










Set$frequency$

Read$current$$
temperature$

Compare$
with$

threshold$
Sampling$$
Period$

Execute$with$
Max$speed!

If$($Tcurr%<%TTHRESHOLD%)$
speed=speed+1%

!

If$($Tcurr%>%TTHRESHOLD%)$
speed=speed61%

!

Figure 5.1: The conventional dynamic thermal management algorithm (CDTM).
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the processor speed is changed to one level lower to cool down the temperature.

At first glance, it seems that this approach can solve all the problems mentioned

above. It naturally assumes that the processor has discrete working frequency levels.

And it does not assume any a priori knowledge of the programs running on the pro-

cessor either. However, there are still a few problems that make this approach less

effective in a practical desktop environment. Because there are two important condi-

tions that have to be satisfied to guarantee the accuracy of this approach. First, this

approach assumes that the instant temperature information is available immediately

and accurately. Second, updating the frequency one level at a time must be quick

enough to respond to the temperature change and meet the temperature constraint.

But, in a practical scenario, those assumptions cannot be true.

We use a simple example to explain why those two assumptions are not practical.

First, the thermal sensor cannot keep up with the rapid temperature changes. As

shown in Figure 5.2, recall that it takes about 1 second for the computing system to

reflect a temperature change. It is possible that even though the system temperature

has already reached or surpassed the temperature threshold at t1, the sensor reading

may still be lower than the temperature limit. In this case, if the computing system

continues to increase the frequency, the temperature will keep raising and eventually

exceed the peak temperature constraint. Moreover, even though this algorithm can

detect the thermal emergency at t1, it has to adjust frequency one level at a time.

Thus, it may not be able to reduce the temperature fast enough (i.e. the frequency

switching overhead for computing system is around 10ms [59] ). The temperature

will continue to increase and eventually overstep the peak temperature constraint. To

solve those problems, we develop a new dynamic thermal management algorithm that

can maintain the processor temperature under a limit while maximizing the system

performance.
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Figure 5.2: An example of temperature trace.

5.3 An Enhanced Dynamic Thermal Management Algorithm

Being able to monitor the temperature change timely and accurately is one of the

most critical issues for our approach. Theoretically, it is possible to use the interrupt

mechanism to monitor thermal sensor readings, and it will be our future work to study

the effectiveness and efficiency of using interrupts for this purpose. In this work [93],

we use the simple polling method to monitor thermal sensors for the temperature

variations. As a result, defining the appropriate sampling period becomes critical.

5.3.1 Non-Constant Sampling Interval

One intuitive idea to define the sampling period is to set the period as small as pos-

sible. So it can detect the temperature change quickly, and only generate negligible

accumulated overhead. Unfortunately, using a very small sampling period can in-

crease the possibility of temperature violations. Since the sampling period has been

set very small, it will overreact with temperature changes (e.g. rapidly increase the

processor working frequency within a small interval). Because it does not give enough

time for the adjusted frequency to reach its stable temperature, it can mislead the

scheduling algorithm. On the other hand, setting the sampling period too large will
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Figure 5.3: The definition of safe region and buffer zone

lead to not catching temperature timely. Thus, the sampling period should be care-

fully defined based on the special characteristic of the practical platform.

Given the limitations of the temperature sensor in our platform, in our approach,

we set the sampling period to be equal to the minimal response time of the thermal

sensor for temperature change. To identify the minimal temperature response time,

we ran different benchmarks at different speeds with different sample periods. The

minimal interval, for which the temperature sensor has the same reading, is set to

be the sampling period Psample. From our empirical work, we found the minimal

temperature response time to be 0.98 seconds.

The sampling period defined above can be more effective in avoiding the mis-

handling of a temperature change. However, in the worst-case scenario, it does not

always take 1 second to identify temperature change, (e.g. when the thermal reading

changes exactly after one sampling point). To further improve the performance, we

develop a more accurate sampling technique, which uses a non-constant sampling

periods to detect temperature change. It consists of two sampling periods, Pregu and

Psmal (i.e. Pregu >> Psmal), which are regular sampling period and small sampling
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period respectively. In our case, Pregu = 0.98 seconds and Psmal = 0.1 seconds.

The DTM algorithm with variable sampling frequency (VS-DTM) is described in

Algorithm 1. First, the temperature information is collected from on-chip thermal

sensors (i.e. line 2). If a temperature change is not detected, the processor speed

remains the same. However, it is very possible that the temperature change can occur

very soon. Thus, the small sampling period Psmal is selected to detect the potential

temperature change for the next sampling period (i.e. line 3-4). On the other hand,

if a temperature change is detected after the regular sampling period Pregu, the next

temperature change cannot be detected before another 0.98 seconds due to the delay

of the temperature sensor, we can safely set the sampling period as Pregu. In addition,

the processor working frequency is adjusted based on the comparison between Tcurr

and TTHRESHOLD (i.e. line 6- 11). In comparison with the algorithm using a constant

sampling period, this approach catches temperature changes faster and responds to

them more timely.

Algorithm 1 DTM with variable sampling frequencies (VS-DTM)

1: while Process is running do
2: Read current temperature Tcurr;
3: if Tcurr = Tprev then
4: Set Psample= Psmal;
5: else
6: if Tcurr < TTHRESHOLD then
7: Increase processor speed by one level;
8: else
9: Decrease processor speed by one level;

10: end if
11: Set Psample= Pregu;
12: end if
13: end while
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5.3.2 Offline Thermal Analysis for Safe Speed

Even though VS-DTM (Algorithm 1) can effectively detect a temperature change, it

still adjust the processor speed one level at a time. Thus, when temperature is really

close to its limit, it is simply not fast enough to slow down the processor speed to

cool down the temperature in time. On the other hand, when the temperature is

much lower than the temperature threshold, the processor speed is not increased fast

enough to maximize the throughput.

To solve these problems, we first introduce a concept called the buffer zone as

shown in Figure 5.3. Given a temperature threshold TTHRESHOLD, the temperature

buffer zone is defined as the interval of [TSAFE, TTHRESHOLD], where TSAFE is deter-

mined by the following equation

TSAFE = TTHRESHOLD −4T, (5.1)

where 4T is the maximum possible temperature increment within one sampling pe-

riod. 4T can be determined empirically. Using SPEC2000 benchmark, we found that

4T = 4oC. When the temperature is lower than TSAFE, we say that the temperature

is in the safe region. When the processor temperature is within the safe region, we

can safely use the highest possible speed to maximize the throughput before temper-

ature enters into the buffer zone. Thus, the problem becomes how to define the safe

speed to run the task and ensure the temperature does not exceed the threshold after

entering the buffer zone.

