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ABSTRACT OF THE DISSERTATION

PRACTICAL DYNAMIC THERMAL MANAGEMENT ON INTEL DESKTOP

COMPUTER

Guanglei Liu

Florida International University, 2012

Miami, Florida

Professor Gang Quan, Major Professor

Fueled by increasing human appetite for high computing performance, semiconductor

technology has now marched into the deep sub-micron era. As transistor size keeps

shrinking, more and more transistors are integrated into a single chip. This has

increased tremendously the power consumption and heat generation of IC chips. The

rapidly growing heat dissipation greatly increases the packaging/cooling costs, and

adversely affects the performance and reliability of a computing system. In addition, it

also reduces the processor’s life span and may even crash the entire computing system.

Therefore, dynamic thermal management (DTM) is becoming a critical problem in

modern computer system design.

Extensive theoretical research has been conducted to study the DTM problem.

However, most of them are based on theoretically idealized assumptions or simpli-

fied models. While these models and assumptions help to greatly simplify a complex

problem and make it theoretically manageable, practical computer systems and ap-

plications must deal with many practical factors and details beyond these models or

assumptions.

The goal of our research was to develop a test platform that can be used to val-

idate theoretical results on DTM under well-controlled conditions, to identify the

limitations of existing theoretical results, and also to develop new and practical DTM

techniques. This dissertation details the background and our research efforts in this
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endeavor. Specifically, in our research, we first developed a customized test platform

based on an Intel desktop. We then tested a number of related theoretical works and

examined their limitations under the practical hardware environment. With these

limitations in mind, we developed a new reactive thermal management algorithm for

single-core computing systems to optimize the throughput under a peak temperature

constraint. We further extended our research to a multicore platform and developed

an effective proactive DTM technique for throughput maximization on multicore pro-

cessor based on task migration and dynamic voltage frequency scaling technique. The

significance of our research lies in the fact that our research complements the current

extensive theoretical research in dealing with increasingly critical thermal problems

and enabling the continuous evolution of high performance computing systems.
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CHAPTER 1

INTRODUCTION

As IC technology scaling continues, the total number of transistors integrated into

an IC chip has doubled every two years to accommodate the increasing demand of

higher computation capability. However, this increase in transistor density has made

the power consumption increases exponentially, and also substantially elevated the

heat generation. The rapidly growing heat dissipation has greatly increased system

costs, adversely affected the performance and reliability and can even cause fatal hard-

ware damage or crash the entire system, if the processor temperature is not properly

managed. It is fair to say that this thermal issue has become one of the critical

challenges in the design of computing system. In this chapter, we first introduce the

motivation of our research problems, and then we summarize the major contributions

of this dissertation.

1.1 The Thermal Design Challenges

As the technology scaling, hundreds of millions of transistors have been integrated

into the processor chip. It is estimated that nearly 40 billion transistors are integrated

into a single die today [81] and the number is growing very fast. It is expected that

the number of transistors can reach 150 billion by 2015 [12]. With the dramatically

increasing number of transistors, more complicated computer architectures, such as

multi-core architectures, are designed to continuously deliver higher and higher peak

computing performance. As shown in Figure 1.11, more and more computing cores

are integrated into a single chip to deliver high performance. For example, the single-

chip cloud computer (SCC) experimental processor with 48-core is developed by Intel

lab as a platform for many-core software research [97]. And an 80-core prototype has

1Figure 1.1 from Intel Microprocessor Technology Lab, 2011

1



Figure'from'Intel'Microprocessor'Technology'Lab,'2011'

Figure 1.1: The trend of increasing number of cores in CMPs

recently been demonstrated by Intel [114]. In addition, some supercomputing centers

have been developed [34], such as the IBMs BlueGene project, which integrates up to

65,536 computation nodes [86]. The multicore architecture can significantly improve

the computing system performance. Valentini et al. [113] has shown that two smaller

processor cores, instead of one large monolithic processor core, can provide 70-80%

more performance.

At the same time, however, the increasing number of transistors has caused the

power consumption of a chip to increase exponentially. As an example, Figure 1.22

illustrates the power consumption trend of the system on chip (Soc) computing system

between the year of 2005 to 2020. Even with the projected technology advances

in material, circuit design, etc, the power consumption is expected to increase by

nearly 10 times from 2005 to 2020. The high power density causes thermal hotspots

in the system, and substantially increases the packaging and cooling costs. It is

2Figure 1.2 from ITRS, 2005.
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Figure 1.2: System on chip (Soc) system power consumption trend

estimated that the thermal packaging increases the total packaging cost at 1-3 dollar

per watt [103, 51]. On the other hand, for the high-performance computing system,

the cooling cost of a 30,000 square feet data center with 1000 standard computing

racks is around 4-8 million dollar each year [5, 10, 13, 103]. This cooling cost has

already became an economic problem, which significantly affected the development

of computing systems.

Moreover, when the computing system temperature increases, it also negatively

impacts the reliability, and degrades system performance. It is reported more than

50% of all integrated circuit failures are related to the thermal issues [88]. Even a

small temperature change of 5oC can cause a 2× difference in the mean time to failure

of the devices [116]. According to Yeh et al [130], every 10oC increase in operating

temperature can cut a devices life span by half. From Santarini et al. [94], every 15oC

increase in temperature can lead to as much as 10-15% in circuit delay.

In addition, high temperature also increases leakage power consumption. The

leakage power refers to the power consumption caused by the leakage current flowing
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through the transistor channel when the transistor is turned off. It increases rapidly

as transistor size reduces, and is becoming comparable if not exceeds the dynamic

power consumption in the IC circuit. As shown in Figure 1.2, the leakage power

consumption is estimated to increase around 5 times from the year of 2005 to 2020.

It is reported that for the 65nm technology, the leakage power consumption can be

2-3 times higher than the dynamic power consumption [65]. To make things worse,

leakage power increases with the temperature. Based on the research proposed by

Liao et al. [66], increasing temperature from 65oC to 110oC can increase the leakage

power by 38% for IC circuits. The increased power consumption generates more heat

and elevates the temperature. At the same time, high temperature will increase the

leakage power consumption and thus the overall power consumption. Evidently, high

temperature is becoming more and more critical in the design of computing systems.

Traditionally, designers deal with the thermal issues by using the air-cooling

method, which consists of a heat sink and cooling fan. However, as we discussed

before, the cooling cost can be extremely high for the modern high computation com-

puting system. In addition, the air-cooling method cools down the entire surface

of IC chip. Thus, it cannot effectively eliminate the thermal hotspots. Because of

the limited thermal conductance of air, it becomes impossible to satisfy the cooling

requirement for cutting-edge computing systems such as the 3D-ICs. Therefore, de-

veloping an effective cooling solution becomes an interesting research topic from both

industry and academy. For example, new cooling techniques such as the micro-channel

with liquid cooling method have been developed recently. In addition, the dynamic

thermal management (DTM) techniques, which control the processor temperature by

dynamically adjusting the computing performance, have also been proposed. Based

on the DTM techniques, numerous researches have been done to address the thermal

issues. Many of them are focusing on the thermal-aware throughput maximization
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problem. Since the modern computing systems are integrated with a self-protection

mechanism, the computing system can automatically shut down itself to avoid the

permanent physical damages cased by the thermal violation [93]. In this case, to

ensure the system operates can deliver the maximal performance; the processor tem-

perature must be carefully maintained under the thermal limitation.

1.2 Research Problem and Our Contributions

Extensive theoretical researches have been conducted on dynamic thermal manage-

ment techniques in recent years. For example, significant research efforts have been

made on thermal-aware performance maximization problem [18, 134, 136], peak tem-

perature minimization [71, 72, 112], real-time guarantee under peak temperature

constraints [118, 47, 20] and overall energy reduction under peak temperature con-

straints [9, 44, 8]. These researches differ by their system models, architecture types,

and design constraints and objectives. Most of these works are based on some sim-

plified mathematical models and idealized assumptions. By simplifying a complex

theoretical problem, these theoretical work can be extremely useful in uncovering the

fundamental principles in DTM. However, real computing systems and applications

must deal with practical factors and conditions beyond the theoretical models. For

example, many researches employ the lumped first order RC thermal model to model

temperature dynamics [56, 92, 104]. However, to get accurate values for a practical

processor platform can be challenging [70]. Also, some approaches assume that the

exact knowledge of the actual temperature is always available, which may not always

be possible [128, 95]. Other assumptions such as ambient temperature [20, 44, 19]

remaining constant indefinitely, which is not always true as evidenced in [108]. Fur-

thermore, it has been a common practice to evaluate the theoretical results based

on software simulation, where the theoretical results can be evaluated in a software
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environment closer to the real world. Though some properties of a computing system

or application can be derived analytically and parameterized in the software envi-

ronment, it is highly desirable that these results be verified using practical hardware

platforms and applications, since the analytically derived specifications of the systems

can be very different from those in the real application scenarios [68].

The goal of our research is to study the dynamic thermal management problem

from the perspective of a practical hardware platform. Specifically, we intend to de-

velop a practical and customized hardware test platform that enables us to investigate

theoretical DTM techniques under well controlled conditions, to study the limitations

of existing theoretical algorithms and to develop new and practical DTM techniques

that can accommodate factors and conditions existing in practical systems and ap-

plications. Compared with the related work, we made the following contributions in

this dissertation:

1. We developed a customized, flexible, and practical hardware platform based on

an Intel i5-750 quad-core processor, running the Ubuntu 10.04.1 Linux operating

system with kernel version 2.6.32. It has the flexibility to adopt most of the

advance thermal management techniques, such as dynamic voltage frequency

scaling (DVFS), clock gating, idle period injection and task migration. Thus,

many theoretical works can be implemented and validated on our platform.

Besides, we are able to directly read the temperature of each individual core from

the on-chip thermal sensors. The temperature of entire chip can be obtained

from thermal circuits as well. In addition, our platform adopted the power

measurement technique proposed by a related research work [48]. Thus, the

power consumption of the microprocessor can be measured at runtime. In

order to get accurate experimental results, we were able to adjust the cooling

system to guarantee that all the experiments were carried out with the same
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cooling constant. Moreover, the well-known benchmark, SPEC CPU2000, has

been used to provide reliable and comparable experimental results. Lastly, the

hardware monitor tool, Lm-sensor, which can collect both thermal and power

information, has been used to provide a user interface. Thus, the thermal and

power management designers are able to analyze their research based on the

practical system information.

2. With our hardware test platform, we first studied how effective DTM techniques

can be in a practical hardware environment. We investigated the cooling po-

tential of the DTM technique and its computing performance tradeoffs on our

hardware platform, compared it with the traditional air-cooling method (e.g.

the cooling fan and heat sink). We found that the DTM technique can outper-

form the traditional air-cooling method, because it can control the temperature

in a wider range. Next, after we verified several theoretical works based on our

platform, we proved the two widely used thermal management principles still

validate in reality. Furthermore, by comparing the thermal and power man-

agement algorithms on our platform, we found that even though the power

management techniques can effectively reduce the power consumption and fur-

ther bring down the overall temperature, the thermal management techniques,

which consider special thermal characteristics, must be developed to achieve

better temperature management performance. We also analyzed how the cool-

ing solution can affect the performance of the thermal management algorithm

by comparing those approaches under different cooling conditions.

3. We identified several limitations in the assumptions of existing theoretical re-

searches on our hardware platform. Based on our findings, we proposed an En-

hanced reactive dynamic thermal management (ERDTM) algorithm for single-

core processor to maximize the program throughput under a given temperature
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constraint. Comparing with the conventional reactive approach, our ERDTM

schedule takes the practical thermal sensor hardware characteristic into con-

sideration, and implement a non-constant sampling technique to improve the

temperature detection accuracy. In addition, by doing offline thermal analysis,

we are able to built up a thermal profiling look-up table, which can guide the

ERDTM algorithm selecting the optimal working frequency to further improve

the throughput. Our experimental results show that the ERDTM algorithm

can significantly reduce the number of temperature violation by 88%. Also,

the overall system throughput can be improved by 8.1% compared with the

conventional reactive approach.

4. We extended our research work from single-core to multicore platform and pro-

posed a proactive Neighbor-aware dynamic thermal management (NADTM) al-

gorithm with temperature prediction technique. Compared to the reactive DTM

approaches, the proactive DTM algorithm can detect the thermal emergency in

advance, and leave enough time for the DTM algorithm to react to temper-

ature changes. Other than simply using the temperature history to predict

temperature, our NADTM algorithm takes the heat transfer from neighboring

processor into consideration. It can significantly improve the prediction accu-

racy by 38% compared to the temperature history based prediction method.

And the prediction error is as small as 1oC. In addition, we showed that sim-

ply migrating a task from the hottest core to the coolest core is not always

the optimal solution. Instead, our NADTM algorithm incorporates the neigh-

boring temperature information for task migration and thus can achieve better

performance. Our experimental results show that our NADTM can effectively

maintain the temperature under the pre-defined temperature limit. The overall

system throughput can be improved by as much as 5.8%.
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The rest of the dissertation is organized as follows. In Chapter 2, we first introduce

the background of this work, and then discuss the related works in thermal and

power management. In Chapter 3, we discuss the practical hardware platform. With

this platform, we validated several existing theoretical works in Chapter 4. After

we analyzed the limitations of the theoretical work on the practical platform, we

developed a reactive EADTM algorithm for the single-core platform described in

Chapter 5. Then, a proactive thermal-aware throughput maximization algorithm

NADTM for the multicore platform is proposed in Chapter 6. Finally, we conclude

this dissertation and discuss future works in Chapter 7.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The research background is presented in this chapter. We first introduce the sources of

the power consumption of IC chips and some common power reduction techniques. We

then discuss the power and thermal relationship and thermal management techniques

with an emphasis on the thermal-aware scheduling techniques.

2.1 Power Consumption and Power Management

Thermal phenomena is closely related to the power consumption of IC chips. In this

section, we briefly discuss the sources of power consumption of the IC circuits and

techniques for power managements.

2.1.1 Source of Power Consumption

The power consumption of an IC chip consists of two types of power consumptions,

i.e. the dynamic power consumption and the static power consumption [43]. The dy-

namic power consumption is caused by charging and discharging of load capacitance;

and the static power consumption is caused by leakage current. Traditionally, the

dynamic power has been the major sources of the power consumption in a CMOS cir-

cuit. However, as the semiconductor technology enters the deep submicron domain,

leakage power consumption increases rapidly and is comparable or even surpass the

dynamic power consumption in an IC circuit. In what follows, we discuss each of

them respectively.

Dynamic Power Consumption

The dynamic power consumption, Pdyna, also known as the capacitive-load power

consumption, is consumed by charging and discharging external load capacitance [2,
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Figure 2.1: CMOS switching mode for static power consumption
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91, 89]. Figure 2.1 shows the different modes of transistors when charging and dis-

charging a CMOS circuit. The capacitive-load power consumption can be formulated

as

Pdyna = CL × V 2
dd × f ×Nsw, (2.1)

where f is the clock frequency, CL is the external load capacitance, Nsw is the number

of bits switching and Vdd is the supply voltage. Since the working frequency is the

proportional to the supply voltage level, we can further formulate the dynamic power

consumption as

Pdyna ∝ CLv
3
dd (2.2)

from equation (2.1), we can see the dynamic power consumption is highly related

with the supply voltage, working frequency, the complexity of the logic gate and the

switching activity.

