percent change in nitrogen content and δ15N of Acanthophora spicifera 

bioassay [(final-initial)/initial] x 100% (bars indicated standard error). 

Figure 3: Nitrogen content of all macroalgal species in 2009 (A) and 2010 (B).  Bars 

indicate standard error. 

Figure 4: d15N of all macroalgal species in 2009 (A) and 2010 (B).  Bars indicate 

standard error. 
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CHAPTER III:  Morphological and physiological responses of seagrasses to grazers and 

their role as patch abandonment cues 

Abstract 

Monitoring seagrass patches grazed by the green sea turtle, Chelonia mydas, 

reveal that a ‘giving up density’ predicts patch abandonment rather than previous theories 

on leaf nutrient or rhizomal soluble carbohydrate content.  The morphological and 

physiological responses (productivity, plant morphology and nutrient storage) potentially 

influencing seagrass recovery from grazing disturbances were monitored for one year 

under three different grazing scenarios (turtle grazed, fish grazed and ungrazed) in a 

nutrient-replete environment.  Significantly less soluble carbohydrates and increased 

nitrogen and phosphorus content in the structurally important Thalassia testudinum were 

indicative of the stresses placed on macrophytes during herbivory.  To determine if these 

physiological effects, and their impact on C. mydas nutrition and therefore patch use, 

were the drivers of this heterogeneous grazing behavior, patches were mapped throughout 

the bay and monitored over a six-month interval.  The presence of ungrazed patches 

provided refuge for Halodule wrightii and Syringodium filiforme within the ecosystem 

and are important propagule source to recolonize abandoned areas.  This study is the first 

to document the responses of a eutrophic ecosystem to these natural grazing processes 

and apply terrestrial theories on ‘giving up density’ to explain marine herbivore grazing 

behavior.   

Introduction 

Herbivores are important drivers of ecosystem dynamics (Valentine & Duffy 

2006, Heck & Valentine 2007) and seagrass productivity (Zieman et al. 1984, Valentine 



 

  31 

et al. 1997), reducing canopy cover and freeing space for competitive interactions 

between macrophytes (Heck & Valentine 2006).  In high nutrient environments, 

macroalgal blooms increase the sensitivity of seagrasses to grazing as light availability 

affects carbohydrate storage in rhizomes and therefore the energy available to 

compensate for grazing disturbances (Macia 2000, Valentine et al. 2000) or higher 

summer productivity (Lee & Dunton 1997).  Studies considering herbivores in 

conjunction with eutrophication are of particular importance as coastal ecosystems 

worldwide are increasingly impacted by anthropogenic disturbances (Waycott et al. 

2009) and interactions of grazers with nutrient-replete systems becomes more common.   

Cultivation grazing is the process by which grazing by turtles creates patches of 

new leaves, optimizing food quality as new leaves have higher nutrient content than old 

leaves (Bjorndal 1980, Aragones et al. 2006).  The drivers behind the creation of these 

grazing patches, particularly the cues for herbivores to abandon a grazing patch in favor 

of a new patch, are not well known.  Thayer et al. (1984) hypothesized that decreases in 

aboveground nutrient content precede bed collapse, but more recent studies suggest 

otherwise (Moran & Bjorndal 2005, 2007).  An alternative theory proposed by 

Fourqurean et al. (2010) as an extension on research by Dawes et al (1979), suggests that 

rhizomal soluble carbohydrates may decrease prior to seagrass bed abandonment.  These 

reductions result in low rates of productivity and decreased biomass from thinning leaves, 

cueing herbivore abandonment.  In addition, indices of shoot density, blade width and 

leaf growth are also used as early indications of chronic stress (Zieman et al. 1984, Lee & 

Dunton 1997, Lal et al. 2010).  These may be visual cues to induce abandonment and 

represent a ‘giving up density’ corresponding to a harvest rate that balances the 
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associated metabolic costs of foraging (Brown 1988).  Giving Up density theory extends 

the optimal foraging theory and includes balancing the harvest rate to metabolic costs, 

predation risk and missed opportunity costs of not engaging in alternative activities.  

While this theory has never been applied to marine herbivores, it may be an alternative to 

the theory of rhizomal soluble carbohydrate cues.  No studies have monitored these 

physiological parameters important to seagrass recovery and growth in natural rather than 

simulated grazed seagrass beds (Moran & Bjorndal 2005, Kuiper-Linley et al. 2007, 

Moran & Bjorndal 2007) as they are abandoned by green sea turtles in order to elucidate 

patterns and cues.   

My study was designed to evaluate the effect of different types of herbivory (fish 

and turtle) on morphological and physiological characteristics of seagrasses and which of 

the monitored characteristics may cue patch abandonment by green sea turtles as patch 

dynamics in the entire seagrass bed are monitored over time.  I predict that grazed 

patches will have higher nutrient content (carbon, nitrogen and phosphorus) in 

aboveground leaf tissue than ungrazed patches, regardless of herbivore presence.  I 

predict that summer nutrient content of aboveground biomass will be lower than winter 

following the hypothesis that plants increase rhizomal soluble carbohydrate storage 

during optimal summer growing conditions, even in a nutrient replete environment.  

Should soluble carbohydrate content be the cue to C. mydas patch abandonment, I predict 

that patches abandoned will have significantly lower soluble carbohydrates than patches 

remaining grazed.  I hypothesize the paucity of storage in belowground nutrient reserves 

will cause leaf thinning and decreased productivity, the mechanism cueing herbivore 
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patch abandonment.  Should a giving up density be the cue, I would predict that patches 

with the lowest biomass, as measured through the leaf area index, will be abandoned.   

Methodology 

Study site 

Akumal (“Place of the Turtles” in Mayan) is located in Quintana Roo, Mexico on 

the Yucatan Peninsula along the Caribbean Sea (Latitude: 20° 23’ 45” N Longitude: 87° 

18’ 52” W).  Akumal Bay is the northern 400 meter portion of a 2 km half moon-shaped 

lagoon connected to Jade Bay and South Akumal Bay.  A barrier reef exists 300 m 

offshore and variable-sized patch reefs are sparsely distributed throughout the entire 

lagoon.  Highly porous, karstic geology delivers terrestrially-derived nutrients into the 

coastal zone through submarine groundwater discharge (Mutchler et al. 2007).  

Measurements of nitrogen, phosphorus and isotopic content of macrophytes, in addition 

to high epiphyte loads, indicate the high availability of anthropogenically derived 

nutrients to this ecosystem (Baker et al. 2007, Mutchler et al. 2007, Metcalfe et al. 2011).  

Seagrass herbivores include the green sea turtle Chelonia mydas and near the interspersed 

patch reefs, members of the family Scaridae (parrotfish) and Acanthuridae (surgeonfish).  

Seagrass beds consist of T. testudinum, H. wrightii and Syringodium filiforme with few 

intermixed macroalgae typified by calcareous Chlorophytes (e.g., Halimeda, Udotea) and 

calcareous Rhodophytes (e.g,. Neogoniolithon).   

Seagrass response 

 To determine the species specific response of seagrass to herbivory, physiological 

responses were monitored in grazed and ungrazed patches in the seagrass beds.   Distinct 

regions exist where seagrass beds have been grazed (by turtle or fish) or not grazed 
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(Figure 1), and within these regions small cages (20 cm diameter) were placed for six 

days at a time during two distinct growing seasons (winter and summer) to sample 

productivity, leaf morphology, tissue nutrients and soluble carbohydrates.  These cages 

were not intended to be experimental exclosures; rather, they allowed us to measure the 

production of material in the short-term without having biomass lost to fish or turtle 

grazers.  Cages were deployed on two separate occasions during each season and samples 

were pooled within season after statistical analysis determined there was no significant 

difference between deployments within each patch (Student’s t-test, p = 0.897).  Areas 

targeted as fish grazed were surrounding a 50 m2 patchreef within the same seagrass beds 

where turtle grazing occurred.  Fish herbivory was confirmed by the patterns of bite 

marks on leaves, which were indicative of parrotfish grazing.  Cages were created with 

vinyl-coated hardware mesh (ca. 1 cm mesh) and four 3mm diameter stakes secured the 

cage into the substrate.   

To measure productivity and morphometrics within these cages, all T. testudinum 

blades were punched using a modified leaf marking technique (Zieman 1974, Fourqurean 

et al. 2001).  At the end of six days, aboveground and belowground biomass was 

collected for all seagrass species present from which to measure carbon, nitrogen, 

phosphorus and soluble carbohydrates.  Six randomly selected shoots of T. testudinum 

were measured for length, width and elongation rate (mm/shoot/day), from which 

elongation area (width x length of new growth at base of leaf) was calculated.  All 

seagrass samples were cleaned of epiphytes, dried to a constant weight at 60ºC and 

ground to a fine powder using a mortar and pestle.  Samples were analyzed in duplicate 

for carbon and nitrogen content using a CHN analyzer and for phosphorus using dry-
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oxidation acid-hydrolysis extraction followed by colorimetric analysis.  Dry weight 

elemental content was calculated as (mass of element/dry weight of sample) x 100%.  

Rhizome tissue for all species was cleaned of adhering sediments, dried to a constant 

weight at 60ºC and ground to a fine powder using a mortar and pestle.  Because of the 

smaller size and paucity of H. wrightii and S. filiforme rhizomes, samples were pooled 

from three cages to provide an adequate amount of sample material.  Samples were 

analyzed for soluble carbohydrates using the seagrass tissue adaptation (Lee & Dunton 

1997) to the MBTH (3-methyl-2-benzothiazolinone hydrazone hydrochloride) method 

(Pakulski & Benner 1992).   

In order to test for the hypothesized differences between herbivory patches and 

seasons on nutrient content, carbohydrate content and growth rates, a randomized 

complete block ANOVA was used for morphometric and productivity data, where shoots 

within cage were nested within combinations of patch (fish grazed, turtle grazed, 

ungrazed) x season (winter, summer).  Data were analyzed to establish they conformed to 

all normality assumptions.  Differences among patches for all seagrass species were 

determined through Least Squares Difference pairwise comparisons with Bonferroni 

corrected significance levels (0.008).  Because of the variability in presence of H. 

wrightii and S. filiforme in grazed cages, sample sizes varied between patches and 

seasons.  Therefore, to test for differences between herbivory patches and between 

seasons, nutrient content and soluble carbohydrate data were analyzed via three-way 

ANOVA (T. testudinum), two-way ANOVA (S. filiforme) or via a student’s t-test or 

Mann-Whitney nonparametric test (H. wrightii), depending on how the data met 

normality assumptions.  No S. filiforme was collected during the winter in the fish grazed 
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patch and no H. wrightii was collected in the fish (either season) or turtle grazed (winter 

season) patches. 

Patch dynamics 

To monitor changes in seagrass patch location and seagrass morphological and 

physiological changes over time in relation to changes in patch designation (grazed and 

ungrazed), patch locations in the seagrass ecosystem were tracked using belt transects.  

These transects were established between pre-existing navigational buoys in Akumal Bay 

initially (January 2011) and six months later (June 2011).  The belt transects differed in 

length and cardinal ordination, and covered a combined length of 860 meters within the 

northern portion of Akumal Bay where sea turtles are present in the highest densities 

(authors’ pers obs).  All surveys were completed by the same diver in order to minimize 

any confounding errors in patch differentiation.  Patches were labeled as grazed when 

leaf apexes were incomplete and seagrass blade length was 5 cm or less from the blade 

sheath junction.  Ungrazed patches were those with seagrass blade length greater than 

5cm and complete apexes.  A modified Braun-Blanquet (BB) index was used to calculate 

abundance for each macrophyte present (Fourqurean et al. 2001) within a 0.25 m2 plot 

within each patch.  For each macrophyte BB score, 1 indicated coverage less than 5% of 

the plot, 2 indicated 5-25% cover, 3 indicated 25-50% cover, 4 indicated 50-75% cover; 

and 5 indicated 75-100% cover.  The presence of a different patch was recorded when 

grazing status (grazed or ungrazed) or when BB score differed from adjacent patches.   

Braun-Blanquet scores were converted to abundances using the mean abundance 

within each score (e.g. 2.5% cover for score 1, 87.5% cover for score 5) and then 

averaged across similarly designated patches (e.g., all grazed patches).  Mean abundances 



 

  37 

are presented for all grazing statuses during both surveys for comparisons between 

surveys.  A Student’s t-test was used to test for differences between grazed and ungrazed 

seagrass abundances as no data was available to determine newly grazed or abandoned 

status during the initial time period.  An ANOVA was used to test for differences in 

species abundance among patch status (ungrazed, grazed, abandoned, newly grazed) 

within the second sampling after examination of standardized residuals showed the data 

conformed to all normality assumptions.  Within each patch, epiphyte presence/absence, 

grazing status (blade apex complete or incomplete) of T. testudinum and seagrass blade 

length for all species was recorded.  After the second survey patches labeled ungrazed 

had been ungrazed for six months or more while abandoned patches were recently 

ungrazed (less than six months since being grazed).  Following the second survey, a 

Student’s t-test was used to test for differences in proportions of each transect in each 

status between sampling events. 

 At 15 randomly chosen patches within the study area, aboveground and 

belowground biomass of T. testudinum was collected to determine the change in response 

variables between sampling intervals as a function of patch status.  Six randomly selected 

shoots of T. testudinum were measured for length and width and cleaned of epiphytes, 

dried to a constant weight at 60ºC and ground to a fine powder using a mortar and pestle.  

Samples were processed for carbon, nitrogen, phosphorus and soluble carbohydrates 

using the same methods as for cage samples.  An ANOVA was used to test for 

hypothesized differences in all parameters (width, carbon, nitrogen, phosphorus, soluble 

carbohydates) among patch status in the second survey (remain ungrazed, remain grazed, 

abandoned) after examination of standardized residuals showed the data conformed to all 
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normality assumptions.  A Student’s t-test was used to test for differences in initial 

survey data between patches designated during the second survey as grazed and 

abandoned.  Means are presented for each of the three statuses in the initial survey for 

comparisons between surveys.  None of the patches sampled changed from an ungrazed 

to a grazed status during the sampling interval. 