To solve this problem, we can conduct an offline thermal profiling analysis to

identify the safe speed (Ssafe) when running a task in its buffer zone. Consider the

commonly used thermal model as follows

dT (t)

dt
= aP (s)− bT (t), (5.2)
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where T (t) is the temperature at time t, P (s) is the power consumption with processor

speed of S, and a, b are the cooling constants. To ensure that temperature does not

exceed TTHRESHOLD, we only need to make sure when temperature is located in the

buffer zone, we have

dT (t)

dt
|T (t)∈[TSAFE ,TTHRESHOLD]= 0, (5.3)

By combining equation (5.2) and (5.3), analytically we can solve for processor speed

S. However, it can be extremely challenging to determine the analytical function of

P (s) and the cooling constants a, b. Hence, we determine the safe speed empirically

from the SPEC2000 benchmark. Specifically, given a task set Γ = {τ1, τ2, ..., τN},

Tstable(τi, sj) denotes the stable temperature when running τi using processor speed

sj. Let Si be the speed such that

Si = max{sj such that Tstable(τi, sj). ≤ T THRESHOLD}. (5.4)

And the safe speed Ssafe is determined as follows.

Ssafe = min
τi∈T

Si. (5.5)

Each benchmark is executed by using all the available CPU speeds and the corre-

sponding peak temperatures are recorded to build up a look up table to guide the

scheduling algorithm making thermal management decision.

With the safe speed available for each task, we are ready to present our enhanced

reactive dynamic thermal management (ERDTM) algorithm, which is depicted in Al-

gorithm 2. It is developed based on the VS-DTM algorithm. When the processor is

executing a task and its temperature is within the safe region, The highest processor

working frequency Smax is used to guarantee the maximal throughput (line 5-6). Oth-

erwise, it selects the safe speed Ssafe to make sure the temperature constraint is not
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violated (line 7-9). If the running task sets are known a priori, we can further improve

the performance of our algorithm by building up a lookup table. The lookup table

lists the tasks and their specific safe speeds under different temperature constraints,

as defined in equation (5.4). In that case, we can use the corresponding safe speed

depending on the current running process to further maximize its throughput.

Algorithm 2 Enhanced Reactive Dynamic Thermal Management
(ERDTM)

1: while Process is running do
2: if Tcurr = Tprev then
3: Set Psample = Psmal;
4: else
5: if Tcurr ≤ TSAFE then
6: Set processor speed to the Smax;
7: else
8: Set processor speed to Ssafe.
9: end if

10: Set Psample = Pregu;
11: end if
12: end while

5.4 Experimental Results

In this section, we first evaluate each thermal-aware throughput maximization algo-

rithm (i.e. CDTM, VS-DTM and ERDTM) by comparing their ability to control the

processor temperature under a temperature constraint. Then, we analyze their perfor-

mance by analyze the throughput, which is obtained with each thermal management

algorithm.

5.4.1 Experiment Setup

All experiments were carried out with the same ambient temperature and initial chip

temperature to get credible and comparable experiment result. Eight benchmarks,

which include both integer operation and floating point operation, have been selected
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Table 5.1: Lookup table for SPEC 2000 benchmarks
Frequency levels (GHz)

Benchmarks 2.6GHz 2.4GHz 2.2GHz 2.1GHz 1.8GHz
galgel 64oC 61oC 59oC 57oC 54oC
ammp 59oC 55oC 53oC 49oC 48oC
lucas 54oC 51oC 48oC 46oC 44oC

equake 57oC 53oC 49oC 45oC 43oC
vpr 60oC 57oC 53oC 50oC 48oC
gcc 61oC 58oC 54oC 51oC 47oC

parser 60oC 57oC 55oC 51oC 47oC
crafty 57oC 55oC 51oC 48oC 45oC

from the SPEC CPU2000 benchmark suit (i.e. vpr, gcc, parser, crafty from integer

operation and galgel, ammp, lucas, equake from floating point operation). In our

work, the temperature threshold has been selected at 55oC.

We first built up the lookup table by running each benchmark with different work-

ing frequencies. The corresponding peak temperatures and speed levels are recorded

as shown in Table 5.1. As discussed in section 5.3, Table 5.1 shows running different

applications can result in distinctly different stable temperatures even with the ex-

actly the same speeds. This clearly demonstrates the limitations of many theoretical

results.

5.4.2 DTM Algorithm Performance Evaluation

As we mentioned before, when temperature exceeds the critical temperature limits,

it could cause serious hardware damage, and even crush the entire computing sys-

tem. Thus, effectively maintaining the processor temperature under the temperature

threshold is the highest priority for the thermal-aware scheduling algorithm. To eval-

uate how effectively each algorithm can control the temperature, we ran our bench-

marks with all three approaches on our hardware platform. Processor temperature

exceeding the threshold is defined as a temperature violation. Then the total number
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Figure 5.4: The number of temperature violations after implementing different ther-
mal management algorithms

of temperature violations derived from each thermal-aware schedule (i.e. CDTM, VS-

DTM and ERDTM) are plotted in Figure 5.4. The experiment result shows that after

implementing the CDTM algorithm, the average number of violations is 72 during the

whole process. However, after we implemented the VS-DTM scheduling algorithm,

the number of temperature violations can be reduced as much by as 88% in aver-

age. Another important observation is that our ERDTM algorithm can effectively

eliminate the temperature violation and keep the temperature under the threshold.