Static Power Consumption

In contrast, the static power is caused by the leakage current. Figure 2.2 shows how

a transistor controls the flow of the current between source and drain. In the ideal

case, when the transistor is at the “OFF ” state, there is no current flowing through

the drain and the source node. This is because there is an insulating material called

channel placed in between. When the voltage at the gate node increases high enough

to reach the threshold voltage, Vthreshold, the conductivity of the channel increases

as well. It turns the transistors to the “ON ” state, and allows the current to flow

between the drain and the gate. However, in reality, although the voltage at the gate

does not reach the threshold Vthreshold, there is still leakage current flowing through

the transistor.

As shown in Figure 2.2, the leakage current can be classified into three categories
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Figure 2.2: Three types of leakage current in CMOS

based on the path of current flow [89]. The first one is the junction leakage current (i.e.

IJCT ), which is the current of the source or the drain that goes through the reverse-

biased diode to the substrate, when the transistor is in off state. The junction leakage

current heavily depends on the physical characteristics of the transistor. Next, the

gate direct tunneling leakage current (i.e. IGATE) flows from the gate terminal through

the dielectric material to the substrate. It can be affected by the thickness of the gate

oxide material. The last one is the sub-threshold leakage current (i.e. ISUB), which is

caused by the diffusion current of the minority carriers in the channel of a transistor.

It flows directly from the drain to the source even when a transistor is in off state.

It depends on the temperature of the chip, threshold voltage, supply voltage, as well

as some other process dependent technology constants. Among those three leakage

current powers, the sub-threshold leakage is more critical than the others [51]. Thus,

the leakage current can be formulated by a non-linear exponential equation as [65]

Ileak = Is · (A · T 2 · e((α·Vk+β)/T ) + B · e(γ·Vk+δ)), (2.3)

where Is is the leakage current at certain reference temperature and supply voltage,

T is the operating temperature, A,B, α, β, γ, δ are empirically determined technology

constants.
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In addition, the leakage power can be formulated as Pleak = Ngate · Ileak · vk,

where Ngate represents the number of gate and vk is the kth supply voltage level.

Furthermore, as reported in [74], the leakage current changes super linearly with

temperature. The leakage and temperature dependency can be estimated by using

the linear approximation method. Thus, the leakage power for the processor running

in mode k can be effectively estimated as [19]

Pleak(k) = C0(k)vk + C1(k)Tvk, (2.4)

where C0(k) and C1(k) are constants. Equation (2.4) illustrated the close correla-

tion between temperature and leakage power consumption. We will give a detailed

discussion about the leakage temperature dependency in later sections.

2.1.2 Power Reduction Techniques

There have been extensive researches conducted on power/energy consumption reduc-

tion at different design abstraction levels, from logical level, circuit level, architecture

level, and all the way to the system levels [57, 82, 91, 115, 117, 80, 76].

As we discussed before, the dynamic power consumption depends on the transis-

tor size, wire lengths and transistor switching activity. Therefore, the fundamental

principles to reduce the dynamic energy consumption are to shrink the transistor size

and also to reduce the switching activity when the transistor is idle. For example,

at the logic level, the logic gate restructuring technique is developed to arrange logic

gates and their input signals to reduce switching activities; at the architecture-level,

the clock gating technique is a straightforward approach to reduce the circuits switch-

ing activity. It simply disables the clock signals of the processor components, which

are not currently active; at the circuit-level, the designer implements the Transistor

sizing technique that tries to adjust the size of the transistor so that the power con-
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sumption can be minimized without significant performance lost. Transistor sizing

is another effective technique, which rearranges the order of transistors to minimize

their switching activities. This approach places the most frequently switched tran-

sistor closer to a circuit output, thus the unnecessary switching activities of other

transistors can be reduced; at the system-level, the dynamic voltage scaling (DVS)

technique is one of the widely used methods to minimize the dynamic power. Because

of the convex correlation between power and supply voltage, the power consumption

can be reduced to one fourth of the original value, if the supply voltage is reduced to

half.

As transistors become smaller and smaller and leakage becomes more and more

prominent, many techniques have also been developed to reduce the leakage power

consumption during the different states. For example, body bias control is a technique

to reduce the leakage during the idle state. This approach can bias the source terminal

of an “off” transistor, so that the leakage current can be reduced. Specifically, it

applies a positive bias voltage during the standby state to the source terminal, so

the threshold voltage is raised and the transistor is turned off more strongly. When

the logic circuit is in the standby state, the sleep transistor technique is developed

to reduce the leakage power. With this method, all functional units are implemented

with low Vt transistors, which are fast but leakage prone. On the other hand, a high

Vt sleep transistor is inserted between functional units and the ground. Thus, in

the active state, the sleep transistor is turned on to allow normal operation. When

functional units are in the standby state, the sleep transistor is turned off to cut off

the leakage current path to the ground.

The power reduction techniques described above can effectively reduce the overall

system power consumption. In the next section, we will explore the power and thermal

correlation.
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2.2 Power and Thermal Correlation

Power consumption and heat dissipation have a very close correlation because the

high power consumption can bring up the on-chip temperature and generates a great

amount of heat. In return, high temperature can increase the leakage power that

increases the total power consumption as well. In this section, we discuss the rela-

tionship between power and thermal.

Table 2.1: Duality between thermal and electrical quantities

Thermal Quantity Electrical Quantity

Power consumption: P (W ) Current flow: I (A)

Temperature: T (oC) Voltage: V (V )

Thermal resistance: R (oC/W ) Electrical resistance: R (Ω)

Thermal capacitance: C (J/oC) Electrical capacitance: C (F )

Based on the duality between the heat transfer and the electrical current flow as

shown in Table 2.1, this critical characteristic is captured by using the lumped RC

model. Therefore, for the system-level thermal analysis, many researches formulate

the correlation between the power and temperature by using a mathematical equation

(i.e. equation 2.5) to analyze how they interact with each other [46, 44, 19, 125, 17,

23, 85, 16, 23, 75, 90]. Specifically, as shown in Figure 2.3, T (t) and Tamb are the

chip temperature and ambient temperature respectively. P (t) denotes the power

consumption (in Watt) at time t, and R, C are the thermal resistance (in oC/Watt)

and thermal capacitance (in J/oC) respectively. Then we have

RC
dT (t)

dt
= RP (t) + (T (t)− Tamb). (2.5)
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Figure 2.3: System-level thermal model for single-core processor

We can scale T such that Tamb is zero and then we have

dT (t)

dt
= aP (t)− bT (t), (2.6)

where a = 1/C and b = 1/RC.

The overall power consumption of the processor is composed of two parts: the

dynamic power Pdyn and leakage power Pleak. The dynamic power consumption is

independent of the temperature and can be formulated as Pdyn = C2v
3
k in equa-

tion (2.2), and the leakage power consumption can be formulated as Pleak(k) =

C0(k)vk + C1(k)Tvk in equation (2.4). Thus, the total power consumption of pro-

cessor is formulated as

P (k) = C0(k)vk + C1(k) · Tvk + C2v
3
k. (2.7)

Accordingly, the temperature dynamics at the speed level k can be formulated as

dT (t)

dt
= A(k)−B(k)T (t), (2.8)
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where A(k) = a(C0(k)vk + C2v
3
k) and B(k) = b − aC1(k)vk. Hence, for a given time

interval [t0, te], if the initial temperature is T0, by solving equation (2.8), the ending

temperature can be formulated as below:

Te =
A(k)

B(k)
+ (T0 −

A(k)

B(k)
)e−B(k)(te−t0)

= G(k) + (T0 −G(k))e−B(k)(te−t0). (2.9)

Many thermal and power simulation tools have been developed by exploiting the

duality of thermal characteristics and electrical circuit. HotSpot is one of the most

widely use simulation tool to conduct the architectural-level thermal analysis [104].

The HotSpot simulator works as follow. Once the floorplan of the functional units,

as well as the physical properties of the processor are given (i.e. chip dimension and

material), the HotSpot can automatically generate a three-dimensional RC network

to model the heat transfer within the RC network. From the RC network as shown

in Figure 2.41, a differential equation can be implemented to do thermal analysis.

In addition, R and C represent the thermal resistance and the thermal conductance

respectively. Current sources represent the power consumption of a given functional

unit. The node voltages are the expected temperature value of the corresponding

components. When processor is running tasks, the current of the RC network will

change accordingly. Thus, by solving the differential equations, the corresponding

temperature variation can be calculated. However, the architecture-level thermal

model must be simple enough to allow architects to simulate thermal effects.

2.3 Thermal Management

Traditionally, thermal issues in computer systems are dealt with using the mechanical

cooling methods such as heat sink, cooling fan, etc. As the thermal problem became

1Figure 2.4 from research paper [104].

18



Figure 2.4: Architecture-level thermal model for single-core processor

more and more critical, new cooling methods such as the liquid cooling were devel-

oped. At the same time, DTM has drawn more and more research attentions. In this

section, we introduce the traditional mechanical thermal management methods and

dynamic thermal management techniques.

2.3.1 Mechanical Cooling Technologies

Since the development of the first electronic computers, the cooling system has played

a key role in accommodating power increments and maintaining temperature at a

satisfactory level to satisfy performance and reliability objectives. For the past 30

years, a number of mechanical cooling technologies have been developed to provide

temperature control in computing systems. These techniques intend to effectively

dissipate the heat generated by the system components to the ambient environment.

In this section, we introduce some of the primary mechanical cooling technologies.
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Heat Sink and Cooling Fan

The heat sinks and cooling fans are commonly used technology for cooling IC chips

in computer systems. They are designed based on the concept of controlling the

airflow rate between the heat sink and the ambient, so that the computing system can

operate under the desired temperature. The heat sinks are made of metal with high

thermal conductivity, and are directly connected with the small processor chip. They

allow heat to transfer to its large surface area by conduction. Then, the computer

fans remove the heat from the heat sink to the ambient environment. The thermal

performance of the heat sink depends on many parameters, such as the thickness,

surface area, and thermal conductivity. It is reported that the thermal conductivity

of aluminum ranges from 150-200 W/mK, and the thermal conductivity of copper

ranges from 350-390 W/mK [26]. Once the heat sink is manufactured, its cooling

efficiency is fixed. Thus, the air-cooling performance is adjusted by changing the fan

speed.

Usually in today’s desktop computers, the fan speed is controlled by a closed loop

controller, which regularly collects the temperature information from CPU thermal

sensors, and adjusts fan speed accordingly to accommodate the corresponding tem-

perature change. As we discussed before, the power cost for cooling down computing

systems is high. It is reported that the air-cooling system in server station can con-

sume as much as 80W in 1U rank servers and 240W or more in 2U rack servers [87].

The cooling power consumption can reach up to 51% of the overall server power bud-

get [64]. Moreover, the increasing fan speed can introduce system noise, which not

only leads to an uncomfortable working environment, but also causes vibrations and

impacts the reliability. It is estimated that the acoustic noise levels increase by 10dB

as the fan speed increases by 50% [78].
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Figure 2.5: 3D-IC with micro-channel cooling system

Liquid-cooling

The Liquid-cooling technique is developed for the situation when air-cooling is not

able to satisfy the cooling requirements. A good example of this cooling solution

is the IBM 3081 processor that uses liquid to remove the heat generated from his

processing units. Compared to the air-cooling method, the liquid-cooling solution

has a higher thermal conductivity. In addition, because of the higher density of

liquid, it can absorb more heat, which is about 3500 times more than air [26]. The

cooling efficiency of the liquid-cooling depends on a lot of variables, such as liquid

chemistry, flow rate, temperature, and pressure. It has been reported that the peak

temperature can be reduced from 85oC to 57oC on the liquid-cooled 2D processor,

while the maximum temperature variation is also reduced from 25oC to 6oC [26].

Micro-channel cooling system

The micro-channel cooling system is an extension of the liquid-cooling to further

improve the cooling capability. The concept was originally developed by Tuckerman

and Pease [111]. They etched 50µm wide and 300µm deep micro-channel into a 1cm

× 1cm processor chip. By directing water through those micro-channels, they can

remove 790W with a temperature difference of 71oC. Moreover, this technique has

been extended to three-dimensional Integrated circuit (3D-ICs) designs.
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One of the practical works from IBM demonstrated the feasibility of integrated

micro-channel 3D ICs [96]. As shown in Figure 2.52, the micro-channels are dis-

tributed at each layer. Then, the cooling fluid is pushed to each micro-channel from

the fluidic channel [81]. Since the 3D-ICs techniques already became the next gen-

eration computing system design objective, extensive research has been done on the

3D-ICs with micro-channel cooling. Hitoshi et al. [81] proposed a fast and accurate

thermal-wake aware thermal model for integrated micro-channel 3D ICs. Sridhar et

al. [105] presented a transient 3D thermal model with multiple inter-tier micro-channel

to analyze the 3D-IC cooling problem. Wang et al. [120] developed a transient thermal

simulator for temperature estimation in a 3D environment. Xu et al. [124] proposed

a methodology to obtain accurate thermal profile from a closed-form thermal model

with complex interconnect structures.

2.3.2 Dynamic Thermal Management Techniques

Since the mechanical cooling techniques consume tremendous energy, and sometimes

the traditional cooling techniques such as the air-cooling method are not able to

satisfy the cooling demand, the dynamic thermal management DTM techniques

have emerged to address the thermal issue. Compared to the mechanical cooling

techniques, the DTM techniques are more straightforward. They can directly reduce

the temperature of the overheated area, either by reducing the frequency or migrating

the task to a cooler processor. Therefore, numerous researches have been done based

on the DTM techniques [14, 67, 39, 14, 104]. In this section, we introduce some of

the most widely used DTM techniques.

2Figure 2.5 from research paper [81].
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Dynamic Voltage and Frequency Scaling

The dynamic voltage and frequency scaling DVFS technique can dynamically adjust

the working frequency and the supply voltage based on certain requirements (e.g.

DVFS can be adjusted based on the workload or temperature threshold). It can be

used either to conserve power consumption or to reduce the heat generated by the

processor. With the DVFS technique, the demand for conventional cooling system can

be eased, and the cooling cost can also be reduced. However, the DVFS technique

reduces the temperature by sacrificing the computing system performance. Based

on the DVFS technique, a lot of researches have been published [31, 58, 60]. They

either tried to analyze the trade off between the performance and power and thermal

dissipation, or focused on optimizing the thermal issue by reducing processor peak

temperature. It has already become one of the most widely used thermal management

techniques, which has been integrated on the modern computing system (e.g. Intel

CPU throttling technology, SpeedStep and AMD’s Cool’n’Quiet technology).

Clock Gating

The clock gating technique is an effective thermal management technique. It can

reduce the temperature by cutting off the clock signal of the overheated processor

component [6]. The clock gating technique is implemented based on the thermal

management demands, such as cutting the clock signal when temperature will exceed

the predefined thermal limit [133].

Fetch Toggling

The fetch toggling technique is another effective thermal management technique that

is used on most computing systems [32]. Other than cutting off the clock signals, the

fetch toggling technique throttles the instruction cache and make the task execution
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idle when the temperature is going to exceed the threshold. But, this approach has

to sacrifice the performance to bring down the temperature.

Task Migration

The task migration technique has the flexibility to migrate a task among cores on

the multicore platform. This technique is majorly used for the purpose of workload

balancing and temperature balancing (i.e. it can cool down the processor by migrating

the task from a hot core to cooler core). Compared to the other thermal management

techniques discussed before, the task migration technique has very small effect on the

system performance. However, the migration algorithm should be carefully designed

to avoid the Ping-Pong effect (i.e. the particular case when the temperature difference

between the cores is very small, and a task is constantly migrated from the hot core

to the cool core), that only increases a huge amount of context switching overhead

without reducing the temperature. A lot of researches have been done based on the

task migration technique [36, 129, 30, 29, 131, 84, 33].

