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ABSTRACT OF THE DISSERTATION 

ASSESSMENT OF BIODEGRADABLE MAGNESIUM ALLOYS FOR ENHANCED 

MECHANICAL AND BIOCOMPATIBLE PROPERTIES 

by 

Puneet Kamal Singh Gill 

Florida International University, 2012 

Miami, Florida 

Professor Norman Munroe, Major Professor 

Biomaterials have been used for more than a century in the human body to 

improve body functions and replace damaged tissues. Currently approved and commonly 

used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other 

alloys have been found to have adverse effects leading in some cases, to mechanical 

failure and rejection of the implant. The physical or chemical nature of the degradation 

products of some implants initiates an adverse foreign body reaction in the tissue. Some 

metallic implants remain as permanent fixtures, whereas others such as plates, screws and 

pins used to secure serious fractures are removed by a second surgical procedure after the 

tissue has healed sufficiently. However, repeat surgical procedures increase the cost of 

health care and the possibility of patient morbidity. This study focuses on the 

development of magnesium based biodegradable alloys/metal matrix composites 

(MMCs) for orthopedic and cardiovascular applications.  The Mg alloys/MMCs 

possessed good mechanical properties and biocompatible properties. Nine different 

compositions of Mg alloys/MMCs were manufactured and surface treated. Their 

degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical 
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properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment 

resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, 

lower pH and hydrogen evolution.  Anodization resulted in the formation of a distinct 

oxide layer (thickness 5-10 μm) as compared with that produced on mechanically 

polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings 

of this research will introduce a new class of Mg based biodegradable alloys/MMCs and 

the emergence of innovative cardiovascular and orthopedic implant devices. 
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1.0       INTRODUCTION 

Biocompatibility has been defined as “the study and knowledge of the 

interactions between living and non-living materials”, and a biomaterial is defined as: “a 

material intended to interface with biological systems to evaluate, treat, augment or 

replace any tissue, organ or function of the body” [1]. Biomaterials have been used for 

more than a century in the human body to improve body functions and replace damaged 

tissues [2]. Over the last 30 years, biomaterials have received a considerable amount of 

attention as a means of treating diseases and easing suffering by no longer focusing on a 

conventional pharmaceutical formulation but rather a combination of device-integrated 

biomaterial and the necessary therapeutic treatment. Biomaterials have found applications 

in approximately 8000 different kinds of medical devices [4], which have been used in 

repairing skeletal systems, returning cardiovascular functionality, replacing organs, and 

repairing or returning senses [5]. Even though biomaterials have had a pronounced 

impact in medical treatment, there still exists a need for better polymers, ceramics, and 

metallic systems. Common examples in the medical industry of medical devices include: 

sutures, supportive meshes, needles, orthopedic, osteosynthetics, vascular grafts, stents, 

etc. The biomaterials employed must possess good mechanical integrity, non-toxicity and 

pronounced chemical stability [6]. 

In recent years, the demand for biomaterials has been increasing with relative 

proportion of senior citizens in society as a result of the demand for replacement of failed 

tissue and organs with biomaterials and artificial devices [3]. For example, an 8% annual 

growth is anticipated in the orthopedic industry from $6 billion in 2007 to $13 billion by 
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1.1      History of Biomaterials 

The use of biomaterials for the manufacturing of implant devices is not new. It 

has been reported that the substitution of bone parts in the body has been practiced since 

the pre Christian era, where copper and bronze were the main materials used. The major 

concern faced with those implants was copper ion leaching, which further lead to 

poisoning in the body. Until the mid-nineteenth century, there were no other materials 

suitable for implantation other than copper and bronze. [9].  

By the mid-nineteenth century, serious attempts had already been made to repair 

body parts with foreign materials. In 1880, Gluck, used ivory prosthesis as implants in 

the body. The involvement of biomaterials earlier were unsuccessful due to occurrence of 

infection or toxicity and in 1860, Dr. J. Lister developed an antiseptic surgical technique 

[6]. In 1902, gold was used as the interphase between the articular heads of the implant. 

This experiment proved to be successful, which lead to further studies on chemically inert 

and stable materials [6].  

1.2      Classification of Biomaterials 

Biomaterials are categorized into three classes: class I materials [8, 10], which 

have no direct contact with bodily tissues; class II materials that are intermittently in 

contact with tissues; and class III materials that are constantly in contact with tissue and 

are prone to unwanted ion leaching [8]. The latter can be categorized into three types: 

bio-inert, bioactive and biodegradable. Currently approved and commonly used Class III 

metallic biomaterials include stainless steels, titanium and cobalt-chromium based alloys 
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[8]. A limitation of these current metallic biomaterials, is the possible release of toxic 

metallic ions through corrosion or wear processes [11,12,13,14,15] that leads to 

inflammatory cascades, reduced biocompatibility and possible tissue loss 

[16,17,17,19,19,21,22]. Furthermore, these metallic biomaterials are essentially neutral in 

vivo, remaining as permanent fixtures, which in the case of plates, screws and pins that 

are used to secure serious fractures, must be removed by a second surgical procedure 

after the tissue has healed sufficiently [24]. Repeat surgical procedures increase health 

care costs and possible morbidity of patients. Table 1.1 summarizes the various types of 

biomaterials and their applications. 

Table 1.1: Biomaterials used in human body [5,25,139] 

Type of material Examples Application 

Polymers 

Nylon, silicones, teflon, 
polyester fibers, high strength 
acrylics, polyurethane, hydro-

gels, polycarbonate, 
polypropylene 

contact lenses, vascular grafts, wound 
dressings, maxillo facial operations, 

absorbable sutures, drug- release 
systems, reneal dialysis cartridges, 

trocars, extra cellular matrices 

Metals 

Nitinol, titanium alloys, cobalt-
chromium alloys, 316 L stainless 

steels, platinum alloys, silver, 
magnesium alloys, iron alloys 

joint replacements, dental root 
implants, bone screws, bone plates, 

bone grafts, cardiac stents, electrodes, 
anti-bacterial material 

Ceramics 
Alumina,  zirconia, 

hydroxyapatite, bio-glass 

joint replacements, bone spacers, 
tooth implants, bone bonding 

applications, bone cement fillers, 
cardiac stents 

Composites 
Carbon-carbon, calcium 

phosphate cement 
joint implants, heart valves 
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Payr in 1900 proposed Mg as a potential implant for musculoskeletal applications, 

such as fixator pins, nails, wires, cramps, sheets and plates [29,31]. Figure 1.3 shows 

magnesium tubular connectors designed by Payr. In 1906, Lambotte, a French surgeon, 

first implanted Mg as fracture fixation plates, which faced the problem of gas cavity 

formation due to rapid corrosion [29]. However, total absorption in rabbits and dogs was 

observed after 7 to 10 months without any pain [29]. In 1934, Henschen and Gerlach 

referred to Mg as an ideal osteosynthesis material [29], followed by Verbrugge who in 

1937 indicated that implanted Mg was neither toxic, nor an irritant and reported that slow 

corrosion promoted callus formation [29].  

 

Figure 1.3: Magnesium connectors designed by Payr for vessel anastomosis [29]. 
Method (A) used an extravasal magnesium ring, which ensures an open postop-erative 
anastomosis. Method (B) uses a two-part extravasal connector with a male and female 

part.  
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Figure 1.5: Approximate magnesium distribution [31]. 

Mg is required in more than 325 biochemical reactions in the body (especially for 

those enzymes that use nucleotides as cofactors or substractes) [44,45,46,47,48]. It helps 

to maintain normal muscle (contraction of muscles), steady heart rhythm, healthy 

immune system, strong teeth and bones and transmits nerve impulses (neurological) 

[44,43,49,50]. The intracellular concentration of Mg is 14 – 20 mmol/l the majority of 

which is bound to nucleic acids, phospholipids in cell membranes, enzymes, ATP 

(adenosine triphosphate) and proteins, see Figure 1.5 [33,35]. Mg also helps to regulate 

blood sugar levels, promotes normal blood pressure and is known to be involved in 

energy metabolism and protein synthesis [34,35]. Mg is primarily absorbed in the ileum 

and colon and is excreted through the kidneys [36,42,46,50].  

Common magnesium compounds include Mg amino acid chelate, Mg carbonate, 

Mg oxide, Mg oxide dolomite and Mg sulfate (used to prevent eclamptic seizures [54]). 

Mg alloys are lightweight (density 1.7 g/cc) which is ~1/3 as dense as titanium alloys [27, 
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57]. The formation of Mg alloys is dependent on the element’s liquid solubility in molten 

Mg and any interference between alloying elements [55].  

 

Figure 1.6: Intracellular distribution of Mg [32, 33]. 

Rubin et al. (2005) modeled the role of Mg in regulating cell cycle control, Figure 

1.6 [34], where intracellular Mg promotes polysome formation, protein synthesis and a 

number of Mg-ATP dependent reactions [33,34,35]. Mg++ ions also promote DNA 

synthesis and cell division. A hypothetical model showing the role of Mg in cell 

proliferation is shown in Figure 1.7. 
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Figure 1.7: Hypothetical model demonstrating magnesium in cell proliferation control 
[33,35] . 

1.4.1   Crystal Structure of Magnesium 

The element Mg received its name from the Greek word Magnesia a district in 

Thessaly. Mg is the seventh most abundant element in the earth crust by mass. It has an 

hexagonal closed packed (HCP) crystal structure with lattice parameters: a = 0.321 nm 

and c = 0.521 nm. Figure 1.8 shows the principal planes and directions in a Mg unit cell. 

Slip deformation mainly occurs along the (0001) basal plane and in the < 112ത0 > 

direction on the vertical face plane {101ത0} [37,38]. At elevated temperatures, slip occurs 

in the < 112ത0 >	direction on the pyramidal planes	{101ത1}.   
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controlled corrosion rates are of particular importance for bioabsorbable materials, the 

absence of which could lead to an excessive release of dissolved metal ions and 

biological medical complications. Below is a list of common alloying elements. 

Calcium: The most abundant element in the body, calcium is required for a variety of 

physiological reactions [69]. 99% of calcium is stored in bones and teeth with less than 

1% in blood, muscle and intercellular fluids [70]. As an alloying element, calcium is 

generally added in small amounts in order to control the metallurgical properties by 

controlling oxidation in the molten condition as well as serving as a grain-refining agent 

[55]. Calcium apatite (hydroxyapatite) a form of calcium is also used for biodegradable 

implant applications. HA is basically a calcium phosphate, which is chemically similar to 

the mineral crystallites present in human bone [56].  

Iron: Iron is essential for maintaining good health and is an integral part of many 

proteins and enzymes. It acts as an oxygen carrier to muscle and enzymes for 

biochemical reactions (myoglobin) [53,72] and is important for the regulation of cell 

growth and differentiation [73, 74]. However, excessive amounts of iron can result in 

acute toxicity and even death [77]. 

Manganese: Manganese is found in the pancreas, bone, liver and kidneys and is 

important in skeletal and connective tissue development. It acts as a catalyst and cofactor 

for many enzymatic processes (in the mitochondria) involving in the synthesis of fatty 

acids and cholesterol and is an actual component of manganese super oxide dismutase 

enzyme. As an alloying element with magnesium, manganese does not induce any 

significant effect on its tensile strength but slightly increases the yield strength. 

Generally, manganese has relatively low solubility in magnesium [55]. 
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Rare earth metals: Rare earths are normally added as mischmetal (~ 50% cerium, 

25% lanthanum and small amounts of neodymium and praseodymium) or as didymium 

(praseodymium and neodymium). The addition of these metals increases the strength of 

magnesium alloys [55] and no significant toxicity was reported [115].  

Gadolinium: Gadolinium is one the most abundant of all rare earth elements and is the 

least expensive. It has no known biological role, but is said to stimulate the metabolism, 

and could be detrimental in concentrations in excess of 8 wt%. Nevertheless, gadolinium 

has a high solubility in magnesium and improves its strength and creep resistance 

[78,79,80]. Due to its high affinity for oxygen, several oxides (Gd2O3, spinel MgGd2O4) 

are produced which act as a diffusion barrier for further oxidation.   

