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ABSTRACT OF THE DISSERTATION 

ASSESSMENT OF THE OCCURRENCE AND POTENTIAL EFFECTS OF 

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS IN SOUTH 

FLORIDA WATERS AND SEDIMENTS 

by 

Chengtao Wang 

Florida International University, 2012 

Miami, Florida 

Professor Piero R. Gardinali, Major Professor 

A LLE-GC-MS method was developed to detect PPCPs in surface water samples 

from Big Cypress National Park, Everglades National Park and Biscayne 

National Park in South Florida. The most frequently found PPCPs were caffeine, 

DEET and triclosan with detected maximum concentration of 169 ng/L, 27.9 ng/L 

and 10.9 ng/L, respectively. The detection frequencies of hormones were less 

than PPCPs. Detected maximal concentrations of estrone, 17β-estradiol, 

coprostan-3-ol, coprostane and coprostan-3-one were 5.98 ng/L, 3.34 ng/L, 16.5 

ng/L, 13.5 ng/L and 6.79 ng/L, respectively.  

 
An ASE-SPE-GC-MS method was developed and applied to the analysis of  the 

sediment and soil area where reclaimed water was used for irrigation. Most 

analytes were below detection limits, even though some of analytes were 

detected in the reclaimed water at relatively high concentrations corroborating 

the fact that PPCPs do not significantly partition to mineral phases.  
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An online SPE-HPLC-APPI-MS/MS method and an online SPE-HPLC-HESI-

MS/MS method were developed to analyze reclaimed water and drinking water 

samples. In the reclaimed water study, reclaimed water samples were collected 

from the sprinkler for a year-long period at Florida International University 

Biscayne Bay Campus, where reclaimed water was reused for irrigation. Analysis 

results showed that several analytes were continuously detected in all reclaimed 

water samples. Coprostanol, bisphenol A and DEET’s maximum concentration 

exceeded 10 µg/L (ppb). The four most frequently detected compounds were 

diphenhydramine (100%), DEET (98%), atenolol (98%) and carbamazepine 

(96%). In the study of drinking water, 54 tap water samples were collected from 

the Miami-Dade area. The maximum concentrations of salicylic acid, ibuprofen 

and DEET were 521 ng/L, 301 ng/L and 290 ng/L, respectively. The three most 

frequently detected compounds were DEET (93%), carbamazepine (43%) and 

salicylic acid (37%), respectively. Because the source of drinking water in Miami-

Dade County is the relatively pristine Biscayne aquifer, these findings suggest 

the presence of wastewater intrusions into the delivery system or the onset of 

direct influence of surface waters into the shallow aquifer.  
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CHAPTER 1 

INTRODUCTION 

1.1 What are PPCPs? 

Pharmaceuticals and Personal Care Products (PPCPs) are defined as any 

product used by individuals for personal health or cosmetic reasons or used by 

agribusiness to enhance growth or health of livestock. Pharmaceuticals and 

Personal Care Products comprise a diverse collection of thousands of chemical 

substances, including prescription and nonprescription drugs, veterinary drugs, 

fragrances, and cosmetics (URL1). Pharmaceuticals and Personal Care 

Products are a wide variety of important “unrecognized” or “emerging” pollutants 

in everyday urban activities. The United States Environmental Protection Agency 

(EPA) defines emerging pollutants as new chemicals without regulatory status 

and the influence of emerging pollutants on environmental and human health are 

poorly understood to say the least.  

 

1.2 Why do we need to monitor them? 

 Many pharmaceuticals are not completely eliminated by the human body and 

often are excreted only slightly transformed or even unchanged (Reddersen et al., 

2002). The disposal of unused medication via a household sink or toilet brings 

pharmaceuticals directly to the wastewater treatment plants (WWTPs) in 

relatively high concentrations. Several investigations have shown that current 

wastewater treatment processes (physical and biological) could not remove 

PPCPs completely from effluents of WWTPs (Ingrand et al., 2003; Esperanza et 
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al., 2004; Sui et al., 2010; Lacey et al., 2011; Ryu et al., 2011). The typical rate of 

removal of analgesics, anti-inflammatories and beta-blockers are 30% to 40%. 

The average rate of removal is about 50% for antibiotics and 71% for compounds 

like bisphenol A (Deblonde et al., 2011). More recent research indicates that 

advanced treatment steps (e.g., ultrafiltation, flocculation, ozonation, advanced 

oxidation or osmosis) are usually required to increase removal of micropolluants 

(Fatta-Kassinos et al., 2010). However, these treatment steps are seldom used in 

the WWTPs because of their high costs. Therefore, the effluents of wastewater 

treatment plants bring pharmaceuticals to the surface waters when the effluents 

are discharged into rivers, lakes or oceans. If the effluent is reused for irrigation 

or landscape, PPCPs may be transferred to soil and enter to surface water 

through runoff (Heberer et al., 2002). When active recharge is used, PPCPs may 

also leach into an aquifer and be transported into ground waters, which are 

potential drinking water sources. That is likely the main reason of why PPCPs are 

reported in the ground water and drinking water samples. The presence of 

PPCPs in the ground water may also be caused by the influence of landfill 

leachates. Meanwhile, large use of veterinary drugs may also cause the 

occurrence of PPCPs residues in the environment. Figure 1 shows the possible 

sources and pathways of PPCPs in the environment.  
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Figure 1. Possible sources and pathways for the occurrence of PPCPs residues 

in the environment 

 

One issue about PPCPs present in the environment is that the endocrine 

disrupting effect of some PPCPs may occur even at very low concentration 

(Caliman and Gavrilescu, 2009). Until now, very little is known about the long-

term effect of PPCPs on aquatic organisms. For most human pharmaceuticals, it 

is unlikely that they will have acute effects on aquatic organisms except for the 

cases of a direct spill/disposal. However, understanding the chronic effects and 

toxicity of pharmaceuticals mixtures are more important because many aquatic 

species are continuously exposed to PPCPs over their entire life cycle. Despite 

this, there is very little data about chronic effects of pharmaceuticals on the 

aquatic organisms except for ethynylestradiol (EE2). Ethynylestradiol shows 

estrogenic effects in many fish at extremely low concentrations. For fathead 
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minnows, egg fertilization of female was significantly decreased at extremely low 

concentration of 0.32 ng/L ethynylestradiol. For males, demasculinization 

(decreased male secondary sex characteristic index) happened when males 

exposed to EE2 at a concentration of 0.96 ng/L (Parrott and Blunt, 2005). In 

addition, life exposure of zebrafish to EE2 at a concentration of 0.05 ng/L caused 

the secondary sexual characteristics of males to become significantly feminized 

(Larsen et al., 2008). Very few chronic effect data of analgesics, non-steroid anti-

inflammatories and beta-blockers are available. Diclofenac was found to have 

chronic histopathological effects in rainbow trout at a concentration of 5 µg/L 

(Schwaiger et al., 2004). Propranolol has chronic toxicity for fish not only on the 

cardiovascular system but also on reproduction. Reproduction of C.dubia and H. 

azteca was affected by propranolol at 250 µg/L and 100 µg/L after 14 days of 

exposure, respectively (Huggett et al., 2002). Typically toxicity of single 

compound may show no or only little effects at certain concentration, but 

mixtures of many pharmaceuticals may have effects at the same concentrations 

due to synergistic effects. Study on mixtures of NSAID (diclofenac, ibuprofen, 

naproxen, acetylsalicylic acid) on Daphnia and algae demonstrated the mixture 

followed the concept of concentration addition (Michael, 2003).  Even though the 

reported lowest observed effect concentrations (LOEC) of PPCPs are usually 

higher than measured concentrations in the effluent of WWTPs or surface water, 

monitoring PPCPs in the environment is still an urgent need. The general lack of 

chronic toxicity data on pharmaceuticals requires not only more investigation 

about potential ecotoxicological effects such as endocrine disruption, 
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immunological status, or gene activation and silencing during long-term exposure 

but also the development of robust, low-level, selective, high throughput 

analytical techniques. 

 

Besides aquatic organisms like fish, plants may also be affected, to a lesser 

extent, by PPCPs when treated wastewater is reused for irrigation. It is not clear 

the negative effects on plants are from direct damage of PPCPs to plant or from 

the indirect damage of PPCPs to the soil microorganisms (Sabourin et al., 2009; 

Matamoros and Salvado, 2012).  

 

Another important issue is the presence of chronic levels of antibiotics in the 

environment. Presence of antibiotics is often suggested as a potential link to the 

development of antibiotic-resistant bacteria. The resistant bacteria can be 

transferred to human via water or food if plants are irrigated by reclaimed water, 

surface water or sludge with antibiotic-resistant bacteria which have escaped 

from treatment (Fatta-Kassinos et al., 2010). 

 

1.3 What are the typical procedures to detect them? 

The two key challenges for the detection of emerging microconstituents is 

interference from complex matrices and the relatively low concentration of 

analytes in the environment. However, with the development of sophisticated and 

sensitive analytical protocol, such as more efficient extraction techniques and 
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more sensitive detectors, trace level PPCPs can be detected in the environment. 

Typical analysis procedure for aqueous and solid samples is shown in figure 2. 

 

Figure 2. Typical analysis procedure for aqueous and solid samples 

 

1.3.1 Sample preparation for aqueous samples 

Currently, available extraction techniques for aqueous samples (e.g., tap water, 

surface water and wastewater) include Liquid-liquid extraction (LLE) (Zafra et al., 

2003), solid phase extraction (SPE) (Zaharie, 2006; Gómez et al., 2007; Gros et 

al., 2009) and solid phase microextraction (SPME) (Pablo Lamas et al., 2004) etc.  

Solid phase extraction is the most widely used extraction method. Solid phase 

extraction cartridge sorbents include non-polar phase, ion-exchange phase and 

polymeric phase. Among them, the Oasis HLB (Waters Corp, Hydrophilic-

Lipophilic Balanced phase) cartridge is able to extract both polar and nonpolar 
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SPE, SPME, SPMDs

Clean-up
SPE, solvent exchange

Extraction
ASE,UAE,MEA

Derivatization
alkylation, acylation and silylation

GC-MS, GC-MS2

LC-MS, LC-MS2
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analytes under the same conditions and improve simultaneous detection of 

analytes with markedly different chemical properties.  In order to increase the 

capacity of multiple-residues extraction, several researches started to use 

tandem or serial mixed-mode cartridges to increase analyte recoveries (Gros et 

al., 2009; Laven et al., 2009). The development of on-line SPE simplifies the 

extraction procedure and reduces the sample preparation time. Therefore, more 

and more studies begin to focus on on-line SPE method development (Segura et 

al., 2007; Garcia-Ac et al., 2009; Lopez-Serna et al., 2010). Because of the 

repeated use of the SPE mini-cartridges, development of on-line methods require 

many additional optimization of parameters, such as sample size, the sample 

loading flow, and wash step, but the additional work is clearly offset by the gain in 

processing speed as a result of the system automation. 

 

Solid phase microextraction is another extraction technique that starts to attract 

interest for the analysis of many organic compounds in aqueous samples. Solid 

phase microextraction extracts target compounds from sample to an absorptive 

layer of sorbent coated on a fiber. The quantity of target compounds extracted is 

proportional to the concentration of target compounds in the sample. After 

extraction, the fiber can be transferred to the injection port of GC, where 

desorption happens and analysis starts. The advantage of SPME is solvent free 

and very simple sample preparation (Carballa et al., 2004; Pablo Lamas et al., 

2004; Fatta-Kassinos et al., 2010). However, the use of SPME is still limited by 

the fiber activation and cleanup steps and is much more difficult to automate. 
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1.3.2 Sample preparation for solid samples 

For solid matrices (e.g., soils, sediments, sludge and fish tissues), accelerated 

solvent extraction (ASE) or pressurized liquid extraction (PLE), ultrasonic 

assisted extraction (UAE) and microwave-assisted extraction (MEA) have been 

used to enhance extraction efficiency (Löffler and Ternes, 2003; Burkhardt et al., 

2005; Xu et al., 2008; Jelic et al., 2009; Vazquez-Roig et al., 2010).  Usually SPE 

is used as a clean-up step after the extraction mentioned above to reduce the 

interference from environmental samples due to the complexity of matrices.  

 

1.4 Instrumental detection 

Detection and quantification of PPCPs in the environment were a big challenge 

several years ago because of the complexity of matrices and PPCPs’ low 

concentration of occurrence. Currently, gas chromatography (GC), coupled with 

mass spectrometry (MS) and high performance liquid chromatography (HPLC), 

coupled with MS, provide the opportunity to detect PPCPs down to extremely low 

concentrations in the ng/L (parts per trillion) range. The choice of GC or HPLC 

depends on the chemical properties of the target compounds. Generally, GC is 

appropriate for identification and quantification of volatile or volatizable 

compounds, while HPLC is used to determine more polar and less volatile 

compounds.  For the investigation of PPCPs in the environment, GC-MS, GC-

MS2, LC-MS, LC-MS2 have become indispensable tools. Capillary 

electrophoresis (CE) also is used to analyze pharmaceuticals and personal care 

products. However, CE without preconcentration can only reach concentrations 
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in the µg/L range limiting its application. Therefore, GC or LC coupled with MS is 

still the primary tools for analysis of PPCPs in the environment.  

 

1.4.1 GC-MS and GC-MS2 

The use of GC-MS to determine PPCPs in the environment started in the 

nineteen seventies (Garrison et al., 1976). Nowadays, GC-MS and GC-MS2 are 

still the most widely used techniques because of their availability in 

environmental laboratories. The major advantage of GC coupled with MS is that 

the ionization modes like electron impact (EI) or chemical ionization (CI) are 

generally less affected by the sample matrix than electrospray ionization (ESI), 

the main ionization mode used for liquid chromatography mass spectrometry. 

 

A derivatization step is usually needed for highly-polar, thermally-fragile 

compounds to make them suitable for GC analysis. Usually, GC-MS analysis 

after derivatization is an effective alternative to liquid chromatography mass 

spectrometry. Derivatization is usually done by substitution on the polar 

functional group and the most common reactions are alkylation, acylation and 

silylation (Shareef et al., 2006; Schummer et al., 2009). The largest limitation to 

this approach is the derivatization step itself. The efficiency of derivatization is 

influenced by the derivatizing agent and solvent, reaction temperature and 

reaction time. These parameters need to be optimized to increase the signal to 

noise (S/N) for analytes. The most commonly used derivatization technique is 

silylation, and common reagents include trimethylchlorosilane (TMCS),  
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trimiethylsilylimidazole (TMSI), N-methyl-trimethylsilyltrifluoroacetamide (MSTFA), 

N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) and N-(t-butyldimethylsilyl)-N-

methyltrifluoroacetamide (MTBSTFA), where the last two are the most frequently 

reported in the analysis of PPCPs (Boyd et al., 2003; Rice and Mitra, 2007; Xu et 

al., 2008; Durán-Alvarez et al., 2009). 

 

The column used to separate PPCPs in GC analysis includes DB5, DB5-MS, 

HP5-MS and their equivalents.  The dimension of the column is usually 30 m × 

0.25 mm × 0.25 µm and longer columns or thicker film phases can be used to 

improve the separation of PPCPs. Normal injection volume is 1-2 µL. While large 

volume injection has been reported to decrease the method detection limits 

(MDLs) of GC analysis the introduction of co-extractants and residues from the 

derivatizing agents do compromise the column integrity so its use is not 

widespread. Typical temperature program is from 50 °C to 300 °C with a run time 

of 30 - 45 mins (Boyd et al., 2003; Zafra et al., 2003; Weigel et al., 2004; Gibson 

et al., 2007; Gómez et al., 2007).  

 

Most of the publications focused on EI with -70 eV standard ionization energy. 

Electrons are continuously emitted from a heated filament (200-280 °C) and 

collide with analytes that elute from the end of the GC column. Qualification 

analysis of PPCPs and their metabolites can be achieved by full-scan mass 

spectra with the help of computer libraries, which have thousands of standard 

mass spectra. Quantification analysis is usually achieved by compounds 
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molecular ions and fragment ions in selective ion monitoring (SIM). Selective ion 

monitoring improves sensitivity of target compounds by only acquiring data of 

target compounds with no attempt to acquire data of non-target compounds 

(Boyd et al., 2003; Zafra et al., 2003; Weigel et al., 2004; Lishman et al., 2006; 

Gibson et al., 2007). 

  

Gas chromatography tandem mass spectrometry is able to achieve excellent 

selectivity and sensitivity by suppression of matrix backgrounds. The MS2 

experiment can be implemented by ion-trap and triple-quadrupole mass 

analyzers. The precursor ions are selected and the fragmentations are optimized 

to obtain the best S/N ratio. Therefore, MS2 has been used for the detection of 

trace level analytes present in complex matrices like wastewater, sediment and 

sludge (Verenitch et al., 2006; Gómez et al., 2007). 

 

1.4.2 LC-MS and LC-MS2 

Although MS has the ability to simultaneously identify target compounds, LC 

separation is still needed, especially for isomeric chemicals. Reversed-phase 

analytical columns are most commonly used to separate pharmaceuticals and 

personal care products. The typical particle size of analytical columns is between 

1.9 µm and 3 µm. The organic mobile phase includes methanol, acetonitrile or a 

combination of these two solvents, while the aqueous phase is water with the 

addition of formic acid, acetic acid, ammonium hydroxide, ammonium formate or 

ammonium acetate to adjust pH. 
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1.4.3 Ionization techniques 

High performance liquid chromatography mass spectrometry has been shown as 

a valuable alternative for detection of PPCPs and EDCs to overcome the 

drawbacks of GC-MS (Gardinali and Zhao, 2002; Gentili et al., 2002; Ingrand et 

al., 2003; Cahill et al., 2004; Castiglioni et al., 2005; Schlüsener and Bester, 2005; 

Martnez Bueno et al., 2007; Gros et al., 2009; Laven et al., 2009; Huerta-Fontela 

et al., 2010; Jian-lin et al., 2010). Electrospray ionization (ESI), atmospheric 

pressure chemical ionization (APCI) and atmospheric pressure photoionization 

(APPI) are the three most common ionization techniques coupled with liquid 

chromatography (Marchi et al., 2009). Electrospray ionization dominates the field 

of environmental analysis at trace level because of its simplicity and versatility. 

 

Electrospray ionization and atmospheric pressure chemical ionization have both 

been widely used for analysis of polar molecules in the aqueous environmental 

samples in many studies (Cahill et al., 2004; Castiglioni et al., 2005; Gros et al., 

2009). Several studies that described multi-target detection of up to 74 

compounds by ESI have been recently published in the literature (Gros et al., 

2009; Lopez-Serna et al., 2010). However, ESI and APCI also have many critical 

limitations. For example, some steroids, and generally nonpolar compounds, 

such as PAHs, are poorly ionized or cannot be ionized by ESI or APCI (Hanold et 

al., 2004). Therefore, it is not surprising that most of the studies using ESI are 

focused on the most polar, easily ionizable pharmaceuticals. Only a handful of 

studies have tried to detect steroid hormones that are difficult to ionize by ESI or 
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APCI with marginal results (Jeannot et al., 2002; Ingrand et al., 2003). Not 

surprisingly, there is abundant literature for compounds ameanable to ESI but 

reports are scarce for those that present an ionization challenge. The critical 

issue is that the most EDC active compounds are not well ionized by 

electrospray ionization. 

 

Atmospheric pressure photoionization is based on the interaction of a photon 

beam created by a discharge lamp with the vapors of a nebulized liquid solution 

(Marchi et al., 2009). Atmospheric pressure photoionization is a technique that 

has the capability to ionize compounds with a wide range of polarities while being 

remarkably tolerant of matrix components of HPLC additives. The rapidly growing 

number of publications in this area clearly demonstrates the advantages of 

atmospheric pressure photoionization (Raffaelli and Saba, 2003; Bos et al., 2006; 

Marchi et al., 2009). At the beginning, APPI was introduced as a complement of 

ESI and APCI. So far, APPI has been proved to be a valuable tool for analytes 

which are poorly ionized or not ionized by ESI and APCI. In particular APPI was 

shown to be able to detect steroid hormones down to several ng/L and had been 

proven to have much higher sensitivity than ESI. (Yamamoto et al., 2006; Viglino 

et al., 2008). Atmospheric pressure photoionization is the ionization of choice for 

PAHs and showed results comparable to gas chromatography mass 

spectrometry (Itoh et al., 2006; Cai et al., 2009). Indeed, APPI not only gives 

superior performance on nonpolar compounds but also works great for analytes 

which are out of the reach of ESI and APCI. Cai et al. demonstrated that APPI 
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could be considered as a universal ionization method since APPI was able to 

ionize more compounds, with greater structural diversity, than ESI and APCI (Cai 

et al., 2005). Because of APPI’s capacity to ionize compounds with various 

polarities, it has been increasingly applied in the environmental and 

pharmaceutical areas.  

 

1.4.4 Detection techniques 

In single quadrupole MS, SIM is the mode used for qualitative and quantitative 

analysis of target compounds (Cahill et al., 2004). Compared with MS, MS2 can 

reduce more interference from matrix. The unique ability of ion trap-MS (IT-MS) 

for MSn makes it an ideal tool in identification of analytes of interest (Ingrand et 

al., 2003) but because of its space-charge limitations is not generally used for 

quantitation. Triple quadrupole (QqQ) is the most frequently used MS2 detector in 

the muti-residue analysis of pharmaceuticals and EDCs in the environmental 

samples (Trenholm et al., 2008). For quantitative analysis, QqQ is excellent, but 

qualitative information, which is needed for structure identification, is lost. The 

drawback of QqQ can be overcome by using triple quadrupole time of flight 

(QqTOF) or quadrupole linear iontrap (QqLIT). Triple quadrupole time of flight is 

appropriate for identification of unknown compounds or metabolites due to its 

ability of providing exact mass. Quadrupole linear iontrap is excellent for both 

due to the unique capabilities of linear ion traps. LIT can run in two different 

modes, acting as the classical triple quadruple scan or sensitive ion trap scan. 

However, QqTOF and QqLIT are not widely available in environmental analysis 
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so far due to their extremely high cost. Only a few papers reported on their 

application for trace lever determination of emerging contaminants (Gros et al., 

2009; Laven et al., 2009; Huerta-Fontela et al., 2010). 

 

1.5 What is the concentration and fate of PPCPs in the environment? 

With the development of sensitive detection techniques, a wealth of information 

about the occurrence of PPCPs in the complex environment samples have been 

produced in the last decade (Verenitch et al., 2006; Gómez et al., 2007; Durán-

Alvarez et al., 2009; Xu et al., 2009). Pharmaceutical and personal care products 

have been documented in almost every water resource around the world. 

Pharmaceutical and personal care products are generally divided into several 

groups based on their mode of action including anti-inflammatory/analgesics, 

lipid regulators, H2-receptor antagonists, betablockers, personal care products 

and hormones.  

 

1.5.1 Anti-inflammatory/ analgesics 

Pharmaceuticals in this section are primarily used as painkillers. The most 

prominent drugs of this group are aspirin, ibuprofen and naproxen. Large 

amounts of painkillers are sold without prescription as “over-the-counter” (OTC) 

drugs. Because of the diversity of manufacturers it is hard to estimate the amount 

of OTC drugs sold worldwide. Acetaminophen (paracetamol) is one of the most 

frequently used OTC painkillers all over the world. About 140 tons of 

acetaminophen was dispensed in Wales (Kasprzyk-Hordern et al., 2008) and 
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more than 500 tons were sold in Germany (Thomas, 2002). In the investigation of 

139 surface streams in the U.S., acetaminophen was detected in 23.8% of 

samples at a maximum concentration of 10,000 ng/L (Kolpin et al., 2002). 

Acetaminophen is easily degraded and removed by WWTPs but it was still 

frequently detected in the environmental samples because its large usage. For 

example groundwater samples collected from 18 states from the USA, showed 

maximum concentration of acetaminophen of 380 ng/L (Barnes et al., 2008).  

Acetaminophen was even detected in drinking water in France at concentrations 

as high as of 210 ng/L (Mompelat et al., 2009). 

 

Ibuprofen is also a popular painkiller. Ibuprofen was detected in 50% of samples 

from UK estuaries at the maximal concentration of 928 ng/L and the median 

concentration of 48 ng/L.  It was detected in 139 streams in the U.S. at the 

maximum concentration of 1000 ng/L with 9.5% detection frequency. The high 

concentration of ibuprofen in surface water is not surprising because it has been 

reported at a high concentration in effluents of wastewater treatment plants. The 

high concentration of ibuprofen WWTP effluents is because of a combination of 

the high usage and low degree of human metabolism. In the WWTPs, ibuprofen 

was detected at concentrations from 14.3 to 22,700 ng/L in the influent and from 

30 to 12,600 ng/L in the effluent of WWTPs, respectively (Deblonde et al., 2011). 

Ibuprofen has also been detected in drinking water with maximal concentrations 

of 3.0 ng/L, 0.6 ng/L, 8.5 ng/L and 1350 ng/L in Germany, France, Finland and 

the USA, respectively (Mompelat et al., 2009). 
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Other than these compounds mentioned above, naproxen, diclofenac, 

indomethacine, ketoprofen are also in high demand and were also widely 

reported in the wastewaters and surface waters (Mompelat et al., 2009; 

Deblonde et al., 2011). 

 

1.5.2 Lipid regulators 

Clofibric acid, the active metabolite of the blood regulator clofibrate, has been 

widely reported in the effluents of WWTPs and has a removal rate of 40% 

(Metcalfe et al., 2003; Deblonde et al., 2011). Clofibric acid has been reported in 

surface waters at concentrations of 100 ng/L in UK estuaries (Thomas and Hilton, 

2004) and 0.4-18 ng/L in the river samples from Ebro River Basin (Gros et al., 

2009). In tap water, clofibric acid was reported up to 270 ng/L in distribution 

systems in Germany (Mompelat et al., 2009).  

 

The metabolites of fenofibrate—gemfibrozil, bezafibrate and fenofibric acid—

have been routinely detected up to µg/L in WWTPs effluents and surface waters 

(Thomas, 2002; Metcalfe et al., 2003; Kim et al., 2007; Deblonde et al., 2011). In 

drinking water, gemfibrozil was detected up to 70 ng/L in Canada (Mompelat et 

al., 2009). 