2.3.3 Thermal-Aware Scheduling

Based on the DTM techniques introduced in the previous section, extensive researches

have been published in the recent years. Those research works can be categorized

based on different criteria. For example, some researches have been tremendously

conducted for soft real-time systems [132] and hard real time systems [19, 125]. They

focused on how to dynamically adjust the supply voltage and frequency level of a

processor so that the tasks can be executed before the deadline while other design

objective can be achieved as well [63, 127, 22, 53, 45].

In addition, thermal and power scheduling algorithms have been proposed for

different platforms, such as single-core [125, 136], multi-core [41, 42], or even 3D multi-
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core platforms [73]). Based on task models, they can be classified into stochastic [72]

and deterministic workload [17, 134]. Both of the online approaches [132, 77] and

offline approaches [46, 136] have been proposed to solve the throughput maximization

problem under a given constraint [19, 52, 132, 9, 17, 134]. They can be classified into

two categories, which are reactive and proactive scheduling algorithms.

Reactive scheduling algorithm

The reactive thermal management approaches are relying on the temperature infor-

mation, which is obtained either from thermal sensors or simplified thermal models,

to trigger the thermal management operations [101]. For example, Pedram et al. [88]

proposed two reactive DTM techniques based on DVFS and pipeline throttling tech-

niques to remove the aggressive heat. Chen et al. [25] proposed a reactive workload

balancing algorithm based on the task migration technique to reduce the overall pro-

cessor temperature. Xiaorui et al. [122] developed a feedback control loop to optimize

the system throughput, and the temperature information from thermal sensors are

used as the feedback signal. However, the thermal sensor lacks accuracy in the follow-

ing ways. First, there are only a limited number of sensors on the multiprocessor and

the thermal hotspot on the processor migrates during the execution, so the sensor

may not always be placed at the hottest spot. Second, the sensor also has manu-

facture variations, and the temperature from thermal sensors is not always reliable.

In addition, it still takes time for the DTM techniques to take effect after changing

frequency or migrating tasks. Thus, with the above limitations, the reactive approach

cannot effectively keep up with a rapid temperature change.
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Proactive scheduling algorithm

To address the problems of the reactive approach, the proactive thermal manage-

ment algorithms with temperature prediction technique has been proposed. It can

accurately detect the thermal emergency before the temperature exceeding the tem-

perature limit and leave enough time for the thermal management algorithm to react

to the temperature change. Thus, an accurate temperature prediction technique is

highly in demand. Otherwise, it can cause the DTM algorithms to overreact with the

temperature changes, and further degrade system performance. A lot of research has

been proposed to develop the temperature prediction techniques [137, 131, 99, 106].

Meanwhile, numerous proactive researches with prediction techniques have been

proposed. For instance, Yeo et al. [130] proposed a proactive DTM algorithm that

utilize a regression-based temperature prediction technique to reduce the peak tem-

perature. Coskun et al. [29] developed a proactive schedule to optimize the system

throughput by balancing the workload. Also, Kumar et al. proposed a coordinated

thermal management algorithm, which combines both hardware and software DTM

techniques. In conclusion, the proactive DTM techniques can outperform the reactive

approaches, and achieve better system performance.

The rest of the work is organized as follow, We first built up a practical hardware

platform in Chapter 3. Then, we evaluated the cooling efficiency of the dynamic

thermal management technique by comparing it with the traditional cooling methods,

and validated two widely used thermal management principles in Chapter 4. After

analyzing the limitations of the theoretical work on our practical hardware platform,

the reactive algorithm, (EADTM) for the single-core platform has been proposed

in Chapter 5. To extend our research to the multicore platform, we developed a

proactive algorithm (NADTM) in Chapter 6. Finally, we conclude this dissertation

in Chapter 7.
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CHAPTER 3

THE INTEL BASED PRACTICAL HARDWARE PLATFORM

3.1 Related Work

Since power and thermal issue have already become the major design constraints

for the development of the computing system, many theoretical works have been

conducted based on dynamic thermal management techniques in the recent years.

For example, several DTM techniques [9, 125, 44] have been proposed that take the

temperature and leakage interdependency into consideration to optimize the total

energy consumption. A few other approaches [20, 62] seek to minimize the peak tem-

perature at run-time. There are also some researches that studied the thermal aware

performance maximization problems [18, 134, 136]. Most of these theoretical research

results are based on simplified models and idealized assumptions. For example, most

of the above researches employ the lumped first order RC thermal model to simulate

temperature dynamics. Also, as shown later in this chapter, some of the assumptions

such as the exact knowledge of the actual temperature may not always be possible.

Although theoretical researches simplify the research problem and help to uncover the

fundamental principles in practical scenarios, practical applications must deal with

some important details in the real-life environment.

To this end, a lot of practical hardware platforms have been developed to test

theoretical works in the real-life environment [15, 24, 98, 102]. Tongquan et al. [123]

developed a multicore real-life testbed using a dual-core Intel T2500 processor with

the hard real-time scheduler adapted from the Linux operating system. Canturk et

al. [48] proposed a processor power measurement and estimation methodology based

on the Intel Pentium 4 processors, and the real total power measurement has been

combined with performance counter value to get per-unit power estimation. Simone

et al. [28] proposed a novel on-line temperature measurement methodology based
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on a quad-core Intel i7-820QM processor. Phillip et al. [55] developed a thermal

management system that continuously monitors the temperature of the FPGA and

reprograms the device if the temperature approaches the outer limits of safe operating

conditions.

Also, a number of researches were conducted based on more practical comput-

ing systems [121, 109, 3, 122, 93, 61]. For example, Ahn et al. [3] developed and

validated a heuristic algorithm to reduce the power consumption and control the

temperature on an Intel Centrino Duo and an ARM-11 MPCore platform. Erven et

al. [93] proposed an algorithm to maintain the system temperature under a pre-defined

threshold by adjusting the utilization of the CPU in a Pentium-II desktop. Wang et

al. [122] developed a feedback control algorithm based on-line temperature control

method and implemented their novel algorithm on an Intel Xeon desktop. Amit et

al. [61] incorporated hardware and software thermal management technologies and

proposed a hybrid thermal management algorithm to optimize the heat dissipation

in a Pentium-4 system. Fabrizio et al. [83] presented a lightweight thermal balancing

policy, which could minimize the on-chip temperature gradients by using the task

migration technique. This algorithm was tested on an actual three-core MPSoC plat-

form. Kim et al. [54] proposed a new application-oriented learning-based dynamic

thermal management technique for a multi-core system based on an Intel Dual Core.

3.2 The Intel i5 Based Hardware Platform

As we discussed in Section 3.1, it is very important to validate the theoretical works

on the practical environment to get the reliable experiment results. Thus, a practical

hardware platform, which has the flexibility to be configured to adopt different theo-

retical algorithms, is highly in demand. To satisfy the above constraints, we developed

a practical hardware testbed based on a Dell Precision T1500 desktop workstation
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(i.e. the detailed system specification is shown in Table 3.1).

In addition, The overall system platform is depicted in Figure 3.1. The central

component of this platform is an Intel i5-750 quad-core processor, running the Ubuntu

10.04.1 Linux operating system with kernel version 2.6.32. The Intel i5 processor has

been integrated with the DVFS capability, which can adjust the working frequency of

each core individually. Meanwhile, each of the cores on Intel i5 processor is integrated

with an on-chip thermal sensor, which can continuously provide the temperature

information during the execution. The cooling factor of the computing system can

be adjusted by changing the fan speed. We can also fix the fan speed to get a

constant cooling environment, which is a very important factor when testing the

theoretical work. To test the thermal management algorithm, we used the well-known

academic benchmark suite, SPEC CPU2000, including both integer and floating point

operations to get reliable and comparable experiment results. Each benchmark can

be assigned to any particular core before being executed. Furthermore, the task can

be migrated between processors based on the thermal management demands. The

detailed system implementation of each component of the platform will be discussed

in the following sections.

Table 3.1: Dell Precision T1500 Technical Specifications
Dell Precision T1500 Desktop

Processors Quad-Core Intel i5 Processor, 64-bit
Operating System Ubuntu 10.04.1, 64-bit , Linux Kernel 2.6.32

Chipset Intel H57
Networking Integrated Broadcom 57780 Gigabit Ethernet controller

Memory 8GB 1066MHz
Graphics NVIDIA Quadro FX580

Hard Drives SATA 3.0Gb/s: 7200RPM with 8MB DataBurst Cache, 1.0TB
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Figure 3.1: Our test bed based on an Intel Desktop computer

3.3 Dynamic Thermal Management Techniques

Our customized hardware platform is able to adopt the majority of the dynamic

thermal management technique, which is introduced in Section 3.1. Such as, clock

gating, idle period injection and system level task allocation. However, the two of

the most effective approaches are the process migration technique and the dynamic

voltage and frequency scaling technique. Thus, in this section, we are focusing on

introducing the implementation detail of those two techniques on our platform.

3.3.1 DVFS Technique

The dynamic voltage and frequency scaling (DVFS) technique is a widely used ap-

proach, which can simultaneously adjust voltage and frequency level of the computing

system either based on the workload demand or the temperature constraint during

the execution. The modern chip multi-processor (CMP), Intel i5 (i.e. detailed spec-

ification is shown in Table 3.2), was integrated with the Enhanced Intel SpeedStep
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Technology (EIST) [107]. Other than changing both the voltage and frequency be-

tween high and low levels, the Enhanced Intel SpeedStep Technology can adjust the

supply voltage in a small increment separately from frequency changes. As a result,

the system unavailability can be significantly reduced. In addition, it also allows the

bus clock to continue running during the state transition, which keeps the logic of

computing system to remain active. The Intel i5 microprocessor supports 12 different

working frequency levels ranging from 1.2GHz to 2.66GHz, as shown in Table 3.3.

Table 3.2: Intel Core i5-750 Processor Specifications
Essentials

Processors number i5-750
Number of core 4

Clock speed 2.66 GHz
Max turbo frequency 3.2GHz

Cache 8MB
Instruction set 64-bit
Voltage Range 0.65V-1.5V

Memory Specifications
Max memory size 16GB

Max memory Bandwidth 21GB/s
Physical address extension 36-bit

Package Specifications
TCASE 72.7oC

Package size 37.5mm× 37.5mm
Processing die size 296mm2

Number of transistors 774 million

Besides the Enhanced Intel SpeedStep Technology hardware support as men-

tioned before, the CPUfreq Linux kernel subsystem has been used to implement the

dynamic voltage and frequency technique features on the Linux operating system.

Figure 3.2 shows the Cpufreq infrastructure at a high level. The Cpufreq module

provides an interface between the user level frequency controlling policy and underly-

ing mechanisms. The CPU-specific drivers include various CPU frequency-changing

technologies, such as the Enhanced Intel SpeedStep Technology. The proper driver
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Figure 3.2: High-level Cpufreq module infrastructure overview

must be loaded for the platform to perform efficient frequency changes. The low-

level CPU-specific drivers acpi and speedstep-centrino are used to implement the

Enhanced Intel SpeedStep Technology-enabled CPUs. The cpufreq module allows

different frequency-changing policy governors, which can change the CPU frequency

based on different demand. For example, Performance governor execute the task

with the highest possible frequency to achieve the maximal performance. Powersave

governor keeps the CPU at the lowest possible frequency to save energy. Onde-

mand governor automatically adjust the working frequency based on the current

system workload to save energy. And, Userspace governor exports the available fre-

quency information to the user level, and permits user-space control of the CPU

frequency. In this work, we use the Userspace governor to implement most of the

thermal management algorithms. Core frequency is modified by updating the system

file at /sys/devices/system/cpu/cpu(num)/cpufreq/scaling setspeed, where num is the

index of the cores in the processor. In our experiments, whenever we changed the

frequencies, we changed the supply voltages simultaneously.
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Table 3.3: Intel i5 available frequency levels (GHz)
1 2 3 4 5 6

2.667 2.533 2.4 2.267 2.133 2.0

7 8 9 10 11 12
1.867 1.733 1.6 1.467 1.333 1.2

3.3.2 Task Allocation and Migration Technique

Task allocation is implemented by using the system call named CPU affinity on the

practical computing system. The CPU affinity can be used to bound one or more

processes to one or more processors. The original purpose of using the CPU affinity

is optimizing cache performance. The operating system tries to keep the tasks on the

same processor as long as possible. That way, the task’s data can be kept in only one

processor’s cache at a time for the multiprocessing computing system. Otherwise, it

could create a data synchronization problem, which can increase the cache miss rate

and degrade the overall system performance (i.e. the operating system tries to find out

which process has the most up-to-date copy of the memory). In addition, constantly

migrating tasks from one core to another can increase context switch overhead, which

means the computing system will spend extra energy to copy the data from one

processor’s cache to another. It can cause system delay, and also generate extra

amount of heat. However, in this work, we only use the CPU affinity feature to bind

a task based on our scheduling algorithm’s demand.

In addition, the task migration technique can also be implemented by using the

CPU affinity system call (i.e. sched setaffinity). As long as the objective task PID is

obtained, we are able to migrate the task by using the affinity bitmask. Each bit of

the mask represents whether the given task is bound to the corresponding processor
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Figure 3.3: Conventional air-cooling with heatsink

3.3.3 Computing Cooling System Configuration

The computer cooling system is designed to remove the wasted heat generated by the

computer components, and keep the computing system operating within a permissible

temperature limits. Until now, a lot of cooling method have been proposed and

adopted in the modern computing system. They can be classified into two categories.

The first approach removes heat from conduction, such as the heatsink, which is made

of metal with high thermal conductivity and with a large surface. The heatsink is

attached directly on top of the microprocessor, thus the heat can be transferred from

chip to the heatsink, and then heat is carried away from the heatsink by airflow.

Another example could be the liquid cooling system that uses liquid to take away

the heat from the processor. It has the advantage of less impact with the ambient

temperature and low noise comparing with the air-cooling. The second category

removes heat from the convection, such as the air-cooling. It is the most famous

cooling solution for the computing system. Fans are most commonly used for air-

cooling when natural convection is insufficient.
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The Dell Precision desktop workstation has two cooling components: the heat

sink and cooling fans as shown in Figure 3.3. The cooling efficiency of the heat

sink depends on its physical characteristic. This static thermal characteristic will

not change during the computing system operation. On the other hand, users can

dynamically control the cooling fans. In our work, we control the fan speed using

a simple shell script named fancontrol. The fan speed can be adjusted from the

maximal of 4500RPM (round per minute) to the minimal of 1500RPM. To ensure

our experiments were conducted under the same cooling condition we fixed the fan

speed at the minimal speed (i.e. 1500RPM) unless otherwise specified. This helped

to overrule the fan control by operating system when executing programs.

3.4 Power and Temperature Measurement

Since we are focusing on developing a hardware platform to analyze the thermal

management algorithm, obtaining the computing system temperature and power in-

formation timely and accurately is the major topic. In this section, we introduce

the detailed implementation of collecting temperature information from thermal sen-

sors and the technique used to measure the total system power consumption. We

introduce the hardware monitoring tool at the end.