Zinc: Zinc is an important element for development and growth in humans, and is 

involved catalytically in approximately 100 enzymes, wound healing, cell division and 

protein/DNA synthesis [53,81]. As an alloying element, zinc results in solid solution 

hardening with magnesium and with other alloying elements, improves its strength and 

corrosion resistance [55].  

Zirconium: Zirconium has no known biological role and the human body contains, on 

average, 1 milligram. As an alloying element, it imparts good corrosion resistance [63], 

and grain-refinement to magnesium alloys. Due to similar lattice parameters (α-Zr: a = 

0.323 nm, c = 0.514 nm and Mg: a = 0.320 nm, c = 0.520 nm), a zirconium-rich solid 

solution is produced early in the freezing of the melt, which provide sites for 

heterogeneous nucleation of magnesium grains during solidification.   

Yttrium: Yttrium has no known biological role, but is found in the liver, kidney, spleen, 

lungs, and bones [100], for a total amount of 0.5 milligrams in the entire human body. As 
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an alloying element, yttrium has relatively high solubility in magnesium (12.4 wt%) and 

is added with other rare elements to promote creep resistance at temperatures up to 300 

oC [55]. 

Table 1.2: Role of selected alloying elements and blood serum content [64,83,84,85] 

1.5       Research Objective  

The current research focuses on the development of new biodegradable Mg 

alloys, in an effort to improve the corrosion resistance, biocompatibility and mechanical 

Elements 
Concentration in 

Blood Serum, mmol/L 
Role 

Calcium 1.3 mmol/L 

muscle contraction, blood vessel expansion and 
contraction, insurance of maximum bone 

strength and transmission of impulses 
throughout the central nervous system 

Iron 0.005-0.023 mmol/L 

enables cell respiration, energy production,  
production of red blood cells (haematopoiesis), 

oxygen and carbon dioxide transport, 
production of hemoglobin in RBC 

Magnesium 0.73-1.06 mmol/L 

required for more than 325 biochemical 
reactions, regulate blood sugar level, keeps 

heart rhythm steady, healthy immune system 
and  maintains bone and teeth health 

Manganese 0.001 mmol/L 

required in enzymatic processes involved in the 
synthesis of fatty acids and cholesterol, 

synthesis of glycoproteins, which coat body 
cells and protect against viruses 

Rare earth metals <0.047 mg compound of drugs for cancer treatment 

Gadolinium - 
no known biological role, but is said to 

stimulate the metabolism 

Zinc 0.012–0.017 mmol/L 
required for more than 100 biochemical 

reactions, wounds healing, DNA synthesis and 
cell division 

Zirconium 0.00011 mmol/L 
no known biological role and compounds are of 

low toxicity 
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properties. The alloys were subjected to anodization in order to reduce their initial 

degradation rate. The following are the main objectives of current research: 

• Investigate the overall effect of the addition of alloying elements on 

biocompatibility and mechanical properties. 

• Determine the role surface treatment on metallurgical and biocompatibility 

properties. 

A schematic representation of the research tasks conducted is shown in Figure 1.9. 
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Figure 1.9: Schematic representation of the research summary.



 

 

17 
 

2.0       LITERATURE REVIEW 

2.1      Biodegradable Magnesium - Current Research 

Development of Mg based biodegradable alloys is a challenge due to limitations 

of controlled and uniform degradation, as well as prolonged mechanical integrity in some 

applications. The main function of a biodegradable alloy is continuous dissolution as new 

tissue develops. As already discussed, Mg is one of the most suited candidates for this 

application because of its degradation behavior and its assimilation in the human body as 

an essential element. This has prompted a significant amount of research on the 

development of biodegradable alloys consisting mainly of Mg in combination with other 

potential elements in various compositions. Although advances have been made on the 

rate of degradation of some alloys, there is still a dearth of information on their 

biocompatibility. However, most Mg alloys have their own characteristic corrosion 

behavior as a result of their unique microstructure or the existence of intermetallics. 

Table 2.1, summarizes properties of selected Mg based alloys for biomedical 

applications. 

Pure magnesium (as-cast) has low overall yield strength (YS ~ 27 MPa), tensile 

strength (TS ~ 90 MPa) and is easily susceptible to pitting corrosion, which can lead to 

loss of mechanical integrity before the tissue has fully healed [115]. Alloying is one 

method of preserving the mechanical integrity, corrosion resistance and biocompatibility 

of Mg [66]. For biodegradable applications, the alloying element must be non-toxic and 

biocompatible, so that once implanted the concentration of the dissolved ions do not 
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exceed the concentration normally found in human blood or tissue depending on the 

application. Tao et al. (2008) [87], manufactured Mg-6Zn-xCa (x=3, 5, 7.5, 10 weight 

percentage, wt%) alloys by twin-roll rapid solidification that were subjected to rapid 

solidification and annealing at 200 oC for 1 hour. A dendritic structure developed with a 

grain size of 1-5 µm [87], which improved strength, creep resistance and moderate 

ductility observed during age-hardening were attributed to the formation of various 

phases such as: Mg2Ca, Mg2Zn3, MgZn2 and Ca2Mg6Zn3 [87]. Peng et al. (2009) [89] 

prepared Mg12Gd4Y2Nd0.3Zn0.6Zr wt% alloy by casting technology and after age 

hardening, were able to achieve improved mechanical properties (room temperature, YS 

= 280 MPa and TS = 310 MPa) due to a microstructure composed of fine metastable 

precipitates dispersed in the matrix. Enhanced mechanical properties were attributed to a 

fine grain size of 70-100 µm and a stable microstructure, that consisted of fine 

precipitates of β’-Mg15RE3, dispersed precipitates of Mg24RE5 (sheet-shaped) and 

Mg5RE (polygon-shapes). Zhang et al. (2010) [90] manufactured MgZn alloys by 

melting and casting, where α and γ-MgZn phases were observed to precipitate along the 

grain boundary. Hort et al. (2010) investigated Mg2Gd, Mg5Gd, Mg10Gd, Mg15Gd (wt 

%) manufactured by casting, where Gd was used to enhance the mechanical properties 

[93]. The yield strength and tensile strength of the as-cast alloy (YS = 37.99-127.65 MPa 

and TS = 103.73-175.22 MPa) increased with Gd content and solid solution formation 

[93]. 

Bruno Zberg et al. (2009), used various compositions of Mg-Zn-Ca alloys 

prepared by melt-spinning and determined various corrosion states [86]. The extended 

solubility of Zn in the amorphous structure of Mg-Zn-Ca, displayed limited hydrogen 
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evolution. This was confirmed by in vivo tests, where no inflammation was observed in 

the animal (abdominal walls and cavities) [86]. Zhoui Tao et al., manufactured ternary 

Mg-Zn-Ca alloys by twin-roll rapid solidification that were exposed to two different 

treatments, rapid solidification and annealing at 200 oC for 1 hour, which exhibited a 

dendritic structure with a grain size of 1-5 micrometer [87]. An increase in strength, creep 

resistance and moderate ductility were reported, which could be attributed to the 

formation of various phases such as: Mg2Ca, Mg2Zn3, MgZn2 and Ca2Mg6Zn3 during age 

hardening [87].  

Xinyu Ye et al. (2009) [88], fabricated Mg-Zn-Zr with 1 wt% nano-

hydroxyapatite (n-HA) as reinforcement by casting and without n-HA as a baseline. The 

refined grains of the Mg–Zn–Zr matrix, 100–200 nm in size were obtained by extrusion 

and dynamic recrystallization (Figure 2.1). The tests were conducted in simulated body 

fluid (SBF), where a protective layer of Mg(OH)2.nH2O forms on the Mg alloy, which 

prevents direct exposure of the medium on Mg. Thus, the alloy degrades at a controlled 

rate. The formation of a protective layer on the samples leads to continuous absorption of 

acid ions in SBF (CO3
2-, PO4

3- and Cl-) [88]. The reinforced Mg alloy exhibited enhanced 

corrosion resistance and in vitro cytocompatibility, where n-HA particles adsorb acid 

ions, which also form a new protective layer that essentially prevents pitting corrosion. 

The average corrosion rate in SBF after immersion test for 20 days was 0.75 mm/year 

and maximum osteoblast cell density achieved after 5 days was (1.85+0.15)X104/l. 
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Figure 2.1: TEM micrograph of extruded composite after aging: (a) refined grains, 100-
200 nm; and (b) nano-rods distributed in the grain boundaries [88]. 

Qiuming Peng et al. (2009) [89] manufactured Mg-12Gd-4Y-2Nd-0.3Zn-0.6Zr 

(wt%) alloy by casting technology and after age hardening were able to achieve high 

mechanical properties (see Table 2.1) due to fine microstructure,  fine metastable 

precipitates and dispersed precipitates in the matrix. Figure 2.2 shows the effect of solid 

solution time on grain size and hardness [89]. The enhanced mechanical properties were 

attributed to the fine grain size and stable microstructure, composed of fine precipitates of 

β’-Mg15RE3 and dispersed precipitates Mg24RE5 (sheet-shaped) and Mg5RE (polygon-

shaped).   
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Figure 2.2: The solid solution time effect on grain size and hardness at 525 oC [89]. 

Shaoxiang Zhang et al. (2010) [90] manufactured Mg-Zn alloys by melting and 

casting, and the observed that α-matrix and γ-MgZn phases precipitated along the grain 

boundary. It was also reported that after solid solution treatment, the γ phase disappeared 

and a refined microstructure was achieved to which the improved mechanical properties 

were attributed (Table 1.2). The alloying element, Zn increased the corrosion potential of 

the alloy. In-vivo test with the alloys (femoral shaft) in rabbits had a degradation rate of 

2.32 mm/year. It was further reported that degradation products of these alloys exhibited 

no adverse effect on the heart, kidney, liver and spleen.  

Fe and Mg are almost insoluble in each other due to the disparity in their atomic 

radii [91]. According to Haitani et al., the maximum solubility of Fe in Mg is 

approximately 0.00041 at% Fe and the Fe concentration at the eutectic point is estimated 

to be less than 0.008 at% [92]. The manufacture of alloys with different compositions of 
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Fe and Mg were attempted. However, by using a high temperature and a relatively 

moderate pressure (20 GPa), it was possible to synthesize a homogeneous Fe-Mg alloy 

with up to 4 at% Mg. It was assumed that an increase in the percentage of Fe in Mg 

would enhance the biodegrade ability of the alloy with no or minimal toxicity.  

Hort et al. (2010) used Gd to enhance the mechanical properties of Mg alloys. In 

their investigation, alloys of different compositions in wt% (Mg-2Gd, Mg-5Gd, Mg-

10Gd, Mg-15Gd) were manufactured by casting [93]. It was reported that about 10% of 

the rare earth elements were lost during melting and casting, which is referred to as 

“melting loss” [93,94,95]. Gd has a higher affinity to form oxides such as Gd2O3 and or 

the spinel, MgGd2O4 as compared with Mg [96,97]. The formation of this layer can 

further prevent oxidation, because as previously discussed, Mg with a lower affinity for 

oxide formation as compared with most rare earth elements is restricted from oxidation 

[93]. The mechanical properties (tensile and yield strength) and corrosion resistance 

increase with Gd content up to 10 wt%, in the α-matrix of the solid solution (Table 2.1). 

As shown in Figure 2.3, an increase in Gd of upto 10 wt% results in a decrease in 

corrosion rate as well as hydrogen evolution. However, at 15 wt% Gd, both corrosion rate 

and hydrogen evolution increased substantially. Gd leads to potential fatal conditions to 

the patients with kidney disease called nephrogenic systemic fibrosis (NSF), which can 

lead to Gd renal failure. 
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Figure 2.3: Corrosion rates variation with concentration of Gd in Mg [93]. 

 

Witte et al. (2005) implanted four alloys (AZ31, AZ91, WE43 and LAE442) 

manufactured by gravity casting in 40 female Dunkin Hartley guinea pigs and observed 

non-uniform corrosion in all magnesium alloys as compared with SR-PLA96 polymer 

[98]. During in-vivo testing, it was observed that a layer of calcium ions replaced the 

corroded mass of the alloys. This was accompanied by an increase in bone growth as 

compared to SR-PLA96 [98]. Figure 2.4 shows the new bone formation with Mg alloys 

primarily in the periosteal and endosteal areas of bones [98]. Overall response from 

biodegradable materials is with time when the tissue/bone heals and mechanical 

properties of the material decreases.  
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Figure 2.4: Flouroscopic images of cross-sections of: (a) degradable polymer and (b) 

magnesium rod in a guinea pig femura, performed 10 mm below trochanter. The 

specimens were harvested 18 weeks postoperatively and images were taken in-vivo by 

staining the new bone with calcein green . Bar =1.5mm; I=implant residual; 

P=periosteal bone formation;  E=endosteal bone formation [98]. 

