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ABSTRACT OF THE DISSERTATION 

GEOCHEMICAL DETERMINATION OF THE FATE AND TRANSPORT OF 

INJECTED FRESH WASTEWATER TO A DEEP SALINE AQUIFER 

by 

Virginia Mary Walsh  

Florida International University, 2012 

Miami, Florida 

Professor René M. Price, Major Professor 

Deep well injection into non-potable saline aquifers of treated domestic wastewater has 

been used in Florida for decades as a safe and effective alternative to ocean outfall 

disposal. The objectives of this study were to determine the fate and transport of injected 

wastewater at two deep well injection sites in Miami Dade County, Florida, USA. 

Detection of ammonium in the Middle Confining units of the Floridan aquifer above the 

injection zone at both sites has been interpreted as evidence of upward migration of 

injected wastewater, posing a risk to underground sources of drinking water. Historical 

water quality data, including ammonia, chloride, temperature, and pH from existing 

monitoring wells at both sites from 1983 to 2008, major ions collected monthly from 

2006 and 2008, and a synoptic sampling event for stable isotopes, tritium, and dissolved 

gases in 2008, were used to determine the source of ammonium in groundwater and 

possible migration pathways. Geochemical modeling was used to determine possible 

effects of injected wastewater on native water and aquifer matrix geochemistry.  
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Injected wastewater was determined to be the source of elevated ammonium 

concentrations above ambient water levels, based on the results of major ion 

concentrations, tritium, dissolved noble gases and 15N isotopes analyses. Various possible 

fluid migration pathways were identified at the sites. Data for the south site suggest 

buoyancy-driven vertical pathways to overlying aquifers bypassing the confining units, 

with little mixing of injected wastewater with native water as it migrated upward. Once it 

is introduced into an aquifer, the injectate appeared to migrate advectively with the 

regional groundwater flow. Geochemical modeling indicated that CO2 -enriched injected 

wastewater allowed for carbonate dissolution along the vertical pathways, enhancing 

permeability along these flowpaths. At the north site, diffusive upward flow through the 

confining units or offsite vertical pathways were determined to be possible, however no 

evidence was detected for any on-site confining unit bypass pathway. No evidence was 

observed at either site of injected wastewater migration to the Upper Floridan aquifer, 

which is used as a municipal water supply and for aquifer storage and recovery.  
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CHAPTER 1 INTRODUCTION 

Deep well injection into non-potable aquifers has been used in Florida for several 

decades as an alternative to discharge of treated domestic wastewater to surface waters. 

These deep aquifers tend to be saline, and the discharge of fresh wastewater into them 

raises concerns of geochemical reactions as a result of the mixing of the two waters, as 

well as the buoyant transport of the wastewater upwards into overlying aquifers.  

Although there has been considerable interest regarding injection of potable fresh water 

for storage in deep brackish aquifers (Arthur et al, 2001; Renken et al, 2005), little 

investigation has been conducted regarding the fate and transport of the treated 

wastewater into deep saline aquifers, as it has been thought that there would be no impact 

to the overlying aquifers as a result of injection (Meyer, 1989a).  

Miami-Dade County Water and Sewer Department (MDWASD), located in southern 

Florida, currently disposes of 430 million liters per day (MLD) of treated domestic 

wastewater into a deep saline aquifer at two locations in the county. Deep well injection 

has been in use in Miami-Dade County since the early 1980’s, and water quality data 

since 1983 has been collected from monitoring wells.  The South District Wastewater 

Treatment Plant (SD), located in southern Miami-Dade County, Florida, was placed into 

service in 1983, and is currently permitted for the disposal of 367 MLD of treated 

wastewater. The North District Wastewater Treatment Plant (ND) was placed into service 

in 1997, and is permitted for 90 MLD of wastewater disposal.  Both facilities treat 

domestic wastewater to above secondary drinking water standards, and dispose the 

treated wastewater into United States Environmental Protection Agency (USEPA) Class I 
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injection wells  (Florida Department of Environmental Protection (FDEP) Permit Nos. 

61787-014-UC - 61787-017-UC). Both facilities consist of deep injection wells  at 

approximately 855 meters below land surface (bls) and inject treated wastewater into a 

highly transmissive zone in the saline non-potable aquifer known in south Florida as the 

Boulder Zone.  The Boulder Zone has been thought to be hydrologically separated from 

overlying aquifers by a 335 meter thick confining unit. However, during the installation 

of additional monitoring wells at the SD in 1994, detection of ammonia-nitrogen (NH3-

N) at 442 meter bls in the overlying aquifer at a concentration of 7 milligrams per liter 

(mg l-1), above reported background levels of 0.05 mg l-1 (BC&E, 1977), have raised 

doubts regarding the efficacy of the confining unit. Concerns have also been noted 

regarding water quality impact to overlying aquifers, as these aquifers are used as 

alternative water supplies via storage of freshwater (aquifer storage and recovery) and 

blending with potable surficial aquifer water.  

A unique opportunity to study the geochemical reactions and migration of injected 

wastewater was provided by the availability of historical data and the cooperation of 

MDWASD to collect new data. The current research determines the migration and fate of 

treated wastewater within native waters of the Floridan Aquifer System in south Florida 

and the resultant geochemical reactions within the aquifer system. 

1.1 Objectives 

Chemical and isotopic data collected from aquifers have been used to interpret source 

waters and ground-water recharge (Bölke and Denver, 1995, Shapiro et al., 1998, Price et 

al, 2003; Manning et al., 2005). Effluent injected into the Lower Floridan Aquifer is a 
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source of recharge, and should be distinguishable from native Floridan Aquifer water by 

ion chemistry, stable isotope ratios, dissolved gases, and the presence of tritium.  My 

research uses concentrations of natural occurring stable isotopes (18O/16O, 2H/1H, and 

15N/14N), dissolved gases, concentrations of tritium (3H) and helium (3He) isotopes using 

the 3H/3He dating technique, and chemical water quality analysis and modeling for the 

following objectives: 

1. Determine the source of ammonium in the Floridan Aquifer, and evaluate the use of 

ammonium as a conservative tracer of the wastewater. 

2. Determine injectate transport mechanisms and migration pathways. 

3. Predict the fate of native waters and injectate and any contaminants that have been (or 

may be) produced as a result of geochemical reaction within the aquifer system.   
 

1.2 Dissertation Organization 

My dissertation consists of five chapters. Chapter 1 is this introduction. Chapters 2, 3 and 

4 are the main chapters, and are intended to stand alone as complete papers. Chapter 5 

summarizes the dissertation results, and recommends further areas of research. Chapter 2 

(Walsh and Price, 2010, published in Hydrogeology Journal, for copyright release see 

Appendix B), presents historical groundwater quality collected over 25 years at the South 

District, and over ten years at the North District. Analysis of conservative ion data 

indicated injected ammonium behaved conservatively when mixed with ambient 

groundwater. Transport pathways were distinguished on the basis of ammonium, 

chloride, and bromide ion concentration ratios, and temperature. Injectate was concluded 



4 

 

to migrate upwards to overlying aquifers through vertical pathways, bypassing the 

underlying confining units.  

Chapter 3 summarizes the stable isotope, tritium, and dissolved gas data. Injectate was 

determined to be enriched in δ15N- NH4
+, CO2, the heavier noble gases, and tritium, while 

depleted in the lighter dissolved gases. These signatures were observed in samples 

collected from wells with elevated NH4
+ concentrations. Evidence of methanogenesis and  

NH4
+oxidation reactions were observed in the data. Further evidence of confinement 

bypass pathways were detected at the South District, while no evidence of these pathways 

were observed in the data at the North District.  

Chapter 4 summarizes the geochemical modeling and speciation using PHREEQC 

(Parkhurst and Appelo, 1999) and binary mixing models. Results supported the 

hypothesis of confinement bypass pathways at the South District. Use of a two member 

mixing model, with ambient water quality from the overlying aquifer and injectate as the 

endmembers, closely predicted conservative ion concentrations, whereas a three member 

mixing model including water quality from the underlying aquifers overestimated ion 

concentrations compared to observed. Geochemical modeling suggested porosity 

enhancement along vertical flowpaths, increasing the fraction of injectate over time in 

wells in the vicinity of these pathways. No evidence was again observed for these vertical 

pathways at the North District.  

Chapter 5 summarizes the three main chapters and suggests future research for injection 

sites. Appendices following Chapter 5 include the copyright release, author guidelines for 
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journal publication, water quality data, PHREEQC model input and output files, and the 

VITA. Historical data records and data collected for my dissertation consist of  large data 

sets, therefore all data are available by contacting Miami-Dade Water and Sewer 

Department at http://www.miamidade.gov/water/contact.asp.  
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CHAPTER 2 DETERMINATION OF VERTICAL AND HORIZONTAL 

PATHWAYS OF INJECTED FRESH WASTEWATER INTO A DEEP SALINE 

AQUIFER (FLORIDA, USA) USING NATURAL CHEMICAL TRACERS 

Walsh, V., and R. M. Price. 2010. Determination of vertical and horizontal pathways of 
injected fresh wastewater into a deep saline aquifer (Florida, USA) using natural 
chemical tracers. Hydrogeology Journal, 18:1027-1042. 

2.1 Abstract 

Two deep-well injection sites in south Florida, USA, inject an average of 430 million 

liters per day of treated domestic fresh wastewater into a deep saline aquifer 900 meters 

below land surface. Elevated levels of NH3 (highest concentration 939 µM) in the 

overlying aquifer above ambient concentrations (concentration less than 30 µM) were 

evidence of the upward migration of injected fluids. Three pathways were distinguished 

on the basis of ammonium, chloride and bromide ratios, and temperature. At the South 

District Wastewater Treatment Plant, the tracer ratios showed that the injectate remained 

chemically distinct as it migrated upwards through rapid vertical pathways via density-

driven buoyancy. The warmer injectate (mean 28°C) retained the temperature signal as it 

vertically migrated upwards, however the temperature signal did not persist as the 

injectate moved horizontally into the overlying aquifers. Once introduced, the injectate 

moved slowly horizontally through the aquifer and mixed with ambient water.  At the 

North District Wastewater Treatment Plant, data provide strong evidence of a one-time 

pulse of injectate into the overlying aquifers due to improper well construction. No 

evidence of rapid vertical pathways was observed at the North District Wastewater 

Treatment Plant. 
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2.2 Introduction 

Deep well injection of treated municipal wastewater into non-potable aquifers has been 

used as an alternative to discharge of wastewater to surface waters for many decades.  

There are 430 permitted municipal wastewater deep injection wells in the United States, 

with 163 in Florida alone (USEPA 2008). These deep aquifers tend to be saline, and the 

discharge of fresh wastewater into them has raised concerns of geochemical reactions as 

a result of the mixing of the two waters, as well as the buoyant transport of the 

wastewater upwards into overlying aquifers.  Confined brackish aquifers in Florida have 

been used extensively for aquifer storage and recovery (ASR) of potable freshwater 

(Arthur et al 2001; Renken et al 2005), and deeper saline aquifers have been used for 

disposal of waste fluids such as oil brines, industrial water and municipal wastewater 

(Meyer 1989a; Meyer, 1989b).  Aquifer storage and recovery in Florida has been 

extensively studied as part of the Comprehensive Everglades Restoration Plan (Reese 

2002; Mirecki 2004; Mirecki 2006), however little research has been published  

regarding the fate and transport of the treated wastewater into deep saline aquifers 

(Meyer 1989a; Haberfeld 1991, Maliva and Walker, 1998;  Bloetscher et al 2005; 

Bloetscher and Muniz 2006; Maliva et al, 2007).   

Miami-Dade County Water and Sewer Department (MDWASD), located in southern 

Florida, currently discharges 430 million liters per day (MLD) of treated domestic 

wastewater into a saline deep aquifer at two locations in the county. Deep well injection 

has been in use in Miami-Dade County since the late 1960’s. The injection facilities are 

located in the north and south of the county, separated by 44 kilometers (Figure 2.1).  The 
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South District Wastewater Treatment Plant (SDWWTP) site was placed into service in 

1983, and is currently permitted for the disposal of 367 MLD of treated wastewater. The 

North District Wastewater Treatment Plant (NDWWTP) site was placed into service in 

1997, and is permitted for 90 MLD of wastewater disposal.  Both facilities treat domestic 

wastewater to above secondary drinking water standards, and discharge the treated 

wastewater into United States Environmental Protection Agency (USEPA) Class I 

injection wells. The treated wastewater is injected into the Boulder Zone, a highly 

transmissive interval in the deep saline non-potable Lower Floridan Aquifer.  The 

Boulder Zone has been thought to be hydrologically separated from overlying aquifers by 

a 335 meter thick confining unit. During the installation of additional monitoring wells at 

the SDWWTP in 1994, ammonia-nitrogen (NH3-N) was detected at 442 m depth in the 

overlying aquifer at a concentration of 411 micromols per liter (µM), above reported 

background levels of 29 µM  (BC&E 1977). The detection of NH3-N in the aquifers 

above the Boulder Zone has raised doubts regarding the efficacy of the confining unit and 

the resultant water quality impact to overlying aquifers, as these aquifers are used as 

alternative water supplies via storage of freshwater (ASR) and blending with potable 

surficial aquifer water.   

Research has focused on ASR in south Florida (Arthur et al 2001; Reese 2002; Mirecki 

2004; Mirecki 2006; Reese and Richardson 2008), however few studies have been 

conducted regarding the transport and fate of injected effluent into the Boulder Zone, and 

typically these had to do with the relative risk of deep well injection versus ocean outfall 

disposal of municipal waste (Englehardt et al 2001; USEPA 2003; Bloetscher et al 2005; 



10 

 

Bloetscher and Muniz 2006). Recently researchers have studied the transport mechanisms 

of the observed migrated injectate, and have suggested density-driven buoyant transport 

mechanism along natural or anthropogenic vertical fractures in the lower aquifers 

(Maliva and Walker, 1998; McNeill 2000; McNeill 2002; Maliva et al 2007; Walsh and 

Price 2008). The objective of this study was to determine migration pathways of 

injectated treated wastewater at two facilities in Miami-Dade County, Florida (SDWWTP 

and NDWWTP) using historical time series data, and major ion data collected as part of 

this study. The methodology developed for this study used chloride (Cl-), bromide (Br-) 

and NH3 as tracers. The methodology provided a method for estimating transport 

pathways, and involved no additional collection of data other than what was typically 

required under federal and state regulatory programs.  

Natural inorganic tracers have been used extensively in water resources investigations to 

trace groundwater flow paths and calculate mixed water ratios (Langmuir 1997; Davis et 

al 1998; Herczeg and Edmunds 2000). Chloride and Br- commonly are used as they tend 

to be conservative, and their ratios may also give information as to the source and 

pathways of water. Studies have been conducted in south Florida  (Shinn et al 1994; Paul 

et al 1997; Corbett et al 2000; Böhlke, J.K. et al 2003) and elsewhere (Kaehler and Belitz 

2003; Clark et al 2004), tracing treated wastewater in surficial aquifers, but NH3 was not 

used as a tracer as it does not behave conservatively in oxic waters. In the present study, a 

novel application of Cl-, Br- and NH3 as conservative tracers of injecate was developed as 

part of mixing models to distinguish pathways between the deep aquifers. Chloride  is a 

natural anion in the Floridan Aquifer System, and its principal source is seawater, as there 
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are no evaporite minerals to provide an additional source (Sprinkle, 1989; Reese, 1994). 

The seawater source of Cl- in south Florida is thought to be the result of either incomplete 

flushing of Pleistocene seawater and brackish water intrusion, and/or the result of the 

cyclic flow driven by thermal upwelling of Holocene intruded seawater (Kohout 1965; 

Sprinkler 1989; Reese 1994). Bromide (Br-) behaves similar to Cl- in groundwater 

systems (Davis et. al., 1998), and in south Florida the source of Br- in groundwater is 

similar to that of Cl- although its natural abundances are orders of magnitude less than 

chloride. The only source of the NH3 is the injectate and therefore it was used to trace 

transport pathways of the injected wastewater.  

2.3 Geologic and hydrogeologic framework 

The Floridan Aquifer System in southeastern Florida is defined by a vertically 

continuous sequence of permeable carbonate rocks of Cenozoic age that are hydraulically 

connected in varying degrees (Miller, 1986). The aquifer matrix consists of carbonate and 

dolomitic limestones, dating from the Paleocene to the Oligocene epochs.  Overlying the 

FAS are the impermeable sediments of the late Oligocene to Pliocene age Hawthorn 

Group, a 180 meter thick confining layer of clays, siltstones and silty limestones. The 

Hawthorn Group separates the Upper Floridan Aquifer from the late Pliocene and 

Pleistocene formations making up the Surficial Aquifer System which includes the 

Biscayne Aquifer in south Florida (Figure 2.2).  The Biscayne Aquifer is an unconfined 

surficial aquifer and is the major source of potable water in south Florida (Fish and 

Stewart 1991) 
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The Floridan Aquifer contains several highly permeable and less permeable zones, with 

zones of highest permeabilities typically occurring at or near unconformities and usually 

parallel to the bedding planes (Meyer 1989a). Previous studies (Miller 1986; Reese 1994) 

grouped the Floridan Aquifer System (FAS) grouped into three hydrostratigraphic units 

(Figure 2.2),  the Upper Floridan Aquifer (UFA), the Middle Confining Unit (MCU), and 

the Lower Floridan Aquifer.  Recently the MCU in south Florida has been divided into 

the Middle Confining Unit One (MC1) and Middle Confining Unit Two (MC2) (Figure 

2.2), separated by the Avon Park Permeable Zone (Reese and Richardson 2008), which in 

south Florida had previously been identified as the Middle Floridan Aquifer. The Upper 

Floridan Aquifer contains relatively fresh water, less than 10,000 mg L-1 total dissolved 

solids (TDS). The Lower Floridan Aquifer, consists of seminconfining or leaky micritic 

limestone and dolomites layers that contain groundwater with compositions approaching 

sea water (approximately 30,000 mg L-1 TDS). A dolomite confining unit (DCU), a thin 

confining unit below the MC2 was characterized at the study site by McNeill (McNeill 

2000, 2002). The DCU lies above the permeable zone commonly known as the Boulder 

Zone within the Oldsmar Formation of the Lower Floridan Aquifer.  The FAS outcrops 

along the Straits of Florida, providing a hydraulic connection to the sea (Kohout 1965; 

Miller 1996; Reese 1994). Transmissivities in the Upper Floridan Aquifer range from 929  

to 2.3 x 104 m2 d-1 (Meyer 1989; Reese 1994) while transmissivities range from 2.97 x 

105 m2 d-1 to 2.32 x 106 m2 d-1 in the Boulder Zone. 
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2.4 Site Descriptions 

The NDWWTP and the SDWWTP consist of deep injection wells that penetrate down to 

approximately 855 meters.  The upper 755 m of each well is cased to the top of the 

Boulder Zone.  The bottom 100 m of each injection well is an open hole in the Boulder 

Zone. Nine such injection wells and three multi-zoned and dual zoned monitoring wells 

were constructed between 1977 and 1981 at the SDWWTP (Figure 2.3). The multi-zone 

test well BZ cluster (BZ-1 through 4) was constructed in 1977, and consisted of four 

telescoping monitoring wells, the deepest of which was BZ-4, cased to the top of the 

Boulder Zone; the shallowest BZ-1 open to the UFA at a depth of 312 m. The remaining 

monitoring wells were constructed both at the SDWWTP and NDWWTP using a dual 

zone design, with an inner steel casing drilled to the deeper interval, and the outer steel 

casing open to the upper interval. For this paper, well nomenclature indicates the open 

interval of the dual-casing: “U” represents the upper monitoring interval and “L” 

represents the lower monitoring interval. Wells 1 and 2 were dual-cased to monitor water 

quality in the UFA (~ 300 m), and the lower confining units (~ 550 m) (CH2MHill, 

1981). In 1994 NH3 was detected above ambient levels in the confining unit at the BZ 

well cluster (BZ-2 depth 488 m), and subsequent investigations by the utility found a leak 

that resulted from corrosion of the casing in this cluster (MDWASD, 1995). The lower 

three monitoring intervals of the BZ well cluster were plugged in 1995 to stop the upward 

migration of injectate through the casing hole, and the confining unit (488 m) monitoring 

interval was redrilled.  From 1995 - 1996 nine injection wells and thirteen dual-zoned 

monitoring wells were constructed on the South District Wastewater Treatment Plant. 

These monitoring wells were cased to the Avon Park Permeable Zone (APPZ) and the 
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MC2, with approximately 30 m length of open holes in the formations. During the 

construction of the monitoring wells, NH3 concentrations above ambient levels were 

found throughout the site. Elevated NH3 concentrations were found in the northwest 

corner of the site in the MC1 interval in several wells, but not in the lower MC2 interval 

of these wells. Elevated levels were found in the MC2 interval in the south side of the 

site. As a result of the detected NH3 in the confining units, the EPA required purging of 

the wells that showed elevated concentrations NH3 (Starr et al., 2001) in an attempt to 

remove the NH3  loading in the impacted intervals. Discontinuous purging of 

approximately 2100 liters per minute commenced from 1997 to 2000, for the northwest 

wells (5U, 6U, 7U, 8U, 15U and 16U) of the APPZ interval, and the south wells (11L and 

12L) of the MC2 at the South District Wastewater Treatment Plant (MDWASD 2000).   

Injection well construction started at the NDWWTP  in 1996. Four injection wells were 

constructed into the Boulder Zone, and 4 dual-zoned monitoring wells were constructed 

to the UFA and the APPZ intervals (Figure 2.4). In 1996, effluent was injected in two 

completed injection wells while one injection well was still under construction, resulting 

in injectate backflowing into an open borehole at an uncased injection well for five days. 

Several months after the construction of the wells had been completed, NH3 

concentrations were observed to increase in the APPZ interval of the monitoring wells on 

site. The utility was required to purge the APPZ interval wells from 2003 – 2004 for a 

period of one year (MDWASD, 2005).  
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2.5 Methodology 

Historical data were collected and checked for quality assurance for the NDWWTP and 

SDWWTP. Data were  available from 1983 through 2007 for the SDWWTP, and 1996 – 

2007 for the North District. Data studied as part of the current research included pressure, 

temperature, pH, Cl-, sulfate (SO4
2-), NH3 and nitrate (NO3

-). The historical data were 

compiled from the utility monthly operating reports available sporadically from 1983. 

Summary statistics including mean, median, standard deviation, maximum and minimum 

were applied to each of the wells’ time series data to assess water quality changes over 

time, and used to compare to ambient water quality data at other locations in south 

Florida. Most water quality for the Floridan Aquifer in south Florida had been collected 

as regulatory requirements, which usually included chemical analyses that are used for 

drinking water quality, and therefore did not include major ion data. Residence time in 

the Floridan Aquifer System in south Florida is on the order of thousands of years (Meyer 

1989a), and it was assumed that because of the depth of the aquifer water quality was in 

equilibrium and there would be no other cause of perturbations to ambient water quality 

other than migration of injectate. Time series data that showed large variation over time 

would indicate non-equilibrium conditions, and therefore not ambient conditions.  Abrupt 

changes in water quality and pressure were observed in the time series data in wells that 

were purged in 1997. These changes were not observed in wells that were not purged. 

These changes in water quality and pressure were interpreted as being the result of cross 

connections developed in the dual zone casings of some of the purged wells, and review 

of borehole videos of these wells taken in 2004 confirmed holes in the casings of these 

wells. It could not be determined which interval the data collected from these wells 
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represented after the cross connections developed,  therefore, data were discarded from 

the historical series analysis depending on the month it was ascertained the cross 

connection developed, and the summary statistics were recalculated for these wells.   

Floridan Aquifer water samples were collected at the NDWWTP and SDWWTP during 

2006 and 2007 as part of the study of major ions and nitrogen species. Thirty-two 

monitoring wells were sampled at the SDWWTP, and water quality samples were 

collected from these wells from the UFA, the APPZ, and the Middle Confining Unit 

Two. At the NDWWTP, samples were collected from four monitoring wells representing 

the UFA and four wells in the Avon Park Permeable Zone. Temperature, pH, dissolved 

oxygen, and conductance using an YSITM 556 MPS were taken from water samples in the 

field. The YSI instrument was calibrated per the manufacturer’s instructions prior to each 

sampling event. All wells were purged for at least 24 hours prior to sampling to ensure at 

least three well volumes were evacuated. The wells were sampled through a closed 

system using a low flow cell and tygon tubing through a disposable, high capacity 0.45 

µm in-line filter. Water samples were analyzed for the anions Br-, Cl-, F-, NO3
-, NO2

-, and 

SO4
2- on a DIONEX®  ion chromatography system. HCO3

- and CO2
- were analyzed via 

manual titration. NH3 was analyzed on a LACHAT® analyzer 800, with NH4
+ then 

calculated on the basis of pH and temperature of the sample using the NH3 result (Stumm 

and Morgan 1996). Cations (Ca2+, Mg2+, K+, Na+ and Sr2+) were analyzed by inductively 

coupled plasma (ICP).  
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2.6 Results 

The mean historical data are summarized in Table 2.1 for the SDWWTP, and Table 2.2 

for the NDWWTP. Dissolved oxygen, NO3
- and NO2

- had similar results for both the 

SDWWTP and NDWWTP sites for the aquifer intervals. Nitrate concentrations were 

either detected at very low concentrations, or below detectable levels. Nitrite  levels were 

below 1 micromol/L (µM)  for all aquifer intervals and  in the injectate at the NDWWTP 

and SDWWTP sites for the historical time series. The injectate had a mean value of  NO3
- 

of 37.9 µM at the NDWWTP, and 10.9 µM at the SDWWTP for the historical time 

series. Dissolved oxygen was detected at concentrations less than 1.0 mg L-1 for all 

aquifer intervals. Dissolved oxygen concentrations for the injectate had results above 3 

mg L-1 at both the NDWWTP and the South District Wastewater Treatment Plant.  

