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ABSTRACT OF THE DISSERTATION 

THE DEVELOPMENT OF DIRECT ULTRA-FAST PCR FOR FORENSIC 

GENOTYPING USING SHORT CHANNEL MICROFLUIDIC SYSTEMS WITH 

ENHANCED SIEVING MATRICES 

by 

Maurice J. Aboud 

Florida International University, 2012 

Miami, Florida 

Professor Bruce R. McCord, Major Professor 

There are situations in which it is very important to quickly and positively 

identify an individual. Examples include suspects detained in the neighborhood of a 

bombing or terrorist incident, individuals detained attempting to enter or leave the 

country, and victims of mass disasters.  Systems utilized for these purposes must be fast, 

portable, and easy to maintain. The goal of this project was to develop an ultra fast, direct 

PCR method for forensic genotyping of oral swabs.   

The procedure developed eliminates the need for cellular digestion and extraction 

of the sample by performing those steps in the PCR tube itself.  Then, special high-speed 

polymerases are added which are capable of amplifying a newly developed 7 loci 

multiplex in under 16 minutes.  Following the amplification, a postage stamp sized 

microfluidic device equipped with specially designed entangled polymer separation 

matrix, yields a complete genotype in 80 seconds. The entire process is rapid and reliable, 

reducing the time from sample to genotype from 1-2 days to under 20 minutes. Operation 

requires minimal equipment and can be easily performed with a small high-speed 
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thermal-cycler, reagents, and a microfluidic device with a laptop. The system was 

optimized and validated using a number of test parameters and a small test population. 

The overall precision was better than 0.17 bp and provided a power of discrimination 

greater than 1 in 106. 

The small footprint, and ease of use will permit this system to be an effective tool 

to quickly screen and identify individuals detained at ports of entry, police stations and 

remote locations. The system is robust, portable and demonstrates to the forensic 

community a simple solution to the problem of rapid determination of genetic identity. 
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CHAPTER I: FORENSIC DNA ANALYSIS 
 

a)  History & Technology 

Forensic science, the application of science to law, has been used from as early as 

society developed a system of order. Quintilian, a Roman attorney in the year 1000 used 

a bloody palm print to frame a blind man for his mother’s murder, while the Chinese 

book ‘His Duan Yu’ written 1248 shows the difference between drowning and 

strangulation.1 While these early accounts were seen as mere logical correlations, many 

of these disciplines have advanced greatly and have become detailed scientific areas of 

study. It was not until the late 1800’s that technological advances and application of 

science was truly seen as a useful tool to solve crimes, and forensics as we know it today 

was born. Mathiew Orfila, the scientist who developed testing for the presence of blood, 

who is considered the father of toxicology, Sir Francis Galton and Sir Edward Richard 

Henry who developed fingerprint classifications for identification of individuals are 

among the many scientists who have laid a solid foundation for the science of forensics.1 

It is important to note that in this manuscript the author places emphasis solely on the 

history of forensic DNA analysis and the technological advancements relevant to its 

development.  

Deoxyribonucleic acid (DNA) is the genetic material that makes up human and 

living organisms. The purpose of DNA is to store genetic information that codes for 

biological processes. Work done by Erwin Chargaff on the composition of DNA and its 

nucleotides resulted in a discovery that helped James D. Watson and Francis Crick with 

the structure of DNA. Chargaff was able to show that the percentages of the four bases 
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connected in this structure, Adenine (A), Thymine (T), Cytosine (C) and Guanine (G) 

were present in a ratio of 30.9: 29.4: 19.8: 19.9 respectively.2-5 The ratio meant that there 

was an almost even number of A and T and also G and C in their compositions. While 

Chargaff himself was unable to figure out exactly what this meant for the structure of 

DNA, a visit with James D. Watson and Francis Crick at Cambridge in 1952 provided 

valuable data to the two scientist, who at that time were trying to solve the structure of 

deoxyribonucleic acid. The following year, Watson and Crick discovered the structure of 

DNA with insight from Chargaff’s results. They found that a DNA molecule existed as a 

double stranded helix made from a chain of nucleotides unlike the alpha helix that was 

previously thought to be the correct structure.6  

The beginning of forensic DNA analysis can be ascribed to the work done by Sir 

Alec Jeffreys, a British geneticist from the University of Leicester, England. Sir Alec 

discovered a set of variable regions within the human genome that were able to 

differentiate between two individuals within a given population. These regions known as 

Variable Number of Tandem Repeats (VNTRs) are based on the number of times a 

specific sequence of DNA is repeated in tandem within the DNA.7-10 Because of the 

nature of these polymorphisms and the number of length variations that can occur within 

individuals, a very high power of discrimination can be achieved. These repeats were 

analyzed using a method called restriction fragment length polymorphism (RFLP) 

developed in the 1970’s for the detection of single base variations within humans.11 A 

restriction enzyme is used to cut the DNA at a specific sequence into smaller fragments, 

which are then separated by their differences in size using electrophoresis in an agarose 

gel. The smaller fragments travel faster through the gel and hence appear further along 
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the gel strip. The fragments are then fixed to a nylon membrane which is labeled with a 

radioactive (P32) probe. The probe binds to only specific regions on the fragments and 

when exposed to X-rays result is a barcode like image. The image was referred to as a 

“DNA fingerprint” by Sir Jeffreys, and then compared to a known sample for identity 

(Figure 1).7 

 

 
Figure 1: Schematic of the VNTR-RFPL process. DNA is extracted and digested with a 
restriction enzyme. After electrophoresis the fragments are transferred to a nylon membrane 
and a radioactive probe binds to its complimentary position. The membrane is then exposed to 
X-rays and visualized. If two bands align with each other then a match occurs at that marker. 
Adapted from How Stuff Works website. 

 
In his original work Jeffreys’ used Hinf I as a restriction enzyme to digest DNA 

using multi-locus VNTR probes. These multi-locus probes contain common sequences 

for several different VNTR loci that contain sites of different length that could be 

observed. The ending result made interpretation very difficult and complex which lead to 

the development of single locus probes. The first use of the RFLP-VNTR method was in 
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a civil immigration case in the year 1985 in England, where the paternity of a young boy 

from Ghana to relatives living in England was being questioned. The results showed that 

indeed the young boy was related and allowed entry into the country and reunion with his 

family.10 The following year, 1986 marked the first criminal case tested using the muti-

locus RFLP/VNTR method for identification. The case involved rape and homicide of 

two girls in which the only suspect at that time confessed to only one of the murders. 

Police believed that the suspect was also responsible for the death of the second victim 

and with no additional evidence all members of the small village were asked to submit a 

DNA sample for comparison to the DNA found at the scene.12 After all the samples were 

tested including the original suspect with no match, the police were confused. It was not 

until a man from the village bragged about submitting a sample under a friend’s name 

(Pitchfork) that the police were able to find out who the person was and his actual DNA 

tested. His DNA matched to the evidence found at the crime scene. The man in this case, 

Colin Pitchfork was convicted of his crime and sentence to life in prison.12 

Around the same time of Sir Jeffreys and his “DNA fingerprinting” method, an 

extremely important biological technique was discovered. In 1983 Kary Mullis came up 

with an idea where he would use a pair of primers to encase a small region of DNA, add 

polymerase and nucleotides to make an infinite number of copies. This method, known as 

the Polymerase Chain Reaction (PCR), was capable of exponentially amplifying a nucleic 

acid sequence and making millions of copies of the same sequence.13  

The early process of performing PCR using the Klenow region of the E.coli 

polymerase required that new polymerase be added after each denaturation stage because 

the enzyme was not thermally stable.14, 15 After discovery of a new thermally stable 
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polymerase isolated from bacteria found in geothermal springs, Thermus Aquaticus 

(Taq), the need for adding additional polymerase was not required and the process 

performed without human intervention.16 Later developments in polymerases led to a 

“hot start” polymerase, which required that the enzyme be heated before it was activated. 

This greatly improved the reaction specificity and efficiency by not allowing 

amplification to take place at undesired temperatures.16  

Unlike the RFLP/VNTR method of “DNA fingerprinting” which required large 

amounts (0.5μg or greater) of intact DNA, PCR permitted the analysis of samples with 

low amounts (0.5ng or less) of DNA.17 The first PCR based analysis used in forensics 

was the amplification of the HLA DQα1 marker. This region of the genome codes for the 

alpha subunit of the DQ protein of the major histocompatibility-complex on chromosome 

6 and contains a polymorphic 242bp region that has eight or more alleles, which can be 

used in human identification.18, 19 The method used to detect these variations is known as 

the reverse “dot blot” method. Using the dot blot method the DNA templates are bound to 

a substrate, then a complimentary, evidence or reference probe to the desired allele is 

hybridized to the DNA. Following successful binding of the complimentary probe to the 

DNA, reagents are added which produce a color change due to an enzyme attached to the 

probe by means of the biotinylated end.20 The HLA DQα1 dot blot method was difficult 

to interpret when mixtures were present, and the method had a low power of 

discrimination. 

To improve the power of discrimination, an additional dot blot kit was used, 

known as AmpliType PM which co-amplified five additional loci. The five markers were 

low density lipoprotein receptor (LDLR), glycophorin A (GYPA), hemoglobin gamma 
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globin (HBGG), D7S8 on chromosome 7 and a group-specific component (Gc).  Each 

marker had a specific hybridization probe and contained 2-4 alleles.21 The combination of 

these markers allowed for higher discrimination powers than the original dot blot kits. 

About the same time another PCR method was established that became very 

popular using a single locus VNTR marker known as D1S80. The marker amplified a 

highly polymorphic 369bp to 801bp region that contained 27 alleles (each containing a 

variable number of 16 base repeat units).21 The amplicons were then separated via 

electrophoresis on a polyacrylamide gel. The size of the amplicon determines how fast it 

moved through the polyacrylamide gel with small molecules migrating faster than larger 

ones. The gel was visualized using ethidium bromide, an intercalating agent that binds to 

double stranded DNA (dsDNA) under an ultra-violet light source (UV) or silver staining. 

The alleles are then determined by comparison to an allelic ladder, which contains all 

known alleles for a given locus. The large size of some of the D1S80 amplicons, made it 

difficult to amplify degraded DNA samples. The D1S80 method was more sensitive than 

some of the earlier RFLP based methods, but was not as statistically powerful even when 

combined with the DQA1 polymarker. 

The next most important development in forensic DNA analysis was the 

identification of microsatellites or short tandem repeats (STRs). Short tandem repeats are 

simple sequence repeats, which contain a core-repeating unit of between two and six 

nucleotides in length.22 There are abundant numbers of STR markers in the human 

genome, but only a small set of these markers were chosen as identification markers for 

forensic DNA analysis. While the most typical STRs markers currently being used 

contain a four base or tetrameric repeat unit, pentameric (5 base) nucleotide repeats have 
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also been used.23* STRs can be multiplexed permitting multiple loci to be simultaneously 

amplified. Current commercial kits may contain up to 21 different sets of alleles on as 

many chromosomes. The overall result is a very high power of discrimination (greater 

than 1 in 1016) along with the added advantage of increased sensitivity and reduced 

analysis time.  

By the year 1992, the practice of forensic DNA analysis had become routine and 

the interpretation of results were constantly being challenged in court. As a result of the 

confusion, the National Research Council (NRC) was asked to form a committee on 

forensic DNA to help resolve the outstanding issues in interpretation of results. As a 

result, the NRC I report was issued with guidelines to be followed by all forensic 

laboratories. In 1996, because of continuing issues with statistical interpretation and the 

development of new technologies a second report, NRC II, was issued. The report 

improved statistical methods used in data evaluation and assisted with application of 

PCR-based methods.24 In order to further help standardize the markers being used and 

allow for the establishment of a DNA database that was compatible nationwide, the 

Federal Bureau of Investigations (FBI) coordinated a study in 1997 and developed a set 

of 13 core loci for use with a computer database known as the Combined DNA Index 

System (CODIS). The 13 loci were chosen based on discrimination power and quality of 

the results. The loci chosen were: CSF1PO, FGA, THO1, TPOX, vWA, D3S1358, 

D5S818, D7S820, D13S317, D16S539, D18S51, D21S11 and a sex determining marker 

Amelogenin.17, 25 The sex-determining marker Amelogenin utilizes a 6bp difference 

                                                 
* Note: the use of pentameric STRs markers have additional benefits over tetrameric 
STRs due to fewer micro-variants and less stutter. 



 
 

8

between the X and Y sex chromosomes allowing for the identification of the sample sex, 

making it a useful tool for investigators.26 27  While these markers are still considered the 

core loci, many commercial kits use more loci than the 13 listed above for increased 

discrimination. Up to 21 different makers can be multiplexed today and more loci may be 

added to CODIS in the future.28  At present there has been extensive validation of 

amplification procedures for the 13 core loci and large databases have been developed.29  

STR alleles today are separated using a technique called capillary gel 

electrophoresis, which is much faster than agarose gel systems and achieves greater 

resolution. The markers are multiplex by size and by labeling the forward primer with a 

fluorescent tag at the 5’ end. Different dyes may be used to allow for simultaneous 

detection depending on the instrument being used for the analysis. Most systems today 

are capable of exciting and detecting a wide range of dyes. Generally dyes are excited by 

a single laser and detected over a range of emission wavelengths. The most common 

instruments used today for forensic STR DNA typing are the Applied Biosystems (ABI) 

Genetic Analyzers. These capillary electrophoresis (CE) systems come with various 

numbers of capillaries starting with the single capillary ABI 310, which has been the 

standard instrument for most crime labs until recently, where the 16-capillary ABI 

3130XL has become more popular for higher throughput.  

b)   DNA: Its Biology 

 Robert Hooke, an English physicist and prominent microscopist, first discovered 

the cell in 1665 under a compound microscope.30 In the mid 18th century scientists, 

Theodor Schwann, Matthias Schleiden and Rudolf Virchow postulated a theory that cells 
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were the basic unit of life and present in all-living organisms.30 Cells are responsible for 

the activity, and contain the hereditary information, which can be passed on through 

replication and cell division. Organism with cells containing a nucleus are called 

eukaryotes. The nucleus contains DNA and other proteins organized in chromosomes, 

which store the genetic information. The genetic information gives instructions for 

growth, development and reproduction. The entire ensemble of information contained on 

the chromosomes is known as the genome. The human species contains two copies of 

each of the twenty-three chromosomes, and is referred to as a diploid system. We inherit 

half our chromosomes from each one of our parents, generation to generation.31  

i)   DNA Structure 

The structure of DNA is divided into three main nucleic acid components; a base, 

a sugar and a phosphate group. The nucleotides are connected by a phosphate and sugar 

backbone, which forms its basic structure. DNA contains four bases; adenine (A), 

cytosine (C), guanine (G) and thymine (T) and these account for the structural variation.6 

Adenine and guanine are referred to as purines a two ring structure, while cytosine and 

thymine are pyrimidines containing a single ring (Figure 2). The bases are attached to the 

sugar phosphate backbone such that adenine only bonds to thymine while cytosine only 

bonds to guanine as shown by Watson and Crick based on Chargaff’s data. The 

differences and combinations of these bases result in different coding messages that make 

living organism different physically and genetically. The bases are linked together by a 

phosphodiester bond between the 5’ hydroxyl of one pentose sugar to the 3’ hydroxyl of 

the adjacent sugar.32 
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Figure 2: A: The chemical structures of the 4 DNA nucleotides, adenine (A), cytosine (C), 
guanine (G) and thymine (T) showing the Hydrogen bonding, A-T double H-bonds and C-G 
triple H-bonds. B: The DNA sugar phosphate backbone with attached nucleotides showing the 5’ 
phosphate and 3’ Hydroxyl ends. 

 
The two strands of DNA are held together by hydrogen bonds. Even though 

hydrogen bonds are weak chemical bonds, they occur in such high numbers that the two-

stranded helix is held together strongly via hybridization. The strands run in opposite 

direction one from 5’ to 3’ and the other 3’ to 5’ and bind at its complimentary base. 

(Figure 2) As a result of the structure and available H-bonding sites, G-C bonds have 

three H-bonds while A-T pairing only contains 2 H-bonds. The G-C bonds require more 

energy to break than A-T bonds and hence plays important roles when designing primers 

or target sequences to be amplified.33 

A B 
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ii)   DNA Arrangement: Chromosomes, Genes and Loci 

DNA is organized into tightly compact structures along with proteins known as 

chromatin, which are located in the chromosome.  In the human cell there are 46 different 

chromosomes 23 coming from the maternal and 23 from the paternal parent. Two of 

these chromosomes are sex chromosomes that determine the gender of an offspring. 

Females contain two X-chromosomes and male contain one X-chromosome and one Y-

chromosome. During fertilization of the egg (haploid) with the sperm (haploid) the 

zygote cell becomes diploid because of inheritance from each parent.34 

When the compact DNA structure is unwound, it contains stretches of DNA 

sequences that code for polypeptides or proteins. These regions known as genes, consist 

of coding regions called exons and non-coding spacers called introns. Markers typically 

used for human identification are found in the non-coding region or introns and do not 

code for genetic variations (Figure 3).35 33  

The location of a gene or marker within the chromosome is known as the locus 

(or loci). This terminology is used to describe the exact location of the targeted region 

along the chromosome.  
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Figure 3: The structure of cell nucleus containing chromosomes. These chromosomes 
contain tightly bound DNA organized into X-like structures which when unwound code 
for genes and other proteins. Adapted from National Human Genome Research Institute 
website. 

iii)   DNA Marker nomenclature 

The DNA markers are named depending on their position on the chromosome. 

For example the forensic STR locus D5S818 can be described as follows; The ‘D’ stands 

for DNA, the 5 refers to its location, on chromosome 5, ‘S’ indicates that it is a single 

copy sequence and the 818 represents the order in which it was discovered and 

characterized for that particular chromosome, hence it is the 818th marker described on 

chromosome 5. The same can be said for other markers like D13S317, D16S820, D7S820 

and others. If the marker falls within the coding region of a gene, such as TPOX (thyroid 

peroxidase gene) or TH01 (tyrosine hydroxylase gene), it is named after that gene (Figure 

4). 17 

Cell 
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Figure 4:The chromosome location and nomenclature of the 13 core CODIS loci.17 

 

iv)   DNA Degradation 

The biological evidence found at crime scenes is often not in pristine condition, 

exposed to extreme environmental conditions, and the DNA can be degraded causing 

problems in the quality of the amplified product. The degradation of DNA can take place 

by biochemical processes such as hydrolysis, oxidation and by bacterial activity or 

enzymatic digestion.36 A number of environmental and external factors can also degrade 

DNA such as ultraviolet light, temperature change, time, enzymes such as nucleases, 

microbial bacteria and chemicals such as bleach.37 Post mortem samples are greatly 

affected by enzymes liberated during autolysis. Endonucleases cut the DNA into smaller 
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fragments while exonucleases removes nucleotides from the terminal end one after 

another reducing the size of the overall length of the fragment.36  

Hydrolysis can result in depurination and depyrimidination of nucleotides as the 

glycosidic base-sugar bond is cleaved. Once the glycosidic bond is broken, a β-

elimination reaction can reduce the strand breaking at the 3’ phosphodiester bond of the 

sugar. The rate of this process is greatly affected by the environmental and physiological 

conditions such as pH, temperature and ionic strength. For example, a typical 800bp 

DNA fragment can take about 5,000 to 10,000 years at 15°C to fully degrade.38 

Pyrimidines, cytosine and thymine, are not as affected as purines by full hydrolysis 

because they are more stable and less affected by pH.39 An excision repair process 

quickly corrects the hydrolysis of DNA in living cells.40 The damaged site is cleaved and 

DNA polymerase I and DNA ligase comes in and repairs the damage.39  

Nucleotides containing secondary amino groups, such as adenine and cytosine, 

can also undergo hydrolytic loss of the amino group, and be converted into uracil and 

thymine which causes mis-binding and transition mutations. Cytosine and its 5-

methylycytosine are especially prone to deamination even though this process occurs 

very slowing under natural physiological conditions (Figure 5). DNA strands can also be 

cross-linked to proteins as inter molecular bonds form between the open-ring of an abasic 

sugar to an amino group on the opposite strand.38, 39  
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Figure 5: The hydrolytic loss of an amino group, which can result 
in translation mutations. The deamination of cytosine to uracil 
(above) and 5-methylctosine to thymine (below). 

 

Another common DNA degradation process occurs through oxidation. During 

oxidation, reactive species such as oxygen radials (O2
.-), hydroxyl radials (OH-) and 

hydrogen peroxide (H2O2) can cause endogenous damage to the DNA molecule. These 

radicals result from metabolic processes and attack the DNA sugar backbone. The 

radical, stabilized by its proximity to an oxygen atom, reacts with the phosphoester group 

at the C3 position and causes strand breakage by removal of the phosphate group. The 

reaction progresses in presence of water with the radical cation causing the elimination of 

another phosphate group at the C5 position (Figure 6). Oxidants can also cause base 
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mutations, for example, in the presence of an hydroxyl radical, adenine can bind with the 

mutated base 8-oxo-7-hydroxydeoguanosine causing a mis-binding and translation 

problem. 

 

 
Figure 6: The attack of an oxidant on a DNA strand. The radial attacks the sugar residue first at 
the C4 position, where the nearby oxygen atom stabilizes it. The Phosphate group is ejected 
resulting in a positively charged radical. This radical can then react further with a different 
backbone DNA molecule, in the presence of water, removing yet another phosphate group. The 
end result is a DNA strand that is broken. 

 

Ultra-Violet light causes DNA lesions that are can be mutagenic and toxic to the 

cells destroying the DNA. The most common and harmful are cyclobutane-pyrimidine 

dimers and 6-4 photoproducts which cause structural damage and distort the DNA 

(Figure 7).40 Temperature change, freeze and thaw cycles also cause damage to the DNA 

by cleavage and random breakage. Forensic DNA samples found at crime scenes are 

commonly not pristine and affected by degradation. It is important to understand how the 
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degradation process affects the sample, quality of amplification and electropherogram 

data.  

 

 
Figure 7:Formation of dimers from exposure of UV radiation. (A) cyclobutane-pyrimidine 
dimer (B) Thymine-cytosine dimer.
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CHAPTER II: COLLECTION AND ISOLATION OF BIOLOGICAL EVIDENCE  
 

a)   Collection of Biological Evidence  

The collection of evidence at a crime scene should be done in such a manner to 

avoid contamination and preserve its quality to ensure the best results when tested. 

However, one of the most common problems encountered by forensic scientists in the 

laboratory is poor collection, preservation and transport of biological evidence. With 

today’s emphasis on DNA, the presence of biological evidence at a crime scene is often 

the most incriminating and valuable source. Within most of the 50 states in the United 

States of America, forensic scientists rarely leave the lab, and therefore, the collection of 

evidence is done by police personnel, investigators or special crime units. At a crime 

scene the most common types of biological evidence found are: blood, semen, saliva, 

hair, teeth, tissue, bone and urine.41 These are not the only items found at a crime scene, 

but account for majority of the evidence collected. There are different collection 

standards that vary among departments, but there are some common protocols for the 

collection and preservation of evidence. There are numerous techniques that are used by 

forensic scientists, and where possible items should be left in their original state and sent 

to the laboratory for the DNA collection.*42 

 

                                                 
*  Note: Before any item of physical evidence is collected it must be properly 
photographed and fully documented. You must also have the required search and seizure 
documents. After collection each item should be carefully labeled and sealed so as to 
establish a chain of custody. 
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i) The Collection of Blood Evidence 

Blood is the most commonly biological sample found at crime scenes, and is a 

major contributor to successful recovery of DNA profiles. DNA is found within the 

nucleus of the white blood cells. The white blood cells are less abundant than red blood 

cells, which have no nucleus and no DNA. However, most blood samples once collected 

properly yield good results when DNA is extracted. A wet blood sample is collected 

using a sterile swab passed over the stained area. The swab is then allowed to dry 

completely before being packaged.  Dry bloodstains are collected using a sterile swab 

slightly moistened with distilled water. Like the wet sample it is important that the swab 

be allowed to dry. 

If the sample is packaged wet, it may promote the growth of mold and bacteria 

and degrade the DNA within the sample. All blood samples are packaged in paper or 

cardboard, but never in plastic. If the sample collected is not going to be analyzed within 

a short time frame it should be refrigerated at -20°C to help preserve the DNA, or stored 

on an FTA card for later analysis. A reference sample should also be collected where 

possible.41, 43* 

ii)   The Collection of Semen Evidence 

Semen is another common source of evidence that is critical especially in rape 

cases. Semen is often detected as a dry crusty white stain. An alternate light source may 

also be used to aid in its location because semen fluoresces under UV radiation when 

                                                 
* Note: In some cases it may be more important to preserve the blood splatter pattern than 
to collect and interfere with the evidence. 
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viewed with the appropriate goggles.41, 43 In the majority of cases, semen is collected 

from sexually assaulted victims and bed linens. A semen stain would be collected in the 

same manner as a blood sample mentioned before. When possible the entire item 

containing the semen sample should be collected and sent to the laboratory, as there may 

be trace evidence present.*  

iii)   The Collection of Salvia Evidence 

Saliva samples and buccal swab samples may often be taken as control samples. 

Saliva can also be collected from items such as cigarette butts, chewing gum, soda cans, 

envelopes, stamps and bite marks. A saliva stain would be collected in the same manner 

as blood using a sterile swab. The sample must then be allowed to dry and packaged in a 

paper envelope or cardboard swab box. Buccal swabs are the most common method of 

reference samples used today (Figure 8). 

                                                 
* Note: A rape kit should be conducted by the hospital when possible, with dialogue from 
the evidence collector. 
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Figure 8: DNA swabbing and collection of control or reference samples. A sterile cotton 
swab is opened, the inside of the suspect’s check is swabbed for 1 minute firmly, the swab is 
then allowed to dry and cut for the extraction process. 

 

iv)   The Collection of Hair, Tissue, Bone, Urine and Teeth Evidence 

Hair samples are often considered trace evidence but a forensic biologist may be 

required to collect such a sample for DNA analysis. Hair can be found anywhere as it 

may easily be transferred throughout a crime scene. Special precautions must be taken as 

not to overlook and destroy hair samples. The samples should be collected with a 

tweezers and placed in a druggist fold or paper envelope. Each piece of hair should be 

separately packaged to avoid any cross contamination. 

The use of tissue, bone, urine and teeth to provide DNA samples is more 

commonly associated with identification of a victim rather than obtaining evidence from 

a suspect. There are specialized fields in forensics that deal with these items of evidence, 

such as forensic odontology, forensic anthropology and forensic toxicology. These 
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samples are not as commonly used as blood and semen and will not be discussed in this 

manuscript. However there are special procedures for the collection and preservation of 

these types of samples, which may prove to be valuable evidence from case to case. 

 It is important that the evidence collected and submitted for DNA analysis is collected 

and persevered in such a manner to maintain the integrity of the sample to permit 

successful amplifications. 

b) Isolation (Extraction) of Biological Evidence 

Biological samples are often first detected using some type of presumptive test 

not discussed in this manuscript. However, once identified as a possible source of DNA, 

there are a few different methods used by forensic laboratories to break open the nucleus, 

release and purify the DNA for downstream STR analysis.  

i) Phenol-Chloroform Isoamyl Alcohol (PCIA)  

 The PCIA extraction is also known as organic extraction, and is one of the most 

common methods used to isolate DNA from cells or samples. Many forensic laboratories, 

despite newer chemistries that have been developed, still utilize this method of extraction 

because of its high rate of recovery. While this method involves numerous steps and is 

difficult to automate, it yields a high concentration of DNA that is relatively clean of 

contaminants and inhibitors and can work on a variety of sample types. However, phenol 

can be toxic and must be carefully handled and used under a hood with proper 

ventilation. 

The first step in a PCIA extraction is the addition of an enzyme, proteinase K, a 

detergent, sodium dodecylsulfate (SDS), and a disulfide bond-breaking reagent, 
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dithiothreitol (DTT). These chemicals are used to break open the cell membrane digest 

and remove proteins that bind and stabilize DNA in the nucleus.* This process is often 

aided by heating in a water bath at 56 °C for 2- 4 hours. After heating and lysing of the 

cells, phenol, chloroform, and isoamyl alcohol are added to separate the proteins from the 

DNA via a liquid/liquid extraction. Because the DNA is soluble in the aqueous phase, it 

can be separated from the organic layer by centrifugation at high speed, followed by 

pipetting of the aqueous layer into a new tube. The isoamyl alcohol is used to help 

stabilize the chloroform and reduces foaming, leading to a clearer interphase between the 

aqueous and organic phases (Figure 9).  

 
Figure 9: Overview of the phenol-chloroform isoamyl alcohol extraction process. Step 1; addition 
of proteinase K, SDS, DTT incubated at 56°C for 2-4hrs. Step 2; remove cotton swab and spin 
down. Step 3, add PCIA spin and remove aqueous layer into a new tube. 

 

ii)   Chelex Extraction 

Another method used for extraction of DNA for PCR based approaches involves 

chelating resins. The method requires fewer pipetting steps and tube transfers, which 

makes it faster than PCIA extractions. Chelex® 100 (Bio-Rad Laboratories) is a highly 

                                                 
* Proteinase K is an enzyme capable of digesting proteins. SDS, a detergent is used to aid 
in the lysis of cells and in unraveling proteins. 
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selective cation exchange resin containing iminodiacetate ions which can chelate 

polyvalent metal ions, and inactivate PCR inhibitors and nucleases which damage DNA. 

The solution is heated for several minutes at 100°C which causes the cell membranes to 

be broken and the DNA exposed. However, this high temperature also denatures the 

DNA leaving it single stranded. Thus, procedures such as RFLP, which require intact 

DNA, cannot be used. Pre-wash steps and the ion exchange resin may also help remove 

inhibitors that may affect PCR.44 The selectivity of the resin is 5000:1 for divalent versus 

monovalent ions, even in solutions with high salt concentrations. 

iii)   FTA® Paper 

 Fast Technology for Analysis of nucleic acids (FTA) was developed in the late 

1980’s at Flinders University in Australia. Burgoyne and Fowler were able to design a 

special paper capable of protecting nucleic acids from degradation such as nucleases, 

bacterial activity and preserving it for long-term storage.45 They applied a weak base, 

chelating reagent, anionic surfactant and uric acid onto a cellulose based paper. As a 

result of contact with the mixture of chemicals embedded on the paper, the cells present 

in the biological fluid are lysed and their proteins are denatured. The DNA samples 

deposited on FTA® paper are stable and can be stored at room temperature for years with 

minimal DNA degradation. This is a great advantage for forensic samples, and the paper 

can provide long-term storage that requires less space than traditional tubes in freezers. 

However, some studies suggests that after 19 months, there is little to no improvement in 

STR profiles obtained from this paper when compared to traditional storage methods.46  
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One of the most valuable attributes of FTA paper is that you can add similar 

amounts of DNA to a PCR reaction by simply using the same size of paper punch each 

time. This eliminates the need for quantification of the DNA sample before genotyping 

and saves valuable time in the genotyping process. The DNA can be pre-washed and 

eluted using an elution buffer that solubilizes the DNA off the paper if higher purity is 

needed for analysis. Newer FTA paper products have included an indicating color spot 

showing where the DNA is on the paper to eliminate the possibility of punching a sample 

with no DNA. Recent elution methods permit the use of water with a small heat step, 

reducing the potential of contamination that occurs during pipetting and transferring of 

reagents.  

iv)   Solid Phase Extractions 

It is possible to automate the DNA extraction process to permit high-throughput 

analysis with robots. A number of methods have been developed in which a solid phase 

substrate is used that binds DNA selectively, while proteins, cellular materials and other 

artifacts are washed away. The purified DNA is later released during an elution step. 

While the composition of the solid substrate varies depending on the solid-state 

chemistry, the two most common substrates used for forensic work are silica and 

magnetic beads.  

An example of a silica based solid phase extraction is the the QIAamp® Kit 

(QIAGEN, Valencia, CA).47 In this kit, the nucleic acids are selectivity bound to silica on 

a glass bead support. The cells are then lysed in the presence of a chaotropic salt 
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solution.* These salts help stabilize the denatured DNA and proteins. In acidic conditions 

below pH 7.5, DNA is absorbed to the surface of the silica beads with up to 95% 

occupancy. The remaining proteins and unwanted molecules are then washed away. The 

pH is then raised to generate basic conditions at low ionic strength, and the DNA is 

readily eluted. The beads can then be spun down via centrifugation, and the DNA 

collected in the aqueous portion. This process can be automated using a robotic process 

platform.48 

A similar chemistry developed by Promega Corporation (Madison, WI) called the 

DNA Isolation Quantitation kit  (DNA IQ) uses a magnetic bead solid phase instead of 

silica glass beads. The chemistry used is the same as that used with silica glass beads 

except a magnetic solid substrate is used to manipulate the DNA by holding it against the 

tube using a magnet. The results are a less tedious sample processing with fewer transfers 

and pipetting steps. The sample may also be washed several times for higher purity 

before being eluted. Other chemistries used in DNA extraction and purification includes 

ion exchange, charge-switch and sucrose based methods.† 49-53 

                                                 
* A chaotropic salt is one that disrupts intra- molecular forces such as hydrogen bonding. 
† Note that differential extraction is considered a form of the other types of extractions 
with an added step using dithiothreitol (DTT) a chemical that is responsible for breaking 
disulfide bonds that are in high concentrations in sperm membranes. 
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CHAPTER III: AMPLIFICATION: POLYMERASE CHAIN REACTION  
 

 

Kary Mullis in 1985 was able to demonstrate a method to make millions of copies 

of a DNA fragments know as the polymerase chain reaction. The process revolutionized 

many of the biological sciences and forensic DNA testing. He won the Nobel Prize in 

1993, very shortly after the discovery of PCR, which further illustrates the significance of 

the methodology. The value of PCR to forensic samples is critical as many of the samples 

found at crimes scene are in low quantities or degraded. Its ability to make millions of 

copies and amplify selected regions or STRs are paramount to forensic DNA typing.  

a)   PCR: Basics 

The polymerase chain reaction occurs in three general stages; denaturation, 

annealing and extension. Denaturation occurs with an increase of temperature above 90 

degrees Celsius (°C) where the weak hydrogen bonds are broken and the double strand 

DNA separates into two single strands. The temperature at which this step is done may 

vary according to the DNA polymerase enzyme. During the annealing stage, the primers 

bind to the separated complement strands when temperature is lowered (55-60°C) and the 

DNA is allowed to recombine. The primer concentrations are added in excess to ensure 

that the primer anneals and binds to the single strands minimizing the recombination of 

the original DNA. The final stage is the extension where the polymerase adds 

deoxyribonucleotide triphosphates (dNTPs) in the 5’ to 3’ direction. The primers are then 

extended by addition of complementary bases A, T, C & G at a temperature of 72°C. 