Zhang et al. (2008) [99] manufactured Mg-1Zn-0.8Mn (wt%) by extrusion 

process and implanted in the femora of the rat. A non-uniform degradation of an implant 

was reported with no gas bubbles where 55% of the implant was degraded after 26 

weeks. It was observed that with the increase in implantation time, more bone tissues 

were grown and no fibrous capsules nor macrophage were found around the implant [99]. 
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Table 2.1: Summary of (approximate) properties of some of the potential Mg based alloys for bone and stent applications. 
[64,65,79,83,86,88,90,93,115] 

Material 
Young’s Modulus 

(GPa) 

Elongation  

(%) 

Tensile 

(MPa) 

Corrosion Rate 

(mm/year) 

Cortical Bone 1.07-2.10 35-283 

Titanium (TiAl6V4, cast) 12 830-1025 

Stainless Steel 316L 30-40 480-620 

Mg-0.8Ca 428 

Mg2Gd (as Casted) 6.362 103.73 13.5 

Mg-5Gd (as Casted)  6.620 128.468 5 

Mg-10Gd (as Casted)  2.500 131.152 1 

Mg-15Gd (as Casted)  0.950 175.220 17 

Mg-28Zn-5Ca  48  675-894  

WE43 (crystalline) 44  270  

ZQCa3 (crystalline) 44  250  

ZK31 (crystalline) 44  300  

AZ31/gravity-cast  15 260 - 

AZ91D/gravity-cast  3 230 2.8 

WE43/gravity cast  2 220 - 

LAE442/gravity cast   - 6.9 

MMC-HA/as extruded  3.5 325 1.25 
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Material 
Young’s Modulus 

(GPa) 

Elongation  

(%) 

Tensile 

(MPa) 

Corrosion Rate 

(mm/year) 

Mg-2Ca/rapidly solidification  7.3 380 - 

Mg-1Ca/as extruded  10.63 239.63 1.74 

Mg-1Ca/as rolled  3 166.7 1.63 

Mg-1Ca/as cast  1.87 71.38 12.56 

Mg as rolled  12 172 0.84 

Mg-1Mn as rolled  3.9 170 0.45 

Mg-1Y as rolled  9.2 200 1.65 

Mg-1Zn as rolled  7 240 0.92 

Mg-1Zr as rolled  17.5 185 0.91 

Mg-7Gd  5.2 145  

Mg-7Gd-3Y  8.4 253  

Mg-7Gd-5Y  5.4 258  

Mg-Zn-Zr/nHA    0.75 

Mg-6Zn 42.3+0.1 18.8+0.8 279.5+2.3 0.16 

Mg-Mn-Zn 44 20 280  

Mg-Zn-Mn  21.8+0.6 280.3+0.9  

Mg-12Gd-4Y-2Nd-0.3Zn-0.6Zr 

(RT) T6 
 2.8 310  
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Table 3.1: Nominal and analyzed compositions of the materials in weight percentage (wt%) 

Composition 

                  Elements 

Nominal Analyzed 

Mg Zn Ca HA Gd O Mg Zn Ca HA Gd O 

Mg1Zn (ACI) Balance 1 NA NA NA NA Balance 0.71 NA NA NA 12.59 

Mg1Zn1Ca (ACI) Balance 1 1 NA NA NA Balance 0.77 1.19 NA NA 7.49 

Mg1Zn1Ca8Gd (ACI) Balance 1 1 NA 8 NA Balance 1.01 0.76 NA 5.08 0.81 

Mg1Zn1Ca Balance 1 1 NA NA NA Balance 1.62 0.37 NA NA 2.28 

Mg1Zn1Ca1HA Balance 1 1 1 NA NA Balance 1.80 1.38 No Analysis NA 4.88 

Mg1Zn1Ca3HA Balance 1 1 3 NA NA Balance 1.38 1.53 No Analysis NA 1.93 

Mg5Zn1Ca Balance 5 1 NA NA NA Balance 1.77 0.99 NA NA 2.26 

Mg5Zn1Ca1HA Balance 5 1 1 NA NA Balance 5.03 1.09 No Analysis NA 1.81 

Mg5Zn1Ca3HA Balance 5 1 3 NA NA Balance 5.17 1.04 No Analysis NA 2.18 
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3.2       Sample Preparation 

The ingots were cut into cubes of dimensions 0.414 x 0.414 x 0.08 (inch) using a 

linear precision saw (ISOMET 4000). Each cube was mounted into epoxy resin with an 

exposed working area of 0.414 x 0.414 (inch), which were then mechanically polished to 

achieve a roughness close to 0.05 microns using abrasives, abrasive papers (Buehler) and 

lubricants (Sigma-Aldrich). Samples were polished in four steps as shown in Table 3.2. 

The usage of water based solutions was avoided during sample preparation, in order to 

prevent the hydrolysis of the alloy.  

Table 3.2: Lubricants and abrasives used during sample preparation 

Surface Lubricant Abrasive 

Carbimet® Ethanol SiC, 400 grit 

Texmet® Ethanol-Ethylene Glycol (3:1) Metadi® Paste, 9 µm 

Texmet® Ethanol-Ethylene Glycol (3:1) Metadi® Paste, 3 µm 

Chemomet® Ethanol Masterpolish®, 0.05 µm 

 

Anodizing is an important surface treatment for Mg alloys, which can efficiently 

reduce the corrosion rate. Anodizing mainly develops a passivation oxide layer on the 

surface of the alloys. The firmness of the surface oxide layer directly affects the 

biocompatibility of the implant as it acts as a barrier between the bulk and the electrolyte, 

which further confines the ion exchange and increases the implant stability [111]. 

Furthermore, anodizing is selected as a coating process in this study because: (a) the 
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Society was used as the standard test solution for corrosion analysis. PBS (Sigma 

Aldrich) and three amino acids (Acros Organics), cysteine C (0.25 mM), glutamine Q 

(0.568 mM) and tryptophan W (0.042 mM) were used as electrolytes for corrosion 

studies, with the latter at concentrations typically found in human blood [104].  

Additionally, ethyl alcohol (99.9%) and chromic acid were purchased from Sigma 

Aldrich. The samples were ultrasonically cleaned in ethyl alcohol for 5 minutes, prior to 

conducting each test. Chromic acid was used to remove the oxides from the samples 

attained by immersing them in 180 g/l of chromic acid for 20 min. Table 3.3 shows the 

chemical composition of PBS solution used in this investigation. 

Table 3.3: Chemical composition of PBS solution in g/L. 

NaCl Na2HPO4 NaHCO3 KCl KH2PO4 MgSiO4 7H2O CaCl2 

8.0 0.06 0.35 0.4 0.06 0.2  0.14 
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4.0       ELECTROCHEMICAL STUDIES 

4.1       Corrosion Behavior of Medical Implants 

Corrosion is defined as a destructive attack on the surface of a material as a result 

of an electrochemical reaction with its environment. Electrochemical deterioration occurs 

as positive ions are released from the anode as electrons flow towards the cathode 

[139,155]. Typical anodic and cathodic reactions are shown below [68,139,156]. 

 
       M                                              Mn+ + ne-                             (1) 

 
O2 + 2H2O + 2e-                                                         4OH-     pH ≥ 7                     (2) 
 

O2 + 4H+ + 2e-                                           2H2O    pH < 7                      (3)  
 

Equation (1) represents the oxidation of a metal; equation (2) is the reduction 

process in neutral or basic conditions; and equation (3) is also a reduction process in 

acidic conditions. 

Pitting corrosion is one of the most common forms of corrosion in implants, 

where intense attack occurs at localized sites while the remainder of the surface corrodes 

at a much lower rate, either because of the formation of a protective oxide layer or due to 

some physiological conditions. Some other contributing factors to pitting are caused by 

the presence of reactive sites, on the surface that are more anodic or cathodic. 

4.2       Magnesium – Corrosion Mechanism 

Equilibria between metal and solution can be illustrated via the Eh-pH (Pourbaix) 

diagrams. The first extensive use of such diagrams was made by Marcel Pourbaix while 

describing the thermodynamics of metallic corrosion. The Eh-pH diagram primarily 
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describes the equilibrium conditions in terms of two variables, a single electrode 

(reduction) potential and pH, under which dissolved ions are in equilibrium with the 

metal/metallic phases. Diagrams are drawn with contour lines depicting solution 

composition, such as metal ion concentration at 25° C or some higher temperature. The 

lines on an Eh-pH diagram are computed from the general equilibria equation: 

ܣܽ           + ܤܾ ାܪ݉+ + ݊݁ ⇋ ܥܿ +  (1)                                                          ܦ݀

For which the equilibrium (reversible) single electrode potential can be written as: 

(ଵ)ܧ           = (ଵ)ܧ	 - 
ோ்ி ݈݊  		ವಲೌ		ಳ್		ಹశ                                                                      (2) 

In fatigue analysis, there is no endurance limit for Mg and its alloys. Under 

corrosive conditions, this phenomenon is more pronounced and the slope of the fatigue 

curve depends on the environment and the alloy composition [58]. Corrosion is generally 

unwanted in engineering and science applications, whereas in the case of biodegradable 

implants, this phenomenon could revolutionize the biomedical industry if the degradation 

rate could be controlled. Mg is susceptible to oxidation at room temperature, which 

produces a passivation oxide layer. Mg standard electrode potential is -2.37 V as 

compared with the standard hydrogen electrode. In the presence of moisture, Mg oxide is 

converted to Mg hydroxide. The immunity region of Mg oxide in the Eh-pH diagram 

falls below the region of water stability, which is indicative of its vulnerability to 

corrosion [55,59]. At potentials above -2.37 V and pH value below 11, Mg corrodes 

producing Mg+2 and H2 [55,59] as shown in Figure 4.1. At pH values between 8.5 and 

12.5, a protective layer (MgO and Mg(OH2)) is formed [55]. It has been reported that 

these protective or passivating layers can promote osteoinductivity and osteoconductivity 
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)(2)(2)(2)( )(2 gsaqs HOHMgOHMg +→+                                                        (1) 

This overall reaction may include the following partial reactions: 

−+ +→ eMgMg aqs 22
)()(  (anodic reaction, -2.37 V)                                          (2) 

−− +→+ )(2)(2 222 aq(g)aq OHHeOH (cathodic reaction, -0.83 V)                       (3) 

)(2)(
2

)( )(2 saqaq OHMgOHMg →+ −+
(product formation, -2.69 V)                       (4) 

The presence of chloride ions (Cl-) transforms Mg(OH)2 into soluble MgCl2 (see equation 

5), resulting in excess OH- ions in the solution [65].  

−− +=+ OHMgClClOHMg 22)( 22                                                               (5)       

HClOHMgOHMgCl 2)(2 222 +=+                                                              (6) 

          However, MgCl2 is water soluble and hydrolyzed in accordance with equation (6). 

The reaction undermines the integrity of the Mg(OH)2 layer. Pitting corrosion occurs 

when Cl- ions diffuse through a breach in the passivating layer, which accelerates the 

corrosion of Mg alloys. The reduction process of hydrogen overvoltage of the cathodic 

phase plays an important role in corrosion, whereas with Mg a low overvoltage cathode 

facilitates hydrogen evolution and alkalization of solution, causing a substantial corrosion 

rate [63,64].  

             The H+ ions from equation (6) combine with Cl- producing HCl, which accelerate 

the dissolution of the metal, producing MgCl2. This process repeats itself in an 

autocatalytic manner, producing pits. 

Alloying is one method of improving the mechanical properties and corrosion 

resistance of Mg [66]. For bioabsorbable applications, the alloying element must be non-
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toxic and biocompatible, so that the concentration of the dissolved ions once implanted, 

would not substantially exceed the concentration normally found in human blood. The 

hydrogen evolved from corroding Mg implants have been reported to form gas pockets 

adjacent to the implant, which delays the healing of tissues in the surgery region, leading 

to necrosis. The gas pockets can cause separation of tissues and tissue layers [121].  