3.4.1 Power Measurement

Since the computing system power dissipation keeps increasing rapidly each year, the

power issue becomes a more and more critical research topic. Measuring the power

dissipation of the computing system at runtime becomes more and more crucial for the

system developer. In this section, we give detailed introduction on how to implement

the power measurement technique. It was carried out based on a well know research

work [48].
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Figure 3.4: Overview of the system interconnection

The overview of the power measurement system is shown in Figure 3.4. The major

components include an Fluke i410 AC/DC current clamp, which is used to clamp di-

rectly to the power supply of the microprocessor on the motherboard. It can read the

current passed through the CPU chip without cutting the wires. Then, the current in-

formation is converted to voltage and sent to the Agilent Digital Multimeter 34401A.

The multi meter is connected with a hosting PC machine with an Agilent 82357B

USB/GPIB cable. On the hosting machine, we installed the software and drivers to

collect power data (i.e. Agilent IO Libraries Suite 15.1, 34401A Digital Multimeter

IVI Instrument Drivers, and IntuiLink for Digital Multimeters Version 1.3.3 ). Dur-

ing the power measurement process, the power consumption can be measured and

recorded in the hosting machine simultaneously.
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3.4.2 Temperature Capturing

Processor temperature should be carefully maintained within a proper working tem-

perature limit to avoid hardware damage and performance degradation. A thermal

sensor integrated on the microprocessor is the major component to obtain the system

temperature information. It is used to guide the operating system to manage the

cooling system. For example, the operating system reads the current temperature

value from the thermal sensor, and based on the temperature, a new fan speed is

calculated for the system configuration.

A Dell Precision T1500 desktop has two different kinds of thermal sensors. One

is the external thermal sensor, located underneath the CPU chip and above the

motherboard. It can provide the overall temperature of the chip. An alternative

method is to read temperature value directly from the built-in digital thermal sensor

integrated with each core, which can provide more accurate temperature information

of the core. The temperature value is stored in the Model Specific Register (MSR),

which can be accessed through the Industry Standard Architecture (ISA) ports or

the System Management Bus (SMBus). To ease our implementation and tests, we

simply adopted a Linux hardware monitoring tool called Lm-sensors [1] to capture

the temperature, to set the fan speed, to vary supply voltage and working frequency.

Through our experiments, we found that the time to access the on-chip thermal sensor

is approximately 8ns; however, the resolution of the on-chip thermal sensor is only

1oC; and the minimal time for a temperature sensor to reflect a change in temperature

is approximately 1 second.

3.4.3 Computing System Monitoring Tool

As we discussed before, our customized hardware platform has the flexibility to do

a lot of modifications to adopt the thermal management techniques, such as, task
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Figure 3.5: Lm-sensor monitor tool overflow

migration, DVFS, changing the cooling system, reading thermal sensor and measuring

power consumption. However, quick changing system informations must be carefully

monitored and presented to the developer simultaneously during the operation. In this

work, we use the Lm sneosrs Linux hardware monitoring tool to observe the system

information. Most of the computers that have been built after the year of 1997, are

integrated with a hardware health-monitoring chip. As shown in Figure 3.5, The

computing system hardware monitoring tool could collect system information (i.e.

the current processor information, supply voltage and frequency level, fan speed, as

well as the CPU utilization of each individual core) from the hardware monitoring

chip. And the operating system can access the information through the ISA/SMBus,

and guide the thermal management algorithm to react with the temperature change.
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CHAPTER 4

VALIDATING THERMAL MANAGEMENT PRINCIPLES ON

PRACTICAL HARDWARE PLATFORM

In the previous section, we already gave a detailed introduction about our practical

hardware platform. It is used to test and evaluate different DTM algorithms for

the rest of this work. Since the exponentially increasing power consumption brings

up the temperature of IC chips, how to deal with the heat generated by processors

has become a major design constraint for computing systems. In the recent years,

extensive theoretical research works on dynamic thermal aware computing have been

published. However, there are not many experimental researches based on practical

computing platforms. Thus, such theoretical works lack validation and are also not

convincing. Validating the theoretical work in the practical environment is highly

demanded. In this chapter, we first evaluate how effective the DTM techniques can

be by comparing them with the conventional air-cooling method. Next, we introduce

a number of widely used thermal aware scheduling algorithms, and then we implement

each of them on our hardware platform to get practical experiment results. All of

the algorithms are analyzed carefully and their performance are compared to evaluate

their efficiency.

4.1 Related Work

The traditional cooling solutions, which include using heat spreaders, heat sinks, and

cooling fans in a variety of configurations, have already been implemented in almost

every computing system. However, it has been reported that only relying on the

conventional cooling approach cannot effectively solve the more and more critical

thermal challenges. As a result, numerous new cooling techniques and thermal ma-

terials have been developed in the recent years [11], and there has been increasing
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interest in both academy and industry in the computing side rather than the mechan-

ical side. There has been extensive theoretical researches, which focus on dynamic

thermal management for the single core microprocessor, which have been published

in the literature [104, 79]. For example, Wang et al. proposed a scheduling algo-

rithm that can exploit the flexibility of single core platform at low temperature by

deriving an ideally preferred speed [35]. Zhang [135] et al. proposed an polynomial

approximation algorithm for single core processor to maximize the performance under

thermal constraint. Most of these theoretical researches are based on theoretically

idealized models. While the theoretical model helps to abstract the problem essential

characteristics, practical computing systems and applications must deal with other

important details as well. Some of these details may be derived analytically, and some

of them may not. It is therefore valuable and important to evaluate these techniques

subjecting them to experimentation under a more practical scenario.

Some research works have been conducted to study the effectiveness of thermal

management techniques based on real hardware platforms. Kumar [61] et al. pro-

posed a hardware and software hybrid thermal management technique and tested

their algorithm on an actual desktop machine with an Intel Pentium-4 processor and

using the SPEC2000 benchmarks. Wang [122] et al. evaluated their newly developed

feedback control thermal management technique based on a desktop with Intel Xeon

X5365 Quad Core processor. Hanson [40] et al. investigated the thermal response of

DVFS and other factors beyond voltage and frequency based on an Intel Pentium M

system.

In this chapter, we investigate the effectiveness of several dynamic thermal man-

agement techniques based on our practical hardware platform. Through our research,

we seek to understand how effective a dynamic thermal management technique, such

as a thermal aware scheduling policy, can be to control the peak temperature when
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compared to the traditional air-cooling method. We also intend to use this platform to

validate some principles that we found through our analytical study of this problem.

To this end, we implemented and experimented a number of thermal aware scheduling

techniques on this platform. The experimental results clearly demonstrated that the

dynamic thermal management strategy is an effective method to control processor

temperature. The rest of this chapter is organized as follows. We first analyze the

cooling efficiency of the DTM algorithm by comparing it to the traditional air-cooling

approach. Second, we introduce several power and thermal management algorithms.

After comparing the DTM algorithm with the DPM algorithm, we conclude that

although the power management algorithm can optimize energy and reduce the tem-

perature as well, developing a thermal management algorithm to deal with special

thermal characteristics is highly demanded. In addition, after testing the DTM algo-

rithms under different cooling environments, we validated the fundamental thermal

management principles still validate in the practical environment.

4.2 Preliminary

Due to the close relationship between power and temperature, both thermal and power

management techniques have been proposed based on the DVFS technique. The

DVFS technique controls the temperature by dynamically adjusting the processor

working frequency and supply voltage based on the performance requirement and

current workload. In this chapter, we study the four representative thermal and

power management algorithms, as shown in Figure 4.1(a).

• The ConstantSpeed schedule (i.e. Scons, the blue line plotted in Figure 4.1(a)).

Given the throughput or latency requirement to execute a program or complete

a workload, the ConstantSpeed schedule uses the minimum constant speed to

finish the program or workload before its deadline. Note that, due to the limited
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Figure 4.1: Different thermal and power management algorithms
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number of speed levels of a practical computing system, this constant speed is

not always available.

• The RunStop schedule (i.e. Shigh, the green line plotted in Figure 4.1(a)).

With this schedule, the processor always uses a high speed Shigh to execute

the program and enters the power down mode after the workload is completed.

Assuming a workload can be completed, use the lowest constant speed within

time interval of 1, let the processor finish the same workload at time t1 and shut

down for interval of t2. To keep the same throughput, we have t1 + t2 = 1, and

Scons × 1 = Shigh × t1 (4.1)

• The TwoSpeed schedule is a well-know DPM approach [50], which can mini-

mize the processor energy consumption. Figure 4.1(a) illustrates a TwoSpeed

schedule, that uses two available neighboring speeds to execute the process when

the constant speed, Scon, is not available (i.e. S1 < Scon < S2). In this way,

a fixed workload can be finished exactly within a given interval. This schedule

uses a low speed S1 to execute the workload for t1 then finish the rest of the

workload with a higher speed S2 for t2. To maintain the same throughput, we

have t1 + t2 = 1 and

Scons × 1 = S1 × t1 + S2 × t2. (4.2)

• The m-Oscillation schedule, as illustrated in Figure 4.1(b), is a DTM ap-

proach [20] that intends to minimize the peak operating temperature. Given

a TwoSpeed schedule, the m-Oscillation scheduling algorithm divides the high

speed interval and low speed interval evenly into m sections, and then executes

43



the program using the high speed and low speed alternatively. It is not difficult

to see that an m-Oscillation schedule can complete the same workload as its

corresponding TwoSpeed schedule. More theoretic analysis on m-Oscillation

schedule can be found in [20].

The above schedules are the basic and simplest thermal/power aware scheduling

policies. Through some empirical simulations and formal analysis, Vivek et al [112]

proposed several fundamental guidelines on peak temperature minimization. Specif-

ically, they found that to minimize the peak temperature when the temperature

reaches its stable status,

• Using the lowest constant processor speed that can guarantee the throughput

is the optimal method to minimize the peak temperature in the stable state

comparing with two speed schedule;

• If such a constant speed is not available and two different processor speeds have

to be used, then using the two closest neighboring speeds is the optimal solution

in peak temperature reduction.

In the next section, we first studied how effective the dynamic thermal manage-

ment techniques can be when compared to the traditional air-cooling method. Next,

we implement the thermal and power management algorithms described above on our

platform to validate the thermal management principles under a more practical test

environment.

4.3 System Implementation

Our customized hardware platform is equipped with DVFS capability and can adjust

the working frequency for each core individually. We also have the full control of the

fan speed in our hardware platform. This allows us to study the cooling efficiency
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at different fan speeds. To get credible and comparable experiment results, we select

both integer and floating point operations from the SPEC CPU2000 benchmarks

suit. Our experimental results showed that the output results for different benchmark

files are very similar. Therefore, we present only one set of such experiment results

generated by the galgel benchmark.

Furthermore, the accuracy of the temperature sensor reading depends heavily on

its relative location. Since Intel i5 is a quad core processor, temperature reading of

the chip can vary considerably depending if it is placed closer to a cooler core than a

hot core. To overcome this problem, we implement the process allocation technique

to generate four identical processes and assign them to each of the four cores. In

this case, the temperature for each of the core is the same. The sensor reading is

more accurate. Other than the sensor placement, too many sensor readings can also

affect the experiment accuracy, since it will cost extra energy, which can bring up the

overall system temperature. Based on the reference [1], the resolution of the thermal

sensor is 1 second. This means that if the system reads sensor value faster than

one second, the temperature value is always the same. Thus, to address the above

problem, we limited our temperature sensor reading frequency to no more than one

time per second. In addition, our experiment results also show that the execution

time to read the temperature from a sensor is about 2 milliseconds, which is negligible

comparing to the execution time of the benchmark. As a result, the sensor-reading

overhead can be safely ignored.

Compared to the mathematical thermal simulation, our experiment platform has

two major advantages to make our experiment result more accurate. First, the initial

temperature and ambient temperature have been assumed to be a constant value.

In fact, the initial temperature not only depends on the current room temperature,

it also depends on the current fan speed and current working frequency. Based on
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our experiment results, the lowest initial temperature is 32oC when the fan speed is

1500RPM and the lowest initial temperature for 4500RPM is 28oC. Furthermore,

the ambient temperature increases along with the chip temperature increases. It will

heat up the processor and affect the peak temperature. As a result, the thermal

characteristic of ambient temperature cannot be ignored.

There is another inaccurate assumption made in [21] to simplify their thermal

model (i.e. the cooling constant is a fixed value). However, in practical computing

system, the cooling constant is dynamic. The fan speed and heat sink are two major

cooling components. The cooling constant of heat sink depends on its static physical

material. In addition, the fan speed of a practical computing system is controlled by

the operating system, which fetches the current chip temperature from thermal sensor

and calculates a new fan speed based on the configuration. Specifically, when then

processor executes an intense job, the chip temperature will increase dramatically in

a short time. The operating system needs to increase the cooling constant to cool

down the processor and to control the temperature under threshold. In our hard-

ware platform, we have the flexibility to modify the cooling system by changing the

configuration file. For example, the maximal and minimal fan speed or the threshold

temperature can be adjusted. Also, we are able to fix the fan speed to provide a

constant cooling environment.

4.4 Experimental Results

In this section, we first evaluate the efficiency of the thermal management technique

by comparing it with the traditional air-cooling method. Then each of the ther-

mal management algorithms introduced in the previous section will be analyzed on

our platform under different cooling conditions. Temperature information of each

approach will be collected to evaluate their performance.
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4.4.1 Air-Cooling VS Thermal Management Technique

To evaluate the cooling efficiency of the traditional air-cooling method, we analyze

how different fan speeds affect the processor peak temperature. Since the fan on

our platform can be adjusted to any speed between the maximum of 4500RPM and

minimum of 1500RPM, we select six sampling points in 500RPM intervals. Then, each

of the benchmarks is executed at the maximal frequency (i.e. 2.6GHz) respectively.

The temperature traces under different cooling conditions are plotted in Figure 4.2(a).

The experimental results clearly show that as the fan speed gradually increases, the

peak temperature of the processor rapidly decreases. By changing the fan speed

from 1500RPM to 4500RPM, the processor peak temperature at the stable state

can be reduced by as much as 7oC (i.e. 12.2% decrement from 64oC to 57oC).

Furthermore, from our experimental results we can see that the air-cooling approach

is more effective to reduce the peak temperature at the lower speed comparing with

the high speed. (i.e. 3oC temperature decrement from 1000RPM to 2500RPM, 2oC

temperature decrement from 3000RPM to 4500 RPM).

Conversely, to analyze the cooling efficiency of the DVFS thermal management

technique, we reset the fan speed to the minimal speed and execute the same bench-

mark with different working frequencies (i.e. range from 2.6GHz to 1.2GHz with a

step size of 0.2GHz). The temperature trace for each running case was recorded.

From our experimental results in Figure 4.2(b), we can conclude that the DFVS

technique can control temperature more effectively than the traditional air-cooling

methods. When changing the processor frequency level, the peak temperature can

be significantly reduced by as much as 14oC (i.e. from 64oC to 50oC). However, the

effectiveness of the DTM technique in controlling temperature is achieved by reduc-

ing the system performance. To quantify this trade-off, we compared the program

execution time when achieving the same cooling effects by implementing both of the
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Figure 4.2: (a) Cool down processor temperature with traditional Air-cooling solu-
tion. (b) Cool down processor temperature by using the DVFS technique.
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cooling methods. The experimental results were collected in Table 4.1. It quantita-

tively shows the trade-offs of DTM. While DTM can control temperature within a

larger range than air-cooling method, it is at the cost of degraded performance. As

shown in Table 4.1, to achieve the same cooling effects as air-cooling, DVFS strategy

can cause the performance to degrade as much as 32.3%.