These steps are repeated such that, after one cycle, the amount of DNA is increased two 
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fold (After n cycles the amount of DNA will be approximately 2n). For example after a 

typical PCR run of 30 cycles the amount of DNA would be copied 230 or 1.073 x 109 

copies (Figure 10). 

 

 
Figure 10: Overview of the PCR process. Denaturation takes place once the sample is heated 
95°C. The addition of enzyme, dNTPs, and primers and buffer are all required for the PCR 
process. Primer annealing takes at a lower temperature. After the primers bind, the enzyme 
complex can come in and start to add new nucleotides. The overall result is a copy of that 
template. This process is repeated over and over until the desired amount of product is reached.  

 

b)  PCR Components 

The polymerase chain reaction involves a mixture of reagents and amplification 

conditions that must be optimized in order to achieve accurate and well-balanced 

products. These products are known as amplicons. The main components used for PCR 
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include polymerase (Taq) with a co-factor, primers, dNTPs, buffers (that maintain proper 

ionic strength) and the template DNA.  

The DNA polymerase Taq is the enzyme that binds and incorporates the new 

nucleotides. The speed at which it can add new nucleotides is known as its processivity, 

and the percentage likelihood of adding a correct nucleotide is known as its fidelity. The 

Taq polymerase requires the addition of a co-factor, magnesium chloride (MgCl2) which 

activates the enzyme.16 

The primers are responsible for specifying the region of DNA template targeted 

for amplification. The optimal primer lengths are 15-35 basepairs (bp) and should have a 

similar GC percentage.54 Primers must also be designed to avoid primer-primer binding 

and hairpin structures that can cause the primers to fold, reducing their propensity to bind 

to the template region. The concentration of primers used for PCR may vary from a final 

concentration of 0.2 to 1.5μM depending on concentration of DNA and the number of 

simultaneously reactions. The dNTPs are utilized by the Taq enzyme for the addition of 

nucleotides during the PCR reaction. The template DNA should be present at an optimal 

concentration and the mixture should be as free as possible from inhibitor substances. 

The buffer is specific to the type of Taq enzyme that is being used and it is 

important to keep the reaction within the correct pH range and ionic strength. It is not 

uncommon to find enhancing reagents added to the PCR to help increase the stability, 

reaction rates and selectivity. Common additives are non-acetylated bovine serum 

albumin (BSA) and dimethylsulfoxide (DMSO), both of which improve the reaction 

efficiency. BSA also binds to some substances which inhibit the PCR reaction.55  
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The template DNA, often obtained from one of the extraction methods described 

above should be as free from contimination as possible. Any inhibitors present greatly 

affect the efficiency and amplification during the PCR process. The amount of DNA 

added should also be sufficient. Too little DNA, or too much DNA can greatly affect the 

balance of the amplicons leading to allele drop out, allele drop in and other artifacts.* 17 

c)   PCR Controls 

As a result of the sensitivity of the PCR method a series of controls must be 

amplified along with the sample to ensure that reagents are working properly and that 

no contamination has occurred. A blank or negative control is run with the same PCR 

master mix without any DNA template. Running a blank would assure that no non-

specific amplification or contamination has occurred within the lab. A positive control 

is also amplified using high quality DNA standards, with a known profile, to ensure that 

the amplification process and reagents are working correctly. It is important that these 

controls are run with every reaction to ensure quality control.16 

d)   Thermal Cycling 

 There are a number of thermal cyclers on the market that are capable of 

performing the heating and cooling cycles required for PCR. Currently most forensic labs 

use a system from Life Technologies formerly Applied Biosystems called the GeneAmp 

9700. The system is capable of heating rates up to 4°C/s. While this thermal cycler is 

outdated by today’s technology, it is still currently the number one choice used in the 

                                                 
* It is important to quantify the amount of template DNA as to ensure a consistent and 
balanced amplification process. 
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forensic community. Faster thermal cyclers such as the SpeedCycler2 (Analytik Jena, 

Germany) and Philisa thermal cycler (Streck, USA) can perform amplification with faster 

cycling times (Figure 11). These thermal cyclers increase the cycling speed through the 

use special coated heating blocks, faster cooling fans and specialize tubes that permit 

efficient heat transfer. 

 

 
Figure 11:  Ultra fast thermal cyclers from Analytik Jena and Streck technologies. The cycler 
pictured on the left, is the SpeedCycler2 capable of heating rates of 15°C/s and 10°C/s cooling. The 
Philisa cycler is shown on the right with heating rates of 15°C/s and 12°C/s cooling. 

 

There are a number of thermal cycling parameters than can be changed and 

optimized during the PCR process. These include the length of time at each stage, the 

denaturing, annealing and extension temperatures, the ramp rate and the number of 

cycles. It is important to note that by increasing the amount of cycles to improve 

sensitivity, it must be accompanied by a detailed validation as artifacts may also be 

increased. 
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e)   PCR inhibition 

During PCR amplification because of co-extraction, exogenous molecules may be 

present and combined in the DNA samples. These compounds can have a great effect on 

the efficiency of the reaction leading to poor amplification or in some cases no 

amplification at all.56 These types of compounds may be endogenous to the sample due to 

insufficient purification, and may be the result of contaminants from the environment. It 

is important to develop steps and mechanisms to prevent the inhibition of PCR, in order 

to obtain reliable results. 

Some inhibitors that are commonly found in forensic samples include calcium, 

hematin, humic acid and indigo.57 This list of inhibitors is not all-inclusive, but these 

compounds have been well studied and identified in a variety of biological samples found 

at crime scenes. Endogenous inhibitors on this list include hematin, a chelating 

component found in red blood cells, as well as calcium, which competes with magnesium 

as an enzyme co-factor disrupting the activity of the polymerase.58, 59 Humic acid from 

soils, and indigo, a common dye found in denim, are examples of external inhibitors that 

also decrease the amplification efficiency.60, 61 

There have been a number of methods used to describe the effects of inhibitors on 

forensic DNA samples. PCR inhibition results from binding to the polymerase or DNA 

template stopping the amplification. Real time PCR can be used to monitor these effects 

by monitoring the degree of amplification.62 These types of analysis are important to 

determine whether inhibition is taking place, or, if in fact the sample is degraded since 

their electropherograms may look similar. However, different approaches are needed to 

address inhibitors versus degraded samples. 
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f)   Real time PCR 

Real time or quantitative PCR is a method that uses the same steps as traditional 

PCR with the addition of monitoring a fluorescent dye either directly attached to the 

primers/probe or via a double-stranded intercalating agent such as SYBR Green I. The 

fluorescent tag is incorporated as the PCR amplification takes place, the intensity of the 

signal increases as the DNA is amplified and more copies of DNA are produced. A 

typical analysis has three stages, the initial phase in which little to no product can be 

measured, an exponential phase and then a plateau (Figure 12). The DNA quantification 

is determined by its critical threshold (Ct) value which is proportional to the log of the 

initial copy number seen during the exponential phase.63 The Ct can be modeled from the 

Equation 1: 

Equation 1: Ct 

 

Where Nt is the amount of template DNA, m and b is calculated from the regression 

analysis of the Ct values of the standards. The unknown concentration is then calculated 

from the Equation 2: 

Equation 2: Unknown concentration 

 

Where Nu is the unknown concentration, Ct is the critical threshold, b and m are obtained 

from the line regression of the standards.64 

Ct = m log Nt + b

Nu =10
(Ct −b)

m( )
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Figure 12: Real Time PCR overview. The initial phase where there is little product, the 
exponential phase where the amount of product is great and the plateau phase where 
reagents are consumed and the reaction completed. The critical threshold is the point at 
which the reaction goes from the initial to the exponential phase. 

 

There are numerous ways in which the fluorescence monitoring can take place in 

real-time PCR (rtPCR). The most common methods for the quantification of forensic 

samples are done using an intercalating dye, Hydrolysis probes (Taqman) or Plexor® dye 

chemistry (Promega).  Hydrolysis probes sometimes referred to as a Taqman probes, are 

ones in which the 5’ end of the oligonucleotide is labeled with a reporter dye and 3’ 

terminal end labeled with a quencher.* As the probe binds to its complimentary sequence 

and the Taq polymerase reaches the 3’ end, it is endonucleolytically cut releasing the 

quencher molecule and hence a fluorescence signal observed. The most popular of this 

type of probe is the Quantifiler® Duo kit made by Applied Biosystems.  

                                                 
* The reporter and quencher molecules are close enough to prevent fluorescence until the 
quencher is removed by hydrolysis. 
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Intercalating dyes such as SYBR Green I and BOXTO allow for the monitoring of 

double stranded DNA without any specific binding site as it binds to the minor grooves 

of dsDNA. These dyes do not fluoresce when free in solution, because of their aromatic 

systems, which convert electronic excitation energy into heat.65 As these dyes are bound 

to the minor grooves and their rotation is limited, an increase in signal intensity is 

observed. While this type of rtPCR monitoring may be susceptible to primer dimers, 

these do not interfere with the amplification and typically take place during the plateau 

stage.66 Both Taqman and intercalating dye real time systems have been shown to be 

accurate and produce similar results.67 The last type of probe commonly used in forensics 

is the Plexor quantification system designed by Promega Corporation. The Plexor system 

utilizes specific interactions between modified nucleotides isoguanine (Iso-G) and 5’- 

methylisocytosine (Iso-C). One primer is labeled with a fluorophore and an Iso-C at the 

5’ end, while the other primer is unlabeled. In the PCR master mix, modified dNTPs, iso-

dGTP with dabcyl (a quencher) is used. As amplification takes place the specific 

interactions between the Iso-C and the dabcyl Iso-G are preferential at the complimentary 

position resulting in a quenching of the fluorescence signal (Figure 13). The latest model 

Promega Corporation kit is the Plexor® HY which like the Quantifiler® Duo kit 

incorporates specific Y-chromosome information for an estimated amount of male DNA 

that is being amplified in that sample.  
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Figure 13:  Overview of Plexor real time chemistry. As amplification takes place the reporter 
dye in quenched resulting in a decrease in fluorescence signal. The Ct values is then compared 
to the standards and the unknown concentration determined. Adapted from Thompson et al. 

 
The type of rtPCR probe used has an effect on the sensitivity of the system and its 

ability to accurately quantify low copy number DNA. Multi-locus probes and those 

capable of detecting autosomal and Y-specific probes for male DNA have added 

advantages and are capable of detecting low amounts of DNA.68 The use of primate-

specific Alu short interspersed nuclear elements (SINE) found throughout thousands of 

positions in the human genome allows for a high sensitivity method with a wide range 

(2pg- 15ng) of detectable DNA.69-71 
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CHAPTER IV:   SHORT TANDEM REPEATS (STRs) 
 

a)   STRs: Basics 

Short tandem repeat markers exist throughout the human genome. These markers 

are highly polymorphic consisting of short sequence repeat motifs that vary in the length 

from one individual to the next. STRs are designated by the length of the core repeat unit, 

as well as, the number of times it is repeated in tandem. If the size of the repeat is 

between 10-100 base pairs, it is considered a minisatellite or VNTR. For example the 

D1S80 marker described earlier that contains a 16bp repeat falls into this category. 

Smaller repeat units, which are more commonly used in forensic genotyping, range from 

2-6 base pair repeats and are called microsatellites. The most common microsatellite 

regions for forensic genotyping have tetrameric or pentameric repeat units, although 

dinucleotide repeats have been used for non-human and microbial samples.72  

 Most of the forensic microsatellite markers contain simple repeats. For example the 

sequence AGCTAGCTAGCT, contains a tetrameric or four base repeat, (AGCT). 

Compound repeats contain at least two simple repeats combined, for example        

AGAGACTAAGAGACTA. There may also be complex repeat units, which have a 

variable number length sequences and may contain intervening sequences. For example, 

AGCTACTGGCCCGATCGAGCTACTG.73, 74 

It is also possible to have one or more bases deleted from a repeat unit. These are 

known as microvariants. The most common forensic marker that contains the deletion of 

one base from the motif is the TH01 locus. At this locus there can be nine complete 

AATG units and one ATG unit resulting in a 9.3 allele designation. The 9.3 allele is 

because one of the adenines in the motif is missing. 
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The STRs markers are well suited for forensic applications as a result of their high 

level of polymorphism, high sensitivity and high power of discrimination. Their small 

size permits the analysis of highly degraded samples. Since there are numerous 

microsatellites, STR markers can be chosen to safeguard against linkage disequilibrium 

to ensure accurate statistical calculations when combining these markers, and 

discrimination between close relatives. By selecting STRs specific to the Y-chromosome, 

male portions of the sample can be identified and used for the separation of male/female 

mixed samples. 

b)   Allelic Ladders 

 An allelic ladder is a reference standard that contains all possible alleles for a 

given locus within that human population. The reference ladder is used during 

amplification to determine the size of the amplicon and its allelic number designation 

based on comparison to the fragment size. In order to create an allelic ladder, a specific 

locus is amplified with all the possible alleles. The alleles for that locus are then 

separated using polyacrylamide gel electrophoresis and each allele cut out. Once this is 

done for all loci required, all the alleles are recombined to create the full ladder (Figure 

14).75 Diluting the original ladder and re-amplifying with the original primers can also 

remake the allelic ladder.*76 However, most commercial forensic STR kits supply a high 

quality well-balanced allelic ladder for genotyping. 

                                                 
* Note: re-amplification of allelic ladders may result in peaks with poor balance or quality 
especially when using the same size amplicons as the original ladder. 
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Allelic ladders are not only important for designation of alleles, but also to correct 

for temperature and mobility shifts that are present instrument to instrument and lab to 

lab. 

 
Figure 14: An electropherogram of the AmpFℓSTR® Identifiler® allelic ladder showing all allele 
for each locus.17 

 

c)   Commercial STR kits 

Forensic laboratories prefer to purchase quality controlled STR kits rather than 

spend valuable time designing and validating their own because of the nature of forensics 

and the quality assurance and validations that are required for admissibility in the 

courtroom. These kits have evolved from containing 3-4 loci to as many as 21 loci 

multiplexed simultaneously using multicolor fluorescence detection in a single PCR. The 

two most commonly used forensic identity STRs kits in the United States of America 

contain 16 loci multiplexed of which 13 are core CODIS loci. Life Technologies, 
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formerly Applied Biosystems (ABI), manufactures the AmpFℓSTR® Identifiler® and 

Promega Corporation makes the PowerPlex® 16 kit.  The latest versions of these kits, 

AmpFℓSTR® Identifiler® Plus and PowerPlex® 16HS, are slowly replacing their 

predecessor because improved sensitivity and more robust buffers (that handle inhibited 

samples during PCR) have lead to more reliable and accurate results without pre-PCR 

cleanup. 

The standardized set of loci, which comprises the national DNA database, known 

as the Combined DNA Index System (CODIS) is common among commercial kits used 

for forensic human identity with some additional loci that give supplementary 

information and higher discrimination powers. The FBI selection group chose the 13 out 

of 17 loci recommended based on a number of factors and data evaluated. The loci 

included were TPOX, D3S1358, FGA, CSF1PO, D5S818, D7S820, D8S1179, THO1, 

VWA, D13S317, D16S539, D18S51, D21S11 and AMEL.29 

TPOX, CSF1PO, D5S818, D13S317 and D16S539 contain simple repeat motifs 

while TH01, D18S51 and D7S820 are simple repeats that contain microvariants or non-

consensus alleles. VWA, FGA, D3S1358 and D8S1179 are compound repeats with non-

consensus alleles. The last locus D21S11 is a complex repeat unit. FGA, D21S11and 

D18S51 are the most polymorphic with TPOX having the least variations.  

The European Network of Forensic Science Institute (ENFSI) in 2009 added 5 

STR loci to the European Standard Set (ESS) of 7 core loci. The 12 core European loci 

are TH01, vWA, FGA, D8S1179, D18S51, D21S11, D3S1358, D12S391, D1S1656, 

D2S441, D10S1248, and D22S1045. The expansion and demand for more compatible 

systems between the US and Europe has lead to the formation of the CODIS Core Loci 
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Working Group sponsored by the FBI to recommend and expand the 13 core loci 

currently being used. In 2011, the addition of 8 loci was proposed which would allowed 

for an overlap of 14 loci with that of European kits such as AmpFℓSTR® NGM™ and 

PowerPlex® ESX 16. The loci suggested were D12S391, D1S1656, D2S441, D10S1249, 

D2S1338, D19S433, Penta E and DYS391. Amelogenin was also included as a required 

maker and the DYS391 chosen as a Y-chromosome marker to aid in the determination of 

male samples.28 

Commercial kits include quality controlled PCR primer-mix, PCR buffer, DNA 

polymerase, positive controls, and the allelic ladder, which facilitates a validated out of 

the box amplification process. Multiple STR kits can also be combined to improve 

discrimination power. There are also specially designed kits for degraded DNA samples 

such as mini STR kits and large number STR loci kits for paternity testing.76 

 

d)   STRs: Chemical and Biological Artifacts 

The analysis of STRs does have inherent limitations. These are mostly associated 

with the amplification, detection and analysis steps. These artifacts include stutter, dye 

blobs, microvariants, null alleles, drop-in and non-template addition, all of which can 

interfere with the interpretation of the genotype results and lead to misinformation if not 

carefully analyzed. 

i) Stutter  

The amplification of STRs often produces an additional amplicon that is one 

repeat unit smaller than the actual amplicon. These minor products are known as stutter 
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peaks. Because of the similarities of the sequences, strand slippage of the polymerase can 

occur during the primer binding stage of PCR causing the deletion of one or more repeat 

units.77 Stutter products are commonly seen and forensic labs utilize threshold levels to 

determine the difference between low-level mixtures and stutter. Generally stutter peaks 

less than 15% are acceptable and easily distinguished from major peaks. The percent of 

stutter is calculated using Equation 3: 

 

Equation 3: Stutter % 

 

 

Stutter peaks tend to decrease with the length of the repeat motif. As a result 

pentameric repeats exhibit less stutter than tetrameric repeats. Stutter also increases with 

the number of repeat units, as a result, alleles with fewer repeats produce lower stutter 

percentages than larger ones.78  

 Stutter peaks are explained as a result of slipped strand mispairing during PCR. 

(Figure 15) One of the two replicating strands can fold onto itself causing a loop 

structure. As a result, misalignment occurs producing an increase or loss in repeat 

number.78 The result is a small amount of PCR product that is commonly one full repeat 

larger or smaller than the main product. Due to the nature of the amplification process, it 

is more common to see a loss of one repeat than an increase.  

(stutter _ product _ peak _ height)

(main _ product _ peak _ height)
*100
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Figure 15: Schematic of the formation of stutter products during the PCR process. On the left shows 
a normal amplification without any stutter formation. On the right shows the slip strand model in 
which the primer is temporarily separated from the template. As it re-anneals it ‘slips’ resulting in a 
product that is one repeat short. Adapted from Walsh et al.78 

 

The presence of stutter peaks must be carefully analyzed to avoid 

misinterpretation of mixtures and it is important that the height of the stutter peak fall 

below the threshold set by that laboratory.79 

ii)   Microvariants 

Another issue observed with the use of STRs are microvariants. These are alleles 

that contain an abnormal repeat length because of the deletion of one or more nucleotides 

in the standard four or five base repeat motif. An example of one such locus is TH01. The 

locus contains an allele labeled as 9.3 which contains 9 repeats, plus a 10th repeat unit one 

nucleotide shorter than the normal 4 bases. Extensive testing of the STR markers used in 

forensic identification in combination with population data sets has resulted in the 

documentation of the most common microvariants.80 Microvariants are sometimes 
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referred to as “off-ladder alleles” since the fragment sizes do not correspond to those 

present in the allelic ladder.  

  

iii)   Null Alleles 

The flanking and repeat regions of many target microsatellites are known to differ 

because of sequence variations and may be avoided through proper primer design. 

However, point mutations at a primer binding site can cause major problems with primer 

annealing during PCR and may result in one or both alleles not being properly amplified 

and detected.81 The presence of such point mutations can be verified using primers with 

two different annealing positions and confirmed by sequencing.82 Many of these 

variations have been well documented and multiplex kits have been designed to avoid 

primer binding at or near those locations of sequence variation. Furthermore, the closer 

the variation is to the 3’ end of the primer, the more likely drop out will occur. Some kits 

have used a second set of degenerate primers to overcome this issue by providing an 

alternate primer sequence at the variable site. In some cases the size of the amplicon may 

be altered by insertions or deletions of nucleotides between the primer binding sites 

causing a discrepancy from the original amplicon. It is important that STR kits used in 

forensic human identification be well designed and where possible areas of high primer 

binding site polymorphisms avoided. The presence of null alleles can result in inaccurate 

genotypes and the potential for false exclusions and inclusions. 
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iv)   Non template addition 

 Non-template addition results from the tendency of the Taq polymerase to add an 

extra nucleotide at the 3’end of the PCR product. Adenine is the most commonly added 

nucleotide and hence non-template addition may be referred to as adenylation. The 

addition of an adenine (+A) is common. However, adenylation does no always on all the 

PCR amplicons. As a result split peaks are sometimes seen in electropherograms. To 

avoid the problem, primers can be designed to help promote full adenylation through the 

addition of a guanine nucleotide to the 5’ end of the primer, or by adding a final soak step 

at 60°C or 72°C for 15-45 minutes to give the polymerase enough time to fully adenylate 

the product. Split peaks (+A/-A) are much more difficult to interpret especially if mixed 

samples are present. The major cause of incomplete adenylation is excess DNA template 

resulting in inadequate levels of polymerase in the reaction. Proper primer design can 

help reduce adenylation problems. For example, it has been found that an ATT on the 5’ 

end of the unlabeled opposite strand primer can help promote adenylation.83 

v)   Stochastic Effects 

When low levels of DNA template are present it is common to see uneven 

amplification between heterozygous alleles or drop out. This is known as stochastic 

amplification and results from an inadequate number of template strands leaving one or 

more alleles to be preferentially amplified. Typically samples containing 100pg or less of 

DNA are subject to these effects. More strict protocols must be used to avoid mistaken 

homozygous loci and loss of alleles when such samples are analyzed.17, 84, 85 
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Stochastic effects can be controlled by properly regulating the level of input 

template. To do this, forensic laboratories carefully quantify unknown samples, and 

establish minimum peak heights in resultant electropherograms, in order to avoid false 

homozygotes. Replicate analysis is also done to minimize problems with allele drop 

out.86-88 It is important that laboratories have a well-documented stochastic and analytical 

threshold for each genetic analysis instrument.  
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CHAPTER V: STR MULTIPLEX DESIGN 
 

a) Selection of Markers 

Short Tandem Repeats  (STRs) markers used in forensic genotyping are selected 

on the basis of their power of discrimination and ability to be multiplexed. Once a 

suitable set of STR markers have been selected, the primer binding sites must be chosen 

properly to ensure accurate amplification of the multiplex and electrophoretic separation. 

When selecting markers for multiplexed systems, it is also important to make sure 

that the target regions are far enough apart to avoid any possible mis-priming and overlap 

between regions. With the ability to multiplex by both size and fluorescent dye generally 

a size difference of about 10bp between markers avoids overlap between adjacent 

markers. The markers used for forensic analysis have been well documented in terms of 

size, location and frequency. However, applications may occur in which there is a need 

for the re-design of these loci for improved detection and analysis. This is done primarily 

by primer re-design, as opposed to selection of different markers. Reference sequences 

can be obtained from STRBase (NIST) or GenBank (NCBI) website. Once the sequence 

is obtained it can then be imported into primer design software for the determination of 

useful and thermodynamically favorable primer sites.89  

 

b) Primer Design 

The ability to successfully amplify a sample for multiplex STR analysis is highly 

dependent on the primers used during PCR. The primers control the location of the target 

sequence and provide the initial point of elongation where the polymerase can attach and 

begin its process of adding new nucleotides. During PCR a forward and reverse primer 
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are required for each target region to permit binding to both the sense and anti-sense 

strands. The primer should be specific for its target and have a high efficiency for 

amplification success, without the formation of artifacts. Primer design is the first step in 

optimization of PCR and the parameters discussed below should be carefully analyzed 

and taken into consideration. With each additional primer added to a set of multiplexed 

PCR reactions, the complexity of the interaction increases between the individual primers 

and the importance of proper design more prominent.90  

 

i) Primer Length 

The ideal primer length that should be chosen for the design of a multiplex kit 

ranges from 18-25bp. The length of the primer controls the specificity of the binding, the 

hybridization stability and the cost.54 Generally the longer the primer sequence the more 

unique it is. For each additional nucleotide added to the primer length, the possibility of 

finding that sequence in a random genetic sequence drops by a factor of 1/4. Therefore, 

the chance of finding a random primer sequence with 20 nucleotides is (1/420). Longer 

primer lengths are more specific and permit lower annealing temperatures, which in some 

cases can improve sensitivity.  

On the other hand, the greater the length of the primer, the greater the chance of it 

binding to itself, forming secondary structures. Long primers take more time to break 

away from the primer-template complex requiring increased extension times that become 

longer with the addition of each nucleotide.90 
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ii)   Primer Melting Temperature (Tm)  

The primer melting temperature is the temperature at which half the DNA duplex 

dissociates and becomes single stranded and characterizes the stability of the duplex. 

Generally a range between 55- 60°C is best. All primers in a multiplex should have 

similar Tm values to ensure that the optimal temperature for annealing is close and that all 

primers are stabilized over the same temperature range. If primer melting temperatures 

vary greatly within a multiplex, the chances for mispriming are high and non-specific 

products may be amplified. If the melting temperature is too low even more non-specific 

products are observed and at temperatures that are two high, there can be a loss or 

complete drop out of allele peaks. 

Most primer design software calculates the primer melting temperatures using the 

nearest neighbor method when suggesting primers for multiplex reactions. The melting 

temperature is calculated using Equation 4:  

Equation 4:Primer Melting Temperature 

 

Where Tm is the primer melting temperature, H and S is the enthalpy and entropy of helix 

formation, R is the molar gas constant (1.987 cal/°C mol), c is the DNA primer 

concentration in solution, 273.15 is the Kelvin to Degree Celsius conversion and [salt] is 

the concentration of salts present.91-94 

Tm(°C) = H

S + R ln(c / 4)









− 273.15°C









+16.6 log salt[ ]
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iii)   Primer annealing temperature (Ta)  

The primer annealing temperature is the optimal temperature at which the primer 

will bind to the DNA template. The annealing temperature is generally a few degrees less 

than the lowest primer pair Tm. The optimal Ta can be calculated from Equation 5.95  

Equation 5: Primer annealing Temperature 

   

 

At low Ta, primers may bind to multiple sequences other than the target sequence 

resulting in non-specific products. At high Ta, primers do not bind as easily and hence the 

amount of product may be reduced. Thus, the Ta must be optimized to ensure a specific 

product with high yield and no artifacts. 

iv)   GC content 

When designing primers, the general rule is that the GC content should be 

between 40-60%. This allows for stronger annealing to the template as the GC pairing 

has three hydrogen bonds. The GC content directly affects the melting temperature, 

which is also critical to the specificity as described above. When designing a multiplex, 

all primers should have similar GC percentages as each other.90 If primers GC % differ 

greatly, the primer length may be used to facilitate similar binding temperature and 

conditions. 

v)   Primer efficiency 

The primer efficiency is described as the ability of the primer to bind to its target 

region specifically, with low false priming and formation of secondary structures. During 

Ta = 0.3(Tm _Pr imer)+ 0.7(Tm _ PCR _Pr oduct)−14.9
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primer design, there are a number of precautions that are used to ensure a high efficiency 

of binding. For example, since the process of elongation during PCR starts at the 3’ end 

of the primer, a GC clamp can be incorporated to increase binding and promote specific 

binding. However, no more than 3 G’s or C’s should be present within the last 5 bases at 

the primer 3’end.  

vi)   Secondary structures 

When primers in a STR multiplex are not designed properly, the formation of 

secondary structures can be produced by inter or intra-molecular interactions. Interactions 

reduce the conformational changes and efficiency of primer binding. The three types of 

secondary structures formed are hairpins, self-dimers or cross-dimers.  The stability of 

these structures depends on the primer sequence and its free energy of interaction with 

the nearest nucleotides.93 Most primer design software takes into account these 

calculations depending on the enthalpies and entropies of the nearest nucleotides.  If the 

free energy is greater than 0, then the secondary structure is too unstable to interfere with 

the reaction. Energies less than 0 can spontaneously form and greatly reduce the 

efficiency of the primer. 

Hairpin secondary structures are formed as result of intra-molecular interactions 

of the primer sequence causing the primer to fold onto itself. These hairpin loops can be 

formed with as little as 3 nucleotides. The 3’ end of the primer is most important. If the 

hairpin is at the 3’ position, ΔG of about -2 kcal/mol or more is acceptable. If the hairpin 

is internal, a ΔG of about -3 kcal/mol or more is satisfactory.96, 97 



 
 

52

Self-dimers are formed by inter-molecular attractions between two of the same 

primers. This means that the primer is homologous to itself, and if the dimers formed 

more readily than that of the primer binding to target, then the amount of product is 

greatly reduced and artifacts may be observed. (Figure 16) If the self-dimer occurs at the 

3’ position, a ΔG of about -5 kcal/mol is acceptable. If the self-dimer occurs along the 

primer sequence a ΔG of about -6 kcal/mol is satisfactory.96, 97 

Cross-dimers are formed by inter-molecular attractions between two different 

primers. If two or more primers have similar sequences, especially in multiplex systems 

where the number of primers can be in excess of 30, they can form dimers between 

themselves and greatly reduce the amplification efficiency. (Figure 16) The use of 

appropriate software should be used to ensure primer compatibility when designing a 

system. If the cross-dimer occurs at the 3’ position or along the primer sequence, the 

same self-dimer ΔG values are acceptable.96, 97 

 

 
Figure 16: (Left) a primer self-dimer formed as a result of high ΔG values. (Right) a cross dimer 
formed between two different primers in a multiplex. 

 

A basic local alignment search tool (BLAST) can be performed on the primers 

and checked against the human genome to see if any similarities that may be present. 
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This can be performed using the National Center for Biotechnology Information (NCBI) 

website. The more individual the primer sequence and the fewer secondary structures that 

are present, the more efficient and specific the product will be. 

vii)   Primer concentration 

To ensure maximal binding, a relatively high concentration of primers is used. If 

the concentration of primer in the PCR master mix is too low then sensitivity and 

amplicons can be lost. If the primer concentration is too high, there is a greater chance for 

the formation of primer dimers or non-specific binding, which can result in undesired 

products.  

Most PCR reactions have a primer concentration between 0.2-1μM. The primer 

concentration can also be a useful tool when designing STR multiplexes as different loci 

may amplify at different rates leading to peak height imbalance. The adjustment of the 

primer concentration of each locus is commonly used to maintain peak balance across 

loci in the multiplex.  
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CHAPTER VI:   ANALYSIS AND INSTRUMENTATION 
 

a) Capillary Electrophoresis (CE) 

Capillary Gel Electrophoresis (CGE) is a powerful analytical technique that 

replaced the use of traditional slab gel-based electrophoresis for the separation of nucleic 

acids. Earlier systems of CGE used a UV-based detection method, which was later 

replaced by laser-induced fluorescence.98 In 1995, the ABI prism 310 Genetic Analyzer 

was introduced. The ABI 310 system utilized multi-wavelength laser induced 

fluorescence detection, permitting the detection of a large number of multiplexed STR 

loci resulting in analyses with higher discrimination powers.  