Huntsman et al. in 1960 reported the presence of magnesium (Mg2+) and calcium 

ions (Ca2+), both competing for reactive sites with clotting factors, which lead to the 

prolonged clotting time [67]. Ca2+ is an efficient catalyst in the clotting of blood, but the 

addition of Mg2+ competes with Ca2+, so that a sub-optimal amount of Ca2+ is available to 

bind with all reaction sites during the clotting process. Figure 4.2 [67] depicts the optimal 

concentration of Ca2+ and Mg2+ ions as a  function of clotting time of human plasma.  

 

Ca2+ ↔ Mg 2+ → clotting molecules → prolongs thrombosis 

 

The relevance of this plot in predicting clotting time will be discussed in section 

4.5, with regard to our alloys based upon the concentration of Ca++ and Mg++ measured 

by Inductively Coupled Mass Spectroscopy (ICP-MS) analyses of the electrolyte after 

corrosion.  
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Figure 4.2:  Ca2+ and Mg2+ concentration as a function of clotting time of human plasma 
[67]. 

4.3       Factors Affecting Corrosion 

The most important requirement of a biodegradable implant is its degradation 

properties in a given biological environment, which are influenced by various intrinsic 

and extrinsic factors. Intrinsic factors include: chemical composition, microstructure, 

surface energy, wettability, thickness and stability of the passivating oxide film. Extrinsic 

factors include: temperature, pH, dissolved oxygen content, amino acids, biomolecules 

and chloride ions in the surrounding environment [68]. Tissue fluids in the human body 

also present a very corrosive environment for implant devices. Furthermore, the 

regeneration of a passivating oxide film is delayed since the concentration of dissolved 

oxygen in body fluids is approximately one fourth of that in air. Additionally, the 
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4.3.1   Pilling-Bedworth Ratio 

Thermodynamics is the driving force for corrosion, where a negative change in 

Gibb’s free energy (-∆G) indicates the tendency of reaction to occur, in this case the 

formation of oxides. The Pilling-Bedworth ratio (RPB ratio), in the corrosion of metals, is 

the ratio of the volume of the elementary cell of a metal oxide to the volume of the 

elementary cell of the corresponding metal (from which the oxide is created). It describes 

the type of oxide film (passivating film) that will form on the surface of metals during the 

process of oxidation, which can further predict the stability of the oxides. ܴܲܤ = .݁݀݅ݔܯ) .݈ܽݐ݁݉ܯ)/(݈ܽݐ݁݉ߩ  (݁݀݅ݔߩ
where: RPB is the Pilling-Bedworth ratio, M is the atomic or molecular mass, n is 

number of atoms of metal per one molecule of the oxide, ρ is the density, and V is the 

molar volume.  

RPB < 1: Oxide coating layer is too thin, likely broken and provides no protective effect 

(tensile stresses in oxide film → brittle oxide cracks) 

RPB > 2: Oxide coating chips off and provides no protective effect (large compressive 

stresses in oxide film → oxide cracks) 

1 < RPB < 2: Oxide coating is passivating and provides a protecting effect against further 

surface oxidation (compressive stresses in oxide film → uniformly cover metal surface 

and is protective). 

Table 4.1 shows the Pilling-Bedworth ratios depicting the light metal (porous 

oxides) and heavy metal (non-porous oxides) oxides. The surface oxides of Mg and Ca 

are less stable as compared with those of Zn and Gd. 
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Table 4.1: Calculated Pilling-Bedworth ratio for the elements used in this investigation 
 

Oxides RPB 

MgO 0.80505 

ZnO 1.5852 

CaO 0.6474 

Gd2O3 1.2293 
 

4.3.2   Corrosion Kinetics 

Three equations generally describe the mode by which metals oxidize: (a) linear; 

(b) parabolic; and (c) logarithmic equations [157,158].  

          11 AtKy +=                                                                 (Linear equation) 

          22
2 AtKy +=                                              (Parabolic equation) 

         )log( 33 ctAKy +=                                       (Logarithmic equation) 

where: y is film thickness, t is time, and K, A and c are constants. 

The parabolic rate law may be attributed to a mechanism involving diffusion of 

solvent ions through a porous film (passivating) that is produced during the course of the 

corrosion reaction, which retards its rate. The rate-determining step is diffusion through a 

passivating film, thickness of film increases in proportion to the extent of corrosion. In 

the case of linear oxidation the formation of highly porous, poorly adherent and fractured 

non-protective oxide layers do not retard the rate of corrosion [158]. On the other hand, 

the slow leaching of ions from an implant may be due to the nature of the solute atoms 

(impurities) present in the alloy or on the adsorption of proteins on the surface of an 
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increased in the positive direction. The current flowing between the working electrode 

and the counter electrode (platinum) is measured on a high impedance ammeter. The data 

is plotted with the current density in A/cm2 on the x axis (logarithmic axis) versus the 

potential in V on the y axis (linear axis). 

The potentiodynamic polarization tests were performed in accordance with 

ASTM: G 102-89 [160] and electrochemical impedance spectroscopy (EIS) tests were 

performed in accordance with ASTM G 3-89 at 37 °C employing a GAMRY® 

potentiostat (G-750). Potentiodynamic polarization tests were conducted at a scan rate of 

1.0 mV/s. The electrolyte was purged with high purity nitrogen for 30 minutes prior to 

immersion of the sample, as well as continuously during the corrosion test.  

EIS tests were conducted in PBS under high purity nitrogen to determine the 

effect of alloying elements on the charge transfer resistance and were conducted in the 

frequency range from 1.0E-02 Hz to 1.0E+05 Hz with 10 points per decade. Figure 4.6 

shows schematic representation of the corrosion cell kit used in this investigation. 

Faraday’s law was used to calculate the corrosion rate (CR), in terms of penetration rate 

of the alloys, determined by:  

ܴܥ = .ܫ .ܭ .ߩܹܧ ܣ  

where, Icorr is the corrosion current (amps), K is a constant for the corrosion rate (3272 

mm/amp.cm.year), EW is the equivalent weight in grams/equivalent, A is the sample area 

(0.28 cm2) and ρ is the density (g/cm3) of the alloys calculated by Archimedes principal 

(see section 5.3).  
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affect further corrosion [161]. The samples were weighed before and after 24, 48, 72, 96, 

120, 144, 168 and 192 hours. For each time interval, the sample was removed from the 

PBS, rinsed in distilled water, air dried and then weighed. Once the immersion test was 

completed, the samples were cleaned by immersing in 180 g/l of chromic acid for 20 min. 

The weight gain in grams was calculated as follows [161, 162]:   

 

݊݅ܽ݃	ݐℎ݃݅݁ݓ = ݊݅ݏݎ݁݉݉݅	ݎ݁ݐ݂ܽ	ݐℎ݃݅݁ݓ − ܽ݁ݎܽ	݂݁ܿܽݎݑݏ݊݅ݏݎ݁݉݉݅	݁ݎ݂ܾ݁	ݐℎ݃݅݁ݓ  

 

ݏݏ݈	ݐℎ݃݅݁ݓ = ݊ݏ݅ݎ݁݉݉݅	݁ݎ݂ܾ݁	ݐℎ݃݅݁ݓ − ܽ݁ݎܽ	݂݁ܿܽݎݑݏ݈݃݊݅݊ܽ݁ܿ	ݎ݁ݐ݂ܽ	ݐℎ݃݅݁ݓ  

The corrosion rates were also calculated from the quantity of hydrogen evolved 

and weight change during the immersion test. The corrosion rate (CR, mm/year) was 

calculated as follows:  

ܴܥ = .ܹݐ ܶܣߩ10  

where, t is a constant (8760 h), W is mass loss, g (mass before immersion - mass 

after cleaning)/surface area, A is the surface area before immersion (cm2), T is the 

immersion time (h) and ρ is the sample density (g/cm3). 
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been reported to enhance the corrosion properties of the alloys. The corrosion parameters 

of the alloys in PBS are shown in Table 4.2.  

 

Figure 4.8: Typical potentiodynamic polarization curves of mechanically polished Mg 

samples in PBS at 37 oC. 
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Table 4.2: Average potentiodynamic polarization data for mechanically polished samples 
in PBS at 37 oC 

Samples (MP) E
corr

 (V) I
corr

 (µA) Corr Rate (mm/year) 

Mg1Zn (ACI) -1.43 72.35 5.90 
Mg1Zn1Ca (ACI) -1.54 159.33 12.98 

Mg1Zn1Ca8Gd (ACI) -1.54 283.33 23.61 
Mg1Zn1Ca -1.40 26.35 2.51 

Mg1Zn1Ca1HA -1.57 256 20.86 
Mg1Zn1Ca3HA -1.38 213 17.41 

Mg5Zn1Ca -1.40 133.05 10.9 
Mg5Zn1Ca1HA -1.55 27.02 2.2 
Mg5Zn1Ca3HA -1.49 169.05 13.78 

 

The effect of amino acids on degradation behavior of Mg alloys was also studied 

at 37 oC by employing concentrations of amino acids typically found in the human blood 

(C = 0.25 mM; Q = 0.568 mM and W = 0.042 mM). The corrosion parameters of the 

samples in PBS and PBS with amino acids are shown in Table 4.3 (polarization curves, 

Figure 4.9). Mg1Zn had the lowest corrosion rate in PBS (5.90 mm/year) and exhibited 

the highest corrosion rate in PBS+Q (66.65 mm/year). A similar trend was observed with 

the remainder of the alloys, where the corrosion rate increased in PBS with amino acids. 

Pound (2010) reported that amino acids in PBS increased the pitting susceptibility of 

Nitinol alloys [164], and attributed it to the acid-base/polarity nature of amino acids. 

Also, with titanium alloys, it was reported that amino acids are readily adsorbed onto the 

surface of TiO2 via their carboxyl groups by replacing the basic hydroxyl group on a Ti 

site [10,158,165].  

The ions released from implant materials into the human body are influenced by 

their composition as well as the environment into which they are placed. Amino acids are 
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essential building blocks in an immense array of macromolecules present in most 

organisms including blood; the general structure is R–CH(NH2)–COOH [104,158]. 

Amino acids have a zwitterionic or ampholyte character, which are important for the 

adsorption process. The susceptibility to corrosion of Mg alloys can be influenced by the 

presence of amino acids. However, the change in susceptibility is dependent on the type 

of amino acid. Amino acids exhibit either acid-base/polar or non-polar properties. For 

example, cysteine, C (neutral/slightly polar), glutamine, Q (neutral/polar) and tryptophan, 

W (neutral/slightly polar). 

 

Figure 4.9: Typical potentiodynamic polarization curves of mechanically polished Mg 
alloys in PBS containing amino acids at 37 oC. 
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Table 4.3: Average potentiodynamic polarization data from three test values in PBS and 
PBS containing amino acids 

Samples, MP Ecorr (V) Icorr (µA) Corr Rate (mm/year) 

Mg1Zn, PBS -1.43 72.35 5.90 

Mg1Zn, PBS+C -1.68 648.0 52.91 

Mg1Zn, PBS+Q -1.66 816.0 66.65 

Mg1Zn, PBS+W -1.73 416.5 34.02 

Mg1Zn1Ca, PBS -1.54 159.3 12.98 

Mg1Zn1Ca, PBS+C -1.71 335.5 27.33 

Mg1Zn1Ca, PBS+Q -1.61 538.5 43.87 

Mg1Zn1Ca, PBS+W -1.65 391.5 31.915 

Mg1Zn1Ca8Gd, PBS -1.54 283.3 23.61 

Mg1Zn1Ca8Gd, PBS+C -1.61 1345.5 141.80 

Mg1Zn1Ca8Gd, PBS+Q -1.59 538.5 44.82 

Mg1Zn1Ca8Gd, PBS+W -1.63 756.5 62.10 

 

In order to decrease the corrosion rates and to increase the initial stability, the 

alloys were anodized, during which an oxide layer (magnesium oxides/hydroxides) 

develops on the surface of the alloy forming a passivating film of approximately 4-6 μm 

thick. Ling-Ling et al. (2008) investigated anodized AZ91 magnesium alloy and reported 

an increase in corrosion resistance due to the anodic film, which increased with an 
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optimal treatment time of 40 minutes [166]. The anodized coating is relatively harder 

than other conversion coatings or fluoridated coatings which imparts high wear 

resistances. Furthermore, anodized surfaces are porous (similar to the bone 

microstructure) [114]. Another attractive feature of anodized coatings is that they can 

offer very effective protection to before the surgery region has healed. Subsequent 

degradation enables the implant to dissolve gradually [114]. Figure 4.10 shows the 

potentiodynamic polarization curves of anodized Mg alloys. The corrosion parameters 

obtained from Tafel interpolation are shown in Table 4.4. 