2.6.1 Historical Time Series Results – SDWWTP 

The historical period of record data for the freshwater injectate samples from the 

SDWWTP (identified as S-EFF) were available from 1991 through 2007 (Table 2.1).  

Temperature ranged from 21.8 to 31.1 °C, with  27.7 °C mean. Mean pH was 6.6 in the 

historical time series. NH3 ranged from 146.8 – 1,849.6 µM, with 889 µM mean. NH3 

varied seasonally and increased with time (Figure 2.5). Chloride concentrations averaged 

2 millimoles/L (mM), with a very small range and standard deviation, indicative of the 

freshwater source of the injectate. Historical data from 1983 through 2007from the 

SDWWTP for the UFA (wells BZ1, 1U, 2U and 3U) were available. Temperature 

averaged 24 °C, with no significant difference observed between the wells. The range of 

pH was from 7.6 to 8.2 in the UFA. Chloride averaged between 21 to 23 mM, while NH3 
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means ranged between 10 – 13 micromols. The summary statistics for the water quality 

samples collected from the UFA showed consistent values, with no discernable variation 

over time.  Historical data from 1994 through 2007 from wells open to the APPZ at the 

SDWWTP (wells 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U, 14U, 15U, 16U) were 

available.  Mean temperatures ranged between 23.1 to 24.9 °C in these wells. There was 

little variation observed in the pH in the APPZ samples, but the mean pH of 7.6 was 

lower than the mean pH in the Upper Floridan Aquifer. Almost all of the wells showed 

variation in NH3 concentrations over time. Mean values of NH3 in these wells ranged 

from 35 µM in well 10U to 545 µM in well 6-upper. Well 6U showed an increasing trend 

with time in NH3 that was observed to be similar to the increasing trend of NH3 in the 

injectate (Figure 2.5). The spread between the 5th and 95th percentile was the greatest in 

wells 6U and 12-upper. Only wells 9U, 10U and 13U showed little variation in NH3 over 

time. Mean concentrations of Cl- in wells 6U and 7U were 76 and 73  millimols. Wells in 

the MC2 were open to intervals varying in depth from 481m to 551 m.  Mean 

temperature values ranged from 22.9 to 24.2 C° in all wells, with the exception of a mean 

value of 25.4 C° in wells BZ2 and 12-lower. Mean pH values fell within a 7.3 to 7.6 

range.  Mean NH3 concentrations showed two groupings. Wells BZ2, 10L, 11L and 12L 

exhibited concentrations of 106, 141, 417 and 676 µM respectively. The remainder of the 

wells exhibited mean NH3 concentrations of less than 55 micromols. Chloride  

concentrations for wells 10L, 11L and 12L were 429, 193, and 57 mM respectively; the 

remainder of the wells had mean concentrations greater than 508 mM (exception is BZ-2, 

whose Cl- concentration of 133 mM reflects the shallower depth of this well with the 

open interval in the lower brackish water zone of the Floridan Aquifer). Data collected 
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from well 12L were similar to data collected for wells for 6U and 7-upper. These wells 

had high NH3 concentrations, with low Cl- and SO4
- concentrations. Historical data were 

available from 1983 through 1994 for the Boulder Zone interval (well BZ4). The mean 

pH and temperature values were 7.2 and 24.9 C°, respectively. Mean NH3 concentration 

was 634 µM, and showed apparent seasonal variation and increasing trend over time, and 

was similar to the injectate historical time series (Figure 2.5). The mean Cl- concentration 

was 3 mM, similar to the mean Cl- concentration of 2 mM for the injectate.  

2.6.2  Historical Time Series Results – NDWWTP 

The historical period of record data from 2002 through 2007 for freshwater injectate 

samples (N-Eff) at the NDWWTP were available.  Temperature ranged from 22 to 34 °C, 

with 28 °C mean temperature. The mean pH of 6.5 was similar mean to the SDWWTP 

injectate. NH3 ranged from 210 – 3764 µM, with a mean of 819 µM and a large standard 

deviation, indicative of the apparent seasonality similar to the South District Wastewater 

Treatment Plant. Chloride concentrations ranged from 0.8 mM to 113.1 mM, with a mean 

20 mM, slightly higher than the mean concentration of the SDWWTP injectate.  

Historical data were available from 1996 through 2007 for wells open to the Upper 

Floridan Aquifer (N-1U, N-2U, N-3U and N-4U). Mean temperature averaged 23 °C in 

these wells, with no significant difference observed between the wells. Mean values of 

pH were in the 7.6 to 7.8 range. Chloride mean concentrations ranged between 66.2 and 

73.7 mmols. Ammonia mean concentrations ranged between 17 to 18 µmols. 

Concentrations for the UFA water quality samples for the NDWWTP showed consistent 

values, with no discernable variation over time. Historical data were available from 1996 



20 

 

through 2007 for wells open to the Avon Park Permeable Zone (N-1L, N-2L, N-3L, and 

N-4L). Temperature mean values were 22 C°. Analysis of historical NH3 data indicates 

increasing concentrations of NH3 starting in late 1997 (Figure 2.6).  NH3 concentrations 

appeared to have reached a peak concentration of 408 µM in well N-1L in July 2001, and 

steadily declined thereafter to concentrations ranging from 200 µM to 250 µmols. Wells 

N-2L, N-3L and N-4L show similar patterns as well N-1L, but with lowered and delayed 

peak concentration values. NH3 concentrations are observed to increase scatter after 2003, 

which corresponds to when purging commenced at the NDWWTP.  Once purging ceased 

in 2004, NH3 concentrations in wells varied between 150 – 300 µmols.  The Cl- mean 

concentrations ranged from 368 to 409 mmols. Chloride  in these wells exhibited 

variation over time, and analysis of the time series indicated that as NH3 concentrations 

increased, Cl- concentrations decreased (Figure 2.6). The time series data for the lower 

wells were revised to remove data after NH3 concentrations were observed to increase in 

each well in order to determine ambient concentrations in the APPZ. Revised NH3 mean 

concentrations ranged from 18 – 24 µM; Cl- mean concentrations ranged from 441 – 461 

mmols. Very little variation was observed in NH3 and Cl- mean concentrations after the 

time series data were removed.   

2.6.3 Major Ion Data Collection Results 

Major ions were collected for this study from 2006 – 2007 (Table 2.3). Data from wells at 

the SDWWTP site that exhibited cross connections were removed from this analysis. 

Data collected from the SDWWTP UFA exhibited very little variation between wells, 

and were similar to the historical time-series data, with low cation and anion 
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concentrations. For the APPZ wells, NH4
+ mean concentrations could be combined into 

three groups: wells 9U, 10U and 13U at NH4
+ mean concentrations of 60, 67 and 143 µM 

respectively; wells 14U and 16U at 497 and 439 µM; well 6U 823 µmols. Cation and 

anion mean concentrations showed a similar grouping as the NH4
+ concentration 

grouping, with well 6U consistently grouping independently, and with increasing NH4
+ 

concentrations correlating to decreasing ion concentrations. The MC2 mean NH4
+ 

concentrations could also be combined into three groups: well 12L at a  mean NH4
+ 

concentration of 765 µM; wells BZ-2, 10L and 13L NH4
+   at mean concentrations 176, 

200 and 108 µM respectively; the remainder wells at NH4
+ concentrations below 10 

µmols. Cation and anion concentrations could be combined in the same 3 groups as the 

NH4
+   groups, with lower ion mean concentrations observed for BZ-2, 10L and 13L, and 

much lower ion concentrations observed in well 12-lower. As with well 6U in the MC1, 

well 12L in the MC2 consistently grouped independently.   

The NDWWTP wells open to the UFA (351 – 385 m) exhibited very little variation in 

field measurements and mean concentrations between wells, and were similar to the 

historical time series. The interval (430 – 461 m) in the APPZ at the NDWWTP also 

showed little variation, with mean NH4
+ concentrations (215 - 295 µM) and mean 

concentrations of Cl- (371 – 386 mM) varying little between wells.  

2.6.4 Ternary Diagram 

The typical Cl-/Br- ratio for seawater is about 290 (Davis et al 1998), and most of the    

Cl-/Br- ratios at both sites were within that range, with no discernable differences. Quite 

often the addition of a third water quality member could enhance the understanding of the 
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data, and this was the case with using NH4
+ as the third end-member. NH4

+, Cl- and Br- 

data were plotted on a ternary diagram, with data normalized to 100 percent. Typical 

seawater and freshwater NH4
+, Cl- and Br- values after Hem (1985) were also plotted for 

comparison. Water quality at the NDWWTP clustered into three distinct groups, with two 

groups based on depth of the interval sampled and the third the injectate (Figure 2.7). The 

ambient aquifer data plot close to seawater. The injectate data plotted off in the lower left 

hand corner due to the large NH4
+ concentrations.  At the SDWWTP, three aquifer 

groupings were observed. Ambient well data from the MC2 plotted similar to seawater. 

Ambient well data from the UFA plotted slightly towards freshwater. Data from wells 

that showed elevated NH4
+ plotted in a line towards the injectate, with groundwater data 

from 6U and 12L plotting very close to the injectate. This line represents the evolution of 

the water quality of these wells towards the injectate water quality, and does not show 

any evolution of more saline water into the higher intervals in the aquifer.  

2.6.5 Mixing End-member Models 

End-member mixing models of wells 6U, 12L and 10L represented the results obtained 

for all wells at the South District Wastewater Treatment Plant (Figure 2.8). Well 6U and 

12L showed the progressive freshening of water and increasing NH3 concentrations 

towards the injectate end-member (Figure 2.8). There was little mixing from the saline 

end-member towards the brackish end member in well 6U, and almost all of the mixing 

was towards the injectate end-member. Both 6U and 12L showed large changes in 

concentrations from their original end-members over time. Well 10L showed a different 

pattern than 6U and 12L, with gradual freshening of the saline water towards the injectate 
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end-member. The mixing was towards to the lower range of the injectate end-member, 

and there were no large changes in concentrations of either NH3 or Cl- from the saline 

end-member. Well N-1L at the NDWWTP end-member mixing model showed a different 

pattern than the SDWWTP (Figure 2.9). Clustering of the NH3/Cl- ratios were 

distinguished based on time. The NH3/Cl- ambient ratio can clearly be seen on Figure 2.9, 

and lies along the saline end-member. As the concentrations of NH3 increased in time to 

the peak concentration, the NH3/Cl- ratios showed 2 distinct clusters. Initially the NH3/Cl- 

ratio showed gradual increasing in NH3 with little change in Cl- from ambient 

concentrations. There was a rapid change in the NH3/Cl- ratio as NH3 reached the peak 

concentrations. Once the peak was reached, the NH3/Cl- ratios slowly declined in time. 

2.7 Discussion 

The Floridan Aquifer System was sampled by others at different sites in south Florida 

and Table 2.4 summarized these data. Wells identified as WWF were monitoring wells 

installed as part of the MDWASD ASR system west of the NDWWTP and South District 

Wastewater Treatment Plant (CH2MHill, 1998). The ASR systems were not in use during 

the time of this study. Wells designated as “FPL” were tests wells installed into the 

Floridan Aquifer System approximately ten kilometers south from the South District 

(Dames and Moore, 1975; Florida Partners, 2006). For comparison to the present study 

the data from these sites were assumed to represent ambient water quality concentrations, 

as no injection activities had occurred at these sites. Wells in this study that exhibited 

little variation in the time series data and had low NH3 concentrations were compared to 

the data from these other sites. Although direct comparisons were difficult due to the 
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varying aquifer open intervals from which these samples were collected, some 

generalizations can be made. Ammonia or NH4
+ concentrations from these wells were 

below 29 µmols. Chloride concentrations increased with depth of the sampled intervals, 

and were similar in concentrations to wells in this study of approximately the same 

aquifer interval. Nitrate  concentrations were below 1 µM, similar to data collected for 

this study. On the basis of comparisons with water quality from these other sites, the 

revised time series water quality data that had mean NH3  concentrations below 30 µM 

were assumed to be ambient aquifer water, with no influence of injectate. All the wells in 

the UFA at the SDWWTP were considered ambient, and most of the wells in the MC2 at 

the SDWWTP were considered ambient with the exception of 10L, 11L and 12-lower. 

All of the wells in the APPZ at the SDWWTP had NH3 concentrations above ambient 

levels, with well 9U the lowest. Time series data at the NDWWTP indicated that all of 

the wells open to the UFA were considered ambient, and the data from wells open to the 

APPZ were ambient prior to the observed increase in NH3 concentrations.  

Ambient Cl- concentrations from this study showed brackish, transitional, and saline 

zones in the Floridan Aquifer System for the SDWWTP and NDWWTP as defined by 

Reese (1994). Although there were only two sample depths at the NDWWTP, the top of 

the saline zone at the north appears to be higher than at the South District Wastewater 

Treatment Plant. Mean temperatures at the NDWWTP were cooler than at the SDWWTP, 

with an average of 23º C for both intervals. The NDWWTP lies closer to the Florida 

Straits, and the cooler temperatures at that site may be due to closer proximity to open 

seawater. Wells that showed a higher concentration of NH3 at the SDWWTP showed 
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higher temperatures (example Well 12L), whereas at the NDWWTP no change in 

temperature was noted with increasing NH3 concentrations.  

On the basis of the current study, introduced nitrogen from the injectate into the Floridan 

Aquifer is mostly in the form of ammonium,  and is consistent with eH-pH diagrams for 

nitrogen (Stumm and Morgan 1996) that in most natural environments any ammonia –N 

would have the form of ammonium (Hem 1985). No relationship was observed in the 

historical data or data collected as part of this study between NH3 and nitrate. No change 

from ambient NO3
- concentrations was observed for wells that had elevated NH3 

concentrations. The reduced form of nitrogen (NH4
+) was not oxidized once introduced in 

the anoxic aquifer at either site, and was conserved in the aquifer in this reduced state. 

Any introduced oxidized form of nitrogen (NO3
-) from the injectate that was reduced 

would result in insignificant changes in NH4
+ concentrations, as NO3

- concentrations are 

two to three orders of magnitude less than ammonium. The elevated concentrations of 

NH4
+ in the Floridan aquifer at the two sites are interpreted as the result of the upward 

migration of the injectate. Once introduced into the aquifer, NH4
+ appeared to have 

behaved conservatively.  

At least two pathways of injectate were distinguished on the basis of the analysis of the 

natural tracers at the South District Wastewater Treatment Plant. One pathway at the 

SDWWTP appeared to have rapid vertical pathways from the Boulder Zone up to the 

APPZ, with little mixing of ambient waters as it migrated upward. These vertical 

conduits did not appear to extend up to the Upper Floridan Aquifer. The pathway is 

identified at wells 6U and 14U in the APPZ, and well 12L in the Middle Confining Unit 
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Two. It may be present at well 8U in the APPZ however the development of cross 

connection in well 8U compromised data interpretation. Ammonium  concentrations in 

these wells were within the range of injectate NH4
+ concentrations. Chloride 

concentrations in these wells were also very close to injectate Cl- concentrations. The 

mixing models for these wells show a mixing pathway almost directly towards the 

injectate end-member, with no mixing from the lower MC2 interval observed for wells 

6U and 14-upper. Wells that showed the highest concentrations of NH3 at the SDWWTP 

also showed higher temperatures, with the temperature signal of the warmer injectate 

observed in well 12L (mean temperature of 28º C) in the 2006 – 2007 sampling period. 

Well 12L in the MC2 is much closer to the Boulder Zone than the APPZ wells, and 

higher injectate temperatures persist into the MC2. Perhaps because of the longer travel 

times to the APPZ the temperature signal was muted but still visible in the Avon Park 

Permeable Zone. Ion data for these wells showed freshening of the water quality. These 

wells showed a density-driven buoyant rapid vertical advective pathway and transport of 

the injectate as a distinct water body, with little mixing of native waters as it migrated 

upwards. The rapid pathways could be the result of construction related events, such as 

drifting boreholes, or the result of structural anomalies such as fracturing and karst 

features that would vertically connect aquifers and provide high hydraulic conductivity 

transport pathways through confining units.  Migration of saline waters from the Lower 

to Upper Floridan Aquifer as a result of such structural anomalies have been reported for 

northeastern and central Florida (Flocks et al 2001; Spechler 2001), where the Floridan 

Aquifer System lies much closer to the surface. Upward fluid migration of injected fluids 

in a Palm Beach County, Florida, deep well injection facility had been detected above the 
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confining zone between the injection zone and the overlaying monitoring zone, and was 

attributed to fractured dolostone comprising the majority of the confining zone strata 

(Maliva et al 2007), however no fracturing of the confining strata at either the NDWWTP 

or the SDWWTP has been reported. McNeill suggested that as wells located on the 

northwest side of the SDWWTP were cased above the DCU in the LFA, this would be a 

possible cause of the buoyant upward migration of injected fluids through the more 

permeable units above the DCU through isolated vertical flow paths, bypassing the 

Middle Confining Unit Two (McNeill, 2000, 2002).  

The second pathway was suggested by the grouping of well data observed in wells 15U, 

16U, BZ2, 10L and 11-lower. The well data from this group had no significant 

correlation between NH3 and chloride. The mixing models for these well data showed a 

slow evolution of water quality towards the lower average of the injectate end-member 

with time. These wells showed a slight temperature increase, but no clear temperature 

signal was distinguished in these wells.   Ion data did not show a freshening of the water 

quality, with little difference seen between ambient ion concentrations and concentrations 

from these wells. Other studies (Böhlke et al, 2006) have indicated that NH3 transport can 

be retarded by a factor of 3-6 in an aquifer, with a NH3 cloud persisting in an aquifer after 

the more mobile constituents were flushed out, if the aquifer remained under suboxic 

conditions. At the SDWWTP it appears that there was still NH3 loading into the aquifer 

via rapid vertical pathways, with increasing NH3 concentrations over time. The data from 

this well grouping may indicate that once NH3 was introduced into an aquifer interval, it 
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traveled horizontally at a much slower rate, with the freshwater injectate substantially 

diluted, and not flushed out, as freshwater continued to migrate upwards.   

 Four discrete injectate plumes were delineated at the SDWWTP on the basis of the 

transport pathways. The first plume (plume 1 in Figure 2.10), located on the northeast of 

the site, was associated with the BZ-4 well, which provided a pathway up into the APPZ 

until it was plugged. The plume slowly migrated to the surrounding areas mainly via 

diffusion, as evidenced by slowly increasing NH3 concentrations, but no change in Cl- 

concentrations. The second plume was located on the northwest corner of the site in the 

Avon Park Permeable Zone (plume 2). The plume was detected in the APPZ, with no 

detection of it in the lower MC2, indicating a direct pathway to the APPZ bypassing the 

Middle Confining Unit Two. This pathway seemed to persist, with concentrations of NH3 

increasing with time similar to concentration levels of the injectate. The plume was a 

chemically distinct water body, with little mixing of native waters. The third plume 

located at well 14U (plume 3) may be a distinct plume, but it may also be in connection 

with plume two. No monitoring wells of the same interval as well 14U are in the vicinity, 

so extent of this plume could not be determined. The fourth plume was located on the 

south side of the site in the Middle Confining Unit Two (plume 4). All four plumes 

appeared to have the same initial transport mechanism up from the Boulder Zone through 

high hydraulic conductivity pathways, with data from plumes 2, 3 and 4 indicating these 

pathways still persist.  

The data collected from the NDWWTP indicate different transport mechanisms than the 

South District Wastewater Treatment Plant. The temperature signal of the warmer 
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injectate was not observed in wells with elevated concentrations of ammonium. Water 

quality showed no evolution towards the injectate plot in the ternary diagram. The mixing 

model showed two mixing patterns – one towards the injecate end-member before 

purging, and one towards the ambient end-member once purging ceased. As observed in 

the time series NH3 data, NH3 concentrations were first observed to increase in well N-

1L, the well that was within thirty meters of the uncased injection well, and 

concentrations peaked at 341 µM, well below the mean NH3 concentration of the 

injectate. Unlike the increasing NH3 concentrations observed at the SDWWTP that are 

the result of rapid vertical migration pathways, once NH3 concentrations at the 

NDWWTP peaked, they have since decreased with time. All four NDWWTP lower wells 

have shown very similar water quality since 2004, when purging ceased at the North 

District Wastewater Treatment Plant. Both the time series analysis and the data collected 

as part of this study in 2006 and 2007 appear to indicate a one-time pulse of injectate 

water into the APPZ, and this pulse of injectate was still migrating through the aquifer in 

the direction of regional flow. There is no geochemical evidence of a continuing source 

of NH3 at the NDWWTP, however due to retardation as discussed above the NH3 plume 

may long persist in the suboxic aquifer (Böhlke et al 2006).  

2.8 Conclusions 

Chloride, bromide and ammonia were used to understand the pathways and transport 

mechanisms of injected wastewater into the deep saline Boulder Zone in the Floridan 

Aquifer System. The injectate source was treated freshwater, with elevated levels of 

ammonia. The water quality of the injectate was chemically and physically distinct from 
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ambient Floridan Aquifer System, and these distinctions were used to determine the 

possible transport pathways. At the SDWWTP, four injectate plumes were identified, and 

two pathway mechanisms were identified: density-driven buoyant vertical flow, and 

slower horizontal flow. At the NDWWTP one plume was identified, and appeared to be a 

result of a one-time pulse injection. At the SDWWTP, the injectate may first have 

migrated upwards through discrete vertical pathways from the Boulder Zone to the 

Middle Confining Unit, with the freshwater injectate migrating upwards through saline 

water as a chemically distinct water body. The four plumes identified at the SDWWTP 

appear to have originated via this pathway. Once introduced in the higher aquifer 

intervals, the transport mechanism appeared to be horizontal flow with mixing of ambient 

waters. The rapid vertical pathways did not appear to extent up to the Upper Floridan 

Aquifer. At the NDWWTP, the elevated levels of NH3 in the lower Middle Confining 

Unit appeared to be the result of a construction incident, where a pulse of injectate water 

backflowed into an uncased injection well, providing a pathway to the upper interval. 