During capillary gel electrophoresis, a 50μm internal diameter silica glass 

capillary is filled with a viscous polymer matrix to achieve separation. The narrow 

channel permits the application of high electric field strengths without the problem of 

overheating, decreasing the run time when compared to slab gel electrophoresis.99 The 

polymer used, coats the capillary wall reducing the electroosmotic flow (EOF) and filters 

the DNA depending on its pore or mesh size. The DNA molecule, which is negatively 

charged, migrates through the capillary under the influence of an electric field. The DNA 

fragments are then detected by laser-induced fluorescence through a window etched in 

the capillary wall.* 

                                                 
* The DNA has a constant charge to mass ratio thereby being separated by its size and 
ability to move through the pores of the polymer. 
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i) Sample Preparation 

To prepare amplified samples for CE the PCR product is mixed with purified 

formamide. The dilution with formamide reduces the ionic strength of the sample relative 

to the buffer and helps denature the DNA. Past methods that involved the addition of 

water instead of formamide required rapid heating and snap cooling to help maintain the 

single stranded conformation and reduce the possibility of dsDNA peaks.72, 100 The 

quality and conductivity of the formamide is very important. Break down products of 

formamide such as formic acid can interfere with the injection into the CE, negatively 

impacting the sample injection and resolution.101 A formamide conductivity of 80μS or 

less should be maintained and constant freeze and thaw cycles should be avoided to 

minimize degradation.99 An internal size standard is also added to the formamide/PCR 

product mixture. The software uses this standard to calibrate the system and determine 

the size of the unknown alleles.  

ii)   Injection 

There are two methods of sample injection that can be performed in capillary 

electrophoresis, hydrodynamic or electrokinetic. Hydrodynamic injection involves the 

application of a pressure while the capillary end is submerged in the sample tube. While 

the volume of sample injected may be fairly constant it is not selective for the desired 

analyte. Instead for DNA analysis electrokinetic injection is more common. This 

injection mode involves the application of a voltage for a set period of time, to move 

charged molecules into the capillary. The amount of DNA injected can be estimated from 

Equation 6: 
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Equation 6: DNAinjection 

 

Where, E is the electric field, t is the injection time, πr2 is the area of the capillary 

opening, μep is the mobility of the sample, μeof is the electroosmotic mobility, λbuffer is the 

ionic strength of buffer and λsample ionic strength of sample.*99, 102  

Because PCR products are diluted in low conductive formamide, its ionic strength 

is reduced when compared to the CE buffer. As a result, a phenomenon known as field 

amplified injection or sample stacking can occur. Here, a narrow band of sample forms at 

the interface between the low conductive sample (high electric field) and the highly 

conductive buffer (low electric field) because of differences in mobility between the two 

zones.99 The effect of sample stacking greatly improves the sensitivity of the injection. 

iii)   Separation 

It is important to optimize the system for the highest possible resolution during 

separation because of the nature of forensic samples and the possible presence of 

microvariants and other artifacts. The sieving matrix, capillary and buffer can greatly 

affect the resolution and efficiency of the system.  

1)  Capillary 
 

Capillary Gel Electrophoresis separations are performed in a hollow fused silica 

capillaries protected by polyimide coatings, which provide physical strength. Generally 

capillaries are used with internal diameters between 50-100μm and lengths of 25-75cm. 

                                                 
* This equation does not take into consideration the present of other ions that may be 
present in the solution changing the conductivity and mobility of the sample. 

DNAinj = Et (πr2 )(μep + μeof ) DNAsample
 (

λbuffer

λsample

)
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Most forensic CE systems use a 47cm long x 50 μm I.D. capillary. The small internal 

diameter (I.D.) allows for high voltages to be used with minimal joule heating, permitting 

fast separation. The uncoated capillary is greatly affected by electroosmotic flow (EOF) 

because of residual silanol groups on the silica surface. At pH values above 5, silanol 

groups are ionized to SiO- and can interact electrostatically with the buffer cations.103 

These interactions cause problems with reproducibility due to the difference in separation 

velocities from run to run. In order to diminish the effect of the EOF, linear polymers 

within the sieving matrix are used to help coat the walls during separation (Figure 17). 

 

 
Figure 17: Diagram of fused silica capillary and the silanol groups along the wall surface. Coating 
of the wall surface can reduce the electroosmotic flow. 

 

Fused silica capillaries dissipate heat very efficiently, permitting high voltages to 

be applied (up to 15-25kV) with minimal loss in resolution. For each capillary an optical 
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window is burned through the polyimide coating to create a transparent optical window, 

which allows the signal to be illuminated and detected via laser induced fluorescence. 

2)   Sieving Matrix 

The sieving matrix is the key to successful high-resolution separation of 

biomolecules such as small DNA fragments. As a result of size independent mobility of 

the DNA, effective separation in free solution is not possible.104 Early CE separation 

methods for the separation of nucleic acids involved the use of agarose or cross-linked 

polyacrylamide gels that were difficult to prepare and could not be reused.105-107 The 

development of aqueous solutions of polymers in CE eliminated the need for cross-linked 

gels. The use of aqueous solution polymers for DNA separation was first demonstrated 

by Zhu et al. using a dilution solution of aqueous methyl cellulose to separate DNA 

fragments.108 There have been numerous studies conducted to investigate the process by 

which these polymers are formed and how they interact with DNA fragments. However, 

these effects are highly complex and there are still some characteristic interactions that 

are not fully understood. 

In 1958, at Oxford University, A.G. Ogston was the first to model the movement 

of spherical particles though a series of fibers.109 Ogston’s model was later used to 

describe the separation of DNA molecules through slab gel electrophoresis.110 Ogston’s 

theory predicts DNA to move through a polymer solution as spherical molecules with a 

radius of gyration. The smaller the DNA fragment, the smaller the radius of gyration and 

more mobile the fragment through the pores created by the polymer entanglement.111, 112 

The size of the mesh or pore created by the polymer strands in solution affects the 



 
 

59

mobility of the DNA passing through it. The mesh size is a function of the concentration 

of the polymer in solution. In dilute polymer solutions the strands do not interact and no 

pores are formed. If the concentration of polymer is high enough, the individual polymer 

strands interact with each other and form a network of overlapping strands. This point is 

known as the entanglement threshold. The threshold is determined experimentally as a 

linear function of the natural log of specific viscosities at varying polymer concentrations 

versus the natural log of the weight fraction of polymer in solution. Alternative formulas 

to predict the entanglement threshold has also been described by Viovy and Duke using 

polymer physics.111 They were able to generate an approximate value using Equation 7: 

Equation 7: Entanglement Threshold 

Φ = Mw

(NA
4

3 π R3
P )

 

Where Φ is the entanglement threshold, Mw is the molecular weight, NA is Avogadro’s 

number and RP is the radius of gyration for the polymer solution.  

Using the Ogston model at low concentration of polymers, no entanglement 

should occur, no pores should be created and therefore no separation should be observed. 

This is not entirely true since longer polymers reach the entanglement threshold at lower 

concentrations than shorter polymers. It is possible for a shorter polymer to be at very 

high concentrations without being entangled. Therefore, the polymer concentration is 

important when modeled under the Ogston theory. 

Another common theory used to describe the mobility of DNA through polymers 

is the Reptation model.107 This model is used to described fragments that have a larger 

radius of gyration than the pore size of the entangled polymer. If the Ogston model holds 



 
 

60

true, no separation would occur under this condition, as the larger fragments would not fit 

through the mesh and hence not be separated. Therefore the Reptation model is used to 

describe the mobility of fragments larger than the mesh size of the polymer. The reptation 

model predicts the DNA to unwind, and move through the pores in a snake like manner. 

The model relates the mobility to the length of the DNA fragment and its frictional 

forces. Equation 8 shows the relationship between mobility and DNA length. 

Equation 8: Reptation model 

μ = 1
L  

Where, μ is the mobility of the DNA molecule and L is a measure of the length of DNA. 

This equation can be further adapted to incorporate the effect of field strength on the 

DNA molecule. Higher field strength causes the DNA to be elongated and adopt rod like 

conformations.111 Therefore, a more accurate equation can be described by: 

Equation 9: Reptation with Electric field strength 

μ = 1
L( ) + bE 2

 

Where b is a function of the pore size and E is the electric field strength. Therefore with 

increasing electric field strength the size of the DNA becomes less critical for its 

mobility. 

Both the Ogston and Reptation models seem to work well at predicting the 

mechanism of separation of DNA fragments through sieving matrices and their 

interactions with frictional forces and the polymer pores. Yet, they do not explain DNA 

separation in dilute polymer solutions. Barron et al. have described the use of a transient 

entanglement coupling mechanism that accounts for the separation of DNA in dilute 
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solutions.113 In this model DNA collides with the polymer, dragging it through the 

solution increasing the frictional forces. The transient entanglement coupling mechanism 

results in a reduced electrophoretic mobility and separation of the DNA.113, 114 Therefore, 

combinations of these models are needed to explain the mobility differences through 

entangled polymer solutions. 

 

3)   Buffer 

The composition of the buffer used in the sieving matrix plays a critical role as it 

contains components that are responsible for, the solubility of the DNA, the ionic 

strength of the solution, its denaturing capability and its pH. At high buffer 

concentrations the current can be too high causing excessive heating and poor resolution. 

At low concentrations the electrophoretic flow may be too low resulting in long 

separation times with broad peaks and poor restoration of the capillary because of 

diffusion. During CE, buffer reservoirs at both the cathode and anode of the system 

produce a complete electrical circuit. This buffer is usually of the same or similar 

composition to that used in the sieving matrix. Over time and several runs, the buffer in 

these reservoirs should be changed as the concentrations between the cathode and anode 

may vary because of the flow and degradation of ions during the runs. 

The main buffer composition used for most CE-based DNA analysis systems 

consists of 100mM 3-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]propane-1-

sulfonic acid (TAPS),1mM ethylenediaminetetraacetic acid (EDTA) adjusted to a pH of 8 

with sodium hydroxide (Figure 18). shows the chemical structure of these compounds. 

Some literature sources report the use of Tris-borate-EDTA (TBE) instead of TAPS but 



 
 

62

this buffer can cause problems because of effects of temperature on the pH, which can 

affect reproducibility.115 Additives such as urea and formamide also may be added to 

maintain strong denaturing conditions during the run.116 The addition of reagents such as 

pyrrolidinone help to reduce viscosity and aid in surface coating of the capillary.116 

Lastly, CE systems are run at a temperature of 60°C to increase denaturing effects. Buffer 

components and additives must be stable at such temperatures. 

 
Figure 18: Chemical structures of TAPS and EDTA two major components in the buffer for 
separation of DNA on CE systems. 

 

iv)   Sample detection 

  Short Tandem Repeat primers used in human identification contain fluorescent 

dyes that are covalently bonded to the 5’ end of the primer. The labeled DNA fragments 

are detected via laser-induced fluorescence (LIF) as they pass an optically clear window 

in the capillary. A single argon-ion laser at 488nm can be used to excite a range of 

fluorescence dyes, which emit from 520-680nm, permitting multi-wavelength detection 

that can be used to discriminate between different dyes. 
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The emission spectrum of the excited fluorophore is then recorded using a charge 

coupled device (CCD) camera.99 The addition of a multi-wavelength CCD camera was a 

major breakthrough in CE analysis as it permitted the discrimination of large multiplex 

loci by both size and fluorescent label. Spectral discrimination is performed through the 

use of a matrix deconvolution by the fluorescent wavelength, which isolates the peaks 

into their respective dye lanes. However, the matrix calculation is dependent on the linear 

relationship between the fluorescence and concentration of DNA. If too much of one dye 

is present, it can also appear as a small peak in a neighboring fluorescent lane. This 

phenomenon is known as ‘pull up’. 

v)   Interpretation 

In CE, each amplicon’s size is determined through the use of an internal lane 

standard (ILS). An ILS standard contains known DNA fragment sizes that can be used to 

determine the sizes of individual alleles. Either a Local Southern method or Global 

Southern method fit is used to determine allele size.117 These two methods differ in that 

the local method uses an interpolation method by incorporating two size peaks before and 

two size peaks after the unknown calculated size, while the global method includes all 

size data to calculate the unknown peak size using a regression analysis.117 The 

calibration process and designation of alleles are performed via software. These processes 

were originally performed using a software package from ABI in 2002 known as 

Genescan® and Genotyper®. The first was responsible for the sizing and the second for 

assigning allele calls. The software later developed into a single software package called 
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Genemapper® which encompassed all the required tools for the analysis of STR 

fragments and forensic human identification.118 

Once the amplicons are sized and the allelic ladder analyzed, the amplicons are 

labeled using virtual bins created by the user. These bins are the size ranges in which 

each allele appears. They include sufficient width to account for slight mobility shifts and 

are usually compared with known allele sizes from a second external standard consisting 

of all known alleles (Allelic Ladder). If for some reason a major shift occurs in size of an 

allele relative to the allelic ladder it may be necessary to adjust the bin for the software to 

be able to call all alleles correctly. Once the bins are correct and the alleles designated, a 

genotype can be uploaded and compared to known profiles or a database for a possible 

match. 

 

b)   Microfluidic Electrophoresis 

In the early 1990’s a new type of chemical analysis emerged involving small 

microscale devices known as Lab-on-a-chip (LOC) or micro-total analysis systems 

(μTAS). These gained immediate interest by the forensic community especially in 

genome sequencing and genotyping.119 The advantages of microchip analysis includes 

increased efficiency and decreased sample handling.120 In addition, rapid analysis, 

reduced sample volume and reagent costs make microfluidics systems ideal for forensic 

DNA typing applications. The development of integrated microfluidic systems that 

includes the extraction, quantitation, amplification and separation, all on one device, has 

proven to be a challenge for the scientific community. These systems have complex 
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engineering and fluid manipulation and although smaller than traditional CE systems, are 

not truly portable.120-124 

The design of the microchip channels and the material used in its manufacture are 

critical to the separation efficiency when analyzing DNA fragments through sieving 

matrices. The most common substrates used in the manufacture of microchips include 

borofloat fused silica, silicon, polydimethylsiloxane (PDMS) and polymethyl 

methacrylate (PMMA).120 The type of substrate depends mostly on the application and 

cost of production. The channels are etched into the substrate depending on its 

manufactured material.125 For example, wet chemical etching using hydrofluoric acid can 

be used for silica substrates, while hot embossing may be used on polymer type 

substrates.126 The characteristics of the channel and the injection intersection can also 

increase the efficiency of the sample injection plug. Table 1 shows the general channel 

characteristics of common microchip devices reported in literature. Typical microchip 

dimensions are about 1-100μm in channel length, between 40-100μm wide and 10-30μm 

deep.127 However, these designs may vary depending on the application and the amount 

of sample needed for detection. 
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                                  Table 1: Microchip design parameters 

Parameter of chip design Approx. Average value 

Area of chip 10cm2

Length of channel 1-10cm 

Diameter of wells 1-5mm 

Velocity 1-5mm/s 

Volume injected 10-500 pL 

 

Common chip designs involve crossed-tee intersections or double-tee 

intersections shown in Figure 19.128 The type of intersection is related to the injection 

scheme and amount of sample to be injected. Injection takes place by one of two 

schemes, “Gated” or “Pinched”. Gated injections are used in cases where the sample 

injection needs to be continuous. These are performed using a perpendicular flow to push 

the sample into the waste well and away from the separation channel. In order to inject 

the sample, the perpendicular flow is stopped. Once the flow is stopped, the sample is 

allowed to fill the intersection and top of the separation channel. Once the perpendicular 

flow is resumed, the sample in the intersection moves into the separation channel and 

electrophoresis begins.129 The amount of sample injected is controlled by the length of 

time the flow is stopped.  

Pinched injection utilizes a ‘push back’ voltage that pulls the sample back towards 

the sample and waste wells while the sample is injected by applying a set voltage across 

the separation channel simultaneously. The use of a ‘push back’ voltage is important to 

decrease the sample leakage into the separation channel and reduce peak broadening 
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caused as a result of samples moving into the channel after the initial plug.  The use of a 

double tee design can permit repeated injections as the design keeps the sample closer to 

the intersection. The double tee design also increases the sample volume, however, the 

injection plug volume remains fixed and independent of time.129, 130 

   

 

Figure 19: On the Left, a schematic of a Crossed-tee intersection most widely used in 
microchip designs. On the Right a Double Tee intersection design that allows for multiple 
rapid injections. 

 

The process of microchip electrophoresis is similar to CE. First the separation 

channels are filled with the sieving matrix, then the sample and buffers are loaded into 

the appropriate wells an injected. The gel is loaded using a syringe or vacuum such that 

the entire channel is filled and no bubbles are introduced. Any bubbles trapped in the 

channel block the electric current used for injection and separation and results in a 

clogged channel. Due to the narrow channel size of these devices the viscosity of the 

sieving matrix is important to ensure efficient priming of the channels. Controlled 
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electrodes are used to manipulate the sample injection and perform electrophoresis. A 

laser induced fluorescence detector is used to detect the labeled DNA fragments. A 

schematic of using a pinched, crossed-tee injection is shown in Figure 20. 

 

 
Figure 20: The schematic of a crossed-T microchip using a ‘pinched injection’ with pull back 
voltages. Once the sample is in the separation channel electrophoresis take place. The DNA is 
separated by size through an entangled polymer and detected using laser induced fluorescence. 
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CHAPTER VII: DEVELOPMENT OF MINI-PENTAMERIC STRs FOR USE ON 
PORTABLE RAPID MICROFLUIDIC SYSTEMS 

 

a)   Introduction 

While the use of traditional capillary electrophoresis (CE) techniques has become 

standard for most forensic DNA analysis, there are some applications in which this large 

instrument is not suitable because of cost, complexity, lack of portability, and long 

sample run times (≥ 35 min per sample). Mass disasters in remote locations have 

emphasized a need for portable, user friendly systems for screening DNA evidence.131, 132 

In addition, many forensic laboratories are backlogged with DNA casework. Having a 

quick, reliable and accurate screening method would permit the analysis of mixed DNA 

evidence samples such as stains or allow investigators to piece together bone fragments 

and other similar forensic samples from a mass disaster. 133-137 

As a result of the portability limitations of conventional CE, research and 

development into the application of forensic based microchip electrophoresis have 

become widespread.  These devices involve rapid separation of DNA in channels etched 

into glass chips followed by detection with laser induced fluorescence or amperometry.  

One of the first applications of DNA separation on microfluidic devices was 

demonstrated by Mathies and Woolley in 1995, where they were able to obtain single 

base pair resolution of DNA fragments between 150-200 bases in approximately 10-15 

minutes. 138-142 The decrease in separation time was a result of the shorter length of the 

microchip and stronger electric field.132 However, the DNA fragment sizes must be 

relatively small (100-350 bp) to achieve high resolution between fragments.  
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Microfluidic devices can increase the sample throughput as multiple separation 

channels can be implemented on the same chip. Because they can be mass produced 

inexpensively from glass or plastic, these devices may be the key for quick and portable 

forensic applications.143-146 Maintenance and cross contamination problems are reduced 

due to the disposable separation platform. Microchip systems have been widely used in 

the analysis of a variety of different proteins and nucleic acids with good resolution and 

reduced sample run times. More specifically, a number of investigators have examined 

microchip based electrophoretic systems for the separation of STRs and mitochondrial 

DNA.124, 142, 147-150 While these devices are still at the prototype stage, the approach is 

feasible and ready for implementation. It is also clear that integrated approaches 

involving extraction, amplification and detection can be implemented on microfluidic 

devices, further reducing sample handling. 151-154 

One major issue with microfluidic systems is developing devices with sufficient 

speed and resolution to compete with current capillary electrophoresis technology. The 

separation mechanism used in microfluidic devices (DNA sieving in entangled polymers) 

is the same as that required for standard capillary gel electrophoresis using 47 cm 

capillaries. While some gains in resolution may be obtained by microfluidic systems 

because of their unique crossed T injections, to obtain sufficient resolution (1-2 bp) over 

a size range of 100-500bp requires that these devices have separation channels nearly 20 

cm in length. Such long channels are awkward in chip-based devices, making them less 

portable and/or requiring serpentine channels. 138, 142, 153 Truly portable devices should 

have much shorter channels to decrease the size and improve the analysis speed. 

Unfortunately, resolution in turn suffers. In previous research of the development of 
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miniSTRs, we have noticed that shorter amplicons (60-200bp) require much less stringent 

conditions for their separation and are particularly valuable in the analysis of degraded 

and inhibited samples.135, 155 The issues with short separation channels could be alleviated 

through the use of a smaller set of short amplicons that do not require such long 

separation channels.  Such a sample set would be ideal for application with microfluidic 

devices and would fit the need for a rapid onsite screening tool. 156  

The present research focused on the testing and adaptation of a commercially 

available microchip-based system for the analysis of miniSTRs on a novel set of 

pentameric short tandem repeats. The use of pentameric nucleotide repeat units has been 

shown to reduce the amount of stutter in the amplified sample, a useful characteristic 

when dealing with mixtures. In addition, pentameric STRs are highly polymorphic and 

have relatively few microvariants, which make them ideal for forensic analysis. A 

multiplex consisting of three different pentameric STR loci was developed and tested 

using both capillary electrophoresis and microfluidic systems for concordance.  

 

b)   Methods and Materials 

i) Reference Sequences and Allele Range Information 

Reference sequences for the penta STR markers Penta B, Penta C, Penta D and 

Penta E were obtained from GenBank through their accession numbers. The locations of 

the Penta B, Penta C and Penta E markers within the genome were obtained from the 

Promega Corporation, while primers for the Penta D marker were taken from previously 

designed miniSTR loci.137 
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ii)   Primer Design 

 The PCR primers were designed for each marker using the Web based 

Primer3Plus interface software.89 Typically the default primer parameters were used.89 

The primers were designed close to the target repeat unit to ensure that the smallest sized 

amplicons were used. An additional constraint on the primer design was their annealing 

temperatures (Tm), which had to be compatible to permit multiplexed PCR reactions. The 

resulting primers and their sequences are listed in Table 2. 
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Table 2: Penta Markers and Primer Sequences 

Locus   miniSTR         
primer sequence  
5' to 3') 

Fluorescent 
Label (5') 

Emission 
λmax (nm) 

Excitation 
λmax  (nm) 

Tm (°C) 5' Tail added Distance from 
Repeat (bp) 

Penta 

B 

F GAG GCA ACA GTG CGA GAC 6FAM (blue) 517 494  62   16 

  R TTG AGC CTT GCA CTC CTA TT        63 GTTTCTT   

         

Penta 

C 

F CAG GGA TAT GCA CTG GTA 

ATA GA 

Hex 

(green) 

553 535  61  13 

  R CGC TTC TAG GGA CTT CTT 

CAG 

       62  GTTTCTT   

         

Penta 

D 

F GAG CAA GAC ACC ATC TCA 

AGA A 

Ned (yellow) 575 553  63   11 

  R GAA ATT TTA CAT TTA TGT 

TTA TGA TTC TCT 

 635 680  58   19 
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iii)   PCR primers and other reagents 

Fluorescently-labeled (6-FAM, HEX and NED) primers, AmpliTaq™ Gold DNA 

polymerase and associated PCR buffers were obtained from Applied Biosystems (Foster 

City, CA). The forward primers were labeled with 6FAM, Hex and Ned dyes (Applied 

Biosystems) which permitted the use of compatible matrix standards with ABI Genetic 

Analyzers. Forward primers labeled with CY-5 were obtained from Integrated DNA 

Technologies (IDT, Coralville, IA) and used for applications on the Agilent microchip 

system that has a red laser (680 nm). All unlabeled primers were ordered from IDT.  

The design was intended to produce the smallest possible PCR amplicons for the 

three penta markers (Penta B, C, and D).  Small PCR products are less affected by 

degradation, amplify more efficiently and can be better resolved than larger amplicons. 

The three primer sets were prepared from the accession numbers such that the target 

region included the penta-nucleotide repeats and the primers were placed as close to the 

target region to minimize excess flanking regions.  A reduced size amplicon for the third 

marker, Penta D, had been previously developed and was not modified any further.137 

The fact that the three primer sets would be multiplexed was taken into consideration 

during the primer design phase of the research. 

iv)   Polymer Preparation 

The PCR amplified STR products were separated using several different 

denaturing buffer systems. Commercial POP-4 (Applied Biosystems), POP-6 sieving 

buffer (Applied Biosystems) and a custom denaturing polymer (PVP/HEC) consisting of 
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a 3.5% (w/v) mixture of polyvinyl pyrrolidone  (Polysciences inc., Warrington, PA) and 

hydroxyethyl cellulose (HEC) Aldrich Chemical (Milwaukee, USA) (20:80 ratio) were 

used for both the standard capillary system and the microchip assay.157 A proprietary 

denaturing polymer obtained from Agilent Technologies was also utilized for microchip 

separations. 

v)   DNA samples 

DNA standards from cell lines 9948 and K562 were purchased from Promega 

(Madison, WI) and diluted to 0.1 - 1.0ng/µL. These samples were used as the basis for 

the optimization of the STR multiplex.  Anonymous buccal swab DNA samples were 

taken from a variety of subjects to provide a preliminary population study. These samples 

were approved for use through an Institutional Review Board and were extracted using a 

standard phenol-chloroform/isoamyl alcohol extraction protocol. (See Appendices) 

vi)   Quantification of DNA samples 

All extracted samples were quantified using an ALU-based real-time PCR method 

with 0. 5x SBYR®-Green I dye (Molecular Probes, Eugene, OR) [30]. Quantification 

was performed in reaction volumes of 20µL using a Master Mix containing GeneAmp® 

PCR Gold buffer (Applied Biosystems, Foster City, CA), 1.5mmol/L MgCl2, 200µmol/L 

deoxynucleotide triphosphates (Denville Scientific, dNTP’s: dATP,dCTP,dGTP,dTTp), 

1µM bovine serum albumin (BSA), TritonX 100 (10% solution), Alu forward and reverse 

primers  and two units of RampTaq hot start Taq polymerase (5U/µL) (Denville 

Scientific, Metuchen, NJ). A series of 9948 DNA standard solutions of known 

concentration were diluted ranging from 10ng/µL to 0.1ng/µL and used to establish a 
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standard curve. All samples were run on a Corbett Robotics Rotor Gene 6000 instrument 

and the software used to calculate the critical threshold values and concentration of 

unknown samples.158(Qiagen Corbett Robotics, Valencia, CA)158(Qiagen Corbett 

Robotics, Valencia, CA)  

vii)   PCR Amplification 

Amplification was performed in reaction volumes of 20µL using a Master Mix 

containing 1x GeneAmp® PCR Gold buffer (Applied Biosystems), 1.5mmol/L MgCl2, 

200µmol/L DeoxyNucleotideTriphosphates (Denville Scientific, dNTP’s: dATP, dCTP, 

dGTP, dTTp), 1µM bovine serum albumin (BSA) and two units of AmpliTaq Gold® 

DNA Polymerase. Primer concentrations were adjusted from 0.5µmol/L to 1.5µmol/L to 

optimize the amplification reaction and obtain balanced peak heights.  

Thermal cycling parameters, especially the annealing temperature, cycle number 

and extension times were altered to establish the optimum amplification conditions using 

the GeneAmp 9700 thermocycler (Applied Biosystems). Samples were run on an ABI 

Prism®310 Genetic Analyzer (Applied Biosystems) and then compared for peak height 

and quality. The optimized thermal cycling conditions are shown below. (* Denotes 

parameters that were varied during optimization) 

PCR Cycling Parameters 

• 95˚C for 10min; 96˚C for 1 min 

• 32 cycles: 94˚C for 30sec,* 61˚C for 30sec, 70˚C for 45sec 

• *60˚C for 60mins; 4˚C for 10mins 

• 25˚C forever 
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The multiplexed amplification utilized 3 dye-labeled primers; 6FAM was used for 

Penta B, 6HEX for Penta C and NED for Penta D.  A 5’ -GTTTCTT- tail was added to 

the reverse primer of each locus to minimize possible problems with +/- A non-template 

addition. 137 In addition a final soak at 60°C for 60 minutes was added to the PCR cycle 

to minimize these effects. 

viii)   Analysis on ABI 310 (Single Capillary) Genetic Analyzer 

The ABI Prism®310 Genetic Analyzer (Applied Biosystems) was used with filter 

set D to process the data from the four dyes 6FAM, 6HEX, NED and ROX after the 

matrix had been created using matrix standards from Applied Biosystems. Each sample 

was prepared by adding 1µLof PCR product to 12µL of Hi-Di™ formamide (Applied 

Biosystems) and 0.5µL GS500 ROX size standard (Applied Biosystems). Samples were 

then placed immediately into the instrument for analysis. Samples were injected for 5s at 

15,000 V and separated at 15,000V for 26 min with a run temperature of 60°C. Standard 

electrophoretic conditions were used including POP™4 polymer, 1X Genetic Analyzer 

Buffer with EDTA (Applied Biosystems) and a 47-cm x 50-µm capillary (Polymicro 

Technologies, Phoenix, AZ).  Certain samples were also analyzed using the PVP/HEC 

denaturing polymer buffer.  Peak sizing was performed using the Global Southern 

algorithm. 

 

ix)   Analysis with Microfluidic Electrophoresis 

Two different systems were used for the microfluidic analysis of the mini-penta 

STRs, a standard Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) for 
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use with native DNA and a beta version of the same system with an adjustable heat plate 

capable of performing denaturing analysis.  Native DNA separations were performed 

using the standard 2100 system with the DNA 1000 Lab-on-Chip® Assay kit (Agilent 

Technologies) following the standard protocol provided. The chip was first primed with 

the gel dye mixture and each sample for analysis was prepared by adding 1µL of CY-5 

fluorescently labeled PCR product and 5µL Agilent Marker (Agilent Technologies) to 

each of the 12 sample wells.  The Agilent DNA 1000 ladder (Agilent Technologies) was 

used as a sizing standard. The results were interpreted using the expert system software 

provided with the system. Samples were run using denaturing conditions and analyzed in 

a similar fashion, except that a heated electrophoretic platform was used and the chips 

were modified with wider central channels to reduce problems with the increased 

viscosity of the buffer. 

When prepared for analysis using the denaturing chip, the sample was diluted in 

formamide prior to analysis.  The PVP/HEC polymer described above and a denaturing 

polymer supplied by Agilent Technologies were used for testing of the system and 

separation of alleles. The denaturing polymers were much more viscous than that of the 

existing DNA 1000 assay polymer, and required careful pipetting and priming of the chip 

to ensure that the polymer was distributed throughout all the channels. Sizing was 

performed using 2 standards; an 8bp lower marker and a 600bp upper marker.  In 

addition, a specific sizing ladder provided by Agilent Technologies was used to calibrate 

the separation system.   
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c) Results & Discussion 

The goal of this research was to develop a set of reduced size pentameric STR 

markers for use in microfluidic systems.  The hypothesis was that mini STRs should 

provide enhanced sensitivity with these systems, permitting the rapid sorting and 

identification of forensic specimens in the field.   In addition, since pentameric alleles are 

farther apart than the standard four base repeats used for the 13 CODIS markers, 

resolution of mixtures and heterozygous alleles should be less of a problem.  Pentameric 

repeats also have fewer two base variants than tetrameric STRs and reduced stutter. 

These combined factors should make a pentameric multiplex ideal for rapid separations 

using short channel microfluidic chips.  

i) Selection of STR Markers 

The mini-pentameric multiplex was developed from STR locations provided by 

Promega Corporation. The sequences for each marker were obtained from GenBank via 

its accession number and the target region selected for input into primer design software. 

The accession number is a bookmark to that chromosome location and the corresponding 

genome sequence located on GenBank online database. Four pentameric STR markers 

were selected; Penta B, Penta C, Penta D and Penta E.  

The primer sequences were selected using Primer 3 software and the PCR 

reaction conditions then optimized for each individual locus on the ABI 310 capillary 

electrophoresis system. 83, 89  
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1) Penta B Marker Information 
 

The Penta B STR marker is located approximately 33Mbp along the long arm of 

Human Chromosome 7 (7q33) shown in Figure 21. Penta B is a highly polymorphic 

marker that contains a wide range of alleles. The larger repeat distance (5bp) and its high 

variability make it useful for this application along with other inherent qualities of 

pentameric STR amplifications. However, current Penta STRs such as Penta D and Penta 

E are fairly large in size and pose resolution issues on short separation channel systems.  

 

 
Figure 21: The position of Penta B STR marker on chromosome 7. The small dots along the top of 
the figure represent the position of genes (coding region) on that chromosome. 

 

A small snippet of the mini-Penta B sequence on the antisense strand obtained 

from Genbank online database is shown below. The forward and reverse primers were 

designed as close to the target repeat region to ensure the smallest possible amplicon. 

Penta B contains a [AAAAG]n repeat motif. 

 
 
GTCAAATCCAGAGAACACTGATCAATAATCTTTTGAATGAACACTGCA
TGACCATTAATTGTGATTAGTGAAGGTTTAAGAAAGGTATTGGGATAT
AAATTATCCATTGAATGCTCCATCTGTTATAAAATTATGTCTTTAAAAA
AGCCGTTGTGAGTAGAAAAAGAAAATCCATGAAGAGGTGAAGGCACA
ATTAAAATACTTGGATCACTGATAGAGAAAGTAATGATATACAACTTG
GTGATCCTGCATTCCTGAGAATGAAAAGCCAGCAATTAGACATGTATG
GTTCTGAGACCAGCCTGACCAACATAGTGAAACCCCGTCTCTACTAAA
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AATACAAAGTTAGCCAAGCCTGGTGGTGGGTGCCTGTAATCCCAGCTA
C 
ACGGGAGGCTGAGGCGGGAGAATCGCTTGAAGCTGGGAGACGGAAAG
TTGCAGTGAGCCGAGATCACGCCATTGCACTCCAGCCGAGGCAACAGTG
CGAGACTCCAACTTGGGGGAAGAAAAGAAAAGAAAAGAAAAGAAAA
GAAAAGAAAAGAAAAGAAAAGAAAAGAAAAGAAAAGAAAAGAAAA
GAAAAACACTCCAATAGGAGTGCAAGGCTCAAAGAAGCTCCATTTTAAG
TCTGTCTGCTGAGAAGCATTACAATATACACAAACCAAAATTTACCTA
GGGATCACTACTACTTATACGTCCTTACCCTGAAGAATTCAACATTTTT
GGATCTCCACTTTATTTCCAAATTACACTAAAGCAATGAGTACTCAATG
GCAACAATGTGTCTGGTGGCTCAAACAGCATCAGCCCACCCAAAGTAA
GAGAGCTTTAGGAAGATTGGAAACTGGGCTAGAAATCGTTGACCAGGC
AGAATTCATTTTTAATAAGGAAAGACATGTTGAAGAAAAAGACCTAAC
ATAAATAGAAAAACTAGAAGCATCCTATTTCAGGATGAGGGACAAAG
ATGACAAGTTACCTGGCATGACAGTACAGGACTGACAATTATAGCAGC
TACTAAGATGACATGCCCAAACCTGGAAATGGGAATGAGCCTGCATGC
CAGCACAGCTGGGTTATTAGATGTCTTAATTCAAATGGAGTCTGAGAT
ATCCCCAACACAATGACCAGGGCATCTCACAGCAGAATTTCAAGTTAC
ATACT 
 
 

The position of the forward and reverse primers shown in yellow (italics) was 

chosen based on the selection parameters inputted into the primer design software. The 

start and end position of the designed mini-pentameric primer along the chromosome 

sequence is shown in Table 3.  