 

Figure 4.10: Typical potentiodynamic polarization curves of anodized Mg samples in 
PBS at 37 oC. 
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Table 4.4: Average potentiodynamic polarization data for anodized samples in PBS at 37 
oC 

 
Anodized Samples Ecorr (V) Icorr (µA) Corr Rate (mm/year)

Mg1Zn (ACI) -1.770 84.20 3.85 

Mg1Zn1Ca (ACI) -1.820 58.60 2.68 

Mg1Zn1Ca8Gd (ACI) -1.610 17.00 0.79 

Mg1Zn1Ca -1.800 167.0 7.61 

Mg1Zn1Ca1HA -1.750 38.40 1.76 

Mg1Zn1Ca3HA -1.970 83.60 3.82 

Mg5Zn1Ca -1.480 3.800 0.17 

Mg5Zn1Ca1HA -1.800 30.00 1.65 

Mg5Zn1Ca3HA -1.62 555.0 24.64 

 

           In order to illustrate the effect of anodizing on corrosion rates determined by 

potentiodynamic polarization, a histogram of the corrosion rates of both mechanically 

polished and anodized samples are shown in Figure 4.11. The corrosion rate of most of 

the alloys decreased drastically with anodization. Mg5Zn1Ca3HA and Mg1Zn displayed 

an increase in corrosion rate after anodizing; this can be attributed to the type of 

passivation layer generated. As was previously discussed in section 4.3, the addition of a 

lighter metal such as Ca produces porous oxides, which allow the electrolyte to come into 

contact with the metal as exhibited with Mg1Zn1Ca and Mg5Zn1Ca3HA. In the case of 

Mg1Zn1Ca, the increase in corrosion rate with anodization was due to a different 

manufacturing process and heat treatment.  
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double layer; Cc, capacitance of intact coating; and Rpo, pore resistance (resistance of ions 

conducting paths developed in the coating) [195]. Figure 4.18 shows the Nyquist plots for 

anodized samples, where an inductive loop and capacitance double loop (non-hydrogen 

evolving behavior) were observed. The first capacitive loop represents the pore resistance 

and the second loop shows the development of new surface conditions. This may be 

ascribed to the formation of various oxides, which act as an electric barrier and imparts 

initial stability to Mg alloys. The double loop of the Nyquist plots are indicative of oxide 

layers (the first loop are indicative of the open pore resistance of the oxide layers). It 

should be noted that, in the case of anodized Mg samples, every alloy exhibited a double 

loop, whereas, for mechanically polished alloys only Mg1Zn1Ca8Gd exhibited a double 

loop. 

In the case of implanted biodegradable Mg alloys, cell adherence prior to material 

degradation is highly desirable. Thus, anodization of the alloy implant imparts initial 

corrosion resistance and mechanical integrity after implantation and ensures sufficient 

time for the surgical region to heal. Song (2007) reported in the event of failure or 

breakdown of the anodized coating, the degradation products are non-toxic to the human 

body and that degradation mainly occurs at the damaged area [167]. Shi et al. (2006) 

reported the initial occurrence of pitting corrosion on anodized specimens followed by 

filiform corrosion or general corrosion [130]. Figure 4.19 shows the schematic 

representation of the factors affecting the filiform corrosion. 
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subcutaneous bubbles, which may delay the healing of surgical regions, resulting in 

necrosis of tissue, prolonged healing and discomfort to the patient [114]. Table 4.5 shows 

the solubility coefficient for hydrogen in biological media [64,116].  

Table 4.5: Ostwald solubility coefficient L (ml gas per ml medium) for hydrogen in 
biological media at various temperatures (oC) [64,116] 

Medium/tissue oC L 

Water 37 0.0185 

Saline 0.15 M 38 0.0178 

Plasma, ox 38 0.0175 

Red cells, ox 38 0.0166 

Whole blood, ox 38 0.0170 

Whole blood, man 37 0.018 

Skeletal muscle, rat 37 0.0218 

Olive oil 25.3 0.036 

Lard 25 0.039 

 

The adsorption of chloride ions on the surface oxides of the alloy lead to the 

formation of Mg(OH)2 via the hydrolysis of MgCl2 [167]. Dissolution of Mg(OH)2 

subsequently exposes the underlying metal, which leads to further dissolution of Mg. At 

anodic sites, Mg++ ions are produced; Cl- ions diffuse to such sites in order to establish 

electrical neutrality. MgCl2 is formed in the pits and hydrolyze according to equation (1) 

producing hydrochloric acid, which further dissolves the Mg. 

HClOHMgOHMgCl 2)(2 222 +→+                                   (1) 

At cathodic sites, water is reduced and hydrogen is evolved in accordance with equation 

(2).  
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−↑ +→+ OHHeOH 222 22                                                (2) 

222 )(2 HOHMgOHMg +→+ (overall reaction)                   (3) 

The overall reaction of equation (3) summarizes [63,167] the formation of 

hydrogen gas pockets adjacent to the implant, which delays the healing of tissues.  

Song 2007 reported both unanodized and anodized Mg alloys usually suffer from 

localized corrosion at which hydrogen is primarily evolved [167]. Hence, hydrogen 

evolution can be employed as an important parameter for comparing degradation rates of 

Mg and its alloys [167]. 

Figure 4.22 and 4.23, show the volume of hydrogen evolved per unit surface area 

of mechanically polished and anodized samples as a function of time. A similar volume 

of hydrogen was released from each sample during the initial 24 hours. However, a 

greater volume after 150 hours, of hydrogen evolved from the mechanically polished 

alloys. The decrease in hydrogen evolution from the anodized alloys was attributed to the 

presence of various oxides, which will be described in section 5.1. Additionally, the 

higher the content of Zn in MMC, the lower was the volume of hydrogen evolved. This 

was attributed to the formation of two type of oxides; those of light metals Mg and Ca 

(porous oxides of smaller volume); and those of heavy metals, Zn and Gd (non-porous 

oxides of greater volume) [158]. Mg and Ca oxidize at a rate that is nearly constant with 

time (linear equation) whereas, Gd and Zn oxidize proportionally to the logarithm of the 

time (parabolic equation) [157,158]. The high hydrogen evolution is attributed to the 
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uniform oxides on the surface. Mg1Zn (ACI) showed an increase in corrosion rate after 

anodization, which could be due to the formation of porous oxides on the surface. 

Furthermore, the rates of corrosion can be inferred from the morphology of the Mg 

samples shown in section 5.1. 

Table 4.6: Comparison between the corrosion rates depicted for mechanically polished 
and anodized samples via immersion test 

Alloys 
Immersion, mm/year 

Mechanically Polished Anodized 
Mg1Zn (ACI) 0.3 0.8 
Mg1Zn1Ca (ACI) 0.5 0.2 
Mg1Zn1Ca8Gd (ACI) 0.6 0.1 
Mg1Zn1Ca 2.4 0.6 
Mg1Zn1Ca1HA 3.4 1.2 
Mg1Zn1Ca3HA 2.6 1.4 
Mg5Zn1Ca 2.5 0.9 
Mg5Zn1Ca1HA 2.3 1.1 
Mg5Zn1Ca3HA 3.1 1.8 

 

4.5.4    Dynamic Immersion Test 

In order to better understand the degradation behavior of alloys/MMCs under 

dynamic conditions, immersion tests were performed in PBS at 37 oC using a vortex 

shaker with a constant speed of ~500 rpm for 144 hours. Due to the nature of the test 

setup, it was not feasible to determine hydrogen evolution. However, the pH monitored 

during dynamic immersion test ranged between ~7.2-9.3 (Figure 4.26) and ~7.2-8.4 

(Figure 4.27) for mechanically polished and anodized samples respectively, which were 

relatively higher than the pH obtained under static conditions (~7.2-8.4 and ~7.2-7.5 for 

mechanically polished and anodized samples respectively). Furthermore, it should be 

noted that there was no significant increase in pH in the case of anodized samples after 50 

hours of immersion. 
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Table 4.7 shows the corrosion rates of mechanically polished and anodized Mg 

samples in PBS at 37 oC under dynamic conditions. The mechanically polished samples 

exhibited higher susceptibility to corrosion as compared with anodized samples. This is 

attributed to the composition and thickness of the passivating oxides on the respective 

surfaces (~ 10-15 nm for mechanically polished and ~ 5-10 µm for anodized samples as 

previously discussed in section 5.1.1).  

The effect of the relative velocity between the electrolyte and Mg alloys/MMCs 

was not apparent for anodized samples as shown in Tables 4.7. This is attributed to the 

difference in the relative thickness of the passivating layers. The thin oxide layer of  

mechanically polished alloys/MMCs was less protective than that on the anodized 

samples, therefore, the former was more susceptible to pitting corrosion and chloride ion 

attack. Thus, anodization significantly increases the corrosion resistance and can serve to 

regulate the degradation rate of Mg alloys/MMCs.  

Table 4.7: Corrosion rates of mechanically polished and anodized samples under 
dynamic conditions. 

 

Samples 
Mechanically Polished 

(mm/year) 
Anodized 
(mm/year) 

Mg1Zn (ACI) 1.08 0.86 
Mg1Zn1Ca (ACI) 0.58 0.21 
Mg1Zn1Ca8Gd (ACI) 0.98 0.66 
Mg1Zn1Ca 1.22 1.33 
Mg1Zn1Ca1HA 3.18 0.47 
Mg1Zn1Ca3HA 3.81 0.97 
Mg5Zn1Ca 3.27 0.39 
Mg5Zn1Ca1HA 2.99 0.88 
Mg5Zn1Ca3HA 2.26 0.22 
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It should be noted that the effect of oxide composition on corrosion rate of 

mechanically polished samples was not as significant as compared with that on anodized 

samples. The phenomenon of corrosion kinetics of mixed oxides and their ensuing 

porosity is responsible for the aforementioned behavior and is discussed in section 4.2. 

However, the rate of degradation increased under dynamic conditions for mechanically 

polished samples. This is explained in terms of an increase in the critical limiting current, 

which increases with  agitation as the diffusion layer thickness decreases in accordance 

with the Butler-Volmer equation (Mass-transfer control) [156]. 

݅௧ = ߜܦܨ݊  ∗ܥ
 where:  

D is the diffusion coefficient; δ is the diffusion layer thickness and C* is the concentration 

of the electroactive (limiting) species in the bulk of the electrolyte. The effect of agitation 

on the rate of degradation of a metal under diffusion-controlled cathodic process is 

depicted in Figure 4.28 [198]. 
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Figure 4.28: Effect of velocity on the rate of degradation of a metal under diffusion-
controlled cathodic process [156]. 
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4.5.5    Dissolved Ions Released During Immersion Test 

ICP-MS (Perkin Elmer Sciex, model ELAN DRC-II) was used to determine the 

ions released during the immersion test. Atoms present in a solution are excited by an 

inductively coupled plasma and are then indentified and quantified by a mass 

spectrometer. The acquisition parameters of the ICP-MS used in the analysis are listed in 

Table 4.8.  

Table 4.8: ICP-MS acquisition parameters for the analysis of the samples  

ICP-MS Parameters 

IC RF Power 1300 

Nebulizer Gas Flow 0.92 L/min 

Plasma Gas Flow 16 L/min 

Lens Voltage 10.5 V 

 

ICP-MS was performed by collecting 5ml of PBS after each immersion test. The 

PBS was filtered to remove particulate matter and each sample was analyzed in 3 

replicates. Optimal grade nitric acid was used to prepare the calibration curve at the 

following concentrations: 0, 10, 25, 50, 60, 80 and 100 ppb. Good linearity was obtained 

for all elements and isotopes (R2 better than 0.991).   