Results 

Seagrass response 

Ungrazed patches had the widest Thalassia testudinum blades (ANOVA F = 

12.06, p < 0.001) with fastest elongation rate (ANOVA F = 16.99, p < 0.001) and largest 

new growth area (ANOVA F = 10.22, p = 0.002) when compared to fish and turtle grazed 

patches (Figure 2 and 3).  The difference was greater in the summer months and 

significantly higher in ungrazed patches compared to grazed patches regardless of grazer 

identity in both seasons (p < 0.001 for all three parameters).  Fish grazed and turtle 

grazed patches were significantly different from each other in width during the winter (p 

< 0.001), but were not significantly different for other parameters or within the same 

patch between seasons.  Grazed shoots had a maximum of three leaves while ungrazed 

shoots had a maximum of six leaves.  Fish grazed leaves appeared less pigmented and 

curled.  All three species of seagrass were present in ungrazed patches while only T. 

testudinum and occasionally S. filiforme were present in grazed patches. 

Ungrazed patches of T. testudinum had lower nitrogen and phosphorus content 

than turtle and fish grazed patches in both seasons (Figure 4).  Carbon content was not 

significantly different from turtle or fish grazed patches in the winter or summer, 

respectively (p = 0.178 and 0.912, respectively).  Differences between C:N:P ratios 
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among patches were the result of nitrogen and phosphorus differences as well as temporal 

decreases in nutrient availability.  Ungrazed patches changed winter (542:29:1) to 

summer (635:31:1), fish grazed patches changed winter (446:32:1) to summer (544:35:1) 

and turtle grazed patches changed winter (388:30:1) to summer (426:30:1).  Soluble 

carbohydrates were significantly higher in the ungrazed patches for both seasons and 

were significantly higher in summer compared to winter for all three patches (Figure 4). 

Similar significant differences to those of T. testudium were found in Syringodium 

filiforme, where ungrazed patches had significantly less nitrogen and phosphorus content 

than turtle grazed patches (Figure 5, sample size was too small to test for differences to 

fish grazed patches).  For Halodule wrightii, significant differences between ungrazed 

and turtle grazed patches in the winter occurred only in nitrogen and phosphorus content 

(Figure 6, Patch Mann-Whitney p = 0.010 for both).  There was significantly higher 

carbon, nitrogen and phosphorus content in winter compared to summer in the ungrazed 

patches, similar to the trend found in T. testudinum and S. filiforme.  Soluble 

carbohydrates of rhizomes were significantly higher in ungrazed patches than turtle 

grazed patches (t-test p < 0.001), similar to T. testudinum.  Grazed shoots had a 

maximum of three leaves while ungrazed shoots had a maximum of seven leaves.   

Patch dynamics 

The majority of seagrass patches surveyed during the initial survey were ungrazed 

(63%) with epiphyte present while the remaining patches were grazed and epiphytes were 

absent.  The percent of ungrazed patches did not significantly change during the second 

survey (Student’s t-test, p = 0.911) while significant reductions in grazed patches 

occurred (Student’s t-test, p < 0.003).  From the initial 318m of grazed patches, 27% 
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continued to be grazed while 73% were abandoned in the second survey (Figure 7).  

From the initial 542m of ungrazed patches, 97% remained ungrazed while 3% were 

newly grazed in the second survey.  During initial surveys, ungrazed patches had 

significantly higher abundances of all three seagrass species than grazed patches (t-test p 

< 0.001, Table 1).   

In the second survey, comparisons could only be made between ungrazed, grazed 

and abandoned patches as sample size of newly grazed patches was too small (n = 1) for 

statistical comparison.  Ungrazed patches had the highest abundance of T. testudinum and 

S. filiforme than grazed and abandoned patches (ANOVA p = 0.015 and p = 0.037, 

respectively) while H. wrightii abundance was highest in abandoned patches (ANOVA p 

= 0.008) and increased significantly from initial to second survey (t-test p < 0.001).  H. 

wrightii was also significantly different from both ungrazed and continually grazed plots.  

S. filiforme and T. testudinum abundance did not significantly change for abandoned 

patches from initial to second survey (t-test p = 0.912).  There were two new species of 

macroalgae within the one abandoned plot that had macroalgae but because of the small 

sample size, significant differences could not be determined.  In the one newly grazed 

patch, there was one less seagrass species present but small sample size did not allow 

statistical comparisons. 

 Within the fifteen patches of T. testudinum sampled for nutrients, soluble 

carbohydrates and morphometrics during the initial survey, ungrazed patches had 

significantly lower nitrogen and phosphorus content (t-test p-value < 0.001 for both 

parameters) and significantly higher soluble sugar content (t-test p-value = 0.044) than 

grazed patches, similar to those results found in the cages.  During the second survey, 
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carbon content and nitrogen:phosphorus were not significantly different between patch 

status (ungrazed, grazed and abandoned, Figure 8).  Phosphorus content, soluble 

carbohydrates and carbon:phosphorus were not significantly different between abandoned 

and ungrazed patches while nitrogen content and carbon:nitrogen were not significantly 

different between abandoned and grazed patches.  Therefore, I detected no differences in 

carbon, nitrogen, phosphorus or soluble carbohydrates in Thalassia testudinum that 

seemed to serve as cues for abandonment of grazed plots.  Plotting leaf length and width 

for each patch status illustrated a clumping of patches prior to abandonment and a distinct 

shift in these parameters following abandonment (Figure 9). Leaf biomass was calculated 

(length x width x 2) and multiplied by the BB density score to incorporate both biomass 

and density in the determination of a threshold at which patches may be abandoned 

(Figure 10). 

Discussion 

My study determined that in seagrass beds with high nutrient availability, patches 

grazed by fish or turtles had higher nutrient content in aboveground tissue and depleted 

belowground energy reserves than those patches that were ungrazed.  Herbivore-specific 

responses of Thalassia testudinum in grazed patches were reflected in tissue nutrient 

content ratios and leaf morphology, where patches grazed by fish had significantly 

narrower leaves and significantly higher nutrient content than those patches grazed by 

turtles.  The Halodule wrightii and Syringodium filiforme present in the ungrazed beds 

may provide a source for recolonization by these species once patches are abandoned.  I  

determined that seagrass patches abandoned in the second survey did not contain the 

lowest content of carbon, nitrogen, phosphorus and soluble carbohydrate, contrary to 
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predictions.  Instead, my data suggest that a ‘giving up density’ similar to found in 

terrestrial ecosystems is the mechanism by which patches are abandoned.   

Herbivory in a nutrient-replete seagrass ecosystem 

The relative physiological and morphological effects (productivity, tissue 

nutrients and soluble carbohydrates) of grazing on macrophytes were similar to those 

previously measured from simulated grazing or exclosure experiments in sites with lower 

nutrient availability (Moran & Bjorndal 2005, 2007, Fourqurean et al. 2010).  Overall 

values of nitrogen and phosphorus content of T. testudinum in this study (maximum 3.4 

and 0.26 percent dry weight, nitrogen and phosphorus respectively) were higher than 

those found in Bermuda (maximum 2.5 and 0.15 percent dry weight, nitrogen and 

phosphorus, respectively, see Fourqurean et al. 2010).  High nutrient availability shifted 

N:P ratios in all patches towards the taxon specific Redfield ratio of 30:1 (Duarte 1992).  

During the summer, C:N:P ratios were higher as more carbon was fixed in all three 

patches and in winter only turtle grazed patches were significantly below the taxon 

specific Redfield ratio for C:P (Duarte 1992).   

Contrary to the typical response of macrophytes to the increased favorable 

growing conditions in the summer (Lee & Dunton 1997) and as recorded in the ungrazed 

patches during this study, neither fish nor turtle grazed patches had higher productivity in 

summer compared to winter.  Leaf widths of fish grazed (4.9-5.4mm) and turtle grazed 

(5.0-5.9mm) patches in this study were narrower than some other studies on grazing (6.3 

– 6.3mm; Zieman et al. 1984) but not as narrow as other published studies (5.6 – 6.3mm, 

Moran & Bjorndal 2005; 3.3 – 4.7mm, Williams 1988; 1.4 – 3.0mm, Fourqurean et al. 

2010).  Differences in leaf widths further emphasizes the detrimental effects of high 
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grazing to seagrass photosynthetic leaf tissue and rhizomal storage morphological and 

physiological parameters, which are necessary components to consider for seagrass 

recovery and survival.  My study is the first to record these parameters in response to 

grazing behavior in a nutrient-replete environment. 

Smaller sample sizes for Syringodium filiforme and Halodule wrightii limited the 

determination of significant differences in nutrient and soluble carbohydrate content 

between patches but their absence in grazed patches may indicate herbivore preference 

(Armitage & Fourqurean 2006).  The absence of certain species may also indicate a lower 

tolerance to these repeated or prolonged grazing behaviors as they are unable to recover 

sufficiently to remain in the ecosystem (Kuiper-Linley et al. 2007).  The lower soluble 

carbohydrate in the ungrazed S. filiforme during the winter may decrease the ability of 

this species to recover from grazing.  Larger species with thicker rhizomes, such as T. 

testudinum, may also be better at translocating their stored carbohydrates longer distances 

and are therefore better able to compensate for loss than those species with thinner 

rhizomes, e.g., H. wrightii and S. filiforme (Marba et al. 2006).  The reduced productivity 

and amount of leaves for all three species when compared to ungrazed leaves reflects a 

significant decrease in aboveground biomass and increases the plant’s reliance on 

belowground biomass as a energy reserve (Williams 1988).  As these reserves are 

depleted to replace leaves lost to grazers, the lower soluble carbohydrate content of the 

rhizomes reduces the ability of the plant to counter prolonged or future disturbances until 

the reserves can be replaced (Thayer et al. 1984, Kuiper-Linley et al. 2007, Moran & 

Bjorndal 2007).  More importantly, considering this relationship was found at a eutrophic 

study site further indicates that high nutrient availability cannot counter the biomass loss 
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caused by grazing as these macrophytes become carbon starved through similar 

mechanisms as those found in mesotrophic seagrass beds (Fourqurean et al. 2010).  My 

data also support the recent relationship established between nutrient-replete 

environments and reduced soluble carbohydrates as seagrasses utilize available nutrients 

for growth rather than rhizomal storage (Campbell et al. 2012). 

Grazer behavior and patterns 

Over a six month interval, the location of grazed patches was largely stable, with 

only a small fraction of area changing status.  My data indicate grazing patches were 

long-lived enough to affect soluble carbohydrate storage, morphology and nutrient 

content of seagrass leaves.  As expected, during the initial survey turtle herbivory 

reduced seagrass abundance and canopy complexity (macrophyte species diversity and 

blade length and width).  During the second survey, after patches were abandoned, 

increased leaf lengths, widths and the occurrence of pioneering species (Halodule 

wrightii) increased canopy complexity.  The abundance of this species in recently 

abandoned patches is consistent with successional dynamics reported for other types of 

seagrass ecosystems, especially in nutrient-replete systems (Duarte 1995, Fourqurean et 

al. 1995).  Although I cannot test statistically changes in macroalgae as a result of the 

small sample size, the one patch that had Udotea and Halimeda during the initial study 

did have a new genus, Penicillus, during the second survey.  It was surprising that 

macroalgae was scarce throughout grazed patches, where canopy cover was decreased 

and competitive interactions may be favored, or in ungrazed patches, where macroalgae 

may potentially find refuge from selective removal by ‘pruning’ grazers.  Slow 

colonization by macroalgae may be due to a limited reproductive potential into the area 
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and is an interesting area for further study on macrophyte dynamics in this unique 

system. 

Different impacts of grazers on seagrass species may also be an important 

determinant of primary producer distribution, as found in other studies (Armitage & 

Fourqurean 2006).  Fishes such as members of the family Scaridae preferentially feed on 

faster-growing, early successional seagrass species such as Halodule wrightii over 

slower-growing, climax species such as T. testudinum (Armitage & Fourqurean 2006), 

thus impacting the diversity of seagrasses found within these grazed patches.  

Macrophyte preference is less evident for green sea turtles in the Caribbean as their diet 

largely consists of T. testudinum (Mortimer 1981), which may be an artifact of the lower 

availability and abundance of H. wrightii relative to other species as well as spatial 

variability between grazing populations and habitat types (Bjorndal 1997).  This is the 

first study to simultaneously consider the impact of different grazing behaviors on 

morphological and physiological parameters important to seagrass growth and recovery 

(e.g., productivity, blade width).   

Ungrazed portions of the seagrass bed provided refugia for H. wrightii and 

S.filiforme within the ecosystem, which may allow recolonization by these species once 

patches are abandoned by grazers. Similar responses have been reported after other 

disturbances (Armitage et al. 2011).  While H. wrightii can replace T. testudinum under 

conditions of high nutrient availability (Fourqurean et al. 1995), if no source for H. 

wrightii propagules exists, the ecosystem could collapse to become bare sand.  This study 

indicates that heterogeneous grazing may promote a more species-rich seagrass 

community in a eutrophic ecosystem. 
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Giving Up Density as a driver to patch abandonment 

Monitoring of patch status provided an opportunity to look at the changes in 

response variables (nutrient content, morphology, physiology) as a function of patch type.  

The driver(s) behind these changes in patch use are elusive as monitoring of Chelonia 

mydas patch use through time can be challenging in the field.  My results did not conform 

to my hypothesized association to soluble carbohydrates or with the previously 

hypothesized driver of nutrient content.  However, those patches abandoned had the 

smallest biomass and therefore density of leaves (Figure 5), indicating that a giving up 

density or a ‘giving up biomass’ may be the mechanism by which patches are abandoned.  

When a patch is composed of these much smaller leaves, the effort required by C. mydas 

to consume enough plant biomass to fulfill their nutritional needs far outweighs the cost 

and therefore induces abandonment, similar to the mechanism reported in terrestrial 

ecosystems (Brown 1988).  This theory refers to the density of resources within a patch at 

the point an herbivore discontinues grazing.  In this system, patch abandonment is not 

driven by the quality of seagrass as would be reflected in the soluble carbohydrate or 

nutrient content, but by the low quantity provided by the sparse, thin seagrass blades of 

the heavily grazed patches.  This is supported by the abandonment of only those patches 

with leaf area/biomass less than 350mm2.  I would expect that once a patch reaches this 

‘abandonment threshold,’ the patch will be abandoned by mesograzers in search of higher 

quantity yields for their grazing effort.     