Once introduced into the upper aquifer interval, the plume slowly migrated with the 

regional flow within the aquifer. No evidence of rapid vertical pathways was observed at 

the North District Wastewater Treatment Plant. During the course of this study, it became 

clear that purging of the wells had unintended consequences for the South District 

Wastewater Treatment Plant. Cross connections developed in several wells between the 

upper and lower monitoring zones either during or after purging, and these cross 

connections have compromised water quality data in these wells. Although it could not be 

determined from this study, these cross connections may provide pathways of injectate 
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into layers in the aquifer that had not been previously affected by upward migrating 

injectate.  
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2.10 Tables 

Geologic Formation
Hydrostratigraphic 

formation
wel l  ID

Open 
interva l          
meters

period of 
record

temp                
°C

pH
NH3                             

µM
Cl -                        

mM
SO4

2-                 

mM
NO3

-                

µM

Pleis tocene Biscayne Aqui fer
Injectate       

(S-EFF)
surface 5/91 - 12/07 27.7 6.6 889 2 0.3 10.9

1U 299 - 332 9/83 - 12/07 24.0 7.9 12 21 3.2 0.2
2U 299 - 311 7/83 - 12/07 24.4 7.9 13 21 3.2 0.3
3U 299 - 320 2/91 - 12/07 24.3 7.9 10 23 3.2 0.3

BZ1 306 - 316 7/83 - 12/07 24.2 7.6 12 22 3.1 0.2
13U 451 - 475 2/96 - 12/07 23.9 7.7 62 108 4.8 0.3
5U 454 - 484 5/94 - 11/02 24.1 7.6 492 108 4.9 0.3
6U 454 - 483 5/94 - 12/07 24.1 7.6 545 76 3.0 0.3
7U 454 - 482 6/94 - 1/98 24.5 7.4 526 73
8U 454 - 480 8/94 - 6/02 24.0 7.7 216 106 4.1 0.2
9U 454 - 484 1/95 - 12/07 23.9 7.7 64 111 4.3 0.2

10U 454 - 485 2/96 - 12/07 24.0 7.6 35 105 4.2 0.2
11U 454 - 484 2/96 - 12/07 24.0 7.6 118 106 4.3 0.2
14U 454 - 480 2/96 - 12/07 23.9 7.4 320 99 4.3 0.2
15U 454 - 480 2/96 - 12/07 23.1 7.5 296 106 5.3 0.3
16U 454 - 485 2/96 - 12/07 23.1 7.6 330 109 4.8 0.2
12U 456 - 487 2/96 - 2/04 24.9 7.6 100 111 4.2 0.2

BZ2 481 - 507 7/83 - 12/07 25.4 7.5 106 133 5.6 0.2

2L 501 - 510 7/83 - 12/07 24.3 7.4 12 199 2.6 0.2

4L 519 - 561 12/91 - 12/07 24.0 7.3 12 510 19.3 0.4
13L 530 - 562 2/96 - 12/07 23.7 7.5 55 508 22.8 0.9
3L 540 - 577 1/91 - 12/07 24.0 7.3 7 529 21.9 1.0
5L 546 - 576 5/94 - 11/02 23.9 7.4 6 528 21.6 0.4
6L 546 - 576 5/94 - 10/05 23.7 7.4 30 526 22.7 0.3
7L 550 - 571 6/94 - 1/98 24.2 7.1 10 536
8L 546 - 576 8/94 - 6/02 23.7 7.4 5 541 24.8 0.4
9L 546 - 573 1/95 - 12/07 23.4 7.4 5 534 22.6 0.4

10L 546 - 576 3/96 - 12/07 23.8 7.6 141 429 20.4 0.5
11L 546 - 576 2/96 - 11/99 23.8 7.6 417 193 9.3 0.2
12L 546 - 576 2/96 - 12/07 25.4 7.4 676 57 3.0 0.3
15L 546 - 576 2/96 - 1/04 23.1 7.5 12 531 25.2 0.4
16L 546 - 576 2/96 - 12/07 22.9 7.4 6 532 21.9 0.4
1L 561 - 587 7/83 - 12/07 23.8 7.3 6 539 23.9 0.4

Oldsmar Formation  
Boulder Zone

Lower Floridan aqui fer
BZ4 853 07/83 - 8/94 24.9 7.2 634 3

                  

Undifferentiated 
Hawthorn / Avon 
Park Limestone   

 Upper Floridan 
aqui fer

Middle Confining Unit 
(MC1) to top of Avon 

Park Permeable zone 
(APPZ)

Avon Park Permeable 
Zone into top of MC2

Middle Confining Unit 
(MC2)

Avon Park 
Limestone

Table 2.1 Mean values for historical time series: SDDWTP. mbls meters below land surface 
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Geologic 
formation

Hydrostratigraphic 
formation

Well ID
open 

interval
period of 

record
temperature pH NH3 Cl- SO4

2- NO3
-

revised 
period of 
record*

temperature pH

meters °C µM mM mM µM °C
Pleistocene Biscayne Aquifer Injectate     (N-EFF) surface 7/97 - 12/07 28.4 6.5 819.3 20.0 0.5 37.9

N-1U 354 - 385 1/97 - 12/07 23.1 7.6 18.8 73.7 3.5 0.2
N-2U 351 - 384 3/96 - 12/07 23.0 7.8 17.7 66.2 3.6 2.1
N-3U 354 - 379 3/96 - 12/07 22.9 7.8 17.3 65.8 3.6 2.0
N-4U 354 - 379 4/96 - 12/07 23.1 7.6 18.1 68.4 3.5 0.8
N-1L 430 - 461 4/96 - 12/07 21.9 7.3 261.2 368.2 32.8 1.0 34/96 - 7/97 22.4 7.2
N-2L 431- 459 3/96 - 12/07 22.3 7.6 168.4 397.9 15.6 2.2 3/96 - 8/98 22.9 7.8
N-3L 430 - 460 3/96 - 12/07 22.2 7.6 131.4 409.4 15.8 1.0 3/96 - 12/98 23.0 7.7
N-4L 430 - 460 4/96 - 12/07 22.4 7.2 190.3 380.4 15.2 1.6 4/96 - 12/98 22.3 7.5

Avon Park 
Limestone      

Eocene

Middle Confining 
Unit (MC1)

Middle Confining 
Unit (MC1) to top of 

Avon Park 
Permeable zone 

pH NH3 Cl- SO4
2-

µM mM mM

7.2 19.3 461.7
7.8 17.7 455.7 16.6
7.7 19.1 454.8 14.9
7.5 23.7 440.5

Table 2.2  Mean values for historical time series: NDWWTP. mbls below land surface 
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Geologic formation Hydrogeologic unit open 
interval Well Temp pH NH4

+ Ca2+ Mg2+ Na+ K+ Sr2+ Cl- SO4
2- HCO3 - Br- F- NO3

- NO2
-

m ID °C µM  mM  mM  mM  mM µM  mM  mM  mM µM µM µM µM

Pleistocene Biscayne Aquifer surface S-EFF 29.0 6.7 1125 1 0 3 0 7 3 0 4 30 19 7 6

306 - 316 BZ1 24.2 7.8 6 1 3 25 1 39 21 3 4 40 109 1 1

299 - 332 1U 23.6 8.1 6 1 3 24 1 42 22 4 4 56 117 0 1

299 - 320 3U 24.3 7.9 6 1 3 25 1 48 28 4 4 54 119 4 1

299 - 311 2U 25.3 7.9 10 1 3 22 1 43 21 5 4 33 143 1 1

454 - 484 9U 23.8 7.7 60 4 10 98 3 99 104 5 3 169 85 0 1

454 - 485 10U 24.8 7.7 67 5 10 85 2 125 112 5 3 174 45 1 0

451 - 475 13U 24.4 7.7 143 4 10 88 3 113 109 5 4 200 119 2 1

454 - 485 16U 23.2 7.7 439 4 9 94 3 75 102 5 5 250 135 1 1

454 - 480 14U 25.0 7.5 497 3 6 66 2 65 70 4 5 115 80 1 1

454 - 483 6U 25.1 7.5 823 3 5 87 2 32 45 3 7 81 51 1 1

501 - 510 2L 24.8 7.5 9 8 16 148 4 147 194 4 2 305 75 0 1
481 - 507 BZ2 24.1 7.6 176 5 11 121 3 114 128 6 4 217 93 0 1

546 - 573 9L 23.1 7.6 3 11 44 459 12 167 550 24 3 849 211 1 1

546 - 576 16L 22.9 7.5 4 11 41 439 12 175 552 25 4 800 195 0 1

540 - 577 3L 24.1 7.5 4 10 43 440 12 159 522 23 3 834 233 5 1

519 - 561 4L 24.5 7.5 7 11 40 416 12 181 492 21 3 737 234 0 1

530 - 562 13L 24.2 7.5 108 10 36 350 12 174 460 24 3 775 313 2 1

546 - 576 10L 24.7 7.6 200 8 30 285 10 111 369 23 3 588 77 3 0

546 - 576 12L 28.1 7.6 765 3 6 49 2 36 54 4 5 87 35 2 0

561 - 587 1L 23.4 7.5 4 11 64 412 13 161 533 25 3 834 235 1 1

Pleistocene Biscayne Aquifer surface N-EFF 26.3 6.5 505 2 2 20 1 6 16 1 3 36 10 38 49

354 - 385 N-FA-1U 22.5 7.8 17 3 8 68 2 155 73 4 1 81 180 0 1

351 - 384 N-FA-2U 22.7 7.8 13 3 7 65 2 121 66 4 1 126 179 2 2

354 - 379 N-FA-3U 21.2 7.9 16 3 7 66 2 133 62 3 1 115 3 2 1

354 - 379 N-FA-4U 20.8 7.9 16 3 7 69 2 147 66 4 1 131 174 1 1

430 - 460 N-FA-3L 19.4 7.5 215 9 37 423 11 216 380 17 3 651 537 1 2

430 - 461 N-FA-1L 19.9 7.4 231 7 36 458 11 100 386 20 3 839 422 1 1

430 - 460 N-FA-4L 19.2 7.4 264 9 37 421 11 223 371 19 3 695 463 2 1

431- 459 N-FA-2L 20.1 7.4 295 8 39 431 12 125 383 22 3 748 486 2 1

Undifferentiated 
Hawthorn / Ocala 

Limestone to Avon 
Park Limestone   

 Upper Floridan 
aquifer

Avon Park 
Limestone

Avon Park 
Limestone      

upper MC1

lower MC1

MC1

MC1/APPZ

MC2

Table 2.3  Mean field parameters and ion concentrations during the 2006-2007 sampling 

completed as part of this study.  
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1U WWFa WWFb FPL PW-3c FPL Test Welld 9U FPL Test Well d 2L 3L FPL Test Well d 

Parameter unit 299 - 332 m 260 - 305  m 260 - 308 m 314 - 380 m 340 - 410 m 454 - 484 m 456 - 517 m 501 - 510 m 530 - 562 m 639 - 701 m
pH 7.9 8.0 7.4 7.5 7.7 7.7 7.5 7.5 7.5 7.0
HCO3

- mM 0.0 3.2 2.7 3.3 2.1 3.0 2.6
Ca2+ mM 1.3 1.7 3.7 4.3 6.7 7.8 10.3 19.6
Mg2+ mM 2.7 2.8 7.3 10.1 15.5 16.0 43.4 55.5
Na+ mM 24.7 22.2 74.6 98.3 158.2 148.2 438.2 487.2
K+ mM 0.8 0.8 2.0 2.6 3.8 3.6 11.8 9.7
Cl- mM 22.3 70.5 27.1 82.1 104.3 179.4 193.9 521.6 592.3
SO4

2- mM 4.1 7.5 6.9 0.3 6.9 4.7 13.7 4.2 22.6 30.7

NO3
- µM 0.3 0.8 0.2 0.2 0.2 0.3 0.2 4.8 0.2

F- mM 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
Si ° mM 0.5 0.4 0.2 0.5 0.3 0.3 0.2

Sr2+ µM 41.9 77.6 98.2 184.9 147.2 158.6
Total P µM 3.2 7.1 6.5 6.5 3.2

NH4
+ µM 5.5 7.2 61.0 11.1 5.5

NH3
° µM 0.8 29.4 12.3

Italized data were data collected for this study during 2006 - 2007 for wells at the south site. (a) data from Muniz Group 1995; (b) data from CH2MHill, 1998; (c)Florida 
Partners 2006; (d) data from Dames and Moore, 1975.

Table 2.4  Historical ambient Floridan Aquifer water quality data 
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2.11 Figures 

 
Figure 2.1  Location of the NDWWTP and the SDWWTP study sites. 
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Figure 2.2   Geologic and hydrogeologic framework of NDWWTP and the 

SDWWTP, modified from Reese and Richardson, 2008. Well diagram on the 

right shows the number of wells open to the indicated hydrogeologic unit used 

for this study. 
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Figure 2.3   Well locations at the SDWWTP. 
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Figure 2.4  Well locations at the NDWWTP. 
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Figure  2.5   Time series NH3 data from the injectate (black circle), BZ-4 (green 

triangle) and well 6U (red circle) at the SDWWTP site. The apparent seasonal 

variation observed in the injectate is a result of increased flows during the wet 

season and storm events. The increasing trends with time correlate to increased 

injection over time due to growth in population in Miami-Dade County.  
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Figure 2.6  Graph a shows the NH3 data time series for the wells in the APPZ interval at the 

NDWWTP. The dashed lines indicate the purging time from 2003 through 2004. NH3 

concentrations are observed to increase in well N-1L similar to contaminant breakthrough 

contaminant breakthrough curves. Well N-1L was the closest well to the uncased injection 

well when injectate backflowed into the APPZ. NH3 concentrations for wells N-2L, N-3L, 

and N-4L appear to be similar and show a similar increase after 1999. Variability is seen in 

the data after 2003. Graph b shows Cl- concentrations in well N-1L clustered at 

approximately 300 mM , and an abrupt decrease to less than 300 mM is seen. Cl- 

concentrations in wells N-2L, N-3L, and N-4L are very similar, and show a decrease in 

concentrations after 1999 until 2000, when concentrations appear to stabilize. Cl- 

concentrations start to increase slightly and become variable after 2003.  All four wells 

show similar concentrations of both NH3 and Cl-- after 2004.   
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Figure 2.7  Ternary diagrams for the NDWWTP and the SDWWTP. NH4
+, Cl- , and Br- 

data collected from 2006 – 2007 were normalized to 100%. Seawater and freshwater 

values (Hem, 1985) were plotted. Ambient water was grouped at the SDWWTP for the 

MC2 and UFA intervals. Ambient MC2 data plot directly with seawater. UFA ambient 

plots towards freshwater, reflecting the fresher water quality in the UFA. The injectate 

data plot at the NH4
+ end point, indicating the freshwater quality but high NH4

+ 

concentration of the injectate. Well data from the APPZ and MC2 intervals that have 

NH4
+ concentrations above ambient levels plot in a line towards the injectate end point, 

with data from wells 6U and 12L plotting very close the NH4
+   end point.  Data from 

the SDWWTP plot into distinct groups based on depth in the aquifer, but no line 

towards the injectate end point is seen.  
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Figure 2.8  Graphs on the left are NH3/ Cl- mixing end member models for the APPZ and 

MC2  intervals at the SDWWTP. 6U, 12L and 10L are well identification codes. Arrows 

indicate increase in time. Hatched red rectangle is injected freshwater end member, 

indicating the seasonal range in concentrations. Cyan square is the APPZ brackish water 

ambient water end member; purple circle is the MC2 saline water end member. Graphs on 

the right are NH3 concentrations over time. Solid black lines are concentrations from each 

well site; red line is injected freshwater concentrations. For wells 6U and 12L the data 

plot towards the injectate end member. Little influence is seen in well 6U from the saline 

MC2 end member. Well 10L shows a different evolution of water quality, with data 

plotting at the saline MC2 end member and slowly plotting towards the lower end of the 

injectate end member.  
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Figure 2.9  Graph a is the NH3/Cl- mixing end member model for the APPZ at the 

NDWWTP for pre-purge data (prior to 2003) for well N-2L.  Arrows indicate increase 

in time. Hatched red rectangle is injected freshwater end member, indicating the 

seasonal range in concentrations. Cyan square is the UFA brackish water ambient 

water end member; purple circle is the APPZ saline water end member. The data plot 

in separate groupings, with the earliest time series plotting around the APPZ saline 

end member. The second data cluster plot towards the injectate end member, but no 

evolution towards the injectate end member is seen as was seen for wells 6U and 12L 

at the SDWWTP. Graph b is the post-purge data plotted for well N-1L. Data plot with 

time back towards the APPZ saline end member.  
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Figure 2.10  Location of injectate plumes and their depth interval at the SDWWTP. 

The source of the plume centered on the BZ well clusters (plume 1) was plugged in 

1995. The plumes 2, 3, and 4 are the result of continuing rapid vertical pathways up 

from the Boulder Zone. The extent of the plumes off site is not known, as indicated 

by the question marks, however, based on data collected from the site, approximate 

extent of the plumes on the site can be inferred. The plume in the MC2 is limited to 

the southeast of the site. The plume located in the northwest of the site is located in 

the APPZ, and appears to have bypassed the MC2. The plume from the BZ well 

cluster appears to be limited to the east of the site. It is unknown the extent of the 

plume at 14U on site, as there are no wells that monitor the same aquifer interval in 

the vicinity of 14U.  
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CHAPTER 3 THE FATE AND TRANSPORT OF AMMONIUM FROM FRESH 

WASTEWATER INJECTED INTO A DEEP SALINE AQUIFER AS DETERMINED 

FROM NATURAL ISOTOPES AND DISSOLVED GASES  

3.1 Introduction 

Karst aquifers have traditionally been used for sources of drinking water, however in the 

last several decades they have also been increasingly used for disposal of wastewater. 

Miami-Dade Water and Sewer Department (MDWASD) has been injecting treated 

domestic wastewater (injectate) into a highly transmissive carbonate formation known as 

the Boulder Zone (BZ) via injection wells since the early 1980’s at two locations (Figure 

3.1) (MDWASD, 1995; MDWASD 2005). In south Florida, the BZ is a saline, non-

potable aquifer, located at a depth of approximately 900 meters (m) below land surface 

(bls), in the lower portion of the Floridan Aquifer System (FAS) (Meyer, 1989a; Meyer, 

1989b; Reese, 1994).  The FAS is divided into 3 portions, the Upper Floridan Aquifer 

(UFA), the Middle Confining Units, and the Lower Floridan Aquifer (Figure 3.2).  Water 

quality in the UFA is slightly brackish and is increasingly used in south Florida as a 

municipal water supply source.  In the 1990s, concentrations of ammonium (NH4
+)  

above ambient concentrations were detected in groundwater monitoring wells located in 

the Middle Confining Units of the FAS at two MDWASD injection sites (the North 

District Waste Water Treatment Plant (ND) and the South District Waste Water 

Treatment Plant (SD)). The elevated concentrations of NH4
+ were interpreted as evidence 

for upward migration of the injectate above the BZ, posing a possible risk to drinking 

water supplies (Starr et al., 2001).  Being freshwater with a slightly higher temperature 
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than the ambient groundwater in the BZ, the injectate is buoyant and will naturally 

migrate to higher levels in the aquifer, (Walsh and Price, 2010).   

Initial placement of the bottom of the casing of the injection wells was below the base of 

the Middle Confining units overlying the BZ, with the intention of these confining layers 

prohibiting upward fluid migration.  Various hypotheses have been proposed to account 

for the migration of injectate above the BZ, including a lack of aquifer confinement due 

to natural faults and fractures in the overlying confining layer, and/or improperly 

constructed or maintained injection wells (MDWASD, 1995; Rust Environmental, 1998; 

Maliva, et al., 2007; McNeill, 2000; MDWASD, 2005; Starr et al., 2001; King et al., 

2009; Dausman, et al., 2010; Walsh and Price, 2010). Early attempts of discovering the 

cause of the upward migration of injectate were conducted by MDWASD, and resulted in 

the conclusion that improper construction of the injection wells was the mostly likely 

cause (Rust Environmental, 1998; MDWASD, 2005). A variable-density, numerical, 

groundwater flow model was completed to test various hypotheses for the upward 

migration of the injectate at the SD site.  Hypotheses considered in the modeling exercise 

were related to either physical problems with the injection wells themselves (i.e. 

improper construction or the development of holes in the well casings) or to uncertainties 

in the geologic properties (natural faults, fractures or heterogeneity) of the confining 

layer above the Boulder Zone (Dausman et al., 2010).  The model results suggested that 

improper construction of the injection wells were more likely responsible for the upward 

migration of the injectate, but in some instances natural hetereogeneity in the confining 

layer may also have played a role. Walsh and Price (2010) analyzed geochemical data 
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from both injection sites and identified multiple plumes of injectate in the Middle 

Confining Units of the FAS above the BZ, but not in the overlying Upper Floridan 

Aquifer. Four plumes were identified at the SD, while one plume was identified at the 

North District.  Once in the Middle Confining Units, the injectate was transported 

horizontally with the general direction of groundwater flow.  In the first study, major ion 

and nutrient data were used to identify the presence and possible upward migration 

pathways of the leachate plumes (Walsh and Price, 2010).  The objective of this 

investigation is to use geochemical tracers, specifically the stable isotopes of nitrogen, 

oxygen, and hydrogen, as well as tritium, and dissolved gases to further the define the 

timing and formation of the leachate plumes as well as to describe the fate and transport 

of  NH4
+ in the Floridan Aquifer System.   

3.2 Geology and Hydrogeology 

South Florida is underlain by two aquifer systems, the Surficial Aquifer System (SAS), 

and the FAS, which are separated by a thick confining unit. The hydrogeology of the 

SAS and FAS in south Florida were described in great detail by Fish and Stewart (1991), 

and by Reese (1994) and Reese and Richardson (2008). The SAS is an unconfined 

carbonate sequence of Pleistocene age that is the source of potable water for south 

Florida. Underlying the SAS is a group of impermeable sediments known as the 

Hawthorn group (Figure 3.2). The Hawthorn group is composed predominantly of clay-

rich quartz sands and mudstones of Miocene age, and acts as a confining layer between 

the SAS and the Floridan Aquifer System. In south Florida the FAS has been separated 

into four major hydrogeologic zones. The Upper Floridan aquifer (UFA) consists of 
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highly permeable zones (flow zones) interlayered with thicker, lower permeable zones. 

The Middle Confining Units MC1 and MC2 underlies the UFA, with the two units 

separated by the Avon Park Permeable Zone (APPZ; Figure 3.2).  The Lower Floridan 

aquifer (LFA) is a thick sequence of permeable layers separated by thick semiconfining 

units (Miller, 1986). Most of the permeable layers are several meters  thin, with the 

exception of the very transmissive BZ located at the bottom of the LFA, which is 

approximately 100 m thick. The base of the FAS in south Florida is approximately 930 m 

bls (Meyer, 1989a) and marked by the massive impermeable anhydrite beds of the Cedar 

Keys Formation (Miller, 1986). The UFA in south Florida is used for groundwater 

withdrawals for public supply and also for Aquifer Storage and Recovery (ASR). The BZ 

is used for the disposal of treated domestic wastewater and industrial wastewater. 

Groundwater in the FAS originates mainly from two sources:  precipitation and seawater. 

The FAS outcrops in central Florida, where it is recharged via precipitation.  In south 

Florida, the top of the FAS lies approximately 300 m below land surface. Recharge of the 

UFA and the APPZ is described as meteoric water during the last glacial period (LGP) 

when sea levels were over 100 m lower than present (Reese, 1994; Morrissey et al., 

2010). Estimates of groundwater age of the UFA and Middle Confining units are greater 

than 30,000 years old  using by carbon-14 dating techniques (Hanshaw et al., 1965; 

Plummer, 1977; Meyer, 1989a). The long groundwater travel time from central to south 

Florida, and the resultant long contact time of the groundwater with the aquifer matrix 

rock results in brackish water quality of the UFA in south Florida.  The LFA and the BZ 

outcrop along the Florida Straits, and water quality is saline, similar to ocean water, as 
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these zones are recharged with Holocene-aged ocean water from the Straits of Florida 

(Kohout, 1965; Meyer, 1989a; Morrissey et al., 2010).  

3.3 Site Descriptions 

Both of the Miami-Dade wastewater treatment/injection sites lie in close proximity to 

Biscayne Bay (Figure 3.1). The SD, in operation since 1983, consists of seventeen (17) 

deep injection wells that dispose of approximately 352 million liters per day, and 17 dual 

zoned monitoring wells (MW)  used for water quality in the formations overlying the 

Boulder Zone (Figure 3.3). Originally, the dual zoned MWs were constructed to be able 

to monitor two permeable zones of the FAS individually from one well location.   

However, many of the MWs have corroded casings which have allowed a hydraulic 

connection between the different zones in the borehole casings, therefore only MWs that 

were determined to be intact were used for the  current study (see Walsh and Price (2010) 

for complete well descriptions and history). The MWs at the SD were used to assess the 

water quality of the UFA (299 to 320 m bls), MC1 (454 to 485 m bls), lower MC1/APPZ 

(481 – 510 m bls) and MC2 (546 to 576 m bls) zones. The ND consists of four deep 

injection wells that dispose of approximately 151 million liters per day (Figure 3.4). The 

MWs  at the ND are open to the UFA (354 to 379 m bls) and lower MC1/APPZ  (354 to 

379 m bls).  The lower MWs at both sites are designed to monitor water quality below 

underground sources of drinking water (USDW, as defined  by federal code as aquifers 

with water quality below 10,000 mg/L total dissolved solids),  and to act as sentinel wells 

in the event of upward fluid migration. The upper monitoring wells monitor water quality 

above the underground source of drinking water.  
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3.4 Background on Isotopes and Dissolved Gases 

3.4.1 Nitrogen Stable Isotopes 

The oxidation of NH4
+ to nitrate (NO3

−) in the presence of oxygen (O2), is known as 

nitrification. The FAS as a whole is considered to be in equilibrium with respect to 

nitrogen (N), as there are no known mineral sources of N within the FAS and total N 

concentrations are similar in both recharge and discharge areas (Sprinkle, 1989). Despite 

the nearly consistent concentrations of total N throughout the FAS, there is a decrease in 

the oxidized N species and an increase in the reduced N species from areas of recharge to 

discharge. Ambient N concentrations for the FAS in south Florida are very low, with 

reported  concentrations of less than 15 µmols/L for NH4
+  and less than 1 µmols/L for 

nitrate  (Meyer, 1989a; Walsh and Price, 2010).  At the Miami-Dade study sites, N has 

been introduced to the FAS as a result of the injectate, with N species present in injectate 

primarily as NH4
+   at concentrations of greater than 25 mmol per liter (Walsh and Price, 

2010).  

Nitrogen consists of two stable isotopes, 14N and 15N. The nitrogen isotopic value (δ15N) 

is reported relative to atmospheric air (δ15NN2 = 0‰ AIR). Values are reported in part per 

thousand delta (δ) units according to the equation: 
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Animal wastes and sewage are characterized by enriched  δ15N values (Clark and Fritz, 

1997) in the range of +8 - +12 per mil. Use of δ15N values for determining domestic 

sewage contamination is well documented in the literature in a variety of aquifers 

(Lapointe, et al., 1990; Böhlke and Denver, 1995; Griggs et al., 2003; Fukuda et al., 

2004).   In south Florida, research has been conducted on the fate and transport of 

effluent waste in the Florida Keys, primarily from septic tanks and small wastewater 

treatment plants (Shinn et al., 1994; Corbett, et al., 2000; Griggs et al., 2003), and in 

central Florida with regards to agricultural nitrate contamination (Tihansky and Sacks, 

1997). Studies in the Florida Keys focused mainly on δ15N in nitrates, (less in 

ammonium), and found enriched values of δ15N  of  ≥ +7 ‰ (Griggs et al., 2003; Böhlke 

et al., 2003). Studies of NH4
+ammonium in groundwater near injection of treated sewage 

effluent in the Keys found  δ15N values of +9  to  +12 per mil (Böhlke et al., 2003).     