 

Table 3: Penta B mini primer sequences start and end location on the chromosome 7. 

 Penta Bm F Penta Bm R 
Accession 
No. 

NT_007933.14 NT_007933.14 

Start 
Location 

59248446 59248329 

End 
Location 

59248463 59248348 

Start 
Sequence 

CCAAGTTGGAGTCTCGCACTG ACTGTTGCCTCGGCTGGAGTG
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2)   Penta C Marker Information 
 

The Penta C STR marker region located a little before the 38th millionth base on 

the Human Chromosome 9 is not as highly polymorphic as Penta B but contains enough 

alleles to aid in identity and be used for separation on short channel devices with good 

resolution. The location is shown in Figure 22.  

 

 
Figure 22: The position of Penta C STR marker on chromosome 7. The small green dots along 
the top of the figure represent the position of genes (coding region) on that chromosome. The 
light blue selection (F) represents the forward primer while the red selection (R) represents the 
reverse primer region. 

 

The mini-Penta C sequence on the antisense strand near the repeat target region is 

shown below. Penta C contains a [GTTTT]n repeat motif.  

 

 
AAGTACCTACAGTTCAGGAAGGCATGCGTGTCCTCAGTGCCACCAGAT
GAAGGAAGGAGCTCTGCCTGTGGGAGCCTGGAAAACCACCCAGCAGA
GGCAACACAGGCTGGACCTTGCAGGAGACAGGGTTTATAAAGAAGGG
CAGGTAGTACAGACTTTCTGCCCACCTTCCAGTGGCTAAGCCAAGTCA
CATGGCTAACTGCCTGCAAGGGAGGCTGGGAAATGTAGTCCCTGGCTG
GGTGGCCCCTTCCCAGTGACAGTTTCCTACTACTGAAAGGGAAGGACA
GATCACTTGCCATCCCTGCCACACAGTTTCCTCCTCTGGAAACTGGGGG
TGATGACCCCTGCCCTACCCACTTGTCATGGCATTGGGGACATGAACA
CACTTTGCACCTGTCAGGCAAGGCTTAAACAGGGATATGCACTGGTAATA
GAAAAGAGGGACTAAGTTTTGTTTTGTTTTGTTTTGTTTTGTTTTGTTT
TGTTTTGTTTTGTTTTGTTTTGTTTTTCTGAAGAAGTCCCTAGAAGCGCTC
AGTGTTGGAATGCTCTCTTGTAGCAGTGGCGGCTGCTGCTGGTTCCGGG

F R
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TCAGATGCCGGAATTGGGGGTGCGCTTGGGTGCAGCTGCATTTCATCT
GGTCCTGGGCCTCGGTCCTGGCTTGGAGAGGTGCAGCTCACAGCCACT
TCATGGCTGGGATCCCTTCTGTCCCAGACAGCTGAGGAGACCCTTGGC
CTCAGCCTGAGTGTCAGGGGGGTAGTTCTGATAACTCTGTGTTTTGTTC
ACAGGAGCAACCAGGGTTTTATGCACATGAAACTGGCCAAAACCAAA
GAGAAATACGTTCTGGGTCAGAACAGCCCTCCGTTCGACAGTGTCCCG
GAAGTCATCCACTACTACACCACCAGAAAGCTACCCATCAAAGGGGCT
GAGCACTTGTCCCTCCTCTATCCCGTGGCTGTGAGGACCCTGTGAGCGG
ACCAGACCTGCCCTGCTCTGTGACAGAGCCTGAGACTTGGAGGTGCCA
GAGGCCCCCCACCAACCAGCCCAGCCACTG 
 
 

The positions of the forward and reverse primers shown in yellow (italics) were 

chosen based on the selection criteria used in the primer design software. The start and 

end position of the designed mini-pentameric primers along the chromosome sequence 

are shown in Table 4.  

 
Table 4: Penta C mini primer sequences start and end location on the chromosome 9. 

 Penta Cm F Penta Cm R 
Accession No. NT_008413.18 NT_008413.18 
Start Location 37910346 37910251 
End Location 37910368 37910271 
Start Sequence GTCCCTCTTTCTATTACCAG CAACACTGAGCGCTTCTAGGG
 
 

3)   Penta D Marker Information 

The Penta D marker located on the long arm of human chromosome 21 shown in 

Figure 23 is not a new marker and has been previously described by Promega 

Corporation and used in their PowerPlex 16 STR kit. A reduced size Penta D marker has 

also been developed for use on degraded samples demonstrated by McCord et al.76  

 
 



 
 

84

 
Figure 23: The position of Penta D STR marker on chromosome 21. The green lines along the 
top of the figure represent the position of genes (coding region) on that chromosome. The blue 
selection (F) represents the forward primer while the green selection (R) represents the reverse 
primer region. 

 

Approximately 300 bases on either side of the mini-Penta D STR repeat is shown 

from the reference sequence located on the GenBank online database. Penta D marker 

contains a [AAAGA]n repeat motif. 

 
AGGCTGAGGCAGGAGAATCGCTTGAACCCAGGAGGGGGCGACTGCAG
TGAGCCGAGATCGTGCCACTGCACTCCAGCCTGGGTGACAGAGCGAGA
CTCCATCTCAAAAAAAAAAAAAAAAAAACAGAATCATAGGCCAGGCA
CAGTGGCTAATTGTACCTTGGGAGGCTGAGACGGGAGGATCGAGACCA
TCCTGGGCACCATAGTGAGACCCCATCTCTACAAAAAAAAAAAAAAAT
TTTTTTTAAATAGCCAGGCATGGTGAGGCTGAAGTAGGATCACTTGAG
CCTGGAAGGTCGAAGCTGAAGTGAGCCATGATCACACCACTACACTCC
AGCCTAGGTGACAGAGCAAGACACCATCTCAAGAAAGAAAAAAAAGAAA
GAAAAGAAAAGAAAAGAAAAGAAAAGAAAAGAAAAGAAAAGAAAA
GAAAAGAAAAGAAAAGAAAAAACGAAGGGGAAAAAAAGAGAATCATA
AACATAAATGTAAAATTTCTCAAAAAAATCGTTATGACCATAGGTTAGGC
AAATATTTCTTAGATATCACAAAATCATGACCTATTAAAAAATAATAA
TAAAGTAAGTTTCATCAAAACTTAAAAGTTCTACTCTTCAAAAGATACC
TTATAAAGAAAGTAAAAAGACACGCCACAGGCTAAGAGAAAGTACTT
CTAATCACATATCTAAAAAAGGACTTGTGTCCAGATTAAAGAATTCTT
ACACATCAATAAGACAACCCAATTAAAAATGGGCAAAAGATTTGAAG
AGATATTTAACCAAAGAAAACATATAAATGTGTCCGGGCGCGATGGTA
ATCCCAGCACTTTGAGAGGCCGAGGCAGGCGGATCACTTGAGG 
 
 

F R
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The position of the forward and reverse primers are shown in yellow (italics) and no 

design was needed because of the already reduced amplicon size. The start and end 

position of the mini-pentameric primer along the chromosome are shown in Table 5. 

 
Table 5: Penta D mini primer sequences start and end location on the chromosome 21. 

 Penta Dm F Penta Dm R 
Accession No. AP001752.1 AP001752.1 
Start 
Location 

29791  29908 

End Location 29812 29937 
Start 
Sequence 

CTAGGTGACAGAGCAAGACA GGGGAAAAAAGAGAATCATA

 
 
 

4)   Penta E Marker Information 

The last marker examined was Penta E. This marker is located approximately 

26.2K along the long arm of Human Chromosome 15 (15q26.2) shown in Figure 24. The 

Penta E marker is used in the Promega Corporation PowerPlex16 STR kit. However, the 

amplicon size ranges are large and not suitable for this application. The Penta E was 

redesigned to give the smallest possible amplicons. 

 

 
Figure 24:  The position of Penta E STR marker on chromosome 15.  The new forward and reverse 
primer region is shown in green(F) and blue (R) respectively. 

 
The mini-Penta E sequence from the antisense strand near the repeat target region 

is shown below. Penta E contains a [AAAGA]n repeat motif. The position of the 

F R 
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redesigned forward and reverse primers to produce the smallest possible amplicon is 

shown in yellow (italics). The start and end position of the mini-pentameric primer along 

the chromosome sequence is shown in Table 6. 

 

 
AGATCAAGACCAGCCTGGGCAACATGGTGAAACCCCGTCTCTACTAAA
ATACAAAAAATTAGCTGGGTGTGGTGGTAGGCACCTGTAATCCCAGCT
ACTCTGGAGGCTGAAACAGGAGAATCACTTGAACCCAGGAGGTGGAG
ATTGAAGTGAGCCGAGATCACGCCATTGCACTCCAGCCTGGGCGACTG
AGCAAGACTCAGTCTCAAAGAAAAGAAAAGAAAAGAAAAGAAAATTG
TAAGGAGTTTTCTCAATTAATAACCCAAATAAGAGAATTCTTTCCATGTAT
CAATCATGATACTAAGCACTTTACACACATGTATGTTATGTAATCATTA
TATCATGCATGCAAGGTAATGAGTATTATTTTCCTCATTTTATAAAAGA
GGAAACTGATGTTT 
 
 
Table 6: Penta E2 mini primer location 

 Penta Em F Penta Em R 
Accession 
No. 

AC027004.15 AC027004.15 

Start 
Location 

84683  84762 

End 
Location 

84700 84784 

Start 
Sequence 

CTCCAGCCTGGGCGACTGAGC AATTAATAACCCAAATAAGAG

 
 
 

The Web-based Primer3 + plus interface program was used to design PCR 

amplicons for the three pentameric STR markers Penta B, Penta C and Penta E.89 A 

reduced sized Penta D marker was designed previously and therefore primer design was 

not needed.76 The three new markers were designed such that the amplification region 

included the core pentameric nucleotide repeat without any excess flanking regions. It 

was important that the primers be as close to the repeat or target region, as to ensure that 
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the smallest possible amplicon would be generated from the PCR product because of the 

resolution limitations of the microchip system. The smaller the amplicon size, the faster 

the mobility of the DNA, thus limiting diffusion effects and increasing separation 

efficiency. 

Once the target sequence was entered into the software, a few main primer 

parameters were adjusted so that the software would select an appropriate match. The 

primer length, annealing temperature, amplicon size and GC% were used to find a primer 

pair that would produce a specific amplicon with low chance of the formation of 

secondary structures. (Figure 25) The design process was repeated for all markers and the 

primers ordered from Integrated DNA Technologies (Coralville, Iowa) and tested. Figure 

26 shows the results for one primer pair match of the Penta B loci using the Primer3 Plus 

software. The software reports the primer length, annealing temperature, GC%, amplicon 

product size and rating of the formation of primer-primer dimers or self-dimers. 
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Figure 25: Primer3Plus parameter control settings for selection of primers. Primer length 
selection range between 18-27 bases, Primer annealing temperature of 60°C and >50 GC%. 
Parameters may be varied to improve primer pair matches to desired product.89 

 

 
Figure 26: Primer 3 Plus Penta B mini primer match output view. The repeat unit is highlighted 
in green, forward primer in purple and reverse primer in yellow. Forward primer length 19bp, 
Tm 59.1°C, GC% 57.9, primer-primer score 3, self-dimer score 3. Reverse primer length 20bp, 
Tm 59°C, GC% 59, primer-primer score 4, self-dimer score 2.89 
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ii)    Individual amplification of Pentameric STR Loci  

The markers were amplified using each of newly designed primers under a range 

of conditions to achieve the highest sensitivity and specificity. The products were run on 

an agarose gel and visualized using ethidium bromide under a UV light. This was to 

ensure that the correct amplicon was being produced and without non-specific products. 

A gradient PCR was used to determine the best annealing temperature for each locus. The 

agarose gel in Figure 27 shows the optimized temperature PCR products for each of the 

pentameric loci. The newly designed mini-Penta E consistently showed non-specific 

products over a wide range of parameters and was determined that the primer pair was 

not desgined properly and discarded from the research. 

 

 
Figure 27: 2% Agarose gel with ethidium bromide showing the 
products amplified using the mini pentameric primers. Lane 1 contains 
a size ladder, Lane 2 Penta B mini, Lane 3 Penta C mini, Lane 4-6 
Penta E mini at different annealing temperatures, Lane 7-8 Penta D 
mini duplicate. 
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Once the amplification showed highly specific and robust products on the agarose 

gel, new forward primers were ordered with 5’ fluorescent tags. Penta E mini was no 

longer used and only three pentameric markers were examined. Penta B-mini was labeled 

using 6FAM dye, Penta C-mini with HEX and Penta D-mini with NED dye. Each marker 

was amplified and run on the ABI 310 to ensure the selectivity, sufficient resolution and 

sizing of the STR fragments. Figure 28 shows the results of the individual PCR 

amplification of each Penta locus.  
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Figure 28: ABI 310 electropherogram of Individual mini Penta B, Penta C and Penta D loci 
with 9948 DNA standard using 0.5ng template @ 61˚C. The blue channel (A) or Bm labeled 
marker (6-FAM) shows the alleles present along with a GSROX-500 internal Standard. The 
Green channel (B) shows the Cm labeled marker (Hex) and the Yellow channel (C) shows the 
Dm labeled marker (NED). 

 

B

C
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iii)   STR Multiplex Optimization 

The separations performed in this research took place on a standard ABI 310 

Genetic Analyzer with a 47 cm capillary and on an Agilent Bioanalyzer 2100, a 

commercially available DNA microchip system with a 1.5 cm separation channel.  In its 

standard native DNA separation mode, the Agilent system provides resolution in the 

range of 6-12 bp depending on the DNA fragment size. 132, 159 While there have been a 

number of reports for the applications of STR separations on short channel microchips, 

the level of resolution obtained was insufficient for forensic DNA typing which contain 4 

bp STR repeats, especially given the fact than many CODIS loci have common 2 bp 

variants.83, 160 For this reason, the research focused on the use of pentameric STRs.  To 

achieve maximal resolution of these loci, a new beta version of the Agilent 2100 chip 

system was tested with an on-board chip heater that permitted the use of denaturing 

buffers for enhanced resolution.  It also should be noted that the detection system for this 

instrument is presently single channel, so multiplex detection based on different 

fluorescent dye labels is not possible.  However, the chip system does provide a reliable 

platform to test assumptions about effective resolution and throughput of short channel 

microfluidic chips. The ability to amplify the three-pentameric markers simultaneously in 

a multiplex was demonstrated on the ABI 310 capillary electrophoresis system.   

In order to optimize the pentameric STRs amplification conditions to ensure 

selectivity, reproducibility and balance, some parameters were examined, including, 

annealing temperature (55-65 °C) and primer concentrations (0.5µmol/L to 1.5µmol/L).  

On the basis of the theoretical primer melting temperature, it was determined that the best 

annealing temperature for the multiplex system was between 60-62°C. These conditions 
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minimized non-specific amplification and –A peaks.  For the primer concentrations, the 

goal was to optimize sensitivity and peak balance. The results are shown in Figure 29. 

Experiments were performed examining the overall primer concentrations as well as 

individual concentrations within the different loci. The optimum and consistent multiplex 

conditions were observed at an annealing temperature of 61°C and final primer 

concentration of 1.5µM.  

 

 
Figure 29: Graph of primer optimization showing the allelic height (RFU) vs. the final primer 
concentration (µM). The primer concentration with the highest peak heights and most balanced 
allele between all three loci can be seen at 1.5uM. Bm, Cm and Dm correspond to the respective mini-
penta Markers. 

 

The summary of the results obtained from the optimization of primer 

concentration is shown in Table 7. The reproducibility of the allele sizes for Penta B was 

seen with a standard deviation of ±0.08 bp from the average allele size while Penta C and 

Penta D had standard deviations values of ±0.15bp and ±0.13bp, respectively. These 

results were most probably due to small temperature fluctuations and slight mobility 
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shifts during each run on the ABI Prism®310 Genetic Analyzer. Figure 30 is an example 

of the multiplexed amplification using the K562 DNA standard under the optimum 

conditions. To test the validity of these conditions, a small set of 20 individuals was 

analyzed. The results showed consistent and reproducible amplification with the average 

stutter values of less than 6% for Penta B and under 1 % for Penta C and Penta D.  

 

Table 7: The optimization of the Primer Concentration of the mini Penta B,C,D multiplex showing 
the Allele peak sizes, peak heights and stutter. 

Loc
us 

Primer 
Conc. (uM) 

  Allele 1 
size (bp) 

Allele 1 
(RFU) 

Stutter 
peak 1 

Allele 2 
size (bp) 

Allele 2 
(RFU) 

Stutter 
peak 2 

Bm 0.5 114.18 6432 407 139.03 4745 600
 0.75 114.24 5760 361 139.01 5732 634
 1 113.79 6933 490 138.9 6262 914
 1.25 113.82 4440 287 138.81 6014 851
 1.5 114.36 7108 416 139.07 6681 779
        
Cm 0.5 102.04 738 0 117.17 4540 303
 0.75 102.47 1220 0 117.11 5022 495
 1 101.98 922 0 117.9 5842 879
 1.25 101.96 560 0 117.83 5959 560
 1.5 102.84 1255 0 117.25 5236 432
        
Dm 0.5 90.42 3059 0 118.84 5157 0
 0.75 90.54 2133 0 118.55 5167 0
 1 90.12 3710 0 118.12 5030 0
 1.25 89.67 3055 0 118.06 5078 0
 1.5 90.62 4770 0 118.37 5054 0
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Figure 30: Electropherogram from ABI 310 Genetic Analyzer of 0.5ng template K562 DNA Standard, 
filter set D, injection 5s @15kV and run temperature of 61°C . Blue lane (A)- Penta Bm Marker Alleles at 
124.06 bp and 138.86 bp with RFU of 4393 and 3572 respectively. Green Lane (B)- Penta Cm marker 
alleles at 107.55 bp and 118.35 bp with RFU of 2428 and 2778 respectively Yellow lane (black, C) - Penta 
Dm Marker Alleles at 118.35 bp and 138.79 bp with RFU of 2586 and 2859 respectively. 
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iv)    Analysis by Microfluidic Chip  

The currently available configuration of the Agilent 2100 Bioanalyzer involves 

fluorescent detection of dsDNA using an intercalating dye for fluorescence detection.   

Native dsDNA is inherently more difficult to separate because of its increased rigidity 

(45 nm persistence length) when compared to single stranded DNA (4 nm persistence 

length.) The difference in flexibility affects the mobility of the DNA as it passes through 

the sieving polymer matrix and hence its separation efficiency.152 The resolution of this 

dsDNA chip (6-8 bp) is limited mainly to applications in which agarose gels are 

commonly used.   Given this fact, it is very difficult to separate the 4 bp short tandem 

repeats commonly used in forensic DNA typing on these devices.  However, separation 

of pentameric repeats was thought to be possible. Figure 31 illustrates the separation of 

the Penta D and the mini-Penta D marker under these conditions.  The results 

demonstrate resolution of 12 base pairs for the large Penta D marker while the mini-penta 

D marker had a 9 bp resolution. When the larger Penta D marker and the mini-Penta D 

marker were amplified and run on the Agilent Bioanalyzer chip, there was an average 3 

bp improvement in the resolution of the two peaks with the reduced Penta D amplicon. 

The modified system used a non-denaturing polymer allowing for dsDNA separation 

with an intercalating dye. The enhanced resolution of the smaller allele set is attributed to 

the fact that smaller DNA is less affected by orientation in the electric field and the 

dynamics of the entangled polymer matrix.161 
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Figure 31: Result from Agilent Bioanalyzer 2100 electropherogram of a K562 DNA standard 
showing the penta D alleles 9 and 13 on 1.5cm separation channel length run at 350 V/cm. Top panel- 
Large Penta D marker with K562 standard alleles 9 &13 (20bp apart). Bottom panel - the mini-Penta 
D marker (Dm) with reduced amplicon sizes and improved resolution. 
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Although a significant improvement in resolution was achieved by using smaller 

sized PCR products with the native polymer, the resolution still was not sufficient to fully 

separate peaks differing by 5 base pairs.  To improve overall resolution, the development 

of a denaturing DNA separation was undertaken using a mixed PVP/HEC polymer with 

8M urea.157 We also began working with a modified Agilent Bioanalyzer 2100 that 

contained an improved chip design and a heat plate. The added heat plate helped maintain 

the DNA sample in a denatured state.  We then examined the system resolution under 

these new conditions using both the newly developed polymer and a standard POP-6 

polymer obtained from Applied Biosystems.  The combined effects of the smaller 

amplicon size, denaturing polymer and pentameric STR markers allowed for a system 

that could clearly distinguish adjacent alleles (5 bp) at baseline resolution (Figure 32). 

The average resolution for each loci of the dsDNA assay for Penta Bm, Cm and Dm were 

7.5 ± 0.81 bp, 8.3 ± 0.76 bp and 8.5 ± 0.73 bp respectively while the resolution increased 

to 2.2 ± 0.74 bp for all three loci using the ssDNA assay. The resolution increased 70% 

for the ssDNA assay (Figure 33). The reproducibility of the system and sizing precision 

of the amplicons is shown in Figure 34 with precision of 0.15 bp. The shorter micro-

channel also provided much faster separations than capillary systems with an overall run 

time of less than 2 minutes.  
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Figure 32: ssDNA assay showing Penta B, C and D Markers of an extracted DNA sample 29. Top- 
Penta Bm showings alleles at 118bp and 128bp with resolution of 2.2bp. Middle- Penta Cm showing 
alleles at 111bp and 121bp with resolution of 2.2bp. Bottom – Penta Dm showing alleles at 124bp and 
144bp with resolution of 2.2bp. 
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Figure 33: The percent increase in resolution for the single stranded assay when compared with the 
original native DNA separation. A 79%, 61% and 77% increase in resolution with the mini-Penta B, 
C and D markers 

 
Figure 34: Results show the stability and reproducibility of the allele sizing over eight runs for each 
pentameric loci with a precision of 0.15bp. 
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d) Conclusions 

It has been shown that by designing pentameric STR markers with smaller 

amplicon sizes and using a denaturing polymer it is possible to resolve pentameric STR 

systems on a short channel microfluidic device. The resulting separation can act as a 

quick onsite-screening tool for forensic DNA analysis. The utility of the method is 

demonstrated by an overall resolution increase of 70% between loci using the improved 

sieving matrix. The mobility of ssDNA and the redesigned pentameric repeats permits 

requisite resolution and provides an advantage of less stutter and fewer variant alleles. 

This system can be a valuable attribute especially when dealing with mixtures and 

degraded forensic samples.  
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CHAPTER VIII: THE DEVELOPMENT OF ENTANGLED SIEVING MATRICES 
FOR FORENSIC GENOTYPING ON MICROFLUIDIC SYSTEMS  

 

a) Introduction 

The purpose of the current project was to develop an entangled polymer solution 

that would improve the resolution of STRs when used with microfluidic instruments. It 

was hypothesized that a superior sieving matrix could be created through the optimization 

of a mixture of Polyvinyl Pyrrolidinone (PVP) and Hydroxyethyl Cellulose (HEC). The 

mixture of these two polymers provides both enhanced wall coating effects (PVP) and 

DNA sieving (HEC). By determining the appropriate ratio, concentration, and molecular 

weight of these two polymers, it was hypothesized that it would be possible to produce an 

acceptable separation of multiplexed short tandem repeats even on short channel (<2cm) 

microfluidic devices.  

Certain sieving matrices are commercially available, such as the performance-

optimized polymers (POP), POP-4, POP-6 and POP-7 by Applied Biosystems. These 

polymers were designed for sequencing and STR separation on 47cm fused silica 

capillary systems. The most important parameters associated with an efficient separation 

matrix are the polymer structure, molecular weight, viscosity and concentration. These 

parameters along with the separation voltage can greatly affect the resolution, which is, 

the most important parameter in optimizing DNA separations for microchip 

electrophoresis.   
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b) Methods and Materials 

i)   Reagents and materials 

The polymer, hydroxyethyl cellulose, (HEC, 250,000 g/mol) was purchased from 

Aldrich Chemical (Milwaukee, USA). The second polymer, polyvinyl pyrrolidinone, 

(PVP, 1,000,000 g/mol) was purchased from Polysciences inc. (Warrington, PA, USA). 

In addition to those polymers, certified A.C.S Urea (60.06 g/mol) was purchased from 

Fisher Scientific (Fairlawn, NJ, USA). Amberlite MB-150, a mix-bed ion exchange resin, 

was purchased from Sigma (St. Louis, MO, USA). A Millex-LS hydrophobic syringe 

driven filter unit was purchased from Millipore Corporation (Bedford, MA, USA).  

ii)   Preparation of polymer solutions 

In a 50 mL centrifuge tube, 25 mL of deionized water and 17.8 grams of urea was 

added (7.1 M). After stirring, the urea became dissolved in the water making a solution 

with a final volume of about 37.5 mL. Next, the two polymer powders were added to 

produce a final mixture at a specific weight % and ratio. For example, to prepare a 3.5 % 

solution with 20.4 % PVP relative to HEC, we weighed 0.29 g of PVP and 1.16 g HEC 

making a total of 1.45 g of the polymer mixture. The compounds were added to an 

Erlenmeyer flask containing a magnetic stirring bar and the urea solution. It was 

important to add the HEC/PVP powders slowly to the solutions to prevent the formation 

of large clumps of polymer. After the powders were added, the solution was allowed to 

stir overnight to make sure that the entire polymer mixture was dissolved. Then, 0.5 

grams of Amberlite MB-150 mixed bed ion exchange resin was added to the 

polymer/urea solution and stirred for two hours. Ideally, the solution containing the 



 
 

104

polymer mixture, urea, and resin was centrifuged at 7000 rpm for 5 minutes. However, it 

was also possible to let the solution stand in a 50 mL centrifuge tube for about three 

hours or until all the amberlite particles were deposited at the bottom. Thirty millilitres of 

the resulting supernatant liquid was then removed from the tube and returned to the 

Erlenmeyer flask with the stirring bar. 3.33 mL of 10X TAPS buffer was added to the 

Erlenmeyer flask containing the 30 mL of solution. It was stirred for 15 minutes. Prior to 

using the polymer solution, 5-micron Millex-LS hydrophobic Syringe tip filter (Millipore 

Corporation) were used to remove suspended Amberlite particles from the solution. 

 

 

Table 8: Calculation values for development of Polymer depending on concentration 
(w/v%) and PVP relative to HEC ratio. 

HEC  
Ratio 

PVP  
Ratio 

 % Polymer 
Weight 

Amount 
 of HEC 

Amount  
of PVP 

% 
 
Require
d 

Total polymer 
weight  

0 100 1.0357 0 1.0357 3 1.24284 
10 90   0.10357 0.93213 3.5 1.44998 
20 80   0.20714 0.82856 4 1.65712 
30 70   0.31071 0.72499 4.5 1.86426 
40 60   0.41428 0.62142 5 2.0714 
50 50   0.51785 0.51785 2.5 1.0357 
60 40   0.62142 0.41428 2 0.82856 
70 30   0.72499 0.31071   
80 20   0.82856 0.20714  
90 10   0.93213 0.10357   
95 5   0.983915 0.051785   

100 0   1.0357 0   
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iii)   Determination of the separation performance 

 
Resolution (R) was calculated using the following equation: 

Equation 10: Resolution 

 

Where t and w are migration times and peak widths at half height of the 

electropherogram peaks 1 and 2, respectively. The chromatographic resolution was then 

divided by the distance in basepairs between the two peaks to get the resolution in 

basepairs. 

iv)   Viscosity Measurements 

Viscosity measurements were performed with a falling ball viscometer (Gilmont 

Instruments, IL, USA). To perform the measurement, 5.0 mL of the polymer solution was 

placed in the measurement tube and the time for a steel ball to pass through the solution 

was determined. Each experiment was performed in triplicate and the viscosity (μ) in 

centipoise calculated from the following equation: 

Equation 11: Viscosity 

 

Where K is a constant (3.3), ρb and ρp are the density of the steel ball (8.02 g/mL) and the 

density of the polymer respectively, and t, the time (min) required for the steel ball to fall. 

R = 2 ln(2)
t2 − t1

w1 + w2

μ = K(ρb − ρp )t
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c)   Results and Discussion 

 The goal for the present study was to adapt a previously developed entangled 

polymer matrix for use with a microfluidic chip. The current microchip system, the 

Agilent Bioanalyzer 2100 (Agilent Technologies) separates DNA fragments using a non-

denaturing polymer combined with an intercalating dye to permit fluorescence detection. 

While the use of a dsDNA polymer separation is adequate for applications where 

resolution of 8-12bp is sufficient, most STR genotyping applications require resolutions 

of 2bp or better.  

In the forensic DNA field, it is important that the STR alleles are well resolved 

and the results are as accurate as possible. If the system is not fully capable of resolving 

each allele it becomes difficult to distinguish the complete genotype. For this reason the 

composition of the sieving matrix used to perform DNA separations is critical. Most 

traditional forensic STR kits use denaturing buffers to permit optimum separations. 

Longer capillaries are also necessary for optimal resolution. Because the Agilent 

Bioanalyzer 2100 (Agilent Technologies) uses a very short micro-channel that is only 

1.5cm long and performing separations with native sieving polymers, it was not possible 

to use this system to resolve forensic STRs. Thus we under took a project to redesign the 

system to permit short channel microscale separations. 

The increased mobility of ssDNA opposed to dsDNA fragments through a sieving 

matrix could best be described as a result of the difference in rigidity and ability to move 

through the pores. The persistence length of dsDNA versus that of ssDNA is 45nm and 

4nm respectively. The measure of rigidity makes it more difficult for dsDNA to move 

through the pores of the polymer and results in poor separation between peaks. These 
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effects on entangled polymers can be explained by Ogston sieving and Reptation models. 

The smaller the ssDNA strands, the more easily it moves through the polymer pores, 

while medium size fragments take a bit longer and large fragments move through the 

slowest. Therefore, with the right polymer and separation of ssDNA, a high resolution 

and selectivity can achieve separation even on very short separation channels. 

To demonstrate the effect of the resolution that can be achieved on short channel 

microfluidic devices, three available denaturing sieving matrices were examined. Figure 

35 shows a comparison of three denaturing polymers. The first one is a custom 3.5% 

PVP/HEC polymer that was previously been developed for the longer capillary 

instruments, the second one is the commercially available POP-6 polymer from Applied 

Biosystems and the third was a high resolution polymer provided by Agilent 

Technologies. While all three polymers are denaturing they differ in polymer chemistry 

and concentration.  

The results from the initial study are shown in Figure 36. The 3.5% PVP/HEC 

denaturing polymer had better resolution than that of POP-6 for smaller size fragments 

(>300bp) while the POP-6 Polymer resolution was slightly better for large fragments (up 

to 500bp).  The Agilent high-resolution polymer provided better separation at both 

smaller and larger fragments than the other polymers. We thus became curious about 

which specific parameters are most important in producing an optimum resolution across 

a wide range of fragment sizes on the shorter channel microchip system. 
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Figure 35: Results from Agilent Bioanalyzer 2100 comparing, ABI POP-6, 3.5% PVP/HEC 
custom denaturing polymer and Agilent denaturing polymer on a 1.3 cm separation channel 
length run at 350 V/cm. (Note that time scales (s) vary due to differences in polymer separation 
time) 

Bioanalyzer  

High Resolution  

Polymer 
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Figure 36: The comparison of three denaturing polymers on a short channel microfluidic system. The 
resolution was measured across a 500bp range. 

 

i)   Optimization of polymer 

In order to optimize the sieving matrix for enhanced resolution on short channel 

microfluidic systems, a second order Doehlert design was developed to reduce the 

number of experiments needed while modeling the resolution and viscosity as functions 

of the polymer concentration (w/v) and ratio of PVP relative to HEC.162 The goal was to 

achieve a polymer that produced the highest resolution possible over a range of 500bp, 

while maintaining a viscosity value as low as possible to ensure proper loading on the 

narrow channel microchips. It was also determined that the substrate of the chip played a 

critical role in the surface wall interactions, and hence the polymer ratio varied greatly 

depending on the chip surface, glass or plastic. The effect of the surface interaction is 

because the composition of the buffer consists of two components, the first PVP, a wall 
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coating polymer and the second HEC a polymer with a high sieving capability. Hence the 

use of a Doehlert Matrix model approach, allows for optimization of the polymer on 

different substrates without ample experimentation.  

The range of parameters used in the design of the Doehlert Matrix  is shown in 

Figure 37. The center polymer concentration used was 3.5% w/v and the center ratio of 

PVP relative to HEC was 50%. The concentration of polymer was increased 

incrementally by 0.5% w/v to achieve responses over a wide range. 

 

 
Figure 37: The figure on the left shows the range of PVP relative to HEC on the Y-axis 
and the range of polymer concentration (w/v%) on the X-axis used for the 2 factor 
Doehlert matrix. The figure on the right is a 3-dimentional representation. 