To further study the details of how ERDTM and VS-DTM can outperform CDTM

in reducing the number of temperature violations, we plotted the temperature trace

when running benchmark galgel with each of the three algorithms. From the ex-

perimental result in Figure 5.5, running the benchmark with the CDTM algorithm

can cause excessive temperature violations. This is mainly due to two reasons: first,

because of the hardware limitations, the thermal sensor cannot keep up with the

rapid temperature changes timely. Thus, the temperature continues to rise even if it

is already close to the temperature limit; Second, the CDTM algorithm constantly
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decreases or increases the processor speed level, no matter whether the temperature

changes or not. To this end, the CDTM algorithm does not provide enough time for

the temperature to reach a stable state before changing it to a new speed level. On the

other hand, as shown in Figure 5.6, the VS-DTM algorithm can significantly reduce

the number of temperature violations, simply because it can detect the temperature

change more timely. The experiment results show that the temperature oscillation

range has also been reduced by as much as 50% after implementing the VS-DTM

algorithm. However, there are still several spikes (i.e. temperature violations) as

shown in Figure 5.6. This is due to the fact that VS-DTM has to adjust the working

frequency one level at a time, and sometimes the frequency adjustment cannot keep

up with the rapid temperature changes. In contrast, Figure 5.7 shows that our pro-

posed ERDTM algorithm can perfectly maintain the temperature under the threshold

without any temperature violations. After doing the offline thermal profile analysis,

the temperature lookup table can perfectly guide the ERDTM algorithm to manage

the processor temperature.

5.4.3 DTM algorithm Throughput Analysis

In the previous subsection, we already evaluated the efficiency of each algorithm on

controlling the temperature under the threshold. We further analyze those thermal-

aware schedules with the throughput maximization perspective. We execute the same

benchmarks with all of the algorithms, the execution time from each individual ap-

proach are recorded for comparison. The execution time for each benchmark with

different algorithms are normalized and plotted in Figure 5.8. It clearly shows that

the CDTM algorithm always take the longest time to finish a benchmark. It is sim-

ply because of two reasons: first, as discussed in the previous subsection, the CDTM

algorithm lacks accuracy in maintaining the temperature under the threshold. Thus,
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Figure 5.5: Massive temperature violations occur with the CDTM approach
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Figure 5.6: Temperature violations has been significantly reduced with the VS-DTM
technique
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Figure 5.7: ERDTM algorithm completely eliminates peak temperature violation

the processor speed is over reduced to avoid temperature violations. As a result, the

throughput is decreased. Our experiments show that the processor temperature can

be lower than the threshold by as much as 4oC. Second, it adjusts the processor fre-

quency constantly. The massive frequency-switching overhead caused by the DVFS

technique increased the overall execution time.

However, after implementing the VS-DTM algorithm, the system throughput has

been improved by as much as 2.4%. Compared to the CDTM algorithm, the VS-DTM

algorithm can respond to the temperature changes more quickly. Because of the close

correlation between the temperature and throughput, the VS-DTM can achieve a

better throughput performance. Figure 5.8 shows that the ERDTM algorithm has

the best throughput performance. The experimental result shows that it improves

the execution time of CDTM by 8.1% in average. The improvement comes from the

fact that we use the maximum speed to run the benchmark when the temperature

is in the safe region, which outperforms the cases when the processor speed has to
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Figure 5.8: Throughput comparison with different thermal management algorithms

be increased one level at a time for every sampling period. Also, when the tempera-

ture enters the temperature buffer region, we use the safe speed to further maximize

its throughput and ensure the temperature constraint at the same time. Overall,

the experiment results show that the ERDTM algorithm not only can precisely con-

trol the processor temperature under a pre-defined temperature limit but it also can

significantly improve the throughput for the computing system.

5.5 Summary

The dynamic thermal management is becoming one of the most effective techniques

to address the thermal issue for the computing system. Carefully maintaining the

processor temperature under a critical temperature limit to avoid fatal hardware

damage has already become an important research problem. In this chapter, we first

analyzed the limitations of the theoretical thermal management algorithms on the

practical hardware platform. To further address those limitations, we proposed our

DVFS-based thermal aware scheduling algorithms ERDTM to maximize the through-

put under a given peak temperature constraint.
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CHAPTER 6

NEIGHBOR-AWARE DYNAMIC THERMAL MANAGEMENT FOR

MULTI-CORE PLATFORMS

In the previous chapter, we proposed a reactive thermal-aware throughput maximiza-

tion algorithm for the single core microprocessor platform. However, the reactive

thermal management techniques heavily reply on the processor temperature infor-

mation, that is obtained either from the thermal model or the thermal sensors, to

trigger the thermal management operation. This special characteristic can cause a

series of problems and directly affect the overall system performance. For instance,

because of the manufacture variance and the sensor placement, the on chip thermal

sensor lacks accuracy. In addition, even though the sensor can detect the thermal

emergency timely, it still takes time for the algorithm to respond to the temperature

change. To address the problems above and extend our research to the multicore

platform, we first developed a temperature prediction technique, which can take the

heat transfer from the neighboring cores into consideration to accurately detect the

temperature emergency. Based on this temperature prediction technique, we propose

a thermal management algorithm, which can significantly optimize the computing

system throughput without exceeding the temperature limit.

6.1 Related Work

Fueled by the market need for high computation capability, the size of transistors is

continuously shrinking, and more and more transistors are integrated into a single

chip to build up more complicated circuit architectures, i.e. chip multiprocessors

(CMPs). As a result, the power density within the chip and the heat generated by

transistors increase rapidly in CMPs. Thus, power and thermal issues become major

challenges for the further improvement of computing performance on CMPs.
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The rapidly growing heat generation greatly increases the packaging and cooling

costs, and adversely affects the life-span, performance, and reliability of a computing

system. The increased heat dissipation can cause thermal failures, even permanent

physical damage to the processor. Therefore, developing an effective thermal man-

agement solution is highly desirable, not only to balance the chip’s temperature but

also to enable the computing system to operate at a high computing performance

without exceeding its temperature limit.

The dynamic thermal management technique (DTM) is one of the most effective

approaches to address the power and thermal design problems. Many theoretical

works have been done by using the dynamic voltage and frequency scaling (DVFS)

technique [70, 104, 59, 58], which can control the temperature by dynamically ad-

justing the processor speed based on the workload. For example, Chantem [18] et

al. proposed an algorithm to run real-time tasks under temperature constraint by

switching two available speeds neighboring of the ideal speed. However, DVFS tech-

niques sacrifice the performance to cool down the temperature. Task migration is an

alternative technique to manage the temperature by balancing the workload among

CPU cores without slowing down the processing speed [131, 58, 36, 68]. For example,

Gomaa [37] et al. proposed a reactive task migration algorithm, that migrates the

task away from overheated core to the coolest core. However, most theoretical ther-

mal management algorithms are based on simplified models and assumptions, such

as the assumption that the accurate temperatures of processors are readily available,

which is not necessarily true on a real-life platform.