 

1.5.3 Antidepressants and anticonvulsants 

Antidepressants are a psychiatric medication used to alleviate mood disorders. 

Fluoxetine is a widely used antidepressant. Although the relative removal of 



18 
 

fluoxetine is higher than other pharmaceuticals (~98%) (Deblonde et al., 2011), 

fluoxetine was still reported in many surface water and groundwater samples. In 

national reconnaissance of the USA, the maximum concentration of fluoxetine in 

streams, groundwater and sources of drinking water were 12 ng/L, 56 ng/L and 

ND, respectively (Kolpin et al., 2002; Barnes et al., 2008; Focazio et al., 2008).  

 

Anticonvulsants are used in the treatment of epileptic seizures. Carbamazepine 

is one the most frequently detected anticonvulsants in wastewater, surface 

waters and drinking water. Because of its environmental stability carbamazepine 

is one of the most commonly detected PPCPs in surface waters worldwide. In 

WWTPs, the mean concentrations of carbamazepine in the influent and effluent 

were 732 ng/L and 774 ng/L, respectively, which indicated that carbamazepine 

had an extremely low removal rate in WWTPs (Deblonde et al., 2011). The 

concentrations of carbamazepine had been detected up to 1075 ng/L in surface 

waters in Germany (Heberer et al., 2002). Carbamazepine has even been 

detected in ground waters and drinking waters because of its persistence. The 

maximal concentrations of carbamazepine detected in drinking water were 24 

ng/L, 258 ng/L, 43.2 ng/L and 60 ng/L in Canada, France, Germany and the USA, 

respectively (Mompelat et al., 2009).  

 

1.5.4 H2-receptor antagonists 

The function of H2 receptor antagonists is to block the action of histamine on 

parietal cells in the stomach. Cimetidine, ranitidine, famotidine and nizatidine are 
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the available OCT H2 receptor antagonists in the USA. Ranitidine was detected 

in streams in the USA at a maximum concentration of 10 ng/L with the detection 

frequency of 1.2% (Kolpin et al., 2002). In surface water in South Wales, 

concentrations of ranitidine were reported up to 8 ng/L (Kasprzyk-Hordern et al., 

2008). Until now, ranitidine was not detected in groundwater or sources of 

drinking water in national reconnaissance in the United States (Barnes et al., 

2008; Focazio et al., 2008).  

 

1.5.5 Betablockers 

Betablockers are used to manage cardiac dysrhythmia, cardioprotection after 

heart attack and hypertension. Betablockers are not very widely studied in 

wastewater. Concentration of metoprolol and propranolol in the influent of 

WWTPs ranged from 20 to 4900 ng/L and 36 to 510 ng/L, respectively. In the 

effluent of WWTPs the concentration of metoprolol and propranolol ranged from 

19 to 1700 ng/L and 30 to 180 ng/L, respectively. The removal rate was about 60% 

(Deblonde et al., 2011). Propranolol was detected up to 56 ng/L in UK estuaries 

in 40% of the samples (Thomas and Hilton, 2004). Kasprzyk-Hordern’s study 

suggests that betablockers, like atenolol, propranolol and metoprolol, are very 

persistent in the aqueous environment because they were present in 100% of the 

samples collected downstream from a wastewater discharge point and showing 

very small decreases in concentration with distance from the wastewater 

discharge point (Kasprzyk-Hordern et al., 2008). 
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1.5.6 Industrial chemicals and personal care products 

Bisphenol A is used to make polycarbonate polymers and epoxy resins, which 

are used to make plastic along with other materials. Over six million tons of 

bisphenol A are produced worldwide each year (Welshons et al., 2006). The 

concentration of bisphenol A ranged from 88 to 11800 ng/L in the influent of 

wastewater treatment plants. With the removal rate of 71%, the concentration of 

bisphenol A was between 6 and 4090 ng/L in the effluent (Deblonde et al., 2011). 

Because of the incomplete removal of bisphenol A in the WWTPs, it also been 

detected in surface waters, ground waters and drinking waters. Bisphenol A was 

detected in 41.2% of samples collected from 139 streams in the USA and the 

maximum concentration was 12000 ng/L (Kolpin et al., 2002). In the groundwater 

in the USA, bisphenol A was detected up to 2550 ng/L with 29.8% detection 

frequency (Barnes et al., 2008). In the Australia, bisphenol A was detected up to 

600 ng/L in surface water and 930 ng/L in groundwater. Water samples were 

collected from 27 surface water sites and 59 groundwater sites all across 

Australia (Hohenblum et al., 2004). 

 

Personal care products are used for beautification and in personal hygiene. 

Triclosan is an antimicrobial disinfectant. Triclosan was detected up to 2300 ng/L 

with a very high detection frequency (57.6%) in streams in the United States 

(Kolpin et al., 2002). The removal rate of triclosan was 76.8% (Deblonde et al., 

2011) and the incomplete removal of triclosan from effluents brought triclosan to 

the surface waters or even the drinking water. Triclosan’s maximum 
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concentrations were 95 ng/L in South Wales’ river water (Kasprzyk-Hordern et al., 

2008) and 56.7 ng/L in Romania’s river water (Zaharie, 2006). Triclosan was 

detected in drinking water sample in the USA with the maximal concentration of 

734 ng/L (Mompelat et al., 2009). 

 

1.5.7 Hormones 

A hormone is a chemical released by a cell or a gland in one part of the body, 

which can affect cells of other parts of the body by triggering chemically induced 

messages. Hormones, which can behave as endocrine disruptors in the 

environment, may induce unexpected effect in no-mammalian organism in the 

aqueous environment, such as algae, invertebrate and fish. Disturbance of 

reproductive system and hormone system, immune depression, neurobehavioral 

changes may have effects on the population level (Fent et al., 2006). Estrone 

(E1), 17β-estradiol (E2) and ethynylestradiol (EE2) are the three hormones that 

have been studied most. The natural and environmental concentrations of 

hormones are lower than many other pharmaceuticals, but we still need to pay 

attention to them because they have endocrine disrupting effect at the ng/L level. 

A study of WWTPs located at Galicia, Spain showed that the concentration of E2 

in the influent was 3 ng/L and in the effluent of plant the concentration was below 

detection limit (1 ng/L). The overall removal rate of E2 in WWTPs was around 

65%, but E2 is usually converted to E1 during secondary treatment (conventional 

activated sludge) (Carballa et al., 2004), which explains why sometimes E1 was 

detected at a higher concentration in the effluent of WWTPs than E2 (Kim et al., 
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2007; Ryu et al., 2011).  Estrone was detected in the surface water and ground 

water up to 4.6 ng/L and 1.6 ng/L, respectively, in Australia (Hohenblum et al., 

2004). In the study of U.S. drinking water, the maximum concentrations of E1, E2 

and E3 were 0.9 ng/L, 17 ng/L and 1.4 ng/L in the source water, respectively. But 

none of them were above the detection limit (0.2 ng/L, 0.5 ng/L and 1.0 ng/L, 

respectively) in the finished water (Benotti et al., 2009). 

 

1.6 Control of PPCPs pollution 

More efforts need to be made to decrease the pollution in the environment with 

PPCPs.  Several methods, including segregation of source, improvement of the 

disposal system for expired medicines, application of the pharmaceutical return 

program and the development of “green” pharmaceuticals, can be used to 

prevent the release of PPCPs into the environment. Source segregation can be 

an effective way to prevent pharmaceuticals from entering the environment. 

Wastewater from hospitals can be separated from domestic wastewater and 

advanced treatment can be applied to wastewater form hospitals to remove 

pharmaceutical and personal care products.  Presently, most of the expired 

medicines are disposed of via sinks or toilets, ending up in WWTPs or household 

waste ending up in landfill sites. The US federal prescription drug-disposal 

guidelines (2007) allow flushing certain drugs if it is safe, but suggests returning 

unused, unneeded, or expired medicines to pharmaceutical take-back locations 

for safe disposal (URL2). Development of “green” pharmaceuticals requires more 

efforts and time but would be an effective way to increase the rapid removal of 
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PPCPs from the environment. Keeping in mind that these compounds are 

produced with an intended biological effect, in the absence of good data 

describing their ecological effects caution should be exerted to prevent their 

chronic release into environmental systems. Because of the lack of an 

environmental regulatory framework continued efforts to document their 

occurrence is still the best approach to keep the discussion going. The work 

presented here is a step in that direction and provides a set of tools and findings 

to advance the knowledge on the environmental occurrence of these chemicals 

in sensitive areas in South Florida.  Water resources in Florida are under 

persistent stress due to the continued expansion of the urban population, the 

constant changes of land use and the competition for good quality water between 

the human population and ecosystem sustainability. 

 

1.7 Objectives 

The overall objective of this study is to monitor the PPCPs and hormones in 

reclaimed waters, surface waters, drinking waters, sediments and soils in South 

Florida in order to provide a general overview of the quality of these resources. 

 

In order to accomplish this task, specific aims include to: 

• Develop a GC-MS method for the detection of PPCPs and hormones in surface 

waters, sediments and soils.  

• Because GC-MS systems are still the most widely used instrument 

in environmental labs. A sensitive GC-MS method is still valuable 
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for the analysis of PPCPs in the environment samples. (Chapters 2 

and 3) 

 

• Develop a fully automated, high throughput online SPE-LC-MS/MS method for 

the detection of PPCPs and hormones in different water matrices to avoid 

sample preparation.  

• The online SPE method simplified sample preparation procedure 

and increased the productivity of analysis. Tandem MS enhanced 

both the selectivity and sensitivity. The online SPE-LC-MS/MS 

method largely increased the efficiency of analysis compared to 

GC-MS method. (Chapters 4 and 5) 

 

• Compare different ionization sources including HESI, APCI and APPI on the 

ionization efficiency for PPCPs and hormones and produce a single, yet 

comprehensive method for the analysis of multiple compounds at 

environmentally relevant concentrations. (Chapters 4 and 5) 

 

• Assess the occurrence of the target compounds in surface, reclaimed and 

drinking waters in South Florida and provide information regarding the present 

state of the quality of water resources with respect to PPCPs.  

• A better understanding of distributions of PPCPs in South Florida 

can be achieved by analyzing the results from surface water 

samples. By analyzing reclaimed water, more information will be 
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provided about the potential effects of water reuse. Results from 

drinking water samples will offer information about current water 

quality in South Florida and the implications for system integrity. 

(Chapters 6 and 7)  
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CHAPTER 2 

Detection of PPCPs and hormones in aqueous samples using GC-MS 

2.1 Introduction    

The wide spread occurrence of pharmaceuticals and personal care products 

(PPCPs) and endocrine disrupting compounds (EDCs) have shifted the attention 

of environmental and toxicological research beyond traditional environmental 

pollutants, such as polychlorinated biphenyls (PCBs), dioxins, and pesticides. 

 

Pharmaceuticals and personal care products are continuously released into the 

environment in vast quantities from many sources but in general municipal 

wastewater has been recognized as one of the main routes bringing human 

pharmaceuticals into the environment. Traditional wastewater treatment 

processes, such as aerated lagoons, conventional activated sludge and filtration, 

do not completely remove drugs and estrogens from their effluents (Lishman et 

al., 2006; Verenitch et al., 2006; Gibson et al., 2007; Gros et al., 2009). Many 

PPCPs and hormones have been detected in the effluent of wastewater 

treatment plants (WWTPs) (Boyd et al., 2003; Gibson et al., 2007) as well as in 

the receiving surface water (Kolpin et al., 2002). The residue of hormones can 

have adverse effects on organisms in the environment at very low concentrations 

(1-10 ng/L). These endocrine disrupting compounds (EDCs) can influence the 

endocrine system under long-term chronic exposure. Synthetic estrogens such 

as mestranol and ethynylestradiol (EE2) have the lowest observable effect level 

(LOEL) on the order of 1 ng/L (Christiansen, 2002). Concentrations above LOEL 
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have already been found in surface water (Kolpin et al., 2002) and current data 

suggests that hormones can travel considerable distance from the source of 

pollution (Barel-Cohen et al., 2006). Therefore, it is essential to monitor 

concentrations of PPCPs and EDCs in the aquatic environment at trace levels to 

provide adequate risk evaluation. 

 

The most common difficulties for the detection of PPCPs are low occurrence 

concentration levels (μg/L or ng/L), which requires highly sensitive instruments 

and the interference coextraction of environment samples, which made it very 

difficult to identify and quantify target compounds. Therefore, proper clean-up 

procedures are required during sample preparation. In addition, there is a need 

for detection of diverse PPCPs in a single run. Therefore, this chapter reviews 

simultaneous detection of PPCPs in the environment. 

 

The analysis of trace level contamination in environmental samples can be 

achieved by sophisticated analytical techniques such as liquid chromatography 

(LC) coupled to tandem mass spectrometry (MS/MS). Ionization sources such as 

electrospray ionization (ESI) and atmospheric chemical ionization (APCI) that are 

coupled to LC can ionize polar and non-volatile compounds (Kolpin et al., 2002; 

Cahill et al., 2004). The high selectivity of tandem mass allows simple sample 

preparation of complex matrix samples such as wastewater (Ingrand et al., 2003; 

Vanderford et al., 2003; Weigel et al., 2004; Castiglioni et al., 2005; Verenitch et 

al., 2006; Gómez et al., 2007; Gros et al., 2009). However, those sophisticated 
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analytical techniques are still not as common as GC-MS because of their high 

cost. In addition, certain steroids such as coprostan-3-ol and coprostanone, are 

very hard to be ionized in ESI or APCI. Gas chromatography mass spectrometry 

is still a very useful common technique to simultaneously detect trace level 

hormones and PPCPs in the environment, despite the fact that GC-MS may 

require an extra derivatization step during sample preparation (Kolpin et al., 2002; 

Boyd et al., 2003; Weigel et al., 2004; Lishman et al., 2006; Gibson et al., 2007). 

 

In my study, I developed a reliable method to simultaneously detect 20 PPCPs in 

surface water using liquid-liquid extraction followed by GC-MS analysis. I 

detected 20 PPCPs of different properties in a single run. The method was used 

to detect compounds in water samples from Big Cypress National Preserve, 

Everglades National Park and Biscayne National Park in south Florida in order to 

understand the current status with respect to PPCPs occurrence and potential 

sources. The research investigates the influence of human activities on the 

surface waters from national parks and provides information on overall water 

quality in South Florida. 

 

2.2 Experimental  

2.2.1 Chemicals 

Caffeine was purchased from Fisher Scientific (Suwannee, GA, USA). N,N-

Diethyl-3-methylbenzamide (DEET), 4-nonylphenol, triclosan, bisphenol A, 

androsterone, 17α-estradiol, estrone, equilin, 17β-estradiol, testosterone, 17α-
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ethynylestradiol, coprostane, progesterone, estriol, coprostan-3-ol, coprostan-3-

one and cholesterol were purchased as solids from Sigma and Aldrich (St. Louis, 

MO, USA). Mestranol and equilenin were purchased as a certified standard 

solution from Dr. Ehrenstorfer (Augsburg, Germany). Caffeine-13C3 used as 

surrogate was purchased from Cambridge Isotope Laboratories, Inc (Andover, 

MA, USA). Deuterated 17β-estradiol (17β-estradiol-d5), bisphenol A (bisphenol 

A-d16), estrone (estrone-d4) and progesterone (progesterone-d9) were 

purchased from CDN Isotopes (Pointe-Claire, Quebec, Canada). All the 

reference standards were >95% purity. Detailed information of selected PPCPs is 

shown in table 1. Intermediate solutions were prepared at concentrations of 200 

ppm in methanol and stored in the dark below 4°C. All laboratory materials were 

either made of glass or Teflon to avoid contamination. Glassware used in 

extraction was cleaned with soap and rinsed with DI water and combustion took 

place at 450 °C for at least six hours. Teflon materials were rinsed with methanol, 

acetone, methylene chloride and hexane before use.  

 

Table 1. Target PPCPs, structure, CAS and intended usage 

Name Structure CAS Use 

DEET 

 

134-62-3 Insect repellant 

Caffeine 

 

58-08-2 Stimulant 

Nonylphenol 
 

104-40-5 
Product formed 
during process 

phenols 

 
N

O

 
N

N N

N
H3C

CH3

CH3
O

O

 

H3C(H2C)7H2C

OH
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Name Structure CAS Use 

Triclosan 
 

3380-34-5 antibiotic 

Bisphenol A 

 

80-05-7 Polymer additive 

Androsterone 

 

53-41-8 androgen 

17α-estradiol 

 

57-91-0 estrogen 

Estrone 

 

53-16-7 estrogen 

Equilin 

 

474-86-2 Estrogen 
replacement 

17β-estradiol 

 

50-28-2 estrogen 

Testosterone 

 

58-22-0 androgen 

Mestranol 

 

72-33-3 Ovulation 
inhibitor 

Equilenin 

 

517-09-9 Estrogen 
replacement 

  
O

Cl

Cl OH

Cl

 
H3C CH3

HO OH

 

HO

CH3

CH3
O

 

HO

H

OH

H

H3C

H

 
O

HO

H3C

H

H H

 
O

H3C

HO

 

HO

H H

H3C

H

OH

 

O

H3C H

H3C
OH

H H

 

O
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O
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Name Structure CAS Use 

17α-ethynyl 
Estradiol 

 

57-63-6 Synthetic 
estrogen 

Coprostane 

 

481-20-9 Fecal steroid 

Progesterone 

 

57-83-0 estrogen 

Estriol 

 

50-27-1 Reproductive 
hormone 

Coprostan-3-ol 

 

360-68-9 Fecal steroid 

Coprostan-3-one 

 

601-53-6 Fecal steroid 

Cholesterol 

 

57-88-5 Plant/animal 
steroid 

 

2.2.2 Sample collection and sample treatment 

Samples were collected from three different protected areas in South Florida, Big 

Cypress National Preserve (BCNP), Everglades National Park (ENP) and 

Biscayne National Park (BNP). The sampling sites are shown in figure 3. Soap, 

beverages, sun screen, repellent, caffeinated drinks and pharmaceuticals were 

 

HO
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CH3

CH3

CH3

CH3
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not allowed to be used during sampling to minimize potential contamination of 

samples. Water samples were collected in previously combusted glass bottles to 

avoid contamination. Samples were filtered through 0.45 µm before being 

transferred into separatory funnels. The walls of the glass bottles were rinsed 

with methylene chloride to guarantee that all analytes were transferred into the 

separatory funnels. 

 

2.2.3 Extraction method 

Each 1 L water sample was extracted by liquid-liquid extraction (LLE) using a 

separatory funnel equipped with Teflon cap and stopper. Samples were fortified 

with surrogate standards (caffeine-13C3, bisphenol A-d16, estrone-d4, 17β-

estradiol-d5 and progesterone-d9) and extracted three times using 50 mL 

methylene chloride. All the organic layers were dried over anhydrous sodium 

sulfate and collected in a 250 mL flat-bottom round flask. Extracts were 

evaporated to about 10 mL in a water bath at 65 °C, transferred to concentration 

tubes, concentrated to 1 mL under nitrogen gas, transferred into 1.5 mL amber 

vial and brought to dryness using nitrogen gas. 

 

2.2.4 Silylation method 

N,O-bis(trimethysilyl)trifluoroacetamide (BSTFA) (100 μL) was added to each 

amber vial and samples were heated at 60 °C for 45 min in the GC oven. Internal 

standard (chrysene-d12) working solution (100 μL) was added to the sample 

extracts before injection to gas chromatography mass spectrometry. 
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Figure 3. Location of sampling sites 
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2.2.5 GC-MS analysis 

All the chromatographic measurements were performed using a Thermo GC/MS 

system comprised of a Finnigan Trace GC Ultra fitted with an autosampler AS 

3000 and a Finnigan Trace DSQ operated in an EI at 70 eV. Derivatized sample 

extracts (2 μL) were injected into a DB-5MS column (30 m with 0.5 μm film 

thickness and 0.25 mm I.D.) under the splitless mode. The helium flow rate was 

held constant at 1.2 mL/min and the GC oven was programmed from 85 °C (1 

min hold) at a rate of 15 °C /min to 270 °C (1 min hold), then at a rate of 5 °C 

/min to 300 °C (10 mins hold). The transfer line was 280 °C. The MS operated in 

EI mode using selected ion monitoring (SIM) to enhance sensitivity. 

 

2.2.6 Quantification 

Quantification of target compounds was accomplished by isotope dilution. The 

target compound was identified by retention time and ions (usually one 

quantitation ion and one or two confirmation ions). The quantitation ion and 

confirmation ion of target compounds are shown in table 2. The ion ratio was 

monitored to distinguish the matrix interference from the target compounds. In 

each sequence of samples, relative response factor (RRF) was calculated by 

calibration solutions. Seven calibration solutions with concentration of target 

compounds representing 5 ng/L to 1000 ng/L were run before samples. A 

continuous calibration check was also performed after each set of samples to 

assure the instrument’s stability through the run.  
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Table 2. Molecular weight, retention time, quantitation ion and confirmation 

ion of PPCPs 

Name type Molecular 
weight 

RT 
(min) 

Quantitati
on ion 

Confirm
ation ion 

Confirmat
ion ion 

DEET Analyte 191.27 14.33 190 191 119 

Caffeine-13C3 Surrogate 197.21 17.51 197 196 198 

Caffeine Analyte 194.19 17.51 194 195 109 

Nonylphenol Analyte 220.3 18.08 292 179 180 

Triclosan Analyte 289.54 20.72 360 347 345 

Bisphenol A-d16 Surrogate 244.38 21.55 368 386  

Bisphenol A Analyte 228.29 21.67 357 358 372 

Chrysene-d12 
Internal 

standard 240.37 26.26 240 239 236 

Androsterone Analyte 290.00 26.50 272 271 347 

17α-estradiol Analyte 272.38 28.21 416 285  

Estrone-d4 Surrogate 274.39 28.35 346 347 261 

Estrone Analyte 270.37 28.41 342 218 257 

Equilin Analyte 268.35 28.55 340 341 242 

17β-estradiol-d5 Surrogate 277.42 28.78 421 422 287 

17β-estradiol Analyte 272.38 28.83 416 285  

Testosterone Analyte 288.42 29.23 270 360 226 

Mestranol Analyte 310.43 29.73 227 242 367 

Equilenin Analyte 266.33 29.83 338 339 295 
17α-ethynyl 

estradiol Analyte 296.4 30.48 425 426 285 

Coprostane Analyte 372.67 31.06 217 218 357 

Progesterone-d9 Surrogate 323.52 31.50 323 324 279 

Progesterone Analyte 314.46 31.70 314 272 229 

Estriol Analyte 288.38 31.75 311 345 504 

Coprostan-3-ol Analyte 388.67 35.32 370 355 371 

Coprostan-3-one Analyte 386.65 37.33 231 232 386 

Cholesterol Analyte 386.65 37.55 329 368 458 

 



36 
 

2.3 Results and discussion 

2.3.1 Method development and validation 

2.3.1.1 pH range experiment 

The pH is an important factor that affects the recovery of analytes when analytes 

with different functional groups are presented in the sample. Compounds in 

neutral form are more willing to partition to the organic phase, while in their 

ionized form they prefer to stay in the aqueous phase. The pH was adjusted to 

3.0, 6.0 and 10 to assess recoveries across the pH range. Recoveries of target 

analytes are shown in Figure 4. Recovery did not differ significantly at different 

pH values expect for androsterone, equilin, testosterone, and coprostan-3-ol, 

whose recoveries were lower at pH=10. Therefore, pH was not adjusted for the 

real samples. Additionally, there were many advantages of doing extraction at 

natural pH: ① It simplified sample handling: no extra steps were required to 

remove acid or base; ② The pH is amenable to the derivatization step; ③ It 

eliminated the risk of acidic hydrolysis of susceptible analytes during sample 

preparation. 
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Figure 4. Recovery of PPCPs when extraction at different pH 

 

2.3.1.2 Method validation 

Batch quality assurance and quality control included a method blank, a fortified 

blank, one matrix spike sample and one duplicate sample per set of 20 samples 

or less analysis. Recoveries of the matrix spike were consistent between 

analytes. The duplicate sample agreed within 30% of target compounds except 

for cholesterol. Method detection limits (MDLs) are shown in table 3. Analytes 
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were spiked in DI water at environmental concentrations ranging from 2.00 ng/L 

to 20.0 ng/L) and MDLs were between 0.14 ng/L and 2.61 ng/L, respectively. The 

average recovery of analtyes was 79%. 

 

Table 3. Performance data for PPCPs (linearity, method limit of detection, 

spike level and recovery) 

Analyte Surrogate RRF R2 
Spike 
level 

(ng/L) 

MDL 
(ng/L) 

Recovery 
(%) 

DEET Caffeine-13C3 0.7251 0.9744 2.00 0.24 87 
Caffeine Caffeine-13C3 1.0351 0.9990 2.00 2.61 96 

Nonylphenol Bisphenol A-d16 0.2575 0.9980 2.00 0.47 67 
Triclosan Bisphenol A-d16 0.0918 0.9973 2.00 1.20 145 

Bisphenol A Bisphenol A-d16 1.3781 0.9986 2.00 1.46 89 
Androsterone Estrone-d4 0.5796 0.9973 2.00 0.21 107 
17α-estradiol 17β-Estradiol-d5 1.0726 0.9999 2.00 0.14 90 

Estrone Estrone-d4 1.5556 0.9964 2.00 0.22 81 
Equilin Estrone-d4 0.6110 0.9975 2.00 1.09 60 

17β-estradiol 17β-Estradiol-d5 1.1809 0.9999 2.00 0.18 93 
Testosterone Estrone-d4 0.0526 0.9989 4.00 0.37 64 

Mestranol Estrone-d4 0.2421 0.9914 4.00 2.00 107 
Equilenin Estrone-d4 1.6533 0.9963 2.00 0.33 56 

17α-ethynylestradiol 17β-Estradiol-d5 0.2845 0.9964 4.00 0.65 94 
Coprostane Progesterone-d9 1.5742 0.9994 8.00 0.48 85 

Progesterone Progesterone-d9 2.4044 0.9953 8.00 0.41 83 
Estriol 17β-Estradiol-d5 0.3663 0.9957 2.00 0.29 10b 

Coprostan-3-ol Estrone-d4 1.0304 0.9944 4.00 0.51 45b 
Coprostan-3-one Progesterone-d9 0.6814 0.9974 8.00 1.45 60 

Cholesterol Estrone-d4 0.5336 0.9962 a 150 63 
RRF- relative response factor 
R2-coefficient of determination of a linear regression 
MDL- method detection limit  
a MDL was set at 150 n/L because cholesterol is a common contamination on the glassware   
b recovery of estriol is low because of no proper surrogate for it. 
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2.3.2 Analysis of real samples 

The method was successfully applied to 80 samples from surface water collected 

from three protected areas in South Florida. The detailed description of the 

sampling sites and the concentrations of PPCPs are summarized in table 4. 