Table 4.1: Execution times for different cooling methods
Execution Time

Peak Temperature 64oC 61oC 59oC 57oC
Air-cooling 18.621sec 18.861sec 18.885sec 19.009sec

DVFS 18.621sec 20.577sec 21.913sec 25.15sec

Relative Difference 0% 9% 16% 32.3%

4.4.2 DPM VS DTM Technique

In the previous subsection, we already proved that the thermal management technique

is more effective in managing the processor temperature than traditional air-cooling

method on our practical platform. To further evaluate the efficiency of the thermal

management technique, we compare the thermal and power management algorithms

(i.e. m-Oscillation and TwoSpeed schedule) on how effective them can reduce the

processor peak temperature. We try to prove that although the power management

algorithm can effectively optimize the power consumption, it may not necessarily

optimize the temperature as well. Developing a thermal management algorithm to

deal with the special thermal characteristic is highly demanded.

In our experiments, we set Scon = 2.1GHz, Slow = 1.8GHz, Shig = 2.2GHz. For

each benchmark, we collected its execution time using Scon, and then constructed

the TwoSpeed schedule and the m-Oscillation scheduling accordingly with m = 5000.

We then ran the two schedules separately on our test bed and collected the peak

temperature at each ran. We also compared the execution time of the two schedules,
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Figure 4.3: The DTM algorithm cooling efficiency comparison

and the difference is less than 2%. For the sake of comparison, we also ran the

benchmark at the highest processor speed and also collected the corresponding peak

temperature. The peak temperature results are plotted in Figure 4.3. Specifically,

MaxPerf refers to the schedule with the maximal processor speed used.

From Figure 4.3, we can see that, comparing with MaxPerf, both the TwoSpeed

schedule and the m-Oscillation schedule can significantly reduce the peak temperature

by 9oC. This is because both the TwoSpeed schedule and m-Oscillation schedule have

a lower power consumption than MaxPerf. Furthermore, Figure 4.3 also implies that,

a thermal aware schedule, i.e. the m-Oscillation schedule, can better reduce the

peak temperature than a power aware schedule, i.e. the TwoSpeed schedule even

though the temperature difference in our experiments are relative small (i.e. 0.75oC

in average). However, our experiments verify that even though low power design

methods help to reduce the temperature, an optimal power efficient approach is not

necessarily the most effective way to deal with thermal issues.

50



4.4.3 Scheduling Algorithm Evaluation

To compare the efficiency of different thermal aware scheduling algorithms, all the

approaches are executed with the same initial condition like we mentioned in Sec-

tion 4.3. For each set of comparisons the same benchmarks are used to guarantee

every algorithm is assigned with the same workloads. To ensure the accuracy, both

the integer benchmarks and floating-point benchmarks have been tested for each com-

parison and they all give the same results. In order to save space, we only plot the

experimental results by using benchmark galgel. A constant speed of 2.0GHz is se-

lected as the baseline speed to get the standard throughput. Since we already proved

that the cooling constant could affect the peak temperature in the previous section,

each set of experiment is implemented under the maximal cooling constant (i.e. fan

speed, 4500RPM) and the minimal cooling constant (i.e. fan speed, 1500RPM) to

cover all the possibility.

RunStop schedule analysis

Three higher frequencies, which are higher than the baseline speed, have been selected

to implement the RunStop schedule. The temperature traces obtained by each of the

frequencies have been plotted in Figure 4.4. From this experimental result we can see

that the highest frequency can always finish the job earlier than the other frequen-

cies and leave more time to cool down the chip temperature to a lower level in the

second state. However, it also causes a corresponding high peak temperature. Since

we are only focusing on the peak temperature minimization, the lowest neighboring

speed plotted in blue curve is the best option to reduce the peak temperature when

implementing the RunStop schedule. Then we further analyze how different cooling

constants can affect the performance. The detailed temperature information has been

collected in Table 4.2 to compare with the optimal ConstantSpeed approach. Even
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Figure 4.4: The temperature profile of running RunStop schedule with different cool-
ing conditions
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using the same working frequency, the peak temperatures are different. For example,

the RunStop schedule has a temperature difference of 3oC under the maximal fan

speed, as well as a temperature difference of 1oC under the minimal fan speed. From

this result, we can reach the conclusion that the cooling condition does affect the

performance of thermal management algorithm. Further more, the RunStop schedule

could achieve a better performance with low fan speed.

Table 4.2: Peak temperatures under different fan speeds
Algorithm Max fan speed (4500RPM) Min fan speed (1500RPM)

ConstantSpeed 44oC 52oC
RunStop 47oC 53oC
Difference 3oC 1oC

TwoSpeed schedule analysis

To implement the TowSpeed schedule, 6 available neighboring working frequencies

are selected and divided into 3 speed groups as shown in Table 4.3. Each frequency

group has been used to implement TowSpeed schedule and tested under different

cooling conditions. To make the figure clearer, we only plot the thermal trace of big

neighboring speed group and small neighboring speed group to cover all the scenar-

ios. From the experimental results in Figure 4.5, we can see that the small speed

group can always outperform the other two speed groups and achieve a lower peak

temperature at each cooling condition. Thus, it validates the second principle men-

tioned in Section 4.2 still feasible in the practical hardware platform. In addition,

the detailed temperature information are collected in Table 4.4. It shows that by

implementing the TowSpeed schedule, the peak temperature can be controlled as low

as 47oC. Therefore, the TwoSpeed schedule is as good as using the constant speed

at minimal fan speed. It proves that the TwoSpeed schedule is more effective under

the minimal cooling condition.
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Figure 4.5: The temperature profile with the TwoSpeed schedule under different
cooling conditions

54



Table 4.3: Different speed group
Frequency group Frequency levels (GHz)

Big neighboring speed 2.667 1.333
Mid neighboring speed 2.4 1.6

Small neighboring speed 2.133 1.867

Table 4.4: TwoSpeed schedule under different Cooling condition
Algorithm Max fan speed Min fan speed
OneSpeed 44oC 52oC

Small neighboring speed 47oC 52oC
Big neighboring speed 55oC 60oC

Scheduling algorithm comparison

After we analyzing the efficiency of each thermal aware schedule algorithm, we eval-

uate their performance by comparing the peak temperature with their best scenario.

From the experimental result in Figure 4.6, it shows that both the RunStop and

TwoSpeed schedule can achieve almost the same results. However, from Table 4.5,

we can see that the TwoSpeed schedule can outperform the RunStop schedule at the

minimal fan speed by 1oC. They have the same performance at the maximal fan

speed.

In addition, we also compare the DVFS based thermal-aware scheduling algo-

rithms with the MaxPerf algorithm, which executes the process with the maximal

working frequency. In Figure 4.6, the red line presents the thermal profile without

using thermal management technique. Table 4.5 shows that by implementing the

DVFS technique, the peak temperature can be decreased as much as 11oC at the

maximal fan speed, and 8oC at the minimal fan speed.

Table 4.5: Temperature comparison under different fan speed
Algorithm Max fan speed (4500RPM) Min fan speed (1500RPM)
Max speed 55oC 63oC
Run stop 47oC 53oC

Two speed 47oC 52oC
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4.5 Summary

Power consumption and heat dissipation are the major design constraints. To solve

this issue a lot of research works have been published based on mathematical simu-

lation. However, many important practical parameters like the cooling constant and

ambient temperature are underestimated, their experimental results are not accurate.

Thus it is very necessary to test those thermal management techniques on a prac-

tical hardware platform. In this chapter, we first proved the DVFS based thermal

management technique is an effective approach to control processor temperature by

comparing it with the traditional air-cooling method. Then we implemented differ-

ent thermal aware scheduling algorithms on our customized hardware platform and

analyzed their efficiency under different cooling conditions. From the experimental

results, we proved that the two widely used theoretical principles are achievable on

the practical hardware platform.
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CHAPTER 5

A PRACTICAL ON-LINE DYNAMIC THERMAL MANAGEMENT

ALGORITHM ON SINGLE CORE MICROPROCESSOR

In the previous chapter, we studied the effectiveness of the dynamic thermal man-

agement techniques in controlling the peak temperature on the practical computing

system. To further study the importance of the dynamic thermal management algo-

rithm, in this chapter, we first analyze the limitations of the existing theoretical work.

Then we proposed a reactive DTM algorithm to maximize the throughput under a

given peak temperature constraint.

5.1 Related Work

Thermal aware scheduling, as one of the most effective dynamic thermal management

techniques, has been researched extensively in recent years. Some researches [9, 125,

44] take the temperature and leakage interdependency into consideration to optimize

the total energy consumption. Some other approaches [20, 62] seek to minimize the

peak temperature at run time. There are also some other researches that studied the

thermal-aware performance maximization problems [18]. Modern processors have a

thermal aware self-protect mechanism, which automatically shut down a processor to

avoid physical damage [93] when its temperature exceeds a certain threshold. Thus,

the processor temperature needs to be carefully monitored and managed to avoid

sudden performance disruption. To this end, Zhang and Chatha [134] presented a

pseudo-polynomial time speed assigning algorithm based on dynamic programming to

minimize the total execution latency. They further developed several heuristics [136]

to maximize the throughput of a real-time system by sequencing the execution of

a task set consisting of tasks with different power and thermal characteristics for

processors with and without DVFS capabilities. Chantem et al. [18] proposed to run
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real-time tasks by frequently switching two neighboring speeds other than a constant

speed under a given peak temperature limit.

Most theoretical thermal aware scheduling algorithms are based on simplified mod-

els and idealized assumptions [18, 100, 126]. For example, some of them employ the

lumped first order RC thermal model to simulate the temperature dynamics. How-

ever, most of these approaches require a detailed knowledge of processes running on

the platform, such as the exact number of processes and their execution times, which

is not always available on a general computing platform. Some other information

such as the thermal resistance and thermal capacitance, that are essential to build

the thermal model for the processor, are also not immediately available. In addi-

tion, some common assumptions, which are used in these approaches, may not be

applicable in the practical scenario. For example, it has been a common practice to

assume [134] that power consumption of a processor remains constant as long as it is

executed using a constant speed. However, in reality, power consumption varies with

not only temperature but also applications. Also, it is not surprising that a process

consumes different power consumptions at different execution stages. It has been

reported [131] that the processor temperature changes rapidly even though the work-

load is static. Although theoretical work can simplify research problems and help

to uncover the fundamental principles in practical scenarios, practical applications

must deal with some important details in the real-life environment. In the following

section, we implement several theoretical works on our platform and analyze their

limitations.

5.2 Practical Hardware Limitations Analysis

To develop a general thermal aware scheduling algorithm for the desktop computing

platform, the less information is required regarding the processes and platform, the
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more effective the algorithm can be. In this regard, the reactive two speed (RTS)

scheduling approach, proposed by Wang [119]et al. seems to be a good choice. Ac-

cording to this algorithm, the processor runs at the maximum speed until it reaches

the temperature limit, and then it will run at a constant speed, so called the equi-

librium speed, to maintain the temperature without exceeding the limit. It has been

theoretically proved [27] this is the optimal approach to maximize the workload under

a peak temperature constraint.

However, there are a number of problems with this approach. First, since most

processors support only discrete levels of working frequencies. The ideal equilibrium

speed may not always exist for any given peak temperature constraints. Furthermore,

the power consumption of the processor varies with not only the processor speed, but

also other factors such as the types of processes, operating temperature, etc. In fact, a

processor running a single process may have different power consumptions at different

times. Therefore, the equilibrium speed is not unique and constant at all, and it is

simply not possible to simply set a processor to a constant speed once and for all to

maintain a constant temperature.

To deal with these problems, one reactive thermal management algorithm [93], as

shown in Figure 5.1, has been proposed. It seems to be more flexible compared to

the reactive two speed approach. This approach assumes that no a priori knowledge

of the applications running on the computing system is known at all. It monitors the

chip temperature regularly and adjusts the processor performance dynamically. At

the first stage of the execution, the processor is assigned with the maximal working

frequency to guarantee the maximal throughput until the temperature reaches the

temperature threshold. After that, at each temperature sampling point, if the current

temperature does not reach the threshold, the processor speed is elevated to one level

higher. Otherwise, if the current temperature equals or exceeds the temperature limit,
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Figure 5.1: The conventional dynamic thermal management algorithm (CDTM).
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the processor speed is changed to one level lower to cool down the temperature.

At first glance, it seems that this approach can solve all the problems mentioned

above. It naturally assumes that the processor has discrete working frequency levels.

And it does not assume any a priori knowledge of the programs running on the pro-

cessor either. However, there are still a few problems that make this approach less

effective in a practical desktop environment. Because there are two important condi-

tions that have to be satisfied to guarantee the accuracy of this approach. First, this

approach assumes that the instant temperature information is available immediately

and accurately. Second, updating the frequency one level at a time must be quick

enough to respond to the temperature change and meet the temperature constraint.

But, in a practical scenario, those assumptions cannot be true.

We use a simple example to explain why those two assumptions are not practical.

First, the thermal sensor cannot keep up with the rapid temperature changes. As

shown in Figure 5.2, recall that it takes about 1 second for the computing system to

reflect a temperature change. It is possible that even though the system temperature

has already reached or surpassed the temperature threshold at t1, the sensor reading

may still be lower than the temperature limit. In this case, if the computing system

continues to increase the frequency, the temperature will keep raising and eventually

exceed the peak temperature constraint. Moreover, even though this algorithm can

detect the thermal emergency at t1, it has to adjust frequency one level at a time.

Thus, it may not be able to reduce the temperature fast enough (i.e. the frequency

switching overhead for computing system is around 10ms [59] ). The temperature

will continue to increase and eventually overstep the peak temperature constraint. To

solve those problems, we develop a new dynamic thermal management algorithm that

can maintain the processor temperature under a limit while maximizing the system

performance.
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Figure 5.2: An example of temperature trace.

5.3 An Enhanced Dynamic Thermal Management Algorithm

Being able to monitor the temperature change timely and accurately is one of the

most critical issues for our approach. Theoretically, it is possible to use the interrupt

mechanism to monitor thermal sensor readings, and it will be our future work to study

the effectiveness and efficiency of using interrupts for this purpose. In this work [93],

we use the simple polling method to monitor thermal sensors for the temperature

variations. As a result, defining the appropriate sampling period becomes critical.

5.3.1 Non-Constant Sampling Interval

One intuitive idea to define the sampling period is to set the period as small as pos-

sible. So it can detect the temperature change quickly, and only generate negligible

accumulated overhead. Unfortunately, using a very small sampling period can in-

crease the possibility of temperature violations. Since the sampling period has been

set very small, it will overreact with temperature changes (e.g. rapidly increase the

processor working frequency within a small interval). Because it does not give enough

time for the adjusted frequency to reach its stable temperature, it can mislead the

scheduling algorithm. On the other hand, setting the sampling period too large will
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lead to not catching temperature timely. Thus, the sampling period should be care-

fully defined based on the special characteristic of the practical platform.

Given the limitations of the temperature sensor in our platform, in our approach,

we set the sampling period to be equal to the minimal response time of the thermal

sensor for temperature change. To identify the minimal temperature response time,

we ran different benchmarks at different speeds with different sample periods. The

minimal interval, for which the temperature sensor has the same reading, is set to

be the sampling period Psample. From our empirical work, we found the minimal

temperature response time to be 0.98 seconds.