The concentration of Mg and Ca in the samples was higher than the concentration 

of Zn and Gd and therefore, two separate dilution sets were prepared and measured with 

two separate calibration curves. A 1:2 dilution factor was applied to each sample prior 

measurement of Zn and Gd. A 1:500 dilution factor was applied to each sample prior to 

the measurement of Ca and Mg. Yttrium was used as an internal standard for the analysis 
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of Zn and Gd, while scandium was used as an internal standard for the measurement of 

Ca and Mg. Table A.11 (see Appendix – I) shows the mean concentration of elements 

obtained for the 3 replicates of each sample. Uncertainty was reported as the relative 

standard deviation. The uncertainty represents variability of 3 replicate measurements on 

the same sample (instrumental variation). Instrument blanks were analyzed and the 

concentration for the samples were then reported after their respective background 

subtraction (acid blanks).  

Figure 4.28 – 4.31 displays the average concentrations of the dissolved metal ions 

in the electrolyte under static and dynamic immersion conditions. ~0.6-21 μg/mL of Mg 

and ~48-69 μg/mL of Ca leached from mechanically polished samples as compared with 

anodized ~12-44 μg/mL of Mg and ~63-72 μg/mL of Ca under static conditions. ~20-33 

μg/mL of Mg and 65-87 μg/mL of Ca leached from anodized samples under dynamic 

immersion. These results appear to contradict the corrosion rates reported and further 

studies need to be conducted to elucidate this phenomenon. Nevertheless, it can be 

concluded that the concentration of Mg and Ca ions leached from anodized samples do 

not vary significantly under static nor dynamic conditions. Additionally, the metal ion 

release is not necessarily related to the elemental composition of the alloy (in the case of 

mechanically polished Mg based alloys/MMCs) but is more dependent on compactness, 

stability, thickness and regeneration potential of the oxide film (in the case of anodized 

samples) [68].  
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5.0      SURFACE CHARACTERIZATION 

5.1.     Material Characterization 

Microstructure, surface morphology and qualitative chemical composition of the 

samples were assessed using scanning electron microscopy/energy dispersive 

spectroscopy (SEM/EDS), JEOL JSM 6330F. A Siemens 5000 D, XRD with Cu-Kα 

radiation (wavelength, λ = 1.54 Ao) operating at 35 mA and 40 kV with a scan rate of 

0.01 o/sec over a 2 theta from 20-90o, was used to determine the microstructure phases. A 

DIFFRACplus EVA software (Bruker, Madison, WI, USA) was utilized to analyze the 

XRD spectra. The surface roughness of the samples was determined by optical 

profilometer and the data was analyzed by Scanning Probe Image Processor (SPIP).  

5.1.1 SEM/EDS: Mechanically Polished and Anodized Samples 

Figure 5.1 illustrates the SEM and EDS analysis of mechanically polished as-cast 

samples. A number of uniformly dispersed spherical particles (~ 5 µm) were observed on 

the surface of polished samples. EDS analysis at these spots depicted a higher 

concentration of oxygen and alloying elements. Zhang et al. (2010) reported two major 

phases in cast MgZn alloys, namely α-phase (matrix) and γ-MgZn [90]. SEM 

photomicrographs clearly display precipitates and grain boundaries on the surface of 

polished alloys as shown in Figure 5.1. EDS analysis suggests the occurrence of grain 

boundary segregation with relatively higher concentrations of alloying elements at the 

grain boundaries. Li et al. (2008) showed that α-phase (matrix) and Mg2Ca phase 

precipitated along the grain boundaries [65]. The formation of these binary phases was 

further confirmed by XRD analysis. 
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boundary sites, which then propagate along the grain boundaries. EDS analysis of the 

surface revealed the possible formation of a mixture of apatite, zinc phosphate and 

calcium phosphate. Figure 5.6 shows the SEM photomicrographs after static immersion 

test for 192 hours in PBS at 37 oC. In the case of samples with higher Zn concentration 

(Mg5Zn1CaxHA), SEM photomicrograph revealed localized corrosion attack 

preferentially on the α-matrix and to a lesser extent on the β-phases. During corrosion 

H2O is reduced according to equation (1) producing H2 and Mg(OH)2, with an increase in 

pH. Wang et al. reported localized pH increase, which is believed to cause the 

precipitation of less soluble products such as: magnesium phosphate, magnesium apatite, 

zinc phosphate and calcium phosphate [127]. EDS analysis of samples after immersion in 

PBS for 192 hours are shown in Figure 5.7 (a). Higher concentrations of alloying 

elements were observed on the surface of samples, which revealed preferential 

degradation of Mg. Figure 5.7 (b) shows the SEM photomicrograph of mechanically 

polished Mg5Zn1Ca alloy after 192 hours of immersion and the inset shows the SEM of 

human bone. Both photomicrographs display similar morphology, which may be 

advantageous for cellular activity. Such surface morphology can be conducive to cell 

viability since the filopodia can grow into the micro-pores and accelerate adherence and 

spreading. Furthermore, these micro-pores can serve as supply routes or reservoirs for 
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5.1.1.6 SEM/EDS of Anodized Mg Alloys/MMCs in PBS after Dynamic Immersion 

Test 

In order to better understand the degradation behavior of the Mg samples, 

dynamic immersion tests were conducted using a vortex shaker at a constant speed of 

~500 rpm for 144 hours in PBS at 37 oC. As discussed in section 4.5, corrosion rates 

increased under dynamic conditions and so did the pH of the electrolyte. This was in 

contrast to what was observed for anodized samples under static conditions as shown in 

Figure 2.7 and 2.5 respectively.  

Figure 5.11 shows the SEM photomicrograph of Mg alloys/MMCs after dynamic 

immersion, where the size of the pits and cavities are larger than those created under 

static conditions. Pitting corrosion appears to have initiated at defects in the matrix before 

extending towards the grain boundaries forming a honeycomb structure of pore and 

cavity sizes ranging between ~1-10 µm and ~10-80 µm respectively. The aforementioned 

dimensions are within the acceptable range for cellular activity. Generally, grain 

boundaries corroded to a greater extent under dynamic conditions as compared with that 

under static conditions.  
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The relative amount of each phase present in the samples was evaluated from the 

respective areas under the XRD spectra. The relative proportion (wt%) of each 

intermetallic phase occurred in the following order: MgZn2 (0.04-0.34) > Mg2Ca (0.009-

0.018) > Ca5(PO4)3(OH) (0.005-0.013) > Ca2Mg6Zn3 (0.002-0.008) > Mg5Gd (0.010) . 

The binary phases, referred to as Laves phase [171], are known to improved creep 

resistance due to solid solution strengthening, precipitation strengthening and grain 

boundary pinning, which increase hardness and wear resistance. Additionally, these 

phases serve as grain refining agents and contribute to grain boundary strengthening. Tao 

et al. (2008) reported the formation of fine precipitates of Mg2Ca dispersed within the 

grains [87], as was observed in our work. 

Figure 5.13 (b) shows the XRD spectra of the Mg samples received from Brunel 

University. The samples were mainly composed of α-Mg matrix and various binary and 

ternary intermetallic compounds Mg2Ca, CaZn2, MgZn2, CaZn5, Ca2Mg6Zn3 and 

Ca5(PO4)3(OH). Zibiao Li (2010) matched MgZnCaHA with HA phase and the latter 

remained chemically unaffected during manufacturing [113]. Figure 5.14 shows the XRD 

spectra for anodized samples. It should be noted that both mechanical and anodized 

samples exhibited similar XRD peaks. This was attributed to the fact that the depth of 

penetration of the X-ray beam was greater than the thickness of the anodized oxide layer 

so that, the effect of anodization could not be detected as the beam interacted with the 

substrate in each case. 
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Figure 5.13: XRD spectra of mechanically polished samples: (a) Mg1Zn (ACI); 
Mg1Zn1Ca (ACI); Mg1Zn1Ca8Gd (ACI) and (b) Mg1Zn1Ca; Mg1Zn1Ca1HA; 

Mg1Zn1Ca3HA; Mg5Zn1Ca; Mg5Zn1Ca1HA; and Mg5Zn1Ca3HA. 
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Figure 5.14: XRD spectra of anodized samples. 

Figure 5.15 and 5.16 show the XRD analyses of the samples after corrosion, 

where it can be observed that the intensity of Mg peaks is low for mechanically polished 

samples as compared with those for anodized samples. These results correlated with the 

composition of the alloys/MMCs (EDS analysis), where a lower concentration of Mg was 

observed for the former samples (see section 5.1.1.2). A higher Mg peak intensity for 

confirmed a higher corrosion resistance of anodized samples. Furthermore, the peak 

intensity results also correlated with corrosion rates discussed in section 4.5, where lower 

corrosion rates were observed for anodized samples as compared with those obtained for 

mechanically polished samples. 
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Figure 5.15: XRD spectra of mechanically polished samples after corrosion in PBS. 

 

 

Figure 5.16: XRD spectra of anodized samples after corrosion in PBS. 
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Figure 5.17 shows the XRD spectra of the anodized samples subjected to dynamic 

immersion in PBS for 9 days at 37 oC. Comparatively lower intensity of Mg and 

Mg(OH)2 was observed for latter, which reveals faster degradation during dynamic 

immersion. A similar behavior was also noted in the case of binary and ternary phases.   

 

Figure 5.17: XRD spectra of anodized samples after dynamic corrosion in PBS at 37 oC. 

 

5.2      Grain Size Determination 

Factors that affect the degradation behavior of Mg alloys/MMCs include: grain 

size, composition, microstructure and distribution of intermetallic phases. The grain size 

of the Mg alloys/MMCs were determined by swabbing the surfaces with acetic glycol 

etchant of composition: water 19 mL, ethylene glycol 60 mL, acetic acid 20 mL and 

HNO3 1 mL for a duration of 1-5 seconds. An optical microscope was then used to 

observe and measure the grains [128]. 
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Figure 5.18 shows the overall grain size of the Mg samples, which ranged 

between ~ 60 – 110 μm. The smallest grains (~60 μm) were observed in Mg samples with 

3 wt.% HA. Alvarez-Lopez et al. (2010) reported that fine grained AZ31 possessed good 

corrosion resistance [60]. Li et al. showed that the addition of HA reduced the solid/liquid 

interfacial energy in Mg alloys. Since the lattice parameter for HA (9.41 Å) is three times 

greater than that of Mg (3.21 Å), it results in heterogeneous nucleation and good 

wettability [113]. Furthermore, the large variation in lattice parameters can lead to grain 

boundary segregation and grain growth restriction. During solidification, alloying 

elements can be rejected by the α-Mg, which restricts grain growth. However, according 

to Hall-Path formula, an increase in Zn concentration decreases the grain size of the alloy 

and increases the yield strength [113]. Becerra and Pekguleryuz achieved an effective 

grain refinement with Zn, which was explained by its segregation and minimization of 

surface energy [129]. As shown in Figure 5.18, the grain size decreased when Ca, HA 

and Zn were added to Mg. This may be attributed to the precipitation of intermetallic 

phases (Ca2Mg6Zn3, MgCa2, CaZn2, Ca5(PO4)3(OH) and MgZn2) previously shown in 

Figure 5.14.  

 

 
 
 
 

 

 



5

m

is

sp

D

In

w

.3     Density

Densi

matter, and h

s solid, poro

pecific gravi

Density (ρ1) =

n our work, 

with the follo

Figu

y Measurem

ity depends o

how much sp

ous, or comp

ity, which is 

= mass/volum

Archimedes

owing equati

ure 5.18: Av

ment 

on the weigh

pace exists b

posed of oth

expressed m

me 

s Principal w

on: 

1 W
=ρ

11

verage grain 

ht of the ind

between them

her elements

mathematica

was used to 

31

1 .
W

GS
W

W
×

−

13 

size of Mg s

dividual atom

m. It also de

s. Densities 

ally as: 

calculate th

1.. waterofG

samples. 

ms and mole

epends on w

is expresse

he density (ρ

 

ecules makin

whether the m

ed using the 

ρ1) in accord

ng up 

matter 

term 

dance 



W

w

li

m

sh

d

d

2

ex

~

Where: W1 i

when immers

Mg al

ight weight a

manufacture 

hielding tha

ensity (Arch

ensity range

.1 g/cm3) [6

xcept for M

~1.83 g/cm3. 