Detection frequencies and concentrations of PPCPs are shown in figure 5. 

 

Figure 5. Concentrations and frequencies of detection of selected 

microconstituents in all sampling sites 
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DEET was detected in 55% of sampling sites with concentrations ranging from 

ND to 27.9 ng/L. DEET is the most common active ingredient in insect repellents. 

On the basis of the 1990-1999 estimates, approximately four to seven million 

pounds of DEET are used every year in the U.S. (Cahill et al., 2004). Therefore, 

it is not surprising that DEET is the most frequently detected pollutant in ground 

water in the United States (Barnes et al., 2008). Concentrations as high as 1100 

ng/L have been reported for U.S. streams (Kolpin et al., 2002). Nevertheless, 

concentrations of DEET are usually related to recreational use and not an 

indicator of water quality issues related to wastewater intrusion. 

 

Caffeine was detected in 40% of the sampling sites with concentrations ranging 

from ND to 169 ng/L. Caffeine was one of the most frequently detected 

compounds in this study and results are consistent with previous studies in the 

area (Gardinali and Zhao, 2002; Singh et al., 2010) and other similar areas such 

as the Herault watershed, where caffeine was not completely degraded either in 

the wastewater treatment plant or in river water (Rabiet et al., 2006). Caffeine 

has been associated with coral bleaching at concentrations between 30 × 106 

ng/L and 75 × 106 ng/L (Pollack et al., 2009). Although the concentrations are 

orders of magnitude larger than the concentration of caffeine detected in the 

sampling sites, potential impacts of chronic exposure effect at low concentrations 

and possible additive effect with other chemical pollutants should still be of 

concern. Caffeine was neither detected in the sampling sites in Big Cypress 

National Preserve nor in the sampling sites in the Everglades National Park like 
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SRS3, SRS4, WB1, WB2 and WB3. Caffeine was detected in the sampling sites 

along the canals and in the Biscayne Bay National Park, which are affected by 

human activities. Therefore, caffeine can be used as a valuable indicator of 

human activities.  

Triclosan was detected in 30% of the sampling sites, ranging from ND to 10.9 

ng/L. Triclosan is an antibacterial agent added to detergents and soap formulas. 

The annual production of triclosan exceeded a million pounds in the late 1990s 

(Vanderford et al., 2003). Triclosan is hard to be removed during primary 

clarification, aeration basin and secondary clarification stages of wastewater 

treatment. Concentrations of triclosan from a Louisiana treatment plant effluent 

were between 10 to 21 ng/L, which were similar to the concentrations we 

detected (Boyd et al., 2003). Additionally, triclosan was detected at less than 50 

ng/L in the surface water in South Wales, UK (Thomas and Hilton, 2004) and 

found at 4.2 ng/L in surface water from Hamburg, Germany (Weigel et al., 2004). 

 

Androsterone was detected at only one site at a concentration of 2.44 ng/L 

(C111-2). Few studies included androsterone in their target compounds. 

Nevertheless, androsterone is an important weak androgenic steroid hormone, 

which comes from the metabolism of testosterone. Androsterone was detected in 

14.3 % of U.S. streams at a maximal concentration 214 ng/L and a median 

concentration of 17 ng/L (Kolpin et al., 2002). The source for androsterone in the 

area is unknown. 
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Estrone (E1) was detected in only 4% of the sampling sites at a maximal 

concentration of 5.98 ng/L (BB09). These results are much lower than the 

concentrations detected by Kolpin et al. in U.S. streams (112 ng/L) (Kolpin et al., 

2002). Such high concentrations have not seen in any other studies. The study of 

Edward et al. detected estrone in an agricultural region at a maximal 

concentration of 0.9 ng/L in river waters and 17 ng/L in irrigation canals 

(Kolodziej et al., 2004). Estrone detected in BB09 indicated that leaks from the 

landfill or WWTP area nearby may be affecting the quality of surface water. 

Caffeine, DEET, bisphenol A and coprostan-3-ol were also detected in BB09. 

 

Estradiol was detected at two sampling sites at a maximal concentration of 3.34 

ng/L. By contrast, 17β-estradiol was detected in U.S. streams at a maximal 

concentration of 93 ng/L at 10.0% frequency of detection (Kolpin et al., 2002). 

However, such high concentrations were not seen in other studies. Estradiol was 

detected in spring water in Mexico City at a concentration of 0.17 ng/L (Gibson et 

al., 2007). No 17β-estradiol was detected in surface water in the Mississippi 

River (Boyd et al., 2003), effluents from various WWTPs in Italy (Castiglioni et al., 

2005), or effluents from 12 municipal wastewater treatment plants along the 

Thames River in Canada (Lishman et al., 2006). 

 

Coprostan-3-ol, copostane and coprostan-3-one are metabolites of cholesterol 

generated by fecal bacteria (Jeannot et al., 2002). Cholesterol was detected at 

sampling sites at a maximal concentration of 2736 ng/L. Cholesterol can be 
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produced from both nonanthropogenic and anthropogenic sources (Kolpin et al., 

2002). Therefore, chlolesterol was detected at all sampling sites. Similar 

concentrations also were found in the Danube River (Sebok et al., 2009). 

Coprostan-3-ol was detected in 17% of the sampling sites at a maximal 

concentration of 16.5 ng/L (C111-4). Previously, bacterial indicators were used to 

determine the quality of water and the stress from anthropogenic activities. 

Nucleic acid sequences were detected in 93.3% of coral surface microlayer 

samples from Florida Bay. It indicated the accumulation of entire microorganisms 

in the reef environment may be a risk to public and environmental health (Lipp et 

al., 2002). However, bacteria indicators have their limitations, such as being time-

consuming and lacking specificity. Therefore, chemical indicators of human feces 

were an alternative to identifying human sewage contaminations in water bodies. 

The fecal steroid coprostan-3-ol was first suggested to be an indicator of fecal 

pollution (Glassmeyer et al., 2005). Coprostane was detected only at one 

sampling site (TS1) at a maximal concentration of 13.5 ng/L. Coprostane was 

detected in river samples at 20 ng/L (Jeannot et al., 2002). Coprostan-3-one was 

detected at two sampling sites at a maximal concentration of 6.79 ng/L. 

 

Average concentrations of analytes detected in each sampling site were shown 

in figure 6 using different colors. Average concentrations between ND and 10 

ng/L were displayed in blue color.  Average concentrations between 10 and 25 

ng/L were displayed in green color. Average concentrations between 25 and 50 

ng/L were displayed in yellow color. Average concentrations between 50 and 100 
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ng/L were displayed in red color. Result in figure 6 showed that average 

concentrations in BCNP were lower than the other two protected areas. The 

reason is there are almost no residents in BNP area and human activities in BNP 

are much less than the other two protected areas. 
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Figure 6. Map showing the distribution of average concentrations. ND-10 ng/L, blue dot; 10-25 ng/L, green dot; 25-50 

ng/L, yellow dot; 50-100 ng/L, red dot. 
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In summary, the three most frequently detected compounds were DEET, caffeine 

and triclosan, if we do not consider cholesterol. The greater frequency of 

detection of these three compounds may be derived from their greater annual 

use. Mixture of PPCPs was prevalent during this study because forty three 

percent of sampling sites had more than three target compounds. Research has 

shown that certain chemical combinations can have additive toxic effects to 

organisms (Pomati et al., 2008). Therefore, the toxicity research should not only 

focus on individual compound effect but also the mixture of these compounds. 
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Table 4. Description of sampling sites and concentrations of PPCPs 

STATION 
ID 

STATION 
DESCRIPTOR DEET Caffeine Triclosan Androst

erone Estrone 17β-
estradiol Coprostane Coprostan-

3-ol 
Coprosta
n-3-one 

Cholester
ol 

BB01 Biscayne 
Bay 

ND-
8.87 

ND-
54.1 ND ND ND ND ND ND ND ND-276 

BB02 Biscayne 
Bay 

ND-
10.2 ND ND ND ND ND ND ND ND ND-418 

BB03 Biscayne 
Bay 

ND-
25.9 ND ND ND ND ND ND ND ND ND -242 

BB04 Biscayne 
Bay 

ND-
18.3 ND ND ND ND ND ND ND ND 215-274 

BB05 Biscayne 
Bay 

ND-
8.76 ND ND ND ND ND ND ND ND ND -312 

BB06 Biscayne 
Bay 

ND-
6.21 ND ND ND ND ND ND ND -1.32 ND 208-420 

BB07 Biscayne 
Bay 

3.63-
19.3 

ND-
38.5 ND ND ND ND ND ND ND 342-445 

BB09 Biscayne 
Bay 

ND-
6.29 

ND-
25.4 ND ND ND-

5.98 ND ND ND -12.4 ND 289-
2337 

BB10 Biscayne 
Bay 

ND-
9.29 ND ND ND ND ND ND ND ND ND -269 

BB11 Biscayne 
Bay 

ND-
13.2 

ND-
22.9 ND ND ND ND ND ND ND ND -279 

BB12 Biscayne 
Bay ND ND ND ND ND ND ND ND ND 321-389 

BICY1 Big 
Cypress ND ND ND ND ND ND ND ND ND ND 

BICY3 Big 
Cypress 17.2 ND ND ND ND ND ND ND ND ND 

BICY4 Big 
Cypress ND ND ND ND ND ND ND 3.16 ND ND 

BICY5 Big 
Cypress 

ND-
16.8 ND ND ND ND ND ND ND ND ND -423 
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STATION 
ID 

STATION 
DESCRIPTOR DEET Caffeine Triclosan Androst

erone Estrone 17β-
estradiol Coprostane Coprostan-

3-ol 
Coprosta
n-3-one 

Cholester
ol 

BICY6 Big 
Cypress ND ND ND ND ND ND ND ND ND 203-319 

BICY7 Big 
Cypress ND ND ND ND ND ND ND ND ND ND 

BICY8 Big 
Cypress ND ND ND ND ND ND ND ND ND ND 

C111-1 C111 Basin ND 22.9 2.66 ND ND 3.34 ND ND ND 545 
C111-2 C111 Basin ND 10.6 4.34 2.44 ND ND ND ND ND 353 

C111-3 C111 
Canal ND ND 9.10 ND ND ND ND ND ND ND -434 

C111-4 Highway 
Creek 

6.71-
17.2 

ND -
35.5 ND ND ND-

3.42 ND ND 1.59-16.5 ND 287-
2736 

E1 East 
Boundary ND ND ND ND ND ND ND ND ND ND 

E2 East 
Boundary 12.1 39.6 ND ND ND ND ND ND ND 1561 

E3 East 
Boundary ND 33.6 ND ND ND ND ND ND ND ND 

E4 East 
Boundary ND ND 10.9 ND ND ND ND ND ND ND 

E5 East 
Boundary ND 61.3 ND ND ND ND ND ND ND ND 

E6 East 
Boundary ND 68.8 ND ND ND ND ND ND ND ND 

E7 East 
Boundary ND ND 9.66 ND ND ND ND ND ND ND 

FB1 Florida Bay ND ND ND ND ND ND ND ND ND 164 

FB2 Florida Bay 11.5 ND ND ND ND ND ND ND ND 553 

S178 Structure 
178 ND ND -

18.4 
ND -
1.33 ND ND ND ND ND- 5.46 ND-3.22 309-859 

S18C Structure 
18C ND 63.5-

169 ND ND ND ND ND ND ND 158-274 
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STATION 
ID 

STATION 
DESCRIPTOR DEET Caffeine Triclosan Androst

erone Estrone 17β-
estradiol Coprostane Coprostan-

3-ol 
Coprosta
n-3-one 

Cholester
ol 

SRS1 
Shark 
River 

Slough 
6.25 87.0 ND ND ND ND ND ND ND 642 

SRS2 
Shark 
River 

Slough 
23.2 40.8 ND ND ND ND ND ND ND 719 

SRS4 Shark 
River ND ND ND-1.72 ND ND ND ND ND ND ND -

1149 

TS1 Taylor 
Slough 

3.02-
7.24 

56.7-
108 ND-9.66 ND ND ND 13.5 ND -3.26 ND ND -623 

TS2 Taylor 
Slough ND 12.1 4.86 ND ND 3.16 ND 6.72 ND 702 

TS3 Taylor 
Slough ND 15.3 ND ND ND ND ND ND ND 456 

TS4 Florida Bay ND ND ND ND ND ND ND ND ND 183 

TT1 Tamiami 
Trail 

ND -
10.9 

51.2-
71.5 ND-6.20 ND ND ND ND ND ND 284-367 

TT2 Tamiami 
Trail ND 54.7 ND ND ND ND ND ND ND 191 

TT3 Tamiami 
Trail 

11.9-
19.8 ND ND-5.54 ND ND ND ND ND ND 234-568 

TT4 Tamiami 
Trail 

ND -
26.1 ND ND-6.66 ND ND ND ND ND ND 183-899 

WB1 West 
Boundary 

ND -
8.91 ND ND ND ND ND ND 3.49-5.20 6.79 150-855 

WB2 West 
Boundary 

11.6-
27.9 ND ND-2.61 ND ND ND ND ND ND ND -274 

WB3 West 
Boundary 

ND -
4.37 ND ND-6.84 ND ND ND ND ND ND ND -178 
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2.4 Conclusion 

The present study gave an overview of the occurrence of PPCPs and hormones 

in South Florida surface waters. Although there were a few reports about the 

occurrence of microconstituents in several typical environments in South Florida 

(Gardinali and Zhao, 2002; Singh et al., 2010), it was the first time to report the 

occurrence of PPCPs and hormones in surface waters from Big Cypress National 

Preserve, Everglades National Park and Biscayne National Park.  

 

Pharmaceuticals and personal care products were detected at higher 

concentrations and higher frequencies compared to hormones. Caffeine can be 

used as an indicator of human activities. Potential impact of chronic exposure 

effects of caffeine at detected concentrations is still unknown. In our study, the 

highest detected concentration of estrone (5.98 ng/L detected in BB09) was high 

enough to require further investigation because of the toxicological implications 

for fish and probably other aquatic organisms. Results suggested that leakage 

from the landfill area and WWTP nearby may affect the quality of surface water. 

Results also indicated that future toxicity research should not only focus on the 

effect of individual compounds, but also on the influence of mixtures of 

compounds, since 43% of sampling sites have more than 3 compounds detected. 
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CHAPTER 3 

Detection of PPCPs and hormones in sediment samples using GC-MS 

3.1 Introduction 

Current WWTPs do not completely remove PPCPs from wastewater. Measuring 

the concentration of PPCPs in the influent and effluent of WWTPs is insufficient 

to evaluate the efficiency of removal, because many PPCPs may be incorporated 

into sludge, which is used for landfill or as the fertilizer in agriculture (Jelic et al., 

2009). No matter how the sludge is disposed of, PPCPs may enter the 

environment with the sludge and leach into sediment or soil. Moreover, PPCPs 

could enter surface water by runoff or enter groundwater through leaching from 

leakage. Therefore, it is essential to develop new methods for detection of 

PPCPs in the mineral phases, such as sediment, soil and sludge. By analyzing 

sediment or soil samples from the environment, the fate of PPCPs in the 

environment can be better understood. 

 

The difficulty of sediment or soil sample analysis is because of the low 

concentration of PPCPs and the complex effect of matrices. The low 

concentration of analytes requires extensive extraction techniques and large 

concentration rates of samples. Accelerated solvent extraction (ASE) has 

demonstrated more advantages than Soxhlet extraction on automation, reduced 

extraction time and lower solvent consumption.  Reduction of matrix effects 

requires proper cleanup steps (Löffler and Ternes, 2003; Burkhardt et al., 2005; 

Peng et al., 2006). Currently, SPE is the most widely used as cleanup step for 
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environmental sediment and soil samples (Burkhardt et al., 2005; Peng et al., 

2006; Rice and Mitra, 2007; Xu et al., 2008; Durán-Alvarez et al., 2009). For 

instrument analysis, MS2 or high resolution MS are preferred to decrease the 

interference from matrices (Löffler and Ternes, 2003; Gómez et al., 2007; Jelic et 

al., 2009).  However, single quadrupole is still able to do the quantitation if proper 

cleanup steps are applied (Burkhardt et al., 2005; Rice and Mitra, 2007; Xu et al., 

2008; Durán-Alvarez et al., 2009).  

 

In the present study, a method to simultaneously determine many 

environmentally relevant PPCPs and steroid hormones in sediments and soils 

using ASE-SPE-GC-MS was developed. Recoveries of most analytes were 

adequate even when the matrix became complex at very low spike levels. MDLs 

are low enough to detect the target compounds at environmentally relevant levels.  

 

3.2 Experimental  

3.2.1 Chemicals 

Caffeine was purchased from Fisher Scientific (Suwannee, GA, USA). Naproxen, 

ibuprofen, gemfibrozil, triclosan, bisphenol-A, 4-n-nonylphenol, androsterone, 

estrone, equilin, 17β-estradiol, 17α-estradiol, testosterone, 17α-ethynylestradiol, 

coprostane, progesterone, estriol, coprostane, coprostan-3-ol and coprostan-3-

one were purchased as neat compounds from Sigma-Aldrich (St. Louis, MO, 

USA). Equilenin were purchased as certified standard solutions from Dr. 

Ehrenstorfer (Augsburg, Germany). Surrogate standard caffeine-trimethyl-13C3 
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was purchased from Cambridge Isotope Laboratories Inc (Andover, MA, USA); 

DEET-d7, triclosan-d3, 4-n-nonylphenol-d4, equilin-d4, 17β-estradiol-d5, estrone-

d4, 17α-ethynylestradiol-d4, norgestrel-d6, progesterone-d9 and 5α-cholestan-

3β-ol-d5 were purchased from CDN Isotopes (Pointe-Claire, Quebec, Canada). 

Bisphenol A-d16 was purchased from Sigma-Aldrich (St. Louis, MO, USA). All 

the reference standards were >95% purity. Detailed information of analytes is 

shown in table 5. 

 

Table 5. Name, structure, CAS and intended usage of analytes 

Name Structure CAS Use 

Caffeine 

 

58-08-2 Stimulant 

Nonylphenol 
 

104-40-5 
Product formed 
during process 

phenols 

Triclosan 
 

3380-34-5 antibiotic 

Bisphenol A 

 

80-05-7 Polymer additive 

Ibuprofen 
 

15687-27-1 Analgesics and 
antiinflamatory 

naproxen 
 

22204-53-1 Analgesics and 
antiinflamatory 

gemfibrozil 
 

25812-30-0 Liqid regulator 
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Name Structure CAS Use 

Androsterone 

 

53-41-8 androgen 

17α-estradiol 

 

57-91-0 estrogen 

Estrone 

 

53-16-7 estrogen 

Equilin 

 

474-86-2 Estrogen 
replacement 

17β-estradiol 

 

50-28-2 estrogen 

Testosterone 

 

58-22-0 androgen 

Equilenin 

 

517-09-9 Estrogen 
replacement 

17α-ethynyl 
Estradiol 

 

57-63-6 Synthetic 
estrogen 

Coprostane 

 

481-20-9 Fecal steroid 

Progesterone 

 

57-83-0 estrogen 
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Name Structure CAS Use 

Estriol 

 

50-27-1 Reproductive 
hormone 

Coprostan-3-ol 

 

360-68-9 Fecal steroid 

Coprostan-3-one 

 

601-53-6 Fecal steroid 

 

3.2.2 Sampling 

Reclaimed water used for irrigation was collected directly from a sprinkler system  

using 500 mL PETE bottles and was stored in the freezer at <10 °C. The source 

of reclaimed water used in this study is the Miami-Dade Water and Sewer 

Department North District Wastewater Treatment Plant. The wastewater 

treatment plant was designed to have a flow of 120 million gallons per day (MGD) 

with average daily flow around 112.5 million gallons per day. Pure oxygen 

activated-sludge is used in the WWTP as the main secondary treatment process 

(Kasprzyk-Hordern et al., 2008). Extra filtration and disinfection are applied to 

effluents before release to make the reclaimed water ready for use in irrigation. 

Sediments and soil samples were collected in and near a fresh water pond in FIU 

Biscayan Bay Campus (Figure 7). Soil samples were collected under the 

sprinkler and on the side of the pond. Sediment samples were collected at the 

bottom of the pond.  

 

 

HO

CH3

OH

OH

 
CH3

CH3

CH3

CH3

H3C

HO

 
CH3

CH3

CH3

CH3

H3C

O



56 
 

 

Figure 7. Sampling sites of sediment and soil 

 

3.2.3 Sample preparation 

Samples were extracted using a Dionex ASE 200 accelerated solvent extraction 

system. Extraction cells were filled with 20 g of anhydrous sodium sulfate and 2 

grams of the freeze-dried sediment sample. Blanks consisted of 20 g of sodium 

sulfate. The most efficient solvent tested for extraction was methanol and ASE 

conditions used were as follow: pre-heat (0 min), heating time (5 mins), 60% 

flush, 1 cycle. Temperature was held at 100 °C and pressure was 1500 psi. 

Solvent was evaporated to dryness and samples were reconstituted in 60 mL of 

DI water. NH4OH (60 μL) was added to adjust pH to 10. Oasis MAX cartridges 

(225 mg) were conditioned with 5 mL of methanol followed by 5 mL of DI water 

(pH 10). Samples were loaded to the cartridges at a rate of 1-2 mL/min. The first 

fraction (5 mL of methanol: water 1:1) contained polar analytes. The second 
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fraction (5 mL of acetone and 5 mL of acetone with 4% formic acid) contained the 

steroid hormones. Hormone concentrations are usually lower than 

pharmaceuticals in environmental samples and the fractionation helped to 

decrease the background interferences in the gas chromatograph mass 

spectrometry. Fractions were evaporated to dryness using nitrogen gas. Pyridine 

(100 µL) and BSTFA (50 µL) were added to the residue. Compounds were 

derivatized at 60 °C for 45 minutes and analyzed on a Thermo Trace DSQ 

GC/MS. The procedure is shown in figure 8. 

 

Figure 8. Sample preparation procedure for sediments and soils 
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3.2.4 GC-MS analysis 

All the chromatographic measurements were performed using a Thermo GC/MS 

system comprised of a Finnigan Trace GC Ultra fitted with an autosampler AS 

3000 and a Finnigan Trace DSQ operated in an EI at 70 eV. Derivatized sample 

extracts (2 μL) were injected into a DB-5MS column (30 m with 0.5 μm film 

thickness and 0.25 mm I.D.) under the splitless mode. The helium flow rate was 

held constant at 1.2 mL/min and the GC oven was programmed from 85 °C (1 

min hold) at a rate of 15 °C /min to 270 °C (1 min hold), then at a rate of 5 °C 

/min to 300 °C (10 mins hold). The transfer line was 280 °C. The MS operated in 

EI mode using selected ion monitoring (SIM) to enhance sensitivity. Recoveries 

of PPCPs in different matrices and method detection limits (MDLs) were 

performed for method validation. 

 

3.2.5 Extraction recovery and method detection limit 

Analytes were spiked to sodium sulfate, pre-extracted sediment and sediment to 

check the recovery of method. Fortification concentrations are: caffeine, 

bisphenol A, ibuprofen, gemifibrozil, naproxen, nonylphenol, triclosan, estrone, 

equilin, equilenin androsterone, 17β-estradiol, 17α-estradiol, and estriol were 

spiked at 4.4 ng/g. Testosterone, coprostan-3-ol, 17α-ethynylestradiol were 

spiked at 8.9 ng/g. Progesterone, coprostan-3-one and coprostane were spiked 

at 17.8 ng/g. 
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Method detection limits (MDLs) were determined according to EPA guidelines 

(Ripp, 1996). Eight replicate pre-extracted sediment samples spiked with all 

compounds with concentration ranging from one to eight times of the tested 

detection limit (DL). Standard deviations (SD) were calculated from replicates 

and MDL = 2.998 SD. 

 

3.3 Results and discussion 

3.3.1 Method development and validation 

3.3.1.1 Recovery of analytes from different matrices 

Pharmaceuticals and personal care products and hormones were spiked into 

sodium sulfate, pre-extracted sediments and untreated sediments at very low 

fortification levels. Recoveries of PPCPs are shown in figure 9. Recoveries were 

not affected as the matrix complexity increased even for such low fortification 

levels. With the exception of equilin, naproxen and progesterone the method was 

very reliable for the rest of the compounds. 

 



60 
 

 

Figure 9. Recoveries of analytes in sodium sulfate, pre-extracted sediment and 

untreated sediment.  

 

3.3.1.2 Method detection limit 

Method detection limits of analytes in sediment and soil are shown in table 6. 

Method detection limits were low but varied among pharmaceuticals and 

hormones. Method detection limits for ibuprofen, gemfibrozil and naproxen were 

1.86 ng/g, 1.96 ng/g and 0.85 ng/g, respectively. The detection limits for estrogen 
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hormones were between 1.27 ng/g and 14.5 ng/g. Faecal steroids’ detection 

limits were between 3.58 ng/g and 15.5 ng/g. 

 

Table 6. MDLs of PPCPs and hormones in sediment 

analytes MDL (ng/g) analytes MDL (ng/g) 
caffeine 1.85 equilin 2.11 

bisphenol A 2.51 equilenin 2.64 
ibuprofen 1.86 androsterone 2.99 

gemfibrozil 1.96 testosterone 8.61 
naproxen 0.85 17α-ethynylestradiol 6.68 

4-n-nonylphenol 3.34 estriol 1.27 
tricolsan 1.35 coprostan-3-ol 5.50 
estrone 2.30 progesterone 14.5 

17β-estradiol 2.05 coprostan-3-one 15.5 
17α-estradiol 1.66 coprostane 3.58 

 

3.3.2 Analysis of real samples 

The detected concentration of PPCPs and hormones are shown in table 7.  