As a result of nitrification,  NH4
+ often reacts non-conservatively as it is transported in 

groundwater away from recharge areas. Ambient FAS groundwater at the study sites is 

anoxic.  The injectate is also anoxic as a result of the removal of O2 in the treatment 

process prior to injection, and is also very low in nitrate. Concentrations of NO3
− are very 

low in the monitored zones, including the wells that have elevated NH4
+concentrations 

(Walsh and Price, 2010).  

3.4.2 Background on Stable Isotopes of Oxygen and Hydrogen 

Isotope values for δ 18O and δ2H are useful in interpreting the source of waters in 

aquifers. Isotope values are compared to the global meteoric line (GML), which defines 
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the relationship between δ 18O and δ2H in precipitation from around the world (Craig, 

1961): 

δ H = 8δ18O + 10 ‰2      (2) 

Meteoric water in continental environments typically have a distinguishable isotopic 

signature (δ18O and δ2H) that is more negative than seawater (Clark and Fritz, 1997). 

Groundwaters that plot to the right of the GML indicate either waters that have 

undergone evaporation prior to recharge or groundwaters that have undergone geothermal 

heating. The stable isotopes of 18O and 2H are reported to the water standard, Vienna 

Standard Mean Ocean Water (VSMOW) which has a defined isotopic value of 0 ‰ for 

both δ18O and δ2H. Most natural seawater isotope values are close to 0 per mil.  As with 

the nitrogen isotopic value, both δ18O and δ2H values are reported in part per thousand 

delta (δ) units according to the equations: 

 

 

 

Isotope hydrology of south Florida has been extensively studied in the SAS (Swart et al., 

1989; Price, 2001; Meyers et al., 1993; Price and Swart 2006; Price et al., 2008), and in 

the Floridan Aquifer in central and west Florida (Swancar and Hutchinson, 1992; Sacks, 

1995; Katz et al., 1997; Rectenwald, 2000; Morrissey et al., 2010). Reported weighted 
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mean values of  δ 18O and δ2H in south Florida for precipitation were in the range of 

-3.64  ‰  to -2.67 ‰ for δ 18O  and -for δ2H, and -20.2 ‰  to 7.6 ‰  for δ2H (Price et al., 

2008; Swart et al., 1989)), with a spatial variation. Values of δ 18O and δ2H for an artesian 

FAS well in south Florida was reported in the range of -2.1 ‰  to -1.6 ‰ for δ 18O , and 

-11.2 ‰  to -6.1 ‰ for δ2H  (Swart et al., 1989). The δ 18O data from wells sampled from 

depths of 240 m and 490 m ranged from -2.6 ‰ to -1.8 per mil (Meyer, 1989a). Isotopic 

values in southwest Florida for the UFA have been reported in the range of -1.69 ‰   to 

-0.08 ‰ δ18O and -8.79 ‰  to -1.53‰ δ2H, suggesting a meteoric recharge source. In the 

LFA, reported isotopic values have been reported to range from +0.12 ‰  to +0.73‰ 

δ18O  and +0.02 ‰  to +3.72 ‰ δ2H. suggesting a seawater source (Rectenwald, 2000).  

Morrissey et al. (2010) distinguished waters in the FAS in central and south Florida in 

part by δ18O values, and described groundwater groups based on salinity, relative age, 

and recharge origin, with recharge in the upper aquifers consistent with recharge from 

meteoric sources during the last glacial period (-2.8 ‰  to -1.0 ‰ δ18O), and Holocene 

aged recharge to the LFA and BZ from the Florida Straits (+0.0 ‰   to +0.4 ‰ δ18O). 

3.4.3 Background - Dissolved Gases 

 Dissolved noble gases have become useful tools to investigate hydrologic processes in 

groundwater as atmospheric noble gases dissolved in groundwater do not typically 

partake in water rock interactions (Cey et al., 2009). Dissolution of gases in water is 

governed by Henry’s Law:  

[𝑖]𝑔 = 𝐻𝑖[𝑖]𝑤  (5) 
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where i is the gas species, g is the concentration of the gas phase, w the concentration of 

the water phase, and Hi is the Henry constant. Dissolved gas concentrations in 

groundwater is related to atmospheric concentration by: 

[𝑖]𝑒𝑞 (𝑇, 𝑆,𝑃𝑎) =   [𝑖]𝑎𝑡𝑚  (𝑇,𝑃𝑎𝑡𝑚 )
𝐻𝑖(𝑇,𝑆)

      (6) 

where [𝑖]𝑒𝑞 is air-equilibrated water (AEW), and  [𝑖]𝑎𝑡𝑚  is concentration of the gas in the 

atmosphere. Gas concentrations in the atmosphere are related to temperature (T) and 

pressure (Patm), and AEW is dependent on the temperature, pressure, and salinity (S) of 

the water. Air bubbles are commonly trapped during aquifer recharge, which results in 

dissolved gas concentrations in groundwater exceeding concentrations that would be 

expected at their solubility equilibriums determined by temperature, and is often referred 

to as the excess air component (Stute and Schlosser, 2000). The gas exchange processes 

between groundwater and the atmosphere are controlled by the diffusion coefficients of 

the gas, which decrease with increasing molecular weight, resulting in the preferential 

dissolution of the heavier gases, and degassing of the lighter gases as the water table 

fluctuates. Entrapped air does not completely dissolve in water, and noble gas 

concentration ratios in water are fractionated with regards to atmospheric ratios, as the 

ratios will be depleted in the lighter noble gases relative to the heavier gases (Stute and 

Schlosser, 2000). Dissolved gas ratios are used to indicate the presence of excess air 

(Herzberg and Mazor, 1979; Heaton and Vogel, 1981; Stute and Schlosser, 2000). When 

plotted against one another, measured gas concentrations often plot to the right of 

expected concentrations, indicating the presence of excess air. Partially dissolved trapped 
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air, loss of gas through degassing in the aquifer, or if there is a source of dissolved gas 

other than the atmosphere, such as injectate into the aquifer, will result in the dissolved 

gas ratios fractionated relative to atmospheric air.  

The measured concentration of dissolved gas in water ([i]m ) is the sum of the 

concentration AEW plus the excess air concentration ([i]ex), and any other sources of 

dissolved gas from radiogenic ([i]rad) or terrigenic ([i]terr) sources within the aquifer. 

The dissolved gas concentration in water can be written as:   

 [i]m =  [i]eq +  [i]ex  + [i]rad + [i]terr        (7) 

Neon (Ne) is commonly used as an indicator of excess air because there is no other 

source in groundwater except atmospheric Ne. Excess air is described by the relative 

excess of Ne  (Stute and Schlosser, 2000): 

∆𝑁𝑒 = �[𝑁𝑒𝑚]
[𝑁𝑒𝑒𝑞]

− 1� 𝑥100%      (8) 

Any change in dissolved air will result in a large relative change in the ∆Ne because of 

the relatively small equilibrium component.  

Three models are commonly used to interpret excess air and noble gas concentrations in 

water, and the reader is referred to Cey et al., (2009), for a thorough description. In 

summary, the three include the unfractionated air (UA) model (Heaton and Vogel, 1981), 

partial equilibrium (PR) model (Stute et al., 1995), and the closed system equilibrium 
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(CE) model (Aeschbach-Hertig et al., 2000). The UA model is the simplest, and assumes 

complete dissolution of the trapped air bubbles and unfractionated excess air, therefore 

excess air will have the composition of atmospheric air (Stute and Schlosser, 2000). The 

PR model proposes a complete dissolution of the trapped air followed by a partial re-

equilibrium (PR) with the atmosphere via diffusive degassing, resulting in a fractionation 

of lighter gases depleted relative to the heavier gases.  In the CE model, groundwater and 

trapped air bubbles are equilibrated, and fractionation of excess air results from 

incomplete dissolution of trapped air, with fractionation dependent on the difference 

solubilities of the entrapped air (Aeschbach-Hertig et al., 2000).  

Dissolved gases have been used in Florida to assess sources of groundwater recharge. 

Studies done for assessing sources of nitrate to spring systems in northern Florida 

indicated concentrations of dissolved N2 and Ar in spring water consistent with 

atmospheric equilibration during groundwater recharge with minor amounts of excess air, 

less than 3.6 cm3STP/L (Katz et al.,  2004). Morrissey et al. (2010) used noble gas 

recharge temperatures and ∆Ne to distinguish groundwater groups on the basis of 

recharge sources in central and south Florida. Noble gas recharge temperatures were 

found to range for last glacial period (LGP) fresh water 18.0 – 21.8 ºC, 23.2 – 26.2 ºC for 

Holocene fresh water, and  8.0 – 10.2 ºC Holocene salt water (water originating from the 

Florida Straits). Excess He was used to determine relative ages, with the lowest 

concentrations found in Holocene fresh water (0.4 to 6.3 10-8cm3STPg-1), and the highest 

in the LGP fresh water (3.1 – 36 10-8cm3STPg-1), reflecting the longer residence time of 

the LGP freshwater in the Floridan Aquifer System (Morrissey et al., 2010).  
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3.4.4 Background - Relative Age Dating Tritium/3helium   

The tritium/helium-3 (3H/3He) dating method has been used as a dating technique to 

assess flow and contamination in aquifers, and as a means in conjunction with particle-

tracking analysis to improve groundwater flow model calibration (Poreda et al., 1988; 

Solomon et al., 1995, Solomon and Cook, 2000; Sheets et al., 1998, Manning et al., 2005, 

Katz et al., 2001). The 3H/3He dating techniques have been used as a means to estimate 

flow paths, recharge rates, and aquifer properties (Aeschbach-Hertig, et al., 1998; Shapiro 

et al., 1999; Price et al., 2003), assessing susceptibility of public water supply wells to 

contamination (Manning et al., 2005), and to determine the chronology of nitrate 

contamination in spring waters in northern Florida (Katz et al., 2001). The radiogenic 

isotope 3H  is produced naturally in the upper atmosphere as a result of cosmic radiation, 

however large quantities of  3H were released into the atmosphere during the 1950’s and 

early 1960’s as a result of thermonuclear weapons testing. Tritium concentrations in the 

atmosphere peaked between 1962 and 1965, when aboveground thermonuclear testing 

was stopped, and tritium levels in the atmosphere decreased thereafter. Precipitation 

measurements made prior to the 1950’s had a very low 3H concentrations.  Groundwaters 

with non-detecatable 3H concentrations are considered “tritium dead” water, indicative of 

recharge to the aquifer  prior to the 1950’s. The 3H as a result of thermonuclear testing 

has been precipitating out of the atmosphere, and entering aquifers during recharge. 

Tritium decays to 3He with a half life 12.32 years. The relatively short half life of tritium 

combined with mixing and dispersion processes in the aquifer, makes identification of the 

3H bomb peak difficult in groundwater systems today. However, by measuring both 3H 

and 3He in a groundwater sample, an estimate of the age of groundwater can be made 
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without knowing historical 3H precipitation data. The 3H/3He method can be used to 

determine the “age” of a water sample with a resolution of 0.1 years for young (<40 years 

old) water, with water “age” defined as the elapsed time that the water has been isolated 

from the atmosphere. 

The  3H/3He age of a water sample is defined as: 

t =  λ−1ln (
He ∗3

H3
+ 1) 

 (9) 

where:  λ = 3H decay constant, 3He* = tritiogenic, and  3He concentration (concentration 

resulting from the decay of 3H). The amount of 3He* is derived from the mass equation 

for all 3He sources: 

Hem3  = He3
eq + He3

ex  + He∗3  +  Henuc3  +  Heman3
    (10) 

With 3Heeq  at equilibrium with the atmosphere, 3Heex excess 3He, 3Henuc of nucleogenic 

sources, and 3Heman of derived from the mantle. Most of the helium in air is the heavier 

isotope 4He, which is controlled by the release of terrestrial sources of 4He derived from 

uranium and thorium-series decay. The 3Herad and 3Hterr derived from subsurface nuclear 

reactions originates primarily from the uranium-thorium-series decay and the fission of 

the 6Li neutrons produced. The 3Herad/4Heterr produced in the earth’s crust is typically 1 x 

10-8 (Mamyrin and Tolstikhin, 1984), and is two magnitudes smaller than the atmospheric 

3He/4He ratio of 1.36 x 10-06, and therefore is 3Heman is negligible for most aquifers. The 
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south Florida carbonate platform is tectonically inactive, and previous south Florida 

3H/3He age dating studies have made this assumption (Price et al., 2003).  

To obtain the 3He* measured 3He/4He ratios in analyzed groundwater samples are used. 

The atmospheric 3He/4He ratio is 1.384 x 10-6 (Clark et al., 1976), however a small 

fractionation occurs as atmospheric helium is dissolved in precipitation which results in a 

3He/4He ratio of 1.36 x 10-6  for water in isotopic equilibrium with atmospheric helium at 

10°C. Neon is used to determine the excess air in a sample using eq. 8. Substituting all in 

the mass balance equation simplifies to: 

3He* = 4Hem Ro-Req[4Heeq + (Nem – Neeq)αRHe-Ne ]- Rrad[4Hem- 4Heeq – (Nem – Nesol)RHe-Ne]   (11) 

Where Ro is (3He/4He)m; Req is (3He/4He)eq  ; RHe-Ne is (He /Ne)atm , Rrad  is 
3Henuc/4Herad, 

and α is the He air-water isotope fractionation factor (Rgas/Rwater). 

Measured 4He concentrations are corrected for excess air. Air corrected excess 4He above 

the solubility equilibrium concentration at the recharge temperature is calculated using 

the %-deviation of the corrected 4He ( [𝐻𝑒𝑐𝑜𝑟𝑟]) concentration from the equilibrium 

concentration [𝐻𝑒𝑒𝑞]: 

∆ 𝐻𝑒4 = �[𝐻𝑒𝑐𝑜𝑟𝑟]
[𝐻𝑒𝑒𝑞]

− 1� 𝑥100%     (12) 

The 3H/3He age dating technique has been used in Florida for tracing recharge in the 

surficial aquifer in south Florida, (Price et al., 2003), and in the unconfined portion of the 
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FAS where the age of the groundwater is less than 50 years (Katz, B., 2004).  The FAS in 

south Florida would not be a good candidate for 3H/3He age dating, as source waters have 

been isolated from the atmosphere pre-1950s. However at the two study sites where 

injectate is injected in to the BZ, 3H/3He age dating can be used to distinguish the 

injectate from native groundwater, as injectate originates from the SAS, which has a post-

bomb tritium signal (Price et al., 2003). 

3.5 Methods 

Water quality samples have been collected monthly since the injection wells have been in 

operation, and were analyzed for parameters required in the operational permits, which 

includes total dissolved solids, chloride and ammonia. Thirty-two samples were collected 

monthly representing the upper and lower zones of monitoring wells at the SD; and eight 

samples were collected monthly representing the upper and lower zones at the North 

District. Monthly injectate samples were collected at the sample port located at the 

effluent pump station immediately before injectate enters the main distribution pipe to the 

injection wells. Major ions were collected from 2006 – 2007 at both sites (Walsh and 

Price, 2010). Samples from the SD were collected from wells open to the UFA, MC1, 

APPZ, and MC2; at the ND samples were collected from wells open to the UFA/Upper 

MC1, and the lower MC1/Avon Park Permeable Zone. Water quality samples were also 

collected at an ASR site located in western Miami-Dade County (Figure 3.1), from the 

monitoring well open to the lower UFA (335 – 366 m bls), below the ASR injection zone. 

The ASR facility had not been in operation except for a one month period in 2002, and 

injected potable water was subsequently removed in 2003 until ambient water quality was 
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reached (MDWASD, W. Pitt, personal communication).  Groundwater samples were 

collected in 2005 for NH4
+ analysis and for 3H-3He age determinations. Samples were 

collected again in February 2008 for analysis of NH4
+, the stable isotopes δ 18O, δ2H, 

δ15N, dissolved oxygen (O2), nitrogen (N2), carbon dioxide (CO2), methane (CH4), 

dissolved noble gases (helium, neon, argon, krypton and xenon), and tritium. Samples for 

NH4
+ and for δ18O, δ2H were filtered through a 45 µm filter. The stable isotopes samples 

were collected into glass bottles with rubber septum stoppers and crimped with an 

aluminum cap; NH4
+ samples were collected in 1liter high density polyethylene  (HDP) 

bottles preserved with sulfuric acid. Samples for dissolved noble gases and 3H/3He age 

determinations were collected in copper tubes that were crimp-sealed while groundwater 

was flowing through the tube. Dissolved gas samples were collected in serum bottles 

preserved with potassium hydroxide. Tritium samples were collected in 1-L HDP bottles. 

The stable isotopes analyses of δ18O, δ 2H, and δ15N, were completed at the USGS Reston 

Stable Isotope Laboratory (RSIL). The δ15N isotopes of NH4
+ sample preparation was 

done by a combination of freeze-drying, distillation, vacuum extraction, ion exchange 

and combustion to isolate compounds and produce pure gaseous nitrogen for determining 

the relative difference in ratios of the amounts of 15N and 14N of the gas phase products 

by a Finnigan Delta V continuous-flow isotope-ratio mass spectrometer.  Precision was 

approximately ±0.1 ‰ (Hannon et and Böhlke, 2008). Isotopic compositions of δ18O and  

δ2H were determined by mass spectrometry using the methods of  Epstein and Mayeda 

(1953), Coplen et al., (1991), and by Révész and Coplen (2008).  Samples were analyzed 

for the dissolved gases of N2, O2, Ar,  CO2 and CH4 by gas chromatograph on low 
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pressure headspace at the U.S. Geological Survey (USGS) Dissolved Gas Laboratory 

(Weiss, 1970; Weiss, 1974; Wiesenburg et al., 1979).  

The 2005 3H-3He samples were analyzed at the University of Miami Noble Gas Isotope 

Laboratory (NGIL) using the helium in-growth method following the methods of Clark 

(Clark et al., 1976), with a precision of 1.5% (0.01 Tritium Units (TU)), and a detection 

limit of 0.015tritium units. Analysis also included 4He, 3He, and neon concentration 

measurement with precisions of 0.5%, 0.5%, and 2%, respectively. Groundwater samples 

collected in 2008 were analyzed by the USGS Noble Gas Laboratory in Boulder, 

Colorado. Both laboratories used similar methodologies. The 3He and neon were first 

extracted for mass spectrometric analysis, and the remaining sample was then sealed in a 

glass container. After approximately 6 months, the in-grown 3He was measured using 

mass spectrometry. The 3H concentration was determined from the amount of in-grown 

3He, the length of time the sample was sealed, and the radioactive decay rate (12.32 

years) of tritium. Accuracy was reported to be 0.01 tritium units. The age of each 

groundwater sample was assumed to be equal to the time indicated by the decay of 3H to 

3He in a closed system, after adjustments for atmospheric gas contributions and for 

excess terrigenic helium (Schlosser et al., 1988). For the 2005 sampling event 3H/3He age 

determinations, the suite of noble gases was not measured, and therefore the recharge 

temperature was not calculated, and the temperature of the water sample at time of 

collection was used instead. Changing the recharge temperatures by ±5° changed age 

calculations by less than 1.5 years, within the analytical uncertainties.  
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3.6 Results 

3.6.1 Ammonium 

The results for NH4
+  concentration grouped into two categories; wells with low 

concentrations of NH4
+   (<0.02 mmol/L), and those with higher concentrations.   All 

wells in the UFA, well 2L in the APPZ, and most wells in the MC2 at the SD had 

concentrations of NH4
+  less than 0.02 mmols per liter.  All wells in the MC1 with the 

exception of 9U had NH4
+  concentrations greater than 0.02 mmols/L, with well 6U at the 

highest NH4
+   concentration (0.8 mmols/L). Two wells in the MC2 also had NH4

+  

concentrations greater than 0.02 mmol per liter. All wells in the UFA at the ND had 

results less than 0.02 mmol/L NH4
+ ; all wells in the APPZ at the ND had concentrations 

greater than 0.02 mmols/L. Injectate NH4
+concentrations at both sites were above 26 

mmol/L. NH4
+  concentration for the ASR site was 0.02 mmols per liter (Table 3.1).  

3.6.2 Stable Isotopes 

The δ15N-NH4
+   results for the wells that had low NH4

+   concentrations were increasingly  

depleted with decreasing depth in the aquifer (Figure 3.5 and Table 3.1). At the SD, δ15N-

NH4
+ values from wells with low NH4

+  concentration varied from +5.92 ‰  to +6.9 ‰ for 

the UFA, +4.85 ‰ for the lower MC1/APPZ zone, and +0.83 ‰  to +5.58 ‰ for the 

MC2 zone. The δ15N-NH4
+values for the UFA zone at the ND ranged from +5.02 ‰ to 

+6.09 per mil. Results for the SD and ND injectate were +7.66 ‰ and +10.03 ‰ 

respectively. Wells with elevated NH4
+ concentration had enriched δ15N-NH4

+ values and 

were more enriched than the injectate values. Wells in the MC1 with elevated NH4
+  

concentrations at the SD ranged from +8.80 ‰   to +10.09 per mil.  Results for the lower 
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MC1/APPZ and MC2 with elevated NH4
+  concentration wells ranged from +9.84 ‰  to 

+12.71 per mil. The APPZ zone at the ND ranged from +10.66 ‰  to +12.71 per mil. At 

the SD δ15N-NH4
+ results for the wells with elevated NH4

+  concentrations showed an 

inverse correlation to NH4
+concentrations, with the sample with the highest NH4

+ 

concentration (well 6U) closest to the injectate having the least enriched δ15N−NH4
+ 

result compared to the injectate δ15N−NH4
+ value, and δ15N-NH4

+ values becoming more 

enriched with decreasing NH4
+  concentrations (Figure 3.5).  

The δ18O and δ2H of the groundwater samples with low NH4
+ concentrations tended to 

group together by aquifer zone and increased with depth in the aquifer (Figure 6 and 

Table 3.1). Average δ18O and δ2H  values were similar for the UFA at both sites (average 

δ18O -1.82 ‰ and δ2H -7.97 ‰ for the SD; average δ18O -1.76 ‰ and δ2H -5.67 ‰ for 

the North District). Wells in the MC1 at the SD averaged -1.32 ‰ for δ18O and –5.24 ‰ 

for δ2H; wells in the APPZ at the SD averaged -1.19 ‰ for δ18O and -5.24 ‰ for δ2H, 

more depleted than the APPZ zone at the North District (-0.47 ‰ for δ18O and -0.94 ‰  

for δ2H).  The MC2 results averaged +0.20 ‰ for δ18O and –3.60 ‰ for δ2H. Wells with 

low NH4
+  concentrations from the MC2 had isotopic values more positive than seawater. 

The MC2 wells with elevated NH4
+  concentrations  had more depleted isotopic values 

than wells with low NH4
+  concentrations  Injectate values for the SD and the ND were 

similar (δ18O of  -1.36 ‰ and δ2H of –5.57‰ for the SD;  δ18O of -1.35 ‰ and δ2H of 

-4.08‰ for the ND). Most of the groundwater samples tended to plot on a line with a 

slope less than the meteoric line that also intersected the δ18O and δ2H value of Miami 
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rainfall (Figure 3.6).  The isotopic compositions of the injectate also plotted along the 

same line as most of the groundwater samples and Miami rainfall (Figure 3.6).  

3.6.3 Dissolved Gases  

Concentrations of N2 from wells with low NH4
+ concentrations grouped together by 

aquifer and tended to decrease with depth (Figure 3.7 and Table 3.1). Concentrations of 

N2 for the UFA at the SD averaged 0.583 mmols/L, while the MC2 average concentration 

was slightly lower at 0.555 mmols per liter. At the ND, groundwater N2 concentrations 

within the UFA zone averaged 0.667 mmols per liter (Figure 3.8).   

Dissolved O2 concentrations were less than 0.010 mmols/L for all wells at both the SD 

and the ND (Table 3.1). Concentrations  of Argon, CO2 and CH4 were very similar for all 

wells with low NH4
+ concentrations (Figure 3.6), with concentrations of Argon ranging  

from  0.014 mmols/L to 0.016 mmols per liter. Dissolved CO2 concentrations were below 

0.20 mmols/L for all low NH4
+ concentration wells (Figure 3.7). Concentrations of CH4 

for low NH4
+ concentration wells at the SD were below 0.002 mmols/Lfor the UFA, and 

below 0.001 for the MC2; while at the ND UFA zone concentrations  of CH4  were less 

than 0.01 mmols per liter.  

Injectate dissolved gas concentrations were 0.012 mmols/L and 0.020 mmols/L in O2 for 

the SD and ND respectfully, and 0.418 mmols/L and 0.561 mmols/L for nitrogen gas. 

Argon results for injectate were similar for both sites (Table 3.1 and Figure 3.7). The 

injectate SD had a CO2 concentration of  3.010 mmols/L; the ND injectate CO2 

concentration was 2.473 mmols per liter. Concentrations of CH4 were detected in the 
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injectate at the both sites at very low levels, 0.0005 mmols/L and 0.0049 mmols/L, 

respectively. 