When DTM techniques are applied for real applications, they must deal with im-

portant practical details in the practical environment. To this end, many researches

have been carried out based on practical hardware platforms [69, 110, 7, 38, 123, 49].

For example, Yefu [122] et al. proposed a chip-level power management algorithm
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by using control theory and implemented their algorithm on an Intel Xeon desktop.

Ahn [4] et al. developed and validated a heuristic to reduce the power consumption

and control the temperature on the Intel Centrino Duo and ARM-11 MPCore plat-

forms. The algorithms above rely on the thermal sensor reading to trigger their DTM

actions. Since the thermal sensor lacks accuracy due to their placement location and

long latency, the effectiveness of the DTM techniques can be severely degraded. Even

if the thermal sensor can accurately detect a thermal emergency when the tempera-

ture reaches the threshold, it still takes 100 to 200 millisecond for the DTM manager

to decrease the frequency or migrate the hot task to a different processor [59]. As

a result, the temperature would exceed the threshold before the algorithm takes ef-

fect. To this end, predicting the potential thermal emergency before thermal failure

occurring is a very important feature for the DTM algorithm [36]. In response to

this, Inchoon [131] et al. proposed a temperature prediction algorithm that takes

the application’s thermal behavior into consideration. Khan [58] et al. developed an

alternative thermal management schedule that combined temperature history based

prediction and task migration techniques to efficiently control the CPU temperature

under threshold. However, they assume that at each sampling point, the temperature

will increase at the same rate until it reaches the threshold, which is not true in a

real-life scenario.

In this Chapter, we develop an on-line predictive thermal management algorithm

to maximize the throughput on multi-core systems while satisfying the peak temper-

ature constraint. Compared with the previous work, we make three major contribu-

tions in this work:

• We develop a temperature prediction method, which can predict the tempera-

ture of a core more accurately by taking its temperature as well as the neigh-

boring impacts into consideration.
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• We develop a new task migration strategy. While it has been a common ap-

proach to migrate tasks from the hottest to the coolest core, our approach

chooses the destination core differently. We choose the destination core not

only by its current temperature, but also by the temperature trends as well as

the neighboring impacts as well.

• We validate our algorithm on a practical hardware test bed, i.e a desktop work-

station with an Intel i5 750 quad core microprocessor. The experimental results

show that our proposed algorithm can significantly outperform the conventional

approach.

6.2 Preliminary

We first use a motivation example to illustrate the the importance of heat transfer

from neighboring processor, then we formulate our research problem.

6.2.1 Motivation Example

Before we propose our neighbor-aware temperature prediction technique, we first use

a motivation example to study how significant the temperature from neighboring

processors can affect processor temperature and why we should take this factor into

consideration when developing temperature prediction algorithm. As we mentioned

in the previous chapter, the processor heat dissipation comes mainly from the power

consumed by the processor. However, there is another important heat resource, which

comes from the neighboring processor cannot be ignored. Since the number of tran-

sistors and cores that are integrated into the CMPs chip, the power density rapidly

increases. Each processor also receives heat transferred from its surrounding neigh-

bor. This heat can also heat up a processor, even though it is not running at the high

power status.
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Figure 6.1: Temperature trace with Hot and Cool neighbor processors

To illustrate this scenario, we executed one set of experiments to study how dif-

ferent neighbor environments can affect the processor temperature. First, we selected

one core of our multi-core platform, for which its working frequency was set to the

minimal speed level without executing any benchmark. Then, we collected the tem-

perature trace of this idle processor with two different neighbor environments. With

the Hot neighbor environment, the surrounding processors have been assigned with

the highest working frequency and executing a hot process to create a high temper-

ature neighbor environment. On the other hand, with Cool neighbor environment,

all the neighbor processors have been assigned with low working frequency running

a cool task. The temperature information of the idle core with two different neigh-

bor environments are collected and plotted in Figure 6.1. The experimental result

clearly shows that even when the idle processor does not execute any process, the

heat transfer from the neighboring processor can also heat up its temperature by as

much as 18oC (i.e. 61oC at the stable state). In contrast, the idle core temperature

only increased 5oC (i.e. 45oC at the stable state) with the cool neighbor environment.
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The above motivation example clearly demonstrated how significant the neighbor

environment could affect the processor temperature. To this end, the heat transfer

from the surrounding processors must be taken into consideration when developing

the thermal management algorithms.

6.2.2 Problem Description

To address the research problems, the system considered in this work consists of N

tasks, denoted as Γ = {τ1, τ2, ..., τN} and M identical processors, denoted as P =

{P1, P2, ..., PM}. The problem discussed in this chapter is how to manipulate the

scheduler such that the throughput of the system can be maximized and the processor

temperature can be maintained under peak temperature constraint, T THRESHOLD.

The formal description of the problem is represented below.

Problem Description : Given a task set Γ and a multi-core system P , maximize

the throughput of the system under the peak temperature constraint.

For processor Pi, we use a tuple (Ti, ti) to represent the temperature of Pi at a

certain time point ti. To be more specific, we use T curri and T previ to denote Pi’s

current temperature and previous temperature respectively, while tcurri and tprevi are

the corresponding time.

In this chapter, we developed a heuristic to solve the above problem based on

task migration and DVFS technique. We first introduce two temperature prediction

methods, which can predict the future temperature of a processor core by considering

both local temperature history and neighbors’ effect. Next, once a potential risk is

detected under our temperature prediction model (i.e. the predicted temperature is

over the threshold), we dynamically manage the executions of corresponding tasks

on that core by either migrating the hot task to other candidate cores or changing

the corresponding working frequency on that core based on the temperature status.
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By considering the neighbors’ current temperature and their temperature changing

trends, we can select a processor among all available candidates to improve the total

system performance from a global and long-term perspective.

6.3 Neighbor-Aware Temperature Prediction

As we discussed in Section 6.1, the reactive approach might not precisely react with

the temperature change due to the latency cased by the dynamic thermal management

techniques, such as reading the thermal sensor, changing processor working frequency

or migrating the task from hot core the a cooler core. Thus, an effective temperature

prediction heuristic, which can accurately detect the temperature emergency, is highly

demanded. In this section, we introduce our neighbor-aware temperature prediction

techniques.