 
A total of 7 polymers at different concentrations (%w/v) and PVP/HEC ratios 

were examined and tested based on the matrix coefficients calculated from the 2-factor 

Doehlert matrix in Table 9. The relationship between the matrix coefficient value and the 

actual polymer concentration and ratio made is given by Equation 12: 
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Equation 12: Doehlert matrix conversion 

 

Where Xi is the coded matrix value of an independent variable, χr is the real independent 

value, χrc is the center value and Δincrement is the incremental increase.  

The solutions were then tested on the microchip system using GeneScan LIZ 500 

fluorescent ladder. The resolutions for the small size fragments (139-150bp) and the 

larger size fragment (490-500bp) peaks were examined. A quadratic formula was then 

used to model the response of the resolution, RS and RL values against the independent 

variables. 

 
Table 9: 2-Factor Doehlert Matrix model use to create 7 polymers at different concentrations 
(w/v%) and ratios (PVP/HEC) 

Experiment Polymer 
Concentration, 
XP 

Actual 
Polymer 
Concentration

PVP/HEC 
ratio, XR 

Actual 
PVP/HEC 
ratio 

1 1 4.5 0 50:50 
2 -1 2.5 0 50:50 
3 0.5 4 0.8 90:10 
4 -0.5 3 -0.8 10:90 
5 0.5 4 -0.8 10:90 
6 -0.5 3 0.8 90:10 
7 0 3.5 0 50:50 

 

The result shown in Figure 38 shows the predicted relationship between the 

polymer concentration, polymer ratio and its effect on the resolution produced on a short 

separation channel glass microfluidic system. The model can be used to predict the 

expected resolution for a wide of range of polymer concentration and ratio on glass 

substrate microfluidic systems without the need for ample testing and optimization. The 

Xi = χ r − χ rc

Δincrement
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optimum resolution observed from the model was between 20-25% PVP relative to HEC 

and between a 3.5-4.5% w/v polymer solution on the glass microchip. These values were 

different when compared to a plastic substrate where 5-10% PVP provided higher 

resolution separations. 
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Figure 38: [A] the predicted resolution for small size fragments, RS 
with respect to the Polymer Ratio (Y-axis) and Polymer w/v% (X-
axis). [B] The predicted resolution for large size fragments, RL with 
respect to the Polymer Ratio (Y-axis) and Polymer w/v% (X-axis). 

ii)   Viscosity study 

The viscosity of the polymer solution is critical in applications where the 

separation channel is very narrow and force must be used to push the polymer into the 

A 

B 
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capillary or channel. The traditional ABI 310 and Agilent bioanalyzer systems utilize a 

glass tight syringe or pressure pump to load the polymer. Other microfluidic systems for 

forensic genotyping such as that developed by Arizona State University (Hurth et al., 

2010) and in collaboration with the McCord’s research group (Aboud et al., 2010) utilize 

a reverse vacuum to load the channel with polymer.121, 163 It is apparent and especially 

critical for sieving matrices on microfluidic systems to have a low enough viscosity to 

allow for proper filling of the channels and efficient separation.  

The calculated viscosities for the different polymer concentrations and ratio of 

PVP relative to HEC can be seen in Table 10. The response of polymer concentration and 

ratio of PVP related to HEC on the viscosity is model by Figure 39. With increasing 

polymer concentration and ratios of PVP to HEC viscosities of the polymer solution were 

lower. The optimum viscosity was around 300cP that could be loaded on the microchip 

with sufficient resolution. 
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Figure 39: The response factor of viscosity over a range of polymer concentrations and ratios. 
The lower viscosities are observed at lower w/v % and higher ratio of PVP. The most optimum 
region of viscosity is between the pink/blue regions shown on the right figure. 

 

While the viscosity of the polymer increased with increasing concentration 

(w/v%), we used a maximum of a 4% w/v polymer solution for our separations because 

of the increased back pressure that resulted from the narrow channels. Higher 

concentrations needed a longer priming time and extra care in filling the channels to 

avoid the formation of bubbles.  
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Table 10: Table showing the calculated viscosities from the polymer concentration and ratios used in the Doehlert matrix model.  

Solution Polymer 
Concentration (%) 

Ratio  
(PVP:HEC) 

Weight  
(1000uL) Density 

Time  
(min) Viscosity Average Viscosity STDEV 

                
1 2.4 50 1.0455 1.0455 1.934 44.52032585 49.24884928 4.1182 
        1.967 52.0498     
        1.934 51.176422     
                
2 2.9 10 0.8813 0.8813 10.701 252.0792759 255.3551063 4.3667 
        10.768 253.6733476     
        11.050 260.3126955     
                
3   90 1.0815 1.0815 0.683 15.6463175 16.15514083 0.4406 
        0.717 16.4095525     
        0.717 16.4095525     
                
4 3.5 50 0.955 0.955 5.267 122.7897 124.6121168 1.7583 
        5.417 126.2985323     
        5.351 124.748118     
                
5 4 10 0.8605 0.8605 31.633 747.380205 751.8495229 16.2175 
        32.584 769.833113     
        31.251 738.3352507     
                
6   90 1.0507 1.0507 1.434 32.98778769 34.76763076 1.7257 
        1.517 34.8813465     
        1.584 36.43375808     
                
7 4.6 50 0.9564 0.9564 11.235 261.8787318 265.1110352 3.1154 
        11.384 265.3596739     
          11.501 268.0946998     
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iii)   Effect of field strength 

The effect of separation voltage on the resolution was determined by analyzing 

the target 139/150 bp and the 490/500 bp peaks of an internal size standard Genescan Liz 

500 (ABI). The measurements were made using a modified Agilent 2100 bioanalyzer 

with a 1.5 cm separation channel and a heat plate at 60 °C to improve analysis of 

denatured DNA. The results from the initial study, shown in Figure 40, indicated that an 

increase in field strength improved the resolution especially at the 490/500 bp peaks. The 

increase of field strength from 200 V/cm to 330 V/cm resulted in 10- 20 % increase in 

resolution.   
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Figure 40: The effect of electric field strength to the separation of GeneScan Liz 500 size 
standard. An increase in resolution is observed, seen at the 490/500 bp peaks at higher voltages 
(330V/cm) over B, D & F. 

 
  After the results from the initial testing a more detail study was undertaken to 

characterize the effects of field strength on the resolution of both the small size DNA 

fragments and larger size fragments to determine the optimum separation voltage. The 

polymer concentration (w/v) was held constant during these tests. Figure 41 shows the 

B A 

D C 

E F 
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analyses of a 4.0 % polymer on the Agilent chip performed with a separation voltage of 

350 V/cm. The resolution for the adjacent target peaks, 139/150 bp and 490/500 bp were 

calculated using Equation 10. The chromatographic resolution is converted to base pair 

resolution by determining the size difference between the two peaks and then dividing by 

the chromatographic resolution. 

 

 

 
Figure 41: The separation of a LIZ 500 standard diluted 1/5 in formamide and analyzed on a 
1.5cm Agilent 2100 microfluidic chip at 60 °C with 4 % HEC/PVP polymer.  The separation was 
performed with electric field strength of 350 V/cm.   

 

The average resolution for the separation performed at 350 V/cm, for the 139/150 

bp and 490/500 bp peaks, were 4.62 ± 0.09 bp and 11.48 ± 0.04 bp, respectively. The 

separation performed at a voltage of 400 V/cm is shown in Figure 42. The resulting 

resolutions were calculated for the small and large target peaks and determined to be 3.67 

± 0.18 bp and 12.27 ± 0.09 bp respectively. 

 

139bp 150bp 160bp 

490bp 500bp 
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Figure 42: The separation of a LIZ 500 standard diluted 1/5 in formamide and analyzed on a 
1.5cm Agilent 2100 microfluidic chip at 60°C with 4% HEC/PVP polymer.  The separation was 
performed with field strength of 400 V/cm.   

 

The electropherogram from the separation performed at 450 V/cm is shown in Figure 43. 

The calculated resolution for the target peaks was approximately 5.7 ± 0.06 bp and 11.87 

± 0.15 bp respectively. 

 

 
Figure 43: The separation of a LIZ 500 standard diluted 1/5 in formamide and analyzed on a 
1.5cm Agilent 2100 microfluidic chip at 60°C with 4% HEC/PVP polymer.  The separation was 
performed with field strength of 450 V/cm.   
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As the field strength was increased above 450 V/cm, reproducibility and 

resolution suffered and the separation efficiency was lost. The lost in resolution was 

likely because of high currents and joule heating effects causing the broadening of peaks, 

especially at the larger size fragments, which were subjected to the higher field strength 

over a longer period of time. Figure 44 shows results obtained from the polymer on the 

Agilent chip at 500 V/cm. The calculated resolution for these peaks was approximately 

3.99 ± 0.36 bp and 11.71 ± 0.15 bp, respectively.  

 

 
Figure 44: The separation of a LIZ 500 standard diluted 1/5 in formamide and analyzed on a 1.5cm 
Agilent 2100 microfluidic chip at 60°C with 4% HEC/PVP polymer.  The separation was performed 
with field strength of 500 V/cm.  

 

The summary of the peak resolutions calculated during the separation voltage 

study is shown in Table 11. It was determined that the optimum separation voltage on the 

short channel system was 350 V/cm. This was determined based on the higher resolutions 

139bp 

150bp 160bp 

490bp 500bp 
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obtained at the larger size fragments. Figure 45 shows the plot of the overall comparison 

of the separation voltage versus the resolution obtained for the 139/150bp and 490/500bp 

peaks. 

 
 

Table 11: Summary of peak resolution over a separation voltage 
range of 350-500V/cm. 

Voltage 
Avg. 

R139/150bp STDEV 
Avg 

R490/500bp STDEV 
350.00 4.62 0.09 11.48 0.04 
400.00 3.67 0.18 12.27 0.09 
450.00 5.70 0.06 11.87 0.15 
500.00 3.99 0.36 11.71 0.15 

 

 

Figure 45: The 139/150bp and the 490/500bp peak resolution versus the separation 
voltage. 

 

iv)   Effect of PVP relative to HEC  

Polyvinyl Pyrrolidinone (PVP) has been shown to be an effective polymer in 

coating the surface walls of fused silica capillaries by forming hydrogen bonds with its 

0.002.004.006.008.0010.0012.0014.00

350.00 400.00 450.00 500.00

Peak Resolution (bp) vs. Voltage

R 139/150bp R 490/500bp
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carbonyl groups and the capillary wall.164, 165 On the other hand, it is less effective at 

separating DNA when compared to other polymers such as Hydroxyethyl cellulose 

(HEC) or poly-methyldiacrylate PDMA. For this reason, combining PVP with HEC 

allows the user to take advantage of distinctive properties of both polymers to produce a 

polymer solution with high resolution and surface coating.162 When examining a new 

separation mixture system it was important to determine effects of changing the ratio of 

PVP relate to HEC. Using the Doehlert matrix model (Figure 38), the optimization of the 

ratio greatly influences the resolution that can be achieved. However, for microfluidic 

systems the viscosity limits the ratio of PVP relate to HEC than can be used effectively. 

However, higher concentrations of HEC increased viscosity and resulted in incomplete 

separation on the microfluidic system. The summary of the effect of the ratio on the 

resolution is shown in Table 12. The ratio of about 50 % HEC provided a good separation 

and low viscosity. However, the best separation across both small DNA fragments and 

larger ones was observed at 80 % HEC. At this polymer concentration and percentage of 

HEC, the viscosity was low enough to fill the microchip channels efficiently. 

 
 
Table 12: Effect of PVP relative to HEC on resolution 

Polymer 
composition 

Avg.  
R139/150(bp)  

STDEV
± bp 

Avg.  
R150/160(bp) 

STDEV
± bp 

Avg.  
R490/500(bp) 

STDEV
± bp 

4% 20:80  
(HEC/PVP) 3.41 0.23 3.39 0.22 6.74 0.35 

4% 50:50  
(HEC/PVP) 1.83 0.29 1.8 0.24 5.17 0.33 

4% 80:20 
(HEC/PVP) 1.82 0.27 1.96 0.43 5.07 0.36 
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v)   Effect of Polymer Molecular Weight 

Another factor that affects the resolution of the polymer is the molecular weight 

(MW) of the polymers being used. In previous work, the MW of the HEC polymer was 

250K and the PVP, 1,000,000 MW.157 It was thought that the molecular weight of the 

HEC polymer plays a more critical role in the separation process and that PVP helps 

reduce viscosity and with coating of the walls.164 With this in mind, the molecular weight 

of the HEC polymer was examined and the highest possible MW of PVP used and kept 

constant. The experiment permits the observation of the effect of the molecular weight of 

the HEC component on the resolution. 

In this experiment, we tested 3 MW’s of the HEC polymer, 150K, 250K and 

720K. The polymers were tested on both the ABI 310 Genetic Analyzer and the Agilent 

Bioanalyzer microchip system to detect any differences between the two platforms. The 

results from the separation performed with the 150K MW HEC were poor when 

compared to that of the 250K MW HEC polymer. However, the 720K MW HEC showed 

slight improvements in resolution when the polymer solution could be loaded. These 

higher viscosity solutions resulted in problems with the injection and filling of the 

separation channel. The 720K MW HEC polymer solutions were not reliable on both the 

microchip system and the ABI 310. Figure 46 shows the results from a 3.5% w/v 

PVP/HEC polymer solution using the 720K MW HEC polymer. A small increase in the 

peak resolution of +0.5 bp was observed at small DNA fragment size and about +4 bp at 

larger fragment sizes with the higher MW. However, loading of the chip and capillary 

was not always successful. Table 13 summarizes the resolution calculated from the 

results that were obtained in Figure 46. 
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Figure 46: Electropherogram showing the separation of Liz 500 on the ABI 310 Genetic Analyzer 
using 720K MW HEC. A small increase in resolution can be seen from the figure above (50:50) 
PVP:HEC to the figure below (80:20). 

 
Table 13:Summary of resolution obtained using 720k MW HEC polymer. 

3.5% Polymer 
ratio 
(PVP/HEC) 

R 
139/150 

STDEV 
(+/-) 

R150/160 STDEV 
(+/-) 

R490/500 STDEV 
(+/-) 

50:50  2.01    0.34 2.19  0.39 8.21 0.32 
80:20  1.53   0.28 1.45 0.33 4.58 0.40 
 
 

d)   Conclusion 

The composition of the sieving matrix plays a critical role in obtaining maximum 

resolution especially on short channel microfluidic devices. The increase separation 

voltage provided a faster separation, however the resolution of the larger fragments 

50:50 (PVP/HEC720k) 

20:80 (PVP/ HEC720k) 

A 

B 
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suffered likely as a result of joule heating and band broadening. The optimum conditions 

for highest resolution on the microchip system was at 350 V/cm using a 3.5-4 % w/v 

polymer solution with 80-85 % HEC relative to PVP, and with viscosities lower than 300 

cP. Higher molecular weight polymers provided greater separation, however, the high 

viscosities of these solutions proved difficult in filling the narrow separation channels. 

Lastly, the type of material the chip is made from affects these parameters. Both glass 

and plastic chips exhibited different optimum ratios of PVP relative to HEC required for 

the best separation. 



 
 

127

CHAPTER IX:        DEVELOPMENT OF RAPID GENOTYPING ON SHORT 
CHANNEL MICROFLUIDIC SYSTEMS 

a)   Introduction 

There are situations in which it is important to quickly and positively identify an 

individual. Examples include suspects detained in the neighborhood of a bombing or 

terrorist incident, individuals detained attempting to enter or leave the country, and 

victims of mass disasters.  Systems utilized for these purposes must be fast, portable, and 

easy to maintain. DNA typing methods provide the best biometric information yielding 

identity, kinship and geographical origin, but they are not portable. Currently, DNA 

typing is performed by large-scale sequencers using multichannel fluorescent capillary 

array electrophoresis. Complex robotic extraction and PCR processing create economies 

of scale, permitting large numbers of samples to be efficiently processed. Unfortunately 

this process is not flexible enough for many applications in the field and is not quick on a 

per sample basis. 

The proposed alternative, microfluidic DNA typing holds great promise, but 

constraints on resolution and problems with coupling inline extraction, inline PCR and 

multicapillary analysis make these systems highly complex. Integrated systems require a 

complicated amalgamation of engineered components making them highly vulnerable to 

clogging, misalignment, and voltage leakage. The issues with large-scale integration of 

extraction, amplification and DNA electrophoresis also make these systems less than 

portable. While there is no doubt that the technological issues may someday be solved, 

there are alternative modular approaches to perform this task that do not require extensive 
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engineering and do not require complete system integration. Such modular systems are 

easily repaired in the field and can be quickly switched out if problems occur. 

Another advantage of microfluidic genotyping is the speed and portability of the 

instruments. These attributes could be of great value in situations such as mass disasters 

permitting rapid identification of victims. Events such as the September 11 terrorist 

attack on the World Trade Center demonstrate the need for portable, user-friendly 

systems for the analysis of DNA. Such instruments have also been envisioned as a tool 

for the processing of suspects at police stations, detecting bacterial spores in food 

contamination, and serving homeland security applications.  

Current forensic DNA typing kits use a set of universal core loci established by 

the FBI that have been catalogued in their CODIS database system. These 13 core loci 

contain highly polymorphic tetranucleotide repeats that can be used to discriminate 

between individuals for forensic identification. Unfortunately, many of these loci have 

complex sequence variants that require single base resolution with the need for extended 

separation channels to fully resolve all alleles. This need for longer separation channels 

has resulted in the development of less portable devices in order to encompass the full 

chip dimensions.  An alternative approach discussed permits faster and more accurate 

genotyping on smaller microfluidic devices through the use of less variant pentameric 

STRs. However, upon further evaluation of our microfluidic system, and the excellent 

resolution obtained for the pentameric STR separation, it was hypothesized that with an 

optimized sieving matrix, a small subset of the full cadre of DNA markers could be used 

as a quick screen to permit rapid identification of detained individuals. To provide the 

necessary precision, a slight re-engineering of the system was required to permit a second 
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detection channel that would provide accurate, precise, and robust separation of the 

tetrameric STRs used in forensic identification. Therefore, we set out to develop a rapid 

DNA genotyping system, using a short channel microfluidic chip, that would be capable 

of high discrimination using a subset of current CODIS STR markers. 

b)   Methods and material 

i)   DNA Samples 

DNA standards from cell lines 9948 (male) and K562 (female) were purchased 

from Promega (Madison, WI, USA). These samples were primarily used for the 

development and optimization of the 7plex STR kit for short channel separation. Buccal 

swab DNA samples were taken from a variety of subjects, extracted, quantified and then 

genotyped using optimal conditions. These samples were then used to provide a small 

population data set for evaluation of the genotyping accuracy along with the precision, 

robustness and efficiency of the system.  

ii)   Extraction and Quantification of DNA samples 

All samples were extracted using a phenol-chloroform/isoamyl alcohol (PCIA) 

protocol.166 The samples were then quantified using an ALU-based real-time PCR 

method with 0. 5x SBYR® -Green I dye (Molecular Probes, Eugene, OR, USA).71 

Quantification was performed in reaction volumes of 20 μL using a Master Mix 

containing GeneAmps PCR Gold buffer (Applied Biosystems), 1.5 mmol/L MgCl2, 200 

mmol/L deoxynucleo- tide triphosphates (Denville Scientific, dNTP’s: dATP, dCTP, 

dGTP, dTTP), 1 mM BSA (Sigma-Aldrich, St. Louis, MO, USA), Triton X-100 (10% 

solution), ALU forward and reverse primers and two units of RampTaq hot start Taq 
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polymerase (5U/mL) (Denville Scientific, Metuchen, NJ, USA). A series of 9948 DNA 

standard solutions of known concentration were diluted ranging from 10 to 0.1 ng/mL 

and used to establish a standard curve. All samples were run on a Corbett Robotics Rotor 

Gene 6000 instrument (Qiagen Corbett Robotics, Valencia, CA, USA). The instrument 

software was used to calculate the critical threshold values and concentration of unknown 

samples. 

iii)   PCR amplification and Optimization 

Amplification was performed in reaction volumes of 20µL using a Master Mix 

containing 1x GeneAmp® PCR Gold buffer (Applied Biosystems), 8mmol/L MgCl2, 

300µmol/L deoxynucleotide triphosphates (Denville Scientific, dNTP’s: 

dATP,dCTP,dGTP,dTTP), 1µM bovine serum albumin (BSA) and 2.5 units of AmpliTaq 

Gold® DNA Polymerase. During the initial stages of the STR 7-Plex optimization, 

primer concentrations were adjusted from 0.5µmol/L to 1.5µmol/L to determine the 

effect on amplification efficiency and peak height balance. The input DNA template was 

varied from 0.1ng- 2ng/µL. Thermal cycling parameters were taken from the 

manufacturers recommendations for the Promega PowerPlex 16® STR kit, and tested 

over a range of annealing temperatures (58°C-62°C) and cycle numbers (28-32), in order 

to obtain the optimal amplification conditions.  

The final PCR cycling parameters were as follows: 95°C (11 min), 96°C (1 min), 

10 cycles with 30 sec at 94°C, 30 sec at 60°C, and 45 sec at 70°C, 22 cycles with 30 sec 

at 90°C, 30 sec at 60°C, and 45 sec at 70°C, 60°C (30 min), 4°C (8 min), 25°C (20 min). 



 
 

131

Table 14:  The MP7 Locus information, Primer Sequences and Allelic Range  

 

 
Figure 47: MP7 a single lane multiplex designed for rapid microchip electrophoresis. The 
multiplex contains 6 STR markers in the yellow lane and amelogenin a sex determining marker in 
the red lane. 
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iv)   Microfluidic system and electrophoresis 

The prototype Bioanalyzer 2100 system used in the separation of STRs was 

provided by Agilent Technologies (Agilent Technologies, R&D, Waldbronn, Germany). 

The system obtained for this research varies from the commercially available Bioanalyzer 

in that it incorporates a heat plate to keep the samples and system at 60°C during the run, 

as well as dual lasers capable of detecting multiple fluorescent dyes. This modified 

platform permits the analysis of single-stranded DNA (ssDNA) and improves sizing 

precision through the use of an internal lane standard (ILS). A multiplex system, MP7 

was developed using certain markers present in the Promega PowerPlex 16 kit. Markers 

were utilized that gave a high statistical power of discrimination for a single lane and had 

minimal single base variants. 

The chip was first primed with the polymer so that all the channels were filled 

with the sieving matrix. Next a size standard was prepared by adding 0.5μL of 

GeneScanTM 500 LIZ(Applied Biosystems) or CC5 Internal Lane Standard 500 (Promega 

corporation) to an Agilent buffer with HiDi® formamide in a 1:1 mixture.  Five 

microliters of the above solution was then pipetted into each of the 12 samples wells. One 

microliter of the sample was added and electrophoresis performed. The results were 

interpreted using the software provided with the instrument. 

 

c)   Results and Discussion 

The goal of the present work was to develop a rapid separation of a subset of 

CODIS STRs suitable for quickly screening unknown suspects at police stations, points 
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of entry and mass disasters. Three key points were clear in order for us to achieve our 

goal. First, we needed a rapid, highly precise microfluidic system. Secondly, since the 

number of dye channels was limited to two, the multiplexed loci would have to fit within 

a single lane with the second lane reserved for the sizing standard. Lastly, the STR loci 

would have to be chosen such that all alleles were resolved with minimal variant alleles.  

i)   Development of Precise and Accurate DNA Sizing on Microchip System 

The presence of variant alleles creates a necessity for highly accurate size 

determination. With the capability of the instrument to simultaneously detect two 

fluorescent signals using a single excitation wavelength at 532 nm, and with emission 

wavelengths of 575 nm and 670 nm, we were able to add an internal size standard, which 

greatly increased the precision and accuracy of fragment size determination. The 

selection of the internal size standard dye label was based on the optimal laser detection 

wavelengths. The goal was to minimize spectral interference between the two detection 

wavelengths. Two different standards were examined, CC5 ILS500 (Promega 

Corporation) and GeneScan Liz 500 (ABI). The CC5 ILS500 size standard gave slightly 

higher signal intensities, and therefore, was used for most of the experiments. The 

samples were labeled using a Tetramethylrhodamine (TAMRA) dye. 

  The precision of the system was demonstrated using a 400 bp DNA ladder 

MapMarker®(BioVentures,TN). The precision of system for fragments over 300 bp was 

less than ±0.08 bp with smaller fragments having a precision value of ±0.02 bp. The 

separation of the CC5 ILS500 and 400 bp MapMarker® fragments can be seen in the 

decomposed data Figure 48. The resolution between peaks were deemed important in this 
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study as the peaks were on average ten or more base pairs apart and were very well 

resolved.  
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Figure 48: Electropherogram showing the use of an internal size standard (CC5 ILS500) for 
increase precision in sizing of a 400bp ladder. A) The raw data showing both the CC5-ILS and 
TMR-labeled 400bp Ladder. B) The decomposed signals of each dye. C) The CC5-ILS 500-size 
standard with the sized fragments. D) The TMR-labeled MapMarker 400bp ladder with sized 
fragments. Runs were performed using conditions described in the methods section. 
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Traditional DNA electrophoresis systems use a Local Southern Size Algorithm to 

establish a calibration curve using a nearest neighbor approach.99 However, for this 

system a Global Southern Size Algorithm was used to enhance precision over the entire 

range of fragments. The Global method of sizing provides a more accurate result 

especially if there are mobility and temperature shifts within a run.117  The data in Figure 

49 show the correlation between the calculated experimental DNA fragment size and the 

actual values of the 400 bp MapMarker® ladder. The maximum deviation observed from 

the true size was 0.54 bp and the overall precision of the system was under 0.21 bp with 

all but the four largest alleles showing a precision of better than 0.17 bp. These results 

indicate the resolution required for an overall sizing precision (approx. 3 times the 

precision, 0.17 bp) of 0.5 bp or better across most loci with slightly reduced precision for 

the larger size loci. This level of precision is more than adequate for determining 

genotypes of the 7-loci multiplex. The variations may be a result of small mobility shifts 

that result from room temperature fluctuations. However, they are very small changes and 

do not affect the accurate calling of alleles. 
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Figure 49: Graph showing the relation between the separation DNA fragment size against the 
actual fragment size in basepairs. The correlation between the experimental and actual data 
is shown with a R2 value of 0.99. The runs were performed with a separation voltage of 
350V/cm with total run time of under 2minutes. 
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Figure 50: The maximum deviation from the calculated size to the actual size observed during 
the separation of a 400bp MapMarker® ladder on a 1.5cm separation channel microfluidic 
system. The average deviation is less than 0.3bp. The runs were performed with a separation 
voltage of 350V/cm with total run time of under 2minutes. 

 
 

ii) Reproducibility 

The nature of the injection process used in microfluidic systems makes it possible 

to produce a more compact sample injection than that used in capillary electrophoresis 

systems. This is accomplished using a pinched injection with a cross-T sample interface. 

The injection technique produces a consistent and reproducible sample plug without 

sample leakage. The reproducibility of the system was also tested using the 400 bp 

MapMarker ladder Figure 51. The ladder was separated and the fragment sizes calculated 

for one hundred runs. The results are summarized in Table 15. The highest deviation 
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reported was 0.21 bp at the largest sized fragments greater than 350 bp. Fragments 

between 150-350 bp had deviations on average of 0.15bp and the fragments below 150 

bp had an average 0.1 bp deviation. 

 

 
Figure 51: Electropherogram showing the separation of TMR labeled MapMarker® 400bp DNA 
ladder on a 1.5cm separation channel Bioanalyzer system. The run was performed with a 350V/cm 
separation voltage with a sample run time less than 2 minutes. 
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Table 15:  The Precision and Reproducibility Data for 100 runs of a 400bp DNA ladder 
separated on a 1.5cm channel microfluidic system in under 2minutes. 

Target 
Size 

Average STDEV %CV Max. neg. 
Size Error 

Max. pos. 
Size Error

70 68.38 0.09 0.13 -0.11 0.23
80 78.14 0.11 0.14 -0.12 0.23
90 87.98 0.1 0.11 -0.2 0.19

100 98.3 0.08 0.08 -0.27 0.08
120 117.79 0.12 0.1 -0.29 0.24
140 137.92 0.12 0.09 -0.24 0.31
160 158.23 0.11 0.07 -0.32 0.28
180 178.13 0.13 0.07 -0.25 0.31
190 187.91 0.13 0.07 -0.22 0.21
200 197.73 0.14 0.07 -0.19 0.18
220 218.48 0.13 0.06 -0.27 0.36
240 238 0.12 0.05 -0.18 0.31
260 258.15 0.13 0.05 -0.27 0.18
280 278.8 0.16 0.06 -0.33 0.31
300 298.59 0.15 0.05 -0.35 0.35
320 318.33 0.15 0.05 -0.31 0.24
340 338.67 0.21 0.06 -0.39 0.44
360 358.51 0.18 0.05 -0.45 0.36
380 377.85 0.21 0.06 -0.3 0.33
400 398.12 0.21 0.05 -0.4 0.54

  
 
 

iii)   Development of MP7 

To create the MP7 STR kit the markers D5S818, D13S317, D7S820, D16S539, 

CSF1PO and Penta D were selected from the information in Table 14. These loci were 

selected to yield good discrimination with minimal variant alleles. To permit sex typing 

the amelogenin XY marker was inserted in the same channel as the internal size standard. 

This could be done without affecting the sizing curve, as this locus contains only two 

alleles, which are at 106bp and 112bp respectively and do not overlap with any of the 
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sizing peaks. The resulting 7 STR marker multiplex, MP7, had discrimination powers of 

1x106 or greater (Figure 47).  

iv)   Optimization of MP7 

The main parameters examined in the optimization of the MP7 kit were the 

concentration of magnesium, the concentration of dNTPs and the primer annealing 

temperature. These parameters were tested and their effects on the efficiency of 

amplification observed by examining the peak height and balance of each locus.  The first 

parameter tested was the magnesium ion concentration, which ranged from 2mM to 

10mM. Magnesium, a cofactor to the Taq polymerase, is directly related to the efficiency 

of amplification. It was observed that 6mM to 8mM Mg2+ produced the best combination 

of peak intensity and balance across loci (Figure 52). At 10mM [Mg2+] the smaller sized 

loci continued to increase in height, however, the larger size fragments showed decreased 

sensitivity and non-specific artifacts were observed.  
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Figure 52: The optimization of [Mg2+] at each locus ranging from 2mM to 10mM run in triplicates. 
The peak height ratios were calculated from the height of allele 1 versus that of allele 2 at each locus. 
The optimum value of magnesium ion was determined to be between 6mM and 8mM. The highest 
PHR deviation was 0.08 at 10mM Penta D 

 
The overall concentration of magnesium is also related to the concentration of the 

dNTPs in the reaction as they chelate Mg2+ ions. Therefore, a balance between the Mg2+ 

concentration and the dNTP concentrations is important for an efficient amplification. 

The concentration of dNTPs examined ranged from 200μM to 500μM. Concentrations of 

dNTPs at 200μM each showed the best balance across all loci, with the exception of 

Penta D, which had that poor peak balance at this concentration (Figure 53). As a result 

of this, a final concentration of 300μM was chosen to provide the best balance across the 

entire range of the multiplex. 
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Figure 53: The optimization of [dNTPs] at each locus at 200μM, 300μM and 500μM. The Peak 
Height Ratios calculated from triplicate runs with a maximum standard deviation of 0.08. The 
optimum value of dNTP concentration was determined to be 300μM. 

 

The effect on the PCR parameters on the success of the amplification was also 

measured by analysis of the peak resolution. In order to calculate the chromatographic 

resolution, a software was used to model the electropherogram data and report the 

resolution between the adjacent peaks. (Figure 54) The chromatographic resolution was 

then converted to base pair resolution (Equation 10). Figure 55 shows the resolution 

obtained with varying concentration of magnesium. The efficiency of the amplification at 

a concentration of 8mM magnesium produced the best resolution of peaks for the entire 

multiplex. 
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Figure 54: Peak fit software used to fit the data from an electropherogram of a DNA K562 
standard amplified using a PCR mix containing 8mM [Mg2+], 300μM dNTPs, 2.5U Taq using 
cycling condition from the method section.  The chromatographic resolution was then calculated 
between adjacent peaks. 

 
Figure 55: The Effect of [Mg2+] on bp resolution of a DNA standard K562 amplified using 8mM 
[Mg2+], 300μM dNTPs and 2.5U Taq under standard cycling conditions. The smaller size Markers D5 
and D7 show similar resolution across the range of magnesium. The larger markers D16, CSF and 
Penta D show greater differences with 8mM being the best. Note at D13 there is no resolution 
calculated because the sample is homozygous at the locus. 

 
The optimum PCR conditions that yielded the highest sensitivity and balance both 

within and between loci were achieved using an amplification performed in reaction 
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volumes of 20µL, using a Master Mix containing 1x GeneAmp® PCR Gold buffer 

(Applied Biosystems), 8mmol/L MgCl2, 300µmol/L deoxynucleotide triphosphates 

(Denville Scientific, dNTP’s: dATP,dCTP,dGTP,dTTP), 1µM bovine serum albumin 

(BSA) (a common PCR additive which helps overcome inhibition and increase PCR 

efficiency) and 2.5 units of AmpliTaq Gold® DNA Polymerase. The overall results can 

be seen from the electropherogram in Figure 56 showing the separation of the DNA 

standard K562 (Promega Corporation). The results of the standard are consistent with the 

known sample profile with alleles 11,12 at D5S818, 8,8 at D13S317, 9,11 at D7S820, 

11,12 at D16S539, 9,10 at CSF1PO and 9,13 at Penta D.  