Argon concentrations for the MC1 zone at the SD ranged from 0.019 mmols/L to 0.030 

mmols/L, with the highest Argon concentration from the well sample with the highest 

NH4
+ concentration (well 6U) (Figure 3.7). Argon concentrations from the wells with 

elevated NH4
+  concentrations in the MC2 averaged 0.021 mmols per liter. Argon 

concentrations in the APPZ at the ND averaged 0.021 mmols per liter (Figure 3.8). Wells 

with elevated NH4
+  concentrations for the  MC1 at the SD had dissolved CO2 

concentrations ranging from 0.045 mmols/L to 0.703 mmols/L, with the highest CO2 

concentration from the well sample that had the highest NH4
+  concentration (well 6U). 

Samples collected from the wells with elevated NH4
+  concentrations  in the MC2 

averaged 0.061 mmols/L. Samples collected from the ND APPZ had an average CO2 

concentration of 0.124 mmols per liter (Figure 3.8). Concentrations of CH4 for the wells 

with elevated NH4
+  concentrations  in the MC1 from the SD range from 0.0285 – 0.0813 

mmols/L, and were 0.0156 mmols/L and 0.0534 mmols/L for the two wells in the MC2 

with elevated NH4
+  concentrations. Concentrations of CH4  from the APPZ at the ND 

were less than 0.02 mmols per liter (Figure 3.8).  

Concentrations of excess air in groundwater were calculated from values of argon, with 

the assumption that the samples contained argon from air-water equilibrium and 

dissolution of excess air. All wells with elevated NH4
+  concentrations had excess argon 
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concentrations, with the highest concentration of excess argon  in the injectate and well 

6-upper (Table 3.1).  

Helium and neon concentrations for wells with low NH4
+  concentrations at the SD 

averaged 202.3 µccSTP/kg and 203.8 µccSTP/kg for the UFA, and from 179.5 

µccSTP/kg to 184.5 µccSTP/kg for the MC2 ambient wells (Figure 3.9 and Table 3.2). At 

the ND, wells in the UFA had average helium and neon concentrations of 165.15 

µccSTP/kg and 235.2 µccSTP/kg, respectively.  Krypton concentrations averaged 74.4 

µccSTP/kg and 77.8 µccSTP/kg for  the UFA and MC2 wells with low NH4
+  

concentrations,  respectively. Xenon concentrations averaged 9.6 µccSTP/kg  for the 

UFA and 10.5 µccSTP/kg  for the wells with low NH4
+  concentrations in the MC2. 

Concentrations for the UFA zones at the ND were similar to the South District (Table 3.2 

and Figure 3.9).   

At the SD, injectate concentrations  for helium and neon were 26.9 µccSTP/kg and 159.9 

µccSTP/kg, respectively.  Helium concentrations ranged from 49.8 µccSTP/kg to 168.1 

µccSTP/kg for the wells with elevated NH4
+  concentrations in the MC1 zone, and 110.1 

µccSTP/kg to 119.3 µccSTP/kg for wells with elevated NH4
+  concentrations in the MC2 

zone, with the lowest concentrations correlating to the highest NH4
+concentrations (well 

6U). Neon results were similar to the helium results, with the lowest neon concentration 

of 161.7 µccSTP/kg from well 6-upper. Krypton and xenon results from the wells with 

elevated NH4
+ concentrations followed the same pattern as argon, with the highest 
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concentrations (210.2 µccSTP/kg for krypton and 20.6 µccSTP/kg for xenon) 

corresponding to well 6-upper (Table 3.2 and Figure 3.9).  

Injectate at the ND had concentrations of 60.9 µccSTP/kg  for helium, 230.8 µccSTP/kg  

for neon, and 0.649 ccSTP/kg for argon, however concentrations of krypton (496.2 

µccSTP/kg ) and xenon (146.5 µccSTP/kg ) were extremely high, which may have been a 

result of small bubbles in the O2 mix (USGS, A. Hunt, personal communication, 2009). 

Concentrations for helium for the ND APPZ wells ranged from 48.8 to 67.6 µccSTP/kg; 

concentrations of neon and argon were very similar for all wells in the APPZ and 

averaged 175.1 µccSTP/kg and 0.4 ccSTP/kg, respectively (Table 3.2 and Figure 3.9). 

Krypton and xenon concentrations were also very similar for all wells in the APPZ at the 

ND (114.0 µccSTP/kg and 13.3 µccSTP/kg, respectively).  

3.6.4 Tritium and Apparent 3H/3He Ages  

Tritium results are reported in tritium units (TU). Tritium concentrations from the 2005 

and 2008 sampling events were similar (Table 3.1).Tritium levels for wells with low NH4
+ 

concentrations at both sites were at or below 0.5 TU. Tritium levels for the SD injectate 

were similar for both sampling events, with the 2005 results 7.8 TU, and the 2008 results 

8.98 tritium units. Tritium levels at the SD were similar for both sampling events as well, 

with the highest tritium reported for well 6U (7.00 TU in 2005 and 7.09 TU in 2008) 

which also had the highest NH4
+ concentration. The ND injectate samples for both 

sampling events were lost during transport. The ND APPZ wells had results ranging from 
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1.9 to 3.7 TU for the 2005 sampling event, and 2.46 TU to 4.36 TU for the 2008 

sampling event.  

3.7 Discussion 

3.7.1 Injectate characteristics  

Injectate at both sites is characterized as having high NH4
+ concentrations (>26  

mmols/L), and enriched δ15N-NH4
+,  δ18O, and δ2H  values (Table 3.1). Injectate samples 

had δ15N-NH4
+ results in the range reported for domestic sewage, and similar to values 

reported for sewage contaminated groundwater in the Florida Keys (Clark and Fritz, 

1997; Böhlke et al., 2003). Values of δ18O and δ2H  of the injectate at both sites were 

similar to  values reported for the Biscayne Aquifer (Swart et al., 1989; Price and Swart, 

2006; Price et al., 2008), which is the original source of the injectate water.  At both the 

SD and the ND,  cryogenic oxygen plants produce gaseous purified oxygen gas ( O2) that 

is piped to the plant biological oxygenation reactors. Once through the reactors, it enters 

the effluent stream for deep well disposal. As a result of the cryogenic process, the 

injectate is enriched in CO2  and the heavier gases (argon, krypton and xenon), but 

depleted in oxygen gas (consumed in the oxygenation reactors) and the lighter gases ( N2, 

helium and neon) (Table 3.2).    

3.7.2 Ambient Water Quality and Recharge source  

Concentrations of NH4
+, stable isotopes, tritium,  and dissolved gas results from this study  

were compared to other reported values for the FAS  that were not associated with deep 

well injection sites, to determine ambient water quality and possible recharge source 
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waters for each aquifer zone.  Concentration results of NH4
+ for the 2008 sampling event 

showed the same low and high concentration groupings at both sites similar to previous 

studies (Walsh and Price, 2010).  Groundwater  NH4
+concentrations equivalent to or less 

than 0.02 mmol/L were similar to the results for the ASR site, and to other reported NH4
+ 

concentrations for in the Floridan Aquifer system (Walsh and Price, 2010). All wells with 

NH4
+ concentrations less than 0.02 mmols/L contained no measureable tritium (Table 

3.1), as would be expected for FAS ambient water, and further evidence that samples 

with low NH4
+ concentrations are representative of ambient water quality. Wells with low 

NH4
+concentrations also had values of δ15N- NH4

+ below +6.9 ‰, less than the injectate 

δ15N- NH4
+ value, indicating that the source of NH4

+ in these samples is not from injectate.  

The  δ15N- NH4
+ results grouped together for samples with low NH4

+concentrations for 

each hydrogeologic zone, and decreased with increasing depth in the aquifer (Figure 3.4). 

The average δ15N- NH4
+ (3.39 ‰,) for samples collected from the MC2 low NH4

+ 

concentrations wells at the SD were within the range of  δ15N-NH4
+  values of +2.8 to 

+4.5 ‰ reported for deep saline water in other geographic areas (Böhlke and Krantz, 

2003). Work done in the Florida Keys indicated that anoxic marine ground water in the 

Keys contained significant amounts of NH4
+ (10-80 μmol/L), with δ15N values of +3 ‰, 

to +8 ‰, and noted that possibly much of the groundwater NH4
+ was produced naturally 

by anaerobic degradation of nitrogen bearing organic matter in sediments (Böhlke et al., 

2003). Native aquifer waters at the two sites in the current study have low levels of 

ammonium (less than 20 µmols/L), with a similar range of δ15N- NH4
+, which may 

indicate a similar biogeochemical source of NH4
+ in the aquifer.  



77 

 

Values of δ18O and δ2H  for the UFA at both sites and the ASR site are consistent with 

reported values for the Floridan Aquifer System (Rechtenwald, 2000; Morrisey et al., 

2010). The average UFA values of δ18O and δ2H fell below the MWL, indicating water 

that has undergone evaporation prior to recharging the aquifer and suggest an evaporative 

fresh water recharge source (Figure 3.5). Although geothermal heating could affect the 

isotopic ratios, geothermal gradients are not observed in the FAS ( Kohout, 1965; Walsh 

and Price, 2010), and the of δ18O and δ2H  values are likely indicative of evaporation, and 

not geothermal heating. The δ18O values fall within the range interpreted as meteoric 

recharge during the last glacial period (Rechtenwald, 2000; Morrisey et al., 2010). Values 

of  δ18O andδ2H  from wells with low NH4
+ concentrations from the SD MC2 averaged 

0.2 ‰ and 3.6 ‰, similar to other reported LFA values, with δ18O value for the MC2 

within the range reported for the LFA and BZ interpreted as Holocene seawater recharge 

from the Florida Straits (Morrisey et al., 2010). The δ18O and δ2H  values for well 2L at 

the SD collected from the MC1/APPZ (501 – 510 m depth) was slightly enriched than the 

UFA values, but were  lighter than the ambient samples collected from the deeper MC2 

zone. These results are similar to the chloride data trends for this zone previously 

reported (higher Cl- concentration than the UFA,  but lower than the MC2), and 

represents the transition zone in the FAS from the saline LFA to the brackish Floridan 

Aquifer System (Reese, 1994; Walsh and Price, 2010). 

 Sources of recharge were inferred by comparing neon concentrations to the heavier 

noble gases (Figure 3.9). An equilibrium line is drawn for water in equilibrium with the 

atmosphere, or air saturated water (ASW), and air saturated seawater (ASSW) at different 
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temperatures, and assuming excess air is not fractionated, data points can be extrapolated 

out towards the equilibrium line (Heaton and Vogel, 1981). Comparison of neon and 

xenon concentrations indicated UFA at both sites and MC1 wells at the SD with low 

NH4
+ concentrations fall along equilibrium lines suggesting freshwater recharge origin 

(Figure 3.9). These wells lie along an air saturated fresh water (ASW) equilibrium line 

with increasing excess air with depth in the aquifer, and suggested recharge temperatures 

are similar to LGP freshwater recharge temperatures.  Samples collected from wells 2L 

and 9L at the SD lie in this freshwater trend, and suggest that samples from these wells 

may lie in the transition between Holocene seawater recharge and LGP freshwater 

recharge, consistent with interpretations of chloride data (Walsh and Price, 2010) and the 

δ18O and δ2H data.  

Wells with low NH4
+ concentrations from the MC2 at the SD had neon concentrations 

close to the air saturated seawater (ASSW) ratio for seawater at 8ºC, and slightly to the 

right of the equilibrium line suggesting some excess air component (Figure 3.10). The 

recharge temperature of 8ºC is similar to recharge temperatures determined by Morrissey 

et al. (2010) for the LFA and similar to temperatures in the Florida Straits at depths 

where the BZ outcrops. The recharge temperature is consistent with Holocene seawater 

recharge from the Florida Straits, and the slight excess air component may indicate 

residual mixing of encroaching seawater from the Florida Straits with native water. The 

previous major ion study observed low variance in ion concentrations among samples 

collected from wells with low NH4
+ concentrations within each hydrogeologic zone 

(Walsh and Price, 2010), and this is also observed with the stable isotopes and dissolved 
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gas data. Wells with low NH4
+ concentrations from each zone showed distinct dissolved 

gas concentrations clustering along the equilibrium line, and values for δ18O, δ2H  and 

δ15N- NH4
+ were also observed to cluster by hydrogeologic zone.  The low variance 

between samples within each zone, as well as the distinct clustering suggests recharge in 

each of these zones originates under different environmental conditions, and that as these 

distinctions are still observable would imply there is minimal hydrologic connection 

between the zones.  

3.7.3 Evidence of injectate migration  

Previous studies concluded that samples with  NH4
+ concentrations greater than 0.02 

mmol/L contained some injectate (Walsh and Price, 2010). Using this criteria, the 2008 

sampling event resulted in the same wells interpreted as containing some injectate as in 

the previous study, and at the SD  includes most wells in the MC1, (with the highest NH4
+ 

concentration in well 6U), two wells in the MC2, and  all wells in the APPZ at the ND. 

Analysis of 3H/3He apparent ages, and stable isotope and dissolved gas data reinforce this 

interpretation.   

The 3H/3He apparent age results agree with the NH4
+concentrations interpretation, with all 

wells with low NH4
+concentrations containing no measureable tritium, and wells with 

elevated NH4
+concentrations with tritium concentrations considered post-bomb peak 

(Table 3.1). The 3H/3He age results were plotted against the NH4
+concentrations, and 

samples were observed to fall into interpreted age categories described as old, (ambient 

or prebomb), mixed, and new injectate (Figure 3.10), with mixed being a mixture of old 
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water (ambient) and new water (injectate). All samples determined to be representative of 

ambient conditions based on NH4
+concentrations, stable isotope and dissolved gas data 

grouped together in the old category, reflecting the pre-bomb 3H/3He apparent age 

(Figure 3.11). Wells 6U, 12L and 14U (wells with the highest NH4
+concentrations ) were 

classified in the new injectate category, with 3H/3He age results indicating fairly recent 

injectate recharge in the areas of these wells. The rest of the elevated NH4
+ concentration 

wells fell in the mixed age group. Well BZL fell into mixed and old categories; this well 

is in location of a monitoring well drilled into the BZ at the start of injection operations in 

the early 1980’s, and which was in the early 1990’s plugged and abandoned (MDWASD, 

1995). The overlap of ages at well BZL suggests that the injectate present there was a 

remnant from pre-abandonment times. 

Samples collected from wells with elevated NH4
+ concentration had enriched  δ15N-NH4

+ 

values, similar to those reported for sewage effected water systems in south Florida 

(Böhlke et al., 2003)  and Cape Cod, Massachusetts (Böhlke et al., 2006), and were more 

enriched than the δ15N- NH4
+  values for the injectate samples, indicating injectate being a 

possible source of NH4
+. Enrichment of δ15N- NH4

+ in elevated NH4
+  water samples 

suggests that there may be chemical, physical or biological kinetic processes that are 

affecting NH4
+  transport through the aquifer. Fractionation of 15N associated with cation 

exchange reactions has been reported to be minor to negligible (Böhlke et al., 2006), 

therefore some preferentially fractionation reactive process in groundwater may be 

occurring.  
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At the SD, well samples with elevated NH4
+ concentrations in the MC1 had δ 18O and δ2H 

values similar to the injectate, but isotopically lighter than the ambient MC2 groundwater 

(Figure 3.5). A binary plot of δ 18O and NH4
+ data indicated two distinct mixing lines: one  

from the injecate to the ambient groundwater in MC2;  and the second from the injectate 

through the wells in MC1 with elevated NH4
+ concentrations.  The separation of the two 

mixing lines indicate  no mixing between the MC2 and the MC1, which would be 

expected if injectate was migrating upwards from the BZ (Figure 3.12). The APPZ well 

data for the ND shows a mixing line from the injectate, however, there is little variance 

between data, and data do not show a gradual mixing as seen in the SD data (Figure 

3.13).  

At the SD, wells with elevated NH4
+ concentrations showed a positive correlation 

between heavier noble gases, (example xenon and neon)  and NH4
+ concentrations (R2= 

0.83), and an inverse correlation between the lighter gases and NH4
+ (Figure 3.10 ). 

Samples that were collected from wells with elevated NH4
+ concentrations show a mixing 

trend towards well 6U, with samples from the SD with of the highest NH4
+ concentration 

(wells 14U and 6U) closest to the injectate points (Figure 3.10). Argon and xenon 

concentrations in wells with the highest NH4
+ concentration (wells 14U and 6U) were 

higher than the injectate concentrations. Injectate would be the only source of heavier 

noble gases recharge to the aquifers. Injectate concentrations are highly seasonal based 

on incoming flows to the wastewater treatment plants (Walsh and Price, 2010), and 

therefore noble gas concentrations may also fluctuate with treatment volumes, and this 

may be reflected in the higher concentrations in the aquifer samples. These higher 
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concentrations would also suggest that dispersion may play a negligible role in the 

transport of injectate, at least in wells with higher NH4
+ concentrations.  Well 6U from the 

SD illustrates this, as NH4
+ and noble gas concentrations are similar to injectate. Unlike 

the SD,  APPZ samples from the ND show influence of the injectate, however there is 

minimal variance in the xenon and neon concentrations (Figure 3.8). The binary plot of 

xenon and neon showed that all elevated NH4
+ concentrations samples did not fall along 

the ASSW or the ASW equilibrium line (as did all wells with low NH4
+ concentrations), 

but rather plotted off along a mixing line in the area of the injectate endmember (Figure 

3.10).  

3.7.4 Evidence of Geochemical Reactions 

Concentrations of CO2 and CH4 were inversely correlated, and may suggest 

methanogenesis is occurring in the aquifer (Figure  3.6). Injectate had high concentrations 

of CO2 as a result of the cryogenic process at both WWTPs, with very low concentrations 

of CH4. Ambient concentrations of CO2 and CH4 were very low. Wells with the highest 

NH4
+ concentrations had the highest CO2 and CH4 

 concentrations.  As injectate and 

ambient water have low CH4 concentrations, it appears that once CO2 is introduced into 

the aquifer, methane production commences. Wells with lower  NH4
+  concentrations have 

CO2 concentrations similar to ambient, which may indicate the consumption of 

introduced CO2 in the methanogenesis process. Methane concentrations appear to persist 

in the aquifer once produced, and concentrations seem to follow the same mixing trends 

as other chemical parameters.  
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The FAS is an anoxic, very reducing environment with sulfate (concentrations ranging 

from 3 to 25 mmols/L, with concentrations increasing with depth in the aquifer) acting as 

the electron donors for microbial energy and biomass production (Lisle, J., unpublished 

data, Walsh and Price, 2010). Evidence of anaerobic oxidation of NH4
+involves the 

analysis of concentrations and isotopic compositions of not only NH4
+, but also NO3

− and 

N2 (Bölke et al., 2006, Clark etal., 2008), which were not done for this study. 

Concentrations of NO3
− for all samples at both sites were less than 5 µmols/L, and as the 

FAS and the injectate is anoxic (<0.02 mmols/L), this would indicate minimal conditions 

for denitrification in the aquifer. Progressive enrichment of δ15N- NH4
+ in the aquifer may 

be evidence of anaerobic oxidation by annamox bacteria (Clark et al., 2008; Bölke et al., 

2006). Anaerobic oxidation of NH4
+ with the reduction of NO2

−  according to the equation 

(Van de Graaf et al., 1995; Thamdrup and Dalsgaard, 2002): 

NH4
+ +  NO2

− =  N2 + 2H2O     (13) 

Measured 𝑁𝑂2− concentrations in injectate were 6 µmols. Concentrations in the wells 

with elevated NH4
+ concentrations were never greater than 1 µmol/L (Walsh and Price, 

2010). On the basis of the stoichiometry of the above annamox equation, it may be that 

all of the introduced NO2
− is consumed in the reaction, and NO2

− is the limiting reactant. 

Concentrations of NH4+ decrease along hypothesized flow paths (Walsh and Price, 

2010), however, as all wells with elevated NH4
+ concentrations had 1 µmol/L or less of 

NO2
−, there would be minimal production of N2 along these flowpaths.   Evidence of 

anammox can also be N2 overpressuring with increasing δ15N-NH4
+ values, however, 
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since ambient water N2 concentrations are higher than injectate, increasing N2 

concentrations with decreasing NH4
+ concentrations could be the result of mixing with N2 

ambient water, and any production of N2 as a result of equation 13 would be negligible. 

The gas N2 is inversely correlated with NH4
+ (r2 = 0.88) at the SD, showing similar 

correlations as the other nonreactive gases, and therefore concentrations of N2 are 

expected regardless of any anammox reactions. It would appear though that NH4
+ may be 

oxidized once it is introduced into the aquifer. Well 6U shows a decrease of 

NH4
+ concentrations from that of the injectate, however, Ne, Ar and Kr are very similar to 

injectate concentrations. Assuming non-retardation of  NH4
+ in any aquifer sediments, it 

may be that there is some reactive NH4
+ loss in the aquifer once injectate is introduced; 

once the limiting reactant has been consumed there appears to be no further loss of NH4
+ , 

and it follows mixing trends similar to nonreactive injectate components. This is 

illustrated by Figure 3.6, where data shows a mixing line from well 6U, more so than 

from the injectate.  

3.7.5 Evidence of Vertical Pathways 

Samples for this study were collected from open borehole intervals ranging from a few 

meters to over 40 meters, and water samples collected consisted of mixed waters from the 

various aquifer zones open to each borehole, rather than discrete intervals. Samples 

collected from the monitoring well zones containing injectate (as indicated by elevated 

NH4
+concentrations) were mixed water composed of water fractions from the aquifer 

zone (which in itself may be a mixture of water from different hydrologic zones within 

the open borehole), injectate, and any possibly BZ and LFA waters if the injectate mixed 
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with those waters as it migrated upwards through those aquifer zones. If injectate were to 

migrate through the lower confining zones of the LFA  as a result of buoyant flow 

transport, water quality taken from the monitoring wells in the  MC2 at the SD and the 

APPZ at the ND, (zones closest to the LFA and the BZ) should show the strongest 

freshwater signal, and would expect that signal to slowly dissipate as the water migrated 

upward through the aquitard mixing with native waters. If vertical flow paths exist as a 

result of natural or anthropogenic causes then the freshwater recharge signal may not 

dissipate as quickly, as these pathways may provide a relatively quick transport path with 

little mixing of native waters, with water quality mirroring injectate water quality. 

Analysis of the historical water quality data collected at both sites indicated several 

plumes of injectate located in the overlying aquifers, with NH4
+ detected in upper 

monitoring wells, and not in their companion lower monitoring zone, indicating that at 

least for some wells migration upwards through the confining layers was unlikely (Starr 

et al., 2001; Walsh and Price, 2010). Well 6U in the MC1 at the SD consistently had 

dissolved gas concentrations and stable isotope values very similar to injectate 

concentrations, with wells 14U and 16U also following that trend, and had 3H/3He 

apparent ages interpreted as recent. Noble gas concentrations for well 6U show 

concentrations very similar to the injectate concentration, and binary plots of noble gases 

and NH4
+concentrations clearly show a mixing from injectate, and not from the 

underlying aquifer zones, as would be expected if injectate was migrating upwards 

through the underlying zones rather than through vertical pathways (Figures 3.6 and 3.8). 

These observations would suggest that some type of vertical pathway exists in the 

vicinity of the borehole of well 6U that allows the vertical migration of injectate with 
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minimal amount of mixing of native waters as it migrates upwards. Data from wells 14U 

and 16U may also indicate a vertical pathway from the BZ to the MC1, bypassing the 

confining layers. Data do not show any mixing trends between these MC1 samples and 

the MC2. The strong correlations at the SD between  NH4
+ concentrations and tritium and 

the non-reactive heavier noble gases would suggest that once NH4
+ is introduced into the 

MC1, it is transported mainly via advection, and gradually mixes with native waters as 

the plume dissipates out from the source.  

Although injectate could possibly migrate from the area of well 6U horizontally to wells 

14U and 16U, there would need to be some sort of horizontal preferential pathway, that 

would bypass the aquifer in the vicinity of wells lying between 6U and 14U/16U (see 

Figure 3.1). That could possibly be the case with well 14U, however, well 9U lies 

between 6U and 16-upper. Well 9U has concentrations considered ambient, and had an 

older relative age than wells 6U and 16U, suggesting that there may be a vertical pathway 

in the vicinity of the borehole of 16U as well. Reactive species concentrations (NH4
+, 

CO2, and CH4) are high in well 6U, and lower in well 9U, indicating possible horizontal 

reaction pathway once the injectate is introduced, as discussed earlier. These species 

however are again elevated in well 16U compared to well 9U, which would indicate that 

the source of the higher reactive species in well 16U is not from horizontal advective 

flow from the direction of well 9U, but rather from another area of upward migration of 

injectate. The 3H/3He apparent ages of wells 6U (recent), 9U (older) and 16U (recent) 

also indicate that injectate present in wells 6U and 16U may be of different vertical 

pathways.  
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 The MDWASD concluded ammonia present at the ND was a result of construction 

problems (MDWASD, 2005), however, this study does not support that hypothesis. 