The sampling period defined above can be more effective in avoiding the mis-

handling of a temperature change. However, in the worst-case scenario, it does not

always take 1 second to identify temperature change, (e.g. when the thermal reading

changes exactly after one sampling point). To further improve the performance, we

develop a more accurate sampling technique, which uses a non-constant sampling

periods to detect temperature change. It consists of two sampling periods, Pregu and

Psmal (i.e. Pregu >> Psmal), which are regular sampling period and small sampling
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period respectively. In our case, Pregu = 0.98 seconds and Psmal = 0.1 seconds.

The DTM algorithm with variable sampling frequency (VS-DTM) is described in

Algorithm 1. First, the temperature information is collected from on-chip thermal

sensors (i.e. line 2). If a temperature change is not detected, the processor speed

remains the same. However, it is very possible that the temperature change can occur

very soon. Thus, the small sampling period Psmal is selected to detect the potential

temperature change for the next sampling period (i.e. line 3-4). On the other hand,

if a temperature change is detected after the regular sampling period Pregu, the next

temperature change cannot be detected before another 0.98 seconds due to the delay

of the temperature sensor, we can safely set the sampling period as Pregu. In addition,

the processor working frequency is adjusted based on the comparison between Tcurr

and TTHRESHOLD (i.e. line 6- 11). In comparison with the algorithm using a constant

sampling period, this approach catches temperature changes faster and responds to

them more timely.

Algorithm 1 DTM with variable sampling frequencies (VS-DTM)

1: while Process is running do
2: Read current temperature Tcurr;
3: if Tcurr = Tprev then
4: Set Psample= Psmal;
5: else
6: if Tcurr < TTHRESHOLD then
7: Increase processor speed by one level;
8: else
9: Decrease processor speed by one level;

10: end if
11: Set Psample= Pregu;
12: end if
13: end while
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5.3.2 Offline Thermal Analysis for Safe Speed

Even though VS-DTM (Algorithm 1) can effectively detect a temperature change, it

still adjust the processor speed one level at a time. Thus, when temperature is really

close to its limit, it is simply not fast enough to slow down the processor speed to

cool down the temperature in time. On the other hand, when the temperature is

much lower than the temperature threshold, the processor speed is not increased fast

enough to maximize the throughput.

To solve these problems, we first introduce a concept called the buffer zone as

shown in Figure 5.3. Given a temperature threshold TTHRESHOLD, the temperature

buffer zone is defined as the interval of [TSAFE, TTHRESHOLD], where TSAFE is deter-

mined by the following equation

TSAFE = TTHRESHOLD −4T, (5.1)

where 4T is the maximum possible temperature increment within one sampling pe-

riod. 4T can be determined empirically. Using SPEC2000 benchmark, we found that

4T = 4oC. When the temperature is lower than TSAFE, we say that the temperature

is in the safe region. When the processor temperature is within the safe region, we

can safely use the highest possible speed to maximize the throughput before temper-

ature enters into the buffer zone. Thus, the problem becomes how to define the safe

speed to run the task and ensure the temperature does not exceed the threshold after

entering the buffer zone.

To solve this problem, we can conduct an offline thermal profiling analysis to

identify the safe speed (Ssafe) when running a task in its buffer zone. Consider the

commonly used thermal model as follows

dT (t)

dt
= aP (s)− bT (t), (5.2)
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where T (t) is the temperature at time t, P (s) is the power consumption with processor

speed of S, and a, b are the cooling constants. To ensure that temperature does not

exceed TTHRESHOLD, we only need to make sure when temperature is located in the

buffer zone, we have

dT (t)

dt
|T (t)∈[TSAFE ,TTHRESHOLD]= 0, (5.3)

By combining equation (5.2) and (5.3), analytically we can solve for processor speed

S. However, it can be extremely challenging to determine the analytical function of

P (s) and the cooling constants a, b. Hence, we determine the safe speed empirically

from the SPEC2000 benchmark. Specifically, given a task set Γ = {τ1, τ2, ..., τN},

Tstable(τi, sj) denotes the stable temperature when running τi using processor speed

sj. Let Si be the speed such that

Si = max{sj such that Tstable(τi, sj). ≤ T THRESHOLD}. (5.4)

And the safe speed Ssafe is determined as follows.

Ssafe = min
τi∈T

Si. (5.5)

Each benchmark is executed by using all the available CPU speeds and the corre-

sponding peak temperatures are recorded to build up a look up table to guide the

scheduling algorithm making thermal management decision.

With the safe speed available for each task, we are ready to present our enhanced

reactive dynamic thermal management (ERDTM) algorithm, which is depicted in Al-

gorithm 2. It is developed based on the VS-DTM algorithm. When the processor is

executing a task and its temperature is within the safe region, The highest processor

working frequency Smax is used to guarantee the maximal throughput (line 5-6). Oth-

erwise, it selects the safe speed Ssafe to make sure the temperature constraint is not
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violated (line 7-9). If the running task sets are known a priori, we can further improve

the performance of our algorithm by building up a lookup table. The lookup table

lists the tasks and their specific safe speeds under different temperature constraints,

as defined in equation (5.4). In that case, we can use the corresponding safe speed

depending on the current running process to further maximize its throughput.

Algorithm 2 Enhanced Reactive Dynamic Thermal Management
(ERDTM)

1: while Process is running do
2: if Tcurr = Tprev then
3: Set Psample = Psmal;
4: else
5: if Tcurr ≤ TSAFE then
6: Set processor speed to the Smax;
7: else
8: Set processor speed to Ssafe.
9: end if

10: Set Psample = Pregu;
11: end if
12: end while

5.4 Experimental Results

In this section, we first evaluate each thermal-aware throughput maximization algo-

rithm (i.e. CDTM, VS-DTM and ERDTM) by comparing their ability to control the

processor temperature under a temperature constraint. Then, we analyze their perfor-

mance by analyze the throughput, which is obtained with each thermal management

algorithm.

5.4.1 Experiment Setup

All experiments were carried out with the same ambient temperature and initial chip

temperature to get credible and comparable experiment result. Eight benchmarks,

which include both integer operation and floating point operation, have been selected
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Table 5.1: Lookup table for SPEC 2000 benchmarks
Frequency levels (GHz)

Benchmarks 2.6GHz 2.4GHz 2.2GHz 2.1GHz 1.8GHz
galgel 64oC 61oC 59oC 57oC 54oC
ammp 59oC 55oC 53oC 49oC 48oC
lucas 54oC 51oC 48oC 46oC 44oC

equake 57oC 53oC 49oC 45oC 43oC
vpr 60oC 57oC 53oC 50oC 48oC
gcc 61oC 58oC 54oC 51oC 47oC

parser 60oC 57oC 55oC 51oC 47oC
crafty 57oC 55oC 51oC 48oC 45oC

from the SPEC CPU2000 benchmark suit (i.e. vpr, gcc, parser, crafty from integer

operation and galgel, ammp, lucas, equake from floating point operation). In our

work, the temperature threshold has been selected at 55oC.

We first built up the lookup table by running each benchmark with different work-

ing frequencies. The corresponding peak temperatures and speed levels are recorded

as shown in Table 5.1. As discussed in section 5.3, Table 5.1 shows running different

applications can result in distinctly different stable temperatures even with the ex-

actly the same speeds. This clearly demonstrates the limitations of many theoretical

results.

5.4.2 DTM Algorithm Performance Evaluation

As we mentioned before, when temperature exceeds the critical temperature limits,

it could cause serious hardware damage, and even crush the entire computing sys-

tem. Thus, effectively maintaining the processor temperature under the temperature

threshold is the highest priority for the thermal-aware scheduling algorithm. To eval-

uate how effectively each algorithm can control the temperature, we ran our bench-

marks with all three approaches on our hardware platform. Processor temperature

exceeding the threshold is defined as a temperature violation. Then the total number
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Figure 5.4: The number of temperature violations after implementing different ther-
mal management algorithms

of temperature violations derived from each thermal-aware schedule (i.e. CDTM, VS-

DTM and ERDTM) are plotted in Figure 5.4. The experiment result shows that after

implementing the CDTM algorithm, the average number of violations is 72 during the

whole process. However, after we implemented the VS-DTM scheduling algorithm,

the number of temperature violations can be reduced as much by as 88% in aver-

age. Another important observation is that our ERDTM algorithm can effectively

eliminate the temperature violation and keep the temperature under the threshold.

To further study the details of how ERDTM and VS-DTM can outperform CDTM

in reducing the number of temperature violations, we plotted the temperature trace

when running benchmark galgel with each of the three algorithms. From the ex-

perimental result in Figure 5.5, running the benchmark with the CDTM algorithm

can cause excessive temperature violations. This is mainly due to two reasons: first,

because of the hardware limitations, the thermal sensor cannot keep up with the

rapid temperature changes timely. Thus, the temperature continues to rise even if it

is already close to the temperature limit; Second, the CDTM algorithm constantly
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decreases or increases the processor speed level, no matter whether the temperature

changes or not. To this end, the CDTM algorithm does not provide enough time for

the temperature to reach a stable state before changing it to a new speed level. On the

other hand, as shown in Figure 5.6, the VS-DTM algorithm can significantly reduce

the number of temperature violations, simply because it can detect the temperature

change more timely. The experiment results show that the temperature oscillation

range has also been reduced by as much as 50% after implementing the VS-DTM

algorithm. However, there are still several spikes (i.e. temperature violations) as

shown in Figure 5.6. This is due to the fact that VS-DTM has to adjust the working

frequency one level at a time, and sometimes the frequency adjustment cannot keep

up with the rapid temperature changes. In contrast, Figure 5.7 shows that our pro-

posed ERDTM algorithm can perfectly maintain the temperature under the threshold

without any temperature violations. After doing the offline thermal profile analysis,

the temperature lookup table can perfectly guide the ERDTM algorithm to manage

the processor temperature.

5.4.3 DTM algorithm Throughput Analysis

In the previous subsection, we already evaluated the efficiency of each algorithm on

controlling the temperature under the threshold. We further analyze those thermal-

aware schedules with the throughput maximization perspective. We execute the same

benchmarks with all of the algorithms, the execution time from each individual ap-

proach are recorded for comparison. The execution time for each benchmark with

different algorithms are normalized and plotted in Figure 5.8. It clearly shows that

the CDTM algorithm always take the longest time to finish a benchmark. It is sim-

ply because of two reasons: first, as discussed in the previous subsection, the CDTM

algorithm lacks accuracy in maintaining the temperature under the threshold. Thus,
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Figure 5.5: Massive temperature violations occur with the CDTM approach
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Figure 5.6: Temperature violations has been significantly reduced with the VS-DTM
technique
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Figure 5.7: ERDTM algorithm completely eliminates peak temperature violation

the processor speed is over reduced to avoid temperature violations. As a result, the

throughput is decreased. Our experiments show that the processor temperature can

be lower than the threshold by as much as 4oC. Second, it adjusts the processor fre-

quency constantly. The massive frequency-switching overhead caused by the DVFS

technique increased the overall execution time.

However, after implementing the VS-DTM algorithm, the system throughput has

been improved by as much as 2.4%. Compared to the CDTM algorithm, the VS-DTM

algorithm can respond to the temperature changes more quickly. Because of the close

correlation between the temperature and throughput, the VS-DTM can achieve a

better throughput performance. Figure 5.8 shows that the ERDTM algorithm has

the best throughput performance. The experimental result shows that it improves

the execution time of CDTM by 8.1% in average. The improvement comes from the

fact that we use the maximum speed to run the benchmark when the temperature

is in the safe region, which outperforms the cases when the processor speed has to
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Figure 5.8: Throughput comparison with different thermal management algorithms

be increased one level at a time for every sampling period. Also, when the tempera-

ture enters the temperature buffer region, we use the safe speed to further maximize

its throughput and ensure the temperature constraint at the same time. Overall,

the experiment results show that the ERDTM algorithm not only can precisely con-

trol the processor temperature under a pre-defined temperature limit but it also can

significantly improve the throughput for the computing system.

5.5 Summary

The dynamic thermal management is becoming one of the most effective techniques

to address the thermal issue for the computing system. Carefully maintaining the

processor temperature under a critical temperature limit to avoid fatal hardware

damage has already become an important research problem. In this chapter, we first

analyzed the limitations of the theoretical thermal management algorithms on the

practical hardware platform. To further address those limitations, we proposed our

DVFS-based thermal aware scheduling algorithms ERDTM to maximize the through-

put under a given peak temperature constraint.
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CHAPTER 6

NEIGHBOR-AWARE DYNAMIC THERMAL MANAGEMENT FOR

MULTI-CORE PLATFORMS

In the previous chapter, we proposed a reactive thermal-aware throughput maximiza-

tion algorithm for the single core microprocessor platform. However, the reactive

thermal management techniques heavily reply on the processor temperature infor-

mation, that is obtained either from the thermal model or the thermal sensors, to

trigger the thermal management operation. This special characteristic can cause a

series of problems and directly affect the overall system performance. For instance,

because of the manufacture variance and the sensor placement, the on chip thermal

sensor lacks accuracy. In addition, even though the sensor can detect the thermal

emergency timely, it still takes time for the algorithm to respond to the temperature

change. To address the problems above and extend our research to the multicore

platform, we first developed a temperature prediction technique, which can take the

heat transfer from the neighboring cores into consideration to accurately detect the

temperature emergency. Based on this temperature prediction technique, we propose

a thermal management algorithm, which can significantly optimize the computing

system throughput without exceeding the temperature limit.

6.1 Related Work

Fueled by the market need for high computation capability, the size of transistors is

continuously shrinking, and more and more transistors are integrated into a single

chip to build up more complicated circuit architectures, i.e. chip multiprocessors

(CMPs). As a result, the power density within the chip and the heat generated by

transistors increase rapidly in CMPs. Thus, power and thermal issues become major

challenges for the further improvement of computing performance on CMPs.
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The rapidly growing heat generation greatly increases the packaging and cooling

costs, and adversely affects the life-span, performance, and reliability of a computing

system. The increased heat dissipation can cause thermal failures, even permanent

physical damage to the processor. Therefore, developing an effective thermal man-

agement solution is highly desirable, not only to balance the chip’s temperature but

also to enable the computing system to operate at a high computing performance

without exceeding its temperature limit.

The dynamic thermal management technique (DTM) is one of the most effective

approaches to address the power and thermal design problems. Many theoretical

works have been done by using the dynamic voltage and frequency scaling (DVFS)

technique [70, 104, 59, 58], which can control the temperature by dynamically ad-

justing the processor speed based on the workload. For example, Chantem [18] et

al. proposed an algorithm to run real-time tasks under temperature constraint by

switching two available speeds neighboring of the ideal speed. However, DVFS tech-

niques sacrifice the performance to cool down the temperature. Task migration is an

alternative technique to manage the temperature by balancing the workload among

CPU cores without slowing down the processing speed [131, 58, 36, 68]. For example,

Gomaa [37] et al. proposed a reactive task migration algorithm, that migrates the

task away from overheated core to the coolest core. However, most theoretical ther-

mal management algorithms are based on simplified models and assumptions, such

as the assumption that the accurate temperatures of processors are readily available,

which is not necessarily true on a real-life platform.

When DTM techniques are applied for real applications, they must deal with im-

portant practical details in the practical environment. To this end, many researches

have been carried out based on practical hardware platforms [69, 110, 7, 38, 123, 49].