My research is the first to apply the ‘giving up density’ theory to the grazing 

behavior of marine herbivores.  The application of this theory provides novel insight on 

the behavior of mesograzers and the crossover between terrestrial and aquatic theories, 
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which provides a platform for additional inquiries on the behavior of other mesograzers 

(e.g., manatees, dugongs).  While sea turtles in this study site are not at risk of predation 

because of the paucity of predators, Brown’s original theory included predation cost.  

Where predation is higher, there may be a greater risk to continued grazing when 

available food biomass and density are low.  I therefore might predict this abandonment 

threshold to be at a higher density than my study site as costs of predation risk outweigh 

low harvest rates.  The application of giving up density theory should be examined in 

other sites where the drivers behind patch abandonment by green sea turtles have yet to 

be determined and predation may be a consideration. 
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Table 1:  Average percent abundance of seagrass in patches within each grazing 

designation.   

 

  

  
Patch Status  

 
Sampling 

Ungrazed Newly 
Grazed Grazed Abandoned  

 
n = 20 n = 1 n = 6 n = 11 

Statistic 

Thalassia 
testudinum 
abundance 

Initial 
31% 1% 

t-test 
p < 0.001 

Second 32%a 25% 12%b 10%b ANOVA 
p = 0.015 

Syringodium 
filiforme 

abundance 

Initial 10% 1% t-test 
p < 0.001 

Second 
23%a 5% 10%b 10%b ANOVA 

p = 0.037 

Halodule 
wrightii 

abundance 

Initial 23% 1% t-test 
p < 0.001 

Second 22%a 5% 1%b 31%c ANOVA 
p = 0.008 
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Figure 1: Patch differentiation as ungrazed (left) and turtle grazed (right).  Note the 

thinner, less dense seagrass in the grazed plot with exposed sediment when compared to 

the denser, longer Thalassia testudinum blades in the ungrazed plot.  

Figure 2:  Thalassia testudinum width in all three grazing patches for both seasons winter 

and summer.  Values are patch means ± SE.  Significant differences were assessed with a 

randomized complete block ANOVA and differences among patches determined through 

pairwise comparisons with Bonferroni corrected significance levels (0.008).  

Superscripted letters indicate significant difference between patches in the same season 

(ANOVA F = 12.063, p < 0.001). 

Figure 3:  Thalassia testudinum elongation rate and new growth area for both seasons 

winter and summer.  Values are patch means ± SE.  Significant differences were assessed 

with a randomized complete block ANOVA and differences among patches determined 

through pairwise comparisons with Bonferroni corrected significance levels (0.008).  

Superscripted letters indicate significant difference among patches in the same season 

(Elongation rate ANOVA, F = 16.993, p < 0.001; New Growth Area ANOVA, F = 

10.224, p = 0.002). 

Figure 4: Thalassia testudinum carbon (a), nitrogen (b), phosphorus (c) and soluble 

carbohydrates (d).  Values are patch means ± SE.  Significant differences were assessed 

with 3-way ANOVAs, and differences among patches determined by pairwise 

comparisons with Bonferroni corrected significance levels (0.008).  Superscripted letters 

indicate significant difference among patches in the same season (corresponding to the 

Patch ANOVA F and p-value).  Samples sizes are summer, winter: ungrazed (12, 11), 

fish grazed (6, 10) and turtle grazed (12, 8). 
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Figure 5:  Syringodium filiforme carbon (a), nitrogen (b), phosphorus (c) and soluble 

carbohydrates (d). Values are patch means ± SE (ungrazed and turtle grazed only).  

Significant differences were assessed with 2-way ANOVAs and differences between 

patches determined by pairwise comparisons with Bonferroni corrected significance 

levels (0.008).  Superscripted letters indicate significant difference between patches in the 

same season (corresponding to the Patch ANOVA F and p-value).  Samples sizes are 

summer, winter: ungrazed (4, 11), fish grazed (0, 1) and turtle grazed (4, 8). 

Figure 6:  Halodule wrightii carbon (a), nitrogen (b), phosphorus (c) and soluble 

carbohydrates (d).  Values are patch means ± SE (ungrazed and turtle grazed only).  

Significant differences between winter and summer ungrazed samples were assessed with 

a student’s t-test.  Significant differences between summer ungrazed and turtle grazed 

were assessed with student’s t-test (t-test) or Mann-Whitney t-test (M-W), depending on 

normality of data from the small sample size.  Samples sizes are summer, winter: 

ungrazed (4, 11), fish grazed (0, 0) and turtle grazed (0, 3). 

Figure 7:  Percentage of patch area in each patch status.  Patches that remained ungrazed 

or remain grazed are the same color as those patches ungrazed or grazed. 

Figure 8: Thalassia testudinum within the monitored patches carbon (a), nitrogen (b), 

phosphorus (c) and soluble carbohydrates (d). Values are patch means ± SE.  Significant 

differences were assessed with 3-way ANOVAs, and differences among patches 

determined by pairwise comparisons with Bonferroni corrected significance levels 

(0.008).  Superscripted letters indicate significant difference among patches during the 

second survey only (corresponding to the Patch ANOVA F and p-value). 
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Figure 9: Scatterplot of Thalassia testudinum width by length for initial survey (A) and 

second survey (B) of patches at three different grazing statuses. 

Figure 10: Leaf area biomass and density (mm2/m2) by patch type. 
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CHAPTER IV:  Increased algal dominance despite presence of Diadema antillarum 

populations on a Caribbean coral reef 

Abstract 

Following the Caribbean-wide massive mortality of Diadema antillarum 

(Philippi, 1845), many coral ecosystems experienced a shift to a benthos dominated by 

algal assemblages.  Populations of D. antillarum herbivore have been slow to recover, 

and further impacts on local and regional-scales have severely threatened the health of 

coral reefs.  From 2008-2011 the population of D. antillarum and structure of the benthic 

community were monitored within Akumal Bay, Mexico as a heavily impacted 

ecosystem.  Across the four years of the study, densities of adult D. antillarum did not 

significantly change and were highest on backreef sites (mean 1.30/m2 and 1.44/m2).  

Coral cover remained low at all sites (maximum 14%) and decreased during the four 

years of the study.  Changes in crustose coralline algae (CCA) cover varied by year but 

cover was significantly higher on forereef sites while cover by turf-algal-sediment (TAS) 

increased at all four sites.  Diadema antillarum densities correlated positively with coral 

and CCA cover in the backreef sites where sea urchin densities were higher but no 

correlation occurred with TAS and turf.  Where Echinometra lucunter (Linnaeus, 1758) 

sea urchins were more prevalent, their densities correlated negatively with coral and 

positively with crustose coralline algae (CCA).  Although densities of adult D. antillarum 

were comparable to other regions of the Caribbean, increases in TAS over the four years 

of this study may be evidence that even an important herbivore cannot prevent continued 

decline of a reef in an impacted ecosystem. 

 



 

  67 

Introduction 

Coral reefs in the Caribbean have experienced major disturbances over the past 

few decades and continue to be under a combination of stressors including bleaching, 

overexploitation of herbivores, coral diseases and declining water quality which has 

resulted in an increase in macroalgae cover (Knowlton 1992, Aronson & Precht 2001, 

Hughes et al. 2003, Bellwood et al. 2004).  The importance of D. antillarum in removing 

macroalgae cover became evident after their massive mortality in 1983, when algal 

biomass abruptly increased (de Ruyter van Steveninck & Bak 1986, Carpenter 1988, 

Hughes 1994).  As the populations of long-spined sea urchin Diadema antillarum 

(Philippi, 1845) recover after their 1983 Caribbean-wide massive mortality (Lessios et al. 

1984b, Lessios 2005), it remains unclear if grazing by this herbivore provides a suitable 

driver from which to expect a decrease in macroalgal cover on impacted coral reefs.  

Modeled scenarios indicate that sea urchins impart significant resilience to Caribbean 

reefs such that continued decline is inevitable when sea urchins are scarce (Mumby et al. 

2006).  However, abundant literature indicate it is a combination of factors which impacts 

the benthic dynamics on coral reefs and the propensity for shifts between dominant states 

(e.g., competition for space (Sandin & McNamara 2012), herbivore diversity (Cheal et al. 

2010), biotic histories (Aronson et al. 2004), global climate change and marine diseases 

(Aronson & Precht 2006).   

Nearly thirty years after this mortality event, the D. antillarum population 

recovery dynamics along with concomitant changes in benthic cover have been reported 

for many sites within the Caribbean basin (summarized in Ruiz-Ramos et al. 2011).  

Adult D. antillarum densities currently being reported within the Caribbean (e.g., 
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Jamaica) are still lower than previously recorded densities but are beginning to slowly 

increase (Carpenter 1988, 2005, Carpenter & Edmunds 2006).  The lack of a robust 

population recovery is attributed to three main causes.  First, the loss of cover by corals 

has decreased habitat complexity necessary for successful recolonization and survival by 

the echinoids (Lee 2006).  Second, D. antillarum recovery is constrained through Allee 

effects since reproduction of sea urchins is density-dependent and requires close 

proximity to conspecifics for successful external fertilization (Levitan 1991).  While 

larvae may recruit into the system (Eckert 1998), settlement typically requires a cue from 

high adult densities.  Lastly, recovery may also be affected through the presence of other 

populations of echinoids or urchin predators (Lessios 1995).  Research suggests an 

escape size does exist where large echinoids are less susceptible to predation but there are 

multiple factors which can reduce the probability of successful survival to that size 

(Hereu et al. 2005, Clemente et al. 2007), including direct predation on sea urchin larvae 

and subadults.  Adult urchin predators (e.g., triggerfish, Randall et al. 1964) are highly 

prized commercial species whose densities have declined dramatically throughout the 

Caribbean.  In systems heavily impacted by fishing, predation on adult D. antillarum is 

lower and sea urchin densities subsequently increase (Clemente et al. 2010), which may 

serve to increase the potential for recovery of these echinoids. 

As sea urchin populations slowly recover, it is necessary to reassess their 

importance and role in driving the relative dominance of macroalgal benthic cover on 

coral reefs.  For ecological studies of macroalgal cover, various classification strategies 

have been developed by which to categorize groups of macroalgae based upon their form 

and function in reference to the experimental questions being posed (Littler & Littler 



 

  69 

1980, Steneck & Dethier 1994, Steneck 1997).  Form functional groups as developed 

under the relative dominance model include coral, crustose coralline algae (CCA) and 

turf algae and are based upon the relative disturbance (e.g., herbivory) and productivity 

(e.g., nutrients) experienced on a reef (Littler & Littler 1984).  Crustose coralline algae 

are the ‘cementers’ of the reef and produce an encrusting, calcifying skeleton which can 

cue coral settlement (Morse et al. 1988).  Turf algae are attached to the substratum with 

rhizoids and have upright microfilamentous branches less than 2 cm tall.  Because many 

species of macroalgae are phenotypically plastic, the turf functional group may include 

species that are considered frondose macroalgae during other portions of their life cycle 

(Hay 1981).  Turf can be further divided into turf-algal-sediment (TAS) with 

identification as such determined by the presence of sediments bound within the turf mat 

(Airoldi & Virgilio 1998).  Turf-algal-sediment communities are strong competitors for 

space on the reef (McCook et al. 2001), and it has been suggested that TAS may also 

suppress herbivory, at least for alternative herbivores such as fish (Bellwood & Fulton 

2008), because of the presence of sediment bound within the turf.   

When considering these macroalgae functional groups in study sites where D. 

antillarum populations are recovering, one expects decreased cover of turf and TAS algae 

and increased cover by CCA and coral (Littler & Littler 1984, Edmunds & Carpenter 

2001, Carpenter & Edmunds 2006, Jordan-Garza et al. 2008).  In these sites, coral cover 

is higher while TAS and turf cover has decreased.  For systems with high nutrient levels 

and high grazing rates, a benthos dominated by CCA is to be expected, as CCA is 

adapted to resist grazing pressures (Steneck 1983).  The echionid-benthos relationship 

would be reflected in a positive correlation of D. antillarum to coral and CCA and a 
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negative relationship to TAS and turf.  Studies tracking the relationship between these 

different benthic covers in relatively nutrient replete sites over longer time scales are 

lacking but can provide interesting insight into this dynamic. 

The goals of this study were to determine: (1) if the population of D. antillarum 

on a reef with high nutrient availability was recovering, producing larvae and if they were 

susceptible to predation by any sea urchin predator (2) if significant correlations occurred 

between sea urchin densities and coral reef benthic communities (3) if cover by these 

benthic communities changed with time and (4) the role of any other fish herbivores, if 

any, within the study system on these same benthic covers.  The question remains if the 

implications for the slow recovery of D. antillarum herbivore will have the significant 

results in a nutrient-replete reef, where macroalgal cover is much higher.  I hypothesize 

that while D. antillarum populations may be recovering at this study site and driving 

shifts towards increased CCA cover, turf and TAS biomass removal by the herbivore 

population in a resource-rich environment will fail to control or decrease cover by these 

algal functional groups. 

Methodology 

Study site 

The coast of Quintana Roo, Mexico on the Yucatan Peninsula consists of multiple 

bays and lagoons along the periphery of the Mesoamerican barrier reef, the second largest 

coral reef system in the world.  The area is experiencing a dramatic increase in tourism 

pressure as development projects increase land use (Murray 2007).  Stream flow of 

pollutants directly into the water is uncommon because of the highly porous, karstic 

geology characteristic of this region.  Instead, terrestrially-derived nutrients enter the 
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coastal zone via submarine groundwater discharge and influence coastal coral, seagrass 

and macroalgae ecosystems.  The nitrogen and phosphorus concentrations and isotopic 

ratios of macrophytes indicate the land-based sources of nutrients (Carruthers et al. 2005, 

Mutchler et al. 2007) and coral diseases have become increasingly common from 

eutrophication of coastal waters (Harvell et al. 2007).  Studies of nitrogen isotopic 

content of gorgonians from Akumal established significant enrichment when compared to 

other sites along the MesoAmerican reef (Baker et al. 2007). 