 

 
Figure 56: Electropherogram of DNA Standard K562 amplified using MP7 under optimized 
conditions. The results shows a well balance inter and intra-locus amplification with sufficient 
resolution to resolve between a single 4bp repeat observed at the CSF1PO locus. 

 

To demonstrate the performance of the system with real samples, a standard PCIA 

extraction was performed from buccal swabs, amplified and injected on the microfluidic 

system. The resulting electropherogram can be seen in Figure 57 showing the genotype 
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for that individual and the red channel data containing the amelogenin marker and the 

internal size standard. The overall genotype observed was calculated to be 1 in 1.13 x106 

or higher using the OmniPop 150.5 software over 160 population data sets. 

 

 
 Figure 57: Above: Electropherogram of extracted buccal swab sample amplified using the MP7 kit.  
The resulting genotype was obtained in under 80s with a power of discrimination of 1 in 1.13x106. 
Below: Electropherogram data from the red lane of an extracted buccal swab showing the internal size 
standard CC5 ILS 500 and the amplification of the amelogenin a sex-determining marker. The presence 
of a Y allele at 112bp represents the sample being of male origin. The sample was amplified using the 
MP7 STR kit with 8mM [Mg2+], 300μM dNTPs, 2.5U Taq under standard cycling conditions.  
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The careful design and development of the MP7 STR kit on a dual laser short 

channel microchip system allowed for rapid (<80 s), precise (better than 0.5 bp) and 

accurate sizing of alleles with a discrimination power greater than 1 in 1 x106. While 

baseline resolution was not achieved over the entire range of the multiplex, the system 

was capable of resolving individual alleles at high precision even at the largest fragment 

size in the Penta D locus. The well-established loci and with the minimal microvariant 

alleles permits confident designation of all alleles in the multiplex. In order to get an 

accurate designation of alleles from the calculated size, an allelic ladder was run with 

each chip. The use on an internal lane ladder not only allowed for precise allele calling 

but also demonstrated the robustness of the system by permitting the examination of all 

possible alleles for each locus within a single run. The overall run time of the allelic 

ladder was under 80 seconds and is shown in Figure 58. The analysis time is significantly 

faster than that of traditional CE systems at 40 minutes and is also the fastest genotype of 

a 7 loci multiplex ever reported. The allelic ladder showed clear separation of all alleles 

with adequate resolution over the entire 450 bp range. 
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Figure 58:  Electropherogram of the MP7 Allelic Ladder showing the separation of all possible allele 
for the given markers. The largest size adjacent alleles can be clearly differentiated. The ladder was 
obtained from Promega Corporation and run at the standard microchip run condition of 350V/cm 
with a denaturing sieving matrix. The ladder run time was performed in under 80 seconds. 
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d) Conclusions 

The goal of this project was to develop a rapid system capable of separations on 

short channel microfluidic devices with the required resolution needed for microsatellite 

analysis in forensic DNA samples. This was accomplished with the use of enhanced 

sieving matrices under denaturing conditions and the addition of an internal size standard 

for increased precision in a second emission channel. The resulting system was capable 

of performing separation on a 1.5 cm channel with sizing precision of better than +/- 0.5 

bp in less than 80 seconds.  Furthermore, the development of a subset of CODIS STR 

markers (MP7) for the system provided discrimination powers of 1 in 1x106 or higher. 

The overall system is capable of rapidly identifying suspects and other persons of interest 

detained at border crossings and police stations.  
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CHAPTER X: ULTRA-FAST DIRECT PCR FOR FORENSIC GENOTYPING 
  
 

a)   Introduction 

Forensic DNA typing not only provides scientific evidence in the courtroom but 

can also be used as an investigative tool for the elimination of suspects and for 

confirmation of identity at places such as border crossings or airports. However, such 

applications require a small, rapid, easy to use system that can provide an answer onsite 

within the holding time limits permitted by the law. The processing of DNA samples for 

STR analysis involves extraction, quantification, amplification and separation of DNA. 

The sample to answer workflow requires a relativity long analysis time to achieve a 

genotype. While technology has advanced significantly since the discovery of the 

polymerase chain reaction, the processing of DNA prior to electrophoresis has changed 

very little. Even though automation is widely used for the extraction process, the 

chemistry involved has remained fairly consistent. Many laboratories still use organic 

extractions such as PCIA, while other have upgraded to automated systems that use 

magnetic beads or similar solid phase extraction kits. The process workflow involves 

numerous wash steps along with relatively long heating steps required to lyse the cells 

and expose the DNA template. Further purification steps may also be required to remove 

proteins, RNA and other possible inhibitors that may affect the amplification process 

downstream.   

Current analytical systems using multicapillary sequencers and robots are well 

adapted for large-scale high throughput processing of criminal offenders from blood or 

buccal swabs. However, the potential for high-speed analysis of a single individuals’ 
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DNA type has yet to be realized. Microfluidic systems offer the promise of improved 

speed because of shorter channel lengths and narrow sample injection zones. However, 

coupling current extraction processes to existing microfluidic devices results in a fairly 

complex device with numerous design challenges.140, 151, 167, 168  

However, there is a simpler solution to this problem.  The engineering problems 

associated with in-line extraction can be bypassed by amplifying a sample directly from a 

paper punch, removing the need for any extraction at all.120, 169, 170 Results can be further 

speeded up by upgrading the chemistry of the Taq enzyme to permit high-speed 

amplification of DNA, reducing the overall reaction time from 2 ½ hours to under 15 

minutes.123, 171 Lastly, STR analysis using short channel microfluidic systems such as the 

system developed in Chapter 9 can be achieved in less than 2 minutes. Combining these 

three processes would result in an ultra-fast, sample to genotype result in about 20 

minutes. The overall process would be modular requiring no additional engineering. Such 

a system would also be more robust because system breakdowns or clogging in one 

module would not affect the downstream results. The system would also have a small 

footprint, requiring only two lunch box sized devices and a small laptop. 

The key advances that permit such rapid processing are the advent of direct PCR 

and rapid thermal cyclers.172  Direct PCR utilizes special buffers and enzymes to amplify 

DNA directly from a paper punch of FTA paper containing a blood or salvia stain.173 The 

user would swab an individual’s mouth, wipe the swab on specially treated paper (the 

paper lyses the cells and eliminates infectious agents), and punch out a small piece of the 

paper containing the saliva. The saliva sample would then be placed in a tube with PCR 
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reagents and amplified directly.45 No special washing steps are required and minimal 

sample waste is produced.  The resultant PCR product can then genotyped.  

By using high-speed thermal cyclers like the Streck Philisa or Analytik Jena 

Speed Cycler2 amplification ramp rates as fast as 15 degrees per second can be used 

resulting in full sample amplification in 10-15 minutes. Thus, this fast amplification when 

coupled with a 2-minute microfluidic separation can produce a complete genotype in 

under 20 minutes. With such protocols a laboratory could simply purchase a fast thermal 

cycler with appropriate enzymes to easily perform a rapid direct DNA amplification. 

Small, dedicated laboratories at borders, police stations and mass disaster sites could 

perform the task in under 20 minutes using this chip based microfluidic system and a 

small thermal cycler. Even without the chip system a full profile is possible in 45 minutes 

or less.  

 

b)   Methods and Materials 

i)   DNA samples  

DNA standards K562, 9948 and 9947A were obtained from Promega Corporation 

and used as positive controls during the amplification and optimization process. Two 

simulated reference control samples M and O were obtained from swabbing the inside of 

the cheek of two individuals and transferred to FTA paper. Samples M and O were also 

extracted using phenol-chloroform-isoamyl alcohol and amplified using PowerPlex16 HS 

(Promega Corporation) under standard manufacturer conditions and used as a known 

reference samples.174 A small population was also obtained from 18 individuals by 
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swabbing of the inside of their cheeks and transferring to the FTA paper, samples were 

then analyzed using the MP7 kit. The samples collected and used for this project were 

approved for use through an Institutional Review Board #091510-00 at FIU. 

 

ii)   Fast Thermal Cyclers  

Two Ultra fast thermal cyclers were obtained and used in the development of 

rapid direct amplification. The SpeedCycler2® from Analytik Jena (Germany) and the 

Philisa® from Streck Inc. (Nebraska, US) were both used and demonstrated ultra-fast 

amplification. The Philisa on average performed about 3 minutes faster than the 

SpeedCycler2® under the same protocol. This was attribute to its faster cooling rates. 

The SpeedCycler2® system contained a replaceable 36 well low profile rapid 

(LPR) block made from gold-plated sterling silver. The system was capable of maximum 

heating rates of 15°C/s and cooling rates of 10°C/s. The lid of the system is also heated at 

temperature up to 120°C to avoid condensation at the lid of the tube that can result from 

heating and evaporation in the PCR tube. The systems overall dimension was 280 x 290 x 

250mm, producing a relatively small footprint. The system operation was controlled by a 

built in touch screen. Special 20μL LPR PCR tubes were constructed using ultra thin 

walls to ensure efficient heat transfer to the liquid. The tubes were sealed using a plastic 

film that was secured over the tube strips. 
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Figure 59: The SpeedCycler2® thermal cycler instrument shown on the left. The gold 
plated heated block and sample tubes shown on the right. 

 

The Philisa® thermal cycler contained a 8 well low mass silver sample block with 

maximum heating rates of 15°C/s and cooling rates of 12°C/s. These high rates were 

achieved by means of a dual Peltier module. The instrument is controlled by a small 

netbook laptop and had dimension 285 x 202 x 215mm with a weight of 7.5lbs. This 

system uses a thin walled, flat polypropylene tube that can hold a maximum volume of 

50μL. This design increases the surface to volume ratio and allows for more efficient heat 

transfer to the sample mix.  
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Figure 60: The Philisa® thermal cycler instrument shown on the right. The heating 
block and thin walled polypropylene pcr tubes shown on the right. 

 

iii)   Rapid Polymerases  

DNA polymerases capable of rapid incorporation of bases were tested to 

determine which enzyme would yield the fastest amplification, highest fidelity and 

compatibility with a direct buffer. The enzyme chosen from the initial tests and used for 

all further experiments was, Z-Taq polymerase (Takara Bio Inc.). The enzyme was 

supplied with a 10x Z-Taq Buffer and 2.5mM dNTP mixture. The other rapid 

polymerases tested are listed in Table 16. 

iv)   Direct Buffers 

A number of direct buffers were examined for compatibility with rapid 

polymerases listed in Table 16. The buffers were tested for both effectiveness in 

amplification and compatibility with FTA paper without elution and further extraction. 

The AnyDirect F buffer mix (Bioquest, Korea) was combined with the rapid polymerase 

and used for all further amplifications, optimization and validation of this technique.  
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Table 16: List of Rapid Polymerases and Direct Components 

 Hot Start Kit Components 5’-3’ exo 3’-5’ exo Speed Inhibition  
Resistant 

AnyDirect F  
Buffer Mix 
(BioQuest) 

Chemical  
(95,15’) 

• AnyDirect Buffer F 
• HotTaq-fx (5U/μL) 

Yes No -- 
 

Yes 

Terra Direct 

(Clontech) 

Ab 

(98,2’) 

• Terra PCR Direct Polymerase Mix 
        (1.25U/μL) 
• 2X Terra PCR Direct Buffer (Mg2+ 

2mM & 400μM dNTPs) 

No --- -- Yes 

Phusion Human 
 Direct 
(Finnzymes) 

Affibody 
(98,1’) 

• Phusion DNA Polymerase (2U/μL) 
• 2X Phusion Human Specimen PCR 

Buffer 
• Dilution Buffer 
• DNARelease Additive 
• Control Primers 

Yes Yes 15-30s/kb Yes 

KAPA2G 
(Kapabiosystems) 

Ab 
(95,1~3’) 

• 2X KAPA2G Fast HotStart DNA Pol
ymerase Master Mix (1U Polymeras
e, Mg2+ 3mM and 0.2mM dNTPs)  

Yes No 15s/kb -- 

Phire II 
(Finnzymes) 

Ab 
(no reactive) 

CHAPTER I: Phire Hot Start II Polymera
se 

CHAPTER II: 5X Phire Reaction Buffer (
Mg2+ 7.5mM) 

CHAPTER III: DMSO (GC rich templat
e) 

Weak -- 10-15s/kb Yes 

Z-Taq 
(Takara) 

No • Z-Taq DNA Polymerase (2.5U/μL)     
• 10X Z-Taq Buffer (Mg2+ 30mM) 
• dNTP mixture (2.5mM)  

Yes Yes 5xTaq -- 

SpeedSTAR 
(Takara) 

Ab 
(94,1’) 

• Z-Taq DNA Polymerase (5U/μL)     
• 10X fast Buffer I(Mg2+ 30mM) 
• 10X fast Buffer II(Mg2+ 20mM) 
• dNTP mixture (2.5mM)  

Yes Yes 10 s/kb -- 
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v)   Rapid Direct STR PCR amplification 

The MP7 multiplex containing the STR markers AMEL, D5S818, D13S317, 

D7S820, D16S539, CSF1PO and Penta D was amplified in a reaction volume of 12.5μL 

using a final PCR master mix containing 1X Z-Taq Buffer (Takara Bio Inc.), 1X 

AnyDirect F Buffer (BioQuest, Korea), 432μmol/L each dNTPs (Takara Bio Inc.), 

4mmol/L MgCl2, 0.08μg/μL bovine serum albumin (BSA), TAMRA fluorescently 

labeled primers at concentrations 0.5μM for D5S818, D13S317, 0.6μM for D7S820, 

CSF1PO and AMEL, 0.8μM for D16S539, and 1μM for Penta D. A final concentration 

of 1.25 Units of Z-Taq Polymerase (Takara Bio Inc.) was added to the master mix 

referred to as the RD-MM from this point on. 

A 1.2mm punch of the sample from the FTA paper was directly added to the 

Rapid Direct (RD) Master Mix and amplification performed in 16 minutes on the Philisa 

thermal cycler or 19 minutes using the SpeedCycler2. The cycling conditions are listed in 

Table 17. 

 

                                
 

              X 30 cycles 
 
 

vi)   STR Analysis  

Following PCR amplification 1μL of the sample was added to 5μL of a HiDi® 

formamide (Applied Biosystems) and Agilent’s proprietary marker buffer (Agilent 

Technologies). The microchip was then primed with the sieving matrix and 1μL of the 

98°C 5 seconds 
60°C 5 seconds 
72°C 15 seconds 

Table 17: Cycling Conditions Total time = 16min 
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PCR product in the marker/formamide mixture was added to each sample well. STR 

Analysis was performed on a modified Agilent Bioanalyzer containing a heating plate, 

denaturing polymer and dual lasers. The analysis was performed in about 80 seconds for 

each sample. Genotyping was performed from the sizing results obtained using an excel 

software macro developed in house that compared the sizes of individual alleles with a 

previously run allelic ladder. 

  

c)   Results and Discussions 

The goal of this project was to develop a rapid genotyping method for buccal 

swabs that required no extraction step. In order to achieve ultra-fast STR amplification 

two major areas were investigated; rapid thermal cycling and high-speed polymerases. 

i)   Fast Thermal Cycling 

Typically most thermal cyclers use sample heating blocks with a cooling fan 

coupled to peltier systems while others utilize air driven systems that cycle temperature 

directly at suspended sample tubes. Infra-red (IR) radiation or lasers pulses have also 

been used to heat samples.171 Generally, the use of cycling blocks made from highly 

conductive alloys permits a more rapid transfer of heat. Most high-speed thermal cyclers 

use this technique, as it is particularly effective for high-speed cooling. To further 

improve heat transfer, a reduced volume reaction mix is prepared in specialized thin 

walled tubes that conform to the sample wells providing maximum contact with the 

heating block. This greatly increases the speed at which amplification can occur. 

However, these physical changes to the instrumentation must also be accompanied by 
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higher processivity enzymes that are capable of maintaining amplification fidelity and 

specificity at such rapid rates.  

A number of authors have explored the use of high-speed amplification. Early 

work by Idaho Technology in the 1990s produced amplification rates permitting 30 

cycles in under 20 minutes using a hot air based thermal cycler.175 In a subsequent report 

the same group utilized a capillary tube based thermal cycler capable of performing 30 

PCR cycles in 7 ½ minutes.176 In 2006 Neuzil et al. reported amplification rates of 40 

cycles in 6 minutes using a 100nL reaction volume on a mineral oil drop using IR 

radiation heating on a microchip.177 Vallone et al. in 2008 produced amplification of 16 

STR loci in 35 minutes using a mixture of two rapid polymerases on a thermal cycler 

with 4°C/s ramp rate.172 Wheeler et al. in 2011 used an in house system which was 

capable of performing 30 cycles in 2 minutes 18 seconds at ramp rates up to 45°C/s 

utilizing convective fluid flow for faster heating and cooling.171 In this research we have 

utilized two commercial state of the art thermal cyclers; the SpeedCycler2 (Analytik Jena, 

Germany) and the Philisa thermal cycler (Shreck, New England USA). Both systems can 

perform rapid heating and cooling with heating rates of 15°C/s and cooling rates of 10°C 

/s and 12°C /s respectively. 

ii)   Enzymes  

A variety of enzymes were tested with respect to efficiency and effectiveness in 

the amplification of MP7 STR kit. Many of these enzymes contain antibodies or chemical 

modifications to block amplification prior to initiation of the reaction. These so-called 

hotstart enzymes are useful as they limit the amplification of artifacts that sometimes 



 
 

160

occurs prior to the initiation of fast PCR cycling. However, some required at least 1-5 

minutes at elevated temperatures in order to be activated. Newer hotstart enzymes such as 

the rapid polymerase, P2 utilize antibodies attached to the polymerase that blocks 

amplification. These enzymes required a few seconds to denature the antibody and 

activate the polymerase making them applicable for thermal cycling at high speeds. 

Manufacturers of these polymerases reported amplification times of as little as 10 

minutes, however, these times were achieved with single, small DNA fragments 

averaging 150bp in size.  

  Table 18 summarizes the results from the testing of the rapid polymerases. 

From our initial study we determined that three rapid enzymes produced a peak heights 

above 15 RFUs and peak height ratios greater than 0.6 when amplified under the rapid 

cycling conditions. Note, enzymes were used outside of manufacturers protocol 

guidelines and which in some cases can result in inefficient amplifications. Two enzymes 

gave good initial results under rapid amplification in less than 14 minutes without 

optimization and use of additives. This amplification protocol was determined from 

varying the length of time at each amplification step, starting at 1s until amplification of 

all loci was completed. The electropherograms from the rapid amplifications using 

polymerase-1 (P1) and polymerase-2 (P2) are shown in Figure 61.  
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Figure 61:  Electropherogram showing the comparison of the amplification of DNA standard 
9948 performed in less than 14 minutes. (A) Rapid amplification using P1 (B) amplification 
performed with P2. The number of PCR cycles was held constant at 30 cycles and using 1ng 
DNA template. 

Polymerase 1-98°C 5s, 60°C 5s, 72°C 10s  
30cycles-14min 

Polymerase 2- 98°C 5s, 60°C 5s, 72°C 10s,       
     30cycles-14min 

A 

B 
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Table 18: The summary of the rapid polymerase and direct buffer tests performed under rapid conditions. Cycling conditions were, 
98°C for 5s, 60°C for 10s, 72°C for 10s. A total 30 cycles was completed in 14minutes. 
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 Rapid Polymerase 

  None 
P1 

Polymerase 1 
P2 

Polymerase 2 
P3 

Polymerase 3 
P4 

Polymerase 4 
P5 

Polymerase 5 
P6 

Polymerase 6 
None                             
A                             

B                             
C                             

D               
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 (
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U
) >40 >0.6 
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tr

a 
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s 

P
H

R
 

<25 <0.4 
<10 <0.2 

Not Tested Not Tested 
 

Table 19: P1 vs. P2 amplified using MP7 cycled 30 times at 98°C for 5s, 60°C for 5s, 72°C for 10s with a total 
amplification time of 14mins.  

Polymerase D5S8181 D13S317 D7S820  D16S539 CSF1PO Penta D 

  PHR 
Stutter 
 % 

PH
R 

Stutter 
% 

PH
R 

Stutter 
 % 

PH
R 

Stutter 
% PHR 

Stutter 
% PHR 

Stutter 
% 

P1 0.91 14 na 8 na 8 na 8 0.89 8 0.98 6 

P2 0.79 20 na 14 na 14 na 18 0.74 10 0.98 4 
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Rapid amplification of DNA standard 9948 (Promega Corporation) using the MP7 

kit showed a well-balanced amplification in 14 minutes for the P1 and P2. The 14-minute 

amplification performed with polymerase 2 on average produced peak heights 100% 

higher than with polymerase 1. On the other hand, P1 produced peak height ratios (PHR) 

that were increased at the D5S818 and CSF1PO markers from 0.79 to 0.91 and 0.74 to 

0.89 respectively. The percentage of stutter were also calculated and decreased on 

averaged by 6% using P1. Table 19 summaries the peak height ratio and %stutter 

obtained using the two enzymes amplified in 14 minutes cycled 30 times at 98°C for 5s, 

60°C for 5s, 72°C for 10s. 

The ability of the enzymes to accurately amplify products at such fast rates may 

be partly attributed to the addition of a proofreading or 3’-5’ exonucleases which is not 

present in traditional Taq enzymes. This allows for a higher fidelity polymerase. The 

speed or processivity of these enzymes allow them to incorporate nucleotides as fast as 

100 bases per second. The mechanism that allows the polymerase to bind more rapidly is 

somewhat guarded. However, previous work suggests that the use of small proteins that 

bind with dsDNA help facilitate the rapid delivery of the enzyme to the template.178, 179  

 

iii)   Direct amplification from paper punches  

Direct amplification involves the use of a cellulose-based paper (FTA paper) that 

contains a weak base, chelating reagents, anionic surfactants and uric acid that lyses cells 

and denatures proteins upon contact. The paper punch is directly added to the PCR 

mixture without the need for a prior extraction step. One key issue is the development of 

a specific buffer to solubilize and elute the DNA off of the paper punch while 
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concomitantly supporting amplification. This buffer should also contain components 

capable of binding to and reducing PCR inhibitors. In this research, as much as possible, 

existing chemistry was used to permit implementation and validation in a relatively a 

short time frame.  

One of the first direct PCR methods without extraction was described by Mercier 

et al. in 1990 using whole blood samples.180 Park et al. was able to demonstrate direct 

amplification using AmpFℓSTR® Identifiler® STR kit (Applied Biosystems, Foster City, 

CA) from FTA paper using with a 15 minute elution step and replacement of the kit 

buffer with AnyDirect buffer (BioQuest, Korea) in 2008.181 A few years later, 2011, 

Wang et al. was able to eliminate the need for an elution step prior to amplification using 

AmpFℓSTR® Identifiler® Direct PCR kit in 1 ½ hrs.45 Verheij et al. in 2012 reported a 

direct amplification of the AmpFℓSTR® SGM Plus™ STR kit in 47 minutes using a fast 

thermal cycler and rapid enzyme.182 

 While many of the components used in the formulation of a direct PCR buffer are 

proprietary, the ability to perform direct amplification often depends on the buffer 

composition, pH and salt content. The use of zwitterionic amino acids such as tricine, 

bicine, ACES, CHES, TAPS and HEPES that contain both an acid and base region 

facilitate more physiological ionic strengths and permit improved solubilization of the 

DNA into the buffer.181, 183, 184 The pH of the buffer is adjusted depending on the enzyme 

being used, values between 7.5 and 9 are typical. In addition the use of non-reducing 

carbohydrates such as glycol, polyglycols and polyglycerols and non-reducing sugar 

derivatives such as sorbitol, trehalose and mannitol have been shown to help overcome 
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inhibitors that may be present.185 Other PCR additives such as BSA, polyamines and 

surfactants can help with the efficiency of amplification without purification.56 

The results from a variety of different direct buffers are listed in Table 18. The 

buffers are coded with a letter as they were tested outside the manufacturers suggested 

protocols. Results are reported in terms of peak height and peak balance between loci 

directly amplified from a paper punch.  The initial direct amplification tests were 

performed using the conditions obtained with only the rapid polymerase. This starting 

point was chosen, as it was the fastest possible amplification that was obtained using high 

quality extracted DNA samples without the addition of the direct buffer. The direct buffer 

and rapid polymerase combination that produced amplifications under these conditions 

was then chosen and optimized.  The initial cycling conditions were 98°C for 5s, 60°C 

for 5s, 72°C for 10s a total of 30 times with an overall amplification time of 14 minutes. 

 
Figure 62: Electropherogram showing the comparison of two direct PCR kits performed under 
rapid cycling conditions from an FTA punch. The top panel A shows no amplification using the 
Direct buffer C. Panel B shows partial amplification with three loci dropped out of the MP7 
using the Direct B. Both samples were amplified using polymerase 1. 

 
The rapid polymerase 3 and direct buffer A combinations yielded no results once 

the amplification was sped up from about 40 to 14 minutes. (Figure 63) For this reason 

Direct Buffer C 

Direct Buffer B 

A 

B 

Loci not amplified 

No Amplification 
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these enzymes were rejected for further study. The rapid enzymes that permitted the 

amplification of DNA directly from a FTA punch were polymerase 1 and polymerase 2. 

However, it was observed that the polymerase 1 yielded better amplification especially at 

the larger loci when combined with the direct buffer A. (Figure 63) However, while all 7 

loci were amplified the intra locus peak balance was still poor and a “ski slope” effect 

observed with the larger fragments. To help improve the balance of the larger loci a 

longer extension time (15s) was added to permit more balanced amplification. This 

changed the amplification time from 14 minutes to 16 minutes. 

  

 
Figure 63: Results showing the amplification of MP7 using various rapid polymerases and direct 
buffer combinations. A show the results using rapid polymerase P3 with direct buffer A. Panel B 
shows the results using rapid polymerase P2 with direct buffer A. Panel C shows using rapid 
polymerase P1 and direct buffer A. The amplification was performed at 98°C for 5s, 60°C for 10s, 
72°C for 10s and a total of 30 cycles with a total time of 14minutes. 

 

P3 +Direct Buffer A 
98°C 5s, 60°C 10s, 72°C 10s 
30cycles-14mins 

P2 + Direct Buffer A 
 98°C 5s, 60°C 10s, 72°C 10s 
30cycles-14mins 

 P1 + Direct Buffer A 
 98°C 5s, 60°C 10s, 72°C 10s 
30cycles-14mins 

A 

C 

B 
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iv)   Rapid Direct PCR optimization 

In order to optimize the use of rapid direct (RD-PCR) the following parameters 

were examined to develop robust, reliable results. All parameters were optimized using 

the Z-Taq Polymerase (P1) and AnyDirect F buffer (direct buffer A) using the cycling 

conditions listed in Table 17. Tests were performed to monitor the effect of additional 

quantities of enzyme, Mg2+, dNTPs and BSA. The first parameter examined was the 

Mg2+ ion concentration. Magnesium acts as a co-factor to the Taq polymerase, increasing 

the concentration of Mg2+ improves the processivity of the enzyme.16 However, excess 

levels of Mg2+ can result in a high error rate and increased incorporation of mismatched 

nucleotides resulting in non-specific products. The effects of increased Mg2+ 

concentrations on the rapid and direct amplification of the MP7 STR kit is shown in 

Figure 64. Overall inter locus ratios were calculated between the first and last loci 

(D5S818 and Penta D, respectively). Table 20 shows the results calculated, a value of 1 

represents perfect balance between two alleles. The inter locus ratio remained fairly 

constant at 0.9 with increased Mg2+ concentrations at the both loci with exception at 

12mM Mg2+ where the Penta D locus amplified poorly with an inter locus balance of 

0.67. The peak height for the last allele decreased an average 87± 5% and 96 ± 6% for D5 

and Penta D respectively, at 12mM Mg2+.  A final concentration of 4mM magnesium the 

highest sensitivity and inter/intra locus balance. At this concentration no additional Mg2+ 

needed to be added to the commercial buffer. 
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Figure 64: The electropherograms from the optimization of MgCl2 for RD-PCR using MP-7 in a 
16-minute amplification. Starting from the top, no additional MgCl2 from buffer concentration 
8mM, 12mM and 16mM. After 8mM MgCl2 the effects of unspecific amplification and peak 
balance are observed. The best overall amplification is observed at 4mM [MgCl2]. 

 
Table 20: Rapid-Direct amplification of MP7, Magnesium concentration 
study. MP7 amplifications were performed at 98°C for 5s, 60°C for 10s, 72°C 
for 15s, 30 cycles with a total time of 16minutes. 

Final 
[Mg2+] D5 PHR

D5 Peak Height 
Decrease  

Penta D  
PHR 

Penta D peak  
Height Decrease 

4mM 0.93 -- 0.91 -- 
8mM 0.97 83% 0.89 86% 

12mM 0.94 87% 0.67 96% 
16mM 0.93 88% 0.81 94% 

 

 

A second factor that can affect the PCR is the concentration of dNTPs. dNTPs are 

the source of nucleotides that are used in the extension of bases along the DNA template. 

Excess dNTPs can inhibit the PCR and reduce the effect of the magnesium ions. While 

4mM [MgCl2] 

  8mM [MgCl2] 

12mM [MgCl2] 

16mM [MgCl2] 

A 

B 

C 

D 
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lower concentrations can result in incomplete primer extension and premature 

termination of the PCR process.186 Experiments were performed to examine the effect of 

the additional dNTPs on the rapid and direct amplification. Concentrations ranging from 

0- 300μM extra dNTPs were tested. An addition of 300μM of each dNTP resulted in 150 

± 5% improvement in peak intensity for the largest alleles. These results may indicate 

that during rapid amplification the accessibility of dNTPs may be a limiting step in the 

primer extension especially for larger alleles. 

  
 

 
Figure 65:The effect of additional dNTPs on the amplification of RD-PCR using MP7. The addition 
of 200μM of each dNTP yielded better peak balance of larger size loci.  MP7 amplifications were 
performed at 98°C for 5s, 60°C for 10s, 72°C for 15s, 30 cycles with a total time of 16minutes 

 

No additional dNTPs 

Additional 200μM dNTPs 

Additional 300μM dNTPs 
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Table 21: Rapid-Direct amplification of MP7, dNTPs concentration study. MP7 amplifications were 
performed at 98°C for 5s, 60°C for 10s, 72°C for 15s, 30 cycles with a total time of 16minutes. 

Alleles 
D5 
 A1 

D5 
A2 

D13 
A1 

D13 
A2 

D7 
D16 
A1 

D16 
A2 

CSF1P
O A1 

CSF1P
O A2 

Penta D 

PHR at 
200μM  
[dNTP]  

0.9 0.8 -- 0.99 0.91 -- 

PHR at 
300μM  
[dNTP]  

0.9 0.9 -- 0.99 0.94 -- 

Peak Height 
Increase % 

106 136 233 200 261 205 212 186 185 150 

 

A variety of additives can be used to help improve the efficiency of the PCR 

reactions and reduce the effects of inhibitors. These additives include various detergents, 

buffer salts, denaturants and BSA. Mitigation of the effects of inhibitors is important as 

the sample from the FTA punch may contain a variety of environmental contaminants 

that will be added into the PCR mix without purification. A common additive that is used 

in most PCR reactions is BSA. BSA helps minimize absorption of DNA onto the walls of 

the PCR tube and helps stabilize the enzyme, minimizing the effects of inhibitors such as 

humic acid and hematin.62, 187With this in mind, we examined the effects of the addition 

of BSA from final concentrations of 0.02 to 0.08μg/μL on the rapid and direct PCR 

amplification. As shown in Figure 66, the increase in BSA concentration resulted in a 200 

± 4% and 500 ± 6% increase in peak height at D5S818 and Penta D respectively. (Table 

22)  The inter locus balance was also increased from 0.23 to 0.93 at the largest locus with 

8 times BSA. A final total concentration of 0.08μg/μL BSA yielded the best overall 

amplification. Further addition of BSA did not produce additional improvements in peak 

height most likely due to the fact that elevated levels of BSA can be inhibitory. Table 22 

summarizes the results from the BSA study. 
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Figure 66: Electropherogram showing the effect of the addition of BSA to the amplification of RD-
PCR. The increase of BSA leads to a higher yield and a more balance amplification across all loci. 

 
Table 22: Rapid-Direct amplification of MP7, BSA concentrations study. MP7 
amplifications were performed at 98°C for 5s, 60°C for 10s, 72°C for 15s, 30 
cycles with a total time of 16minutes. 

[BSA] 
Increase Factor 

D5  
PH
R 

D5 Peak 
Height Increase 

Penta D  
PHR 

Penta D Peak Height  
Increase 

0 0.93 -- 0.23 -- 
2 0.91 138% 0.88 165% 
4 0.93 228% 0.7 304% 
8 0.92 232% 0.93 516% 

 

An increase in the concentration of the enzyme can also affect the sensitivity of 

the amplification. High polymerase concentrations can result in easier access of the 

enzyme complex to the template binding regions, improving the processivity of the Taq 

enzyme. However, high levels of enzyme can produce non-specific amplification, while 

No additional BSA 

2 times [BSA] 

4 times [BSA] 

8 times [BSA] 

A 

B 

C 

D 
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low levels may reduce the amplification efficiency.16, 186 Many commercial kits are 

designed to use the smallest amount of polymerase possible to maintain a low cost per 

reaction. During the amplification of MP7 under rapid and direct PCR conditions, it was 

found that 1.25U of polymerase was sufficient and provided a well overall balanced 

amplification. Doubling the polymerase concentration (2.5U) increased overall peak 

height for the reaction, up to 90 ± 4%. However, due to cost concerns a final 

concentration of 1.25U was used for further samples. 

  
 

 
Figure 67: The effect of enzyme concentration on the amplification of MP7 using RD-PCR. The 
sensitivity of the amplification is almost doubled with double the amount of enzyme. 