6.3.1 Temperature Prediction Model

In this subsection, we introduce the temperature prediction model, which takes the

heat transfer from the neighboring processors into consideration. It can accurately

predict the future temperature of a core as well as its future trend. First, we introduce

the following definitions to represent the future local temperature increment of each

processor individually.

Definition 6.3.1. Given processor Pi, the local increment factor of Pi, denoted as

I ini , is defined as

I ini = T curri − T previ . (6.1)

This local temperature increment will be used to predict the future temperature

at the next sampling point. Figure 6.2 shows an example of the temperature trace of a

running process. We make the assumption that the temperature will keep increasing

at the same rate if the sampling interval is extremely small (i.e. ∆t is the sampling
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Figure 6.2: Temperature history based prediction

period). The current temperature T curr is obtained from the thermal sensor. It has

been used to predict the temperature at the next sampling point T pred with the most

recent temperature history T prev. In our work, the sampling period has been set to 1

second, since this is approximately how long it takes for the thermal sensor to reflect

a temperature change [1].

As we discussed in Section 6.2.2, besides the heat generated by the processor itself,

its temperature is also affected by other processors on the same chip. In this work, we

define the neighbor processors of a processor Pi, denoted as PNBi , as the cores which

are adjacent to Pi. When predicting the temperature of a processor, we only consider

the heat transfer impacts from its neighboring processors to simplify our algorithm.

By considering the effect of neighbor processors, we define the following two concepts

to represent the neighbors’ thermal effect for a given processor. The first concept,

i.e. neighbor average factor, represents the average temperature of all neighbors.

The second concept, i.e. neighbor increment factor, represents the temperature

increment trend of all neighbors. Two concepts are formally defined as follows.

Definition 6.3.2. Given any processor Pi, the neighbor average factor of Pi, denoted
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as A(Pi), is defined as

A(Pi) =

∑
Pj∈PNB

i
T currj

|PNBi |
(6.2)

Definition 6.3.3. Given any processor Pi, the neighbor increment factor of Pi, de-

noted as I(Pi), is defined as

I(Pi) =

∑
Pj∈PNB

i
(T currj − T prevj )

|PNBi |
(6.3)

According to Definition 6.3.3, I(Pi) represents the average temperature increment

of Pi’s neighboring processors. In other words, the neighbor increment factor describes

the temperature increment speed for each processor’s neighbors.

Consider processor Pi, the temperature increment caused by Pi’s neighbors can

be calculated as following

Inbi = γ1 · A(Pi) + γ2 · I(Pi), (6.4)

where γ1 and γ2 are the weights of A(Pi) and I(Pi), respectively, which can be

obtained from doing off-line analysis. The detailed implementation will be introduced

in the later section.

With the above definitions, we are now ready to introduce our temperature pre-

diction model. Let T predi denote the predicted temperature for Pi. We formulate T predi

as a linear function of its current temperature T curri , its local temperature increment

rate I ini , and also its neighbor effect factor Inbi , as shown below:

T predi = αi · T curri + βi · I ini + γi · Inbi , (6.5)

where αi, βi and γi are weight parameters for Pi.

In addition, to make our prediction model more accurate, we take different pro-
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Figure 6.3: Different processor location scenarios

cessor location scenarios into consideration. Each processor with a different number

of neighboring cores has different neighbor effects as shown in Figure 6.3. Thus, the

temperature prediction for a task τi can be categorized into three cases: 1) τi runs

on a corner processor; 2) τi runs on a boundary processor; 3) τi runs on a middle

processor. Then we discuss the neighbor effect for τi by using matrix.

Temperature prediction base T̂Bi is a 3× 1 vector:

T̂Bi = [T curri , I ini , I
nb
i ]

T
.

Based on the different cases of processor position (i.e. corner, boundary and

middle), temperature prediction weights for different scenario can be expressed as

following.
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• weights for corner scenario:

wci = [αci , β
c
i , γ

c
i ].

• weights for boundary scenario:

wbi = [αbi , β
b
i , γ

b
i ].

• weights for middle scenario:

wmi = [αmi , β
m
i , γ

m
i ].

Combine all three scenarios of τi together, we have

Wi 3×3 = [wci , w
b
i , w

m
i ]

T
.

The above temperature prediction model already took the processor neighbor

effect, as well as the different task locations into consideration. Thus, based on this

accurate model, we proposed two temperature prediction algorithms in the following

section.

6.3.2 Neighbor-Different Prediction

In this subsection, we introduce a neighbor-different temperature prediction (NDTP)

algorithm, which considers all the different scenarios of neighbor processor condition

as discussed in the previous subsection. We conduct the temperature prediction
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matrix, i.e. T̂i to represent the temperature prediction result for task τi.

T̂i 3×1 = [T ci , T
b
i , T

m
i ]

T
,

where T ci , T bi and Tmi are the temperature prediction results for corner processor,

boundary processor and middle processor, respectively.

For each item of T̂i , i.e. T xi , x ∈ [c, b,m], the temperature can be calculated by

T xi = [αxi , β
x
i , γ

x
i ]× [T curri , ∆T ini , ∆T nbi ]

T
= wxi ×Bi, (6.6)

thus, we have 
T ci

T bi

Tmi

 =


αci βci γci

αbi βbi γbi

αmi βmi γmi

×

T curri

∆T ini

∆T nbi

 (6.7)

or

T̂i = Wi ×Bi. (6.8)

Since we can get the weight matrix Wi off-line, the predicted temperature of τi

can be obtained on-line by determining the host processor position of τi.

The detail flow of NDTP algorithm is presented in Algorithm 3. For any pro-

cessor Pi, the current temperature obtained from the thermal sensor, and the most

recent temperature are stored in the temperature history table. They are denoted as

T curri and T previ respectively (i.e. line 1 and line 2). Then, based on the assumption

that the temperature will keep changing at the same rate after the next sampling

interval, we are able to calculate the local temperature increment from the current

and previous temperatures (i.e. line 3). Moreover, the schedule takes the heat trans-

fer from Pi’s neighbor processor into consideration by calculating the neighbor effect

from equation 6.4 (i.e. line 4). The weight factors can be determined by identifying
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the processor’s location (i.e. line5 and line 6). Then the temperature at the next

sampling point can be predicted by using NDTP algorithm (i.e. line 7).