Akumal Bay reef is located approximately 300 meters from shore and is 

characterized by a semi-enclosed lagoon sloping towards the 3 – 4 meter deep backreef, a 

shallow northern and southern reef crest and a 3 – 4 meter deep forereef (Figure 1).  The 

reef has low coral cover (13.8%, E. Jordán-Dahlgren unpubl.) with 50% loss of coral 

cover over the last twenty years (Harvell et al. 2007) and high fishing pressure (Garcia-

Salgado et al. 2008).  For this study, Akumal’s barrier reef was divided into the northern 

and southern portions, separated by approximately 400 meters of patchy rather than 

continuous reef structure, with backreef and forereef areas for a total of four sites (Figure 

1).  In 1998, these reefs suffered massive ‘El Niño’ bleaching and outbreaks of disease, 

after which coral cover dramatically declined (Steneck & Lang 2003).  The North 

Forereef (NF) is characterized by dead stands of Acropora palmata (Lamarck, 1816) and 

occasional live Porites asteroides (Lamarck, 1816) and Montastraea sp. colonies while 

the South Forereef (SF) is predominantly dead stands of A. palmata.  Both NF and SF are 

exposed to more wave action than the back reef areas, as is typical of barrier reefs.   The 

North Backreef (NB) and South Backreef (SB) sites are characterized by live Agaricia 

tenuifolia (Dana, 1848), Montastraea sp. and occasional P. asteroides colonies.  Backreef 
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sites are intermixed with octocorals, Gorgonia ventalina (Linnaeus, 1848) (NB and SB) 

and Plexaurella nutans (Duchassaing, 1860) (NB).  Recently, the SB and SF sites have 

been increasingly colonized by the zooxanthid, Palythoa caribaeorum (Duchassaing and 

Michelottie, 1861).  The NB and NF sites are adjacent to the navigation channel, where 

water exchange from inside the bay occurs.   

Sampling methodology 

 At each site in July from 2008 – 2011, thirty meter long transects were sampled 

parallel to the reef crest (n = 6 – 10) and ten 1 m2 quadrats were placed randomly along 

each transect to quantify percent benthic cover and adult D. antillarum density.  Depths 

among all sites ranged 2 - 3 m.  Benthic cover was classified as: turf (mix of filamentous 

algae less than 2 cm high), turf-algal-sediment (TAS) matrix, crustose coralline algae 

(CCA), macroalgae, live coral, open substrate (e.g., dead coral, bare rock) and sand.  As 

habitat structural complexity can be a driver of D. antillarum distribution (Lee 2006), 

rugosity measurements were made every 5 m using the Atlantic and Gulf Rapid Reef 

Assessment (AGGRA) line intercept transect methodology (www.aggra.org).  The 

difference between the highest and lowest relief portions of the reef within a 1 meter 

sweep of the 5 meter interval were recorded, providing a spatial index of the reef and a 

ratio of reef surface contour distance.  Within the same 1 m2 quadrat where percent cover 

was recorded, density of D. antillarum with test diameter greater than 4 cm was 

determined.  These surveys were completed during the daylight relying on the 

assumption that daytime locations were an adequate representation of individual sea 

urchin foraging areas (Carpenter 1986).   
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 Diadema antillarum larval recruitment into the system was measured using the 

methods described in Miller et al. (2009), modified from (Bak 1985).  A total of 25 plates 

were deployed, 5 per buoyed line, along the backreef (North and South), where larval 

retention is highest (Hernandez et al. 2008) and at a distance 0.5-2m above the substrate.  

Following recommendations from D. antillarum recruitment studies done in Puerto Rico 

(Miller et al. 2009, Williams et al. 2010), settlement plates were moved to the North 

Backreef site during the winter after rugosity was found to be significantly higher than 

both forereef sites (Table 1).  The plates were visually surveyed in situ for recruits 

monthly in April and May 2010, biweekly in June and July 2010, and biweekly in 

January and February 2011, seasonal periods when sea urchin settlers have been reported 

in other parts of the Caribbean  (Miller et al. 2009, Williams et al. 2010).  After each 

visual survey, the larval settlement plates were replaced with clean plates to avoid 

settlement-preventive fouling.  Used larval plates were placed in plastic bags and 

transported to the laboratory where they were further surveyed under magnification to 

count any settled larvae that may have been missed during the in situ surveys. 

In 2011, each of the four sites was surveyed using a modified AGGRA method 

(www.aggra.org) to identify and quantify all fishes present.  Six 25 m long x 2 m wide 

belt transects were completed in each of the study sites where data on fish length, density 

and identity were quantified.  Following the survey, fishes were placed in groups based 

on whether they were considered an herbivore or sea urchin predator (e.g., triggerfish, 

hogfish, grunts, snapper).  After determining that the majority of fish surveyed could be 

placed in three main herbivore groups (parrotfish, damselfish and surgeonfish) and 

insufficient predators precluded forming a predator group, mean counts in the three 
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herbivore groups were normalized to a density of 100-m2 census area per size class (0-5 

cm, 6-10 cm, 11-20 cm, 21-30 cm).  Mean lengths per each size class (e.g., 2.5 cm for 

size class  0-5 cm) were converted to estimated biomass using length-weight relationships 

(Bohnsack & Harper 1988, Paddack et al. 2006).  After the first year of the study, when it 

was determined that there was a small, rock-boring echinoid Echinometra lucunter 

(Linnaeus, 1758) at the sites, density measurements of these urchins were made in the 

same quadrat and with the same methodology as was used for D. antillarum.   

Statistical analysis 

To test for significant differences in D. antillarum and E. lucunter densities and 

benthic covers between the four sites each year, one-way Kruskal-Wallis tests were 

performed in SPSS (PASW).  Mann-Whitney U tests were used for post-hoc pairwise 

comparisons between sites with Bonferroni corrections for experiment-wide Type I error 

rates.  To test for significant differences in D. antillarum densities and benthic covers at 

each site over the four years of the survey, one-way Kruskal-Wallis tests were performed 

in SPSS (PASW).  Mann-Whitney U tests were used for post-hoc pairwise comparisons 

between years with Bonferroni corrections for experiment-wide Type I error rates.  

Spearman rho correlations were calculated to determine the relationship between the 

areas of high density D. antillarum (South and North Backreef) and E. lucunter (South 

and North Forereef) with the benthic cover categories (TAS, turf, CCA, coral).  Because 

sea urchin populations did not significantly change at any of the sites for the four years of 

the study, data were not segregated by year but were pooled for a single correlation.  

Quadrat-level comparisons were utilized rather than transect or site averages as the D. 

antillarum exhibited aggregative behavior on the meter-scale, as found in other studies 
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(Macia et al. 2007).  To test for significant differences between sites for total fish density 

and biomass, an ANOVA was performed after examination of data determined it was 

homoscedastic. 

Results 

Diadema antillarum density 

Akumal Bay reef sites were characterized by isolated, high-density aggregations 

of D. antillarum with maximum 16 adults per m2 in plots containing sea urchins, but 77% 

of surveyed quadrats had no sea urchins (Table 1).  Across all sites there was no 

significant difference in sea urchin density through time (Table 2) while a significant 

difference in density occurred each year across sites (Figure 2).  The significant 

difference occurred in North and South Forereef sites, which had lower sea urchin 

densities (mean: 0.24, 0.20/sea urchins/m2, respectively) than North and South Backreef 

sites (mean: 1.07, 1.31/sea urchins/m2, respectively) (Figure 2).  Forereef sites had an 

average 85% of quadrats without D. antillarum and, when present, mean abundance of 

sea urchins was 1.52/sea urchins/m2.   Backreef sites had an average 68% of quadrats 

without D. antillarum and, when present, mean abundance of sea urchins were 3.53/sea 

urchins/m2.   

Benthic habitat and correlations with Diadema antillarum density 

Across all sites the dominant benthic cover was turf-algal-sediment (TAS), which 

over time significantly increased while coral and turf cover significantly decreased, 

regardless of D. antillarum presence.  Positive correlations of D. antillarum to crustose 

coralline algae (CCA) cover occurred in the backreef, while CCA cover increased 

significantly on the South Forereef, despite lower densities of D. antillarum.   
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Coral cover significantly decreased over time across all sites (Table 2) and the 

largest decrease in cover occurred at the South Backreef and North Backreef sites, where 

cover decreased 8% and 13%, respectively (Figure 3a).  There was a significant 

difference in coral cover between all sites in 2008 (χ2 = 5.093, p = 0.024) and 2009 (χ2 = 

5.217, p = 0.022), when backreef sites had significantly higher cover than forereef sites.  

By 2011 all sites were not significantly different from each other (χ2 = 1.026, p = 0.311) 

and mean coral cover was 2% (± 0.3 SE).  At these backreef sites where D. antillarum 

densities were highest, there were positive correlations of D. antillarum with coral and 

CCA cover (Table 3).  Significant differences in CCA cover occurred between sites in 

time (χ2 ≥ 3.760, p ≤ 0.042), which was caused by the 2 – 6 times more CCA cover on 

forereef sites compared to backreef sites in 2010 and 2011.  At the forereef sites, over 

20% of the benthos was covered in CCA by 2011 and South Forereef CCA cover more 

than doubled (11-26%) over the period 2008 – 2011 (Table 2, Figure 3b).  The CCA 

cover was positively correlated to D. antillarum densities on the backreef sites (Table 3).  

The TAS cover became the dominant benthic cover at all four sites, having increased 

significantly over the course of the study (Table 2).  Backreef sites had significantly less 

TAS than forereef sites (χ2 ≥ 14.486, p < 0.001, Figure 3c) yet negative correlations 

between TAS and D. antillarum density were not significant (Table 3).  Across all sites, 

there was a significant effect of time on turf cover as sites NB, SF and NF experienced a 

significant decrease in turf while SB did not differ significantly from initial cover (Table 

2, Figure 3d).   
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Diadema antillarum larval recruitment 

 No D. antillarum larval recruits were found on the settlement plates during 

summer in situ or magnified surveys in the laboratory.  There were also no E. lucunter 

larvae found on settlement plates in situ or during magnified surveys in the laboratory.  

After relocation of the plates within the backreef based on more recent literature 

recommendations, settlement plates still did not yield recruits. 

Other faunal densities and correlations 

 Population densities of Echinometra lucunter did not change with time (χ2 ≥ 

3.846, p-value ≥ 0.061), but each year North and South Forereef sites (7.5 sea urchins / 

m2) had significantly more E. lucunter than North and South Backreef sites (0.4 /m2; χ2 ≥ 

13.331, p-value < 0.001; Figure 4).  E. lucunter populations on the South and North 

Forereef and benthic cover categories were negatively correlated, while turf and coral 

exhibited positive correlations to CCA (Table 3).  Diadema antillarum predators were 

scarce throughout the duration of the study and there were no significant variation among 

sites for the three fish herbivore species: damselfish, surgeonfish and parrotfish 

(ANOVA, p = 0.873, 0.799, 0.521, respectively; Table 4).  Throughout the entire reef, no 

lobsters and no more than three triggerfish were seen in the four years of the study.  No 

triggerfish were recorded during the 2011 surveys and other potential sea urchin 

predators (e.g., grunts, snapper and hogfish) were absent or occurred at densities less than 

1 per 100 m2 at all sites.  Fish herbivores such as Acanthurus coeruleus (Bloch & 

Schneider, 1801) (blue tang), Acanthurus chirurgus (Bloch, 1787) (doctorfish) and 

Stegastes adustus (Troschel, 1865) (dusky damselfish) were present at densities 

averaging 19.5 per 100 m2 across all four sites and the majority were less than 10cm in 
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length with mean biomass of 14.2 g / m2 (Table 4).  Scarus taeniopterus (Desmarest, 

1831) (Princess), Sparisoma viride (Bonnaterre, 1788) (Stoplight), Scarus iserti (Bloch, 

1789) (Striped) and Sparisoma rubripinne (Valenciennes, 1840) (Yellowtail) parrotfish 

across all four sites were present at lower densities (13.9 per 100 m2) with 14% greater 

than 20 cm in length and a mean biomass of 9.7 g / m2 (for all parrotfish).   

Discussion 

Population densities of D. antillarum in Akumal Bay, Mexico at the beginning of 

this survey were low but comparable to current densities found at other sites within the 

Caribbean.  Expected correlations (positive relationships between D. antillarum and 

crustose coralline algae (CCA) and coral cover) were found at backreef sites where D. 

antillarum densities were highest although coral cover significantly decreased at all sites.  

Temporal trends do not indicate the system has experienced a decrease in prevalence of 

an algal-dominated state as turf-algal-sediment (TAS) cover significantly increased.  

Herbivore populations of both sea urchins and fish remain low and the prevalence of this 

epilithic TAS cover within the Bay may deter feeding by these herbivores and prevent 

adequate control of algal biomass on the reefs of Akumal Bay.     

Diadema antillarum abundance 

 Diadema antillarum populations in Akumal Bay did not significantly increase 

from 2008-2011, which is consistent with results reported during surveys from other sites 

in previous years, Panama (Lessios 2005) and the Florida Keys (Chiappone et al. 2002).  

Although historic sea urchin density data is not available for Akumal Bay, the highest 

average densities recorded during this survey (1.44/m2 NB 2008) are within range of 

those currently reported for many other areas within the Caribbean region, where these 
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populations have not yet recovered (summarized in Ruiz-Ramos 2011).  The significantly 

higher populations of D. antillarum in the North Backreef may have been due to the 

significantly higher rugosity at this site.  Previous research has shown that D. antillarum 

use physical structures as refuge (Ogden 1976, Levitan & Genovese 1989).  In field 

manipulations, alterations in structural complexity significantly decreased macroalgal 

cover and significantly increased D. antillarum densities (Lee 2006).  Habitat-complexity 

therefore facilitates the removal of macroalgae and has important consequences on both 

the recovery of this important herbivore and the efficacy at which macroalgal cover is 

reduced.  The lower topographic complexity at some of our sites may act as a positive 

feedback to the resilience of the algal dominated state at these sites.   