 

v)   Thermal cycling parameters 

Cycling parameters were also investigated to determine the minimum length of 

time required at each stage in the PCR process that still produced a balanced 

electropherogram across the entire multiplex with acceptable peak heights.  

2.5U Z-Taq Polymerase 

1.25U Z-Taq Polymerase 

40 RFU 

75 RFU 
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The first parameter examined was the denaturing time. It is believed that 

denaturation occurs instantaneously above a certain temperature.175 Thus, an increase in 

time above this minimum should not affect amplification.  Denaturation times from 1 to 

30 seconds were examined. At denaturation times between 1 and 4 seconds, a small 

decrease in amplification peak heights were observed. This decrease was likely due to 

small differences between the temperature of the heating block and the sample itself 

resulting in slightly less enzyme activity. After 5s no increase in peak height or balance 

was observed. A denaturation time of 5s was found to be optimum to maintain rapid 

amplifications times. 

The second parameter examined was the annealing time. During this process the 

primer needs sufficient time to properly bind to the target region. Most of the primers 

within the MP7 multiplex kit are less than 24 bases in length. These are relatively short 

sequences and when designed properly can bind specifically to the target region in less 

than 1 second.175 However, annealing times of less than 5s resulted in non-specific peaks. 

These non-specific peaks associated with shorter annealing times were attributed to non-

specific binding during the primer extension process. When the annealing time was 

increased to 5s, the non-specific peaks disappeared. At 5s annealing, good specificity of 

primer binding occurred while maintaining rapid amplification. 

The most important cycling parameter is the extension time. During this process 

the polymerases must have sufficient time to incorporate all nucleotides necessary to 

fully complete extension of the target region. The smaller amplicons are more quickly 

completed, resulting in a ski slope effect in which large amplicons are progressively less 

well amplified if the time is too short. The processivity of the P1 enzyme is 
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approximately 67 nucleotides per second requiring at minimum of 7.5 seconds to 

complete the extension of a 500bp amplicon. However, due to number of loci in the STR 

kit we anticipated the need for slightly longer extension times due to the nature of the 

reaction and competition of reagents in solution. In order to overcome this issue from 

amplicons that span over a wide size range, the enzyme must have sufficient time to 

complete the full extension of all target regions. Extension times were examined from 5 

to 25 seconds. A minimum time of about 10s was needed for the MP7 multiplex to 

amplify, however, under these conditions, the larger loci such as the CSF1PO and Penta 

D had a 72 ± 4% decrease in peak height when compared to the shorter ones. The most 

optimum extension time for rapid amplification was at 15 seconds. Under these 

conditions both inter and intra loci balance was achieved. 

vi)   Validation and Concordance 

In order to establish the robustness and accuracy of the rapid direct PCR system, a 

validation study was performed on a small population of 18 individuals. Each person 

provided a buccal swab and their DNA was transferred onto FTA paper. The sensitivity, 

effects of reaction volume, effects of inhibitors, effects of degradation and the stability 

were all examined. The rapid and direct PCR using the MP7 STR kit was also tested for 

concordance with the commercial PowerPlex16 HS kit (Promega Corporation). 

1)   Sensitivity 
 

The amount of input DNA template was varied from 0.625ng to 5ng. (Figure 68) 

The peak heights were compared using the smallest size locus (D5S818) and the largest 

sized locus (Penta D) on the microchip system. The peak heights for the rapid and direct 
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amplification using 5ng template DNA were 220 and 143 RFU at the smallest and largest 

amplicons respectively. (Table 23) At 0.625ng input DNA template, the peak heights 

decreased by a factor of six, to 36 ± 4 and 25 ± 1 RFU respectively. At 0.625ng template 

DNA the amplification maintained balance across all loci with a signal to noise ratio of 

300 ± 20. (Figure 69) While the system is well capable of detecting lower levels of DNA, 

it is not typical for single source reference samples to contain less than 0.5ng of DNA. 

 
 

 
Figure 68: Electropherogram showing the results from the sensitivity study. From the top 5ng, 
2.5ng, 1.25ng and 0.625ng input DNA template (Figure 69) respectively. The peak heights of the 
alleles decrease by a factor of 1.5, 2.5 and 6 respectively. 

 
 

5ng DNA Template

2.5ng DNA Template

1.25ng DNA Template

0.625ng DNA Template
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Figure 69:Electropherogram showing a close up of the amplification with 0.625ng DNA template. At 
the smallest size locus, D5S818 the allele has a peak height of 36.09 RFU. At the largest size locus, 
Penta D the alleles has a peak height of 25 RFU. 

 

Table 23:  The results from the RD-MP7 Sensitivity Study showing the allele peak heights at D5S818 
and Penta D along with their decrease factors. Below is the graph of the peak heights versus the 
amount of input template DNA. 

[DNA 
Template] 

D5 PH 
(RFU) 

STDEV 
 

Decrease 
factor 

Penta D PH 
(RFU) 

STDEV Decrease 
factor 

5ng 197.0 ±23.1 NA 137.8 ±7.1 NA 
2.5ng 113.1 ±8.1 1.7 115.2 ±5.8 1.2 

1.25ng 63.7 ±10.1 3.1 60.5 ±2.0 2.3 
0.625ng 36.1 ±4.0 5.5 26.1 ±0.8 5.3 
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2)   Reaction volume 

The reaction volume of the RD-PCR master mix was examined from 12.5μL to 

25μL. It has been reported that the use of higher reaction volumes may help overcome 

inhibition by dilution.188, 189 However, the results from this study showed no differences 

in peak height with the larger 25μL reaction volume or its efficiency in helping to 

overcome inhibition during amplification. Therefore, a final reaction volume of 12.5μL 

was found optimum with added benefits of reduced cost per reaction. 

3)   Effects of inhibitors 

In order to simulate real life samples and effects of inhibitors that may be found in 

buccal swab samples; coffee, 40% alcohol/volume 1919 premium rum 

(Angostura,Trinidad) and  Coca-Cola soda were examined. Subjects who had drunk a 

glass of one of the three substances were buccal swabbed 1 minute later. The samples 

were then transferred to FTA and analyzed using MP7 kit under RD-PCR conditions. The 

results in Figure 70 show the effects of coffee, soda and alcohol on the amplification. The 

Coca-Cola soda did not affect the amplification. However, coffee and the alcohol samples 

produced a 50± 6% decrease in peak heights and a number of non-specific amplification 

peaks. These results may suggest that inhibition of the enzyme is taking place. The exact 

mechanism in which these two substances affect the amplifications needs to be examined 

in future work. 
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Figure 70: The effects of Coffee, Soda and Alcohol on the amplification directly from a FTA punch. 
Coffee and Alcohol shows a decrease in peak heights and increase of non-specific peaks. 

 

4)   Degradation 

The ability of rapid and direct PCR to analyze degraded DNA samples was 

examined by exposing FTA paper containing a buccal swab under an Ultralum UVC-508 

cross-linker for 10 to 300 seconds. After 10s exposure at the highest intensity UV setting, 

the sample could still be genotyped accurately. However, small non-specific fragments 

were seen between 100-130bp. After 30s of exposure, degradation of the amplicons was 

observed with a 30% decrease in peak height. After 300s the alleles were not 

recognizable and non-specific peaks observed.  

 

Coffee

Coca-Cola Soda

40% Rum Alcohol

decrease in peak height 
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Figure 71: The effect of UV radiation at various exposure time intervals from 10s to 300s. A steady 
decay in the sample can be seen starting at the largest size fragments to the smallest sized fragments. 

 

5)   Stability 

We also examined the stability of the sample on the FTA paper over a set period 

of time. The samples were examined at 3 months and 6 months following collection and 

amplified.  Prior to 3 months the sample shows no decrease in peak height and balance. 

Figure 72 shows the results obtained from 3months versus 6 months. At 6 months, a 80± 

4% decrease in peak heights were observed across all loci. The results at 3 months 

showed a similar loss in peak height.  

 

10 seconds

30 seconds

60 seconds

300 seconds
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Figure 72: Stability of samples on FTA paper then directly amplified using the MP7 kit at RD-
PCR conditions. At 3 months samples remain stable with peak heights above 150 RFUs. At 6 
months peak heights decrease average 80%. The peak height ratios remained constant. 

 

6)   Concordance 

A small concordance study of 18 individuals was performed using a comparison 

between the rapid and direct amplification of the MP7 multiplex kit and a traditional 

amplification using PowerPlex 16 HS (Promega Corporation) on the ABI 310 Genetic 

Analyzer. The results are summarized in Table 24. The samples showed a 99.5% 

concordance of total alleles (Table 25). Only one samples had an allele drop out at the 

largest size Penta D locus. This sample showed 80% overall lower peak heights when 

compared to the other samples. This was most likely as a result of an insufficient input of 

DNA template from the swabbing.  The electropherograms from two of the samples used 

in the concordance study are shown in Figure 73 and Figure 74. The reproducibility of 

the system was demonstrated by the use of multiple allelic ladder runs showing precision 

value of approximately 0.08bp across all fragments (Table 26). 

6 months

3 months
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Figure 73: The electropherogram of sample 1 using RD-amplification of the MP7 STR kit (TOP) 
and the PP16HS kit on an ABI 310 Genetic Analyzer (BELOW). 
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Figure 74: The electropherogram of sample 7 using RD-amplification of the MP7 STR kit (TOP) 
and the PP16HS kit on an ABI 310 Genetic Analyzer (BELOW). 
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Table 24: Genotype Concordance of 18 individuals from RD-PCR compared to PP16 HS 

Sample 
No 

D5S818 D13S317 D7S820 D16S539 CSF1PO Penta D 

1 10,11 8,12 12,12 9,11 11,12 9,9 

2 10,13 11,13 11,11 11,13 12,12 12,13 

3 12,12 10,12 10,12 9,12 11,12 12,12 

4 9,11 8,12 11,12 12,12 10,11 11,11 

5 7,11 8,11 11,12 11,12 10,10 9,12 

6 7,10 8,12 11,12 11,12 10,11 9,9 

7 11,13 8,10 10,11 8,12 11,12 12,12 

8 9,11 11,12 8,9 12,13 11,12 10,13 

9 9,11 9,14 11,12 10,12 11,13 9,9 

10 7,1 8,9 11,11 11,12 10,12 11,13 

11 10,13 8,12 8,12 12,13 12,12 12,13 

12 9,11 12,12 10,12 11,11 10,10 10,13 

13 12,12 11,13 9,12 11,11 11,12 10,13 

14 7,11 8,11 11,12 9,10 9,12 12 

15 11,13 9,14 8,10 11,13 10,12 10,12 

16 13,13 11,11 10,13 12,13 12,12 10,11 

17 11,13 12,13 10,11 11,12 12,12 12,14 

18 12,12 11,12 10,12 9,13 10,11 11,12 
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Table 25: Summary of detectable alleles using RD-amplification on microchip 

No. of individuals 18 

Total alleles 216 

No. of alleles present 215 

No. of alleles absent 1 

Allele % observed 99.5% 

 
 
 
 
 
 
 
 
 
Table 26: Allelic Ladder sizing reproducibility 

Loci Allele 
Ladder 
1 

Ladder 
2 

Ladder 
3 

Ladder 
4 

Ladder 
5 

Avg 
value STDEV 

D5          7 115.04 114.96 114.88 115.05 114.82 114.95 0.10
8 119.03 118.96 118.9 119.05 118.84 118.96 0.09
9 123.05 122.98 122.9 123.07 122.88 122.98 0.09

10 127.08 126.99 126.91 127.06 126.86 126.98 0.09
11 131.07 131 130.9 131.07 130.89 130.99 0.09
12 135.1 135.03 134.94 135.1 134.9 135.01 0.09
13 139.15 139.05 138.97 139.14 138.98 139.06 0.09
14 143.14 143.08 142.98 143.15 142.97 143.06 0.09
15 147.13 147.06 146.99 147.15 146.96 147.06 0.08
16 151.18 151.11 151.02 151.17 151 151.10 0.08

D13         7 175.08 175.05 175.02 175.08 175.02 175.05 0.03
8 179.23 179.21 179.14 179.22 179.14 179.19 0.04
9 183.31 183.3 183.24 183.34 183.22 183.28 0.05

10 187.43 187.41 187.37 187.47 187.36 187.41 0.04
11 191.53 191.5 191.48 191.57 191.46 191.51 0.04
12 195.6 195.6 195.56 195.63 195.55 195.59 0.03
13 199.68 199.62 199.61 199.69 199.56 199.63 0.05
14 203.77 203.76 203.7 203.78 203.69 203.74 0.04
15 207.91 207.83 207.82 207.91 207.79 207.85 0.05

D7            6 214.66 214.6 214.5 214.67 214.51 214.59 0.08
7 218.77 218.69 218.68 218.81 218.62 218.71 0.08
8 222.9 222.83 222.74 222.94 222.72 222.83 0.10
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9 227.03 226.96 226.91 227.09 226.89 226.98 0.08
10 231.14 231.09 231.04 231.21 230.99 231.09 0.09
11 235.3 235.23 235.2 235.3 235.13 235.23 0.07
12 239.41 239.35 239.31 239.42 239.27 239.35 0.06
13 243.55 243.52 243.47 243.57 243.46 243.51 0.05
14 247.68 247.64 247.6 247.7 247.59 247.64 0.05

D16        5 261.53 261.47 261.41 261.56 261.46 261.49 0.06
8 273.37 273.37 273.3 273.45 273.37 273.37 0.05
9 277.42 277.41 277.36 277.52 277.39 277.42 0.06

10 281.34 281.27 281.27 281.41 281.33 281.32 0.06
11 285.33 285.27 285.21 285.38 285.27 285.29 0.06
12 289.25 289.22 289.17 289.33 289.17 289.23 0.07
13 293.13 293.14 293.16 293.26 293.09 293.16 0.06
14 297.11 297.02 297.05 297.17 297.04 297.08 0.06
15 301.04 300.99 300.99 301.12 300.98 301.02 0.06

CSF         6 322.26 322.19 322.26 322.3 322.28 322.26 0.04
7 326.42 326.38 326.31 326.48 326.46 326.41 0.07
8 330.64 330.54 330.51 330.68 330.65 330.60 0.07
9 334.73 334.75 334.67 334.84 334.76 334.75 0.06

10 338.95 338.88 338.82 338.97 338.91 338.91 0.06
11 343.09 343.02 342.99 343.07 343.04 343.04 0.04
12 347.17 347.11 347.12 347.25 347.17 347.16 0.06
13 351.36 351.27 351.21 351.33 351.19 351.27 0.07
14 355.41 355.39 355.3 355.46 355.36 355.38 0.06
15 359.43 359.46 359.35 359.53 359.44 359.44 0.06

Penta D  
2.2 376.9 376.83 376.89 376.94 376.89 376.89 0.04

3.2 382.09 382.09 382.07 382.18 382.06 382.10 0.05
5 390.14 390.22 390.2 390.39 390.22 390.23 0.09
7 400.26 400.39 400.39 400.4 400.33 400.35 0.06
8 405.57 405.52 405.58 405.76 405.59 405.60 0.09
9 410.5 410.51 410.48 410.63 410.6 410.54 0.07

10 415.55 415.67 415.57 415.72 415.67 415.64 0.07
11 420.46 420.53 420.54 420.66 420.57 420.55 0.07
12 425.48 425.48 425.65 425.61 425.56 425.56 0.08
13 430.76 430.82 430.85 430.96 430.83 430.84 0.07
14 436 435.9 436.08 436.09 436.02 436.02 0.08
15 441.14 441.13 441.31 441.32 441.25 441.23 0.09
16 446.12 446.15 446.23 446.31 446.3 446.22 0.09
17 451.35 451.45 451.53 451.51 451.52 451.47 0.07
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d)   Conclusions 

The development of a rapid and direct PCR amplification was achieved by use of 

the combination and optimization of, a high-speed thermal cycler, a rapid polymerase, 

and a direct buffer. A number of enzymes and direct buffer were examined outside of 

manufacturers’ protocols to permit short cycling times. The rapid polymerase, Z-Taq 

combined with the direct buffer, AnyDirect F buffer, showed the best balanced 

electropherogram and was optimized for use with the MP7 multiplex kit. The rapid and 

direct system was capable of performing amplification of the 7 STR loci (MP7) directly 

from a paper punch without an extraction in 16 minutes.  

The system was then validated using a small population of 18 individuals. The 

sensitivity of the system was capable of amplifying a full STR profile with 0.625ng or 

lower input DNA template. The rapid and direct amplification coupled with the 

microfluidic separation demonstrated a robust, reliable genotyping with a 99.5% accuracy 

of alleles called. The entire process is rapid and reliable, reducing the time from sample 

to genotype from 1-2 days to under 20 minutes.  

 

 
 
 



 
 

187

CHAPTER XI: CONCLUSIONS 
 
 

The overall goal of this project was to develop an ultra-fast and direct PCR 

amplification of a subset of CODIS STR markers for forensic genotyping. The system 

developed was able to quickly identify persons of interest and could easily be deployed to 

remote locations for rapid in-field analysis. In this project, several new pentameric and 

tetrameric STR multiplexes were prepared and adapted for use with a short channel 

microfluidic instrument. To further improve the speed of analysis, a number of direct 

PCR procedures were identified, adapted and optimized for use with ultra-high speed 

thermal cycling. The overall result was an analytical procedure capable of producing a 

forensic genotype in under 20 minutes. 

Prior to this work, short channel microfluidic devices were not capable of 

producing sufficient resolution to permit the analysis of STR markers of forensic interest. 

To overcome this problem a set of 3 pentameric STRs were designed with small 

amplicon sizes to permit optimal resolution. These loci also had a larger size repeat unit 

than the more common 4 base STRs and in addition had fewer microvariants and reduced 

stutter. To further improve resolution a denaturing sieving matrix was applied to the 

microfluidic device resulting in a 70% increase in resolution from the traditional native 

separation, permitting baseline separation of all loci even when using channel lengths as 

short as 1.5 cm. 

The denaturing sieving matrix consisted of a combination of HEC and PVP linear 

polymers in a TAPS buffer. It was determined that an optimal polymer composition of 

3.5-4% w/v and with a ratio of 80-85% HEC relative to PVP was optimal for the glass 
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microchip system. Higher molecular weight polymers further improved the resolution, 

but increased viscosity to an unacceptable level, causing loading issues with the chip due 

to excessive backpressure. The optimal viscosity that could be reliably loaded was 

approximately 300cP using a 3.5% w/v mixture of 80% HEC/PVP. An electric field 

strength of 350V/cm provided fast separations with minimal joule heating effects and 

peak broadening. 

The addition of an enhanced denaturing sieving matrix for ssDNA separation 

coupled with the addition of a second detection channel permitted the use of an internal 

size standard which resulted in a sizing precision better than ± 0.2bp across a 450bp size 

range in under 80 seconds. A subset of CODIS STR markers (MP7) was developed for 

use with this system that provided discrimination powers of greater than 1 x106 and was 

capable of fully resolving all alleles. Run times were under 80 seconds for a 7 loci STR 

multiplex. 

The development of a rapid and direct amplification using the MP7 multiplex kit 

was achieved by combining a rapid polymerase (Z-Taq), with AnyDirect Buffer F and a 

high-speed thermal cycler that permitted rapid and reliable results. This system reduces 

the time from sample to genotype from 1-2 days to under 20 minutes. Operation requires 

minimal equipment and can be easily performed with a small high-speed thermal cycler, 

reagents, and a microfluidic device with a laptop. The system was optimized and 

validated using a number of test parameters and a small test population. The overall 

precision was better than 0.17 bp. 
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The overall system reduced the time from sample to genotype from 1-2 days to 

less than 20 minutes. The small footprint of the system allows for easily deployment at 

places such as police stations or boarder crossings and permits the rapid identification. 
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CHAPTER XII:  FUTURE WORK 
 

Future work involved with this project may include a more detailed validation and 

quality assurance study on a variety of forensic samples including, low copy number and 

mixtures. This would help characterize the robustness of the method as well as address 

issues commonly encountered with the quality of forensic evidence. Further expansion 

may also be done to develop several STR multiplex kits to permit the analysis of all 13 

CODIS loci. This would help increase the power of discrimination and its usefulness in 

the courtroom. Alternatively, the development of multicolor microfluidic systems that 

have more than two channels may also permit larger multiplex sizes and increase the 

number of STRs that could be analyzed simultaneously. 

An investigation into the kinetics of the rapid polymerases and interactions with 

the chemicals directly involved with permitting the direct amplification may also be 

further characterized. The use of a rapid-direct PCR combined with fast separations can 

also be applicable to other scientific fields such as, the detection of diseases for medical 

purposes, to track animals, food contamination concerns and environmental applications.  
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APPENDICES 
 
Appendix 1 
 
Stock Solutions 
 
0.5M EDTA, 500 mL: 93.05 g Ethylenediaminetetraacetic acid di-sodium salt dehydrate 
to 400 mL ddH2). Adjust pH to 8.0 with 10N NaOH. Adjust final volume to 500 mL. 
 
20% SDS, 500 mL: Dissolve 100 g sodium dodecyl sulfate in 400 mL ddH2O. Heat 
solution to dissolve SDS completely. Adjust final volume to 500 mL. 
 
 
1M Tris-HCl, pH 8.0, 500 mL: 60.55 g Trizma base in 400 mL ddH2O.  Adjust pH to 8.0 
with HCl.  Adjust final volume to 500 mL. 
 
10 N NaOH, 100 mL. 40 g NaOH to 70 mL ddH2O. Adjust final volume to 100 mL. 
Store in plastic bottle. 
 
Buffers: 
 
TE (10mMTris-HCl/ 0.5 mM EDTA, pH 8.0), 500 mL: Add 5 mL of 1 M Tris-HCl and 
100 uL of 0.5 M EDTA to 395 mL ddH2O. Autoclave. 
 
310 Buffer 10X (1M TAPS, 20 mM EDTA pH 8.0), 100 mL: Add 24.33 g TAPS and 4 
mL 0.5M EDTA to 70 mL ddH2O. Adjust pH to 8.0 with 10N NaOH.  Adjust final 
volume to 100 mL. 
 
Hair Extraction Buffer (HEB) (10mM Tris HCl, pH 8.0, 100 mM NaCl, 5 mM CaCl2, 2% 
SDS, 39 mM dithiolthreitol (DTT)), 500 mL: 5 mL Tris HCl, 50 mL 20% SDS, 2.922 g 
NaCl, 0.2775 g CaCl2 to 350 mL ddH2O.  Adjust final volume to 500 mL. Add 6 mg/mL 
DTT when ready to use. Keeps for 2 weeks in the fridge after DTT is added. 
 
Differential Lysis Buffer (DEB) (100 mM NaCl, 10 mM EDTA, 0.4% SDS), 500 mL: 
2.92 g NaCl, 10 mL 0.5 M EDTA, 10 mL 20% SDS. Adjust final volume to 500 mL with 
ddH2O. 
 
Stain Extraction Buffer (SEB) (10 mM Tris, 100 mM NaCl, 10 mM EDTA, 2% SDS, 38 
mM DTT), 500 mL: Dissolve 2.92 g NaCL in 250 mL ddH2O. Add 5 mL 1M Tris, 10 mL 
0.5 M EDTA, 50 mL SDS.  Titrate to pH 8.0 with HCl. Adjust final volume to 500 mL 
with ddH2O.  Add 6 mg/mL DTT when ready to use. Keeps for 2 weeks in fridge after 
DTT is added. 
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Appendix 2  
Protocol: 

Buccal Swab Extraction 
 

I. Purpose 
To extract and purify human DNA from buccal swab samples. 
 
II. Safety 
All laboratory safety procedures will be complied with during this procedure.   
 
III. Reagents, Supplies, and Equipment 
Reagents 
PCR ddH2O 
Stain Extraction Buffer 
Dithiothreitol 
Proteinase K (600U) 
Phenol/Chloroform/Isoamyl Alcohol (25:24:1) (PCIA) 
5% Bleach solution 
ddH2O 

 
Supplies 
Wire cutters 
Weighing papers or boats. 
100-1000 µL pipettor 
10-1000 µL barrier pipet tips 
10-100 µL pipettor 
10-100 µL pipet tips 
0.5-10 µL pipettor 
10 µL pipet tips 
2 mL spin basket compatable tubes and spin baskets 
Microcon YM-30 spin columns  
15 mL capped conical bottom tubes 
gloves 
Kimwipes 
 
Equipment 
Temperature-controlled water bath set at 56ºC 
Sample tube holder 
Microcentrifuge 
Analytical balance 
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IV.       General 
 

1. Procedure will be used for extracting and purifying human DNA from 
buccal swab samples. 

2. Procedure will be used as necessary for research. 
3. Gloves should be worn at all times. 

 
IV. Procedure 
 

1. Preparation of samples 
 

a. Use the wire cutters to cut the end of a buccal swab. 
b. Place the cut swab in the bottom of a 2 mL tube. 
c. Rinse wire cutter blades with ddH2O, bleach, and again with ddH2O 
between samples. Use a new weighing paper for each sample. 

 
2. Preparation of stain extraction buffer (SEB). 

a. Weigh out 6 mg of Dithiolthreitol (DTT) per mL of SEB to be used. 
b. Add DTT to filtered SEB in 15 mL tube, and mix. May be stored up to 

two weeks in the refrigerator. 
 
           3.  Add 300µL of  SEB to each swab sample and to one reagent blank. 
           4.  Add 2 µL of Proteinase K to each sample and to the reagent blank. 
           5.  Make sure caps are secure, and spin tubes down to ensure swab is covered by               
the SEB solution.  
           6. Place tubes in tube holder, and place tube holder across water bath well so that       
the bottom of the tubes is covered by the water in the water bath. 

 7. Incubate samples at 56ºC for 2-4 hours. 
          8. Remove tubes from holder, wipe dry with Kimwipes, and spin down in 
microcentrifuge. 
          9. Remove swab sample from tube and place in spin basket. Place spin basket back 
in tube, cap, and spin in microcentrifuge for 1 minute at 5000 rpm. 

10. Remove spin basket from tube and throw away. 
11.  Add 300 µL PCIA to each sample. Mix and spin at 5000 rpm from 3 minutes. 
12.  Assemble Microcon filters by placing filter cup, blue side up, into 2 mL tubes.         
Label with sample name/number. 
13. Remove aqueous (top layer) from sample tube with 100 µL pipettor and tips. 
Transfer to filter cup of Microcon (2-3 transfers).  Make sure not to remove any of 
the organic layers. 
14. Cap tubes and spin at 13000 rpm for 12 minutes. 
15. Dispose of filtrate. Add 200 µL PCR H2O to filter cup, cap tubes, and spin at 
13000 rpm for 12 minutes. 
16. Prepare collection tubes by removing caps and labeling with sample 
name/number. 
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17. Add 60 µL PCR H2O directly to filter cup, and invert cup into collection tube. 
Allow to sit for 3-5 minutes, and spin at 5000 rpm for 2 minutes. 
18. Remove filter cup and discard. Cap tubes at store at 4ºC overnight before 
quantification. 
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Appendix 3 
Chelex DNA Isolation 

 
You will be isolating DNA from cheek cells scraped from the inside of your mouth. The 
Chelex extraction method will be used to isolate the DNA from your cells.   
 
I.  PRINCIPLE 
 

Chelex® 100 or InstaGene®  (BioRad, Hercules, CA) is a chelating resin that binds 
cations, removing them from the solution. The Chelex resin is composed of styrene 
divinylbenzene copolymers containing paired iminodiacetate ions that act as chelating 
groups. Chelex, during boiling, prevents the degradation of DNA by chelating metal 
ions that may otherwise catalyze the breakdown of DNA subjected to high 
temperatures in low ionic strength solutions. The basic procedure consists of a wash 
to remove some of the contaminants (e.g., heme and proteins) followed by boiling the 
sample in a 5% Chelex solution.  A fraction of the supernatant is added to the PCR 
reaction. This extraction produces single stranded DNA and is most applicable to 
downstream PCR applications. 

 
II. General Safety Requirements 

 
1. Always wear lab coat and gloves. 
2. Do not pipette by mouth. 
3.  All appropriate MSDS sheets must be read prior to performing this procedure. 
4. Treat all biological specimens as potentially infectious. Follow Universal 
Precautions. 
5.  Avoid direct exposure to ultraviolet light when using the germicidal lamp in 
the biological hood or the transilluminator. 
6.  The heat plate can become very hot.  Be careful not to touch the heating 
surfaces while in operation. 
7.  Use proper protective equipment to prevent burns when handling boiling water 
or hot solutions. 
8.  Distinguish all waste as general, biohazard, or Sharps and discard 

appropriately. 
 
III.  SPECIMEN 

Any biological sample believed to contain nucleated cells. The extraction can be 
prepared from oral swabs, filter paper or gauze.  
 

IV. ESSENTIALS 
(A) Reagents 

Bleach, 5% (sodium hypochlorite solution) 
Centricon-100 microconcentrator or Microcon-100 microconcentrator 
Chelex® 100, or InstaGene 5% or 20% suspension, (Bio-Rad) 
Forceps, disposable 
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Milli-Q Type I water 
Scalpel, disposable  
Tris-EDTA (TE) buffer, (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA) 
PBS 
Weigh boats 
 

(B) Supplies 
Tips, aerosol-resistant (e.g., for P-10, P-100, P-1000 pipettes) 
Microfuge Tubes, (1.7 ml, or 1.5 ml) 

 
(C) Equipment 

Heat block or boiling water bath 
Eppendorf Thermomixer 
Boiling Water Bath 
Freezer, -20oC 
Dry Block Incubators (37oC, 56oC) 
Magnetic Stir bars  
Magnetic Stirring Plate 
Microcentrifuge (e.g., Eppendorf) 
Microcon 100 Concentrators 
Refrigerator, 4oC  
Vortex 
 
 

 (D) Extras 
        Ice 

Kimwipes 
Waste containers for dry and wet waste 
Sharps Container 
NOTE: For sperm samples, will also need Proteinase K (20 mg/ml) and 
1.0 M DTT, and SPIN-EZE tubes with baskets 

  
IV.  FRESH REAGENT PREPARATION 
 

1.  Prepare a 5% and 20% suspensions of Chelex® 100 must be made fresh weekly 
using Milli-Q water.   
2.  pH the suspension daily before use.  The pH must be between 9.0 -10.0.  Do 
not attempt to adjust the pH. 

 
 
 
V.  QUALITY ASSURANCE 
 

1.  In order to prevent contamination, all steps in this procedure should be 
conducted in the proper laboratory hoods when appropriate. 
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2.  Any laboratory workspace and all pipettes and racks to be used in this procedure 
must be cleaned with 5% bleach and thoroughly dried before beginning.  When 
using a laminar flow hood, turn on the ultraviolet light for a minimum of 10 
minutes after cleaning. 
 
3.  Before use, forceps, scissors, etc., must be cleaned with 5% bleach, rinsed in 
ethanol, and dried thoroughly.  In addition, they should be cleaned in the same 
manner following the processing of each individual specimen (when used). 
 
4.  No reagents or supplies used for the extraction of DNA from specimens will be 
allowed in a post-amplification room. 
 
5.  Any equipment taken from a post-amplification room to a pre-amplification 
room must be sterilized with 10% bleach immediately before removal from the 
post- amplification room and immediately upon arrival in the pre-amplification 
room.  Reagents should never be transferred from a post-amplification room to a 
pre-amplification room. 
 
6.  Only one evidence specimen will be open at any one time.   
 
7.  Change pipette tips between each transfer or addition of sample or reagent, 
unless otherwise noted. 
 
8.  No aliquot of any reagent may be returned to the original stock container. 
 
9. A minimum of one reagent blank must be carried throughout the extraction 
procedure and assayed in parallel with the evidence samples. 
 
 

NOTE:  An Extraction Reagent Blank Control must be initiated for each set of 
extraction tubes.  The volume of reagent blank amplified must be no less than the 
volume of evidentiary sample extracted.  This control will regulate for the 
presence of contamination in the extraction reagents.  The reagent blank should be 
the first tube setup during purification.  The extraction reagent blank must be 
carried through the remaining analyses. 

 
VI:  PROCEDURE: EXTRACTION OF DNA FROM BUCCAL SWABS (CHEEK 
CELLS) 
 
1. Wipe down work area with 5% bleach. Use gloves and aerosol pipette tips to 

minimize contamination.  Change or clean gloves and instruments between each 
sample. 
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2. When pipetting Chelex solutions, the resin beads must be distributed evenly in 
solution.  This can be done by gentle mixing with a stir bar or mixing well before 
using.  Use a pipette tip with a large bore (P-1000 µl). 

 
NOTE: DNA extracted with Chelex is single-stranded and should be quantified by slot 

blot or real time PCR since it is unsuitable for quantitation methods that use 
ethidium bromide.  

 
3.   Dissect swab in the weigh boat, cut into small pieces (approx 1/3) and place in a 

labeled tube. 
 
4.   Add 200 μl or more of 5% Chelex to submerge the entire substrate.  
 
5.   Incubate at 56oC for 30 minutes in heat block or Thermomixer. 
 
6.   Vortex for 5-10 seconds. 
 
7.  Incubate in a boiling water bath or Thermomixer for 8 minutes.  
 
8.      Vortex for 5-10 seconds. 
 
9.       Spin for 3 minutes at maximum speed.    
 
OPTION:  If FURTHER DNA purification is needed, extracts may be concentrated using 
Concentration of DNA with Microcon-100 and Centricon-100 protocol per manufacturer. 
 
Store at 2-8o C for short-term storage.  Freeze at -20o C (or colder) for long-term storage.  
To use after long-term storage on Chelex beads, repeat steps 4 through 7. 
 