Results of reclaimed water samples are analyzed by online SPE-LC-MS/MS 

method, which is shown in chapter 6.3. Most of analytes were below detection 

limits even though some of analytes were detected in the reclaimed water at 

relatively high concentrations. Results indicated that the higher the logkow value, 

the more possible that the compounds attach to the sediment or soil. Coprostanol 

was detected at sediment from the bottom of ponds but concentrations were 

below detection limit on soil samples from side of pond and under sprinkler. The 

most possible explanation is selective partition combined with degradation, 

probably aided by the microbial activity in the soil, the high temperatures of the 

region and long exposure to sunlight.  
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Table 7. Concentrations of PPCPs in reclaimed water, sediment and soil 

 Logkow Reclaimed water 
(ng/L) 

Sampling site 
1 

Soil under the 
sprinkler 

(ng/g) 

Sampling site 
2 

Soil on the 
side of the 
pond (ng/g) 

Sampling site 
3 

Sediment at 
the bottom of 
pond (ng/g) 

triclosan 4.76 ND-1035 3.78 4.22 7.66 
caffeine <0 ND-3249 ND ND ND 

bisphenol A 3.3 ND-14306 6.14 ND ND 
gemfibrozil 4.75 ND-4177 ND ND ND 

Coprostan-3-ol 8.2 ND-17197 ND ND 235 
 

3.4 Conclusion 

A robust, reliable and sensitive analytical method was developed for the 

simultaneous determination of many environmentally relevant hormones, steroids 

and pharmaceuticals in sediments and soils. Good recoveries were achieved for 

different matrices except for equilin, coprostanol and coprostanone. Method 

detection limits were low enough to detect at environmentally relevant analysis. 

Compounds with low logkow value are willing to stay in the water and 

compounds with relatively high logkow value are more possible to attach to the 

sediment or soil. Even though some of analytes were detected in the reclaimed 

water at relatively high concentrations, most analytes were below detection limits 

in the sediment and soil samples. The microbial activity in the soil, the high 

temperatures of the region and long exposure to sun light may cause the 

degradation of analyte in the soil samples. 
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CHAPTER 4 

Detection of PPCPs and hormones in aqueous samples using online SPE- 

LC-MS/MS assessing the utility of APPI for non ionizable compounds 

4.1 Introduction 

Because traditional wastewater treatment processes cannot completely remove 

drugs and estrogens from the final effluent of conventional wastewater treatment 

plants (WWTPs), pharmaceuticals and personal care products (PPCPs) could be 

continuously released into the environment in rather large quantities (Esperanza 

et al., 2004). It is particularly important when reuse water is used for irrigation. 

Many PPCPs, also named microconstituents or organic waste indicators, have 

been detected in both effluent of wastewater treatment plants and in the 

receiving surface waters (Jeannot et al., 2002; Boyd et al., 2003; Cahill et al., 

2004; Weigel et al., 2004). Several PPCP residues even when present at trace 

levels may have adverse effects on organisms in particular those with endocrine 

disrupting capability (Ben-Jonathan and Steinmetz, 1998). Research has 

indicated that endocrine disrupting compounds (EDCs) can interact with the 

endocrine system of fish at very low concentrations by long-term exposure (Ben-

Jonathan and Steinmetz, 1998; Pollack et al., 2009). Therefore, it is very 

important to accurately monitor concentrations of PPCPs and EDCs in the 

aquatic environment at environmental relevant concentrations (ng/L). 

 

Gas chromatography mass spectrometry (GC-MS) has been traditionally used to 

detect many PPCPs and EDCs in aquatic matrices in a number of studies (Boyd 
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et al., 2003; Weigel et al., 2004; Lishman et al., 2006; Verenitch et al., 2006; 

Gibson et al., 2007; Gómez et al., 2007; Markman et al., 2007). Gas 

chromatography mass spectrometry is a very widely used and mature technique; 

however, it requires collection of large sample volumes, extensive use of solvent 

for extraction, several evaporation steps and in many cases, derivatization steps 

to make polar compounds amenable to gas chromatography. High performance 

liquid chromatography coupled to mass spectrometry has been shown as a 

valuable alternative for detection of PPCPs and EDCs to overcome the 

drawbacks of GC-MS (Gardinali and Zhao, 2002; Gentili et al., 2002; Ingrand et 

al., 2003; Cahill et al., 2004; Castiglioni et al., 2005; Schlüsener and Bester, 2005; 

Martnez Bueno et al., 2007; Gros et al., 2009; Laven et al., 2009; Huerta-Fontela 

et al., 2010; Jian-lin et al., 2010). Electrospray ionization (ESI), atmospheric 

pressure chemical ionization (APCI) and atmospheric pressure photoionization 

(APPI) are the three most common ion sources coupled with HPLC/UPLC. 

Electrospray ionization however because of its versatility dominates the field of 

environmental analysis at trace level (Hilton and Thomas, 2003; Martnez Bueno 

et al., 2007; Lopez-Serna et al., 2010). 

 

Electrospray ionization and APCI have both been widely used for analysis of 

polar molecules in aqueous environmental samples in many studies (Cahill et al., 

2004; Castiglioni et al., 2005; Gros et al., 2009; Lopez-Serna et al., 2010). 

However, ESI and APCI also have many limitations: 1. Because ionization 

efficiencies are charge affinity dependent, certain classes of compounds cannot 
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be ionized (some steroids, nonpolar compounds like PAHs, etc); 2. Adducts with 

common cations ( Na+ and K+), routinely form during ESI, and these charge-

bearing salt compounds could not only increase the chemical background but 

reduce the analyte signal (Hanold et al., 2004). 3. Target analyte molecules are 

often not ionized because of competition with other compounds with higher 

charge affinity. Therefore, most of the studies using ESI are focused on 

pharmaceuticals, which are readily ionizable by electrospray ionization. Fewer 

studies have tried to detect steroid hormones, which are difficult to ionize by ESI 

or APCI, with marginal results (Jeannot et al., 2002; Ingrand et al., 2003). Not 

surprisingly, several studies often rely on the use of chemical derivatization to 

increase sensitivity, even for LC/MS (Palmgren et al., 2005; Lien et al., 2009; 

Wang and Schnute, 2010).  

 

Atmospheric pressure photoionization is on the basis of the interaction of a 

photon beam created by a high intensity discharge lamp with the vapors of a 

nebulized liquid solution entering the MS source (Marchi et al., 2009). 

Atmospheric pressure photoionization is an ionization technique that has the 

capability to ionize compounds with various polarities while being remarkably 

tolerant of matrix additives (Cai et al., 2005; Viglino et al., 2008). The rapidly 

growing number of publications in this area clearly demonstrates the advantages 

of atmospheric pressure photoionization (Raffaelli and Saba, 2003; Bos et al., 

2006; Marchi et al., 2009). Atmospheric pressure photoionization was introduced 

as a complement of ESI and APCI. Currently, APPI has proven to be a valuable 
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tool for analytes, which are poorly or not ionized by ESI and APCI. Examples of 

the progress were shown in recent studies. For example, Viglino and coworkers 

developed a fully automated online method using LC-APPI-MS/MS to 

simultaneously detect selected natural and synthetic hormones at concentrations 

as low as 5 ng/L (Viglino et al., 2008). Yamanoto et al. compared detection of 

steroidal hormones using ESI and APPI and they found that APPI displayed 

higher sensitivity than ESI for most of the unconjugated steroids examined, with 

much greater sensitivity for testosterone and 4-androstene-3, 17-dione 

(Yamamoto et al., 2006). Itoh and coworker was able to detect 16 common 

polycyclic aromatic hydrocarbons (PAHs) with MDLs as low as 0.79-168 ng/L 

using LC/dopant-assisted (DA) APPI/MS (Itoh et al., 2006). Cai and his 

coworkers demonstrated a robust method to detect 16 priority PAHs in 3.5 min at 

low pictogram using chlorobenzene as the dopant. (Cai et al., 2009). Indeed, 

APPI not only gives superior performance on nonpolar compounds but also 

works well for many analytes which are properly ionized by ESI and APCI. Cai et 

al. suggested that APPI could be considered as a more universal ionization 

method since APPI was able to ionized more compounds, with greater structural 

diversity, than ESI and APCI (Cai et al., 2005). Because of the capacity of APPI 

to ionize compounds with various polarities, it has been successfully applied 

frequently to environmental and pharmaceutical samples (Cai et al., 2005; 

Yamamoto et al., 2006; Viglino et al., 2008; Garcia-Ac et al., 2011). 
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Most sample preparation protocols for the analysis of microconstituents in water 

samples uses off-line extraction as the main sample preparation. Although 

relatively straightforward, the disadvantages of off-line extraction are: lengthy 

extractions, and solvent evaporation and dervatization effects on reproducibility. 

Therefore, there is considerable interest in developing on-line sample extraction 

procedures that mainly overcome the need for the time consuming evaporation 

and reconstitution steps in the off-line procedure. Many recent articles have 

described on-line SPE procedure for detection of EDCs (Segura et al., 2007; 

Viglino et al., 2008; Garcia-Ac et al., 2009; Lien et al., 2009). However, further 

development in environmental monitoring should target simultaneous detection of 

multiple classes of compounds with diverse properties using a combination of on-

line SPE and tandem MS to achieve high sample throughput. 

 

In this work, a novel fully automated on-line preconcentration method coupled to 

HPLC-APPI-MS/MS was developed for a comprehensive list of analytes with 

environmental relevance for water tracking in semi pristine environment. The on-

line procedure was optimized for cleanup efficiency and analyte retention. 

Different ionization methods, including HESI, APCI and APPI, were explored. 

Atmospheric pressure photoionization was evaluated with different dopants 

(acetone, anisole, chlorobenzene and toluene). Statistically determined MDLs for 

analytes in each method were generated to cross-evaluate the method’s 

capability. Reclaimed water is often the released end product of a WWTP 

treatment. As a results of water scarcity, use of reclaimed water for agricultural 
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and landscape irrigation has been become increasing popular. However, the use 

of reclaimed water has received much less attention than WWTP effluent, and 

little is known about the risk of contamination of surface water and groundwater 

by this kind of source (Wang et al., 2005; Kinney et al., 2006). A comprehensive 

method should be capable of analyzing both source (reclaimed water) and the 

receiving water with equal robustness. 

 

4.2 Experimental  

4.2.1 Chemicals 

Caffeine was purchased from Fisher Scientific (Suwannee, GA, USA). 

Acetaminophen, naproxen, carbamazepine, primidone, DEET (N,N-Diethyl-3-

methylbenzamide), triclosan, bisphenol-A, gemfibrozil, androsterone, estrone, 

equilin, 17β-estradiol, testosterone, 17α-ethynylestradiol, coprostane, 

progesterone, estriol, coprostan-3-ol and coprostan-3-one were purchased as 

neat compounds from Sigma-Aldrich (St. Louis, MO, USA). 4-tert-octylphenol 

was from Restek (Bellefonte, PA, USA). Mestranol (ethynylestradiol 3-methyl 

ether) and equilenin were purchased as certified standard solutions from Dr. 

Ehrenstorfer (Augsburg, Germany); Surrogate standard caffeine-trimethyl-13C3 

was purchased from Cambridge Isotope Laboratories Inc (Andover, MA, USA); 

DEET-d7, triclosan-d3, carbamazepine-d10, 4-n-nonylphenol-d4, equilin-d4, 17β-

estradiol-d5, estrone-d4, 17α-ethynylestradiol-d4, norgestrel-d6, progesterone-d9 

and 5α-cholestan-3β-ol-d5 were purchased from CDN Isotopes (Pointe-Claire, 

Quebec, Canada). Bisphenol A-d16 was purchased from Sigma-Aldrich (St. 
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Louis, MO, USA). All the reference standards were >95% purity. Detailed 

information for all analytes is shown in Table 8. Stock solutions were prepared at 

concentrations of 200 μg/mL in methanol and stored below 0 °C in the dark. All 

laboratory materials were either made of glass or Teflon to avoid contamination. 

All glassware used in extraction was cleaned with soap and rinsed with water 

before combustion. Glassware was combusted at 450 °C for at least six hours 

before using it. Teflon materials were washed with DI water, rinsed with methanol, 

acetone, methylene chloride and hexane before use.  

 

4.2.2 Sampling 

Reclaimed water used for irrigation was collected directly from a sprinkler system 

using 500 mL PETE bottles and was stored in the freezer at <10 °C. The source 

of reclaimed water used in this study is the Miami-Dade Water and Sewer 

Department North District Wastewater Treatment Plant. The wastewater 

treatment plant was designed to have a flow of 120 million gallons per day (MGD) 

with average daily flow around 112.5 million gallons per day. Pure oxygen 

activated-sludge is used in the WWTP as the main secondary treatment process 

(Kasprzyk-Hordern et al., 2008). Extra filtration and disinfection are applied to 

effluents before release to make the reclaimed water ready for use in irrigation. 

 

4.2.3 Sample preparation 

Water samples were allowed to reach room temperature, filtered through glass 

fiber filters with a pore size of 0.5 µm without loss of analytes and samples were 
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analyzed within 14 days in order to avoid potential degradation and 

transformation of analytes. No additional sample preparation was required 

beyond the addition of surrogates. 
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Table 8. Information of analytes 

compound CAS Usage/source compound CAS Usage/ source 

acetaminophen 103-90-2 analgesic and anti-
inflammatory testosterone 58-22-0 natural hormone 

caffeine 58-08-2 stimulant drug progesterone 57-83-0 natural hormone 

primidone 125-33-7 anticonvulsants androsterone 53-41-8 natural hormone 

estriol 50-27-1 Hormone mestranol 72-33-3 synthetic hormone 

carbamazepine 298-46-4 anticonvulsant coprostan-3-one 601-53-6 fecal sterol 

DEET 134-62-3 insect repellent coprostan-3-ol 360-68-9 fecal sterol 

equilenin 517-09-9 natural hormone bisphenol A 80-05-7 intermediate in 
synthesis of plastics 

naproxen 22204-53-
1 

analgesic and anti-
inflammatory ibuprofen 15687-27-1 analgesic and anti-

inflammatory 

17α-
ethynylestradiol 57-63-6 synthetic hormone triclosan 3380-34-5 antibacterial and 

antifungal agent 

equilin 474-86-2 natural hormone 4-tert-octylphenol 27193-28-8 degradation of 
octylphenolethoxylates 
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compound CAS Usage/source compound CAS Usage/ source 

17β-estradiol 50-28-2 natural hormone gemfibrozil 25812-30-0 Lipid regulator 

estrone 53-16-7 natural hormone    
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4.2.4 Instrumentation 

An EQuan Environmental Quantitation system manufactured by Thermo Fisher 

Scientific was used to preconcentrate microconstituents from reclaimed water. 

The EQuanTM system is based on a dual switching-column system, which 

consists of a sample delivery system, a switching-column array and an LC-

MS/MS system. Its sample delivery system consists of an autosampler 

manufactured by CTC analytics AG (Zwingen, Switzerland) and an Accela 600 

loading pump (Thermo Fisher Scientific, San Jose, CA, USA). Its column-

switching array is composed of a Rheodyne 7750E-205 six-port switching valve 

system made by IDEX (Oak Arbor, WA, USA), a preconcentration column and an 

analytical column. A Thermo Hypersil aQ (20 mm × 2.1 mm, 12 µm particle size) 

was used as the loading column and a Thermo Hypersil Gold (50 mm × 2.1 mm, 

1.9 µm particle size) was used as the analytical column. Mass spectrometry 

analysis was performed using a TSQ Quantum Access triple quadrupole mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). 

 

4.2.5 On-line SPE setup 

Depending on the expected target analyte concentration, 5 mL or 20 mL samples 

were injected into the sample loop (step 1 in figure 10) and then loaded to the 

preconcentration column at a flow rate of 1 mL/min (step 2 in figure 10). This 

loading rate allowed good overall recoveries of analytes. The preconcentration 

column was washed by 1000 µL of water with varied amount of methanol and 

connected to the analytical column after the valve had switched to the inject 
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position. The loading column and analytical column underwent the same gradient 

in the positive ionization (PI) mode or negative ionization (NI) mode (step 3 in 

figure 10). The gradient details are shown in Table 9. 
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Figure 10. On-line SPE procedure 

 

4.2.6 Mass spectrometry 

Mass spectrometry analysis was performed using a TSQ Quantum Access QqQ 

Mass Spectrometer (Thermo Scientific, San Jose, CA, USA). Quantitation for all 

sources was performed using selected reaction monitoring. Instrument control 

and data acquisition were performed using Xcalibur software (rev. 2.1, Thermo 

Scientific, San Jose, CA, USA). Source parameters for analytes were optimized 

using HESI, APCI and APPI independently. A mobile phase of 0.1% fomic 

acid/MeOH (50:50, v/v) was used for the positive ionization mode and 

water/MeOH (50:50, v/v) was used for the negative ionization mode. Each 

analyte and surrogate was injected to the ion source at a concentration of 10 

μg/mL. Compound-dependent parameters such as tube lens and collision energy 

were optimized to obtain maximum signals. The APPI source was further 
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optimized for the dopants described before. Results are shown in Table 10a, 10b 

and 10c. 

Table 9. Gradient of load pump and analytical pump 

Time 
(min) 

Load Pump Analytical Pump Valve 
position 

Solvent A 
water 
(%) 

Solvent B 
methanol 

(%) 

Flow 
rate 
(μL 

min-1) 

Solvent B 
methanol 

(%) 

Solvent D 
0.1% FA 
in water 

(%) 

Flow 
rate 

(μL min-

1) 

 

PI mode 
0.0 75 25 1000 10 90 200 Load 
6.0 75 25 1000    Inject 
6.1 0 100 250     
7.0    10 90   

14.0    100 0   
26.0    100 0   
27.0   250 10 90  Load 
27.1 0 100 1000     
28.0 0 100      
28.1 100 0      
33.0 100 0  10 90 200  

NI mode 

 

Solvent A 
water 
(%) 

Solvent B 
methanol 

(%) 

Flow 
rate 
(μL 

min-1) 

Solvent A 
water 
(%) 

Solvent B 
methanol 

(%) 

Flow 
rate 

(μL min-

1) 

 

0.0 25 75 1000 50 50 200 Load 
6.0 25 75 1000    Inject 
6.1 0 100 720     
7.0    50 50   
8.0    0 100   

12.0    0 100   
14.0 0 100 720 50 50   
14.1 0 100 1000    Load 
15.0 0 100      
15.1 100 0      
20.0 100 0  50 50 200  
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Table 10a. Ions of analytes in ESI 

Analyte ESI parameter 

 Precursor ion m/z SRM1 CE1 SRM2 CE2 SRM3 CE3 tube lens 

acetaminophen [M+H]+ 
 

150.0 107.2 22 118.1 33 132.1 24 49 

Caffeine [M+H]+ 195.1 138.2 18 110.2 22 83.3 26 67 

Primidone [M+H]+ 
 

219.1 91.2 28 162.2 12 117.2 23 68 

Estriol [M-H]- 287.1 145.2 41 171.1 37 159.2 40 94 

Carbamazepine [M+H]+ 
 

237.1 194.1 19 192.1 25   61 

DEET [M+H]+ 192.1 91.3 25.0 119.2 11.0 65.3 36.0 72 

Equilenin [M-H]- 265.1 193.1 47 221.1 35 181.1 40 81 

Naproxen [M-H]- 229.0 170.1 18 185.2 11   60 

17α-ethynylestradiol [M-H]- 295.2 145.1 23 143.2 45 267.2 15 99 

Equilin [M-H]- 267.1 143.1 36 115.2 47 145.1 30 70 

17β-estradiol [M-H]- 271.1 145.1 45 146.2 35 158.0 33 79 

estrone  [M-H]- 269.1 145.1 40 159.1 37 143.2 56 78 

Testosterone [M+H]+ 289.2 109.2 25 97.2 25 79.3 39 109 

Androsterone [M+H]+ 291.2 273.2 8 255.2 13 199.1 19 97 
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Analyte ESI parameter 

Progesterone [M+H]+ 315.2 109.2 25 97.2 24 79.3 41 98 

Mestranol          
coprostan-3-one [M+H]+ 387.3 369.4 11 95.2 30 119.3 32 129 

coprostan-3-ol          
bisphenol A [M-H]- 227.1 212.4 20 133.3 28 158.7 11 94 

Ibuprofen [M-H]- 205.1 161.3 10     51 

Triclosan [M-H]- 286.9 142.1 34 160.9 38 35.4 11 111 

4-tert-octylphenol [M-H]- 205.1 133.1 26 134.1 21 117.1 72 99 

Gemfibrozil [M-H]- 249.1 121.2 20 106.1 49 120.1 44 65 

 

Table 10b. Ions of analytes in APCI 

Analyte APCI parameter 

 Precursor ion m/z SRM1 CE1 SRM2 CE2 SRM3 CE3 tube lens 

Acetaminophen [M+H]+ 152.0 110.1 16 93.1 24 65.3 29 82 

Caffeine [M+H]+ 195.1 138.0 19 110.1 23 123.0 31 87 

Primidone [M+H]+ 219.1 91.2 28 162.0 12 119.1 16 83 
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Analyte APCI parameter 

Estriol [M-H2O+H]+ 271.1 253.0 12 157.0 21 133.0 23 76 

Carbamazepine [M+H]+ 237.0 193.9 19 192.9 33 191.9 24 93 

DEET [M+H]+ 192.1 119.1 17 91.2 28 65.3 43 76 

Equilenin [M+H]+ 267.1 209.0 18 249.0 12 165.0 50 70 

Naproxen [M+H]+ 231.0 184.9 14 170.0 25 141.0 44 91 

17α-ethynylestradiol [M-H2O+H]+ 279.1 133.0 16 159 21.0 105.1 32 78 

Equilin [M+H]+ 269.1 251.0 13 211.0 18 181.0 40 78 

17β-estradiol [M-H2O+H]+ 255.2 159.1 18 133.1 22 144.1 37 76 

estrone  [M+H]+ 271.2 253.0 12 157.0 19 159.0 22 78 

Testosterone [M+H]+ 289.2 97.1 24 109.1 26 253.0 16 83 

Androsterone [M-H2O+H]+ 273.2 255.2 10 91.129 38 105.1 35 90 

Progesterone [M+H]+ 
 

315.2 109.1 27 97.1 25 297.0 14 81 

Mestranol [M-H2O+H]+ 285.2 267.0 14 171.0 19 173.0 23 66 

coprostan-3-one [M+H]+ 387.3 369.3 10 95.12 33 147.0 25 94 

coprostan-3-ol [M-H2O+H]+ 371.3 95.1 30 81.2 31 109.1 27.0 90 

bisphenol A [M-H]- 227.1 211.9 21 133.0 31 210.9 34 88 
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Analyte APCI parameter 

Ibuprofen [M-H]- 205.2 161.2 10     58 

Triclosan [M-Cl-2H]- 250.9 214.9 26 186.9 32.0 159.0 31.0 75 

4-tert-octylphenol [M-H]- 205.1 133.1 29 134.1 21 117.1 64 94 

Gemfibrozil [M+H]+ 251.1 232.8 5 129.0 8 83.2 13 87 

 

Table 10c. Ions of analytes in APPI 

Analyte RT (min) APPI parameter 

  Precursor ion m/z SRM1 CE1 SRM2 CE2 SRM3 CE3 tube lens 
         

Acetaminophen 8.2 [M+H]+ 152.1 110.1 15 65.3 31 93.2 23 100 

Caffeine 11.46 [M+H]+ 195.1 138.1 19 110.2 22 123.1 31 100 

Primidone 12.44 [M+H]+ 219.1 162.1 13 91.2 34 119.1 18 98 

Estriol 13.28 [M-H2O+H]+ 271.1 253.1 12 133 30 159.1 30 75 

Carbamazepine 13.66 [M+H]+ 237.1 194.1 18 192.1 23 179.1 35 87 

DEET 14.09 [M+H]+ 192.1  119.1  17 91.2  31 65.3 43 88 

Equilenin 14.59 [M+H]+ 267.1 209.1 18 249.1 11 165.1 52 93 
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Analyte RT (min) APPI parameter 

Naproxen 14.62 [M-COOH]+ 185.1 170.1 17 141.1 33 115.1 49 84 

17α-ethynylestradiol 14.66 [M-H2O+H]+ 279.1 133.1 17 159 19 105.1 37 82 

Equilin 14.67 [M+H]+ 269.1 251.1 14 211.1 18 181 38 103 

17β-estradiol 14.69 [M-H2O+H]+ 255.1 159 17 133.1 19 144 36 76 

estrone  14.76 [M+H]+ 271.1 2531.1 12 159 21 157 19 90 

Testosterone 15.06 [M+H]+ 289.2 97.1 23 109.1 24 253.2 16 107 

Androsterone 15.96 [M-H2O+H]+ 273.2 255.2 13 105.2 39 161.1 23 104 

Progesterone 15.64 [M+H]+ 315.2 109.1 22 97.1 21 297.3 15 68 

Mestranol 16.18 [M+H]+ 293.2 147.1 18 173.1 21 158.1 34 91 

coprostan-3-one 22.04 [M+H]+ 387.3 369.3 16 95.2  35 109.1 28 104 

coprostan-3-ol 22.09 [M-H2O+H]+ 371.3 95.2 31 81.2 34 109.1 26 103 

bisphenol A 12.14 [M-H]- 227.1 212 22 211 35 133.1 34 87 

Ibuprofen 13.20 [M-H]- 205.1 161.1 11     56 

Triclosan 13.43 [M-Cl-2H]- 250.9 215 22 187 31 159 29 100 

4-tert-octylphenol 13.59 [M-H]- 205.1 133.1 28 134.1 20 117.2 62 98 

Gemfibrozil 13.69 [M-H]- 249.1 121.1 17 127.1 14 106.2 45 73 
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To avoid introducing additional variability, ionization techniques were performed 

using a common Ion MAX source housing (Thermo Scientific, San Jose, CA, 

USA). Source-dependent parameters for optimal HESI detection were as follows: 

capillary temperature (300 °C), vaporizer temperature (350 °C), sheath gas 

pressure (35 arbitrary units), aux gas pressure (5 arbitrary units), ion sweep gas 

pressure (8 arbitrary units) and spray voltage (+4000 V and -3500 V). 