Successful sexual reproduction is required if local populations of sea urchins are 

to increase in the absence of immigration.  Maximum densities of adult D. antillarum (16 

sea urchins / m2) were more than twice mean densities reported for another 

MesoAmerican Reef site in Mahahual Bay (7 sea urchins / m2; Jordan-Garza et al. 2008), 

yet in Akumal there was an absence of D. antillarum larvae on settlement plates.  Even if 

a proportion of larvae produced in Akumal Bay are lost due to planktonic predators or 

other factors, it is a reasonable expectation that some local larvae would settle on the 

substrate made available on the settlement plates.  If adults are successfully reproducing 

upstream, settlers may also arrive during the 3-5 week planktonic stage (Eckert 1998).  It 

could be that fewer reproducing adults in Akumal Bay as well as upstream locations 

results in inadequate larval supply from which to sustain recruitment.  Sperm limitation to 

successful fertilization, as quantified in other studies, often leads to extremely low larval 

production and these Allee effects (review in (Levitan 1995) as indicated by an absence 
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of settlers.  The methodology and placement of larval settlement plates were ideal to 

detect available larvae (e.g., successes in Puerto Rico and the Florida Keys, Miller et al. 

2009) but perhaps studies on a larger spatial or temporal scale may impact results.  

Additional studies into the demographics of sea urchins in this area may yield important 

information on the mechanisms preventing successful larval production and retention into 

the system as well as inferences towards other impacted systems within the Caribbean.   

In addition, the forereef sites do host a population of Echinometra lucunter sea 

urchins, which may aggressively attack D.antillarum as a burrow defense strategy 

(Grunbaum et al. 1978), increasing juvenile mortality and preventing successful D. 

antillarum larvae recruitment on the forereef.  E. lucunter densities are significantly 

higher on the forereef as they prefer microhabitats with greater exposure to wave action 

and currents (McGehee 1992), thus limiting habitat overlap with D. antillarum as 

physical forcing determines where each sea urchin exists.  Perhaps because of this, 

studies on the competitive outcomes of D. antillarum as an intruder as well as defender 

with E. lucunter are limited (Shulman 1990).   Despite the perceived minimal interactions 

between these two echinoids, Akumal Bay E. lucunter populations on the forereef are on 

average higher than those found on other Caribbean reefs (1.24 / m2, Lessios et al. 

1984a), thus potentially increasing their relative importance in structuring the benthos at 

this study site.  It may be that as populations of E. lucunter are established on the 

forereef, they competitively exclude other echinoids similar to original hypotheses behind 

interactions studied between E. viridis and D. antillarum (Williams 1981) , rather than 

through later theorized mechanisms of settlement facilitation (McClanahan 1999, Lessios 

2005).   
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Benthos relationships 

Although D. antillarum densities were within ranges found at other sites and 

suggest a positive relationship between sea urchin density and CCA/coral cover in the 

backreef environment, the system is still experiencing an overall increase in TAS cover.  

Sea urchins may be removing some turf and TAS algal cover, providing space for CCA 

to settle and cue coral settlement, yet sea urchins are not decreasing TAS cover.  Prior to 

the massive mortality event, D. antillarum densities of 16 / m2  were shown to completely 

clear algae from the reef while 4 / m2 densities correlated to the highest coral spat 

densities (Sammarco 1980).  More recent research suggests densities as low as 1 / m2 can 

maintain a cropped algae patch (Dahlgren, C., personal communication in Mumby et al. 

2006).  My densities along the backreef were > 1 / m2 yet the population of D. antillarum 

was unable to maintain a cropped algae substrate and an increase in coral cover did not 

occur.  Decline in coral cover may be caused by a multitude of factors including stresses 

the coral experiences in competition with the increased epilithic TAS cover (McCook et 

al. 2001), reproductive restrictions within the coral population itself, historic disturbances 

from diseases throughout the MesoAmerican region (Aronson & Precht 2001) and many 

other factors impacting coral reef health (Mumby & Steneck 2008).  Like sea urchins, 

corals are impacted by the Allee effect and the highest coral cover found at the end of the 

study (1% at NB) is incredibly low compared to other regions of the MesoAmerican 

Reef, which report an average of 22% cover by live coral (Schutte 2010).  Small scale 

disturbances from the low level of herbivory or from wave action may be providing 

substrate for coral larvae settlement but coral populations within Akumal may have 

decreased to the extent that they are unable to successfully produce enough planulae to 
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counter their mortality.  There are a multitude of unknown factors in addition to 

herbivory which should be considered when addressing causes of coral reef decline.  

While there is some research to suggest a more direct correlation between sea urchins and 

coral growth (Myhre & Acevedo-Gutierrez 2007, Idjadi et al. 2010), in Akumal this 

relationship does not seem to be as direct.   

Considering those characteristics of macroalgal functional groups, potentially 

higher rates of herbivory from sea urchin populations should be reflected in a benthos 

dominated by CCA.  In areas with fewer sea urchins and less herbivory, macroalgae 

should dominate the benthos.   A positive correlation between D. antillarum and coral 

and CCA did occur on the backreef, where these sea urchin populations were highest, yet 

CCA was not the dominant cover at these sites.  In fact, overall cover by CCA on the 

total reef area surveyed during all four years of the study was low (<17%).  Despite low 

densities of D. antillarum on the forereef, CCA cover was higher than backreef sites, 

contrary to my hypothesized outcomes.  This may be a response to E. lucunter 

populations present there or may be representative of recently explored negative effects 

of D. antillarum on CCA (O'Leary & McClanahan 2010).  In addition to herbivory as a 

source of disturbance, forereefs are typically highly influenced by wave action (Roberts 

1983), which can influence epilithic cover.  Cover by CCA is highly resistant to 

mechanical stress and research on TAS mats suggest they may be characteristic of high-

energy environments (Bellwood & Fulton 2008), despite decreased sedimentation rates in 

these areas (Airoldi & Virgilio 1998).  This consideration of wave action as a disturbance 

in addition to herbivory is not often considered when predicting dominate benthic cover 

on coral reefs. 
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The population of Echinometra lucunter sea urchins may add to the overall level 

of herbivory at the forereef sites, increasing the amount of substrate available for CCA 

colonization and growth.  For E. lucunter, intra- and interspecific aggression increases 

the dispersion of this species relative to resources (Shulman 1990).  This dispersion can 

control the spatial distribution of not only the echinoids, but also of the benthic cover 

resistant to their herbivory, perhaps as is evident by the significant increase in CCA cover 

on the south forereef.   As E. lucunter dominate the forereef environment, their presence 

had a positive correlation with CCA cover similar to D. antillarum correlations with CCA 

cover in the backreef.  Of note is the significant negative correlation of E. lucunter 

densities with coral cover on the forereef, the mechanisms behind which are unknown.  

E. lucunter, similar to D. antillarum, did not have a significant correlation to TAS cover 

and therefore cannot be categorized as an adequate controller of this algal cover.  With 

further study, this relationship may prove to play an interesting new ecological role in 

these echinoid/benthos dynamics.   

Akumal Bay herbivorous fish populations were not significantly different at the 

four sites and therefore cannot explain differences in benthic cover.  Their low biomass 

(22-72% less than other Caribbean reefs (Paddack et al. 2009), may explain the increase 

in algal cover, particularly as the high-sediment content in TAS mats has been shown to 

suppress herbivory by fish (Bellwood & Fulton 2008).  Caribbean-wide reef fish 

population densities are decreasing (Paddack et al. 2009) and modeled scenarios on the 

resilience of Caribbean coral reefs indicate that while herbivorous fish may be able to 

compensate for the loss of urchins, reefs with low coral cover have less resistance to 

grazer loss and reef decline may be inevitable (Mumby et al. 2006).  Low herbivore 
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biomass may be caused by a dominance of smaller-sized fishes within the herbivore guild 

and results in decreased algal consumption (Paddack et al. 2006).  With 86% of parrotfish 

less than 20 cm in length, the decreased herbivore biomass may decrease the ability of 

this guild of herbivores to control macroalgal cover.  These factors, in addition to variable 

densities of D. antillarum, have an important role in the interpretation of changes to 

benthic cover on Akumal reefs. 

In summary, Akumal reefs experienced a decline in coral cover and an increase in 

TAS cover despite D. antillarum densities comparable to other sites reported within the 

Caribbean.  While coral and CCA covers were highest where densities of D. antillarum 

were highest along the backreef, this relationship did not hold universally across Akumal 

Bay.  This suggests that grazing by D. antillarum has not decreased the dominance of an 

algal-dominated state and supports those modeled scenarios which indicate a 

disproportionate decrease in resilience as coral reefs with low coral cover continue to 

decline (Mumby et al. 2006).  A snapshot in 2008 rather than over the four years of this 

survey may have resulted in a far different conclusion regarding the fate of this reef, 

which illustrates the importance of tracking temporal trends during studies involving 

herbivores (both sea urchin and fish) in coral-algal dynamics.  In Akumal Bay, declines 

in coral cover may be evidence that the presence of D. antillarum cannot prevent the 

decline of the reef as it has been impacted by high TAS cover and a paucity of suitable 

herbivores. 
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Table 1:  Maximum density of Diadema antillarum per m2, frequency of plots without 

Diadema antillarum and rugosity index by site.  ANOVA results for comparisons 

between all sites each year are given as chi-square value (p-value) with similar sites 

separated by ‘-‘. 

  
2008 2009 2010 2011 

South 
Forereef 

(SF) 

Max Density (per m2) 4 4 1 1 
Frequency of plots 
without D. antillarum 74% 84% 98% 92% 
Rugosity Index: 60 SE: 4 

North 
Forereef 

(NF) 

Max Density (per m2) 3 5 0 1 
Frequency of plots 
without D. antillarum 72% 66% 100% 95% 
Rugosity Index: 61 SE: 4 

South 
Backreef 

(SB) 

Max Density (per m2) 7 8 8 9 
Frequency of plots 
without D. antillarum 87% 63% 58% 73% 
Rugosity Index: 82 SE: 5 

North 
Backreef 

(NB) 

Max Density (per m2) 16 11 12 8 
Frequency of plots 
without D. antillarum 67% 68% 64% 67% 
Rugosity Index: 111 SE: 11 
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Table 2: Kruskal-Wallis Chi-square (χ2) and p-values across all years for each site (df 3; 

independent variable: year).   Years not significantly different are presented with a ‘-‘ 

between years (2008 = 1, 2009 = 2, 2010 = 3; 2011 = 4). 

Site 
Diadema antillarum Coral Crustose Coralline 

Algae (CCA) 
Turf Algal 

Sediment (TAS) Turf 

χ2 p-value χ2 p-value χ2 p-value χ2 p-value χ2 p-value 

South 
Forereef 

22.308 <0.001 80.22 <0.001 46.78 <0.001 121.09 <0.001 276.22 <0.001 

1-2-3-4 2-3-4 1-2  2-3  3-4 2-3-4 2-3-4 

North 
Forereef 

34.971 <0.001 28.05   0.011 11.18 0.011 148.43 <0.001 193.68 <0.001 

1-2-4  2-3 2-3-4 1-2  1-3-4 1-2  3-4 3-4 

South 
Backreef 

20.364 <0.001 60.62 <0.001 33.99 <0.001 54.09 <0.001 10.51   0.015 

1-4 2-3-4 1-2-3 1-2  2-3  3-4 1-2-3 1-3  3-4 

North 
Backreef 

21.66 <0.001 21.66   0.186 4.81 0.186 8.45   0.038 42.06 <0.001 

1-2-3-4 2-3 1-2  2-3-4 1-2-3  3-4 1-2  2-3  3-4 
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Table 3: Spearman rho correlations between Diadema antillarum density on the North 

and South Backreef with the benthic cover categories and Echinometra lucunter on the 

North and South Forereef with the benthic cover categories (ns = no significant 

correlation). 

 
 

Turf-Algal-
Sediment 

(TAS) Turf 

Crustose 
Coralline Algae 

(CCA) Coral 

Diadema 
antillarum 

Spearman Rho ns ns 
0.484 0.322 

p-value <0.001 <0.001 

Echinometra 
lucunter 

Spearman Rho ns -0.200 0.247 -0.116 

p-value <0.001 <0.001 0.011 
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Table 4: Herbivorous fish densities (per 100 m2 ± standard error) and biomass (g/m2) at 

all four sites in 2011. 

 
 

0-5cm 6-10cm 11-20cm 21-30cm 
Total 

Density 
Total 

Biomass 

Damselfish South Forereef 3.0 ± 0.5 5.4 ± 0.6 7.4 ± 0.4 0.0 ± 0.0 15.8 11.8 

 
North Forereef 0.4 ± 0.2 5.0 ± 0.5 9.4 ± 0.8 0.0 ± 0.0 14.8 13.6 

 
South Backreef 3.0 ± 0.5 4.0 ± 0.5 9.4 ± 0.4 0.0 ± 0.0 16.4 13.5 

 
North Backreef 0.4 ± 0.2 5.0 ± 0.5 8.6 ± 0.7 0.0 ± 0.0 14.0 12.9 

Surgeonfish South Forereef 3.0 ± 0.3 10.0 ± 0.7 10.6 ± 1.1 0.0 ± 0.0 23.6 15.7 

 
North Forereef 3.0 ± 0.3 12.4 ± 0.9 9.4 ± 0.6 0.0 ± 0.0 24.8 14.9 

 
South Backreef 3.0 ± 0.3 9.0 ± 0.7 10.0 ± 0.8 0.0 ± 0.0 22.0 14.9 

 
North Backreef 3.0 ± 0.3 10.4 ± 0.5 11.4 ± 0.8 0.0 ± 0.0 24.8 16.5 

Parrotfish South Forereef 0.0 ± 0.0 6.4 ± 1.1 4.6 ± 0.6 1.6 ± 0.4 12.6 8.1 

 
North Forereef 0.0 ± 0.0 5.0 ± 1.2 7.6 ± 0.6 3.0 ± 0.6 15.6 10.5 

 
South Backreef 0.0 ± 0.0 4.4 ± 1.0 6.0 ± 0.6 2.4 ± 0.4 12.8 9.1 

 
North Backreef 0.0 ± 0.0 4.6 ± 0.8 8.2± 0.7 1.6 ± 0.4 14.4 10.9 
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Figure 1: Map of Akumal Bay, Quintana Roo, Mexico (Latitude: 20° 23’ 45” N 

Longitude: 87° 18’ 52” W).  Study sites indicated by boxes (SF = south forereef, NF = 

north forereef, SB = south backreef, NB = north backreef).   