For example, Yefu [122] et al. proposed a chip-level power management algorithm
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by using control theory and implemented their algorithm on an Intel Xeon desktop.

Ahn [4] et al. developed and validated a heuristic to reduce the power consumption

and control the temperature on the Intel Centrino Duo and ARM-11 MPCore plat-

forms. The algorithms above rely on the thermal sensor reading to trigger their DTM

actions. Since the thermal sensor lacks accuracy due to their placement location and

long latency, the effectiveness of the DTM techniques can be severely degraded. Even

if the thermal sensor can accurately detect a thermal emergency when the tempera-

ture reaches the threshold, it still takes 100 to 200 millisecond for the DTM manager

to decrease the frequency or migrate the hot task to a different processor [59]. As

a result, the temperature would exceed the threshold before the algorithm takes ef-

fect. To this end, predicting the potential thermal emergency before thermal failure

occurring is a very important feature for the DTM algorithm [36]. In response to

this, Inchoon [131] et al. proposed a temperature prediction algorithm that takes

the application’s thermal behavior into consideration. Khan [58] et al. developed an

alternative thermal management schedule that combined temperature history based

prediction and task migration techniques to efficiently control the CPU temperature

under threshold. However, they assume that at each sampling point, the temperature

will increase at the same rate until it reaches the threshold, which is not true in a

real-life scenario.

In this Chapter, we develop an on-line predictive thermal management algorithm

to maximize the throughput on multi-core systems while satisfying the peak temper-

ature constraint. Compared with the previous work, we make three major contribu-

tions in this work:

• We develop a temperature prediction method, which can predict the tempera-

ture of a core more accurately by taking its temperature as well as the neigh-

boring impacts into consideration.
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• We develop a new task migration strategy. While it has been a common ap-

proach to migrate tasks from the hottest to the coolest core, our approach

chooses the destination core differently. We choose the destination core not

only by its current temperature, but also by the temperature trends as well as

the neighboring impacts as well.

• We validate our algorithm on a practical hardware test bed, i.e a desktop work-

station with an Intel i5 750 quad core microprocessor. The experimental results

show that our proposed algorithm can significantly outperform the conventional

approach.

6.2 Preliminary

We first use a motivation example to illustrate the the importance of heat transfer

from neighboring processor, then we formulate our research problem.

6.2.1 Motivation Example

Before we propose our neighbor-aware temperature prediction technique, we first use

a motivation example to study how significant the temperature from neighboring

processors can affect processor temperature and why we should take this factor into

consideration when developing temperature prediction algorithm. As we mentioned

in the previous chapter, the processor heat dissipation comes mainly from the power

consumed by the processor. However, there is another important heat resource, which

comes from the neighboring processor cannot be ignored. Since the number of tran-

sistors and cores that are integrated into the CMPs chip, the power density rapidly

increases. Each processor also receives heat transferred from its surrounding neigh-

bor. This heat can also heat up a processor, even though it is not running at the high

power status.
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Figure 6.1: Temperature trace with Hot and Cool neighbor processors

To illustrate this scenario, we executed one set of experiments to study how dif-

ferent neighbor environments can affect the processor temperature. First, we selected

one core of our multi-core platform, for which its working frequency was set to the

minimal speed level without executing any benchmark. Then, we collected the tem-

perature trace of this idle processor with two different neighbor environments. With

the Hot neighbor environment, the surrounding processors have been assigned with

the highest working frequency and executing a hot process to create a high temper-

ature neighbor environment. On the other hand, with Cool neighbor environment,

all the neighbor processors have been assigned with low working frequency running

a cool task. The temperature information of the idle core with two different neigh-

bor environments are collected and plotted in Figure 6.1. The experimental result

clearly shows that even when the idle processor does not execute any process, the

heat transfer from the neighboring processor can also heat up its temperature by as

much as 18oC (i.e. 61oC at the stable state). In contrast, the idle core temperature

only increased 5oC (i.e. 45oC at the stable state) with the cool neighbor environment.
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The above motivation example clearly demonstrated how significant the neighbor

environment could affect the processor temperature. To this end, the heat transfer

from the surrounding processors must be taken into consideration when developing

the thermal management algorithms.

6.2.2 Problem Description

To address the research problems, the system considered in this work consists of N

tasks, denoted as Γ = {τ1, τ2, ..., τN} and M identical processors, denoted as P =

{P1, P2, ..., PM}. The problem discussed in this chapter is how to manipulate the

scheduler such that the throughput of the system can be maximized and the processor

temperature can be maintained under peak temperature constraint, T THRESHOLD.

The formal description of the problem is represented below.

Problem Description : Given a task set Γ and a multi-core system P , maximize

the throughput of the system under the peak temperature constraint.

For processor Pi, we use a tuple (Ti, ti) to represent the temperature of Pi at a

certain time point ti. To be more specific, we use T curri and T previ to denote Pi’s

current temperature and previous temperature respectively, while tcurri and tprevi are

the corresponding time.

In this chapter, we developed a heuristic to solve the above problem based on

task migration and DVFS technique. We first introduce two temperature prediction

methods, which can predict the future temperature of a processor core by considering

both local temperature history and neighbors’ effect. Next, once a potential risk is

detected under our temperature prediction model (i.e. the predicted temperature is

over the threshold), we dynamically manage the executions of corresponding tasks

on that core by either migrating the hot task to other candidate cores or changing

the corresponding working frequency on that core based on the temperature status.
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By considering the neighbors’ current temperature and their temperature changing

trends, we can select a processor among all available candidates to improve the total

system performance from a global and long-term perspective.

6.3 Neighbor-Aware Temperature Prediction

As we discussed in Section 6.1, the reactive approach might not precisely react with

the temperature change due to the latency cased by the dynamic thermal management

techniques, such as reading the thermal sensor, changing processor working frequency

or migrating the task from hot core the a cooler core. Thus, an effective temperature

prediction heuristic, which can accurately detect the temperature emergency, is highly

demanded. In this section, we introduce our neighbor-aware temperature prediction

techniques.

6.3.1 Temperature Prediction Model

In this subsection, we introduce the temperature prediction model, which takes the

heat transfer from the neighboring processors into consideration. It can accurately

predict the future temperature of a core as well as its future trend. First, we introduce

the following definitions to represent the future local temperature increment of each

processor individually.

Definition 6.3.1. Given processor Pi, the local increment factor of Pi, denoted as

I ini , is defined as

I ini = T curri − T previ . (6.1)

This local temperature increment will be used to predict the future temperature

at the next sampling point. Figure 6.2 shows an example of the temperature trace of a

running process. We make the assumption that the temperature will keep increasing

at the same rate if the sampling interval is extremely small (i.e. ∆t is the sampling
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Figure 6.2: Temperature history based prediction

period). The current temperature T curr is obtained from the thermal sensor. It has

been used to predict the temperature at the next sampling point T pred with the most

recent temperature history T prev. In our work, the sampling period has been set to 1

second, since this is approximately how long it takes for the thermal sensor to reflect

a temperature change [1].

As we discussed in Section 6.2.2, besides the heat generated by the processor itself,

its temperature is also affected by other processors on the same chip. In this work, we

define the neighbor processors of a processor Pi, denoted as PNBi , as the cores which

are adjacent to Pi. When predicting the temperature of a processor, we only consider

the heat transfer impacts from its neighboring processors to simplify our algorithm.

By considering the effect of neighbor processors, we define the following two concepts

to represent the neighbors’ thermal effect for a given processor. The first concept,

i.e. neighbor average factor, represents the average temperature of all neighbors.

The second concept, i.e. neighbor increment factor, represents the temperature

increment trend of all neighbors. Two concepts are formally defined as follows.

Definition 6.3.2. Given any processor Pi, the neighbor average factor of Pi, denoted
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as A(Pi), is defined as

A(Pi) =

∑
Pj∈PNB

i
T currj

|PNBi |
(6.2)

Definition 6.3.3. Given any processor Pi, the neighbor increment factor of Pi, de-

noted as I(Pi), is defined as

I(Pi) =

∑
Pj∈PNB

i
(T currj − T prevj )

|PNBi |
(6.3)

According to Definition 6.3.3, I(Pi) represents the average temperature increment

of Pi’s neighboring processors. In other words, the neighbor increment factor describes

the temperature increment speed for each processor’s neighbors.

Consider processor Pi, the temperature increment caused by Pi’s neighbors can

be calculated as following

Inbi = γ1 · A(Pi) + γ2 · I(Pi), (6.4)

where γ1 and γ2 are the weights of A(Pi) and I(Pi), respectively, which can be

obtained from doing off-line analysis. The detailed implementation will be introduced

in the later section.

With the above definitions, we are now ready to introduce our temperature pre-

diction model. Let T predi denote the predicted temperature for Pi. We formulate T predi

as a linear function of its current temperature T curri , its local temperature increment

rate I ini , and also its neighbor effect factor Inbi , as shown below:

T predi = αi · T curri + βi · I ini + γi · Inbi , (6.5)

where αi, βi and γi are weight parameters for Pi.

In addition, to make our prediction model more accurate, we take different pro-
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Figure 6.3: Different processor location scenarios

cessor location scenarios into consideration. Each processor with a different number

of neighboring cores has different neighbor effects as shown in Figure 6.3. Thus, the

temperature prediction for a task τi can be categorized into three cases: 1) τi runs

on a corner processor; 2) τi runs on a boundary processor; 3) τi runs on a middle

processor. Then we discuss the neighbor effect for τi by using matrix.

Temperature prediction base T̂Bi is a 3× 1 vector:

T̂Bi = [T curri , I ini , I
nb
i ]

T
.

Based on the different cases of processor position (i.e. corner, boundary and

middle), temperature prediction weights for different scenario can be expressed as

following.
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• weights for corner scenario:

wci = [αci , β
c
i , γ

c
i ].

• weights for boundary scenario:

wbi = [αbi , β
b
i , γ

b
i ].

• weights for middle scenario:

wmi = [αmi , β
m
i , γ

m
i ].

Combine all three scenarios of τi together, we have

Wi 3×3 = [wci , w
b
i , w

m
i ]

T
.

The above temperature prediction model already took the processor neighbor

effect, as well as the different task locations into consideration. Thus, based on this

accurate model, we proposed two temperature prediction algorithms in the following

section.

6.3.2 Neighbor-Different Prediction

In this subsection, we introduce a neighbor-different temperature prediction (NDTP)

algorithm, which considers all the different scenarios of neighbor processor condition

as discussed in the previous subsection. We conduct the temperature prediction
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matrix, i.e. T̂i to represent the temperature prediction result for task τi.

T̂i 3×1 = [T ci , T
b
i , T

m
i ]

T
,

where T ci , T bi and Tmi are the temperature prediction results for corner processor,

boundary processor and middle processor, respectively.

For each item of T̂i , i.e. T xi , x ∈ [c, b,m], the temperature can be calculated by

T xi = [αxi , β
x
i , γ

x
i ]× [T curri , ∆T ini , ∆T nbi ]

T
= wxi ×Bi, (6.6)

thus, we have 
T ci

T bi

Tmi

 =


αci βci γci

αbi βbi γbi

αmi βmi γmi

×

T curri

∆T ini

∆T nbi

 (6.7)

or

T̂i = Wi ×Bi. (6.8)

Since we can get the weight matrix Wi off-line, the predicted temperature of τi

can be obtained on-line by determining the host processor position of τi.

The detail flow of NDTP algorithm is presented in Algorithm 3. For any pro-

cessor Pi, the current temperature obtained from the thermal sensor, and the most

recent temperature are stored in the temperature history table. They are denoted as

T curri and T previ respectively (i.e. line 1 and line 2). Then, based on the assumption

that the temperature will keep changing at the same rate after the next sampling

interval, we are able to calculate the local temperature increment from the current

and previous temperatures (i.e. line 3). Moreover, the schedule takes the heat trans-

fer from Pi’s neighbor processor into consideration by calculating the neighbor effect

from equation 6.4 (i.e. line 4). The weight factors can be determined by identifying

86



the processor’s location (i.e. line5 and line 6). Then the temperature at the next

sampling point can be predicted by using NDTP algorithm (i.e. line 7).

Algorithm 3 Neighbor-Different Temperature Prediction

1: T curri := the current temperature of processor Pi;
2: T previ := the previous temperature of processor Pi;
3: calculate the local temperature increment of Pi after ∆t by

I ini =
T curr
i −T prev

i

tcurri −tprevi
·∆t;

4: calculate Pi’s neighbors effect Inbi based on equation (6.4)
5: x = determine the location of processor, corner, boundary or middle;
6: determine the weight of τi under mode x such that

wxi = [αxi β
x
i γ

x
i ];

7: predict the future temperature of Pi by
T predi = wxi ·Bi

where Bi = [T curri I ini Inbi ];

6.3.3 Neighbor-Normalized Prediction

Instead of categorizing the processors into three categories and generating three dif-

ferent groups of weight, we propose a neighbor-normalized temperature prediction

(NNTP) algorithm to reduce the complexity for temperature prediction by applying

the least-square estimation [131] to derive one uniform and normal weight matrix for

all three different neighbor cases.

For any task τi, from equation (6.5), we know that the temperature prediction

problem is formulated by

T predi = αi · T curri + βi · I ini + γi · Inbi .

To map the above temperature prediction problem into a general least-square

problem, we construct a linear model for the output T pred by the following linear
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parameterized expression

T pred(t) = α · T curr(t) + β · I in(t) + γ · Inb(t),

where t = [t1, t2, t3] is the model’s input vector, T curr(t), I in(t) and Inb(t) are known

functions of t, and α, β and γ are unknown parameters to be estimated. Let T̂

represent [T curr(t), I in(t), Inb(t)], and Ŵ represent [α, β, γ]. In our model, let t be

time units, and can be chosen from three different scenarios with respect of neighbor

processor condition, i.e. t ∈ [tc, tb, tm], where tc, tb, tm represent the scenarios for

corner, boundary and middle processor respectively.

To identify the unknown parameters, Ŵ , experiments usually have to obtain a

training data set (T predj (t);T currj (t), I inj (t), Inbj (t)), where j = 1, ..., n. Expressed in

matrix notation, the following equation can be obtained:

T̂ pred = T̂ × Ŵ ,

where T̂ is a 3× 3 matrix:

T̂ =


T curr(tc) I in(tc) Inb(tc)

T curr(tb) I in(tb) Inb(tb)

T curr(tm) I in(tm) Inb(tm)

 (6.9)

Ŵ is a 3× 1 unknown weight parameter vector:

Ŵ = [α, β, γ]T , (6.10)
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and T̂ pred is a 3× 1 output vector:

T̂ pred = [T c, T b, Tm]
T
. (6.11)

If (T̂ pred)T T̂ pred is nonsingular, the least square estimator can be derived as

Ŵ = (T̂ T T̂ )
−1
T̂ T T̂ pred. (6.12)

Eventually, we predict the future temperature by applying equation (6.5), with

the corresponding task-based weight parameter obtained by equation (6.12).

Algorithm 4 Neighbor-Normalized Temperature Prediction

1: T curri := the current temperature of processor Pi;
2: T previ := the previous temperature of processor Pi;
3: calculate the local temperature increment of Pi after ∆t by

I ini =
T curr
i −T prev

i

tcurri −tprevi
·∆t;

4: calculate Pi’s neighbors effect Inbi based on equation (6.4)
5: get the weight parameter wi for current task, wxi = [αxi , β

x
i , γ

x
i ];

6: predict the future temperature of Pi by
T predi = wi ·Bi

where Bi = [T currenti , I ini , I
nb
i ];

The NNTP prediction algorithm could be described in the similar expression as

algorithm 3. First the schedule calculates the local temperature increment and the

neighbor effect (i.e. line1-3). Next, instead of identifying the task location, the

NNTP prediction algorithm use a least-square estimation method to calculate the

weight parameters from equation (6.4) (i.e. line 4). Then the expected temperature

at the next sampling point can be predicted (i.e. line 5-6).