 

Source-dependent parameters for optimal APCI detection were as follows: 

capillary temperature (270 °C), vaporizer temperature (400 °C), sheath gas 

pressure (30 arbitrary units), aux gas pressure (5 arbitrary units), ion sweep gas 

pressure (0 arbitrary units) and discharge current (4 μA) for both positive and 

negative polarity. 

 

The photoionization lamp used for APPI was a Syagen krypton UV lamp which 

emits photons at 10 eV and 10.6 eV (Syagen Technology Inc., Tustin, CA, USA). 

The source-dependent parameters for optimal detection were as follows: 

capillary temperature (270 °C), vaporizer temperature (400 °C), sheath gas 

pressure (30 arbitrary units), aux gas pressure (5 arbitrary units), ion sweep gas 

pressure (0 arbitrary units) and discharge current (0 μA). Four different dopants, 

acetone, anisole, chlorobenzene and toluene, were tested to find the best one for 

the analytes.  
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4.2.7 Matrix effect  

Signal suppression or enhancement effects have been widely reported in the 

literature when complicated matrices are tested in API (Viglino et al., 2008). 

Therefore, matrix effects were evaluated using the following equation 1. 

(%) ( ) 100%RWs RWnsmatrixeffect
DIs
−

= ×                                       (1) 

RWs is the analyte peak area in the spiked reclaimed water, RWns is the analyte 

peak area in the non-spiked reclaimed water and DIs is the analyte peak area in 

DI water spiked with a known amount of analytes. Signal enhancement is 

indicated by matrix effect values more than 100%, while signal suppression is 

indicated by matrix effect values less than 100% (Garcia-Ac et al., 2009). Three 

replicate samples were run to determine the relative standard deviation (RSD). 

Spike level of analytes were four times of the spike level used to calculate MDLs, 

which is shown in table 11. 

 

4.2.8 Extraction recovery and method detection limit 

Analyte recovery was evaluated by measuring 5 mL spiked tap water samples 

since it is more comparable to environmental waters than DI water. The spiked 

level of analytes for method detection limits is shown in table 11. For each 

compound, three different spike levels from low to high were tested to evaluate 

how different spike amounts would affect recovery of compounds. Method 

detection limits (MDLs) were determined according to EPA guidelines (Ripp, 

1996). Eight replicate tap water samples spiked with all compounds with 
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concentration ranging from one to eight times of the tested detection limit (DL). 

Standard deviations (SD) were calculated from replicates and MDL = 2.998 SD. 

MDLs were calculated for 5 mL sample size and 20 mL sample size. 

 

4.2.9 QA/QC 

Blanks were run with each batch to check for potential contamination and assess 

background levels of native analytes. Spiked blanks (LBS) and matrix spikes (MS) 

were also run with each analytical batch to check the recovery of analytes. 

Isotopic dilution was used to increase the precision and accuracy of analytsis. A 

five-point calibration curve was constructed with each batch of 20 or less 

samples to check for linearity and analytical sensitivity. Calibration range is 

shown in table 11. 

 

4.3 Results and discussion 

4.3.1 Online procedure optimization 

Optimization of key parameters is essential in the development of a robust online 

procedure: mobile phase flow rate, sample volume, loading flow rate, wash flow 

rate, wash volume and organic composition of the wash solvent were all tested. 

Based on previous study (Lien et al., 2009), the analytical mobile phase flow was 

set at 200 µL/min to produce better analyte signal strength. 1 mL/min was 

chosen as the optimum loading flow rate since it allowed good overall recoveries 

of analytes and higher flow rates have shown to affect the long-term functioning 

of loading columns (Garcia-Ac et al., 2009). The presence of dissolved organic 
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substances in environmental waters could introduce severe interference and 

make quantitation complicated (Viglino et al., 2008). Thus, a wash step was used 

after the loading step. To avoid introducing pressure change, the washing flow 

rate was kept the same as the loading step (1 mL/min). The amount of washing 

time (0.5 and 1.0 mins) and percentages of methanol (25%, 50%, 75% and 100%) 

were changed for all target compounds using 5 mL sample size. Results from 

this optimization are shown in Figure 11. When washing with a volume of 500 μL 

(0.5 min), all the compounds except acetaminophen were effectively retained on 

the loading column independent of the percentage of methanol used (Figure 11a). 

Acetaminophen is very water soluble and was not well retained on the column 

even after washing with only 500 μL of pure water (recovery was 56% ± 5%). 

Therefore, the Hypersil aQ column is not a good choice to retain acetaminophen. 

When the preconcentration column was washed with a volume of 1000 μL (1.0 

min), caffeine and primidone recoveries decreased for methanol content above 

25% (Figure 11b). Quantification of hormones is also difficult because of the 

organic matter interference background when the wash step was eliminated, but 

it improves significantly after the preconcentration column is washed. Therefore, 

a wash step of 1000 μL water with 25% methanol was finally used because it 

represents the best overall performance for recoveries and sensitivities, except 

for acetaminophen, that is poorly recovered under most conditions tested. In 

negative mode, analytes were retained on the preconcentration column very well 

and 1000 μL water with 75% methanol was used as the wash step.  
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Figure 11. Recovery of analytes during the washing step after loading. (a) 500 
µL wash with increasing methanol composition And (b) 1000 μL wash with 
increasing methanol composition. Asterisk (*) indicates not recovered. Spike 
levels are shown in table 11. 
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4.3.2 Comparisons of different ion sources based on MDLs 

Analytes detected in positive mode were separated into three categories 

according to their chemical functionalities and general properties: the 

pharmaceuticals, the hormones and the sterols. Because MDLs were 

dramatically different between categories, MDLs were compared for compounds 

within each category with 5 mL sample size. The best ionization source was 

determined by direct comparison of the MDLs. Analytes detected in the negative 

ionization mode were separated into a fourth category. In each group, 

compounds were ordered based on the average MDL of the different ionization 

methods. Results are summarized in Figure 12,13 and 14. 

 

4.3.3 Pharmaceuticals and personal care products 

The first three compounds of the six compounds in this category, carbamazepine, 

DEET and caffeine, are easily detected in all ion sources (Figure 12). Previous 

studies indicate that these three compounds are better detected using ESI 

(Castiglioni et al., 2005; Trenholm et al., 2008). Our results indicate that APPI 

with toluene is also an excellent alternative. MDLs for the next three compounds, 

naproxen, acetaminophen and primidone, were higher than the first three 

compounds. For naproxen, acetaminophen and primidone, the best detection 

methods were APPI with toluene (15.4 ng/L), APCI (1.92 ng/L) and APPI with 

toluene (38.3 ng/L), respectively. Despite the fact that ESI and APCI showed 

advantage for certain compounds in the category, APPI with toluene is a good 

overall choice to detect them. 
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Figure 12. MDLs of pharmaceuticals for all ionization mechanisms tested. Note 

the different axes. Asterisk(*) indicates best performance 

 

4.3.4 Hormones 

Ten natural and synthetic hormones were investigated in this category. Seven 

out of ten compounds, testosterone, equilenin, equilin, 17α-ethynylestradiol, 

androsterone, estriol and mestranol, were best detected using APPI with toluene 

(Figure 13). Two out of ten compounds, progesterone, 17β-estradiol were best 

detected using APPI with chlorobenzene. One out of ten compounds, estrone, 

was best detected using APPI with acetone. However, for this category, APPI 

significantly outperformed all other ionization modes. 
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Figure 13. MDLs of hormones for all ionization mechanisms tested 

 

Testosterone and progesterone behaved slightly differently. The two compounds 

showed overall low detection limits for all ion sources tested. A one way ANOVA 

comparison showed that there was no significant difference between ion sources. 

Equilenin and equilin required presence of dopants to improve the MDLs. The 

best dopant for them was toluene with MDLs of 3.44 ng/L and 7.15 ng/L, 

respectively. 17β-estradiol, 17α-ethynylestradiol (EE2), androsterone and 
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mestranol had similar results. These four analytes were extremely hard to ionize 

in HESI and mestranol even did not yield a signal in HESI. MDLs improved 

slightly when APCI and APPI were used but dramatically decreased when 

dopants were added. Toluene was the best dopant for all of them, except for 

17β-estradiol. Based on the results, it is clear that dopant chemistry and proton 

affinity are important for this compound category. 

 

4.3.5 Sterols and sterones 

Two model compounds were investigated in the sterol category. Sterols showed 

much higher MDLs compared with the other two categories (Figure 14). The 

Conventional ESI method is not well suited to ionize sterols because their highly 

lipophilicity and the lack of multiple polar functional groups. APCI however has 

been successfully used for the detection of sterols. A recent study showed that 

APPI was particularly sensitive for cholesterol, sitosterol and sitostanol 

(Palmgren et al., 2005). Coprostan-3-ol could not be ionized in HESI. APPI, 

however, was much better, and MDLs using chlorobenzene (36.7 ng/L) and 

toluene (43.9 ng/L) were low enough for trace analysis. Coprostan-3-one was 

marginally ionized by HESI with an MDL of 2090 ng/L, but APPI with acetone 

dramatically decreased MDL to 118 ng/L. All these results point out again the 

benefit of using a single ionization method for trace environmental analysis. 
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Figure 14. MDLs of sterols and sterones for all ionization mechanisms tested 

 

4.3.6 Negative ionization mode  

Five compounds were detected in the negative ionization mode: bisphenol A, 

ibuprofen, triclosan, gemfibrozil and 4-tert-octylphenol. All of them were detected 

by HESI, APCI and APPI with dopants. Results are shown in Figure 15.  
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Figure 15. MDLs of analytes in negative mode for all ionization mechanisms 

tested 

 

For bisphenol A, APPI with toluene was the best ionization with an MDL of 6.56 

ng/L. For ibuprofen, both HESI and APCI were better choices. Ibuprofen is a very 

polar and small compound; therefore, Atmospheric pressure photoionization did 

not provide an effective method. Triclosan could not be ionized by HESI. APCI 
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improved the ionization of triclosan yielding an MDL of 126 ng/L. APPI with 

toluene as dopant lowered the MDL by half to 67.9 ng/L. Gemfibrozil was 

detected in the negative ionization mode in all the ion sources except for APCI. 

APPI with toluene was the best ionization method, with an MDL of 36.4 ng/L. The 

best ionization method for 4-tert-octylphenol was APCI with an MDL of 47.3 ng/L.  

 

Three of the compounds were best detected in APPI with toluene as dopant. 

However, for polar compounds like ibuprofen or medium polar compounds like 4-

tert-octylphenol, APPI was not the best choice. This is one of the few examples 

where HESI or APCI outperform the APPI source. 

 

4.3.7 Final choice of dopant 

A key goal of this study was to compare ionization sources and provide an 

overall solution in a single run. APPI with toluene as dopant was the choice 

because it provided the lowest MDLs for most analytes. Our results indicate that 

dopant flow is critical in controlling source stability but does not influence signal 

intensity. Different flows of toluene were tested, ranging from 5 µL/min to 50 

µL/min in a constant mobile phase flow rate of 200 µL/min. Analyte signals did 

not increase as the flow rate of the dopant increased for the positive mode; 

however, analyte signals became more stable when the flow was set at 25 

µL/min. In the negative mode, we observed that the signals of bisphenol A, 

ibuprofen and 4-tert-octylphenol were negatively affected when adding more than 

10 µL/min toluene. Therefore, flow rate was kept under 5 µL/min. Dopants have 
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been used since 1994 to enhance photoionization performance (Marchi et al., 

2009). The ionization mechanism usually depends on the PA of the dopant, 

solvent and analyte. There are two possible mechanisms: charge transfer, 

dominated by electron affinity (EA) and proton transfer. In addition, solvent 

molecules having the right proton affinities actively participate in the reaction to 

enhance the ionization efficiency (Equation 2 and 3). Based on the results shown 

in table 10c, where all the target analytes preferentially produced protonated or 

deprotonated molecular ions, the likely mechanism seen in the APPI source is 

probably dominated chemical ionization by solvent molecules (equation 3) with 

the dopant being used to promote the transfer of energy from krypton lamp to the 

solvent rather than to produce direct ionization of the analytes by proton transfer. 

D•+ + nS → [D-H]• + [Sn + H]+     if  PAS > PA[D-H]
•                                                  (2) 

[Sn + H]+ + M → nS + [M+H]+     if  PAM > PAS                                                     (3) 

The IE of four dopants, anisole (8.2 eV), toluene (8.3 eV), chlorobenzene (9.07 

eV) and acetone (9.7 eV), are clearly below the IE provided by the lamp and 

lower than of water (12.6 eV) and methanol (10.8 eV), thus formation of the 

radical cation from the dopants will dominate in the source. The PA of four 

dopants are anisole (839.6 kJ/mol) > acetone (812.0 kJ/mol) > toluene (784.0 

kJ/mol) > chlorobenzene (753.1 kJ/mol) (Marchi et al., 2009). Although PAs for 

the compounds targeted in this study are not available in the literature, it is likely 

that will range above the PAs for both water and methanol. Because most 

analytes formed [M+H]+ ions under the optimized conditions tested, the 
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predominant mechanism for our analytes was likely the reaction of dopant 

photoions with solvent molecules, followed by solvent based ionization of the 

analytes by proton transfer as suggested by previous studies for a water-

methanol-toluene system (Kauppila et al., 2002; Kauppila et al., 2004). Although 

acetone have a high IE, its high PA (812.0 kJ/mol) cause it less effective than 

toluene (784.0 kJ/mol) in proton transfer mechanism. Chlorobenzene has often 

been described as the best APPI dopant. However, in this study, toluene 

generated better results and has the advantage of being less toxic than 

chlorobenzene (Marchi et al., 2009). Therefore, toluene was chosen as the 

dopant for all analytes  

 

4.3.8 Recovery comparison 

Three spike levels (1 × MDL level, 5 × MDL level and 10 × MDL level) were used 

to assess recoveries. A summary of the results are present in Figure 16. Analyte 

recoveries in the positive mode ranged from 70% to 152% when spike levels 

were close to MDLs. The recoveries ranged from 86% to 121% when the spike 

level was increased to the 5 × MDL level and ranged from 79% to 126% when 

spike level was increased to the 10 × MDL level. No significant differences were 

seen between the 3 spiking concentrations (average recovery 105%). Results 

indicated that analytes were retained at the preconcentration column very well. 

When spike levels were close to the detection limit, recoveries were more 

variable than at high spike levels. RSD’s of all the spiked samples were less than 

20%, except testosterone and equilenin that spiked at the MDL level (24% and 
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21%). Recoveries of analytes detected in negative mode were less reproducible 

and clearly affected by the spike levels. Analyte recoveries in the negative mode 

ranged from 44% to 216% except for ibuprofen when spike levels were close to 

MDLs. The recoveries ranged from 76% to 163% when the spike level was 

increased to the 5 × MDL level and ranged from 67% to 155% when spike level 

was increased to the 10×MDL level. There is no difference between the 5 × and 

10 × MDL fortification levels but method performance was less robust at 

concentrations near the MDLs. 
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Figure 16. Recovery of analytes at different spike levels 
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4.3.9 Matrix effects evaluation 

Results in Table 11 indicated that 70% of the analyte’s signals were enhanced 

because of matrix effects in APPI, while 30% of analyte’s signals were 

suppressed because of matrix effects. Two compounds, androsterone and 

ibuprofen, were not detected in the spiked reclaimed water sample because of 

high background interference. Compared to other ionization sources (ESI and 

APCI), APPI is not generally considered susceptible to the matrix effect (Hanold 

et al., 2004). However, results in our study showed otherwise, since signal 

intensity were significantly influenced by matrix for most analytes (127% 

average). For example, the enhancement for mestranol and triclosan were more 

than 200% and suppression of 4-tert-octylphenol was 55%. Enhancement and 

suppression were observed in both positive and negative mode. This is a clearly 

indication that the contribution of the solvent and other ionization producing 

procedure described in equation 2 is likely the controlling factor while the 

participation of the dopant is a secondary process. Results also pointed out that 

the wash procedure was essential in eliminating the interference from 

wastewater samples but was a compromise for early eluting highly-polar 

compounds that are more influenced by rinsing with a stronger organic phase.  
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Table 11. Evaluation of the APPI Matrix effect 

Analyte  matrix effect (%) RSD 
 PI mode 
Caffeine 179  7 
Primidone 131  12 
Estriol 118  1 
carbamazepine 172  4 
DEET 120  11 
Equilenin 70  8 
17α-ethynylestradiol 117  15 
Equilin 95  12 
17β-estradiol 106  13 
Estrone 113  3 
Naproxen 121  15 
Testosterone 113  17 
Progesterone 116  5 
Mestranol 247  7 
coprostan-3-one 69  17 
coprostan-3-ol 96  21 
 NI mode 
bisphenol A 126  8 
Triclosan 222  60 
Gemfibrozil 156  11 
4-tert-octylphenol 55  12 

 

4.3.10 Method validation 

The method was validated by using APPI with toluene as a dopant. Calibration 

range, linearity, spike levels and MDLs of 5 mL and 20 mL are shown in Table 12. 

The linearities of all analytes were above 0.99, except gemfibrozil, triclosan and 

4-tert-octylphenol, which were all detected in the negative ionization mode. DEET 

was commonly detected in the reagent water at a concentration of about 2 ng/L. 

DEET can be transferred via dirty hands or gloves (Capdeville and Budzinski, 

2011). Therefore, 10 ng/L was used as the starting calibration point of DEET and 
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MDLs were corrected to 5.9 ng/L.  When sample size was increased from 5 mL 

to 20 mL, some analytes lost their recovery on column since they were washed 

away at loading procedure. Acetaminophen and caffeine cannot be detected 

when sample size was increased to 20 mL. The MDLs of bisphenol A and 

triclosan of 20 mL were higher than 5 mL because of the recovery lost. Statistical 

MDLs were comparable to previous research (Viglino et al., 2008) for estradiol, 

estrone, 17α-ethinylestradiol and progesterone, however the method reported 

here expanded significantly the list of analytes that could be detected 

simultaneously by APPI. Despite the fact that without using dopant (Viglino et al., 

2008), the improvement for specific compounds like estriol (15 ×) combined with 

the detection of fecal sterols at low ng/L levels constitue an important 

improvement justifying the use of dopant.  
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Table 12. Calibration range, linearity, spike levels and MDLs 

 
calibration 

range(ng/L) linearity 
spike level 

(ng/L) 
MDLs(ng/L) 

5 mL  
MDLs(ng/L) 

20 mL 

acetaminophen 100-800 0.9935 200 9.24  NA 
caffeine 2-2048 0.9946 8 1.51  NA 
primidone 62.5-4000 0.9905 250 38.3  14.9 
estriol 32-1024 0.9905 64 10.5  1.64 
carbamazepine 1-256 0.9927 1 1.18  0.30 
DEET 10-2560 0.9912 10 5.90  2.83 
equilenin 4-1024 0.9985 16 3.44  3.39 
naproxen 80-5120 0.9943 160 15.4  8.45 
17α-
ethynylestradiol 4-1024 0.9903 16 4.22  1.26 

17β-estradiol 4-1024 0.9935 16 8.94  2.57 
equilin 10-1280 0.9939 40 7.15  1.17 
estrone  10-1280 0.9951 20 9.47  1.59 
testosterone 2-1024 0.9916 4 2.87  2.30 
progesterone 10-160 0.9901 10 8.93  1.72 
androsterone 32-512 0.9968 32 10.2  37.0 
mestranol 25-800 0.9902 100 21.3  7.89 
coprostan-3-
one 400-6400 0.9941 1600 182  11.2 
Coprostan-3-ol 200-3200 0.9901 200 43.9  5.44 
bisphenol A 20-5120 0.9925 20 6.56  79.1 
ibuprofen 80-5120 0.9994 80 69.3  NA 
triclosan 25-800 0.9817 100 67.9  115 
4-tert-
octylphenol 30-3840 0.9631 60 108  54.7 
gemfibrozil 40-5120 0.9866 80 36.4  NA 
NA: acetaminophen and caffeine lost recovery when sample size was increased to 20 mL. 
Gemfibrozil and ibuprofen can be detected by HESI method. 
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4.4 Conclusion 

A fully automated online preconcentration HPLC-APPI-MS/MS method for 

simultaneous detection of PPCPs, hormones and sterol steroid was developed. 

Results indicate that APPI produce great ionization capability for a broad range 

of compounds, in particular for ionization efficiency of hormones compared to 

APCI and HESI. The advantages of APPI made it a great alternative for 

consistent detection of trace level organic microconstituents in the environment. 

The online preconcentration method minimized the sample preparation 

procedure, thus producing a reliable and robust method that can be used for 

routine analysis of clean and complex matrix water samples, such as ground, 

surface and reclaimed waters.  
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CHAPTER 5 

Assessing different ionization techniques for the detection of 

pharmaceuticals in aqueous samples using online SPE-LC-MS/MS 

5.1 Introduction 

Liquid chromatography mass spectrometry is one of the fastest growing 

analytical techniques because of its attribution to new application on life science 

and biopharmaceuticals (Hans H, 1998; Hanold et al., 2004; Diaz and Barcelo, 

2005; Hernández et al., 2005; Petrovic et al., 2005; Nunez et al., 2011). Currently, 

ESI and APCI are the most widely used ionization techniques coupled to Liquid 

chromatography mass spectrometry. Electrospray ionization and APCI for 

ionization of polar compounds and have been applied successfully in the 

environmental analysis of aqueous samples (Cahill et al., 2004; Castiglioni et al., 

2005; Martnez Bueno et al., 2007; Gros et al., 2009; Laven et al., 2009; Lopez-

Serna et al., 2010). However, ESI and APCI are not very efficient for ionization of 

nonpolar compounds. A new ionization technique, atmospheric pressure 

photoionization (APPI), has been introduced to mass spectrometry (Robb et al., 

2000). The application and principle of APPI have been reviewed and the rapidly 

growing number of publications in this area clearly demonstrates the advantages 

of APPI (Hanold et al., 2004; Bos et al., 2006). Atmospheric pressure 

photoionization has proven to be a valuable tool for analytes, which are poorly or 

not ionized by ESI and APCI or in the presence of complex analytical condition 

(Itoh et al., 2006; Yamamoto et al., 2006; Viglino et al., 2008; Cai et al., 2009). 

Even though many studies have been conducted to investigate the ability of APPI 
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to detect nonpoplar compounds, very little research has focused on the 

performance of APPI on analytes which are sufficiently ionized by ESI and APCI 

(Cai et al., 2005; Garcia-Ac et al., 2011).  

 

In the present study, first, I developed an online SPE method for accurate and 

reliable detection of 52 pharmaceuticals simultaneously in water samples.  The 

online SPE method minimized the sample preparation procedures, and saves 

solvent, time and labor. Second, I compared the ionization efficiency of two 

ionization techniques (HESI and APPI) on the basis of absolute signal intensity 

and also method detection limits (MDLs). It is the first time to compare the 

efficiency of different ionization techniques based on calculated MDLs, which 

provide a useful tool for comparing analytical methods. 

 

5.2. Experimental 

5.2.1 Chemicals 

Ketoprofen, naproxen, ibuprofen, indomethacin,  mefenamic acid, 

acetaminophen, salicylic acid,  antipyrine, gemfibrozil, bezafibrate, fenofibrate, 

atorvastatin, mevastatin, pravastatin sodium salt hydrate, fluoxetine 

(hydrochloride), paroxetine (maleate), carbamazepine, primidone, ranitidine 

(hydrochloride), diphenhydramine (hydrochloride), cimetidine, atenolol, (±) 

metoprolol (+) tartrate, propranolol, betaxolol (hydrochloride), pindolol, nadolol, 

clenbuterol (hydrochloride), enalapril (maleate), hydrochlorothiazide, lisinopril, 

furosemide, tamoxifen, clotrimazole, glibenclamide were purchased from Sigma-
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Aldrich (Allentown, PA, USA). Diclofenac, propyphenazone, phenylbutazone, 

clofibric acid, famotidine, timolol, salbutamol, metronidazole were purchased 

from Fisher Scientific (Pittsburgh, PA, USA). Codeine, diazepam, lorazepam, 

butalbital, phenobarbital, pentobarbital, were purchased from Cerilliant (Round 

Rock, TX, USA). Loratadine, sotalol (hydrochloride), carazolol (hydrochloride) 

were purchased from Toronto Research Chemicals, Inc. (Ontario, Canada). 

Isotopically labelled compounds, used as surrogates, were diclofenac-d4 

(phenyl-d4), (±)-ibuprofen-d3, N-(4-hydroxyphenyl-d4) acetamide, 2-

hydroxybenzoic-d4 acid, phenylbutazone-d10, clofibric-d4 acid, cimetidine-d3, 

(±)-atenolol-d7, (±)-albuterol-d3, enalaprilat-d5, tamoxifen-d5, clotrimazole-d5, 

norfloxacin-d5 were purchased from C/D/N Isotopes Inc. (Quebec, Canada). 

Diazepam-d5, lorazepam-d4, codeine-d6, phenobarbital-d5, pentobarbital d5 

were purchased from Cerilliant (Round Rock, TX, USA). Mefenamic acid-d3, 

fenirofibrate-d6, atorvastatin-d5 (sodium salt), pravastatin-d3 (sodium salt), rac-

trans paroxetine-d4 (hydrochloride), ranitidine-d6 (hydrochloride), loratadine-d4, 

rac timolol-d5 (maleate), hydrochlorothiazide-13C, d2, furosemide-d5, 

metronidazole-d4, glyburide-d11 were purchased from Toronto Research 

Chemicals, Inc. (Ontario, Canada). The detail information of analytes is shown in 

Table 13. 

 

5.2.2 Sample preparation 

Water samples were filtered through glass fiber filters with a pore size of 0.5 µm. 

Samples were analyzed within 14 days in order to avoid potential degradation 
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and transformation of analytes. pH was adjusted to 2 when sample was analyzed 

in the negative mode. 