Figure 5.19

s weight of 

sed in water 

lloys have a

and load bea

of orthoped

at exists wit

himedes pri

ed between ~

6].  All alloy

Mg1Zn1Ca8G

9: Experimen

f the thoroug

and S.G. is t

a density tha

aring capaci

dic implant

th other me

inciple meth

~1.69-1.87 g

ys containin

Gd (~1.85 g/

ntal and theo

11

ghly dried s

the specific g

at is ~1/3 th

ty, Mg alloy

t devices, b

etallic impla

hod) and th

g/cm3, which

ng 1 wt.%  Z

/cm3). Alloy

oretical dens

14 

sample, W3

gravity of th

at of titaniu

ys/MMCs ar

because they

ants. Figure

heoretical de

h is similar

Zn displayed

ys with 5 wt

sities of mec

is the weig

he water. 

um alloys [1

re attractive 

y reduce th

e 5.19 show

ensity of M

to that of hu

d a density 

.% Zn displ

chanically po

ght of the sa

06]. Due to

materials fo

he risk of s

ws the calcu

Mg samples.

uman bone 

of ~ 1.75 g

ayed densiti

olished samp

ample 

their 

or the 

stress 

ulated 

 The 

(1.8–

g/cm3, 

ies of 

 

ples. 



5

in

w

a 

w

(e

on

p

li

co

w

is

 

   

.4     Wettab

Subbi

nfluencing c

wettability of

Kyowa con

was adopted 

ethylene gly

n each speci

otential influ

iquid droplet

ontact angle

where, ߛ௦௩ is 

s the surface 

Figure 5.20
inte

            

bility  

iahdoss et 

cellular inte

f samples we

ntact angle m

by employin

col) and hig

imen at loca

uence of pre

t resting on 

can be ex ߠ 

the surface 

energy of th

0: (a) Kyowa
rfacial force

al. (2010) 

eractions w

ere determin

meter model

ng three diff

hly polar (di

ations separa

evious tests. 

a solid subs

xpressed as [ߛ௩
energy of th

he liquid and

a contact ang
es and conta

11

reported w

ith biomate

ed by measu

l DM-CE1 (

ferent solven

iiodomethan

ated by suffi

Figure 5.20

strate. Acco

113]: cos ߠ = ௦௩ߛ
he solid, ߛ௦
d ߠ is the con

gle meter, DM
ct angle of a

15 

wettability 

erials [108]

uring contact

(Figure 5.20

nts: mildly p

ne). Ten tests

ficient spacin

0 (b) shows t

ording to the

௩  ௦ߛ	−
is the solid 

ntact angle.

DM-CE1 and 
a liquid drop

as an imp

. In this in

t angles on t

0a). The ses

polar (distille

s were perfo

ng (~ 0.5 mm

the contact a

e Young-Du

liquid interf

d (b) Schema
p on a solid s

portant pro

nvestigation

the samples u

sile drop me

ed water); ne

ormed per so

m) to preven

angle formed

upre equation

facial energy

tic represen
surface. 

operty 

n, the 

using 

ethod 

eutral 

olvent 

nt the 

d by a 

n, the 

y, ߛ௩ 

 

ting 



 

116 
 

FAMAS analysis software was used to evaluate the surface free energy (SFE) 

parameters of samples by adopting the Lifshitz-van der Waals (LW) acid-base interaction 

and Kitazaki-Hata theory. The SFE was calculated using: ߛ௧௧ = ௗߛ ߛ	+  ߛ	+

where, γtotal is the total SFE; γd is SFE dispersion component; γp is SFE polar component; 

and γh is SFE hydrogen bond component. 

According to the energy interchange model of the acid and base, liquids of 

different surface tensions, two of which are polar (water and diiodomethane) are 

employed. The following energy balanced equation is established [172]: 

1)݅ߛ + (݅ߠݏܿ = 2ቆට݀݅ߛ ݏ݀ߛ + ටݏߛ݅+ߛ− + ටݏߛ݅+ߛ−ቇ 

 
where, ݅ߛ = ݀݅ߛ + 2ටߛ݅+ߛ−݅ 

 
and, ܵߛ = ݀ܵߛ + 2ටܵߛܵ+ߛ− 

 

 
 

Where, θi contact angle between solid and liquid ߛ surface tension of testing drop  ߛ௦ surface tension of solid sample ߛௗ dispersion portion of surface tension 
(testing drop, i) 

 ௦ௗ dispersion portion of surface tensionߛ
(testing surface, s) ߛା surface tension contribution by acid 

(testing drop, i) 
 ௦ା surface tension contribution by acidߛ
(testing surface, s) ߛି  surface tension contributed by base 

(testing drop, i) 
௦ିߛ  surface tension contributed by base 
(testing surface, s) 

 

ݏߛ = ݏ݀ߛ + 2ඥݏߛ+ݏߛ− 
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5.4.1   Wettability Measurements of Mg Alloys/MMCs 

The contact angle, wettability and surface free energy are inherently 

interdependent parameters that are known to have significant influence on 

biocompatibility of implants [68]. In this investigation, the water contact angle of 

mechanically polished and anodized samples ranged between 70o – 110o. A decrease in 

water contact angle was observed with alloying. However, anodization caused a slight 

increase in the water contact angle, as illustrated in Figures 5.22 and 5.24. It should be 

noted that there was no significant difference between the surface free energy of 

mechanically polished and anodized samples as shown in Figures 5.23 and 5.25.  

The surface layer of metal could be oxides or sulphides, followed by strong polar 

bonds, water strongly interact with the –OH group and final layer with low surface 

energy, Figure 5.21 [152]. Detailed parameters can be found in Appendix I. The surface 

of bare metals is normally electropositive, the magnitude of which is dependent on the 

type of surface treatment. Coating a metal surface takes advantage of a materials surface 

free energy and in some cases, can lead to reduced risk of thrombosis [68]. The coating of 

Nitinol and stainless steel implants with polymers was adopted to improve corrosion 

resistance and reduce nickel leaching. But the advent of drug eluting polymer coated 

stents witnessed an increase in thrombosis. This led to the introduction of thrombo-

resistant hydrophobic polymers. 
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Mg1Zn1Ca 28.3 0.0 8.5 28.3 

Mg1Zn1Ca1HA 26.1 0.0 9.8 26.1 

Mg1Zn1Ca3HA 23.4 0.0 6.0 23.4 

Mg5Zn1Ca 26.4 0.0 4.3 26.4 

Mg5Zn1Ca1HA 25.9 0.0 16.0 25.9 

Mg5Zn1Ca3HA 30.6 0.0 16.9 30.6 
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6.0 DETERMINATION OF MECHANICAL PROPERTIES 

6.1       Elastic Modulus and Hardness Via Nanoindentation 

The bulk hardness and Young’s modulus of elasticity were determined using a 

MTS Nanoindenter XP with a diamond Berkovich indenter. Due to the large grain size of 

the specimens, high peak loads (~500 mN) were used, which leads to deeper indentations 

that provide more accurate bulk properties. At least 10 indentations (spaced 100 microns 

apart) were used to estimate the modulus and hardness of the specimen. The Oliver- 

Pharr [173] approach was adopted, where the load displacement is defined as: ܲ =∝ ℎ 

where, P is the indenter load, h is the elastic displacement of the indenter and α and m are 

constants. 

 The elastic modulus was calculated by the load displacement behavior described 

in the following equation: 1ܧ = ቆ1 − ܧଶߥ ቇ௦	 +	ቆ1 − ܧଶߥ ቇௗ௧ 

where, E is Young’s modulus, ν is Poisson’s ratio and ܧ and ߥ are the indenter 

parameters.  

    The experimental method was designed to minimize errors due to thermal drift, 

machine compliance, etc. The stiffness (Young’s modulus) was evaluated from the 

unloading curve by taking the derivative at the inception of the best-fitted polynomial 

function with respect to the displacement, i.e. dP/dh. The contact area was defined by a 

polynomial function obtained by using reference data from a fused silica specimen with a 
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known modulus (72.1 GPa by ultrasonic measurements) and hardness. The area function 

was calculated for a depth greater than the maximum depth penetrated in the specimens, 

where the tip radius was calibrated using a tungsten specimen.  

6.2       Vicker’s Hardness 

Vicker’s hardness test was performed in accordance with ASTM E 384-07 [174] 

using a Zhongguo HXD-100 TMC Shanghai Taiming Optical Instruments micro-

hardness tester applying loads of 10, 25 and 50 grams with a dwell time of 10 seconds. 

The force applied to the indenter (a square-based pyramidal shaped diamond indenter 

with face angle 136o
, Figure 6.1) was divided by the surface area of the permanent 

impression made by the indenter. Vicker’s hardness was calculated using the average of 

the two diagonals in the following formula:  

HV = (constant) x (test force) / indent diagonal squared 

The constant is a function of the indenter geometry and the units used for 

quantifying force and diagonal dimensions. It was assumed that no elastic recovery 

occurred after the loading cycle once the indenter was removed.  Special precautions 

were taken during the measurements to minimize vibration and to ensure that the 

specimen was flat and level during indentation.  
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Figure 6.1: Schematic of indentation dimensions during Vicker’s hardness test [175]. 

6.3      Results and Discussions of Mechanical Properties 

Reliable results are obtained by the Oliver-Pharr method when the ratio of hf/hmax 

is less than 0.7, where hf is the final displacement at complete unloading and hmax is the 

maximum depth of penetration during a nanoindentation test [176]. This approach does 

not account for possible pile-up behavior. The Mg alloys/MMCs exhibited mainly plastic 

behavior, where indentation measurements at depths greater than 1000 nm and peak loads 

greater than 25 mN produced mechanical properties that are relatively constant with 

indentation and are representative of the bulk material. However, an increase in the 

modulus was observed with the addition of alloying elements. Due to the possibility of 

the formation of oxides on the surface of the Mg alloys/MMCs, shallow depths less than 

1000 nm were not utilized in the determination of mechanical properties. Additionally, 

since grain-sizes of the samples were greater than 60 microns (section 5.2), mechanical 
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properties based on indentation at depths greater than 1000 nm were considered 

comparable to those of the bulk. 

Tao et al. (2008) reported that micro hardness of MgZnCa increased from 59.3 

GPa to 120.8 GPa with age hardening and that addition of Ca lead to the formation of 

hardening phases such as: Mg2Ca and Ca2Mg6Zn3 [104]. Witte et al. (2007) determined 

the Vicker’s hardness Mg alloys by applying a 1000 µN load and obtained a hardness of 

73 GPa – 111 GPa, although lower hardness was observed with large and inhomogeneous 

conglomerates [177]. The Young’s modulus of AZ91D and Mg MMC/HA was reported to 

be 40 GPa [177], which is comparable with that obtained in the present investigation. 

In this investigation, the hardness and the modulus of the specimens remained 

almost constant at depths greater than 1000 nm at various peak loads as shown in Figure 

6.2 (a), (b) and (c). MgZnCaGd exhibited the highest modulus (~52 GPa) and hardness (~ 

1.2 GPa) followed by MgZnCa/nHA modulus (~ 45-50 GPa) and hardness (~ 0.8-1.1 

GPa). This was attributed to grain boundary segregation of Zn, Ca and HA in the case of 

MgZnCa/nHA and Zn, Ca and Gd for MgZnCaGd. It was reported that Zn, Ca and HA 

act as grain-refining agents and contribute to solid solution formation, precipitation and 

grain boundary strengthening as previously discussed in Chapter 5. Gd improved the 

strength and creep resistance of Mg alloys, and Zn along with other alloying elements, 

improved the strength and corrosion resistance of Mg [38]. With the addition of Ca and 

Gd in MgZn, the average displacement curves of MgZnCa and MgZnCaGd show an 

increase in the work of indentation or the hysteresis loop energy.  

The hardness of Mg alloys/MMCs was determined by Nanoindentation (Figure 

6.3) and by Vicker’s hardness (Figure 6.4). The results by each method were comparable 
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by R.G. Huntsman et al., 1960 [67]. It is envisaged that the usage of biodegradable Mg 

alloys/MMCs for the manufacture of stents and orthopedic implants will obviate the need 

for repeat surgical procedures, which increase healthcare costs and possibility of patient 

morbidity. 