Figure 2: Density of adult Diadema antillarum (letters indicate significant differences in 

the same year between sites).  Solid circle = south forereef, Open circle = north forereef, 

solid triangle = south backreef, open triangle = north backreef. 

Figures 3A-D:  Percent benthic cover for each of the four sites over four years (letters 

indicate significant differences in the same year between sites).  Note the difference in 

scale between 3A-B and 3C-D.  Solid circle = south forereef, Open circle = north 

forereef, solid triangle = south backreef, open triangle = north backreef. 

Figure 4:  Density of Echinometra lucunter (letters indicate significant difference in the 

same year between sites).  Solid circle = south forereef, Open circle = north forereef, 

solid triangle = south backreef, open triangle = north backreef. 
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CHAPTER V:  Macroalgae genera richness, diversity indices and nutrient content 

relationships over time on an impacted Caribbean coral reef 

Abstract 

Examination of benthic functional groups previously studied (Chapter IV) 

determined that reefs in Akumal were turf-algae-sediment (TAS) dominated and 

Diadema antillarum densities have recovered to densities comparable to other regions 

within the Caribbean.  As disturbance by herbivores can drive changes to macroalgae 

diversity, I monitored macroalgae generic richness and diversity indices in conjunction 

with nutrient content as a proxy to productivity to determine how these factors may 

impact macroalgae diversity.  Using the dynamic equilibrium model, I hypothesized that 

in conditions of high nutrient availability, I would expect higher diversity and richness at 

higher D. antillarum density sites (North Backreef and South Backreef, Chapter IV) than 

those sites with lower D. antillarum densities (North Forereef and South Forereef).  

Detailed studies on macroalgae diversity and nutrient content, particularly within the 

Mesoamerican region, are sparse and data reporting this information is vital for continued 

work on these dynamics.  My results indicate that generic diversity increased for three 

sites and nutrient content remained enriched throughout the duration of this study.  

Dominant genera present included Halimeda, Galaxaura, Gelidiella and Dictyota.  South 

Forereef was the only site which decreased in diversity and was also the only site to 

experience an increase in crustose coralline algae (CCA) during previous studies.  Data 

on nutrient content within the various macroalgae sampled indicate highly variable 

nitrogen (0.6-3.0 %DW) and phosphorus content (0.03-0.15 %DW) not previously 

recorded and emphasizes the importance of continued studies on these macroalgae 
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nutrient dynamics.  After considering general trends of increasing diversity over the four 

years of the study for three of the four sites, it may be both TAS and a diverse guild of 

macroalgae may continue to dominate the Akumal coral reef ecosystem.   

Introduction 

Diversity, richness and evenness are driven by a multitude of factors, the majority 

and extent of which in marine ecosystems are largely unknown (Stachowicz et al. 2007).  

Diversity encompasses taxa richness, the number of taxa present and evenness, the 

relative abundance of taxa within the community.  Early research hypothesized that 

herbivory was important for maintaining diversity of marine plant communities as 

biomass removal decreases the probability of competitive exclusion (Paine 1966a, 1971, 

Lubchenco 1978).  In further study, the Intermediate Disturbance Hypotheses (IDH) 

predicts a unimodal relationship between diversity and disturbance (grazing or abiotic 

forcing): at low disturbance rates, competitive exclusion can lead to community 

dominance by few superior competitors, but at high disturbance rate, few taxa can persist, 

such that diversity is at maximum at intermediate levels of disturbance (Paine 1966b, 

Grime 1973a, Connell 1978, Lubchenco 1978).  Complexities to herbivore disturbance 

arise when differences in herbivore size, feeding modes, food preferences and mobility 

impact their effect on individual plant taxa (Lubchenco 1978).  Primary producer 

response to herbivory is also an important factor as different competitive abilities for 

limiting resources and defense mechanisms can determine primary producer prevalence 

within the habitat (Gaines & Lubchenco 1982).   

Continual nutrient enrichment impacts productivity and also creates a unimodal 

distribution of organisms as aggressive competitors for space and light displace 
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subordinate organisms (Mittelbach et al. 2001, Worm et al. 2002).  For macroalgae, 

effects of enrichment tend to be context-dependent and little is known about the 

importance of morphological and physiological differences among macroalgae on 

nutrient content (Fong et al. 2001).  In marine ecosystems, some macroalgae (e.g., foliose 

Chlorophytes) are opportunists with fast nutrient uptake and growth rates reflecting this 

increased productivity afforded by enrichment (Waite & Mitchell 1972, Birch et al. 1981, 

Gordon et al. 1981, Lapointe & Tenore 1981).  There is typically a trade-off between 

fast-growing colonizers and slow-growing superior competitors (Connell & Slatyer 1977, 

Grime 1977), as per-capita nutrient and space availability decrease through a 

successionary sequence, so that long-lived and slow-growing organisms dominate later 

successional stages.  However, early successional species (e.g., Ulva) can outcompete 

species occurring during later successional stages under conditions of nutrient enrichment 

(Lubchenco 1978).   

Both productivity (Grime 1973a, Huston 1979) and disturbance (Paine 1966b, 

Grime 1973a, b, Connell 1978) are central to those ecological theories surrounding our 

understanding of the factors determining abundance, diversity and distribution of species.  

In the dynamic equilibrium model, the identity and quantity of genera present can be the 

result of disturbances and productivity over time (Huston 1979).  This model suggests 

that disturbances increase diversity when productivity is high and decrease diversity 

when productivity is low.  Understanding diversity is important in the context of overall 

ecosystem status as a macroalgally-rich ecosystem may contain macroalgae of varying 

tolerances to nutrient limitation or disturbances.  The diverse assemblage of macroalgae 

might then remain dominant as changes to productivity or levels of disturbance occur 
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over time (known as the insurance hypothesis (Yachi & Loreau 1999), provided I have an 

understanding on how both of these factors may have influenced diversity. 

Diversity can be measured at different levels, e.g., species, genus, functional 

groups, depending on the type of information required to answer the ecological questions 

being asked.  Functional groups can be created which categorize organisms based on 

body morphology, life history strategy or other traits that may be ecologically relevant to 

broader ecosystem questions, e.g., macroalgae form functional groups (Littler et al. 1983, 

Steneck & Dethier 1994).  If an area is being monitored, for instance, to detect an 

invasive species or conserve an endangered species, species level surveys are necessary 

but they require specialist training and increased survey time.  Species-level comparisons 

of diversity provide the highest resolution but can be too variable to demonstrate trends 

(Warwick 1988b, a) while genus or functional group analyses may provide more relevant 

ecological information (Konar & Iken 2009).  Aggregating species composition data to 

genus level can provide similar results to functional group data (Konar & Iken 2009) 

however attributes determining functional groups can be disputed or vary between 

researchers and experimental questions.  Because it is impossible to disaggregate data 

collected using functional groupings into species- or genera-specific information after the 

fact, recording of data in the field should be done at the highest practical level of 

taxonomic resolution.  For marine macroalgae and the difficulty of field identification to 

the species level, genus level is the more practical choice and provides latitude to 

functional group assignation of individual taxa.  In this manner, data collected at the 

genus level can not only be useful for those ecological questions being asked during the 
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survey, but can also provide important information to questions that arise from the survey 

results.   

Previous survey data (Chapter IV) considered coral reef functional groups such as 

turf.  Because many species of macroalgae are phenotypically plastic, the turf functional 

group may include multiple genera that are considered frondose macroalgae during other 

portions of their life cycle (Hay 1981) and may have vastly different impacts on coral 

reef ecosystem dynamics.  The use of these functional groups was useful to answer the 

ecological questions posed during the previous survey while more specific questions on 

diversity, evenness and richness require genus-level surveys, the highest level of 

taxonomic resolution that can be used during in situ identification of macroalgae.  It is 

helpful to consider both functional groups and genus-level information as genus level 

surveys can be scaled up to the most appropriate functional group and functional groups 

can give insight into attributes among genera that may be driving differences.  

This study builds on conclusions drawn from a previous study (Chapter IV) where 

monitoring of benthic functional groups indicated that reefs in Akumal were increasingly 

turf-algae-sediment (TAS) dominated and Diadema antillarum densities were greatest at 

North Backreef and South Backreef sites.  While benthic functional groups can provide 

information on the overall ecosystem status, a more detailed consideration of macroalgae 

genera and nutrient content can provide important information on the use of nutrients 

within the ecosystem and if macroalgae genera are likely to remain dominant through 

time.  The goals of this study were to first complete a record of diversity and nutrient 

content of the macroalgae genera present within Akumal Bay.  This is an important step 

as there is a paucity of literature reporting diversity and taxon-specific nutrient content in 



 

  99 

the Mesoamerican (but for diversity see Collado-Vides et al. 1998 and for nutrient 

content see Mutchler and Dunton 2007).  I also wanted to understand the drivers to 

macroalgal diversity (e.g., herbivore disturbance and nutrient content as a proxy for 

productivity) in the context of Huston’s dynamic equilibrium model (1979).  I 

hypothesized that sites where macroalgal productivity was not limited by nutrients, 

nitrogen and phosphorus content would be above those values indicated as minimum for 

aquatic marine plants (0.02% dry weight phosphorus, 1.2% dry weight nitrogen, 30:1 

N:P; Atkinson & Smith 1992).  For those sites with high productivity, I would expect 

higher diversity and richness at higher D. antillarum density sites (North Backreef and 

South Backreef, Chapter IV) than those sites with lower D. antillarum densities (North 

Forereef and South Forereef).  Diversity would be expected to vary spatially among sites 

and temporally among years depending on changes in herbivore density and macroalgal 

productivity (e.g., if macroalgae nutrient content increases, I would expect diversity to 

increase at sites with higher D. antillarum density). 

Methodology 

Akumal Bay reef is located approximately 300 meters from shore and is 

characterized by a semi-enclosed lagoon sloping towards the 3 – 4 meter deep backreef, a 

shallow northern and southern reef crest and a 3 – 4 meter deep forereef (Figure 1).  The 

reef has low coral cover (maximum 14%; Chapter IV) with 50% loss of coral cover over 

the last twenty years (Harvell et al. 2007) and high fishing pressure (Garcia-Salgado et al. 

2008).  Four 70m by 100m locations were targeted (Figure 1) to represent the different 

areas on Akumal Bay reef, two on the forereef (South Forereef and North Forereef) and 
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two on the backreef (South Backreef and North Backreef).  Rugosity is significantly 

higher in backreef than forereef sites (Chapter IV). 

From 2008-2011, six to ten haphazardly-chosen locations within each area were 

selected to place a 30 meter transect line parallel to the reef crest.  Macroalgae generic 

richness was assessed by recording percent cover and identify of all macroalgae genera 

present within 60-100 random m2 locations along the transect.  All efforts were made to 

identify macroalgae (greater than 3cm) to the genus level.  For those specimens that I 

were unable to identify in the field, samples were taken back to the lab for further 

identification using Littler & Litter (2000).  Shannon-Weiner diversity, which takes into 

account richness and evenness, was calculated using PRIMER software (Clarke & 

Warwick 2001) with the equation:  H’ = -Σ pi ln (pi), where pi is the proportional cover of 

the ith genera along the transect and Σ is sum of all i macroalgae genera.  Pielou’s 

evenness was calculated as J’ = H’/log(S) using PRIMER software (Clarke & Warwick 

2001).  Since macroalgal plants differ in size and it becomes difficult to calculate 

numbers of ‘individuals,’ percent cover was used for the proportional data (pi) to 

calculate H’ (Aronson et al. 1994).  To determine if there were changes in diversity 

through the four years of the survey and if diversity different by site, measures of 

diversity were compared via a two-way ANOVA using SPSS after an examination of 

standardized residuals determined that data conformed to assumptions regarding 

normality.  Differences between years were determined with post-hoc pairwise 

comparisons. 

Macroalgae tissue samples were collected within the four designated study areas, 

both inside and outside of sampling quadrats.  Samples were discarded when there was 



 

  101 

inadequate biomass (less than 5 grams dry weight) to complete analytical sampling.  All 

samples were gently cleaned of epiphytes, dried to a constant weight at 60ºC and ground 

to a fine powder using a mortar and pestle.  Samples were analyzed in duplicate for 

nitrogen content using a CHN analyzer and for phosphorus using dry-oxidation acid-

hydrolysis extraction followed by colorimetric analysis.  Dry weight elemental content 

was calculated as (mass of element/dry weight of sample) x 100%.  While some genera 

were found at multiple sites, Halimeda spp. was the only genus present in multiple sites 

over the four years.  To determine if significant changes occurred over the four years of 

the survey, data across all sites were compared by year via an ANOVA using SPSS after 

examination of standardized residuals determined the data conformed to assumptions 

regarding normality.   

Results 

 Twenty-two different genera were recorded during the surveys from 2008-2011 

on Akumal reefs (Table 1).  Gelidiella spp., Halimeda spp. and Dictyota spp. were the 

dominant macroalgae genera.  Additional genera were noted on the reef (e.g., Sargassum) 

but did not fall within the study area.  Over time, three of the four sites (North Forereef, 

South Backreef, North Backreef) experienced a significant increase in Shannon-Weiner 

diversity and Pielou’s evenness while two of the sites had significant changes in richness 

(decrease in South Forereef and increase in South Backreef).  Temporal variation also 

occurred in macroalgal nutrient content.  While nitrogen and phosphorus content 

significantly increased in Halimeda, the only genera present in multiple sites through all 

four years, N:P in 2008 was not significantly different than the N:P observed in 2011.  

For genera not present across multiple sites, samples were largely phosphorus limited 
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(South Forereef: Laurencia; North Forereef: Stypopodium; South Backreef: Stypopodium; 

North Backreef: Caulerpa).  For each of these genera present, nitrogen content was 

Caulerpa 2.5 – 2.8 percent dry weight (% DW), Laurencia 0.8 – 2.1 (% DW) and 

Stypopodium 1.1 – 2.0 (% DW).  Maximum nutrient content was 3.1 (% nitrogen DW 

Penicillus) and 0.15 (% phosphorus DW Caulerpa).   