Algorithm 3 Neighbor-Different Temperature Prediction

1: T curri := the current temperature of processor Pi;
2: T previ := the previous temperature of processor Pi;
3: calculate the local temperature increment of Pi after ∆t by

I ini =
T curr
i −T prev

i

tcurri −tprevi
·∆t;

4: calculate Pi’s neighbors effect Inbi based on equation (6.4)
5: x = determine the location of processor, corner, boundary or middle;
6: determine the weight of τi under mode x such that

wxi = [αxi β
x
i γ

x
i ];

7: predict the future temperature of Pi by
T predi = wxi ·Bi

where Bi = [T curri I ini Inbi ];

6.3.3 Neighbor-Normalized Prediction

Instead of categorizing the processors into three categories and generating three dif-

ferent groups of weight, we propose a neighbor-normalized temperature prediction

(NNTP) algorithm to reduce the complexity for temperature prediction by applying

the least-square estimation [131] to derive one uniform and normal weight matrix for

all three different neighbor cases.

For any task τi, from equation (6.5), we know that the temperature prediction

problem is formulated by

T predi = αi · T curri + βi · I ini + γi · Inbi .

To map the above temperature prediction problem into a general least-square

problem, we construct a linear model for the output T pred by the following linear
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parameterized expression

T pred(t) = α · T curr(t) + β · I in(t) + γ · Inb(t),

where t = [t1, t2, t3] is the model’s input vector, T curr(t), I in(t) and Inb(t) are known

functions of t, and α, β and γ are unknown parameters to be estimated. Let T̂

represent [T curr(t), I in(t), Inb(t)], and Ŵ represent [α, β, γ]. In our model, let t be

time units, and can be chosen from three different scenarios with respect of neighbor

processor condition, i.e. t ∈ [tc, tb, tm], where tc, tb, tm represent the scenarios for

corner, boundary and middle processor respectively.

To identify the unknown parameters, Ŵ , experiments usually have to obtain a

training data set (T predj (t);T currj (t), I inj (t), Inbj (t)), where j = 1, ..., n. Expressed in

matrix notation, the following equation can be obtained:

T̂ pred = T̂ × Ŵ ,

where T̂ is a 3× 3 matrix:

T̂ =


T curr(tc) I in(tc) Inb(tc)

T curr(tb) I in(tb) Inb(tb)

T curr(tm) I in(tm) Inb(tm)

 (6.9)

Ŵ is a 3× 1 unknown weight parameter vector:

Ŵ = [α, β, γ]T , (6.10)
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and T̂ pred is a 3× 1 output vector:

T̂ pred = [T c, T b, Tm]
T
. (6.11)

If (T̂ pred)T T̂ pred is nonsingular, the least square estimator can be derived as

Ŵ = (T̂ T T̂ )
−1
T̂ T T̂ pred. (6.12)

Eventually, we predict the future temperature by applying equation (6.5), with

the corresponding task-based weight parameter obtained by equation (6.12).

Algorithm 4 Neighbor-Normalized Temperature Prediction

1: T curri := the current temperature of processor Pi;
2: T previ := the previous temperature of processor Pi;
3: calculate the local temperature increment of Pi after ∆t by

I ini =
T curr
i −T prev

i

tcurri −tprevi
·∆t;

4: calculate Pi’s neighbors effect Inbi based on equation (6.4)
5: get the weight parameter wi for current task, wxi = [αxi , β

x
i , γ

x
i ];

6: predict the future temperature of Pi by
T predi = wi ·Bi

where Bi = [T currenti , I ini , I
nb
i ];

The NNTP prediction algorithm could be described in the similar expression as

algorithm 3. First the schedule calculates the local temperature increment and the

neighbor effect (i.e. line1-3). Next, instead of identifying the task location, the

NNTP prediction algorithm use a least-square estimation method to calculate the

weight parameters from equation (6.4) (i.e. line 4). Then the expected temperature

at the next sampling point can be predicted (i.e. line 5-6).

6.4 Proactive Algorithm

With the temperature prediction algorithms, which are proposed in the previous

section, we are able to detect the thermal emergency in advance and leave enough time
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for the computing system to react to the temperature change. Thus, in this section,

we first introduce the algorithm that we used to select the candidate processor to

implement the task migration. Then, we give a detailed introduction of our neighbor-

aware dynamic thermal management (NADTM) algorithm.

6.4.1 Candidate Processor for Migration

When the thermal emergency is detected by the temperature prediction technique,

one solution is to migrate the task away from the hot processor to bring down the

temperature. To identify the appropriate destination, one common approach [37] is

to migrate the task to the processor with the lowest current temperature. However,

selecting the coolest processor is not always the best decision. Due to the sudden

neighboring processor temperature change or the potential of the big temperature

increasing rate by itself, the coolest core can rapidly become a hotspot after the next

sampling interval. Thus, to address this problem in our approach, besides the current

temperature of the candidate processor, we consider its neighboring temperatures, as

well as its temperature changing rate to make the migration decision.

We first introduce a concept, heat index, to quantify how hot a candidate processor

(i.e. Pk) is.

Definition 6.4.1. Given processor Pk, the heat index of Pk, denoted as H(Pk), is

defined as

H(Pk) =

∑
Pj∈PNB

k

⋃
{Pk} Tj

|PNBk

⋃
{Pk}|

. (6.13)

Intuitively, the smaller the heat index of a processor is, the better the candidate

processor it can be.

Besides the heat index of a processor, we also consider the temperature changing

rates of itself as well as its neighbors. We present the following definition, i.e. the heat

index increasing factor of a processor Pk, to capture this concept.
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Definition 6.4.2. Given processor Pk, the heat index increasing factor of Pk, denoted

as I(Pk), is defined as

I(Pk) =

∑
Pj∈PNB

k

⋃
{Pk}

T curr
j −T prev

j

tcurrj −tprevj

|PNBk

⋃
{Pk}|

. (6.14)

According to Definition 6.4.2, I(Pk) indicates how fast the temperature at Pk and

its neighbors can increase in average. Thus, the smaller the heat index increasing

factor, the better the candidate processor can be. From equation (6.13) and (6.14),

we choose the migration candidate as the one that minimizes

H(Pk) + I(Pk) ·∆t, (6.15)

where ∆t is the length of the sampling interval.