Samples collected for the 2008 sampling event show that NH4
+ concentrations have 

remained persistent in the MC1, which would not be the expected case if a one-time pulse 

of injectate was introduced into the aquifer. There is very little variance in all data sets 

for the APPZ wells at the ND, and data has been remarkably homogenous for all 

parameters analyzed in this study. Data show injectate as the source of the NH4
+ in the 

APPZ, and also show no mixing trends with the lower saline zones. The homogeneity of 

the data may indicate there is no on-site or nearby vertical pathway (as is evident at the 

SD), but does not disprove the existence of an off-site source of NH4
+, that then migrates 

to the site with the groundwater flow. Work done by King et al. (2009) at the ND used 

analytical models to test various injectate flow paths, and concluded at the ND an off-site 

confinement bypass source was the most likely. Work by Cunningham and Walker has 

indicated fractures, faults and seismic-sag structural systems in the rocks of the FAS from 

seismic-reflection data acquired in Biscayne Bay in south Florida, nearby the two study 

sites, and these structures may also provide transport pathways for the injectate 

(Cunningham and Walker, 2009).  Walsh and Price (2010) analyzed the aquifer 

geochemistry at both sites and their conclusions were that the geochemistry indicated 

multiple pathways for migration.  Assuming that water quality in the LFA and the BZ is 

similar to water quality at the SD in these zones, review of the stable isotope and 

dissolved gas data do not indicate mixing of water from the lower zones in the APPZ 

samples, but rather show similar mixing patterns as wells in the MC1 at the SD 

interpreted as horizontal flow from some vertical pathway. This would be consistent with 
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King’s interpretation of an off-site source, where wells at the ND are located in the 

injectate horizontal pathway located some distance from the bypass feature. 

3.8 Conclusions 

On the basis of NH4
+concentrations, and by stable isotope and dissolved gas data, all 

wells in the UFA at both sites are considered representative of ambient water quality, 

with no evidence of upward migration of injectate. The conclusion is consistent with 

previous findings for the Upper Floridan Aquifer.  

Injectate is characterized by high NH4
+ concentrations, enriched  δ15N- NH4

+ values, 

depleted lighter dissolved gases, and enriched in heavier noble gases. Samples collected 

from wells with elevated NH4
+ concentrations showed enriched δ15N- NH4

+ values greater 

than injectate values, and mixing trends back to the injectate, with the source of higher 

heavier noble gas concentrations in these wells only being possible from injectate.  These 

wells also had elevated tritium levels, which also could only be a result of recharge after 

the 1950’s, consistent with injectate age. The injectate is therefore concluded to be the 

source of elevated NH4
+concentrations found in the MC1, APPZ and the MC2 at both 

sites.  

There is evidence of multiple vertical bypass features at the SD, however no evidence of 

these features were observed in the data at the ND. Confinement bypass features were 

observed in different locations at the SD, suggesting several plumes may exist on site, 

consistent with previous findings. Data suggest injectate present in the APPZ at the ND 

may be the result of an offsite vertical bypass feature.   
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Evidence of some type of methanogenesis and NH4
+oxidation reactions were observed in 

the data. Microbial activity under high pressure and salinity environments such found in 

the BZ and the overlying zones in the FAS has not been extensively researched. This 

study suggests that further understanding of these processes may be of value, as current 

federal regulations require high level disinfection (HLD) prior to injection at municipal 

deep well injection facilities in south Florida due to the possibility of survival and 

migration of pathogens to an underground source of drinking water.   A better 

understanding of microbial activity under environmental conditions found in the FAS 

may validate or repudiate the necessity of HLD prior to injection.  
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3.10 Tables 

Geologic 
formation

Hydrogeologic 
unit

open 
interval Well Temp NH4

+ δ15N - NH3 δ2H δ18O N2 Ar O2 CO2 CH4
3H* 

m ID °C mmol/L ‰ ‰ ‰ mmol/L mmol/L mmol/L mmol/L mmol/L Excess Ar TU

Pleistocene Biscayne 
Aquifer surface S-EFF 29.0 1.43 7.66 -5.57 -1.36 0.418 0.030 0.012 3.010 0.0005 0.720 7.8

306 - 316 BZ1 24.2 0.01 6.90 -8.07 -1.88 0.584 0.014 0.004 0.116 0.0012 0.3
299 - 332 1U 23.6 0.01 5.92 -8.19 -1.80 0.587 0.014 0.005 0.015 0.0018 0.2
299 - 320 3U 24.3 0.01 5.52 -7.93 -1.78 0.586 0.014 0.005 0.024 0.0016 0.1
299 - 311 2U 25.3 0.02 6.60 -7.67 -1.82 0.575 0.014 0.006 0.102 0.0013 0.5
UFA average 24.35 0.01 6.24 -7.97 -1.82 0.583 0.014 0.005 0.064 0.0015
UFA standard deviation 0.70 0.00 0.63 0.22 0.04 0.006 0.000 0.001 0.052 0.0003
454 - 484 9U 23.8 0.08 10.09 -5.66 -1.28 0.562 0.019 0.007 0.045 0.0285 0.60
454 - 485 10U 24.8 0.07 9.76 -4.67 -1.34 0.563 0.019 0.007 0.049 0.0236 0.160 1.1
451 - 475 13U 24.4 0.17 10.05 -4.67 -1.25 0.525 0.024 0.010 0.076 0.0627 0.41 1.90
454 - 485 16U 23.2 0.44 10.07 -4.73 -1.32 0.496 0.027 0.012 0.211 0.0813 0.550 3.70
454 - 480 14U 25.0 0.52 9.14 -5.10 -1.40 0.495 0.027 0.012 0.555 0.0647 0.581 5.1
454 - 483 6U 25.1 0.80 8.80 -6.58 -1.35 0.429 0.030 0.014 0.703 0.0732 0.71 7.00
MC1 average 24.37 0.35 9.65 -5.24 -1.32 0.512 0.024 0.010 0.273 0.06
MC1 standard deviation 0.75 0.29 0.55 0.76 0.05 0.050 0.005 0.003 0.286 0.02
501 - 510 2L 24.8 0.01 4.84 -3.53 -1.19 0.577 0.014 0.006 0.087 0.0011 0.15
481 - 507 BZ2 24.1 0.18 9.84 -3.10 -1.14 0.517 0.024 0.010 0.119 0.0626 1.91
546 - 573 9L 23.1 0.01 3.70 4.22 0.22 0.555 0.015 0.005 0.064 0.0009 0.2
546 - 576 16L 22.9 0.01 0.83 2.75 0.03 0.557 0.015 0.006 0.076 0.0006 0.3
540 - 577 3L 24.1 0.01 3.47 4.58 0.27 0.559 0.015 0.005 0.043 0.0005 0.4
519 - 561 4L 24.5 0.01 5.58 2.91 0.22 0.541 0.014 0.016 0.156 0.0007 0.2
561 - 587 1L 23.4 0.00 3.35 3.54 0.28 0.561 0.015 0.007 0.039 0.0003
MC2 average(a) 23.60 0.01 3.39 3.60 0.20 0.555 0.015 0.008 0.076 0.001
MC2 standard deviation 0.64 0.00 1.69 0.80 0.10 0.008 0.0001 0.005 0.047 0.0002
530 - 562 13L 24.2 0.10 9.64 1.94 -0.07 0.547 0.017 0.006 0.057 0.0156 0.100 0.8
546 - 576 10L 24.7 0.19 10.47 0.68 -0.28 0.528 0.021 0.009 0.064 0.0534 0.30 1.80
MC2 average(b) 24.46 0.14 10.06 1.31 -0.18 0.537 0.019 0.008 0.061 0.03
MC2 standard deviation 0.33 0.07 0.59 0.89 0.15 0.013 0.003 0.002 0.005 0.03

Pleistocene Biscayne 
Aquifer surface N-EFF 26.3 0.81 10.30 -4.08 -1.35 0.561 0.028 0.020 2.473 0.0049 0.534

354 - 385 N-FA-1U 22.5 0.02 6.03 -6.22 -1.74 0.663 0.016 0.006 0.016 0.0035 0.3
351 - 384 N-FA-2U 22.7 0.02 5.58 -6.09 -1.77 0.670 0.016 0.005 0.015 0.0090 0.2
354 - 379 N-FA-3U 21.2 0.02 6.09 -5.24 -1.73 0.667 0.016 0.006 0.003 0.0026 0.2
354 - 379 N-FA-4U 20.8 0.02 5.02 -5.14 -1.80 0.667 0.016 0.005 0.019 0.0018 0.4
UFA average 21.80 0.02 5.68 -5.67 -1.76 0.667 0.016 0.006 0.013 0.004
UFA standard deviation 0.91 0.00 0.50 0.56 0.03 0.003 0.000 0.000 0.007 0.003
430 - 460 N-FA-3L 19.4 0.63 11.40 -0.89 -0.49 0.552 0.020 0.009 0.095 0.0159 0.23 1.90
430 - 461 N-FA-1L 19.9 0.70 12.71 -0.37 -0.44 0.558 0.021 0.009 0.124 0.0168 0.23 3.70
430 - 460 N-FA-4L 19.2 0.59 10.66 -1.83 -0.50 0.549 0.020 0.008 0.163 0.0154 0.23 2.80
431- 459 N-FA-2L 20.1 0.00 -0.68 -0.44 0.554 0.021 0.008 0.114 0.0194 0.27 3.20
MC1 average 19.67 0.48 11.59 -0.94 -0.47 0.553 0.021 0.008 0.124 0.02
MC1 standard deviation (impacted) 0.44 0.32 1.04 0.63 0.03 0.004 0.001 0.0004 0.029 0.002

Avon Park 
Limestone UFA 335 - 366 SWWF ASR L 23.07 0.02 5.38 -5 -1.61 0.6423 0.0153 0.0063 0.1431 0.0015 NS

(a): MC2 average for wel l s  with low NH4
+ concentrations

(b):  MC2 average for wel l s  with elevated NH4
+ concentrations

NS: not sampled for

    p   g     p    g  p   p       

Undifferentiated 
Hawthorn / Ocala 

Limestone to 
Avon Park 
Limestone   

 Upper 
Floridan 
aquifer

Avon Park 
Limestone

MC1

MC1/APPZ

MC2

Avon Park 
Limestone      

upper MC1

lower MC1

* 2005 sampl ing event

** 2008 sampl ing event

Table 3.1  Ammonium, stable isotope, dissolved gases and 3H/3He data.  
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open 
interval

Well He Ne Ar Kr Xe

m ID
µccSTP/kg µccSTP/kg ccSTP/kg µccSTP/kg µccSTP/kg

Pleistocene
Biscayne 
Aquifer surface S-EFF 26.9 159.9 0.648 208.75 13.99

306 - 316 BZ1 208.9 205.0 0.331 73.51 9.86

299 - 332 1U 195.5 202.9 0.322 74.52 9.63

299 - 320 3U 209.5 207.3 0.323 79.42 9.39

299 - 311 2U 195.2 199.8 0.308 70.03 9.35

UFA average 202.3 203.8 0.3 74.4 9.6

UFA standard deviation 8.0 3.2 0.0 3.9 0.2

454 - 484 9U 168.1 192.9 0.423 111.2 12.22

454 - 485 10U 146.5 184.7 0.368 93.55 10.69

451 - 475 13U 120.0 173.8 0.463 116.6 13.12

454 - 485 16U 85.8 169.9 0.647 188.3 20.84

454 - 480 14U 80.3 168.2 0.602 176.0 18.80

454 - 483 6U 49.8 161.7 0.707 210.2 20.86

MC1 average 108.4 175.2 0.5 149.3 16.1

MC1 standard deviation 44.4 11.5 0.1 48.1 4.6

501 - 510 2L 147.7 194.7 0.328 72.79 9.40
481 - 507 BZ2 115.7 176.0 0.553 138.7 15.68

546 - 573 9L 204.8 224.2 0.329 80.03 10.12

546 - 576 16L 170.8 174.6 0.343 84.06 11.09

540 - 577 3L 189.8 173.8 0.311 72.88 10.14

519 - 561 4L 166.4 175.6 0.311 73.60 10.17
561 - 587 1L 165.9 174.2 0.328 78.43 10.98

MC2 average* 179.5 184.5 0.3 77.8 10.5

MC2 standard deviation* 17.2 22.2 0.0 4.6 0.5

530 - 562 13L 128.5 169.2 0.355 88.90 11.09

546 - 576 10L 110.1 148.6 0.447 112.1 13.13

MC2 average** 119.3 158.9 0.4 100.5 12.1

MC2 standard deviation** 12.98 14.57 0.07 16.40 1.44

Pleistocene
Biscayne 
Aquifer surface N-EFF 60.9 230.8 0.649 496.2 146.5

354 - 385 N-FA-1U 162.8 234.6 0.359 82.20 10.45

351 - 384 N-FA-2U 165.2 234.3 0.356 79.05 10.39

354 - 379 N-FA-3U 168.5 235.7 0.356 80.88 10.44

354 - 379 N-FA-4U 164.1 236.0 0.353 85.15 10.30

UFA average 165.1 235.2 0.4 81.8 10.4

UFA standard deviation 2.4 0.8 0.0 2.6 0.1

430 - 460 N-FA-3L 63.2 177.0 0.445 112.7 13.08

430 - 461 N-FA-1L 48.9 171.8 0.444 116.6 13.20

430 - 460 N-FA-4L 67.8 179.7 0.453 111.1 13.50

431- 459 N-FA-2L 48.8 172.0 0.457 115.6 13.48

MC1 average 57.2 175.1 0.4 114.0 13.3

MC1 standard deviation 9.8 3.9 0.0 2.6 0.2

Avon Park 
Limestone UFA

335 -366 SWWF ASR-MW-1L 319.8 230.4 0.354 77.91 10.17

* MC2 average for wel l s  with low NH4
+ concentrations

** MC2 average for wel l s  with elevated NH4
+ concentrations

Avon Park 
Limestone      

upper MC1

lower MC1

Geologic 
formation

Hydrogeologic 
unit

Undifferentiated 
Hawthorn / 

Ocala 
Limestone to 

Avon Park 
Limestone   

 Upper 
Floridan 
aquifer         
(UFA)

Avon Park 
Limestone

MC1

MC1/APPZ

MC2

Table 3.2  Dissolved noble gas concentrations 
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3.11 Figures 

   

Figure 3.1  Location of the north, south, and the ASR study sites. 
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Figure 3.2  Geologic Cross section. 
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Figure 3.3  Well location at the south site. Each well consists of an upper zone (U) and a 

lower (L) monitoring zone. Each well is in close proximity to an injection well (which are 

not shown to retain clarity in figure). 
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Figure 3.4  Well location at the north site. Each well consists of an upper zone (U) and a 

lower (L) monitoring zone. Each well is in close proximity to an injection well (which are 

not shown to retain clarity in figure). 
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Figure 3.5  NH4
+ concentrations versus δ15N-NH4

+ ‰. Ambient δ15N-NH4
+ ‰ values 

decrease with depth in the aquifer, suggesting different sources of NH4
+ in different zones 

in FAS. Wells with elevated NH4
+ concentrations at south and north sites had increasing 

δ15N-NH4
+ ‰ value with decreasing NH4

+ concentrations. 
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Figure 3.6  δ2H ‰ vs δ18O ‰ values. Ambient values cluster according to depth in the 

aquifer, suggesting little hydrologic connection between monitored zones. Ambient 

deeper zones plot heavier than seawater; ambient upper zones plot off to the right 

indicating evaporative meteoric sources. MC1 zones with elevated NH4
+ concentrations 
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at the south site lie along mixing line to injectate values, and do not show any mixing 

from underlying MC2 zone.   
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Figure 3.7  Dissolved gas vs. NH4
+ concentrations.  N2 and argon concentrations from the 

zones with elevated NH4
+ concentrations reflect the cryogenic treatment process in the 

injectate, with well 6U having very similar concentrations of those gases to the injectate. 

CO2 concentrations in well 6U show a much quicker decrease than either N2 or argon, 

and along with the appearance of CH4 in wells with elevated NH4
+ concentrations, would 

suggest methanogenic processes. Dotted line on N2 and argon binary plots are mixing line 

between injectate and ambient concentrations; dashed line is mixing line between well 

6U and ambient concentrations.   
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Figure 3.8  Dissolved gas vs. NH4
+ concentrations at the north site. Although the impact 

of the cryogenic process is evident in lower MC1 zone, the dissolved gas concentrations 

lie closer to ambient concentrations.  N2 concentrations for lower MC1 are similar to the 

N2 concentrations at the ambient MC2 zone at the south site.  
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Figure 3.9  Dissolved noble gases vs. NH4
+ concentrations.  Dissolved gas concentrations 

from zones with elevated NH4
+ concentrations reflect the cryogenic treatment process in 

the injectate, with well 6U having very similar concentrations of those gases to the 

injectate. Neon, argon and krypton concentrations for well 6U are very similar to the 

injectate, however, NH4
+ concentrations are lower than injectate. Data from the north site 

(yellow triangles) are plotted to show the little variance between samples.  
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Figure 3.10  Neon and xenon concentrations. ASW: air saturated water; ASSW: air 

saturated sea water. MC2 ambient plot to the right of ASSW at 8⁰C, which would be 

consistent with Holocene-age recharge from the Florida Straits. Impacted MC1 at the 

south site shows mixing trend from well 6U to ASW equilibrium line. MC1 from the 

north site shows little variance between concentrations, and do not show a gradual mixing 

as seen in MC1 south data. 
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Figure 3.11  3H/3He age vs. NH4
+ concentrations.  Samples grouped into “new” (recent 

recharge with injectate), “mixed” (mixed between new and old water), and “old” (tritium 

dead water, recharge prior to initiation of plant operations). Well BZL overlapped 

between “mixed: and “old”, reflecting the injectate plume at BZL a result of an open 

connection to the BZ present at the commencement of site operations in the early 1980’s.  
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Figure 3.12  δ18O ‰ values vs. NH4
+ concentrations.  Zones with 

elevated NH4
+ concentration mixing trends trace back to injectate; 

MC1 with NH4
+ concentrations shows no evidence of MC2 mixing.  
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CHAPTER 4 EFFECTS ON CARBONATE EQUILIBRIUM FROM MIXING 

FRESH WASTWATER IN A DEEP SALINE AQUIFER, SOUTH FLORIDA, U.S.A. 

4.1 Introduction 

Deep well injection of treated municipal wastewater into non-potable aquifers occurs on a 

global scale and is most prevalent in developed countries (Saripalli et al., 2000).   Deeper 

aquifers have been used for many decades in Florida, USA, for the disposal of industrial 

and municipal waste fluids (Meyer 1989a; Meyer 1989b). These deep aquifers tend to be 

saline, which limits their use as potential potable water supplies, and therefore little 

research has been conducted regarding the fate and transport of the injectate as there has 

never been the intention for its recovery (Meyer 1989a; Haberfeld 1991).    Miami-Dade 

County Water and Sewer Department (MDWASD), located in southern Florida, currently 

disposes 430 million liters per day (MLD) of treated domestic wastewater into a deep 

saline aquifer at two locations in the county. The treated wastewater (injectate) is injected 

into the Boulder Zone, a highly transmissive saline zone of the Lower Floridan Aquifer.  

The Boulder Zone was thought to be hydrologically separated from overlying aquifers by 

a 335 meter thick confining unit, which would prevent the buoyant transport of the 

freshwater injectate upwards into overlying aquifers. Ammonia (NH3) was detected in 

1994 at 442 meter depth in the overlying aquifer at a concentration of 411 µmol/L above 

reported background levels of 29 µmol per liter (BC&E/CH2MHill 1977). The detection 

of NH3 in the aquifers above the Boulder Zone has raised doubts regarding the efficacy of 

the confining unit and the resultant water quality impact to overlying aquifers, as these 
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aquifers are used as alternative water supplies via storage of freshwater (ASR) and 

blending with potable surficial aquifer water.   

 The mixing of injected freshwater into a deep saline aquifer may geochemically 

resemble the mixing of a coastal fresh water-seawater mixing zone. The saline-freshwater 

mixing zone in carbonate aquifers is described as conservative mixing of saline-

freshwater endmembers in a closed CO2 system resulting in an area of undersaturation 

with respect to carbonate minerals (Back et al., 1979; Smart et al., 1988; Stoessell et al., 

1989).  Carbonate equilibrium in these models is dependent upon the temperature, pH, 

ionic strength of waters, partial pressure of CO2, and the ion activities of the ions 

involved, Ca2+ and HCO3
-, and changes in the saturation states of carbonate minerals can 

result when fluids of different chemical composition  mix together  (Wigley and 

Plummer, 1976). These changes in carbonate equilibrium in the mixing zones of aquifers 

can redistribute porosity and permeability (Hanshaw and Back, 1980). Dissolution of 

carbonates as a result of undersaturated coastal  mixing zones have been reported in many 

locations, including  Yucatan Peninsula (Hanshaw and Back, 1980; Back et al., 1986; 

Stoessell et al., 1989), and Andros Island, Bahamas (Smart et al., 1988, Whitaker and 

Smart, 1997).  This can be a complex geochemical process, and not completely predicted 

by conservative mixing models. For example, carbonate equilibrium can be affected by 

stresses on an aquifer such as coastal pumping, as was found in Mallorca, Spain, (Price 

and Herman, 1991) and Manukan Island near East Malaysia (Aris, et al., 2010). In those 

locations, pumping of the freshwater aquifer resulted in movement of the mixing zone 

landward, and an oversaturation of mixing waters with respect to calcite and aragonite 
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due to outgassing of CO2 from the water table. Studies of fresh water–saline mixing in 

the Floridan aquifer in west-central Florida indicated that aquifer waters were 

oversaturated with respect to calcite, however calcite precipitation was not observed as 

predicted by the geochemical model (Wicks, et al., 1995).  

Geochemical speciation and mole-balance modeling can be used to understand the 

induced flow and changes in geochemistry in the aquifer as a result of injected fluids 

(Parkhurst and Petkewich, 2002). In the current study, the mixing of freshwater injectate 

with native, saline water of the Floridan aquifer on carbonate equilibrium is evaluated. 

There is strong evidence that injectate has migrated vertically upward into overlaying 

brackish aquifers, as a result of buoyant flow through the confining units above the 

Boulder Zone, by natural and/or anthropogenic vertical pathways (MDWASD, 1995; 

Rust Environmental, 1996; Maliva, et al., 2007; McNeill, 2000; MDWASD, 2005; Starr 

et al., 2001; King et al., 2009; Dausman et al., 2010; Walsh and Price, 2010). We 

hypothesize that the mixing of freshwater injectate and deep saline aquifer water (similar 

to the freshwater-seawater mixing zone) may result in an undersaturation state with 

respect to calcite, resulting in calcite dissolution and the rearrangement of porosity and 

permeability possibly enhancing the ability of upward migration and transport of injectate 

into overlying aquifers over time. The objective of the current study was to determine the 

geochemical reactions and changes to carbonate equilibrium as a result of the mixing of 

injectate and native waters in the Floridan aquifer, and to relate the changes in carbonate 

equilibrium to upward migration and transport of the injectate. The results of the research 
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have implications for ongoing and future deep well injection sites in carbonate bearing 

aquifers.   

4.1.1 Study Area 

 The two deep well injection sites operated by MDWASD include the South District 

Wastewater Treatment Plant (SD) located in southern Miami-Dade County, and the North 

District Wastewater Treatment Plant (ND) located approximately 44 kilometers to the 

north (Figure 4.1). The SD is permitted to inject approximately 380 million liters per day 

(MLD) while the ND is permitted to inject 90 MLD of wastewater. At both sites, the 

injectate consists of secondarily treated domestic fresh wastewater, that is injected into 

the Boulder Zone, approximately 900 meters below land surface (bls). The SD operates 

seventeen injection wells (Figure 4.2), and each injection well has an associated dual-

zone monitoring well that is designed to monitor the overlying aquifers, with each well 

constructed to have zones open to two different intervals (see Walsh and Price, 2010, for 

a full description of the site layout and monitoring well information). The ND operates 

four injection wells, and four associated dual-zone monitoring wells (Figure 4.3). 

Elevated  NH4
+ concentrations detected in monitoring wells in the 1990’s at both sites 

were interpreted as evidence of upward injectate migration, and geochemical evidence 

and numerical and analytical modeling has shown that injectate has possibly migrated to 

the overlying aquifers, bypassing the underlying confining units in some areas, and in 

other areas appears to be the result of horizontal advective flow once introduced into a 

hydrologic zone (MDWASD, 2005; King et al., 2009; Dausman et al., 2010; Walsh and 

Price, 2010).  
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The two study sites are underlain by two carbonate aquifer systems, the Surficial Aquifer 

System (SAS), and the confined Floridan Aquifer System (FAS), which is composed of 

800 meter (m) thick sequences of carbonate and dolomitic limestones, deposited during 

the Paleocene to the Oligocene epochs (Figure 4.4). The SAS is an unconfined 

Pleistocene age carbonate sequence that is the source of potable water for south Florida 

(Fish and Stewart, 1991), with a group of impermeable sediments known as the 

Hawthorn group providing a 180 m thick confining unit between the SAS and the 

Floridan Aquifer System (Figure 4.4).   In south Florida the FAS has several recognized 

major hydrogeologic zones (Reese and Richardson 2008). The Upper Floridan Aquifer 

(UFA) consists of highly permeable zones (flow zones) interlayered with thicker, lower 

permeable zones. The Middle Confining Units MC1 and MC2 underlie the UFA, with the 

two units separated by the Avon Park Permeable zone (APPZ).  The Lower Floridan 

aquifer (LFA) is a thick sequence of permeable layers separated by thick semiconfining 

units of dolomite and limestone (Miller, 1986). The base of the FAS is marked by the 

massive impermeable anhydrite beds of the Cedar Keys Formation (Miller, 1986). The 

base of the LFA in south Florida is approximately 930 m below land surface (Meyers, 

1989a). The SAS in south Florida is used for drinking water and irrigation; the UFA is 

used for groundwater withdrawals for public drinking water supplies, and also for 

Aquifer Storage and Recovery (ASR).  