 

5.2.3 Instrumentation 

An Environmental Quantition (EQuanTM) system manufactured by Thermo Fisher 

Scientific was used to preconcentrate microconstituents from reclaimed water. 

The EQuanTM system is based on a dual switching-column system, which 

consists of a sample delivery system, a switching-column array and an LC-

MS/MS system. Its sample delivery system consists of an autosampler 

manufactured by CTC analytics AG (Zwingen, Switzerland) and an Accela 600 

loading pump (Thermo Fisher Scientific, San Jose, CA, USA). Its column-

switching array is composed of a Rheodyne 7750E-205 six-port switching valve 

system made by IDEX (Oak Arbor, WA, USA), a preconcentration column and an 

analytical column. A Thermo Hypersil Gold aQ (20 mm × 2.1 mm, 12 µm particle 

size) was used as the loading column and a Thermo Hypersil Gold aQ (50 mm × 

2.1 mm, 1.9 µm particle size) was used as the analytical column. Mass 

spectrometry analysis was performed using a TSQ Quantum Access triple 

quadrupole Mass Spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). 
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Table 13. Information of pharmaceuticals 

GROUP No Name CAS Number Pka log Kow Surrogate 

Analgesics and 
anti-inflammatories 1 Ketoprofen 22071-15-4 5.95 3.12 Ibuprofen-d3 

 2 Naproxen 22204-53-1 4.2 3.18 Ibuprofen-d3 

 3 Ibuprofen 15687-27-1 4.3 3.97 Ibuprofen-d3 

 4 Indomethacin 53-86-1 4.5 4.27 Carbamazepine-d10 

 5 Diclofenac 15307-86-5 4 4.5 Diclofenac-d4 

 6 Mefenamic acid 61-68-7 4.2 5.12 Mefenamic acid-d3 

 7 Acetaminophen 103-90-2 9.51 0.46 Acetaminophen-d4 

 8 Salicylic Acid 69-72-7 2.97 2.26 2-hydroxybenzoic acid 
d4 

 9 Antipyrin 60-80-0 1.4 0.38 Carbamazepine-d10 

 10 Propyphenazone 479-92-5 4.5 1.94 Phenylbutazone-d10 

 11 Phenylbutazone 50-33-9 4.5 2.5 Phenylbutazone-d10 
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GROUP No Name CAS Number Pka log Kow Surrogate 

 12 Codeine 76-57-3 8.2 1.14 Codeine-d6 

Antihyperlipidemics 
- Lipid Regulators 13 Clofibric Acid 882-09-7 2.84 2.57 Clofibric Acid-d4 

 14 Gemfibrozil 25812-30-0 4.75 4.77 Diclofenac-d4 

 15 Bezafibrate 41859-67-0 3.29 4.25 Fenirofibrate-d6 

 16 Fenofibrate 49562-28-9 5 5.19 Fenirofibrate-d6 

 17 Atorvastatin 134523-00-5 4.5 6.36 Atorvastatin-d5 

 18 Mevastatin 73537-88-3 14.89 3.95 Pravastatin-d3 

 19 Pravastatin 81131-70-6 4.7 3.95 Pravastatin-d3 

Antidepressants 
and anticonvulsants 20 Fluoxetine 54910-89-3 9.5 3.82 Fluoxetine-d6 

 21 Paroxetine 61869-08-7 9.9 3.95 Fluoxetine-d6 

 22 Diazepam 439-14-5 3.3 2.19 Diazepam-d5 

 23 Lorazepam 846-49-1 0.03 2.42 Lorazepam d4 
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GROUP No Name CAS Number Pka log Kow Surrogate 

 24 Carbamazepine 298-46-4 13.9 2.46 Carbamazepine-d10 

 25 Primidone 125-33-7 11.6 0.91 Carbamazepine-d10 

Antihistaminies 26 Famotidine 76824-35-6 6.89 -0.64 Ranitidine-d6 

 27 Ranitidine 66357-35-5 2.7/8.
2 0.27 Ranitidine-d6 

 28 Cimetidine 51481-61-9 6.8 0.4 Cimetidine-d3 

 29 Loratadine 79794-75-5 5 5.2 Loratadine-d4 

 30 Diphehydramine 88637-37-0 9 3.27 Carbamazepine-d10 

Barbiturates - 
Anticonvulsants 31 Butalbital 77-26-9 12.15 1.87 Phenobarbital-d5 

 32 Phenobarbital 50-06-6 7.4 1.47 Phenobarbital-d5 

 33 Pentobarbital 76-74-4 8 2.1 Phenobarbital-d5 

Beta-blockers -
cardiac arrhythmias 34 Atenolol 29122-68-7 9.6 0.36 Atenolol-d7 

 35 Sotalol 3930-20-9 9.55 0.24 Atenolol-d7 
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GROUP No Name CAS Number Pka log Kow Surrogate 

 36 Metoprolol 37350-58-6 9.7 1.8 Atenolol-d7 

 37 Propranolol 525-66-6 9.49 3 Atenolol-d7 

 38 Timolol 26839-75-8 9.2 1.83 Timolol-d5 maleate 

 39 Betaxolol 63659-18-7 9.4 2.81 Atenolol-d7 

 40 Carazolol 57775-29-8 9.52 3.59 Atenolol-d7 

 41 Pindolol 13523-86-9 8.8 1.75 Atenolol-d7 

 42 Nadolol 42200-33-9 9.67 0.71 Atenolol-d7 

Bronchodilators - 
Beta agonists 43 Salbutamol 18559-94-9 9.3 0.64 Albuterol-d3 

 44 Clenbuterol 37148-27-9 17.84 2 Albuterol-d3 

Antihypertensives 45 Enalapril 75847-73-3 3/5.5 0.07 Enalaprilat-d5 

 46 Hydrochlorothiazide 58-93-5 7.9 -0.1 Hydrochlorothiazide-
13C, d2 

 47 Lisinopril 83915-83-7 2.5 -1.1 Carbamazepine-d10 
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GROUP No Name CAS Number Pka log Kow Surrogate 

Diuretics 48 Furosemide 54-31-9 2.03 2.03 Furosemide-d5 

Cancer treatment 49 Tamoxifen 10540-29-1 8.85 6.3 Tamoxifen-d5 

Antifungals 50 Metronidazole 443-48-1 2.6 -0.1 Metronidazole-d4 

 51 Clotrimazole 23593-75-1 6.7 1.33 Clotrimazole-d5 

Antidiabetic 52 Glibenclamide 10238-21-8 5.3 2.4 Glyburide-d11 
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5.2.4 Direct injection 

Standard solution (25 µL) at 100 ng/mL was injected to compare the ionization 

efficiency of different techniques. The mobile phase flow rate was 200 µL/min. 

The mobile phase used for HESI positive mode was methanol/acetonitrile (50:50, 

v/v) and 0.1% formic acid in water. The proportion of the organic solvent was 1% 

in the first 2 min, and then organic proportion was increased to 100% in 5 min 

and held for 5 min. After that, organic proportion was decreased to 1% in 2 min 

and held for another 2 min. The mobile phase used for HESI negative mode was 

methanol and water. The proportion of the organic solvent was 1% in the first 2 

min, and then organic proportion was increased to 100% in 5 min and held for 5 

min. After that, organic proportion was decreased to 1% in 2 min and hold for 

another 2 min. The mobile phase used for APPI positive mode was the same as 

HESI positive mode but the gradient was different. The proportion of the organic 

solvent was 10% in the first 2 min, and then organic proportion was increased to 

100% in 5 min and held for 5 min. After that, organic proportion was decreased to 

10% in 2 min and held for another 2 min. The mobile phase used for APPI 

negative mode was methanol and water. The proportion of the organic solvent 

was 10% in the first 2 min, and then organic proportion was increased to 100% in 

5 min and held for 3 min. After that, organic proportion was decreased to 10% in 

2 min and held for another 2 min. 
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5.2.5 On-line SPE  

Water samples (5 mL) were loaded to the preconcentration column at a flow rate 

of 1 mL/min. The preconcentration column was washed by 1000 µL of water and 

connected to the analytical column after the valve had switched to inject position. 

After washing, the loading column and analytical column underwent the same 

gradient in both positive mode and negative mode.  

 

5.2.6 Mass spectrometry 

Mass spectrometry analysis was performed using a TSQ Quantum Access triple 

quadrupole QqQ Mass Spectrometer (Thermo Fisher Scientific, San Jose, CA, 

USA) equipped with an Ion MAX source housing capable of operating HESI and 

APPI. Quantitation for all sources was performed using selected reaction 

monitoring (SRM) mode. Instrument control and data acquisition were performed 

using Xcalibur software (rev. 2.1, Thermo Fisher Scientific, San Jose, CA, USA). 

Source parameters for analytes were optimized using Heated Electrospray 

Ionization (HESI) and Atmospheric Pressure Photoionization (APPI) 

independently using flow injection with a carrier stream of mobile phase. A 

mobile phase of 0.1% fomic acid in water/MeOH (50:50, v/v) was used for 

positive mode and water/MeOH (50:50, v/v) was used for negative mode. Each 

analyte and surrogate was injected to the ion source at a concentration of 10 

μg/mL. Compound-dependent parameters such as tube lens and collision energy 

were optimized to obtain maximum signals in the QqQ system. The precursor ion, 

fragment ions and mass-dependent parameters are listed in table 14. 
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Source-dependent parameters for optimal HESI detection were as follows: 

capillary temperature (350 °C), vaporizer temperature (250 °C), sheath gas 

pressure (30 arbitrary units), aux gas pressure (20 arbitrary units), ion sweep gas 

pressure (5 arbitrary units) and spray voltage (4000 V for positive polarity and 

4000 V for negative polarity). 

 

The photoionization lamp used for APPI was a Syagen 10 eV krypton UV lamp 

(Syagen Technology Inc., Tustin, CA, USA). The source-dependent parameters 

for optimal detection were as follows: capillary temperature (300 °C), vaporizer 

temperature (400 °C), sheath gas pressure (50 arbitrary units), aux gas pressure 

(35 arbitrary units), ion sweep gas pressure (0 arbitrary units), discharge current 

(0 μA). Four different dopants, acetone, anisole, chlorobenzene and toluene, 

were tested to find the best one for the analytes.  
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Table 14. Accurate mass and mass spectrometry parameters of analytes 

 

HESI APPI 

compounds 

precursor 

ion m/z 

tube 

lens SRM1 

CE 

1 SRM2 

CE 

2 SRM3 

CE 

3 precursor ion m/z 

tube 

lens SRM1 

CE 

1 SRM2 

CE 

2 SRM3 

CE 

3 

Ketoprofen [M-H]- 253.1 65 209.1 11 

    

[M+H]+ 255.0 70 209.0 13 105.1 22 77.2 39 

Naproxen [M-H]- 229.0 60 170.1 18 185.2 11 

  

[M+H-H2O-CO]+ 185.1 84 170.1 17 141.1 33 115.1 49 

Ibuprofen [M-H]- 205.1 51 161.3 10 

    

[M-H]- 205.1 161.1 11.0 

     
Indomethacin [M-H]- 356.1 65 312.1 12 297.1 21 282.1 32 [M+H]+ 357.9 61 138.9 20 111.0 43 174.0 12 

Diclofenac [M-H]- 294.0 60 250.0 14 214.0 22 178.1 28 [M+H]+ 295.9 63 213.9 34 249.9 13 277.9 7 

Mefenamic acid [M-H]- 240.1 65 196.1 19 192.1 28 180.1 29 [M-H2O+H]+ 224.0 97 209.0 28 180.0 40 208.0 36 

Acetaminophen [M-H]- 150.0 49 107.2 22 118.1 33 132.1 24 [M+H]+ 152.1 100 110.1 15 65.3 31 93.2 23 

Salicylic Acid [M-H]- 137.1 48 93.1 19 65.2 31 75.2 37 [M-H]- 136.9 47 93.4 20 

    
Antipyrin [M+H]+ 189.1 72 77.2 36 56.3 36 131.1 22 [M+H]+ 189.0 68 77.2 37 131.1 21 146.1 20 

Propyphenazone [M+H]+ 231.1 71 201.1 24 189.1 20 56.3 35 [M+H]+ 231.1 76 189.0 20 146.0 25 77.2 41 

Phenylbutazone [M+H]+ 309.2 71 120.1 19 188.1 15 211.1 16 [M+H]+ 309.1 82 210.9 13 132.2 29 77.3 42 

Codeine [M+H]+ 300.2 86 215.1 25 152.1 65 165.1 42 [M+H]+ 300.0 81 165.0 35 215.0 25 153.0 44 

Clofibric Acid [M-H]- 213.1 56 127.1 19 85.2 12 91.3 47 [M-H]- 213.0 79 127.2 20 85.4 13 
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HESI APPI 

compounds 

precursor 

ion m/z 

tube 

lens SRM1 

CE 

1 SRM2 

CE 

2 SRM3 

CE 

3 precursor ion m/z 

tube 

lens SRM1 

CE 

1 SRM2 

CE 

2 SRM3 

CE 

3 

Gemfibrozil [M-H]- 249.1 65 121.2 20 106.1 49 120.1 44 [M-H]- 249.1 73 121.1 17 127.1 14 106.2 45 

Bezafibrate [M-H]- 360.1 63 274.1 20 154.0 32 85.2 19 [M+H]+ 362.1 71 316.0 13 276.0 13 138.9 25 

Fenofibrate [M+H]+ 361.2 72 233.0 16 139.0 31 121.0 32 [M+H]+ 361.0 73 232.9 16 138.9 30 111.0 50 

Atorvastatin [M+H]+ 559.3 88 440.3 21 250.0 42 276.1 40 [M+H]+ 559.1 84 440.0 21 249.9 41 276.0 45 

Mevastatin [M+H]+ 391.3 74 185.1 14 229.1 13 159.1 26 [M+Na]+ 413.1 94 311.1 21 296.0 26 325.3 23 

Pravastatin [M+Na]+ 447.3 97 327.1 19 309.2 22 

  

[M+Na]+ 447.1 101 327.0 19 309.0 24 429.3 24 

Fluoxetine [M+H]+ 310.1 60 44.3 13 148.1 5 183.1 45 [M+H]+ 310.1 70 44.4 13 148.1 5 259.0 5 

Paroxetine [M+H]+ 330.2 71 192.1 20 70.2 31 135.1 37 [M+H]+ 330.0 88 192.0 20 70.2 33 135.0 34 

Diazepam [M+H]+ 285.1 77 193.1 32 154.1 26 222.1 26 [M+H]+ 285.0 83 193.0 31 222.1 25 257.1 21 

Lorazepam [M+H]+ 321.1 74 275.0 22 303.0 15 229.1 31 [M+H]+ 320.9 76 274.9 20 302.9 14 228.9 29 

Carbamazepine [M+H]+ 237.1 61 194.1 19 192.1 25 

  

[M+H]+ 237.1 87 194.1 18 192.1 23 179.1 35 

primidone [M+H]+ 219.1 68 91.2 28 162.2 12 117.2 23 [M+H]+ 219.1 83 91.2 28 162.0 12 119.1 16 

Famotidine [M+H]+ 338.1 55 189.0 20 259.1 11 155.1 32 [M+H]+ 338.2 68 321.2 12 303.2 11 97.1 20 

Ranitidine [M+H]+ 315.1 65 176.0 18 130.1 25 102.1 34 [M+H]+ 315.0 57 176.0 17 130.0 25 270.0 12 
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HESI APPI 

compounds 

precursor 

ion m/z 

tube 

lens SRM1 

CE 

1 SRM2 

CE 

2 SRM3 

CE 

3 precursor ion m/z 

tube 

lens SRM1 

CE 

1 SRM2 

CE 

2 SRM3 

CE 

3 

Cimetidine [M+H]+ 253.1 67 159.1 14 117.2 16 95.2 29 [M+H]+ 253.0 61 159.0 13 117.1 16 95.1 30 

Loratadine [M+H]+ 383.1 82 337.1 23 267.1 31 259.1 30 [M+H]+ 383.0 86 337.0 22 266.9 31 259.0 31 

diphenhydramine [M+H]+ 256.2 54 167.1 14 165.2 37 152.1 37 [M+H]+ 256.1 51 167.0 15 152.0 33 165.0 44 

Butalbital [M-H]- 223.1 60 180.1 14 42.3 20 85.2 15 [M+H]+ 225.1 70 171.1 12 154.1 13 169.1 14 

Phenobarbital [M-H]- 231.1 61 188.2 14 42.5 15 85.3 15 [M-H]- 231.1 24 188.4 13 42.6 18 

  
Pentobarbital [M-H]- 225.1 60 182.1 15 42.4 20 138.2 19 [M-H]- 225.1 62 182.3 15 

    
Atenolol [M+H]+ 267.2 78 145.1 26 190.1 18 133.1 31 [M+H]+ 267.1 72 145.1 26 190.1 18 225.1 16 

Sotalol [M+H]+ 273.2 77 255.1 11 213.1 18 133.1 27 [M+H]+ 273.1 68 255.1 12 213.1 18 133.1 29 

Metoprolol [M+H]+ 268.2 77 159.1 21 191.1 17 133.1 26 [M+H]+ 268.1 80 116.2 17 191.1 17 159.1 20 

Propranolol [M+H]+ 260.2 78 183.1 17 155.1 25 157.1 20 [M+H]+ 260.1 68 116.2 18 183.0 18 155.1 26 

Timolol [M+H]+ 317.2 84 261.1 16 244.1 21 188.0 25 [M+H]+ 317.1 66 261.0 16 244.0 20 188.0 26 

Betaxolol [M+H]+ 308.2 82 121.1 26 133.1 26 91.1 39 [M+H]+ 308.2 82 116.2 19 98.2 22 72.3 22 

Carazolol [M+H]+ 299.1 70 222.1 19 184.0 25 194.1 29 [M+H]+ 299.1 81 116.2 21 222.0 20 194.1 29 

Pindolol [M+H]+ 249.2 72 116.1 17 172.1 17 144.1 25 [M+H]+ 249.1 66 116.2 17 172.1 17 146.0 19 
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HESI APPI 

compounds 

precursor 

ion m/z 

tube 

lens SRM1 

CE 

1 SRM2 

CE 

2 SRM3 

CE 

3 precursor ion m/z 

tube 

lens SRM1 

CE 

1 SRM2 

CE 

2 SRM3 

CE 

3 

Nadolol [M+H]+ 310.2 73 254.1 17 201.1 22 236.1 19 [M+H]+ 310.1 70 254.1 17 236.1 19 201.0 23 

Salbutamol [M+H]+ 240.2 62 148.1 18 222.1 10 121.1 29 [M+H]+ 240.1 66 148.1 19 166.0 12 222.1 8 

Clenbuterol [M+H]+ 277.1 71 203.0 16 259.1 10 132.1 30 [M+H]+ 277.0 60 202.9 16 259.0 9 132.1 28 

Enalapril [M+H]+ 377.2 74 234.1 19 303.2 17 117.1 36 [M+H]+ 377.1 71 234.1 19 303.1 17 117.1 36 

Hydrochlorothiazide [M-H]- 296.0 78 269.0 20 205.0 23 126.1 33 [M-H]- 295.9 60 269.0 19 205.1 23 126.1 23 

Lisinopril [M+H]+ 406.2 88 84.2 33 246.1 22 309.2 18 [M+H]+ 406.1 78 84.2 31 246.1 19 291.1 8 

Furosemide [M-H]- 328.9 75 285.0 17 204.9 23 126.0 36 [M-H]- 328.9 69 205.0 24 285.2 20 78.2 34 

Tamoxifen [M+H]+ 372.2 84 72.2 23 129.1 26 70.2 36 [M+H]+ 372.1 86 72.3 23 129.1 26 70.3 36 

Metronidazole [M+H]+ 172.1 63 128.1 13 82.2 23 111.1 20 [M+H]+ 172.1 61 128.1 12 82.2 25 111.2 18 

Clotrimazole 

[M-

C3H3N2]+ 277.1 60 165.1 27 199.0 31 242.1 20 [M-C3H3N2]+ 277.0 60 165.0 23 241.0 27 239.0 50 

Glibenclamide [M+H]+ 494.3 70 369.1 14 169.0 33 304.1 25 [M+Na]+ 516.0 101 390.9 19 416.9 19 419.4 19 
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5.2.7 Dopant delivery system 

Dopant was delivered by Fusion Touch 100 syringe pump from Chemyx (Stafford, 

TX, USA). Syringe pump was connected to the auxiliary gas and dopant was 

nebulized to gas phase. The dopant gas delivery system is shown in Figure 17. 

Compared to mixing dopant with mobile phase, this dopant gas delivery system 

increased reaction between dopant and analytes. 

 

Figure 17. Dopant gas delivery system, modified from (Hanold et al., 2004) 

 

5.3 Results and discussion  

5.3.1 Optimization of online SPE procedure 

Water samples (5 mL) were loaded to the preconcentration column at different 

flow rates: 500 μL/min, 1000 μL/min, 1500 μL/min and 2000 μL/min.  Absolute 

recovery of analytes (based on the response only) detected in the positive ion 

mode is shown in Figure 18a and absolute recovery of analytes detected in the 

negative mode is shown in Figure 18b. Loading speed of 2000 μL/min and 1000 

μL/min was chosen for positive mode and negative mode respectively since 
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analytes were recovered most at these two flow rates. In the negative mode, the 

pH of samples was adjusted to 2 to increase the recovery of salicylic acid and 

clofibric acid in the loading column. 

 

In order to reduce matrix effects, a wash step was applied after samples were 

loaded to the preconcentration column. Only water was used to wash the 

preconcentration column because some analytes are very soluble in organic 

solvents. Three different volumes of water (1 mL, 2 mL and 3 mL) were tested in 

both positive mode and negative mode and results are shown in figure 19a and 

figure 19b, respectively. In the positive mode, Metronidazole, lisinopril and 

primidone started to be lost when wash volume was more than 1 mL. Therefore, 

1 mL was chosen as the wash volume in the positive mode. In the negative mode, 

acetaminophen was not retained in the preconcentration column when the wash 

volume was more than 1 mL and the result was consistent with the result shown 

in 4.3.1. Therefore, the Hypersil aQ column is not a good choice to retain 

acetaminophen. Hydrochlorothiazide lost its recovery on the preconcentration 

column when wash volume was more than 1 mL. Thus, 1 mL was also chosen as 

the wash volume in the negative mode. 
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Figure 18a. Absolute recovery of analytes at different load speeds in the positive mode 
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Figure 18b. Absolute recovery of analytes at different load speeds in the negative mode 
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Figure 19a. Absolute recovery of analytes in positive mode with different wash volume 
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Figure 19b. Absolute recovery of analytes in negative mode with different wash volume. Asterisk (*) indicates not 

recovered. 
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5.3.2 Comparison of different API techniques 

5.3.2.1 Comparison based on absolute signal intensity 

Several studies compared the absolute signal intensity of pharmaceuticals using 

different ionization methods (Cai et al., 2005; Garcia-Ac et al., 2011). We 

compared the signal intensity of different ionization methods by direct injection of 

2.5 ng standard compounds. The signal intensity of compound detected in the 

HESI method was treated as 100%. The signal intensity of compounds detected 

in other ionization methods was compared with the HESI method. Results of 

comparison are shown in Table 15. The best ionization method is shown in green. 

For 32 out of 52 compounds, HESI was the best ionization method. 14 out of 52 

compounds were best detected by APPI with toluene as dopant. Only 3 analytes 

were best detected using chlorobenzene as dopant and 3 were best detected in 

APPI with acetone as dopant. Results indicated that HESI was still a very 

effective ionization method for the selected target compounds. For some of the 

compounds usually analyzed in the negative mode in ESI, signal intensity 

increased remarkablely when they were ionized in the positive mode in APPI. 

Ketoprofen ([M-H]- →  [M+H]+), naproxen ([M-H]- →  [M+H-H2O-CO]+), 

indomethacin ([M-H]- → [M+H]+), diclofenac ([M-H]- → [M+H]+), mefenamic acid 

([M-H]- → [M+H-H2O]+), acetaminophen ([M-H]- → [M+H]+) and bezafibrate ([M-

H]- → [M+H]+) were in that case (figure 20). For acetaminophen, signal intensity 

increased 80 times when it was ionized by APPI with toluene as dopant. 