Note that task migration is not always effective in dealing with a thermal emer-

gency, especially when the workload is heavy. Given a processor Pk in thermal emer-

gency, it does not help much if the selected target processor (e.g. Pk) for migration has

a temperature very close to the peak temperature limit, even if the H(Pk)+I(Pk) ·∆t

is minimum among all other processors. Besides, too many unnecessary task migra-

tions may cause redundant context switch overhead, which could degrade throughput

performance. To avoid this scenario, in our approach, the tasks on processor Pk are

only allowed to migrate to processor Pk if

H(Pk) + I(Pk) ·∆t ≤ T THRESHOLD, (6.16)

where T THRESHOLD is the given temperature constraint. Otherwise, we can adopt an

alternative solution to cool down the processor. Such as selecting a safe working speed

for the processor Pk by using the same offline thermal profiling analysis approach.
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6.4.2 Thermal Management Algorithm

In this subsection, we introduce our proposed thermal management algorithm, the

NADTM algorithm, to maximize the throughput of a multi-core system while keeping

the temperature under a predefined peak temperature limit.

Algorithm 5 Neighbor-Aware Dynamic Thermal Management (NADTM) Algorithm

1: T previ := T curri // the temperature at previous sampling point ;
2: T curri := the temperature of Pi from temperature sensor;
3: T predi := predicted temperature of Pi at next sampling point based on equation

(6.5);
4: if T predi > T THRESHOLD then
5: Pk := the processor from P such that H(Pk) + I(Pk) ·∆t is minimum;
6: if H(Pk) + I(Pk) ·∆t ≤ T THRESHOLD then
7: migrate current running tasks on Pi to Pk;
8: else
9: degrade the performance of Pi by setting its speed to the pre-defined safe

speed (i.e SSAFEi );
10: end if
11: end if

The NADTM algorithm is presented in Algorithm 5. For processor Pi, we read

the temperature sensor to get its current temperature and then predict its tempera-

ture at the next sampling point based on the method described in section 6.3. If the

predicted temperature exceeds the temperature constraint, we will search for a can-

didate processor that we can migrate the task to. The candidate processor is selected

based on the method presented in section 6.4.1. If such a processor is not available,

we select a safe speed from the thermal profile lookup table as discussed in previous

chapter.

We assume that the weights in equation (6.5) have been identified off-line. The safe

speed to run a processor is essentially the maximum processor speed for a processor

such that its peak temperature will not exceed the temperature constraint. We also

assume that this speed is obtained off line.
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Figure 6.4: NADTM compares with the conventional prediction method, which does
not take the neighbor effect into consideration

6.5 Experimental Results

In this section, we first introduce the experiment setup. Then we validate the ac-

curacy of our predictive thermal management technique by comparing it with the

enhanced reactive approach. At last, we verify the performance improvement of our

algorithm by analyzing the efficiency of the neighbor-aware temperature prediction

and migration, respectively.

6.5.1 Experiment Setup

All experiments were carried out with the same ambient temperature. We selected

six benchmarks galgel, parser, ammp, crafty, lucas and equake from the well-known

commercial benchmark SPEC CPU2000, including both integer and floating point

operation to obtain credible and comparable experiment results. Those benchmarks

have been grouped into three categories, which are hot, warm, and cool, based on
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their thermal characteristics. To build up the temperature lookup table, we conducted

the off-line thermal profiling analysis by running each benchmark at different CPU

speeds. The stable temperatures with their corresponding speed levels were stored in

a lookup table. To ensure the schedule effectiveness, each benchmark was tested with

the hot benchmark applications running on its neighboring processors. In the lookup

table, the safe speed is the maximal speed corresponding to the stable temperature

lower than the given temperature constraint.

6.5.2 Prediction Analysis

To evaluate the accuracy of our NADTM temperature prediction technique, we com-

pared our heuristic with the conventional temperature prediction approach that uses

the previous and current temperature values of a processor to predict the next tem-

perature value without considering the heat transfer from the neighboring processors.

Figure 6.4 shows the temperature traces of running benchmark galgel, as well

as the temperature prediction results based on our proposed temperature prediction

method and the conventional one. From Figure 6.4, we can clearly see that the tem-

perature prediction results of using the NADTM approach is much closer to the actual

temperature value than the conventional approach. Also, the NADTM approach has

a smaller maximum prediction error of 1oC comparing with 3oC by the conventional

approach. The results shown in Figure 6.4 demonstrate that, by taking the heat

transfer impacts from the neighboring processors in consideration the temperature

prediction methods introduced in section 6.3 can achieve a higher accuracy than the

traditional method.

To further validate this conclusion, we ran different benchmark programs on our

test platform. First, temperature prediction results are collected and compared with

the actual temperature value. Then the temperature prediction accuracy by using
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Figure 6.5: Prediction accuracy comparison with different benchmarks

two different prediction methods is plotted in Figure 6.5. The prediction accuracy

is the number of accurate predictions over the total number of predictions. In order

to compare the two approaches, both results are normalized to the approach without

NADTM. From Figure 6.5 we can see that our NADTM approach can improve the

temperature prediction accuracy by 38% in average compared to the conventional

approach. Based on the above experiment results, our neighboring aware temperature

prediction technique could effectively improve the prediction accuracy.

6.5.3 Throughput Analysis

To analyze the throughput of our NADTM algorithm, we only compare it with the

proactive approaches. It is due to two reasons: first, in the previous subsection,

we already proved that the reactive approach cannot effectively management the

processor under the temperature constraint. And preventing thermal violation is the

first priority for a thermal-aware scheduling algorithm, thus any thermal violation is
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not acceptable for a thermal-aware algorithm. Second, because of the close correlation

between chip temperature and working speed, the reactive approach has a longer

time to push the system temperature over the threshold, which will result in a higher

throughput. Thus, it is not justified to compare our approach with the reactive

approach, that cannot satisfy the temperature constraint.

We use NP, CP to denote neighbor-aware prediction and conventional prediction,

and NM, CM for neighbor-aware migration and conventional migration, respectively.

The conventional temperature prediction approach refers to the one that predicts the

future temperature solely based on its own temperature history. And the conventional

migration approach refers to the approach that simply migrates the running tasks

from the hottest core to the coolest core. As a result, we have four combinations, i.e.

CP CM NP CM, CP NM and NP NM.