4.2 Methods 

Chloride (Cl-) data from 1983 through 2008 for the north and south sites were collected 

from the treatment plants’ monthly operating reports (MORs). Summary statistics 
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including mean, median, standard deviation, maximum and minimum were applied to the 

time series data for each well to assess water quality changes over time, and to determine 

ambient water quality for each of the representative hydrogeologic zones (refer to Walsh 

and Price, 2010, for a complete description of ambient water quality determination). 

Residence time of groundwater in the upper FAS in south Florida is thousands of years 

(Meyer 1989a), and therefore it is assumed that the aquifer  matrix and water is in 

equilibrium and there would be no other cause of large deviations to water quality over 

time other than migration of injectate. Chloride time series data that showed large 

variation over time indicate non-equilibrium conditions, and therefore not representative 

of ambient conditions.   

Floridan aquifer water samples were collected from the monitoring wells at the SD and 

the ND sites during 2006 and 2007 as part of this study and analyzed for major ions 

(Ca2+,  K+, Na+, Mg2+, Cl-, SO4
2-  HCO3

-, CO2
- ,Br-) , silica and nitrogen species. During 

the study, many of the dual zone monitoring wells had developed corrosive holes in the 

casing, and were no longer suitable for monitoring purposes, therefore a total of twenty 

monitoring wells were used at the SD, and eight wells at the North District (Table 4.1). 

Water quality samples were collected from the twenty monitoring wells at the SD from 

wells representing the UFA, the MC1, the APPZ, and the Middle Confining Unit Two. At 

the ND, samples were collected from four monitoring wells representing the lower 

UFA/upper MC1 (hereafter referred to the UFA), and four wells in the lower MC1/APPZ 

(hereafter referred to the APPZ). Temperature, pH, dissolved oxygen, and specific 

conductance were taken from water samples in the field using a YSITM 556 MPS, with 
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instrumentation calibrated prior to each sampling event.  The monitoring wells were 

purged for at least 24 hours prior to the sampling events to ensure at least three well 

volumes were evacuated prior to sampling. Samples were collected through a closed 

system using a low flow cell and tygon tubing through a disposable, high capacity 0.45 

µM in-line filter. Water samples were analyzed for the major anions Br-, Cl-, and SO4
2- 

on a DIONEX®  ion chromatography system, and the major cations (Ca2+, Mg2+, K+, and 

Na+ ) were analyzed by inductively coupled plasma (ICP).  The ions HCO3
- and CO2

- 

were analyzed via manual titration using a standard acid (HCl or H2SO4) and calculated 

using the mass balance speciation method. A LACHAT® analyzer 800 was used to 

analyze for NH3 , with NH4
+ calculated based on pH and temperature of the sample using 

the NH3 result (Stumm and Morgan 1996).  

Samples were collected again in February 2008 for analysis of carbon dioxide (CO2), 

methane (CH4), and dissolved noble gases (helium, neon, argon, krypton and xenon). 

Samples for dissolved noble gases were collected in copper tubes that were crimp-sealed 

while groundwater was flowing through the tube. Dissolved gas samples were collected 

in serum bottles preserved with potassium hydroxide. Samples were analyzed for the 

dissolved gases of   Ar,  CO2 and CH4 by gas chromatograph on low pressure headspace 

at the U.S. Geological Survey (USGS) Dissolved Gas Laboratory (Weiss, 1970; Weiss, 

1974; Wiesenburg et. al., 1979).  

Binary mixing models (BMM) were developed using Cl- , Br-,  NH4
+ and Ar data of the 

ambient and injectate water quality as the two endmembers for each zone at the SD and 

the ND, assuming these parameters were nonreactive with either the aquifer matrix or 
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groundwater, and therefore conservative.   Water quality data from the December 2006 

and 2007 sampling events from the SD wells  9U for the MC1 zone, and well 1L from the 

MC2 zone  were used to represent the BMM endmember ambient water quality data. 

Average water quality data was used for the injectate endmember, due to its seasonal 

variability (Walsh and Price, 2010). During the 2006 and 2007 sampling events, the 

APPZ wells at the ND had elevated NH4
+ concentrations, indicative of the presence of 

injectate in the aquifer, therefore pre-injection historical data from well N1L was used for 

the Cl- and  NH4
+  water quality endmember in the Avon Park Permeable Zone. The 

fraction of injectate (finj) from each well exhibiting elevated NH4
+  concentrations  was 

calculated derived from the mass balance equation (Plummer and Back, 1980): 

( ) ( )ambinjsampleinjamb xxxxf −−= /    ( 1) 

ambinj ff −= 1       ( 2) 

where famb was the fraction of ambient water in the mixture, xinj was the concentration of 

the injectate endmember, xsample was the concentration of the sample, xamb was the 

concentration of the ambient endmember, and finj was the fraction of injectate in the 

mixture.  Results for Cl- , Br- and NH4
+ BMMs were then compared to one another.   

The geochemical model PHREEQC (Parkhurst and Appelo, 1999) was used to calculate 

the ion speciation of the water samples and the saturation indices of calcite, dolomite and 

aragonite. Saturation  indices were calculated as the log of the ratio of the ion-activity 
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product (IAP) of the mineral  in mixtures divided by the equilibrium constant (K) of that 

mineral (Langmuir, 1971; Plummer, 1975): 

eraleraleral KIAPSI minminmin /log=     (3) 

PHREEQC uses ion-association and Debye Hückel expressions to account for the non-

ideality of aqueous solutions, and through the use of an ionic-strength term in the Debye 

Hückel expression. These terms were fitted for the major ions using the Cl- mean-salt 

activity-coefficient data  (Truesdell and Jones, 1974, Parkhurst and Appelo, 1999). The 

FAS was assumed to be closed with respect to CO2 , a reasonable assumption given that 

the Floridan aquifer is a deep, confined aquifer. The CO2 partial pressures (PCO2) were 

calculated based on the CO2 concentrations of the February 2008 sampling events using a 

Henry’s constant adjusted for the temperature of the water sample when collected 

according to Henry’s Law: 

iii PkS *=        (4) 

where Si was the solubility of gas i, ki was Henry’s Constant for gas i, and Pi was the 

partial pressure of gas i. Major ion concentrations and field parameters for each sample 

were input into PHREEQC for initial solution speciation, and then each solution was 

equilibrated to the observed PCO2 values. Samples with a mineral saturation index of        

0 ± 0.5 were considered to be at equilibrium for that mineral. A positive SI (>0.05) 

indicated supersaturated conditions for the respective mineral, and would suggest mineral 
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precipitation. A negative value (<0.05) indicated undersaturated conditions for the 

respective mineral, and would suggest mineral dissolution.  

Chemical composition and saturation indices were calculated in PHREEQC for the two-

member mixing solutions for each hydrogeologic zone at the SD (9U and injectate for the 

MC1; 1L and injectate for the MC2), and the APPZ zone at the ND, using injectate 

fractions ranging from finj = 0 (representing pure ambient water) to finj = 1 (representing 

pure injectate water). Saturation indices calculated for the 9U/injectate and 1L/injectate 

(SD), and N1L/injectate (ND) mixing solutions were plotted to develop the two-member 

mixture SI curves for calcite, dolomite and aragonite. Saturation indices calculated for 

samples with elevated NH4
+ concentrations in the MC1 and MC2 zones at the SD 

(samples 10U, 13U, 15U, 16U, 14U and 6U for the MC1; 10L, 13L and 12L for the 

MC2) were then compared to the BMM finj  for each of the indicated samples, and 

compared to the two-member mixture saturation indices. The predicted species 

concentrations were compared to observed concentrations. The same method was used 

for ND samples in the Avon Park Permeable Zone.  

4.3 Results 

4.3.1 Binary mixing model results 

The fraction of injectate determined from the binary mixing models for each of the wells 

with elevated NH4
+ concentrations at the SD were similar for both the 2006 and 2007 

samplings (Figure 4.5). The SD well 6U (well with highest NH4
+ concentration)   had a 

mixing fraction (finj) of 0.6 and 0.7 for the month of December in years 2006 and 2007, 
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respectively. Well 14U had a 0.3 finj and 0.5 for the month of December in years 2006 

and 2007, respectively. The BMM results for well 16U were 0.1 finj for December in both 

years. Results for wells with lower NH4
+ concentrations ranged from less than 0.1 to 

below 0 fraction injectate. The BMM for Cl- and Br- had very similar results for 

December both years modeled. Wells with lower NH4
+ concentrations had an NH4

+ 

BMM slightly higher finj for Dec 2006 (Figure 4.5), but results were very similar to the 

Cl- and Br- BMM for the elevated  NH4
+  concentrations wells (wells 14U and 6U). The 

NH4
+ BMM results for the December 2007 data had similar finj values for all wells, with 

the exception of well 16U, which varied for all 3 binary mixing models (Figure 4.5).   

The finj results for the MC2 wells at the SD were the same for both 2006 and 2007. 

Results were very similar for the Cl- and Br- models, with the well with the highest NH4
+  

concentration (well 12L) at 0.9 finj, and the well with the lowest NH4
+  (well 13L) 

concentration at 0.1 finj (Figure 4.6). The NH4
+ BMM was similar to the Cl- and Br- 

models for well 13L, and but had a lower finj for the wells with higher NH4
+  

concentrations. Results for the BMMs at the ND (Figure 4.6) were also very similar for 

the December 2006 and December 2007 data. The Cl- and Br- models had finj for the ND 

MC1 wells close to 0.1 finj , with NH4
+  BMM finj modeled a slightly higher (Figure 4.6).  

4.3.2 Carbonate mineral saturation indices results 

Injectate at both the SD and the ND was undersaturated with respect to calcite, dolomite 

and aragonite (Table 4.2). Samples from the UFA at both sites ranged from slightly 

undersaturated to oversaturated with respect to calcite and aragonite. Wells in the MC1 at 

the SD with a higher finj (wells 14U and 6U ) were near equilibrium or slightly 
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undersaturated; wells with lower finj were oversaturated with respect to calcite and 

aragonite (Table 4.2).    Samples from the MC2 wells were oversaturated with respect to 

calcite and aragonite (Table 4.2), with the exception of well 12L (highest NH4
+ 

concentration in the MC2), which was undersaturated with respect to calcite and 

aragonite.  The ND APPZ had saturation indices with respect to calcite and aragonite 

mostly oversaturated.  Dolomite was oversaturated for all wells, with the exception of 

well 4L, and wells with the highest NH4
+ concentration (6U and 12L). No pattern was 

observed for the calcite and aragonite saturation indices, other than decreasing saturation 

indices for the MC1 wells at the SD with increasing NH4
+ concentrations (Figure 4.7). 

Saturation indices for calcite were calculated for time series data for well 6U at the SD in 

an attempt to detect temporal changes, but no significant changes in time were observed.  

Saturation indices for calcite, aragonite and dolomite were calculated in PHREEQC for 

two endmember solution mixtures with a fraction of injectate ranging from finj = 0 to     

finj = 1, and then plotted for the 9U/Injectate solution mixture fractions as a curve (Figure 

4.8). As expected, the solution mixtures became increasing undersaturated with 

increasing injectate fraction.  The calculated SIs for calcite, dolomite and aragonite  for 

wells with elevated NH4
+ concentrations were higher than predicted by the mixing curve 

for both the SD MC1 and MC2 zones (Figures 4.8 and  4.9). A comparison of observed 

PCO2 values to predicted  PCO2 for the ambient/injectate solution mixture fractions  

indicated wells with elevated NH4
+ concentrations were depleted with respect to CO2 for 

both the MC1 and Middle Confining Unit Two (Figure 4.10).  
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4.4 Discussion 

4.4.1 Binary mixing models results  

Large deviations between the Cl- and Br- models may indicate the model parameters are 

not conservative (Davis et al., 1998), however as no large deviations were observed in the 

Cl- and Br- BMMs, the assumption of these being conservative tracers is supported.   

Wells with low NH4
+ concentrations for the December 2006 sampling event modeled 

with a negative injectate fraction, and this is probably due to slight variations of water 

quality in the wells, however both Cl- and Br- model results were similar (Figure 4.5). 

The three BMMs for well 6U (the well with the highest NH4
+ concentration) plotted 

reasonably close to one another, and that the NH4
+ BMM model results were similar to 

the Cl- and Br- BMMs  would suggest the that NH4
+ behaves conservative once 

introduced into the MC1 zone of the aquifer. Prior δ15N-NH4
+ work analyzed for the sites 

indicated  NH4
+ fractionation was observed in wells with elevated NH4

+ concentrations, 

which was interpreted that there may be some NH4
+ loss in the aquifer (Walsh and Price, 

in review), and that the reactive loss of NH4
+  appeared to be minimal. If there was 

significant loss of NH4
+, the NH4

+ BMM would underestimate the finj, compared to the Cl- 

and Br- BMMs, which is not seen (Figure 4.5). The BMMs results suggest that loss of 

NH4
+ is minor compared to the concentrations found in the aquifer. The BMM for NH4

+ 

plots above the Cl- BMM for the APPZ at the ND (Figure 4.6). The SD BMMs for Cl- 

and Br- for the lower MC2 zone, are nearly identical (Figure 4.6), with the NH4
+ BMM 

plotting slightly below the two, which may suggest minor reactive NH4
+ loss, but still 

negligible compared to overall  NH4
+ concentrations.  
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Argon concentration results for the February 2008 dissolved gas sampling event show an 

estimated higher finj for wells with increasing NH4
+ concentration (6U, 14U, 16U and 

13U), and well 6U estimated a finj of 1.0 for the argon binary mixing model (Figure 4.5). 

Argon is a product of the oxygen cryogenic treatment in the injectate at both sites; 

injectate is enriched in CO2 and the heavier noble gases, argon, krypton and xenon, and 

depleted in the lighter gases (Walsh and Price, in review). For the Cl- and Br- BMM the 

average concentrations of injectate were used, as injectate concentrations of NH4
+ are 

highly seasonal (Walsh and Price, 2010), however dissolved gas data from only one 

sampling event were available. Dissolved gas concentrations from this one sampling 

event may not represent conditions over time.   

4.4.2 PCO2
 and carbonate equilibrium 

Carbonate equilibrium is highly sensitive to PCO2, temperature, ionic strength of the 

endmembers, and pH of the solutions prior to mixing (Plummer, 1975; Wigley and 

Plummer, 1976).  Temperature and pH variations in the solution endmembers were small 

(Table 4.1), and not within the variance range that would significantly affect saturation 

index (Plummer, 1975). No trend in SIcalcite could be discerned based on sample depth 

(Figure 4.7), but wells with increasing NH4
+ concentrations became less oversaturated for 

both the MC1 and MC2 at the SD and well 6U (highest NH4
+ concentration) was close to 

equilibrium (Figure 4.7).  Wells with low NH4
+  concentrations in all hydrogeologic 

zones in the FAS were mostly oversaturated with respect to calcite, dolomite and 

aragonite (Table 4.2), similar to results found in other Floridan Aquifer studies (Back and 

Hanshaw, 1970; Plummer, 1977; Sprinkle, 1989; Budd, et al., 1993; Wicks et al., 1995).  
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All wells were undersaturated with respect to gypsum, similar to other Floridan aquifer 

results (Wicks, et al., 1995).  

4.4.3 Injectate excess CO2 and methanogenesis in carbonate equilibrium 

Wells with elevated NH4
+ concentrations in the MC1 at the SD were close to equilibrium 

with respect to calcite, and were more oversaturated than predicted by conservative 

mixing (Figure 4.8). These elevated NH4
+ concentration wells had lower PCO2 than 

predicted by conservative mixing (Figure 4.10). This depletion in CO2  in wells with 

elevated NH4
+ concentrations is explained by the injectate cryogenic treatment process at 

both sites.  Injectate water is enriched with CO2 as a result of the cryogenic treatment 

(Walsh and Price, in review) however, it is depleted in methane (as is ambient 

groundwater in the FAS), as methane is collected at the treatment plants and used for 

power generation.  Well 6U (highest NH4
+ concentration) had very similar concentrations 

of argon and N2  compared to injectate concentrations (Table 4.1), however it was 

depleted in CO2 concentration compared  to injectate. Elevated concentrations of methane 

were observed in wells with elevated NH4
+ concentrations (Walsh and Price, in review). 

Methane and CO2 show an inverse relationship in SD water samples (Figure 4.11) as 

would be expected by methanogenesis (Bates et al., 2011) as described by the following 

equation::   

CO2 + 4 H2 → CH4 + 2H2O     (eq.5) 

The calcite saturation indices for well 6U and 12L were recalculated in PHREEQC using 

injectate CO2 concentrations (assuming no reactive loss of CO2 through methanogenesis, 
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and based on the argon concentrations in these wells being very similar to injectate 

concentrations). The recalculated calcite saturation indices fell closer to the conservative 

mixing curve (Figure 4.8).   Bacterial processes have been reported for other aquifers 

whereby the production of additional CO2 by the oxidation of organic material resulted in 

enhanced calcite undersaturation  (Whitaker and Smart, 1997), however, in the current 

study bacterial processes depleted CO2 and diminished calcite undersaturation.  

Injectate water is highly undersaturated with respect to calcite, dolomite and aragonite, 

and once introduced into the saline Boulder Zone, geochemical modeling predicts 

porosity enhancement through dissolution of these minerals.  The corrosive water may 

contribute to enlargement of migration pathways, allowing for greater upward fluid flow 

as a result of buoyancy differences between native waters and injectate. Geochemical 

modeling predicts dissolution should persist with aquifer water that contains greater than 

2% injectate (Figure 4.8), which would include most MC1 wells at the South site. 

However, observed results show only well water containing greater than 50% injectate as 

close to undersaturated. The results suggest CO2 methanogenic uptake and diminished 

calcite undersaturation as a result of decreasing CO2 concentrations along the injectate 

vertical flow paths to the overlying aquifers. Once introduced into the overlying aquifers, 

injectate continues to mix along flow paths within the aquifer.  The mixed waters become 

depleted in excess CO2 as a result of methanogenesis, and become oversaturated with 

respect to calcite, aragonite and dolomite, suggesting precipitation of these minerals. The 

oversaturation of carbonate minerals in the current study is similar to other findings for 

the confined Floridan aquifer, however in those studies the predicted precipitation of 
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minerals was not observed in thin section (Budd et al., 1993; Wicks et al., 1995).  

Analysis of core samples from the two sites in this study was not part of this research, so 

mineral precipitation could not be determined, however it is reasonable to assume there 

would be results similar to the other Floridan aquifer studies.  

4.4.4 Evidence of Confinement Bypass Pathways 

Confinement bypass features are vertical pathways that allow upward migration of 

injectate to the APPZ and MC1 bypassing the lower Floridan confining units and the 

Middle Confining Unit Two. These features may be the result of improper construction of 

the injection wells (i.e. slipped casings or drifting boreholes), or may be related to 

structural features such as fractures, faults and collapse karst systems found in the 

Floridan aquifer (Cunningham and Walker, 2009; King et al., 2011), or some 

combination thereof. Prior geochemical, stable isotope and dissolved gas analyses and 

H3/4He relative age dating done for the SD and the ND provide evidence of confinement 

bypass pathways at the SD, specifically at well 6U, 14U and 12-lower. Work done in this 

study further provides evidence of these pathways. Wells 6U, 14U and 12L have finj 

between 0.5 and 0.9, indicating groundwater samples contain a large fraction of injectate, 

with the remainder of wells less than 0.2 fraction of injectate. Large variations between 

the Cl-/ Br-  BMMs and the NH4
+ BMM would indicate that other sources of water may 

contribute to each sample water quality other than ambient hydrogeologic zone water and 

injectate endmembers. All BMMs show approximately 0.6 to 0.8 finj for well 6U in the 

MC1, and no large deviations are seen between the BMMs for most wells.   
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Observed Ca2+, Cl-, and Na+ concentrations were very similar to concentrations predicted 

by conservative mixing of the injectate with ambient water, according to the two 

endmember mixing model (Figure 4.12). The lower confining zones beneath the MC1 

have Cl- concentrations close to seawater (Kohout, 1965; Reese, 1994; Walsh and Price, 

2010), and if water were migrating up through the MC2 to the MC1, the increase in Cl- 

would have a dampening effect on the Cl- BMM, resulting in underestimating the finj  

compared to the NH4
+ BMM fraction of injectate. To illustrate this, a three member 

solution mixture for the MC1 was modeled in PHREEQC, using well 9U water as 

ambient, average injectate, and well 1L in the MC2 as the three endmembers.  An 

assumption was made that upward migrating fluids would migrate upward through the 

MC2 via buoyant flow, and by the time injecate water reached the MC1 it would contain 

50% injectate and 50% MC2 water. Water migrating upward from the Boulder Zone to 

the MC1 must migrate through almost 400 meters of aquifer matrix, and therefore an 

assumption of 50%/50% mixture of injectate and MC2 water probably considerably 

overestimates the percentage of injectate. Comparison of observed Cl- and Na+ 

concentrations to those predicted by the three endmember model indicated all 

concentrations in the MC1 wells were lower when compared to the conservative mixing 

of the three solutions (Figure 4.12). The close match of the wells in the MC1 to the two 

member conservative mixing model, and the overestimation of ions compared in the three 

member mixing model to observed concentrations, suggests there is minimal mixture of 

MC2 water in any of the MC1 wells, and that injectate may bypass the underlying 

aquifers as it migrates upwards into the Middle Confining Unit One. 
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4.4.5 Porosity enhancement and confinement bypass pathways 

The undersaturated state for carbonate minerals in the injectate would suggest that there 

is porosity enhancement along the vertical flowpaths over time. If enhanced porosity was 

occurring along vertical flow paths, the finj over time should increase in wells considered 

close to these vertical flowpaths, as increasing porosity would allow greater buoyant 

injectate migration. Chloride concentrations in injectate  and concentrations in wells 

considered representative of ambient conditions do not change over time,  as injectate has 

a freshwater source, and Cl- is in equilibrium with the aquifer (Walsh and Price, 2010). 

Therefore a finj increasing over time would indicate increasing amounts of injectate 

reaching that particular well, which would be the case if there was porosity enhancement 

over time along the vertical flowpath. Chloride concentrations were analyzed over time 

for the SD injectate and well 6U in the MC1, and the finj in well 6U and 14U was 

calculated for the period of record (1994 – 2008). Chloride concentrations in wells 6U 

and 14U decrease over time, and the calculated finj therefore increases with time (Figure 

4.13), consistent with the interpretation of porosity enhancement along the vertical 

flowpaths in the vicinity of these wells.  The finj in wells hypothesized to be in the 

horizontal flow path and not near any vertical pathways (9U, 10U, 13U and 16U), no not 

show any significant change in finj over time (Figure 4.12), which would be expected 

based on the calcite oversaturated states in these samples.     

The finj was much higher for the MC2 at the SD than the MC1 for wells thought to be 

near vertical bypass pathways, and the SIcalcite for the MC2 was more undersaturated than 

the SIcalcite for the Middle Confining Unit One. The MC2 lies approximately 125 meters 



 

131 

 

above the Boulder Zone, whereas the MC1 lies almost 400 meters above the Boulder 

Zone, and injectate travel times along the vertical pathways to the MC1 are longer than 

the travel times to the Middle Confining Unit Two. The dissolved gas sample for well 

12L in the MC2 was lost, so comparison of the CO2 concentration to well 6U in the MC1 

was not possible, but based on the finj of 0.9 for well 12L, the CO2 concentration in this 

well would be expected to be higher than in well 6-upper. The expected higher 

concentration of CO2 would allow for increased undersaturation with respect to calcite, 

which is reflected in the SIcalcite  for well 12L much lower than for well 6U. The enhanced 

undersaturation would result in greater porosity enhancement in the vicinity of well 12L, 

and for the greater finj in well 12L. As injectate travels upward in the vertical pathways  to 

the MC1, there is longer time for the methanogenetic uptake of CO2, resulting in 

decreasing excess CO2 concentrations in the vicinity of well 6U, as is seen by water in 

6U being near equilibrium, and a lower finj in this well than in well 12-lower.  

The shorter travel time to the MC2 may also explain underprediction of the NH4
+ in the 

BMM for the MC2 wells,  as NH4
+  may be lost through annamox (Van de Graaf et al., 

1995; Thamdrup and Dalsgaard, 2002; Walsh and Price, in review) according to the 

equation:  

𝑁𝐻4+ +  𝑁𝑂2− =  𝑁2 + 2𝐻2𝑂    (eq. 6) 

Very little NO2
- is available for this reaction, in either the injectate or the ambient 

groundwater, (< 0.2 mmols/L for both), and once all available NO2
- is consumed, NH4

+  

would become conservative. The finj for the well 6U may represent the longer travel time 
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to the MC1, with NH4
+ nonreactive by the time it arrives in this zone, illustrated by the 

similarity of the NH4
+   BMM with the other conservative tracer binary mixing models.  