Therefore, APPI with toluene as dopant has two major advantages, firstly, it 
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increases the sensitivity and secondly it avoids the need for positive and negative 

runs for the same sample. 
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Figure 20. Chromatography of compounds in HESI- and APPI+ 
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Table 15. Comparison of analyte responses under different ionization conditions  

  HESI   RSD APPI   RSD 
APPI 

toluene   RSD 
APPI 

acetone   RSD 
APPI 

anisole   RSD 

APPI 
chlor
oben
zene   RSD 

ketoprofen 100 
+
- 10 1 

+
- 8 234 

+
- 8 55 

+
- 5 41 

+
- 9 25 +- 9 

Naproxen 100 
+
- 22 ND 

  
73 

+
- 5 38 

+
- 14 ND 

  
425 +- 11 

Ibuprofen 100 
+
- 13 ND 

  
6 

+
- 8 3 

+
- 16 7 

+
- 2 5 +- 6 

Indometacin 100 
+
- 11 1 

+
- 22 136 

+
- 7 80 

+
- 3 58 

+
- 3 51 +- 5 

Diclofenac 100 
+
- 10 1 

+
- 24 112 

+
- 1 49 

+
- 4 27 

+
- 7 20 +- 13 

Mefenamic acid 100 
+
- 16 8 

+
- 28 228 

+
- 2 168 

+
- 4 67 

+
- 1 53 +- 2 

Acetaminophen  100 
+
- 19 124 

+
- 9 8059 

+
- 9 6682 

+
- 13 1373 

+
- 9 1111 +- 12 

Salycilic Acid 100 
+
- 11 ND 

  
ND 

  
ND 

  
ND 

  
ND 

  
Antipyrin 100 

+
- 5 4 

+
- 20 166 

+
- 19 170 

+
- 5 85 

+
- 23 ND 

  
Propyphenazone 100 

+
- 4 24 

+
- 11 316 

+
- 4 257 

+
- 3 64 

+
- 3 54 +- 12 

Phenylbutazone 100 
+
- 8 1 

+
- 20 115 

+
- 5 54 

+
- 3 19 

+
- 5 13 +- 33 

Codeine 100 
+
- 3 4 

+
- 12 61 

+
- 7 87 

+
- 3 32 

+
- 14 28 +- 17 

Clofibric Acid 100 
+
- 4 ND 

  
8 

+
- 7 5 

+
- 2 11 

+
- 8 13 +- 11 

Gemfibrozil 100 
+
- 15 ND 

  
27 

+
- 2 17 

+
- 5 31 

+
- 2 23 +- 5 

Bezafibrate 100 
+
- 8 1 

+
- 8 67 

+
- 4 49 

+
- 3 13 

+
- 10 9 +- 20 

Fenofibrate 100 
+
- 0 2 

+
- 20 128 

+
- 3 84 

+
- 5 25 

+
- 8 21 +- 14 

Atorvastatin 100 
+
- 5 ND 

+
- 56 3 

+
- 13 3 

+
- 12 1 

+
- 15 1 +- 24 

Mevastatin 100 
+
- 17 14 

+
- 6 5 

+
- 13 4 

+
- 15 2 

+
- 14 2 +- 14 

Pravastatin 100 
+
- 4 ND 

  
10 

+
- 18 ND 

  
ND 

  
ND 
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  HESI   RSD APPI   RSD 
APPI 

toluene   RSD 
APPI 

acetone   RSD 
APPI 

anisole   RSD 

APPI 
chlor
oben
zene   RSD 

Fluoxetine 100 
+
- 3 ND 

+
- 16 6 

+
- 4 4 

+
- 6 1 

+
- 9 1 +- 26 

Paroxetine 100 
+
- 3 4 

+
- 21 24 

+
- 6 19 

+
- 7 5 

+
- 1 5 +- 8 

Diazepam 100 
+
- 4 3 

+
- 18 48 

+
- 3 34 

+
- 4 17 

+
- 1 16 +- 8 

Lorazepam 100 
+
- 1 2 

+
- 18 91 

+
- 3 69 

+
- 13 27 

+
- 7 21 +- 13 

Carbamazepine 100 
+
- 1 1 

+
- 8 32 

+
- 6 31 

+
- 3 8 

+
- 3 6 +- 15 

Primidone 100 
+
- 9 ND 

  
334 

+
- 2 74 

+
- 4 61 

+
- 1 223 +- 1 

Famotidine  100 
+
- 3 ND 

  
ND 

  
380 

+
- 2 138 

+
- 4 110 +- 7 

Ranitidine 100 
+
- 6 2 

+
- 13 84 

+
- 12 83 

+
- 9 11 

+
- 8 9 +- 8 

Cimetidine  100 
+
- 5 9 

+
- 13 336 

+
- 8 418 

+
- 10 72 

+
- 7 59 +- 11 

Loratadine 100 
+
- 2 4 

+
- 18 30 

+
- 4 22 

+
- 5 7 

+
- 2 6 +- 16 

diphenhydramine 100 
+
- 2 ND 

  
5 

+
- 4 3 

+
- 12 1 

+
- 4 1 +- 16 

Butalbital 100 
+
- 15 ND 

  
65 

+
- 8 ND 

  
ND 

  
ND 

  
Phenobarbital 100 

+
- 2 ND 

  
135 

+
- 15 77 

+
- 5 160 

+
- 5 170 +- 23 

Pentobarbital 100 
+
- 25 ND 

  
349 

+
- 15 179 

+
- 21 344 

+
- 8 379 +- 7 

Atenolol 100 
+
- 8 3 

+
- 21 176 

+
- 9 148 

+
- 10 24 

+
- 11 22 +- 12 

Sotalol 100 
+
- 2 5 

+
- 26 228 

+
- 8 202 

+
- 5 36 

+
- 6 31 +- 11 

Metoprolol 100 
+
- 4 3 

+
- 8 15 

+
- 19 13 

+
- 14 2 

+
- 20 2 +- 4 

Propranolol 100 
+
- 4 4 

+
- 27 20 

+
- 10 16 

+
- 15 3 

+
- 11 2 +- 16 

Timolol 100 
+
- 1 2 

+
- 22 16 

+
- 16 12 

+
- 19 3 

+
- 20 2 +- 27 

Betaxolol 100 
+
- 4 19 

+
- 15 72 

+
- 5 59 

+
- 6 14 

+
- 9 14 +- 17 

Carazolol 100 
+
- 5 5 

+
- 42 28 

+
- 8 21 

+
- 14 4 

+
- 20 3 +- 14 
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  HESI   RSD APPI   RSD 
APPI 

toluene   RSD 
APPI 

acetone   RSD 
APPI 

anisole   RSD 

APPI 
chlor
oben
zene   RSD 

Pindolol 100 
+
- 7 12 

+
- 7 445 

+
- 15 383 

+
- 11 61 

+
- 5 45 +- 16 

Nadolol 100 
+
- 3 6 

+
- 8 190 

+
- 6 134 

+
- 12 26 

+
- 9 19 +- 21 

Salbutamol 100 
+
- 2 1 

+
- 24 30 

+
- 11 17 

+
- 17 5 

+
- 4 3 +- 10 

Clenbuterol 100 
+
- 4 ND 

  
14 

+
- 11 9 

+
- 11 2 

+
- 25 1 +- 18 

Enalapril 100 
+
- 3 3 

+
- 17 27 

+
- 12 15 

+
- 10 4 

+
- 11 3 +- 8 

Hydrochlorothiazide 100 
+
- 13 ND 

  
5 

+
- 53 2 

+
- 18 8 

+
- 21 14 +- 11 

Lisinopril 100 
+
- 12 ND 

  
ND 

  
ND 

  
ND 

  
ND 

  
Furosemide 100 

+
- 9 ND 

  
25 

+
- 7 15 

+
- 19 30 

+
- 3 32 +- 8 

Tamoxifen 100 
+
- 2 9 

+
- 24 14 

+
- 2 15 

+
- 4 5 

+
- 1 4 +- 8 

Metronidazole 100 
+
- 3 5 

+
- 8 248 

+
- 18 149 

+
- 11 45 

+
- 17 37 +- 25 

Clotrimazole 100 
+
- 2 7 

+
- 19 20 

+
- 2 11 

+
- 3 22 

+
- 3 21 +- 1 

Glibenclamide 100 
+
- 1 ND     1 

+
- 17 1 

+
- 21 ND     ND     
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5.3.2.2 Comparison based on MDLs 

For further study, we also compared the MDLs of target compounds. Statistically 

determined MDLs using fortified matrix matched samples can be used to 

compare among method and laboratory and truly reflect the performance of the 

detection method. The study only reported the MDLs comparison for compounds 

that were detected in the positive mode in APPI because for compounds 

detected in the negative mode HESI had certainly a better sensitivity. MDLs for 

target compounds under the different ionization methods are shown in Table 16 

and number of compounds with MDLs in 0-5 ng/L, 5-10 ng/L and >10 ng/L range 

are shown in figure 21. For some of the compounds MDLs of APPI were much 

higher than HESI. Take pravastatin for example, MDLs of HESI was 6.9 ng/L 

while MDLs of APPI was more than 500 ng/L. Thus, we still should use HESI as 

ionization method for these compounds. For some compounds like 

propyphenazone, gemfibrozil and fenofibrate etc, calculated MDLs didn’t 

decrease much from HESI to APPI with dopant. Therefore, we can use HESI or 

APPI as the ionization method for these compounds. For compounds that were 

ionized in the negative mode in HESI but the positive mode in APPI, even 

thorough MDLs didn’t decrease much in APPI, a much better background were 

observed in APPI. Take ketoprofen for example, MDLs of HESI and APPI with 

toluene were 10.0 ng/L and 14.7 ng/L, respectively. However, in the negative 

ionization mode of HESI, there were two interference peaks very close to the 

ketoprofen peak. In the positive ionization mode of APPI, there were no 

interference peaks for ketoprofen at all (figure 22). Thus, we used APPI as 
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ionization method for detection of these compounds.  In figure 23, analytes in 

blue cycle is properly to be ionized by HESI and the analytes in the orange cycle 

is properly ionized by APPI, while the analytes in overlapped part of two cycles 

indicated that these analytes can be both ionized by both HESI and APPI. HESI 

is still an ideal ionizatioin technique for polar compounds except for 

acetaminophen. APPI is also a competitive ionization method for many polar 

analytes (overlap part in figure 23).  APPI is an excellent ionization method for 

less polar and nonpolar compounds (analytes in orange cycle from chapter 4). If 

there is a need to detect polar and non-polar com pounds simultaneously, APPI 

will be the best ionization technique. 

 

 

Figure 21. Number of compounds with MDL in 0-5 ng/L, 5-10 ng/L and >10 ng/L 

in HESI and APPI with toluene as dopant 

HESI

0-5 ng/L: 14
5-10 ng/L: 12 
>10 ng/L: 26

APPI with toluene

0-5 ng/L: 0
5-10 ng/L: 5 
>10 ng/L: 47 
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Figure 22. Chromatography of ketoprofen in HESI- and APPI+ 

 

Table16. MDLs comparison of different API 

    HESI APPI toluene APPI acetone 
1 ketoprofen 10.0 14.7 250 
2 naproxen 74.0 15.4 15.7 
3 ibuprofen 11.9 NA NA 
4 indomethacine 19.2 8.6 51.0 
5 diclofenac 8.7 9.2 382 
6 mefenamic_acid 2.5 6.0 339 
7 acetaminophen 351 9.24 16.6 
8 salicylic_acid 23.6 NA NA 
9 antipyrine 4.5 148 >250 
10 propyphenazone 5.0 12.3 217 
11 phenylbutazone 147 500 500 

RT: 5.72 - 18.95 SM: 7G
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    HESI APPI toluene APPI acetone 
12 codeine 6.2 354 500 
13 clofibric_acid 23.6 NA NA 
14 gemfibrozil 14.4 36.4 367 
15 bezafibrate 26.0 11.2 24.1 
16 fenofibrate 14.2 21.8 5.1 
17 atorvastatin 6.9 >500 156 
18 mavastatin 75.1 >500 >500 
19 pravstatin 9.0 >500 >500 
20 fluoxetine 12.3 166 388 
21 paroxetine 12.2 235 514 
22 diazepam 1.8 10.9 206 
23 lorazepam 6.4 20.5 31.9 
24 carbamazepine 2.8 19.9 8.5 
25 primidone 28.9 38.3 72.5 
26 famotidine 1.8 >500 >500 
27 ranitidine 3.5 500 500 
28 cimetidine 4.6 154 118 
29 loratadine 5.6 13.0 24.4 
30 diphenhyramine 4.3 33.0 500 
31 butalbital 189 NA NA 
32 phenobarbital 39.7 NA NA 
33 pentobarbital 32.4 NA NA 
34 atenolol 7.0 218 29.6 
35 sotalol 3.5 125 387 
36 metoprolol 13.1 29.6 24.9 
37 propranolol 13.6 22.5 341 
38 timolol 3.9 202 10.5 
39 betaxolol 19.3 224 487 
40 carazolol 10.0 38.2 156 
41 pindolol 10.2 136 152 
42 nadolol 5.7 107 6.9 
43 salbutamol 3.8 357 500 
44 clenbuterol 4.1 15.7 141 
45 enalapril 3.7 6.8 20.3 
46 hydrocholorothiazide 250 NA NA 
47 lisinopril 25.6 >500 >500 
48 furosemide 8.2 NA NA 
49 tamoxifen 42.7 324 500 
50 metronidazole 98.2 >500 >500 
51 clotrimazole 6.3 29.3 140 
52 glibenclamide 22.1 381 >500 
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Figure 23. Analytes that can be ionized in HESI, APPI or both 

 

5.4 Conclusion 

An online-SPE-LC-MS/MS method was developed to detect 52 pharmaceuticals 

simultaneously. The online-SPE method was able to retain target compounds 

very well and interference was reduced by the wash step. HESI and APPI were 

compared by both absolute intensity and MDLs for ionization of 52 

pharmaceuticals. Results indicated that HESI was an ideal ionization technique 

for polar compounds. However, APPI is an alternative ionization technique for 

some polar compounds that were ionized in positive mode.  For simultaneous 

detection of compounds with various polarities, APPI will be a better choice since 
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it showed comparable performance to HESI for some polar compounds and 

excellent performance for less polar or non-polar compounds. 

 

A summary is shown in table 17 on the basis of comparison of methods 

developed in previous chapters for analytes. Proper methods were 

recommended for the detection of analytes. In general, GC/MS is good for 

nonpolar compounds. For less polar compounds, a derivation step is very 

important for the analysis of GC/MS. Heated electrospray ionization of LC/MS is 

appropriate for the detection of polar compounds. APPI with dopant is capable to 

ionize compounds with various polarities.  

 

 

 

 

 

 

 

 

 

 

 



136 
 

Table 17. Comparison of GC/MS, LC/MS with different ionization sources for analytes 

  GC/MS LC/MS 

 Name   HESI APCI APPI 
APPI 

acetone 
APPI 

anisole 
APPI 

chlorobenzene 
APPI 

toluene 

Ketoprofen 
 

YES 
     

YES 

Naproxen 
 

YES 
     

YES 

Ibuprofen 
 

YES YES 
     

Indomethacin 
 

YES 
     

YES 

Diclofenac 
 

YES 
     

YES 

Mefenamic acid 
 

YES 
     

YES 

Acetaminophen  
  

YES 
    

YES 

Salicylic Acid 
 

YES 
      

Antipyrin 
 

YES 
      

Propyphenazone 
 

YES 
     

YES 

Phenylbutazone 
 

YES 
      

Codeine 
 

YES 
      

Clofibric Acid 
 

YES 
      

Gemfibrozil 
 

YES 
     

YES 
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  GC/MS LC/MS 

 Name   HESI APCI APPI 
APPI 

acetone 
APPI 

anisole 
APPI 

chlorobenzene 
APPI 

toluene 

Bezafibrate 
 

YES 
     

YES 

Fenofibrate 
 

YES 
     

YES 

Atorvastatin 
 

YES 
      

Mevastatin 
 

YES 
      

Pravastatin 
 

YES 
      

Fluoxetine 
 

YES 
      

Paroxetine 
 

YES 
      

Diazepam 
 

YES 
     

YES 

Lorazepam 
 

YES 
     

YES 

Carbamazepine 
 

YES YES YES YES YES YES YES 

Primidone 
 

YES 
     

YES 

Famotidine  
 

YES 
      

Ranitidine  
 

YES 
      

Cimetidine  
 

YES 
      

Loratadine  
 

YES 
     

YES 
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  GC/MS LC/MS 

 Name   HESI APCI APPI 
APPI 

acetone 
APPI 

anisole 
APPI 

chlorobenzene 
APPI 

toluene 

Diphehydramine 
 

YES 
     

YES 

Butalbital 
 

YES 
      

Phenobarbital 
 

YES 
      

Pentobarbital 
 

YES 
      

Atenolol 
 

YES 
      

Sotalol 
 

YES 
      

Metoprolol 
 

YES 
     

YES 

Propranolol 
 

YES 
     

YES 

Timolol 
 

YES 
      

Betaxolol 
 

YES 
      

Carazolol 
 

YES 
      

Pindolol 
 

YES 
      

Nadolol 
 

YES 
      

Salbutamol 
 

YES 
      

Clenbuterol 
 

YES 
     

YES 
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  GC/MS LC/MS 

 Name   HESI APCI APPI 
APPI 

acetone 
APPI 

anisole 
APPI 

chlorobenzene 
APPI 

toluene 

Enalapril 
 

YES 
     

YES 

Hydrochlorothiazide 
 

YES 
      

Lisinopril 
 

YES 
      

Furosemide 
 

YES 
      

Tamoxifen 
 

YES 
      

Metronidazole 
 

YES 
      

Clotrimazole 
 

YES 
      

Glibenclamide 
 

YES 
      

Caffeine YES YES YES YES YES YES YES YES 

Triclosan YES 
      

YES 

Triclocarban 
       

YES 

DEET YES YES YES YES YES YES YES YES 

Bisphenol -A YES YES YES 
    

YES 

4-n-nonylphenol YES 
 

YES 
    

YES 

4-t-octylphenol YES 
      

YES 
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  GC/MS LC/MS 

 Name   HESI APCI APPI 
APPI 

acetone 
APPI 

anisole 
APPI 

chlorobenzene 
APPI 

toluene 

Androsterone YES 
      

YES 

Estrone (E1) YES 
   

YES 
  

YES 

Equilin YES 
     

YES YES 

Testosterone YES YES YES YES YES YES YES YES 

Equilenin YES 
   

YES 
  

YES 

17-β-Estradiol (E2) YES 
     

YES YES 

17-α-Estradiol YES 
      

YES 

Ethynyl Estradiol (EE2) YES 
     

YES YES 

Progesterone YES 
     

YES YES 

Mestranol YES 
      

YES 

Estriol (E3) YES 
      

YES 

Coprostanol YES 
     

YES YES 

Coprostanone YES 
   

YES 
  

YES 

Coprostane YES 
       

Cholesterol YES               
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CHAPTER 6 

Occurrence of PPCPs in reclaimed water 

6.1 Introduction 

Water stress has become a serious problem worldwide because of the rapid 

population growth on the earth.  Properly managed water resources are critical 

for sustainable development of water supply. In order to improve the 

management efficiency of water resources, treated waters are commonly reused 

worldwide for landscape, agriculture, irrigation, recharging, etc. In the United 

States, treated water has been used in more than 3000 application sites. Over 40 

× 106 m3 of reclaimed water is used in California every year (Wu et al., 2010) (Xu 

et al., 2009).  

 

However, potential adverse effects persist when reusing treated water. It is 

proved that current WWTPs with primary treatment and secondary treatment 

processes could not remove PPCPs completely as PPCPs have been detected 

in the effluent of WWTPs (Deblonde et al., 2011). Tertiary treatments such as 

granular active carbon adsorption, ozonation and catalytic oxidation showed a 

relatively high removal efficiency of PPCPs in the wastewater, but these 

treatments are seldom used in current WWTPs (Yoon et al., 2006; Broséus et al., 

2009; Pisarenko et al.). Therefore, when reusing treated water, PPCPs could 

enter the ecosystem and water supply, which may have potential adverse effects 

to human beings. When treated water is used for irrigation, PPCPs may enter 

surface water by runoff and cause adverse effects on organism in the aqueous 
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environment (Xu et al., 2009). In addition, compounds with strong sorption that 

are recalcitrant to degradation may remain on the surface of the soil and be 

uptaken by plants. Research about uptake of human pharmaceuticals in plants 

grown in soil suggested that compounds introduced by irrigation may be more 

available for plant uptake and translocation than by biosolid application (Wu et al., 

2010). When treated water is used for deep well injection, PPCPs may 

contaminate ground water, which may be used as a source of drinking water. 

Thus, it is essential to monitor the presence of PPCPs in treated water targeted 

for reuse or recharge. 

 

At Florida International University’s Biscayne Bay Campus, treated wastewater 

from the North District WWTP is used for irrigation. The North District WWTP is 

located at NE 154 Street and is east of Biscayne Boulevard, and it receives 

wastewater from the North District of Miami-Dade County. The wastewater 

treatment plant was designed to have a flow of 120 million gallons per day (MGD) 

with average daily flow around 112.5 MGD.  The facilities include screening, grit 

removal, primary sedimentation, activated sludge treatment by oxygenation and 

chlorination. Extra filtration (DynaSand Filtration, Leopold Filtration and Tetra 

filtration) and disinfection are applied to effluents before release to make the 

reclaimed water ready for use in irrigation. The following study monitored the 

reclaimed water between January 2011 and December 2011. 
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6.2 Experimental 

Analyte information is shown in table 18. Sample preparation, online SPE 

procedure and detection method were described in part 4.2 and 5.2. Reclaimed 

water was collected directly from sprinkler system during January 2011 and 

December 2011 at Florida International University, Biscayne Bay Campus. 

 

Table 18. Analytes in reclaimed water samples 

GROUP Name CAS Number 

Analgesics and anti-inflammatories Ketoprofen 22071-15-4 

 
Naproxen 22204-53-1 

 
Ibuprofen 15687-27-1 

 
Indomethacin 53-86-1 

 
Diclofenac 15307-86-5 

 
Mefenamic acid 61-68-7 

 
Acetaminophen  103-90-2 

 
Salicylic Acid 69-72-7 

 
Antipyrin 60-80-0 

 
Propyphenazone 479-92-5 

 
Phenylbutazone 50-33-9 

 
Codeine 76-57-3 

Antihyperlipidemics - Lipid Regulators Clofibric Acid 882-09-7 

 
Gemfibrozil 25812-30-0 

 
Bezafibrate 41859-67-0 

 
Fenofibrate 49562-28-9 
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GROUP Name CAS Number 

 
Atorvastatin 134523-00-5 

 
Mevastatin 73537-88-3 

 
Pravastatin 81131-70-6 

Antidepressants and anticonvulsants Fluoxetine 54910-89-3 

 
Paroxetine 61869-08-7 

 
Diazepam 439-14-5 

 
Lorazepam 846-49-1 

 
Carbamazepine 298-46-4 

 
Primidone 125-33-7 

Antihistaminies Famotidine  76824-35-6 

 
Ranitidine  66357-35-5 

 
Cimetidine  51481-61-9 

 
Loratadine  79794-75-5 

 
Diphehydramine 88637-37-0 

Barbiturates - Anticonvulsants Butalbital 77-26-9 

 
Phenobarbital 50-06-6 

 
Pentobarbital 76-74-4 

Beta-blockers -cardiac arrhythmias Atenolol 29122-68-7 

 
Sotalol 3930-20-9 

 
Metoprolol 37350-58-6 

 
Propranolol 525-66-6 

 
Timolol 26839-75-8 

 
Betaxolol 63659-18-7 

 
Carazolol 57775-29-8 
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GROUP Name CAS Number 

 
Pindolol 13523-86-9 

 
Nadolol 42200-33-9 

Bronchodilators - Beta agonists Salbutamol 18559-94-9 

 
Clenbuterol 37148-27-9 

Antihypertensives Enalapril 75847-73-3 

 
Hydrochlorothiazide 58-93-5 

 
Lisinopril 83915-83-7 

Diuretics Furosemide 54-31-9 

Cancer treatment Tamoxifen 10540-29-1 

Antifungals Metronidazole 443-48-1 

 
Clotrimazole 23593-75-1 

Antidiabetic Glibenclamide 10238-21-8 

Wastewater Indicators Caffeine 58-08-2 

 
Triclosan 3380-34-5 

 
Triclocarban 101-20-2 

 
DEET 134-62-3 

 
Bisphenol -A 80-05-7 

 
4-n-nonylphenol 104-40-5 

 
4-t-octylphenol 27193-28-8 

Hormones Androsterone 53-41-8 

 
Estrone (E1) 53-16-7 

 
Equilin 474-86-2 

 
Testosterone 58-22-0 

 
Equilenin 517-09-9 
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GROUP Name CAS Number 

 
17-β-Estradiol (E2) 50-28-2 

 
Ethynyl Estradiol (EE2) 57-63-6 

 
Progesterone 58-83-0 

 
Mestranol 72-33-3 

 
Estriol (E3) 50-27-1 

Fecal Sterols and sterones Coprostanol 360-68-9 

 
Coprostanone 601-53-6 

 

6.3 Result and discussion 

One or more compounds were found in 100% of the reclaimed water samples. 

The reason for the high detection frequency is that the treatment processes in 

the North District WWTP only include primary and secondary treatments that are 

not designed to remove microconstituents. Even though extra filtration and 

chlorination are applied to effluent, PPCPs and hormones still cannot be 

removed completely. In this one year study period, 33 out of 72 target 

compounds were detected more than once. The detected concentrations of the 

target compounds are shown in figure 24. About 15% of the concentrations were 

more than 1 µg/L and 80% of the high concentrations (>1 µg/L) were derived 

from gemfibrozil, atenolol, caffeine and bisphenol A.  
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Figure 24. Detected concentration ranges for all compounds in reclaimed water 

samples. 

 

Among the high concentration compounds, coprostanol, bisphenol A and DEET 

are the three compounds with detected maximum concentrations that exceeded 

10 µg/L (figure 25). Bisphenol A is known as a weak environmental estrogen, 

more recent research has demonstrated that bisphenol A may be similar to 

estradiol in stimulating some cellular responses (Beverly S, 2011).  DEET’s 

chronic aquatic toxicity data is available for fish (8.42 mg/L), daphnia (5.13 mg/L) 

and algae (9.65 mg/L) (Aronson et al., 2012). The reported observed effect 
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concentrations were hundreds of times higher than the detected concentrations. 

Only two hormones (estrone and estradiol) were detected in the reclaimed water 

samples. The detected concentrations of estrone (50.8 ng/L) and estradiol (58.5 

ng/L) were relatively high compared to lowest observed effect concentration 

(usually few ng/L) (Larsen et al., 2008), but the detection frequency is only 2%. 

Actually, acute toxicity to aquatic organisms is unlikely to occur because acute 

effect concentrations are 100-1000 higher than the detected concentrations in 

the environmental samples. 

 

Figure 25. Maximum concentration and detection frequency of compounds in 

reclaimed water samples 
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In addition, the detection frequency is a critical factor since long-term exposure to 

PPCPs especially compounds with endocrine disruption effects may cause 

problems even though their concentrations are low. The four most frequently 

detected compounds were diphenhydramine (100%), DEET (98%), atenolol 

(98%) and carbamazepine (96%). Diphenhydramine has been reported in water, 

sediment and fish but the effects of diphenhydramine on aquatic organisms is still 

lacking. In the reclaimed water samples, diphenhydramine was detected in all the 

samples all year long with a maximum concentration of 1091 ng/L. A previous 

study indicated that no-observed-effect concentration of diphenhydramine on 

reproduction of D.magna is 0.8 µg/L, while 17% of concentrations detected in 

reclaimed water exceeded 0.8 µg/L and there is no indication of what the effect 

level could be. Atenolol was detected at a maximum concentration of 3761 ng/L 

in 98% of reclaimed water samples. In reproduction test with Daphnia magna, the 

most sensitive no-observed-effect concentration of atenolol was 1.8 mg/L (Küster 

et al., 2009). Winter and his coworker used fathead minnows as test species and 

undertook embryo-larval development (early life stage or ELS) and short-term 

adult reproduction studies. The results of the ELS study showed that NOECgrowth 

and LOECgrowth of atenolol were 3.2 and 10 mg/L, respectively. In the short-term 

reproduction study, NOECreproduction and LOECreproduction  of atenolol were 10 

and >10 mg/L, respectively (Winter et al., 2008). Compared to the toxicity test 

results, the detected concentrations of atenolol in reclaimed water samples are 

much lower than the concentration that will cause chronic effect to fish. 