We first compare the throughput of each approach when running a single task on

our hardware platform. In this experiment, six previously used benchmarks have been

selected to provide reliable experiment results. The execution times by using different

approaches have been recorded for comparison, those experiment results have been

normalized and plotted in Figure 6.6(a). The results show that, the neighbor-aware

prediction algorithm i.e. NP CM can improve the throughput over CP CM as much

as 1.7% in average. Since our prediction technique is more accurate than the conven-

tional approach as shown before, it helps make better scheduling decision and thus im-

proves the performance. Another observation is that CP NM improves the through-

put over CP CM as much as 3.6%. This is because CP NM can find the appropriate

migration candidate rather than simply locate the coolest core. By combining our

proposed prediction and task migration algorithm together, NP NM can achieve an

average of 5.8% overall throughput improvement when compared to CP CM

To further test our thermal management algorithm, we assigned multiple tasks
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Figure 6.6: Execution time comparison with four different approaches. NP and CP
represent the neighbor-aware and conventional prediction respectively. NM and CM
represent neighbor-aware and conventional migration respectively
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to the multicore platform. By gradually increasing the number of tasks running on

the multicore processor, their corresponding execution times have been recorded for

comparison. The execution times have been normalized and plotted in Figure 6.6(b).

As we can see from the experiment results, the overall throughput decreases as the

number of tasks increases. Another important observation is that when the number of

tasks is larger than the number of core ( i.e. the number of tasks is more than 4 ), the

throughput drops significantly. The experiment results show that the throughput for

the NP CM decreased by 0.9% while the tasks increased from 1 to 6. The throughput

for CP NM decreased by 3%. The throughput decreased by 3.6% for the overall

NADTM algorithm. All these results show that the proposed algorithm works better

with a lighter workload than a heavy workload.

6.6 Summary

In this chapter, we developed a predictive thermal-aware algorithm for the practical

multi-core platform to maximize the system throughput under peak temperature con-

straint. Our proposed approach takes the neighbor effect into consideration to make

a more accurate temperature prediction and to determine a better migration destina-

tion. The algorithm has been validated on our multi-core platform, the experiment

results illustrate that our thermal management algorithm can significantly improve

the system throughput while satisfying the temperature constraint.
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CHAPTER 7

CONCLUSIONS

In this chapter, we summarize our research presented in this dissertation and discuss

possible future work of this research.

7.1 Concluding Remarks

Due to the increasing demand for higher computation capability, more and more

transistors and cores are integrated into a single processor chip. As a result, the power

density of the IC chip exponentially increases and generates a large amount of heat.

The rapidly growing heat generation greatly increases the packaging and cooling costs,

and adversely affects the performance and reliability of a computing system. Besides,

the increased heat generation may reduce the processor life span, and even force the

computing system to completely shut down to prevent permanent physical damage

to the processor. Therefore, developing effective thermal management solutions is

highly desirable, not only to balance the chip’s temperature but also to enable the

computing system to operate at a high computing performance without exceeding its

temperature limit.

In this dissertation, we are focusing on developing thermal-aware throughput max-

imization algorithms for the practical hardware platform. Compared to most of the

related works that carried out their research based on simplified model or ideal-

ized assumptions, our work can obtain experimental results directly from the actual

computing system. Thus, our research is more practical. We developed a real-life

hardware platform based on an Intel i5-750 quad-core processor, running the Ubuntu

10.04.1 Linux operating system with kernel version 2.6.32. It has the flexibility to

adopt most of the advance thermal management techniques. Thus, most of the the-

oretical work can be implemented and validated on our platform. Furthermore, we
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studied how effective the DTM technique can be in a practical hardware environment.

Specifically, we investigated the cooling efficiency and computing performance trade-

offs when employing the DVFS technique on our hardware platform, and compared

it with the traditional cooling method by running the same benchmark. Further-

more, by implementing different thermal management algorithms on our platform,

we validated two widely used thermal management principles in reality. We also ana-

lyzed how the cooling solution can affect the performance of the thermal management

algorithm by comparing those approaches under different cooling conditions.

We identified several limitations in the assumptions of the existing theoretical

researches on our hardware platform. And then we proposed an ERDTM for a single-

core processor to maximize the program throughput under a given temperature con-

straint. Compared to the conventional reactive approach, our ERDTM could detect

temperature changes more accurately. In addition, by doing offline thermal anal-

ysis, we were able to built up a thermal profiling look-up table, which can guide

the ERDTM algorithm by selecting the optimal working frequency to maximize the

throughput. Our experimental results show that the ERDTM algorithm can signifi-

cantly reduce the number of temperature violations by 88%. Also, by comparison with

the conventional reactive approach, the overall system throughput can be improved

by 8.1%. To further extend our research work from single-core to multicore platform,

we proposed a proactive NADTM algorithm with a temperature prediction technique.

Compared to the reactive DTM approaches, the proactive DTM algorithm can detect

the thermal emergency in advance, and leave enough time for the DTM algorithm

to react with the temperature change. Other than simply using the temperature

history to predict temperature, our NADTM algorithm takes the heat transfer from

neighboring processors into consideration. It can significantly improve the prediction

accuracy by 38% compared to the temperature history based prediction method. And
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the prediction error is as small as 1oC. In addition, we proved that simply migrating

the task from the hottest core to the coolest core is not always the optimal solution.

Thus, our NADTM algorithm includes a neighbor-aware task migration technique.

The experimental results show that our NADTM can effectively maintain the temper-

ature under the pre-defined temperature limit. The system throughput was improved

by 5.8%.

7.2 Future Work

In this dissertation, we have done extensive research work on the dynamic thermal

management analysis, especially focusing on developing the thermal-aware through-

put maximization algorithm for the practical computing system. However, based on

the close correlation between temperature and power. It is very logical for us to

extend our research work to the computing system power management analysis.

As we discussed in this dissertation, the exponentially increasing heat dissipation

significantly increases the total amount of power used to cool down the temperature.

Meanwhile, our experimental shows that the DTM algorithm can outperform the

air-cooling system on reducing the processor temperature, however, it has to sacri-

fice the system performance. On the other hand, the air-cooling does not affect the

performance, but will cost extra power consumption. Thus, developing a scheduling

algorithm for the practical computing system that would analyze the trade-offs be-

tween the cooling energy and the DTM algorithm is highly demanded. Based on the

special characteristic of our hardware platform, we are able to measure the comput-

ing system power consumption, and we also have the flexibility to adjust the cooling

system on the platform. It is very logical for us to extend our work to analyze the

cooling energy optimization.
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