Dominant Chlorophytes included Caulerpa (maximum cover 50%), Halimeda 

(maximum cover 60%) and Udotea (maximum cover 40%; Table 1).  Dominant 

Rhodophytes included Gelidiella (maximum cover 80%), Amphiroa (maximum cover 

40%) and Galaxaura (maximum cover 40%).  Ochrophytes were dominated by Dictyota 

(maximum cover 60%).  While there was no net change in generic richness for the North 

Forereef and North Backreef, macroalgal diversity and evenness did increase over time 

(Figure 2).  These sites did not experience a significant change in crustose coralline algae 

(CCA) while coral cover significant decreased and turf-algal-sediment (TAS) cover 

increased (Table 2).  Generic richness, evenness and diversity decreased significantly in 

the South Forereef while all parameters increased significantly in the South Backreef.  

The South Forereef was the only site to experience a significant increase in CCA while 

the South Backreef significantly decreased CCA.  Coral cover significantly decreased and 

TAS significantly increased at both sites (Table 2).   

 Nitrogen and phosphorus content significantly increased in Halimeda, the only 

species present across all years and in multiple sites, while there were no significant 

changes in N:P of 2008 to 2011, which averaged 65 (Figure 3).  Nutrient content in the 

genera collected was highly variable (Table 3) as nitrogen content was 0.6-3.4 (% DW) 

and phosphorus content was 0.03-0.15 (% DW).  The high spatial and temporal 
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variability in genera present do not make statistical comparisons of nutrient content 

between sites and years feasible. 

Discussion 

Conclusions drawn from the benthic functional groups examined previously in 

this dissertation indicated that reefs in Akumal are turf-algal-sediment (TAS) dominated 

and coral cover has significantly decreased.  During this study, macroalgal diversity 

indices increased at three of the four sites as predicted by the dynamic equilibrium model 

(Huston 1979), where disturbance in a high nutrient environment increases diversity.  

When compared to the close to 100 genera recorded in other portions of the 

MesoAmerican  reef (Collado-Vides et al. 1998), there were less genera found in Akumal 

during this survey.  Although some disparity may be attributed to differences in sampling 

methodologies or intensities, some genera are less fecund under high nutrient conditions 

(Diaz-Pulido & McCook 2005) and may limit the genera present in Akumal to those 

which can tolerate nutrient-replete conditions.  While nitrogen and phosphorus values 

were highly variable and for Halimeda tracked spatially and temporally, nitrogen and 

phosphorus content increased significantly and remained above the minimum nutrient 

content limiting to macroalgal productivity (Atkinson & Smith 1983, Duarte 1992).  

When considered in conjunction with previous functional group and herbivory data 

(Chapter IV), a decline in the algal dominated status does not seem a plausible prediction 

for Akumal Bay. 

In coastal marine ecosystems, nitrogen and phosphorus loading are typically high 

from anthropogenic point and non-point sources existing in close proximity to these 

environments (Cloern 2001).  Nitrogen:phosphorus above 30 indicate benthic marine 
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plant growth is phosphorus-limited and further consideration of nitrogen and phosphorus 

content is important to determine if specific nutrient content also indicates a limitation to 

growth (Atkinson & Smith 1983, Duarte 1992).  In Akumal each site had at least one 

genus present for all four years and, in each of these site/genus combinations, nutrient 

ratios indicated macroalgae were phosphorus-limited.  My data can also be considered in 

relation to the paucity of data on nutrient content of macroalgae reported for other areas 

within the Mexican Caribbean.  For instance, in Akumal Bay Mutchler and Dunton 

(2007) reported Halimeda nitrogen values of 1 percent dry weight (% DW) while 

Halimeda in Yal Ku Lagoon, Akumal (Chapter II) had nitrogen maximum 1.6 (% DW).   

Variability in nutrient content between genera could be caused by differences in 

morphologies and physiological requirements.  Nutrient differences can occur between 

fleshy forms such as Caulerpa and Avrainvillea when compared to calcified forms such 

as Halimeda, Udotea and Penicillus (Demes et al. 2010).  The calcifying behavior of 

some genera has an important role in phosphorus absorption and while samples can be 

decalcified to run analysis, this does not change the mechanism by which certain genera 

have acquired phosphorus.  In this study (Table 3), fleshy Caulerpa nitrogen content was 

2.5 – 3.0 (% DW) while calcareous Udotea was 0.09 – 0.115 (% DW).  Phosphorus 

content for Caulerpa was 0.09 – 0.15 (% DW) and for Udotea was 0.07 – 0.10 (% DW).  

These variations could have been from differences in calcifying behavior.  Other 

differences arise when considering growth forms such as epilithic versus psammophytic 

forms within the same genus (e.g., Halimeda) as photosynthesis among species is adapted 

to episodic delivery of nutrients and light limitation (Littler et al. 1988).  Differences in 

growth morphologies between genera can also impact nutrient utilization as rhizophytic 
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macroalgae utilize both water column and sediment nutrients, macroalgae with upright 

thalli and open-branching patterns utilize mostly water column nutrients and mat-forming 

species utilize mostly sediment nutrients (Fong et al. 2001).  Those macroalgae genera 

morphologies characterized by high surface area-to-volume ratios and therefore growth 

rates may also have higher concentrations of nutrients than those slower growing genera 

(Bracken & Nielsen 2004).  This study is important because it provides a more inclusive 

report of macroalgae nutrient content from which further work on the taxon-specific 

responses of macroalgae to nutrient availability can be made.   

On the South Forereef, generic diversity, abundance and richness significantly 

decreased over the four years surveyed as the calcareous green genera Halimeda and 

Udotea were lost.  The South Forereef experiences higher wave disturbance than 

backreef sites, yet this is the only site which did not follow my hypothesized results based 

on the dynamic equilibrium model (Huston 1979).  Considering this data in conjunction 

with the increase in CCA and TAS cover found during previous studies, the increase in 

these functional groups may have increased competition for space needed for macroalgal 

propagule settlement and growth.  The South Backreef was the only site to significantly 

increase genera richness through the addition of the genera Avrainvillea, Bryothamnion, 

Padina and Turbinaria.  Some of these macroalgae do provide a more complex canopy 

structure (Steneck & Dethier 1994), which could provide refuge for other macroalgae 

genera as herbivores avoid highly dense macroalgal stands (Hoey & Bellwood 2011).  

Changes in macroalgal diversity could have also been impacted by the significantly 

higher rugosity provided at the South Backreef site than forereef sites.  Structural 

complexity provides increased space for macroalgal propagule settlement, which could 
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drive the measured increases in diversity.  The significant reduction in crustose coralline 

algae cover on the South Backreef could have also freed suitable substrate for settlement 

by new genera of macroalgae and the expansion of cover by the existing genera.  While 

there was not an overall change in richness on North Forereef and North Backreef sites, 

genera diversity and evenness did significantly increase over time.  Both of these sites 

experienced significant increases in TAS cover and no net change in the amount of CCA 

cover for the four years of the study.  It is interesting to note that this is counter to what 

occurred on the south sites, where significant changes in CCA cover occurred when 

significant changes in genera richness occurred.  The decrease in macroalgal genera 

richness where CCA was highest may have been caused by the shedding mechanism 

CCA utilizes to remove the epibionts attempting to recruit onto the thallus surface (Keats 

et al. 1997).  As macroalgae are limited by available propagules and existing macroalgae 

fragmentation (Sousa 1985), the increasing cover by TAS mats may provide a source of 

these propagules and vegetative propagation for the persistence of existing genera 

(Airoldi 1998) while preventing the settlement or establishment of new genera. 

In addition to nutrients, echinoid grazer disturbance was recorded within the sites 

and described in Chapter IV.  In the South Forereef, the site with significantly higher 

densities of Echinometra lucunter, positive correlations between this echinoid and CCA 

cover may have contributed to decreased diversity through the CCA thallus shedding 

mechanism described previously.  The decline in diversity at this site is counter to My 

hypothesis, which predicts that the disturbance caused by E. lucunter grazing would 

increase diversity in the high nutrient environment.  In the North Forereef, D. antillarum 

was significantly lower than backreef sites and E. lucunter densities were significantly 
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lower than the South Forereef sites, yet diversity still increased.  There is some disparity 

between the disturbances experienced at these sites which may be contributing to the 

inconsistencies in my measures of diversity.  This study would greatly benefit from direct 

manipulation of the echinoids in order to elucidate some of these dynamics.   

As Akumal’s reefs are TAS dominated and macroalgae generic diversity has 

increased at the majority of sites, a reduction in macroalgal cvoer does not seem a 

practical prediction that can be supported within this ecosystem.  Further, macroalgal 

identity, richness and diversity reduce temporal fluctuations in community biomass 

(Bruno et al. 2005, Bruno et al. 2006, Stachowicz et al. 2007) and can increase the 

stability of a macroalgal-dominated ecosystem.  After considering general trends of 

increasing diversity over the four years of the study for three of the four sites, it may be 

both TAS and a diverse guild of macroalgae may continue to dominate the Akumal coral 

reef ecosystem.   
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Table 1:  Macroalgal genera inventory for Akumal Bay, Quintana Roo, Mexico 

Division Genera 

Maximum 
Percent 
Cover    

Mean Percent Cover ± SE   
(across all four sites) 

Chlorophyta Avrainvillea 1  0.00 ± 0.00 

 
Caulerpa spp. 50  0.75 ± 0.10 

 
Dictyosphaeria cavernosa 20  0.16 ± 0.04 

 
Halimeda spp. 60  3.97 ± 0.21 

 
Neomeris annulata 10  0.12 ± 0.02 

 
Penicillus spp. 30  0.08 ± 0.04 

 
Rhipocephalus 10 0.03 ± 0.02 

 
Udotea spp. 40  0.38 ± 0.07 

 
Valonia ventricosa 10  0.06 ± 0.01 

 
Green other 10  0.17 ± 0.02 

Rhodophyta Acanthophora spicifera 1  0.00 ± 0.00 

 
Amphiroa 40  0.61 ± 0.09 

 
Bryothamnion 30  0.16 ± 0.05 

 
Coelothrix irregularis 20  0.17 ± 0.04 

 
Galaxaura 40  1.77 ± 0.14 

 
Jania 20  0.51 ± 0.06 

 
Gelidiella 80  1.05 ± 0.19 

 
Laurencia spp. 30  0.27 ± 0.05 

 
Liagora 20  0.06 ± 0.03 

Ochrophyta Dictyota 60  3.69 ± 0.22 

 
Lobophora 20  0.04 ± 0.02 

 
Padina 25  0.35 ± 0.05 

 
Stypopodium 15  0.36 ± 0.04 

 
Turbinaria 10  0.05 ± 0.02 
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Table 2:  Change in benthic cover parameters and diversity indices over four years with 

average densities of echinoids (#/m2) (↑ indicates significant increase in four years, ↓ 

indicates significant decrease in four years, -- indicates no significant change in four 

years) 

Site CCA Coral TAS Turf Diversity Even
ness 

Rich
ness 

Diadema 
antillarum 

Echinometra 
lucunter 

South 
Forereef 

↑ ↓ ↑ ↓ ↓ ↓ ↓ 
0.2 10.5 

North 
Forereef 

-- 
↓ ↑ ↓ ↑ ↑ 

-- 0.2 4.5 

South 
Backreef 

↓ ↓ ↑ 
-- 

↑ ↑ ↑ 
1.3 0.5 

North 
Backreef 

-- 
↓ ↑ ↓ ↑ ↑ 

-- 1.1 0.3 
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Table 3:  N:P, nitrogen and phosphorus content for select macroalgae within Akumal 

Bay, Quintana Roo, Mexico.  Nitrogen and phosphorus values are percent dry weight and 

N:P is expressed as the molar ratio.   

2008 Genus N P N:P 
South Forereef Laurencia 0.8 0.07 25 

 
Rhipocephalus 1.0 0.03 70 

 
Dictyota 1.4 0.07 45 

North Forereef Dictyota 1.4 0.06 50 

 
Halimeda 1.3 0.03 85 

 
Jania 0.8 0.07 27 

 
Liagora 0.8 0.03 75 

 
Rhipocephalus 1.2 0.04 68 

 
Stypopodium 1.5 0.07 48 

South Backreef Caulerpa 2.5 0.12 47 

 
Dictyota 1.3 0.04 81 

 
Galaxaura 1.1 0.06 39 

 
Halimeda 1.1 0.03 72 

 
Padina 2.7 0.06 92 

 
Stypopodium 1.1 0.04 68 

 
Udotea 2.1 0.08 59 

North Backreef Caulerpa 2.6 0.09 65 

 
Dictyota 1.7 0.07 56 

 
Halimeda 0.6 0.04 30 

 
Penicillus 1.3 0.04 73 

 
Stypopodium 1.4 0.03 95 

 
Udotea 2.1 0.08 59 

     2009 Genus N P N:P 
South Forereef Caulerpa 3.0 0.12 54 

 
Halimeda 2.4 0.08 67 

 
Laurencia 2.1 0.06 74 

 
Stypopodium 1.2 0.04 73 

North Forereef Dictyota 1.7 0.05 78 

 
Galaxaura 1.0 0.03 71 

 
Halimeda 1.7 0.06 66 

 
Liagora 1.1 0.03 71 

 
Stypopodium 1.3 0.04 65 

South Backreef Caulerpa 2.9 0.13 52 

 
Galaxaura 1.2 0.03 75 

 
Halimeda 0.9 0.04 49 

 
Laurencia 2.3 0.07 75 

 
Stypopodium 1.6 0.05 76 

 
Udotea 1.7 0.07 56 
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North Backreef Caulerpa 2.7 0.11 56 

 
Halimeda 1.9 0.06 76 

 
Laurencia 1.2 0.05 53 

 
Penicillus 3.1 0.09 79 

 
Rhipocephalus 1.7 0.07 56 

 
Stypopodium 1.5 0.05 67 

 
Udotea 2.2 0.10 51 

 
  

  2010 Genus N P N:P 
South Forereef Laurencia 2.1 0.06 82 
North Forereef Galaxaura 1.1 0.04 56 

 
Halimeda 2.2 0.07 68 

 
Rhipocephalus 1.8 0.05 76 

 
Stypopodium 1.6 0.04 80 

South Backreef Galaxaura 1.3 0.04 70 
 Halimeda 1.1 0.05 51 
 Stypopodium 1.7 0.07 57 
North Backreef Bryothamnion 3.0 0.06 112 
 Caulerpa 2.8 0.15 41 
 Dictyota 2.2 0.07 70 
 Halimeda 1.9 0.06 69 
 Laurencia 2.3 0.06 92 
 Penicillus 2.7 0.11 58 
 Rhipocephalus 2.2 0.07 72 
 Stypopodium 2.3 0.06 85 
 Turbinaria 1.0 0.04 52 
 Udotea 2.3 0.10 51 
     

2011 Genus N P N:P 
South Forereef Laurencia 1.9 0.06 69 
North Forereef Dictyota 1.5 0.06 54 
 Galaxaura 1.2 0.03 78 
 Halimeda 2.3 0.06 79 
 Laurencia 1.1 0.05 53 
 Stypopodium 2.0 0.05 82 
South Backreef Caulerpa 2.7 0.15 40 
 Dictyota 1.8 0.05 79 
 Galaxaura 1.1 0.03 99 
 Halimeda 1.1 0.04 56 
 Laurencia 1.8 0.06 67 
 Stypopodium 1.3 0.04 76 
 Turbinaria 1.1 0.04 63 
 Udotea 2.5 0.09 61 
North Backreef Caulerpa 2.5 0.11 54 
 Dictyota 1.1 0.05 48 
 Galaxaura 1.0 0.03 76 
 Halimeda 2.0 0.06 73 
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 Laurencia 1.8 0.06 67 
 Penicillus 3.4 0.07 103 
 Rhipocephalus 1.8 0.05 75 
 Stypopodium 1.4 0.03 96 
 Turbinaria 0.9 0.03 69 
 Udotea 2.6 0.09 66 
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Figure 1: Map of Akumal Bay, Quintana Roo, Mexico (Latitude: 20° 23’ 45” N 

Longitude: 87° 18’ 52” W).  Study sites indicated by boxes (SF = South Forereef, NF = 

North Forereef, SB = South Backreef, NB = North Backreef).   