Carbamazepine is an anticonvulsant pharmaceutical that is commonly found in 
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effluent of WWTPs, surface water and drinking water (Heberer et al., 2002; 

Deblonde et al., 2011). In this study, carbamazepine was detected in 96% of 

reclaimed water samples with a maximum concentration of 173 ng/L. To test the 

chronic effect of carbamazepine, rainbow trout were exposed to three 

concentrations of carbamazepine (1.0 µg/L, 0.2 mg/L and 2.0 mg/L) for 42 days. 

Result indicated that at 2.0 mg/L, both physiological condition status and muscle-

based biomarkers were significantly affected (Li et al., 2009; Li et al., 2010). By 

comparing with toxicity study, the detected concentrations of compounds in the 

reclaimed water were generally lower than the lowest-observed-effect 

concentrations of chronic effects, thus the risk associated with the their 

occurrence was probably minimal.  

 

Although for a single compound, the detected concentrations was lower than the 

lowest-observed-effect concentration, most of the time more than one analytes 

was found in the environmental samples. The resulting additive effects of PPCP 

mixture may cause observed effects to organisms eventually. In the one year 

study, more than one target compounds were found in all reclaimed water 

samples and 13% of reclaimed water samples had a total concentration of > 10 

µg/L. However, the effect and interactions of PPCP mixture in the environmental 

samples is still unclear, and further investigations are required.  

 

To obtain a broader view of the results, target compounds were divided into 15 

groups on the basis of their general application or origins. The percent of 



151 
 

detection frequencies of each group are shown in figure 26. The number of 

compounds in the group does not reflect the detection frequency. Most of the 

time, detection frequency was influenced by the usage of compounds and 

removal rate of the WWTPs. Wastewater indicators, β-blockers and 

analgesics/anti-inflammatories were the three most detected groups, which 

covered 67% of detection frequency. The three groups also covered 69% of the 

total concentration (figure 27). Another group that should be of concern is the 

lipid regulator group. Even though the percent of detection frequency is relatively 

low (6%), compounds in the lipid regulator group covered 20% of the total 

concentration.  
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Figure 26. Detection frequency as a percent of different classes in reclaimed 

water samples 
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Figure 27. Percent of total measured concentration for each group of 

compounds in reclaimed water samples 

 

 

 

W
as

te
w

at
er

 In
di

ca
to

rs
 (7

)

β
-b

lo
ck

er
s 

(9
)

An
al

ge
si

cs
 a

nd
 a

nt
i-i

nf
la

m
m

at
or

ie
s 

(1
2)

An
tid

ep
re

ss
an

ts
 a

nd
 a

nt
ic

on
vu

ls
an

ts
 (6

)

An
tih

is
ta

m
in

ie
s 

(5
)

Li
pi

d 
re

gu
la

to
rs

 (7
)

β
-a

go
ni

st
s 

(2
)

Fe
ca

l S
te

ro
ls

 a
nd

 s
te

ro
ne

s(
2)

An
tih

yp
er

te
ns

iv
es

 (3
)

An
tif

un
ga

ls
 (2

)

H
or

m
on

es
 (1

0)

Ba
rb

itu
ra

te
s(

3)

D
iu

re
tic

s 
(1

)

C
an

ce
r t

re
at

m
en

t (
1)

An
tid

ia
be

tic
s 

(1
)

To
ta

l c
on

ce
nt

ra
tio

n 
(%

)

0

10

20

30

40

50



154 
 

6.4 Conclusion 

Methods developed in chapter 4 and 5 were successful applied on 

simultaneously detection of 71 compounds in reclaimed water samples. The 

online SPE method was robust, sensitive and reliable, making it suitable for 

routine analysis of environmental water samples. Reclaimed water samples were 

collected from the sprinkler system for a year-long period in Florida International 

University Biscayne Bay Campus, where reclaimed water was reused for 

irrigation. Analysis results showed that more than one analytes were detected in 

all reclaimed water samples. About 15% of the detected concentrations were 

more than 1 µg/L. Among the detected compounds with high concentrations (>1 

µg/L), coprostanol, bisphenol A and DEET’s maximum concentration exceeded 

10 µg/L. The four most frequently detected compounds were diphenhydramine 

(100%), DEET (98%), atenolol (98%) and carbamazepine (96%). Wastewater 

indicators, β-blockers and analgesics /anti-inflammatories were the three most 

detected groups and these three groups covered 67% of detection frequency and 

69% of the total concentration. The one-year study confirmed that current 

primary treatment, secondary treatment, extra filtration and chlorination in North 

District WWTP could not remove PPCPs completely from effluent. The 

microconstituents were continuously released to the environment through water 

reuse. More seriously, the releasing of microconstituents will continue for a long 

period of time until effective treatment processes are incorporated into the 

WWTPs. Although the detected maximum concentration of a single compound 

may not cause acute effect to organisms and the frequently detected compound 
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may not cause chronic effect at the detected concentrations, it is still uncertain 

that treated water reuse is safe for the environment. The reason is that for all 

reclaimed water samples, more than one compounds was detected and very little 

is known about the combination effect of PPCPs mixture to environmental 

organisms. Therefore, instead of doing experiments about the acute and chronic 

effect of a single compound, more research should focus on the investigation of 

the combination effects of PPCP mixture at environmental relevant 

concentrations. The one-year study of reclaimed water provided lots of critical 

information about compounds that persist in the effluent of WWTPs and their 

environmental concentrations, which are very valuable for toxicity research in the 

future.  
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CHAPTER 7 

Occurrence of PPCPs in drinking water 

7.1 Introduction 

Pharmaceuticals and personal care products have been widely reported in 

wastewater and surface waters worldwide. The occurrence of PPCPs in the 

environment is a partially result of wastewater discharges. Other sources of 

PPCPs in the environmental waters include: runoff from agriculture fields, 

application of veterinary drugs, landfill leachates, etc. Issues concerning the 

quality of drinking water are important because the sources of drinking water 

(surface waters, ground water, etc.) might be impacted by the intrusion of 

wastewaters (Focazio et al., 2008; Fram and Belitz, 2011). The removal 

efficiency of PPCPs in the drinking water treatment plant varies both among 

chemicals and between different processes employed in the treatment plants. 

Advanced technologies such as ozonation (Broséus et al., 2009; Pisarenko et al., 

2012) and granular activated carbon (GAC) (Stackelberg et al., 2007b) can 

remove many compounds, but they cannot eliminate all the contaminations. In 

addition, advanced technologies are not universally applied to the treatment of 

potable supplies, even in developed counties. Consequently, several studies 

have shown the positive detection of PPCPs in the tap water that people are 

drinking (Mompelat et al., 2009). Although it is not clear yet whether drinking 

water containing PPCPs at the detected levels is a risk to humans, drinking water 

will always be a major public concern because it is a direct route for PPCPs  to 
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enter the human body. Therefore, a better understanding of occurrence of 

PPCPs in the drinking water is critical for public health. 

 

The following study summarized results from a comprehensive survey of 

720compounds in 54 tap water samples collected from homes located in the 

Miami-Dade County area. The results provided a preliminary but informative 

assessment of the actual concentrations of PPCPs to which people are exposed 

from drinking water. 

 

7.2 Experimental 

Chemicals, sample preparation, online SPE procedure and detection method 

were described in parts 4.2 and 5.2. Briefly, drinking water samples were loaded 

to the Hypersil Gold aQ preconcentration column and then analytes were back 

flushed to the Hypersil Gold analytical column. Analytes were then separated and 

analyzed by tandem mass spectrometry. Personal care products, steroid 

hormones, sterols and sterones were analyzed with an APPI source, while 

pharmaceuticals were analyzed with the HESI source. Drinking water samples 

were collected from the Miami-Dade area between August and October 2011. 

Information of sampling location is shown in table 19 and figure 28. Water 

samples were collected by volunteers at their place of residence. Samplers were 

instructed to open the water valve, let it run for about five minute and to collect 

the water in a new PET container. Participants were asked to provide an 

approximate location of their home but not a physical address (street crossings 
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only). All samples were immediately frozen or kept refrigerated while transported 

to the lab. 

 

Table 19. Sample name, sampling date and location 

Sample name Sampling date Latitude Longitude 
DW001 8/22/2011 25°46'20.91"N 80°22'6.15"W 
DW002 8/22/2011 26° 1'15.59"N 80° 8'30.79"W 
DW003 8/22/2011 25°54'20.54"N 80° 9'31.89"W 
DW004 8/23/2011 25°57'3.51"N 80° 9'58.40"W 
DW005 8/23/2011 26° 0'45.46"N 80° 9'0.06"W 
DW006 8/23/2011 25°45'34.04"N 80°21'54.13"W 
DW007 8/23/2011 25°52'33.72"N 80° 7'32.80"W 
DW008 8/24/2011 25°33'36.96"N 80°21'4.39"W 
DW009 8/28/2011 25°55'53.30"N 80° 7'30.34"W 
DW010 9/6/2011 25°53'59.72"N 80° 9'0.36"W 
DW011 9/13/2011 25°56'35.70"N 80° 8'21.82"W 
DW012 9/13/2011 25°54'16.94"N 80°11'31.66"W 
DW013 9/13/2011 25°51'49.99"N 80° 7'28.05"W 
DW014 9/13/2011 25°51'4.95"N 80°17'54.93"W 
DW015 9/13/2011 25°46'17.43"N 80°22'19.79"W 
DW016 9/13/2011 25°45'6.11"N 80°12'5.22"W 
DW017 9/13/2011 25°54'31.34"N 80°18'31.18"W 
DW018 9/13/2011 25°45'46.76"N 80°22'53.87"W 
DW019 9/13/2011 25°45'31.28"N 80°21'56.43"W 
DW020 9/13/2011 25°40'11.52"N 80°26'32.74"W 
DW021 9/13/2011 25°45'39.59"N 80°22'34.44"W 
DW022 9/13/2011 25°46'1.62"N 80°22'26.60"W 
DW023 9/13/2011 25°59'33.45"N 80°15'7.17"W 
DW024 9/13/2011 25°45'56.37"N 80°23'46.87"W 
DW025 9/13/2011 25°45'44.44"N 80°12'9.24"W 
DW026 9/13/2011 25°46'58.22"N 80° 8'23.03"W 
DW027 9/13/2011 25°53'50.73"N 80°18'47.40"W 
DW028 9/13/2011 25°46'36.45"N 80°22'27.53"W 
DW029 9/13/2011 25°41'37.49"N 80°21'54.24"W 
DW030 9/13/2011 25°45'44.70"N 80°15'49.34"W 
DW031 9/13/2011 25°46'14.82"N 80°11'51.36"W 
DW032 9/20/2011 25°45'16.06"N 80°13'13.16"W 
DW033 9/29/2011 25°54'14.88"N 80°17'57.88"W 
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Sample name Sampling date Latitude Longitude 
DW034 10/1/2011 25°53'53.45"N 80°13'53.75"W 
DW035 10/1/2011 25°47'0.12"N 80°20'11.02"W 
DW036 10/1/2011 25°48'43.74"N 80°22'12.05"W 
DW037 10/1/2011 25°50'21.18"N 80°22'14.67"W 
DW038 10/1/2011 25°50'24.33"N 80°19'7.10"W 
DW039 10/1/2011 25°53'57.52"N 80°11'39.34"W 
DW040 10/2/2011 26° 7'16.37"N 80°10'47.11"W 
DW041 10/2/2011 25°29'39.38"N 80°24'58.93"W 
DW042 10/2/2011 25°28'39.66"N 80°27'56.37"W 
DW043 10/2/2011 25°40'10.68"N 80°25'57.50"W 
DW044 10/2/2011 25°37'36.85"N 80°24'53.63"W 
DW045 10/2/2011 25°28'44.81"N 80°25'50.04"W 
DW046 10/2/2011 25°33'56.77"N 80°22'56.38"W 
DW047 10/2/2011 25°36'50.11"N 80°18'58.73"W 
DW048 10/2/2011 25°43'2.62"N 80°16'41.26"W 
DW049 10/2/2011 25°38'40.40"N 80°20'19.40"W 
DW050 10/2/2011 25°40'20.88"N 80°19'21.63"W 
DW051 10/16/2011 25°53'6.04"N 80° 9'56.22"W 
DW052 10/16/2011 25°50'49.93"N 80°11'4.68"W 
DW053 10/16/2011 25°47'47.93"N 80°11'23.91"W 
DW054 10/12/2011 25°58'18.44"N 80° 9'12.11"W 
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Figure 28. Map showing the collection sites of drinking water samples 
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7.3 Result and discussion 

The water source for the Miami-Dade County Water and Sewer Department 

(WASD) is the Biscayne Aquifer, which is located just below the surface in South 

Florida. Approximately 330 million gallons per day (mgd) of water are withdrawn 

from the aquifer to meet the needs of the community. There are three water 

treatment facilities in the Miami-Dade County area: the Hialeah and Preston 

Plant, Alexander Orr Plant and the South Dade Water Supply System. The 

Hialeah and Preston plant provides drinking water for residents who live north of 

Flagler Street Up to the Miami-Dade/ Broward line. The Alexander Orr Plant 

serves people who live from Flagler Street to S.W. 248 Street. The South Dade 

Water Supply System serves residents south of S.W. 248 Street. The blue line in 

figure 28 delimits the areas served by different water supply systems. The most 

common water treatment processes are filtration, flocculation and sedimentation, 

and disinfection (URL3).  

 

A total of 15 analytes were detected in the drinking water samples and the 

concentrations are shown in figure 29. At least one analyte was found in 96% of 

the drinking water samples. Compared to the concentrations of analytes detected 

in the reclaimed water or the surface waters, the concentrations detected in the 

drinking water were much lower. Only the concentrations of salicylic acid, 

ibuprofen and DEET were found to be more than 200 ng/L.  The maximum 

concentrations of salicylic acid, ibuprofen and DEET were 521 ng/L, 301 ng/L 

and 290 ng/L, respectively (table 20). The occurrence of PPCPs in the drinking 
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water has been reported in other places in the world. A previous study showed 

that the maximum concentrations of ibuprofen detected in tap water were 3 ng/L, 

0.6, 8.5 and 1350 ng/L in Germany, France, Finland and the USA, respectively 

(Mompelat et al., 2009). The maximum concentration of DEET found in drinking 

water samples in the USA is 63 ng/L (Benotti et al., 2009) and this number is 

significantly lower than maximum value reported in this study (521 ng/L). 

However, DEET is a common environmental contaminant and is very difficult to 

avoid cross-contaminating samples if the compound is present in the sampling 

area (kitchens, bathrooms, etc). 

 

Table 20. Maximum concentration of analytes detected in Miami-Dade area 

and other parts of the world (ng/L) 

 Miami 
Dade 

Finland France Germany USA Canada UK Italy 

ketoprofen 179 8.0a 3.0b      
ibuprofen 301 8.5a 0.6b 3d 1350g   
diclofenac ND  2.5b 35e     

acetaminophen ND  210b      
salicylic_acid 521  19c      

propyphenazone 9.72   240e     
codeine ND    30h    

clofibric_acid 65.1   270f     
gemfibrozil ND     70k   
bezafibrate ND   27d     
fluoxetine 58.4        
paroxetine 65.9        
diazepam ND      10l 23.5m 

carbamazepine 27.8  43.2b  258i 24.0k   
primidone ND   40e     

propranolol 9.58        
betaxolol 24.0        
carazolol 11.2        
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salbutamol 13.1        
metronidazole 178        
clotrimazole 18.5        

Triclosan ND    734g    
DEET 290    63.0j    

a (Vieno et al., 2005)  
b (Togola and Budzinski, 2008)  
c (Vulliet et al., 2011) 
d (Stumpf et al., 1996)        
e (Heberer et al., 2004) 
f (Heberer et al., 1997) 
g (Loraine and Pettigrove, 2006) 
h (Stackelberg et al., 2007b) 
i (Stackelberg et al., 2004) 
j (Benotti et al., 2009) 
k (Tauber, 2003) 
l (Waggot, 1981) 
m (Zuccato et al., 2000) 

 

Figure 29. Concentrations of PPCPs in the drinking water samples collected 

from Miami-Dade County 

D
E

E
T

ca
rb

am
az

ep
in

e

sa
lic

yl
ic

_a
ci

d

cl
of

ib
ric

_a
ci

d

ke
to

pr
of

en

ib
up

ro
fe

n

flu
ox

et
in

e

m
et

ro
ni

da
zo

le

pr
op

yp
he

na
zo

ne

pa
ro

xe
tin

e

pr
op

ra
no

lo
l

be
ta

xo
lo

l

ca
ra

zo
lo

l

sa
lb

ut
am

ol

cl
ot

rim
az

ol
e

C
on

ce
nt

ra
tio

n 
(n

g/
L)

0

100

200

300

400

500

600



164 
 

The three most frequently detected compounds were DEET (93%), 

carbamazepine (43%) and salicylic acid (37%) (Figure 30). The high detection 

frequencies of the three compounds indicated that current drinking water 

treatment could not remove them completely from the finished water. In a 

previous study (Stackelberg et al., 2007a), DEET has been reported as one of 

the most persistent compounds during drinking water treatment. Even the 

application of ozone and GAC can only partially remove DEET from the finished 

water. Carbamazepine is another compound that is usually detected in drinking 

water samples. Research indicated that ozone is an efficient way to remove it but 

since the removal rate is not 100%, carbamazepine is still persistent in the 

finished water. DEET and carbamazepine can be used as indictors representing 

potential contamination of PPCPs. Carbamazepine was detected in 40% of the 

tap water samples in the U.S in Benotti’s study and 33% of tap water samples in 

Montreal boroughs in Canada (Garcia-Ac et al., 2009), which is very close to the 

detection frequency of carbamazepine in our study (Benotti et al., 2009). DEET’s 

detection frequency was lower in Benotti’s study (27%) than our study (Benotti et 

al., 2009). Salicylic acid is used as anti-inflammatory drug because of its ability to 

ease aches and pains and reduce fevers. Salicylic acid is also the key ingredient 

in many skin care products, such as soap, cleanser, body wash and cream etc., 

to treat acne, seborrhoeic dermatitis, psoriasis, corns, etc.  Currently, very little 

research is available about the presence of salicylic acid in drinking water. In 

Vulliet’s study, salicylic acid is reported as the most frequently detected 

compounds in the drinking water samples, however, the maximum concentration 



165 
 

(19 ng/L) is much lower than the results in our study. Because salicylic acid was 

detected in the drinking water samples at relatively high concentrations and high 

detection frequencies, future research should focus more on salicylic acid.  

 

 

Figure 30. Maximum concentrations and detection frequencies of PPCPs in 

drinking water samples 
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of analgesics and anti-inflammatories covered 56% of the total concentration 

(figure 31 and 32). The high detection frequency and high detection 

concentration resulted from the large amount of daily use and low removal 

efficiency of drinking water treatment (Benotti et al., 2009).  

 

Figure 31. Detection frequency as percent of different classes in drinking water 

samples 
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Figure 32. Percentage of total concentration of each class in drinking water 

samples 
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In order to understand the spatial distribution of the detection, sampling sites 

were shown in figure 33 as dots and the total concentration was indicated by 

different colors. Grey color represents no analytes detected at the sampling site. 

Blue color represents the total concentration detected at the sampling sites was 

between ND and 10 ng/L. Green color represents the total concentration 

detected at the sampling sites was between 10 and 50 ng/L. Yellow color 

represents the total concentration detected at the sampling sites was between 50 

and 100 ng/L. Orange color represents the total concentration detected at the 

sampling sites was between 100 and 200 ng/L. Red color represents the total 

concentration detected at the sampling sites was between 200 and 500 ng/L. 

Purple color represents the total concentration detected at the sampling sites 

was more than 500 ng/L. The total concentrations were randomly disturbed at the 

samples sites. There is no trend in the relationship of the location of sampling 

sites and total concentrations. Although the total concentrations of three points 

were more than 500 ng/L, the high total concentrations were contributed by 

salicylic acid, which may enter drinking water sample after distribution.  Results 

showed that the drinking water quality were similar in the whole Miami-Dade 

County area, which indicated that similar treatments were applied to source 

water in different drinking water facilities. 
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Figure 33. Distribution of total concentration of analytes in Miami-Dade County 
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Results of drinking water sample can be compared to reclaimed water results. 

Overall, fewer numbers of analytes were detected in the drinking water samples,  

only 15 analytes compared to 33 analytes in reclaimed water samples. The 

detected concentrations of analyte in the drinking water were much lower than 

the detected concentrations in the reclaimed water samples. The three highest 

maximum concentrations in the drinking water samples were 521 ng/L, 301 ng/L 

and 290 ng/L for salicylic acid, ibuprofen and DEET, respectively. While the three 

highest concentrations in reclaimed water for coprostanol, bisphenol A and DEET 

were more than 10,000 ng/L.  In addition, many analytes were detected at 

relatively high average concentration in reclaimed water sample while average 

concentration were close to zero in the drinking water samples (cycled point in 

figure 34). Although, similar compounds were detected in the drinking water 

samples, the detection of frequency is lower compared to reclaimed water 

samples. DEET and carbamazepine were detected in 93% and 37% in drinking 

water samples respectively, while DEET and carbamazepine were detected in 98% 

and 98% of reclaimed water samples, respectively. DEET and carbamazepine 

could be used as the indicator of contamination of PPCPs because their 

persistence in both WWTPs and DWPs. However, more studies are needed to 

establish a potential relationship between reclaimed water and drinking water. 
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Figure 34. Comparison of average concentration of analytes in drinking water 

samples and reclaimed water samples 

 

7.4 Conclusion 

In the study of drinking water, 54 tap water samples collected from the Miami-

Dade area were analyzed. 15 compounds were detected and more than one 

compound was detected in 93% of samples. The maximum concentration of 

salicylic acid, ibuprofen and DEET were 521 ng/L, 301 ng/L and 290 ng/L, 

respectively. The three most frequently detected compounds were DEET (93%), 

carbamazepine (43%) and salicylic acid (37%). Results indicated that drinking 
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water sources, such as ground water, may be impacted by discharge of 

wastewater, disposal of biosolids from WWTPs or landfilling.  Current drinking 

water treatments cannot prevent certain PPCPs, such as DEET and 

carbamazepine, from entering the drinking water system.  The quality of drinking 

water is a public concern since any compound present in the drinking water 

enters the human body directly. It is the largest threat to human health and long-

term effects (80 years) might occur at a much lower concentration than the 

concentration of therapeutic effects. Adverse effects may be more obvious for 

children, elderly or pregnant women. However, no data are currently available 

regarding the risk because of the long period and difficulty of the research. The 

occurrence of PPCPs in the drinking water is a key issue for water quality. 

Although there are no regulations for PPCPs in drinking water so far, more 

research about the occurrence of PPCPs in the drinking water and more studies 

about the risk of long-term exposure of humans to PPCPs through drinking water 

are highly desirable. 
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CONCLUSIONS 

The overall objective of the study was to detect trace level PPCPs and hormones 

in the South Florida environment (both aqueous phase and solid phase) using 

sensitive and reliable detection methods in order to gain a basic understanding 

on the quality of major environmental compartments with respect to a group of 

important unregulated emergent contaminants. Four methods were successfully 

developed to detect analytes in different matrices, including reclaimed waters, 

surface waters, drinking waters, sediments and soils. By conducting a 

comprehensive evaluation of a large number of environmental samples, we 

confirmed that reclaimed water from a typical secondary treatment WWTP 

routinely introduced a number of PPCPs to the environment at concentrations 

that could range into the µg/L during water reuse applications. In addition, the 

results clearly show that surface waters in South Florida are impacted by several 

PPCPs at trace level. Although contamination is not widespread, there are clear 

indications that wastewater intrusions exist in a number of coastal freshwater and 

saltwater environments. On a positive side, the presence of endocrine disrupting 

chemicals was less prevalent and usually at levels very close to the method 

detection limits so that their potential impacts to biological resources are limited 

both in temporal and geographical extent. Furthermore, some PPCPs were 

detected in drinking water samples from the Miami-Dade County distribution 

system. Concentrations were relatively low and some of the compounds may 

have alternative sources (i.e. salicylic acid) but the presence of low 

concentrations of carbamazepine with relatively high frequency of detection is a 
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conclusive indicator of a connection between wastewater streams and the 

drinking water sources or the distribution system itself. Because the presence of 

these compounds in drinking water constitutes a direct route to human exposure, 

a more detailed survey both in area and time should be conducted. 

 

In summary this study shows that excretion by humans, disposal of unused 

medicine and application of veterinary drugs does cause PPCPs to enter the 

sewage collection systems. Low efficiency of removal in the WWTPs leads to the 

releasing of PPCPs into the environment, in particular in reclaimed water only 

treated to secondary standards. Despite the fact that most PPCPs are not 

acutely toxic, their chronic release at low levels combined with their 

environmental persistence may be cause of potential concern for aquatic 

organisms in receiving waters under the influence of poorly treated wastewaters. 

The presence of PPCPs in drinking water is not novel, however in the case of 

Miami-Dade County where the source for drinking water is the shallow Biscayne 

Aquifer additional studies should be planned to assure that the source remains 

isolated from surface or ground waters influenced by treated or untreated 

wastewater streams. With the increased population growth in South Florida and 

need for water reuse careful consideration should be given to protect the drinking 

water sources from further degradation . 

 

In the future, more effective treatments need to be applied to both WWTPs and 

DWPs to remove PPCPs. Great progress has been accomplished with the use of 
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reverse osmosis and advanced oxidation processes. Until then, or when forced 

by a regulatory framework, the concentrations of PPCPs in wastewater effluents 

targeted for environmental release and drinking water need long term monitoring .  
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