4.4.6 North District Results 

No major ion ambient groundwater concentrations were available for the ND APPZ 

wells, as all wells have elevated NH4
+ concentrations, so mixing curves could not be 

developed. However, the saturation states of wells in the APPZ at the ND are similar to 

the saturation states of wells in the MC1 at the SD that are hypothesized to be in 

horizontal flow paths in the MC1, and do not resemble wells hypothesized to be in the 

vicinity of vertical bypass pathways. This could be interpreted as upward migration 

through the lower confining units, however it could also be interpreted as injectate 

migrating upwards through an off-site confinement bypass pathway and once introduced 

into the APPZ, then migrates advectively with groundwater flow back to the site, similar 

to hypothesis suggested by King (2009).    

4.4.7 Suggested model for vertical migration of injectate 

This study suggests a possible geochemical scenario for upward fluid migration. Injectate 

migrates upwards as a result of buoyant density flow along fractures, either natural or 

anthropogenic, enhancing porosity along the vertical pathway, as suggested by the high 

CO2 concentrations and the saturation indices of the injectate (Figure 4.14). As water 

migrates, CO2 is consumed by methanogenesis, until all excess CO2 is consumed, and 

water equilibrates with native water, resulting in oversaturation of calcite. Reactive 

transport modeling done for coastal carbonate aquifers had large dissolution rates near the 

discharge area (similar in concept to this study’s vertical confinement bypass pathways), 
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which resulted in increasing permeability and enhancing further flow (Rezaei et al., 

2005). Further studies for the study sites including reactive transport modeling may be 

able to quantify the dissolution rates and that may spatially and temporally affect upward 

fluid migration.    

4.4.8 Implications for Floridan aquifer storage and recovery 

Mixing of aquifer fluids is not confined in south Florida to the coastal seawater-

freshwater mixing zones, or to the wastewater injection sites, but can also affect any 

aquifer where fluids of different chemical composition mix. Aquifer storage and recovery 

sites (ASR) typically involve the recharge of a freshwater source, either freshwater 

aquifer or surface water into an aquifer of lesser water quality, and stored for some period 

of time before it is withdrawn. ASR sites have been increasingly studied as adverse 

chemical reactions, such as trace metal mobilization and precipitation of minerals can 

affect the quality and recovery efficiency of the recovered water (Stuyfzand, 1998; Brun 

et al., 1998; Mirecki, 2006; Arthur et al., 2009; Brown and Misut, 2010). Several counties 

in south Florida are considering storage of large volumes of treated domestic wastewater 

in the UFA. The results of this study suggest that the enhanced CO2 concentrations in the 

proposed stored treated wastewater will effect geochemical and biochemical reactions in 

the aquifer not previously predicted, and may affect future recovery rates and the 

geochemistry of the stored water. Inclusion of dissolved gases, especially CO2, in 

sampling regimes is recommended.  
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4.5 Conclusions 

Results of this study support the hypothesis of injectate migrating upward via 

confinement bypasses at the SD, with no evidence of mixing of deeper saline MC2 

waters as it migrated upwards to the overlying Middle Confining Unit One. Observed 

conservative ion concentrations in wells with evidence of injectate migration were 

consistent with concentrations predicted by the conservative mixing of injectate and 

ambient MC1 Floridan aquifer endmembers.   

Geochemical modeling of carbonate equilibrium described by conservative mixing of 

freshwater injectate into a deep saline aquifer overestimated the saturation states with 

respect to the carbonate minerals in groundwater with evidence of mixing with injectate. 

Injectate is enriched in CO2  as a result of the cryogenic treatment process at the two 

treatment plants in this study , and as a result injectate water is very undersaturated with 

respect to calcite. Once introduced into the aquifer, injectate excess CO2 becomes 

consumed by methanogenesis, with increasing saturation states as a result of decreasing 

CO2 concentrations along the injectate flowpaths. Porosity enhancement is predicted as 

injectate migrates through the vertical bypass pathways, allowing for greater upward 

buoyant flow over time, and may provide for dissolution of the aquifer matrix once 

introduced into overlaying aquifers in the vicinity of the bypass pathways.  

Results for the ND could be interpreted as diffusive flow through the confining layers 

into the overlying aquifer. Alternatively, injectate may have moved vertically upward 

along a vertical pathways located off-site from the ND, and then migrated horizontally 

back to the site in the overlying aquifer with regional groundwater flow. 
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4.7 Tables 

            
      

Hydrogeologic 
unit

open 
interval Well Temp Cl- SO4

2- Ca2+ Mg2+ Na+ K+ NH4
+ HCO3

- Br- Si *CO2 *CH4

m ID °C pH salinity mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L
Biscayne 
Aquifer surface S-EFF 28.22 6.69 <2 8.45 1.34 1.48 0.31 3.15 0.39 1.29 3.28 0.21 0.25 3.010 0.000

306 - 316 BZ1 24.13 7.58 <2 24.85 3.74 1.38 3.03 22.88 1.04 0.00 3.23 0.03 0.39 0.116 0.001
299 - 332 1U 23.82 8.13 <2 20.76 3.79 1.37 2.95 23.18 1.09 0.01 3.33 0.03 0.43 0.015 0.002
299 - 320 3U 23.96 8.07 <2 31.34 4.56 1.50 3.04 25.40 1.17 0.01 3.34 0.03 0.43 0.024 0.002
299 - 311 2U 27.66 8.06 <2 18.62 3.57 1.35 3.02 23.40 1.21 0.01 3.31 0.03 0.45 0.102 0.001
454 - 484 9U 25.19 7.66 6.79 126.93 5.12 4.54 12.80 103.52 3.35 0.09 2.10 0.18 0.18 0.045 0.028
454 - 485 10U 23.37 7.61 7.20 123.80 5.38 5.21 12.30 98.74 3.17 0.08 2.74 0.18 0.27 0.049 0.024
451 - 475 13U 23.80 7.86 7.19 123.29 6.37 4.97 10.90 88.26 3.53 0.18 3.59 0.16 0.33 0.076 0.063
454 - 485 16U 23.03 7.65 6.78 112.52 5.83 4.42 10.82 91.26 3.48 0.55 4.49 0.24 0.26 0.211 0.081
454 - 480 14U 23.50 7.63 4.54 68.29 4.03 3.42 6.87 54.55 2.58 0.60 4.83 0.10 0.33 0.555 0.065
454 - 483 6U 24.96 7.48 2.91 38.61 2.85 2.87 4.65 32.84 1.91 1.02 5.61 0.06 0.30 0.703 0.073
501 - 510 2L 25.21 7.45 12.05 229.97 6.54 9.38 19.38 162.59 4.76 0.01 1.67 0.33 0.23 0.087 0.001
481 - 507 BZ2 24.44 7.80 8.11 132.03 5.73 5.24 13.95 120.71 4.02 0.30 3.43 0.34 0.25 0.119 0.063
546 - 573 9L 23.31 7.70 33.80 571.97 26.80 14.10 50.94 661.00 16.80 0.00 2.77 0.88 0.26 0.064 0.001
546 - 576 16L 23.00 7.58 33.61 607.20 24.49 14.40 49.87 482.52 16.68 0.00 2.93 0.79 0.18 0.076 0.001
540 - 577 3L 23.10 7.50 32.23 562.07 24.59 14.65 49.78 480.13 17.52 0.00 2.77 0.81 0.20 0.043 0.000
519 - 561 4L 23.42 7.47 31.18 557.19 21.68 14.75 46.66 458.07 16.24 0.00 2.77 0.79 0.01 0.156 0.001
561 - 587 1L 23.45 7.44 33.30 591.68 27.29 14.35 55.21 535.89 17.70 0.00 2.64 0.84 0.19 0.039 0.000
530 - 562 13L 23.70 7.47 30.43 508.19 22.82 9.53 35.51 349.98 11.61 0.11 3.15 0.77 0.30 0.057 0.016
546 - 576 10L 23.80 7.55 24.24 429.44 20.36 7.54 29.79 98.74 9.54 0.20 3.23 0.59 0.26 0.064 0.053
546 - 576 12L 25.40 7.35 3.78 57.40 2.98 2.82 5.76 48.80 1.59 0.77 5.41 0.09 0.39

Biscayne 
Aquifer surface N-EFF 26.60 7.04 <2 16.92 1.00 1.47 1.93 23.49 0.90 0.83 1.80 0.04 0.31 2.473 0.005

354 - 385 N-FA-1U 22.10 8.00 4.08 81.77 2.68 3.24 7.41 65.25 1.56 0.02 1.05 0.12 0.10 0.016 0.003
351 - 384 N-FA-2U 21.97 8.20 3.94 76.86 2.76 2.99 6.99 65.25 1.61 0.01 1.41 0.11 0.10 0.015 0.009
354 - 379 N-FA-3U 21.70 8.30 3.72 74.32 2.27 2.74 6.99 65.25 1.64 0.01 1.15 0.11 0.11 0.003 0.003
354 - 379 N-FA-4U 19.60 8.00 4.02 76.95 2.63 2.74 6.99 65.25 1.66 0.01 1.08 0.13 0.31 0.019 0.002
430 - 460 N-FA-3L 18.60 7.70 26.48 391.08 14.22 8.23 35.38 330.58 9.72 0.21 3.28 0.65 0.03 0.095 0.016
430 - 461 N-FA-1L 19.50 7.40 27.04 399.63 18.53 7.49 38.68 347.98 10.74 0.24 3.44 0.65 0.00 0.124 0.017
430 - 460 N-FA-4L 18.50 7.40 22.52 401.46 13.68 8.23 34.56 321.88 9.46 0.23 3.28 0.65 0.11 0.163 0.015
431- 459 N-FA-2L 20.12 7.50 25.61 407.02 18.04 7.24 36.62 334.93 10.23 0.27 3.61 0.78 0.24 0.114 0.019

Lower 
MC1/APPZ

 Upper 
Floridan 
aquifer

MC1

MC1/APPZ

MC2

UFA/Upper 
MC1

Table 4.1 December 2007 water quality sampling results used in this study. * dissolved gas samples collected February 2008 
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Sample ID log PCO2 SIc SIa SId SIgyp

EFF12-07 -0.98 -1.13 -1.28 -2.79 -1.62
EFFavg -0.98 -1.13 -1.28 -2.79 -1.62
1U -3.37 0.85 0.7 2.14 -1.48
2U -2.503 0.1 -0.04 0.69 -1.5
3U -3.151 0.68 0.53 1.78 -1.4
BZU -2.466 0.02 -0.12 0.5 -1.48
9U -2.884 0.3 0.15 1.2 -1.24
10U -2.836 0.5 0.36 1.51 -1.15
13U -2.648 0.55 0.41 1.58 -1.08
16U -2.222 0.29 0.14 1.08 -1.16
14U -1.775 -0.08 -0.23 0.26 -1.29
6U -1.67 -0.01 -0.16 0.32 -1.39
6U w/eff PCO2 -0.72 -0.87 -1.06 -1.57
2L -2.582 0.01 -0.13 0.5 -0.99
BZL -2.457 0.33 0.19 1.24 -1.17
1L -2.957 0.6 0.46 1.96 -0.54
9L -2.748 0.44 0.3 1.61 -0.58
16L -2.681 0.47 0.32 1.63 -0.56
3L -2.904 0.62 0.48 1.94 -0.55
4L -2.34 0.14 -0.01 -0.94 -0.59
10L -2.723 0.49 0.35 1.72 -0.69
12L w/eff P CO2  -0.78 -0.93 -1.11 -1.45
13L -2.779 0.52 0.37 1.76 -0.68
N-EFF -1.067 -1.67 -1.81 -3.07 -1.92
N-1U -3.379 0.09 -0.06 0.64 -1.49
N-2U -3.418 0.34 0.19 1.15 -1.5
N-3U -4.072 0.61 0.46 1.72 -1.61
N-4U -3.283 -0.07 -0.22 0.35 -1.55
N-1L -2.516 0.2 0.05 1.21 -0.84

Table 4.2  Log PCO2 and Saturation indices of calcite, dolomite, aragonite and 

gypsum. Well with elevated NH4+ concentrations are italicized. PCO2 are calculated 

from observed CO2 concentrations. 
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4.8 Figures 

Figure 4.1  Location of the South District Wastewater Treatment Plant and North District 

Wastewater Treatment plant in Miami-Dade County Florida, USA. Inset locates the two 

sites in the state of Florida.  
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Figure 4.2  Well locations at the SDWWTP. Wells 1U, 2U, 3U and BZU monitor the 

UFA. Wells 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U,14U, 15U and 16U monitor 

the MCA; wells 2L and BZ2 monitor the APPZ; wells labeled 1L, 3l, 4L, 5L, 6L, 7L, 

8L, 8L, 9L, 10L, 11L, 12L, 13L, 15L and 16L monitor the saline MC2 zone. Wells 

circled in red were used in this study. 
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Figure 4.3  Well Well locations at the NDWWTP. Wells labeled with a “U” monitor 

the lower UFA and Upper MC1 zones in the Floridan aquifer system. The wells 

labeled with a “L” monitor the lower MC1 and APPZ. 
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Figure 4.4  Geologic and hydrogeologic framework of the north and south sites, 

modified from Reese and Richardson, 2008. 
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Figure 4.5  Binary mixing model results for the MC1 at the SD for the December 

2006 (graph a) and December 2007 (graph b) sampling events. Black circles are the 

Cl- BMM, green triangles are the Br- BMM, red circles are the NH4
+ BMM, and the 

yellow triangles are the Argon BMM. Wells have similar Cl-, Br- and NH4
+ BMM 

results, with the exception of well 16U. Argon appears to overpredict the finj.   
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Figure 4.6  BMM results for the SD MC2 (graph a) and the ND APPZ zones (graph 

b). Argon sample for the endmember of the MC2 zone was lost, and therefore a 

Argon BMM could not be completed. Wells at the SD MC2 have similar Cl- and Br- 

BMM results, while NH4
+ BMM may slightly underpredict finj. The NH4

+ BMM 

appears to overpredict the finj for the ND wells.  
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Figure 4.7  Saturation indices (SI) versus sample depth in aquifer (graph a), and 

versus sample NH4
+ concentrations (graph b). Saturation state points are from the SD, 

except those noted for the ND in the legend. Saturation states did not appear to be 

related to depth in the aquifer, but rather appear to be related to the NH4
+  

concentration for the MC1 and MC2 at the SD.  
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Figure 4.8  PHREEQC calculated SI for calcite as percentage of injectate 

(curve), and calculated SI from wells in the MC1 (graph a) and the MC2 (graph 

b) at the SD. The data points indicated as well 6Uinj PCO2  and well 12Linj PCO2 is 

the saturation index calculated for those wells using the PCO2 for injectate. 
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Figure 4.9  PHREEQC calculated SI for dolomite (graph a) and aragonite (graph b) as 

percentage of injectate (curve), and calculated SI from wells in the MC1 at the SD. 
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Figure 4.10  PHREEQC calculated PCO2 as percentage of injectate curve, with 

observed PCO2 plotted for wells in the MC1 at the SD.   
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Figure 4.11  CO2 versus methane concentrations at the SD. Injectate is highly 

enriched in CO2 and depleted in CH4 as a result of the cryogenic treatment and 

methane co-generation processes at the SD. Wells with elevated NH4
+ concentrations 

(illustrated here by well 6U) contain elevated CH4 concentrations. Wells with 

decreasing NH4
+ concentrations become depleted in CH4 as excess CO2 is consumed 

as a result of methanogenesis.  
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Figure 4.12 Comparison of observed Ca2+ and Na+ concentrations (red circles) in the MC1 

to a two endmember solution mixture, (with well 9U in the MC1 and injectate the two 

endmembers), and to a three endmember solution mixture (with well 9U, injectate and 

well 1L in the MC2 as the three endmembers). The two endmember mixture represents 

injectate migrating upwards to the MC1 through vertical confinement bypass pathways. 

The three endmember represents injectate migrating upwards through the MC2 to the 

MC1. Observed conservative ion concentrations closely match the two endmember 

solution mixture predicted concentrations. The three endmember solution mixture 

overpredicts ion concentrations.  
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Figure 4.13  Chloride concentrations of injectate (blue triangles) and well 6U (blue 

circles graph a), and well 16U (blue circles graph b) from the MC1 at the SD, and 

the fraction injectate in each well calculated by the binary mixing model (red 

diamonds). In graph a, the finj is seen increasing over time as Cl- concentrations 

decrease over time in well 6U. In graph b, the finj for well 16U appears to remain 

fairly stable, with a slight increasing trend seen in the post 2006 data. 
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Figure 4.14  Hypothesized injectate flowpaths to the MC1 at the SD. Aquifer layers not to scale, 

and the APPZ is omitted to simplify figure. Grey on well diagrams is casing, white is open 

borehole. Injectate (red arrows)  is injected into the Boulder Zone, where it migrates upward due 

to buoyant flow. Vertical confinement bypass pathways allow buoyant injectate to migrate up to 

the MC1, bypassing underlying confining layers, as illustrated by well 6. Injectate excess CO2 

allows for porosity enhancement over time, while methanogenesis gradually consumes excess 

CO2 as injectate migrates upwards. Once introduced into the MC1,  injectate flows along 

horizontal flow paths as it mixes with ambient water, with methanogenesis consuming all excess 

CO2, resulting in aquifer water becoming oversaturated with respect to Ca2+ (well 13) Well 9 

illustrates injectate that has not yet migrated far enough to be detected in the MC1. Well 12 

illustrates a vertical confinement bypass pathway to the MC2, that does not extend up into the 

MC1. The shorter migration time to MC2 is evident in the higher finj. No evidence of injectate has 

been detected in the UFA at either the ND or the SD, as illustrated by well 3.  
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CHAPTER 5 SUMMARY AND CONCLUSIONS  

My dissertation used natural chemical and isotopic tracers to determine the source of 

ammonium (NH4
+) and the migration pathways in the Floridan aquifer system (FAS), 

south Florida. Water quality of the injectate was chemically and physically distinct 

from ambient FAS groundwater, and these distinctions were used to determine the 

presence of injectate and the possible transport pathways to the aquifers overlying the 

injection zone. The injectate source was treated freshwater, with low salinity, elevated 

temperature and ammonia concentration, and enriched  δ15N- NH4
+ values. Injectate 

was also determined to be enriched in CO2 and the heavier noble gases, while 

depleted in lighter dissolved gases, as a result of the cryogenic treatment process at 

both wastewater treatment plants in this study. These chemical and physical signals 

were observed to persist in aquifer waters as injectate migrated through various 

aquifers. Groundwater from the FAS was collected from four hydrogeologic zones at 

both sites (UFA, MC1, APPZ and MC2). Water chemistry in each of these 

hydrogeologic zones was chemically distinct from one another, with the UFA 

brackish water, and the MC1 slightly more brackish. The APPZ represents the 

transition between the overlying brackish aquifers with the deep saline aquifers. The 

saline MC2 is close to seawater salinities.   

Samples collected from wells with elevated NH4
+ concentrations showed enriched 

δ15N- NH4
+ values, CO2 and heavier noble gas concentrations compared to ambient 

values and concentrations. The higher heavier noble gas concentrations in these wells 

could only be possible from injectate, as ambient water has been isolated from the 
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atmosphere for thousands of years, and no source would exist in the aquifer matrix.  

These wells also had elevated tritium levels, which also could only be a result of 

recharge after the 1950’s, consistent with injectate relative age. The injectate is 

therefore concluded to be the source of elevated NH4
+concentrations found in the 

MC1 and the MC2 at the SD, and the APPZ at both sites.  

Chloride, Br-, and NH4
+ binary plots were used to distinguish four injectate plumes at 

the SD, and conservative ion concentration data suggested that at least three of these 

plumes were not hydraulically connected. Helium-tritium age dating could distinguish 

three separate plumes based on relative age, which would be consistent with the 

findings of the ion binary plots if one of the four plumes was hydraulically connected. 

Water quality data, stable isotope values, and dissolved gas concentrations for the ND 

were remarkably homogeneous, and suggest that one plume exists on site.  

Two transport mechanisms were identified at the SD: density-driven buoyant vertical 

flow and slower horizontal advective flow. At the SD, the injectate may first have 

migrated upwards through vertical pathways from the Boulder Zone to the MC1, 

bypassing the underlying MC2, with the freshwater injectate migrating upwards 

through the saline MC2 as a chemically distinct water body. The four plumes 

identified at the SD appear to have originated via this confinement bypass pathway. 

Once introduced in the higher aquifer intervals, the transport mechanism appeared to 

be horizontal advective flow with mixing of ambient waters. Evidence of confinement 

bypass pathways were observed in the MC1 and MC2 wells at the South District. 

Wells thought to lie in the vicinity of these pathways had concentrations of ions, 
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isotope values, and dissolved gas concentrations similar to injectate. Binary plots of 

ions and stable isotopes show mixing trends in the MC1 back to injectate, with no 

trends towards the lower MC2. Observed conservative ion concentrations in wells 

with evidence of injectate migration were consistent with concentrations predicted by 

the conservative mixing of injectate and ambient MC1 endmembers, whereas three 

member mixing (MC1, injectate and MC2) overestimated ion concentrations.   

At the ND the elevated levels of NH4
+  in the APPZ were originally thought to be the 

result of a construction incident, where a pulse of injectate water backflowed into an 

uncased injection well, providing a pathway to the APPZ, and once introduced the 

plume slowly migrated with the regional flow within the APPZ. Evidence of 

confinement bypass pathways that were observed at the SD were not observed at the 

ND. Persistent NH4
+  concentrations over time however would rule out a one-time 

pulse origin, as if it were a pulse source, NH4
+  concentrations would have steadily 

decreased over time, which they have not. On the basis of the geochemical modeling 

results, NH4
+ observed in the APPZ at the ND could be the result of either upward 

fluid migration through the underlying aquifers, or the result of an offsite 

confinement bypass pathway.   

No evidence of upward migration of injectate was observed in any wells in the UFA 

at both sites based upon NH4
+concentrations, stable isotope, tritium and dissolved gas 

data. This may be the result of the confinement bypass pathways not extending into 

the UFA, or may be that wells in the UFA are not located in areas of injectate plume 

migration, however as elevated NH4
+ concentrations and the isotopic and dissolved 
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gas signatures of injectate have never been detected in the UFA, it may be more likely 

the result of the former.   

Evidence of some type of methanogenesis and NH4
+oxidation reactions were 

observed. Wells with elevated  NH4
+ concentrations had enriched δ15N- NH4

+ values, 

more enriched than injectate. Very little NO2
−  is available for NH4

+oxidation, and 

these very low concentrations may limit the reaction so that only minor amounts of 

NH4
+ are lost. Groundwater enriched in CO2 as a result of injectate migration was also 

observed to have elevated concentrations of CH4. As CO2 was consumed, CH4 

concentrations decreased, until ambient concentrations were reached in wells with 

low NH4
+ concentrations.  

Injectate water was very undersaturated with respect to the carbonate minerals, as a 

result of its freshwater source and the enriched CO2 concentrations. Geochemical 

modeling suggests that porosity enhancement may occur as injectate migrates through 

the confinement bypass pathways, allowing for greater upward buoyant flow over 

time, and may provide for dissolution of the aquifer matrix once introduced into 

overlaying aquifers in the vicinity of the bypass pathways. This would allow for 

increased injectate flow through the pathways as a result of increased porosity. This 

was observed in wells thought to be closest to these pathways. Well 6U for example, 

had an increasing injectate fraction over the historical period of record.  

My dissertation suggests several areas of further research to understand the 

geochemistry and migration of freshwater injectate into deep aquifers. Further 
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microbial studies are recommended, as current federal regulations require high level 

disinfection (HLD) prior to injection at municipal deep well injection facilities in 

south Florida as a result of the possibility of survival and migration of pathogens to 

an USDW.   A better understanding of microbial activity under environmental 

conditions found in the FAS may validate or repudiate the necessity of HLD prior to 

injection.  

Many south Florida utilities are studying the possibility of injecting HLD treated 

wastewater into the UFA, in order to comply with state regulatory domestic 

wastewater reuse requirements. The results of this study suggest that the enhanced 

CO2 concentrations in the proposed treated wastewater water will effect geochemical 

and biochemical reactions in the aquifer not previously predicted, and may affect 

future recovery rates of the stored water. Future research is recommended on the 

effect of enhanced CO2 concentrations on water-rock reactions, and the release of 

metals such as arsenic into stored water.  

Miami Dade Water and Sewer Department currently is working with the US 

Geological Survey on the acquisition of seismic data to define the subsurface 

structure of the FAS in the vicinity of the SD and ND. Reflection seismic surveying is 

being used to test for the presence of fractures, faults, and karst features. The seismic 

data may be able to locate possible confinement bypass pathways in the vicinity of 

existing injection sites, and possibly confirm that these structures do not extend into 

the Upper Floridan Aquifer. Seismic data acquisition is recommended for any future 
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injection sites, as it may be able to optimize location of future injection sites in areas 

where these subsurface features are not found. 
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