This protocol was adapted from: the manufacturer’s protocol and DNA Typing Protocols: Molecular 
Biology and Forensic Analysis, Biotechniques Books. 
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Appendix 4  

 

Real time quantification using Alu primers 
 

I. PURPOSE 
To quantify human DNA using Real Time PCR, Alu primers, and SYBR 
Green I dye. 

 
II. SAFETY 

All laboratory safety procedures will be complied with during this procedure.  
SYBR Green Dye is a mutagen/carcinogen.  Appropriate handling procedures 
should be followed. 

 
III. ESSENTIALS 

 
(A) Reagents 
 SYBR Green I dye 
 DMSO 
 PCR ddH2O 
 10* ABI Buffer I 
 MgCl2 (25 mM) 
 dNTPs (2.5 mM) 
 Amplitaq Gold or RampTaq hot start Taq polymerase (5U/µL) 
 Triton X100 (10% solution) 
 Nonacetylated BSA (20 mg/mL) 
 Alu primers, AluF and AluR82 (or AluR124) (100 pmol/µL) 
9947A 10 ng/uL DNA standard 

 
 
(B) Supplies 
 0.2 mL flat cap PCR tubes 
 2 mL flat cap microcentrifuge tubes 
 10 μL pipet tips 
 20 μL pipet tips 
 gloves 
 white paper 

 
( C) Equipment 
 0.2 –2 μL pipettor 
 0.5 – 10 μL pipettor 
 10-100 uL pipettor 
 Corbett Rotor Gene 3000 Real Time PCR instrument, 36 sample rotor 
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IV. GENERAL 

 
1. Procedure will be used for quantifying extracted human genomic DNA 

samples. 
2. Procedure will be used as necessary for research 
3. Gloves should be worn at all times 

 
 

V. PROCEDURE 
 

1.  Preparation of 0.5 % working solution of SYBR Green I (Molecular Probes, 
Eugene, OR) 

a. Take 1 µL of 10,000X concentrated Sybr Green I and add 199 µL of 
DMSO. Prepare aliquots for future use. 

 
3. Prepare DNA standards or use standards from Quantiblot kit. 

a.  Use 9947A DNA standard, dilute to 1, 0.5 and 0.1 ng/μL 
 
4. Prepare DNA samples to be quantified: spin down before opening tubes. 
 
5. Prepare flat-top tubes, label them on the cap. Label two sets of standards and 1 

NTC (no template control). 
 
6. Prepare and vortex Alu Mix for 36 samples: 

a. For 36 samples: Mix 528.0 µL PCR H2O, 84.0 µL 10* ABI Buffer I, 
67.0 µL dNTPs, 50.0 µL MgCl2, 8.4 µL Taq polymerase, 8.4 µL Alu 
Primer 1F(forward), 8.4 µL Alu Primer 124R (large) or 82R (small) 
(reverse), 8.4 µL TritonX 10%, 8.4 µL SYBR green solution, 8.4 µL 
BSA in 2 mL tube. 

b. Spin down before opening tube. 
 
7. Pipette 19 µL of Alu Mix into labeled PCR microtubes. 

 
8. Add DNA 

a. Add 1 µL DNA sample to each properly labeled tube; add 1µl of each 
diluted standard to marked tubes.  

b. Add 1 μL ddH2O to NTC tube.  
c. Vortex and mix.  
d. Remove bubbles and spin down. 

 
9. Turn on PC and turn on the Rotor Gene instrument 

a. Clean accessible optics with cotton Q-tip and ethanol. 
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b. Place tubes on the appropriate wells of the carousel and place ring on 
top. Align carousel in the chamber. Screw in the cap with the red dot 
on top. Close cover.  

 
10. Open RotorGene program. 

 
11. Select SYBR Green (I) and click on New. 
 
12. Select 36 well rotor, click on “No domed tubes” box, and click Next. 
 
13. Type name in Operator field, and any notes in Notes field. Select 20 uL 

volume and click Next. 
 
14. Make sure FAM/Sybr is highlighted and click Next. 
 
15. Click Start Run. 
 
16. Save As window will pop up. Name file as DateNameProject 

(e.g.061906KerryTest). Click Save and instrument will start. 
 
17. Sample window will appear shortly. Label standards, NTC, and samples under 

Name, and then under Type (select Standard, NTC, or Unknown from pull 
down menu). For standards, enter known concentration and scale (e.g. ng/uL).  
Change color boxes on far left, if desired. Click Finish. 

 
18. When experiment is completed, click Analysis-Quantitation-Show.  New 

windows will appear and a box in the middle – click Cancel. 
 
19. Fill: 

    Slope Correct   ON 
   Eliminate cycles before  5  
   Threshold    default (0.03) 
   When the box comes up, click OK. 
 

20. The standard curve, fluorescence threshold cycle (Ct) and concentrations of 
samples will be calculated. The standard curve should have an efficiency and 
r value close to 1.00. You can choose to exclude those standard samples that 
cause give errors.   

 
21. Click “reports” in the upper left of the Quantitation window – Full Report - 

Send to Word and save or print. 
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Appendix 5  
 

Gel Analysis of PCR Products 
 
I. PRINCIPLE 

 
To visually determine if the genomic DNA extraction or PCR reactions have 
yielded any DNA/product. An agarose gel separates DNA by size, the higher the 
molecular weight the slower the DNA moves through the pores of the gel; 
therefore the smaller molecular weight DNA will travel through the gel faster 
compared to high molecular weight DNA. Ethidium bromide is an intercalating 
dye that has a minimum detection limit of 1-5ng/band. 

 
II.  GENERAL SAFETY REQUIREMENTS 

 
1.  Always wear lab coat and gloves. 
2.  Do not mouth pipette. 
3.  Ethidium bromide is a potential mutagen. 
4.  UV light is carcinogenic: ALWAYS WEAR FACE SHIELD, GLOVES AND 
LAB COAT to protect your eyes and skin.  

 
III. ESSENTIALS 

 
(A)  Reagents 

Agarose (e.g., Seakem®, cat no. 50000) 
Double distilled water or UV treated ddI water 
6X gel loading dye (Promega, cat. no. G190A, lot no. 13687907) 
1kb ladder (Promega, cat. no. G171A, lot no. 14297901) 
100bp ladder (Promega, cat. no. G2101, lot no. 191437) 
Ethidium bromide (Fisher, BP1302-10) 
TBE (Tris, borate, EDTA) buffer (Fisher, BP1333-1) 
  

(B) Supplies 
Pipettes and tips (20μl, 200μl, 1000μl)  
Erlenmeyer flask 
Ziploc Container 
Weighing boat 

 
( C) Equipment 

Microwave (Ewave) 
Agarose gel running equipment (Fisher, FBSB-2318) 
Transilluminator (Fisher BioTech, model FBTIV-614) 
Digital camera (Kodak, EDAS 290) 
Scale  
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(D) Extras 
Digital camera & software  

 
 

IV: PROCEDURES 
 

1.  Preparation of work bench and supplies 
 

1.1 Remove used bench cover 
1.2 Wipe down all horizontal surfaces with 5% bleach 
1.3 Wipe down all horizontal surfaces with double distilled water 
1.4 Cover all surfaces with a clean bench cover 

 
2.  Reagent preparation 

2.1 Make 10X TBE buffer 

a.  Weigh out:   

108g Tris base 

        55g Boric acid 

        9.3g EDTA 

Add to 800 ml of double distilled water; mix and adjust to 1 liter with 
double distilled water  

3. Agarose 
 

3.1      Put weighing boat on scales and press zero button 

3.2      Weigh out agarose as appropriate for detection level 

3.2.1 Use 1% gels  for high molecular weight after extraction 
procedure (detects 0.5-10kb); use 1.5% gels for lower molecular 
weight DNA after PCR procedure (detects 0.2-3kb) 

 
3.3     Measure 100 ml of 1X TBE buffer. 

3.4 Combine the 1X TBE with the agarose in an Erlenmeyer flask and 
gently swirl to mix. 

3.5 Place the flask in the microwave and heat for a minute on high. 
 
 NOTE: make sure the agarose has dissolved. Additional heating 

may be required but caution should be taken that the solution does 
not bubble over and produces steam that can burn. 

 
3.6 The solution should be left to cool until it reaches 50-60oC; this 

normally takes about 15-30 min depending on the volume of gel 
mix. 
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NOTE: the solution must not be cooled so long that is solidifies, to prevent this 
the solution can be kept in a water bath that is set to 50-60oC 

3.7 The gel apparatus must be set up with a comb that will allow wells 
of appropriate size for the volume of liquid to be loaded.  

 Note: refer to manufacturer’s instructions 
3.8 When the solution is cool to touch the outside of the flask, the solution 

should be poured into the mold. 
 NOTE: the solution should be poured until it covers the bottom of 

the mold and comes about a third of the way up the comb. 
 
3.9 The gel should be left for approximately 30 min-1 hour to cool and 

solidify. 

3.10  Once solid the gel to be transferred to a gel running apparatus. 
 
3.11 The apparatus should be filled with 1X TBE until it covers the gel 

and there is roughly 1mm of solution above the gel. 
 
3.12 The samples should be prepared by combining 5μl of sample to 3μl 

of 6X dye solution. 
 
3.13 The gel should then be loaded with 8μl of each sample in a 

separate well. 
 
3.14 The ladder should be prepared and loaded in the same way except 

only use 1-2 µl of ladder. A 1 kb ladder should be used for high 
molecular weight DNA and a 100bp ladder should be used with 
lower molecular weight DNA.  

 
3.15 A positive and negative lead should then be attached to the gel box 

and to a power supply. 
 NOTE: the black (negative) lead should be located closest to the 

wells; the red (positive) lead should be located furthest from the 
wells. 

 
3.16 The gel should then be run at 5.0 V per cm (measure distance from 

anode  to cathode poles) or until the 1st color of the dye reaches 
near the end of the gel. This can be run at 5V/cm (gel size from 
pole to pole = 43 cm, means the gel can be run at 215V). 

 
4. Detection of DNA (if bands are faint or not visible) 
 

4.1 A container should be filled with 200 ml double distilled water and 
20μl of ethidium bromide should be added.  

 



 
 

221

4.2 The gel should then be carefully lowered into the container. 
 NOTE: do not splash the water, as ethidium bromide is a 

potential mutagen 
 
4.3 The container can be left on a rocker for at least 30 min.  
 
4.4 The gelis then be placed in another container with water only for 

10 min to remove the residual ethidium that has not intercalated 
into the DNA. 

 
4.5 The gel should  then be placed on a transilluminator (302nm). 
 
4.6 A hood should be placed over the transilluminator and a digital 

image should then be taken of the gel. 
 
4.7 The gel can then be visualized on a computer program such as 

Kodak ID 3.6. 
 
4.8 The bands on the gel can be compared to the known molecular 

weight bands of the ladder and a determination of size can be 
made. 
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Appendix 6 
STR AMPLIFCATION 

 
I.  PURPOSE: To generate Human (Miniplex) STR profiles  
 
II.  SAFETY:  All laboratory safety procedures will be complied with during this 
procedure.   
 
III. ESSENTIALS 

 
(A) Reagents 

PCR ddH2O 
Miniplex master mix consisting of:  
10* ABI Buffer I 
dNTPmix (2.5 mM each) 
Amplitaq Gold Taq polymerase (5U/µL) 
Nonacetylated BSA (20 mg/mL) 
Miniplex primers:  
BigMini: TH01, CSF1PO, TPOX ,FGA, D21S11, D7S820 
(100 pmol/µL) 

        9947A DNA standard, 0.25 ng/µL  
 
(B) Supplies 

0.2 mL PCR tubes 
0.2 mL domed caps 
0.6 mL flat cap microcentrifuge tubes 
20 µL pipet tips 
10-100 µL pipet tips 
10-100 µL pipet tips 
gloves 
bench paper 

 
( C) Equipment 

0.2-2 µL pipettor 
0.5-10 µL pipettor 
10-100 µL pipettor 
PCR 9700 Thermal cycler 
Flat tray (red) 

 
IV.       GENERAL 

1. Procedure will be used for DNA typing using the Miniplex STR kits 
2. Procedure will be used as necessary for research 
3. Gloves should be worn at all times 
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V:  PROCEDURE 
 

1. Preparation of reaction mix 
 

a. Mix 200 µL dNTP mix, 250 µL 10* Buffer, and 50 µL ddH2O for 500 
µL reaction mix. Vortex and spin down. 

 
2. Prepare primers for individual loci. 

a. Use 5 µL of reverse primers and 5 µL of forward primers for 50 µL of 
mix. Dilute to 50 µL with ddH2O. 

b. Mix each loci separately. 
 
3.  Prepare primer mix for number of samples required plus extra for pipetting 
error (1   extra per 10 samples, depending on number of samples). 

c. 0.4 μL each of THO1 and CSF1PO per sample 
d. 0.5 μL TPOX per sample 
e. 0.6 μL each of FGA and D21S11 per sample 
f. 0.8 μL of D7S820 per sample 

 
4. Add 5 µL per sample of reaction mix to primer mix. 

 
5. Add 1 µL per sample of 1: 20 dilution non-acetylated BSA to primer mix. 

 
6. Add 0.4 µL per sample of Taq. 

 
7. Prepare 0.2 µL tubes in strips for ladders to be amplified. Prepare 1 reagent 

blank and 1 positive control (0.250 ng/μL 9947A). 
 

8. Pipette 9.7 μL of primer mix into tubes for each sample. 
 

9. Add ddH2O to each sample to make a final volume of 24 µL (1 µl will be the 
DNA you add for a final volume of 25 µl. 

 
10. Cap tubes, flick to remove bubbles and mix, and spin down. 

 
11. Place tubes in flat red tray and place tray in Thermal cycler. 

 
12. Go to User (example: kerry). 

 
13. Select program mini (or mini 33). 

 
a. Program is: 95° C for 10 minutes warm up; cycle 94° C for 1 minute, 

55° C for 1 minute, 72° C for 1 minute; 60° C for 45 minutes; 25° C for 
1 minute. Use 33 cycles.  
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14. Press “Run” 
 

15. Use 25 for reaction volume 
 

16. Press “Start” 
 

17. After run has ended, remove tubes from thermal cycler. 
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Appendix 7 
ABI 310 GENETIC ANALYZER 

 
I.  PURPOSE: Operation of the ABI 310 Genetic analyzer. 
 
To document the procedures used to prepare and operate the ABI PRISM 310 Genetic 
Analyzer for the purposes of sequencing or fragment analysis. The objective of this 
procedure is to successfully complete sample analyses.  
 
II. SAFETY 
 
All laboratory safety procedures will be complied with during this procedure.  

1. Always wear gloves 
2. Wear eye protection when handling polymer (POP-4 or POP-6) close to 

eyes  
 
III. ESSENTIALS 
 
 (A) Reagents 
 
  Ethanol, 95% 
  Water, double distilled 
  10X Genetic Analysis Buffer with EDTA 
  Performance Optimized Polymer (POP) 4 or 6 
  Highly Deionized (Hi-Di) Formamide 
 
 (B) Supplies 
 
  0.5 tubes 
  1.5 tubes 
  Pipette tips 
  Septa 
  Ice 
  Buffer and water vials 
 
 ( C) Equipment 
 
  48 or 96 sample tray 
  ABI 310 genetic analyzer with software 
  Computer 
  Pipettes 
  Heat block 
  Vortex 
  Centrifuge 
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IV. PROCEDURE 
 

1.0 Work Space Preparation 
 

1.1 Wipe down laboratory work space with 5% bleach. 
1.2 Wipe down laboratory work space again with double distilled water 
1.3 Place clean bench cover on laboratory bench.  Tape in place. 

 
2.0 Prepare 310 
2.1 Turn on 310 with switch at the back left halfway up. (ALWAYS TURN 

ON 310 BEFORE OPENING SOFTWARE! If the 310 software runs 
with the machine off it will have nothing to communicate with and 
everything will have to be reset) 

2.2 Open the 310 Data Collection Software 
2.3 Pull down Window menu, choose Manuel Control 

2.3.1 In Function pull down menu choose Syringe Home: execute 
2.3.2 In Function pull down menu choose Autosampler Home X-Y Axis: 

execute 
2.3.3 In Function pull down menu choose Autosampler Home Z Axis: 

execute 
 

3.0 Clean Electrode (if it was touched, if it is new, or if buffer solutions are    
 replaced) 

3.1 Push Tray button on left side of machine inside doors 

3.2 Carefully wipe electrode with lint-free lab wipe with sterile distilled 
deionized water, dry with lab wipe 

3.3 Push Tray button to return tray 

 

4.0 Polymer and Buffer 

4.1 Take Polymer (POP-4 or POP-6) out of refrigerator to acclimate to room 
temperature 

4.2 Prepare 1X Buffer from 10X Buffer 

4.2.1 For a single run: 1.3 mL 10X Buffer and 11.7 mL Sigma deionized water 

4.2.2 For stock: 5mL 10X Buffer and 45 mL Sigma deionized water 

 

5.0 Gel Block 

5.1 Screw top and bottom ferrels in firmly, lightly screw capillary ferrel in; 
DO NOT TIGHTEN. 
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5.2       Align steel shafts on 310 with two large holes in block 
5.3       Align buffer valve with activator arm 
5.4       Slide gel block in  

 

6.0 Fill Buffer and Water Vials 
 

6.1 Fill glass vial to the black line with 1X Buffer and mark B 
6.2 Fill other glass vial to the black line with deionized water 
6.3 Cut lid off of a 1.5 mL Eppendorf tube  

 

7.0 Fill and Install Syringe 
 

7.1 Mix polymer by inverting, then let sit for at least 5 minutes 
7.2 Draw 1.0 mL sterile deionized water slowly into syringe and then dispense 

into waste (Always pull plunger straight up) 
7.3 Draw 0.15 mL polymer slowly into syringe, invert syringe tip up, slowly 

pull the 0.15 mL polymer through entire syringe 
7.4 Still holding tip up, dispense polymer into a lint-free lab wipe 
7.5 Carefully fill syringe at least 0.2 mL more than desired volume 
7.6 Hold syringe tip up to eye level against a white background and tap sides 

to raise any air bubbles. Slowly push them out with plunger into lab wipe. 
7.7 Move syringe to 0.2 mL more than needed for samples 
7.8 Wipe and blot syringe tip with lab wipe 
7.9 Install syringe using the steel hub to screw into place, NOT THE GLASS 

 

8.0 Install Capillary (Green 47cm capillary for fragment analysis, pink 61cm 
capillary for sequencing 

NOTE: Capillary should not be out of polymer or water for more than 30 
minutes, steps 8.0, 9.0, and 10.0 should be completed within that 30 
minutes  

8.1 Carefully wipe capillary window with lint-free lab wipe with 95% Ethanol 
(Capillary window is only part of capillary that is very breakable) 

8.2       Open door in front of heat block 
 

8.3       Gently insert capillary, window end, into capillary ferrel in gel block. 
Position so the tip of capillary is just entering first gel channel intersection. 
Tighten ferrel (tightening ferrel will move capillary forward slightly so adjust 
initial positioning to accomodate). 

8.4       Open laser detector door 
 

8.5       Carefully position capillary in track with the window centered over the 
laser and the color mark aligned with the top edge of the laser detector plate. 
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8.6       Close the door to secure laser, do not move capillary  
8.7       Thread capillary into electrode thumbscrew so that capillary tip protrudes 

past the        
electrode about 0.5mm 

8.8       Tape capillary to heat plate to secure in place 
 

8.9       Close heat plate door, make sure capillary has not moved. 
 

9.0 Fill Gel Block 

9.1 Go to Window, Manuel Control, Function menu and select Buffer Valve 
Close 

9.2 Manually open waste valve below the syringe 

9.3  Press syringe plunger until polymer has gone into waste valve (uses about 
0.1mL polymer) 

9.4  Close waste valve manually 

9.5 From Function menu select Buffer Valve Open 

9.6 Press syringe plunger until polymer fills gel block channel with no 
bubbles (uses about 0.1mL polymer) 

9.7 From Function menu select Buffer Valve Close 

 

10.0  Calibrate Autosampler (if electrode is moved or cleaned, if capillary is 
moved or changed, if capillary touches septa caps, if the memory has been reset, 
or if prompted by the instrument). 

10.1 Remove sample tray and Eppendorf tube in position 3 (better to remove 
vials in postions 1 and 2 as well) 

10.2 From Instrument menu select Autosampler Calibration, click Start and 
follow instructions 

10.3 Use arrow keys on the screen or computer to move autosampler, press the 
shift key with an arrow to move half steps 

10.4 Align dot on front of tray platform with capillary so that it is almost 
touching, click Set 

10.5 Repeat for dot on the back of the tray platform, click Set 
10.6 Follow instructions to complete calibration, when tray is presented place 

buffer vial marked B in position 1, water vial in position 2, and the 1.5 
Eppendorf tube with water in position 3 (if samples are ready place sample 
tray in autosampler, if not see 11.5) 

10.7 From Function menu in Manuel Control (Window) select Autosampler to 
Position, type in 1 and execute 
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10.8 From Function menu select Autosampler Up, type in 450 and execute 
(capillary is now in lubrication at both ends) 

 

 

11.0 Prepare Buffer and Syringe 

11.1 Fill shot glass (anode buffer reservoir) to the red line and install on bottom 
left of gel block (push up and twist right) 

11.2 Move syringe toggle to the right over syringe 
11.3 From the Function menu in Manuel Control select Syringe Down, start 

with 100 steps 
11.4 Continue to bring syringe drive down to meet top of plunger, lowering 

steps (the last few executions should only be in steps of 1) 
11.5 If sample tray has not already been loaded, from Function menu select 

Autosampler Down 450 steps, execute 
11.6 Press Tray button on left side of instrument to present tray and load 

sample tray 
11.7 Press Tray button to return tray, from Function menu select Autosampler 

Up 450 steps, execute 
11.8 Close doors 

 

Creating a Sample Sheet 
 
12.1 From the File menu select New and click on appropriate sample sheet icon 

(example: for fragment analysis with a 48 tube tray select GeneScan Smpl 
Sheet 48 Tube) 

12.2 Select 4 Dyes or 5 Dyes in upper right corner 
12.3 Enter sample names according to their positions on the tray 
12.4 Fragment 

12.4.1 Click next to the dye color in the Std column on each sample to 
specify size standard (4 Dye : Red, 5 Dye: Orange) 

12.4.2 Sample Info and Comments columns are optional, but may be 
useful for certain applications 

12.5 Sequencing 
12.5.1 Set appropriate DyeSet/Primer file for each sample (see page 6-19 

of ABI PRISM 310 Genetic Analyzer User Guide) 
12.5.2 Select appropriate Matrix file for each sample 

12.6 Collection name is optional 

12.7 From the File menu select Save As, name the sample sheet and save 
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13.0 Preparing the Injection List 
 

13.1 From the File menu select New and click GeneScan Injection List for 
fragment analysis or Sequence Injection List for sequencing 

13.2 Select the sample sheet from the pull-down menu 
13.3 Enter your name as the operator 
13.4 Add multiple injections by highlighting a row and selecting Insert from 

the Edit menu, copy the sample name in the new cell 
13.5 Select a module from the Module drop down list 
13.6 Fragments 

13.6.1 Select the matrix in the Matrix column 
13.6.2 Check the Auto Anlz box to automatically analyze with GeneScan, 

but DO NOT check the Auto Prt box  
13.7 Change any specific parameters needed for particular samples 
13.8 When finished click Run to start the run 

 

VI. ABI 310 Breakdown 

1.0 Preliminary 
1.1 Check Status window to make sure electrophoresis, laser, and temperature 

are off. If not, go to Manuel Control in Window menu, in Function menu 
select: 
1.1.1 Electrophoresis Off then Execute 
1.1.2 Laser Off then Execute 
1.1.3 Temperature Off then Execute 

1.2 Open doors 
1.3 Push Tray button on left side of machine to present tray 
1.4 Dispose of used samples, dispose of 1.5 eppendorf tube, and wash two 

glass vials in positions 1 and 2 and white caps with distilled water (dispose 
and use new vials every two weeks). Dispose of septa (always use septa 
only once) 

 

2.0 Capillary Removal and Storage 
 

2.1 Open heat block door 
2.2 Carefully slide capillary up and out of electrode 
2.3 Open laser block door, remove capillary, close door 
2.4 Unscrew capillary ferrel just enough to slide capillary out 
2.5 ALWAYS keep capillary lubricated once polymer has gone through it 

2.5.1 Store capillary with ends in 0.5 tubes filled with deionized water 
and capped with septa 

2.5.2 Remember to check and refill if needed the water in the tubes  
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3.0 Syringe 
 

3.1 Go to Manuel Control in Window menu, in Function menu select Syringe 
Home, Execute 

3.2 Move syringe toggle to left 
3.3 Unscrew syringe by the steel base (NOT THE GLASS) 
3.4 Dispense any leftover polymer into a lab wipe and dispose 
3.5 Pull up warm deionized water all the way into the syringe, dispense into 

waste, repeat 
3.6 Blot end of syringe with dry lab wipe and wipe clean with slightly damp 

lab wipe 
3.7 Store in syringe box 

 

4.0 Gel Block 
 

4.1 Remove anode buffer reservoir (shot glass): pull down and twist left, rinse 
with deionized water 

4.2 Slide gel block off steel shafts, be careful of activator arm and buffer valve 
pin (gel block is a little tough to slide off) 

4.3 Wipe inside of 310 with a lab wipe dampened with Sigma water 
4.4 Rinse gel block with warm tap water 
4.5 Unscrew ferrels and rinse, squirt distilled water through to rinse inside 
4.6 Squirt distilled water through all the channels in the gel block. Block and 

unblock holes to push water through all channels 
4.7 Repeat flushing all channels and ferrels with warm sterile water with a 

1mL pipette 
4.8 Wipe outside dry with lab wipe 
4.9 Dry all channels and ferrels by pushing air through with a 10cc syringe or 

canned air. Block and unblock holes to push air through all channels 
4.10 Wipe all outer surfaces of block with lab wipe (including holes for steel 

shafts 
4.11 Slide back onto 310 
 

5.0 Shut Down 
 

5.1 Store clean shot glass, two glass vials and caps, and gel block ferrels on 
white tray under gel block in 310 

5.2 Close doors 
5.3 Close 310 software 
5.4 Turn off 310 with switch in back on left halfway up (NEVER TURN OFF MACHINE 

WITH 310 SOFTWARE RUNNING) 
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Appendix 8 
  

Principle to analyze STR output with GeneMapper 
 
To analyze human DNA samples and identify the alleles present at STR loci and 
the gender marker amelogenin, all of which are amplified using the AmpFLSTR® 
kits and run on the ABI PRISM® 310 Genetic Analyzer.  
 

I. GENERAL SAFETY REQUIREMENTS 
 
None. 
 

II. ESSENTIALS  
 

Computer with GeneMapper software installed.  
 

III. PROCEDURE 
 

1. Generating a project 
 

1.1. Open GeneMapper program.  
1.2. A new project sheet should automatically open.  
Note: New projects can be opened at any time by clicking on file and 
scrolling down to new project. 
 
1.3. Click on file and scroll to Add samples to the project. Under the file drop 

down menu, select Add Samples to Project 
 

 
 

1.4. Select the folder that contains the samples to be analyzed and click on 

.  The folder will move to the right column (Samples to 

Add).  Click on the  button in the bottom right corner of the menu. 
 
1.5. Select the sample you want to analyze from the files. 
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1.6. Click Add to List. 
1.7. Repeat steps 1.4 and 1.5 until you have all the sample files required. 

Note: An allelic ladder must be included in the list of files requiring 
analysis.  

1.8. Click Add. The samples will be listed in a spreadsheet.  

 
2. Selecting analysis criteria 

 
2.1. Select the sample type. Assign the allelic ladder, positive control, and 

samples.  

2.2. Select the analysis method (example: Microsatellite default; HID 
Advanced, etc.) 
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  Note: To apply a setting to all samples click the bar naming the column 
and press Ctrl + D. 
 
2.3. Select the Panel. Double click on AmpFLSTR_Panels and select 

appropriate panel for your kit (Ex: Identifiler _CODIS _v2; 
Cofiler_CODIS_v1, etc)  

2.4. Select the size standard (Ex: GS 500(-250)LIZ; CE_F_HID_GS500, etc.) 
 
2.5. If matrix has not been assigned during the run, select the matrix (ex: 

DS_32_5FAM_JOE_NED, etc). If analyzing the GeneMapper example 
data, do not change.  

 
2.6. Click analyze. Name the project and click OK.  Samples should now 

appear in the Genemapper  spreadsheet.  At this time changes can be 
made to sample names and sample order, in addition, non-working 
samples can be deleted. 
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2.6.1. To change a sample name double click on the current sample name 

and change it to the new one. 
2.6.2. To change the order of the samples go to the edit drop-down menu, 

select sort and reorganize your data. 
2.6.3. To delete a sample, highlight the row of the sample to be deleted, 

go to the edit drop-down menu and select Delete from Project. Click 
ok. 
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3. Analyzing samples 
 

3.1. Select all samples and the rows will be highlighted blue. Click view and 

scroll down to raw data and check that the samples ran properly then 
close raw data.  

 
 
3.2. Click Display Plots button. This shows all of the dyes in one window. 
3.3. Click Separate Dyes button. The loci are now separated and the 

genotypes of the samples at each locus are shown.  
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3.4. To view the peaks at one locus, click on the locus name so it is 
highlighted pink. Then place the cursor over the top line of the box 

surrounding the data, and click and drag the cursor to zoom in on the 
peaks. 

 
3.5. To zoom back out click the full button view. Now the genotypes of the 

samples can be examined.  
 

 
4. Binning and analysis 

 
4.1. If the bins are not correct on the allelic ladder, your sample peaks will not 

be called.  
4.2. To edit the bins, go to the sample plot window, zoom in on marker and go 

to alleles, edit, binning. This will allow you to click and drag the bin over 
the peak in the correct position.  (see picture). 
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4.3. When finished, save the panel with a new name (save as) and exit. Click 

on the  button to re-analyze the samples. 
4.4. Analysis parameters need to be set  according to your laboratory SOP. 

For demonstration purposes, the default settings were used here. 
4.5. Double click on the analysis method to see parameters.  
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5.  Calling a size standard 

 
5.1. From the size standard column select GS500, for example. 
 
 



 
 

241

 
5.2. Copy the size standard for the entire data set as described before.  All 

samples should now show the green flag in the status window indicating 
that they need to be reanalyzed. 

5.3. Reanalyze the samples by clicking on the  icon. 
5.4. Verify that the size standard migrated correctly by highlighting all 

samples and then clicking on the  icon.   

5.5. Click on  and then , this will allow you to see only the results from 
the fluorescent dye you attached to the samples. You can scroll down to 
see the remaining of the samples. 

5.6. If the panel says No Sizing Data or looks like the picture below, proceed 
as follows.  
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5.7. From the spreadsheet, highlight the samples that showed no sizing data 

and click on the  icon. 
5.8. A screen with the sample size for that sample will appear.  Click on the 

  button  X in the upper left corner of the screen to clear the size 

standard.   
 

IF using the GS 500 standards, starting with the leftmost peak of the triplet, left click on 
the peak to select it and then right click on it to choose the correct size for the peak.  Peak 
sizes will be 35, 50, 75, 100, 139, 150, 160, 200, 250, 300, 340, 350, 400, 450, 490, 500. 
 
NOTE: Each size standard may call its peaks differently; check the manufacturer’s 
literature to find out what sizes are assigned to each peak.  

 
5.9 Once all the peaks have been re-labeled click Apply then OK. Repeat 

procedure with other samples as needed. 
 

5.10 The green flag should now appear next to those samples whose size standard 
was changed.  Click on the  icon to reanalyze the samples. Verify that all 
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the plots are visible by clicking on the  icon and scrolling down through the 
samples. 

 
6. Table settings editor and genotype table export  
 

6.1. Go to Tools, Table setting editor. The samples tab has the settings that 
you can change and will display the sample spreadsheet with the selected 
column headings.  

 
6.2. The genotype table is the table information you want to export.  

 

6.3. Check Sample name, marker, and allele; Check show 2 alleles and keep 
alleles, etc together. This is the table  you will export. 
 

6.4. Go to File, export table. Save as .txt file. Open Excel, open .txt file and 
follow the Excel wizard to import data into Excel. Save. This is your 
Genotype table output that reports the individual STR genotypes.  

6.5. Save project and exit GeneMapper.  
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Example of Genotype Table in Excel  
 

 #_01 #_01 #_01 #_01 #_01 #_01 #_01 #_01 #_01 

Marke
r 

D8S1179 D21S11 D7S820 CSF1PO D3S1358 TH01 D13S317 D16S5
39 

D2S133
8 

Allele 1 12 27.2 9 12 16 7 11 9 20 

Allele 2 15 32  13 17 8 12 11  

 #_01 #_01 #_01 #_01 #_01 #_01 #_01   

Marke
r 

D19S433 vWA TPOX D18S51 AMEL D5S818 FGA   

Allele 1 14 16 8 19 X 11    

Allele 2  17  20 Y 12 22   

          

 #_02 #_02 #_02 #_02 #_02 #_02 #_02 #_02 #_02 

Marke
r 

D8S1179 D21S11 D7S820 CSF1PO D3S1358 TH01 D13S317 D16S5
39 

D2S133
8 

Allele 1 13 29.2 10 12 16 8 11 11 16 

Allele 2 15    18 9  12 20 

 #_02 #_02 #_02 #_02 #_02 #_02 #_02   

Marke
r 

D19S433 vWA TPOX D18S51 AMEL D5S818 FGA   

Allele 1 15  8 14 X 12    

Allele 2 16.2 17  18 Y  23   
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