6.4 Proactive Algorithm

With the temperature prediction algorithms, which are proposed in the previous

section, we are able to detect the thermal emergency in advance and leave enough time
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for the computing system to react to the temperature change. Thus, in this section,

we first introduce the algorithm that we used to select the candidate processor to

implement the task migration. Then, we give a detailed introduction of our neighbor-

aware dynamic thermal management (NADTM) algorithm.

6.4.1 Candidate Processor for Migration

When the thermal emergency is detected by the temperature prediction technique,

one solution is to migrate the task away from the hot processor to bring down the

temperature. To identify the appropriate destination, one common approach [37] is

to migrate the task to the processor with the lowest current temperature. However,

selecting the coolest processor is not always the best decision. Due to the sudden

neighboring processor temperature change or the potential of the big temperature

increasing rate by itself, the coolest core can rapidly become a hotspot after the next

sampling interval. Thus, to address this problem in our approach, besides the current

temperature of the candidate processor, we consider its neighboring temperatures, as

well as its temperature changing rate to make the migration decision.

We first introduce a concept, heat index, to quantify how hot a candidate processor

(i.e. Pk) is.

Definition 6.4.1. Given processor Pk, the heat index of Pk, denoted as H(Pk), is

defined as

H(Pk) =

∑
Pj∈PNB

k

⋃
{Pk} Tj

|PNBk

⋃
{Pk}|

. (6.13)

Intuitively, the smaller the heat index of a processor is, the better the candidate

processor it can be.

Besides the heat index of a processor, we also consider the temperature changing

rates of itself as well as its neighbors. We present the following definition, i.e. the heat

index increasing factor of a processor Pk, to capture this concept.
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Definition 6.4.2. Given processor Pk, the heat index increasing factor of Pk, denoted

as I(Pk), is defined as

I(Pk) =

∑
Pj∈PNB

k

⋃
{Pk}

T curr
j −T prev

j

tcurrj −tprevj

|PNBk

⋃
{Pk}|

. (6.14)

According to Definition 6.4.2, I(Pk) indicates how fast the temperature at Pk and

its neighbors can increase in average. Thus, the smaller the heat index increasing

factor, the better the candidate processor can be. From equation (6.13) and (6.14),

we choose the migration candidate as the one that minimizes

H(Pk) + I(Pk) ·∆t, (6.15)

where ∆t is the length of the sampling interval.

Note that task migration is not always effective in dealing with a thermal emer-

gency, especially when the workload is heavy. Given a processor Pk in thermal emer-

gency, it does not help much if the selected target processor (e.g. Pk) for migration has

a temperature very close to the peak temperature limit, even if the H(Pk)+I(Pk) ·∆t

is minimum among all other processors. Besides, too many unnecessary task migra-

tions may cause redundant context switch overhead, which could degrade throughput

performance. To avoid this scenario, in our approach, the tasks on processor Pk are

only allowed to migrate to processor Pk if

H(Pk) + I(Pk) ·∆t ≤ T THRESHOLD, (6.16)

where T THRESHOLD is the given temperature constraint. Otherwise, we can adopt an

alternative solution to cool down the processor. Such as selecting a safe working speed

for the processor Pk by using the same offline thermal profiling analysis approach.
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6.4.2 Thermal Management Algorithm

In this subsection, we introduce our proposed thermal management algorithm, the

NADTM algorithm, to maximize the throughput of a multi-core system while keeping

the temperature under a predefined peak temperature limit.

Algorithm 5 Neighbor-Aware Dynamic Thermal Management (NADTM) Algorithm

1: T previ := T curri // the temperature at previous sampling point ;
2: T curri := the temperature of Pi from temperature sensor;
3: T predi := predicted temperature of Pi at next sampling point based on equation

(6.5);
4: if T predi > T THRESHOLD then
5: Pk := the processor from P such that H(Pk) + I(Pk) ·∆t is minimum;
6: if H(Pk) + I(Pk) ·∆t ≤ T THRESHOLD then
7: migrate current running tasks on Pi to Pk;
8: else
9: degrade the performance of Pi by setting its speed to the pre-defined safe

speed (i.e SSAFEi );
10: end if
11: end if

The NADTM algorithm is presented in Algorithm 5. For processor Pi, we read

the temperature sensor to get its current temperature and then predict its tempera-

ture at the next sampling point based on the method described in section 6.3. If the

predicted temperature exceeds the temperature constraint, we will search for a can-

didate processor that we can migrate the task to. The candidate processor is selected

based on the method presented in section 6.4.1. If such a processor is not available,

we select a safe speed from the thermal profile lookup table as discussed in previous

chapter.

We assume that the weights in equation (6.5) have been identified off-line. The safe

speed to run a processor is essentially the maximum processor speed for a processor

such that its peak temperature will not exceed the temperature constraint. We also

assume that this speed is obtained off line.
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Figure 6.4: NADTM compares with the conventional prediction method, which does
not take the neighbor effect into consideration

6.5 Experimental Results

In this section, we first introduce the experiment setup. Then we validate the ac-

curacy of our predictive thermal management technique by comparing it with the

enhanced reactive approach. At last, we verify the performance improvement of our

algorithm by analyzing the efficiency of the neighbor-aware temperature prediction

and migration, respectively.

6.5.1 Experiment Setup

All experiments were carried out with the same ambient temperature. We selected

six benchmarks galgel, parser, ammp, crafty, lucas and equake from the well-known

commercial benchmark SPEC CPU2000, including both integer and floating point

operation to obtain credible and comparable experiment results. Those benchmarks

have been grouped into three categories, which are hot, warm, and cool, based on
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their thermal characteristics. To build up the temperature lookup table, we conducted

the off-line thermal profiling analysis by running each benchmark at different CPU

speeds. The stable temperatures with their corresponding speed levels were stored in

a lookup table. To ensure the schedule effectiveness, each benchmark was tested with

the hot benchmark applications running on its neighboring processors. In the lookup

table, the safe speed is the maximal speed corresponding to the stable temperature

lower than the given temperature constraint.

6.5.2 Prediction Analysis

To evaluate the accuracy of our NADTM temperature prediction technique, we com-

pared our heuristic with the conventional temperature prediction approach that uses

the previous and current temperature values of a processor to predict the next tem-

perature value without considering the heat transfer from the neighboring processors.

Figure 6.4 shows the temperature traces of running benchmark galgel, as well

as the temperature prediction results based on our proposed temperature prediction

method and the conventional one. From Figure 6.4, we can clearly see that the tem-

perature prediction results of using the NADTM approach is much closer to the actual

temperature value than the conventional approach. Also, the NADTM approach has

a smaller maximum prediction error of 1oC comparing with 3oC by the conventional

approach. The results shown in Figure 6.4 demonstrate that, by taking the heat

transfer impacts from the neighboring processors in consideration the temperature

prediction methods introduced in section 6.3 can achieve a higher accuracy than the

traditional method.

To further validate this conclusion, we ran different benchmark programs on our

test platform. First, temperature prediction results are collected and compared with

the actual temperature value. Then the temperature prediction accuracy by using
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Figure 6.5: Prediction accuracy comparison with different benchmarks

two different prediction methods is plotted in Figure 6.5. The prediction accuracy

is the number of accurate predictions over the total number of predictions. In order

to compare the two approaches, both results are normalized to the approach without

NADTM. From Figure 6.5 we can see that our NADTM approach can improve the

temperature prediction accuracy by 38% in average compared to the conventional

approach. Based on the above experiment results, our neighboring aware temperature

prediction technique could effectively improve the prediction accuracy.

6.5.3 Throughput Analysis

To analyze the throughput of our NADTM algorithm, we only compare it with the

proactive approaches. It is due to two reasons: first, in the previous subsection,

we already proved that the reactive approach cannot effectively management the

processor under the temperature constraint. And preventing thermal violation is the

first priority for a thermal-aware scheduling algorithm, thus any thermal violation is
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not acceptable for a thermal-aware algorithm. Second, because of the close correlation

between chip temperature and working speed, the reactive approach has a longer

time to push the system temperature over the threshold, which will result in a higher

throughput. Thus, it is not justified to compare our approach with the reactive

approach, that cannot satisfy the temperature constraint.

We use NP, CP to denote neighbor-aware prediction and conventional prediction,

and NM, CM for neighbor-aware migration and conventional migration, respectively.

The conventional temperature prediction approach refers to the one that predicts the

future temperature solely based on its own temperature history. And the conventional

migration approach refers to the approach that simply migrates the running tasks

from the hottest core to the coolest core. As a result, we have four combinations, i.e.

CP CM NP CM, CP NM and NP NM.

We first compare the throughput of each approach when running a single task on

our hardware platform. In this experiment, six previously used benchmarks have been

selected to provide reliable experiment results. The execution times by using different

approaches have been recorded for comparison, those experiment results have been

normalized and plotted in Figure 6.6(a). The results show that, the neighbor-aware

prediction algorithm i.e. NP CM can improve the throughput over CP CM as much

as 1.7% in average. Since our prediction technique is more accurate than the conven-

tional approach as shown before, it helps make better scheduling decision and thus im-

proves the performance. Another observation is that CP NM improves the through-

put over CP CM as much as 3.6%. This is because CP NM can find the appropriate

migration candidate rather than simply locate the coolest core. By combining our

proposed prediction and task migration algorithm together, NP NM can achieve an

average of 5.8% overall throughput improvement when compared to CP CM

To further test our thermal management algorithm, we assigned multiple tasks
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Figure 6.6: Execution time comparison with four different approaches. NP and CP
represent the neighbor-aware and conventional prediction respectively. NM and CM
represent neighbor-aware and conventional migration respectively
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to the multicore platform. By gradually increasing the number of tasks running on

the multicore processor, their corresponding execution times have been recorded for

comparison. The execution times have been normalized and plotted in Figure 6.6(b).

As we can see from the experiment results, the overall throughput decreases as the

number of tasks increases. Another important observation is that when the number of

tasks is larger than the number of core ( i.e. the number of tasks is more than 4 ), the

throughput drops significantly. The experiment results show that the throughput for

the NP CM decreased by 0.9% while the tasks increased from 1 to 6. The throughput

for CP NM decreased by 3%. The throughput decreased by 3.6% for the overall

NADTM algorithm. All these results show that the proposed algorithm works better

with a lighter workload than a heavy workload.

6.6 Summary

In this chapter, we developed a predictive thermal-aware algorithm for the practical

multi-core platform to maximize the system throughput under peak temperature con-

straint. Our proposed approach takes the neighbor effect into consideration to make

a more accurate temperature prediction and to determine a better migration destina-

tion. The algorithm has been validated on our multi-core platform, the experiment

results illustrate that our thermal management algorithm can significantly improve

the system throughput while satisfying the temperature constraint.
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CHAPTER 7

CONCLUSIONS

In this chapter, we summarize our research presented in this dissertation and discuss

possible future work of this research.

7.1 Concluding Remarks

Due to the increasing demand for higher computation capability, more and more

transistors and cores are integrated into a single processor chip. As a result, the power

density of the IC chip exponentially increases and generates a large amount of heat.

The rapidly growing heat generation greatly increases the packaging and cooling costs,

and adversely affects the performance and reliability of a computing system. Besides,

the increased heat generation may reduce the processor life span, and even force the

computing system to completely shut down to prevent permanent physical damage

to the processor. Therefore, developing effective thermal management solutions is

highly desirable, not only to balance the chip’s temperature but also to enable the

computing system to operate at a high computing performance without exceeding its

temperature limit.

In this dissertation, we are focusing on developing thermal-aware throughput max-

imization algorithms for the practical hardware platform. Compared to most of the

related works that carried out their research based on simplified model or ideal-

ized assumptions, our work can obtain experimental results directly from the actual

computing system. Thus, our research is more practical. We developed a real-life

hardware platform based on an Intel i5-750 quad-core processor, running the Ubuntu

10.04.1 Linux operating system with kernel version 2.6.32. It has the flexibility to

adopt most of the advance thermal management techniques. Thus, most of the the-

oretical work can be implemented and validated on our platform. Furthermore, we
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studied how effective the DTM technique can be in a practical hardware environment.

Specifically, we investigated the cooling efficiency and computing performance trade-

offs when employing the DVFS technique on our hardware platform, and compared

it with the traditional cooling method by running the same benchmark. Further-

more, by implementing different thermal management algorithms on our platform,

we validated two widely used thermal management principles in reality. We also ana-

lyzed how the cooling solution can affect the performance of the thermal management

algorithm by comparing those approaches under different cooling conditions.

We identified several limitations in the assumptions of the existing theoretical

researches on our hardware platform. And then we proposed an ERDTM for a single-

core processor to maximize the program throughput under a given temperature con-

straint. Compared to the conventional reactive approach, our ERDTM could detect

temperature changes more accurately. In addition, by doing offline thermal anal-

ysis, we were able to built up a thermal profiling look-up table, which can guide

the ERDTM algorithm by selecting the optimal working frequency to maximize the

throughput. Our experimental results show that the ERDTM algorithm can signifi-

cantly reduce the number of temperature violations by 88%. Also, by comparison with

the conventional reactive approach, the overall system throughput can be improved

by 8.1%. To further extend our research work from single-core to multicore platform,

we proposed a proactive NADTM algorithm with a temperature prediction technique.

Compared to the reactive DTM approaches, the proactive DTM algorithm can detect

the thermal emergency in advance, and leave enough time for the DTM algorithm

to react with the temperature change. Other than simply using the temperature

history to predict temperature, our NADTM algorithm takes the heat transfer from

neighboring processors into consideration. It can significantly improve the prediction

accuracy by 38% compared to the temperature history based prediction method. And
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the prediction error is as small as 1oC. In addition, we proved that simply migrating

the task from the hottest core to the coolest core is not always the optimal solution.

Thus, our NADTM algorithm includes a neighbor-aware task migration technique.

The experimental results show that our NADTM can effectively maintain the temper-

ature under the pre-defined temperature limit. The system throughput was improved

by 5.8%.

7.2 Future Work

In this dissertation, we have done extensive research work on the dynamic thermal

management analysis, especially focusing on developing the thermal-aware through-

put maximization algorithm for the practical computing system. However, based on

the close correlation between temperature and power. It is very logical for us to

extend our research work to the computing system power management analysis.

As we discussed in this dissertation, the exponentially increasing heat dissipation

significantly increases the total amount of power used to cool down the temperature.

Meanwhile, our experimental shows that the DTM algorithm can outperform the

air-cooling system on reducing the processor temperature, however, it has to sacri-

fice the system performance. On the other hand, the air-cooling does not affect the

performance, but will cost extra power consumption. Thus, developing a scheduling

algorithm for the practical computing system that would analyze the trade-offs be-

tween the cooling energy and the DTM algorithm is highly demanded. Based on the

special characteristic of our hardware platform, we are able to measure the comput-

ing system power consumption, and we also have the flexibility to adjust the cooling

system on the platform. It is very logical for us to extend our work to analyze the

cooling energy optimization.
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