Figure 2a-c: Shannon-Weiner diversity (H’), species richness (d) and evenness (J) for all 

four sites from 2008-2011 in Akumal Bay.  Letters indicate significant difference at each 

site among years. 

Figure 3a-c:  Nitrogen and phosphorus content (a) and N:P (b) of Halimeda spp.  DW: 

dry weight.  Significant differences were assessed with an ANOVA across all sites to 

detect differences among years.  Letters indicate significant difference among years.  
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CHAPTER VI:  Conclusion 

This study provides valuable insight into the variable effects of herbivores and 

nutrients on primary producers within a tropical coastal ecosystem.  In Chapter II, 

nitrogen and phosphorus tissue content in both active and passive macroalgal 

bioindicators supported the designation of the Akumal region as nutrient replete.  These 

results support the findings of previous research in the region using seagrass, octocoral 

and water samples as tested for anthropogenic nutrients (Carruthers et al. 2005, Baker et 

al. 2007, Mutchler et al. 2007, Metcalfe et al. 2011).  Only in 2010 did isotopic data from 

the bioassay of Acanthophora spicifera indicate a decrease in signature from source, 

which was corroborated with nitrogen content data.   In 2009 this trend was lacking in 

both isotopic and nitrogen content data as a peak in nitrogen and δ15N occurred at mid-

distance.  Trends in isotopic and nitrogen content of passive bioindicators did not 

correlate with each other during any year or for any genera.  There appears to be a 

decoupling of the δ15N and nitrogen content signatures indicating that processes 

occurring in the benthos may be altering availability of these nutrients.   Studies are 

lacking which consider both active and passive bioindicators in the same system and over 

more than one sampling event.  In general, data from this study establish the Akumal 

system is nutrient replete and macroalgae continue to be effective bioindicators of this 

high nutrient availability.  However,  if specific questions regarding nutrient dilution 

from source are required, as would be the case for marine park managers who seek to 

identify and reduced anthropogenic loading, active bioassay methodology could more 

accurately reflect water column nutrients.  Higher spatial and temporal resolution is 

desirable to further utilize macroalgae as bioindicators and resolve variability found 
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during this study.  This research emphasizes the importance of understanding limitations 

and confounding factors to the utilization and interpretation of bioindicator data.  In any 

context, understanding the role and response of different macroalgae to this high nutrient 

availability is important for determining the likelihood that eutrophication will drive a 

regime shifts to a macroalgae dominated state.   

Using this determination of the Akumal region as nutrient replete, in Chapter III I 

evaluated the impact of green sea turtles, Chelonia mydas, and herbivorous fish grazing 

on seagrass bed structure and ecosystem resilience under stressors of herbivory and 

enrichment.  Data on seagrass patches grazed by C. mydas demonstrated that nutrient and 

soluble carbohydrate content were not predictive of patch abandonment, contrary to 

current theories (Thayer et al. 1984, Moran & Bjorndal 2007, Fourqurean et al. 2010).  

Higher nutrient content aboveground (carbon, nitrogen and phosphorus) and lower 

belowground (soluble carbohydrates) did follow previously reported trends in other 

grazed areas when compared to ungrazed areas. As in most ecological studies, increased 

spatial and temporal data as well as manipulative experimentation may further elucidate 

patterns.  However, this study serves as an excellent platform from which to promote an 

understanding on the dynamics of herbivores in eutrophic ecosystems, a pairing not often 

considered (unlike peanut butter and jelly or beer and salty nuts).  By completing a 

measurative study rather than a manipulation to mimic the behavior of these important 

mesograzers, I have provided evidence against a current hypothesis regarding rhizome 

carbohydrates and have opened a window for further study in this arena.   
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To revisit the conceptual model presented in the introduction, I propose a revised 

model (Figure 1) where eutrophication shifts the Akumal seagrass ecosystem to a highly 

epiphytized state, which is reversed by fish or turtle herbivory.  The seagrass system 

shifts to a further degraded state when either herbivores are lost and the area is ungrazed 

or alternatively, when there are too many herbivores and continual herbivory shifts the 

system to bare sand.  My research recorded evidence of this further degraded state in 

those fish grazed plots with much thinner leaves and less seagrass diversity.  I would 

expect that over time, these areas would become completely devoid of seagrass and 

become sand barrens. 

 

Figure 1:  Conceptual model indicating the drivers to shifts within the seagrass 

ecosystem of Akumal Bay, Quintana Roo, Mexico.  Dashed lines indicate the decreased 

resilience caused by the drivers eutrophication, herbivory and herbivore loss or continual 

herbivory. 

To revisit the grazer disturbance model as I outlined in the Introduction, I propose 

some modifications based on the results of my research (Figure 2).  While the original 
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model theorized it was the decline in soluble carbohydrates (dashed line) with increasing 

grazing intensity which caused the seagrass patch abandonment, my data suggest that it is 

the decline in biomass and the associated giving up density (Brown 1988), which cues 

this abandonment.  This is the first application of this giving up density theory to the 

marine environment and provides an exciting platform for further work in the arena of 

turtle grazing behavior. 

 

Figure 2: Grazer disturbance model for Akumal seagrass ecosystems.  Low 

grazing intensity leads to light limited seagrasses with higher soluble carbohydrate 

content relative to aboveground nutrient content.  High grazing intensity results in 

reduced carbon fixation and an increase in relative nutrient content of aboveground 

nutrient tissue and significantly less soluble carbohydrates (solid line as opposed to 

originally theorized dashed line).  Biomass may be the important driver to seagrass patch 

abandonment as a potential giving up density is reached at high grazing intensities. 
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In a similar manner to herbivores in seagrass beds, in Chapter IV I considered 

herbivorous long-spined sea urchins, Diadema antillarum, as they consumed macroalgal 

biomass and influenced the dominant state of the coral reef in Akumal.  Although 

densities of adult D. antillarum were comparable to other regions of the Caribbean, 

declines in coral cover and increases in turf-algal-sediment (TAS) over the four years of 

this study may be evidence that even a population of this important herbivore cannot 

prevent the decline of a reef with high nutrient availability.  Similar to data published 

elsewhere, D. antillarum densities correlated positively with coral and crustose coralline 

algae (CCA) cover in the backreef sites where sea urchin densities were higher.  These 

positive correlations and comparable sea urchin densities are important to consider in the 

context of a marine park manager utilizing data to predict ecosystem trajectory.  If this 

study had been completed in 2008 only, the predicted trajectory would have considered 

densities of D. antillarum reducing macroalgal cover and a feasible coral recovery.  

However, when considering the trend in sea urchin populations and functional groups 

over four years, a different prediction occurs.  On Akumal Bay’s reefs, the high cover by 

TAS and the decline in coral cover indicate the system will likely remain algal dominated 

and a shift to coral dominance is unlikely.   

To revisit the conceptual model presented in the introduction, I propose a revised 

model (Figure 3) where more specific information can be utilized to map the phase shifts 

that have occurred on Akumal coral reefs.  In 1998, the area experienced both hurricane 

damage and El Niño bleaching followed by the massive mortality of D. antillarum.  With 

the coral reef ecosystem in a macroalgae dominated state, further anthropogenic stressors 

such as nutrients and overfishing as well as incidences of disease have shifted the 
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community to one which is dominated by TAS.  My research recorded the persistence of 

this TAS dominated state over time despite the presence of an echinoid population.  The 

positive feedbacks to this TAS dominated state may have to do with the Allee effect as it 

reduces D. antillarum recovery rates, reduced reef rugosity as it restricts spatial 

distribution of echinoids and the suppression of herbivory that occurs with the high 

amounts of sediment incorporated into the TAS mats.  My research is the first to record 

this alternative TAS-dominated state and its persistence over time when modeled 

scenarios would predict a decrease in macroalgal cover (Mumby et al. 2006). 

 

Figure 3:  Conceptual model indicating the drivers to shifts within the coral reef 

ecosystem of Akumal Bay, Quintana Roo, Mexico.  Dashed lines indicate the decreased 

resilience caused by drivers and the circular arrow with a plus sign indicates positive 

feedbacks to the TAS dominated state. 
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To revisit the grazer disturbance model as I outlined in the Introduction, I propose some 

modifications based on the results of my research (Figure 4).  While the original model 

theorized turf and frondose macroalgae would decline with increased grazing intensity 

(dashed line), these macroalgal covers were largely absent in Akumal.  Instead, TAS was 

present and dominated at sites regardless of grazing intensity.  The original model 

theorized that either coral or CCA would increase with grazing intensity, depending on 

nutrient availability.  In Akumal, a eutrophic system with high nutrient availability, I did 

record the expected result of increased CCA however these covers did not dominate, 

which has important ecological ramifications for marine park mangers hoping this cover 

will increase with echinoid recovery. 

 

Figure 4:  Grazer disturbance model for Akumal coral reef ecosystems.  Dashed 

lines indicate the original model while solid lines indicate those results recorded during 

this survey.  (CCA = crustose coralline algae) 
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An additional aspect to this study is that crustose coralline algae (CCA) as a coral 

settlement cue was significantly higher on the forereef sites where significantly more 

Echinometra lucunter occurred but this herbivore correlated negatively with coral cvoer.  

This echinoid species may have a further detrimental impact coral recovery not 

considered during other studies on echinoid dynamics.  E. lucunter is not always present 

on other coral reefs and its relative E. viridis has been reported as a facilitator to coral 

recruitment.  In the case of echinoids on Akumal reefs, their grazing behavior has not 

altered the dominance of a macroalgae state that is predicted under conditions of high 

nutrient availability.   

In Chapter V I monitored macroalgae generic diversity, richness and evenness as 

well as considered factors such as nutrient availability over four years to determine if 

these measures varied temporally within an impacted, macroalgal-dominated ecosystem.  

These studies were done because measures of taxa richness, diversity and evenness are 

important to the overall structure of an ecosystem and when they are considered in 

conjunction with benthic functional groups examined in Chapter IV, a more integrated 

picture of ecosystem state can be established.  Variability in macroalgae nitrogen and 

phosphorus concentrations precluded many determinations of significant trends, although 

nutrient content of Halimeda, the only genera present at multiple sites over time, did 

signify an increase in nutrients over time.  Macroalgae nutrient data variability 

emphasizes the importance of continued studies on the effects of morphological 

differences between genera and the overall impact on these differences on nutrient uptake 

and assimilation.  While I hypothesized that high nutrient availability would shift the 

ecosystem to one dominated by a single genera and therefore decrease diversity, richness 



 

  126 

and evenness, generic diversity and evenness actually increased at three of four sites 

throughout the study duration.  South Forereef, the site which experienced a decrease in 

diversity, was also the site which experienced a significant increase in crustose coralline 

algae during Chapter IV therefore this benthic cover may have an important role in 

overall coral reef macroalgal diversity.  The population of echinoid herbivores monitored 

during Chapter IV may also have a role in macroalgal diversity and further manipulations 

of these parameters would be beneficial to data interpretation.  As Akumal reefs are turf-

algal-sediment dominated and macroalgae generic diversity has increased at the majority 

of sites, a recovery to the formerly coral dominated state does not seem a realistic 

expectation of this ecosystem.   

Results from the research produced during these studies provide answers to not 

only ecological questions but also important information to be utilized in marine park 

managers’ quest to protect these important ecosystems.  In considering those bottom-up 

forces controlling dominant benthic assemblages, active bioassay techniques in both 

seagrass and coral reef ecosystems can provide important information on the availability 

of nutrients to these environments.  Protecting the sea turtle population from 

anthropogenic stresses (e.g. harvesting and nest disturbance) may be an appropriate goal 

for Akumal Bay marine park managers as these herbivores seem to play an important role 

in the health of the seagrass beds.  Compounding factors such as coral diseases, 

overfishing and eutrophication may have driven the coral reef community in Akumal Bay 

to such an algal-dominated state that even the recovery of an important echinoid 

herbivore cannot assist in the return of a coral dominated state.  This same conclusion 

may be drawn from the increased macroalgae generic diversity, richness and nutrient 
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content as well.  Protecting the coral reef habitat from further degradation could be the 

only conservation option left for this important resource.  With increased impacts to coastal 

ecosystems through enrichment and overfishing, the response in primary producers reported 

during these surveys is a key indicator of the larger issues affecting the stability of the seagrass 

and coral habitats in Akumal Bay, Quintana Roo, Mexico. 
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