7.1      Endothelial Cell Proliferation on Mg Alloys/MMCs 

Damage to the endothelium layer and exposure of the subendothelial matrix at the 

site of arterial injury may result in intimal hyperplasia (a physiological healing response 

after damage to blood vessels that causes thickening of the walls), which leads to in-stent 

restenosis (narrowing of blood vessels with >50% luminal closure) [137]. Restenosis 

remains a significant problem, with 15%-20% of patients affected after primary stenting. 

Restenosis occurs typically 3 to 6 months after installation of stents. Drug eluting stents 

(DES) evolved in an effort to prevent in-stent restenosis. On the other hand, surface-

induced thrombosis also causes failure of cardiovascular stents, which may be reduced if 

the stent surface is rendered suitable for endothelialization. Biodegradable Mg 

alloys/MMCs have been used to minimize the effects of thrombosis and in-stent 

restenosis [195]. Maier et al. (2004) reported Mg deficiency promotes atherosclerosis, 

thrombosis and hypertension [138]. 

The growth of human pulmonary artery endothelial cells (HPAEC, Fischer 

Scientific, catalog# PH30205AK) on the surface of magnesium samples was assessed 

using the ISO 10993 protocols for biological evaluation of medical devices. Endothelial 

cells were maintained in accordance with the instructions provided by the commercial 

source (Fischer Scientific, catalog# PH30205AK). The cells were first cultured in a T-75 
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cell culture flask using F-12K as the medium, the composition of which is listed in Table 

7.1. When cells were 90% confluent, they were trypsinized, centrifuged and then re-

suspended in culture media for cell counting and cell seeding as further discussed 

elsewhere [68]. 

In order to assess endothelial cell proliferation, Mg samples of dimensions 0.414” 

x 0.414” x 0.08” were placed into a 24-well plate and seeded with 50×103 cells per well. 

Cell culture plates with samples in cell culture media were incubated for 48 hours at 37 

ºC under 5% CO2. Later, the cell culture media was removed and the samples were gently 

washed with Dulbecco’s phosphate buffered saline (DPBS). 2ml of Hoechst dye (5µM) 

and Mitotracker Red dye (100nM) were added into the wells. Hoechst dye was used to 

highlight the nuclei of the cells, while Mitotracker Red dye was used to highlight the 

mitochondria of the cells. The plates were again incubated for 20 minutes, after which the 

samples were washed 3 times with DPBS. Finally, the cells were fixed on the surface of 

the samples with 10% formaldehyde and covered by glass slides. Due to fast degradation 

and hydrogen gas evolution from the samples, no clear evidence of cellular activity was 

observed. In addition, the metal oxide that is continuously produced on the surface may 

have engulfed cells. Thus, cellular proliferation may have been obscured and/or inhibited 

by simultaneous degradation, hydrogen evolution, localized pH increase and oxide 

formation. Further investigation is needed to elucidate this phenomenon. 
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Table 7.1: Composition of F-12K medium used for endothelial cells [68] 

 

Inorganic Salts g/L Amino Acids g/L Amino Acids g/L Vitamins g/L Other g/L 

CaCl2·2H2O 0.13524 
L-Arginine (free 

base) 
0.42140 

L-
Phenylalanine 

0.00991 D-Biotin 0.0000733 D-Glucose 1.26000 

CuSO4·5H2O 0.000002 L-Alanine 0.01782 L-Proline 0.06906 Choline Chloride 0.01396 
Phenol Red, 
Sodium Salt 

0.00332 

FeSO4·7H2O 0.000834 L-Asparagine·H2O 0.03020 L-Serine 0.02102 Folic Acid 0.00132 
Sodium 
Pyruvate 

0.22000 

MgCl2·6H2O 0.10572 L-Aspartic Acid 0.02662 L-Threonine 0.02382 Hypoxanthine 0.00408 Lipoic Acid 0.00021 

MgSO4 
(anhydrous) 

0.19264 L-Cysteine·HCl·H2O 0.07024 L-Tryptophan 0.00408 Myo-Inositol 0.01802   

KCl 0.28329 L-Glutamic Acid 0.02942 
L-Tyrosine 
(free base) 

0.01087 Nicotinamide 0.0000366   

KH2PO4 
(anhydrous) 

0.05852 L-Glutamine 0.29220 L-Valine 0.02342 
D-Pantothenic 

Acid 
0.000477   

NaHCO3 1.50000 Glycine 0.01501   Putrescine·2HCl 0.000322   

Na2HPO4 0.11502 
L-

Histidine·HCl·H2O 
0.04192   Pyridoxine·HCl 0.0000617   

NaCl 7.59720 L-Isoleucine 0.00782   Riboflavin 0.0000376   

ZnSO4·7H2O 0.000144 L-Leucine 0.02624   Thiamine·HCl 0.000337   

  L-Lysine·HCl 
0.07304 

 
  Thymidine 

 
0.000727 

  

  L-Methionine 
0.00895 

 
  Vitamin B-12 

 
0.001355 
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7.2      Cytotoxicity of Leached Ions on Endothelial Cells by SRB Assay 

The effect of dissolved ions released from Mg alloys/MMCs in PBS during in-

vitro corrosion tests on Human Pulmonary Artery Endothelial Cells (HPAEC) was 

assessed by sulphorhodamine B (SRB) assay. The cells were thawed on receiving and 

seeded in T-75 tissue culture flasks in endothelial cell growth medium (Fischer Scientific, 

Catalog# PM211500). Once the cells were 90% confluent in the flask, the cells were 

trypsinized and centrifuged for 5 minutes at 1700 rpm. The supernatant was removed and 

the cell pellet was dissolved in media. Cells were counted using the cell counting device 

(Bio-Rad TC 10, automated cell counter) and the media was further added to achieve a 

cell concentration of 105 cell/ml. 200µl of cell solutions (approx 20,000 cells/well) were 

placed in three 96 well plates. Endothelial cells in the wells were exposed to three 

different concentrations of corrosion extract (10%, 50% and 100%; with the remainder 

being cell culture media) over periods of 2, 4 and 7 days. The corrosion extracts were 

prepared by dissolving 10% FBS, 1% Penstrep into the PBS collected after corrosion. 

The well plates were then placed in an incubator at 37 oC and 5% CO2 in a humidified 

environment. The viability of the HPAEC was assessed over different time periods using 

SRB assay and their relative survivability were measured from the absorbance measured.   

The total concentration of Mg, Zn, Ca, Gd and HA ions in 100% corrosion extract 

was ~114.8 μg/mL, with individual ionic concentrations of: Mg = 33.0; Zn = 0.8; Ca = 

81.0 and Gd = 0.01 μg/mL.  Subsequently, a 50%  corrosion extract contained a total 

dissolved ion concentration of ~57.4 μg/mL, with individual ionic concentrations of: Mg 
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= 16.5; Zn = 0.4; Ca = 40.5 and Gd = 0.01 μg/mL; and 10% corrosion extract contained a 

total dissolved ion concentration of ~11.5 μg/mL, with individual ionic concentrations of: 

Mg = 3.3; Zn = 0.1; Ca = 8.1 and Gd = 0.001 μg/mL. 

Figure 7.2 shows the cytotoxicity assessment of corrosion extracts from 

mechanically polished Mg samples in PBS at 37 oC. All samples exhibited an increase in 

cell growth in extracts of 10% and 50% over periods of 2, 4 and 7 days, which was 

comparable with that of the control. With a 100% corrosion extract from all samples, the 

net growth rate of cells decreased except for the Mg1Zn1Ca3HA extract, in which 

endothelial cells proliferated. These results are supported by ICP-MS analysis (Appendix 

I, Table A.11), where the concentration of Zn in the Mg1Zn1Ca3HA extract was at least 

1 order of magnitude lower than the Zn concentration in all other extracts. The 

concentration of Zn appeared to be some what toxic to cells of all the ions. Furthermore, 

the concentrations of leached ions from Mg1Zn1Ca3HA were comparable with those in 

the F-12K cell culture media as shown Table 7.2, where again the Zn concentration was 

low  relative to Mg and Ca. It should be noted that the culture media and 100% extract 

from Mg1Zn1Ca3HA had similar concentrations of dissolved ions, which corroborate 

with similar cell survivability measured in both solutions. 
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interactive molecules. This process consists of two parts, namely the physicochemical 

bond formed between the cells and the material’s surface and adhesion, which are 

assisted by various extra cellular matrix proteins, cytoskeleton proteins and adhesion 

molecules. The resulting interactions result in the formation of either a fibrous tissue or a 

strong bone bond [178].  

The cell culture media was prepared by mixing Dulbecco's Modified Eagle 

Medium:Nutrient Mixture F-12 (DMEM/F-12)with 2.5 mM L-glutamine, 0.3 mg/ml 

G418 and fetal bovine serum. The composition of the DMEM/F-12 medium used for 

osteoblast cells is shown in Table 7.2. The cell culture medium was replaced in the flask 

after every 36 hours to remove the dead cells and to provide additional nutrients for the 

existing cells, because the cell-number doubling time for the osteoblast cells has been 

reported to be approximately 36 hours at 34 oC. Once the cells were confluent in the cell 

culture flask (approximately after 5 to 7 days ) they were trypsinized. The cells were then 

utilized in subsequent cell growth and cytotoxicity tests. 

Human osteoblast cells (hFOB 1.19 cells, ATCC, Manassas, VA, USA) at a 

concentration of 105 cells/ml, were cultivated on the pre-cleaned surface of mechanically 

polished samples in an incubator at 37 oC under 5% CO2 for 48 hours. The cells were 

then washed with PBS and fixed with 25% formalin solution (1:3 formalin and PBS, 

Thermo-Shandon, 990244) for SEM analysis [10,188].  

SEM analysis revealed poor cell visibility, which was attributed to localized pH 

increase, hydrogen evolution and simultaneous oxide formation on Mg alloys/MMCs. 

Similar observations have been reported by various researchers, who suggested that the 

cells may be present in cracks, crevices and under the oxide layers [115]. 
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Table 7.2: Composition of DMEM/F-12 medium used for osteoblast cells [189,190,191,192,193] 

Inorganic Salts g/L Amino Acids g/L Amino Acids g/L Vitamins g/L Other g/L 

CaCl2 (anhydrous) 0.1166 Glycine 0.01875 L-Proline 0.01725 Biotin 0.0000035 D-Glucose 3.151 

CuSO4·5H2O 1.3E-06 L-Alanine 0.00445 L-Serine 0.02625 Choline Chloride 0.00898 HEPES 3.5745 

Fe(NO3)3"9H2O 0.00005 
L-Arginine 

hydrochloride 
0.1475 L-Threonine 0.05345 

D-Calcium 
pantothenate 

0.00224 
Hypoxanthine 

Na 
0.00239 

FeSO4·7H2O 0.000417 L-Asparagine·H2O 0.0075 L-Tryptophan 0.00902 Folic Acid 0.00265 Linoleic Acid 0.000042 

MgCl2 

(anhydrous) 
0.02864 L-Aspartic Acid 0.00665 

L-Tyrosine 
disodium salt 

dihydrate 
0.05579 Niacinamide 0.00202 Lipoic Acid 0.000105 

MgSO4 (anhydrous) 0.04884 
L-Cysteine· 

hydrochloride-H2O 
0.01756 L-Valine 0.05285 

Pyridoxine 
hydrochloride 

0.002 
Putrescine 

2HCl 
0.000081 

KCl 0.3118 L-Cysteine·2HCl 0.03129   Riboflavin 0.000219 
Sodium 
Pyruvate 

0.055 

NaHCO3 1.2 L-Glutamic Acid 0.00735   
Thiamine 

hydrochloride 
0.00217 Thymidine 0.000365 

NaCl 6.9955 L-Glutamine 0.365   Vitamin B12 0.00068   

Na2HPO4 0.07102 
L-Histidine 

hydrochloride-H2O 
0.03148   i-Inositol 0.0126   

Na2HPO4H2O 0.0625 L-Isoleucine 0.05447       

ZnSO4·7H2O 0.000432 L-Leucine 0.05905       

  L-Lysine hydrochloride 0.09125       

  L-Methionine 0.01724       

  L-Phenylalanine 0.03548       
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7.4      Cytotoxicity of Leached Ions on Osteoblast Cells by SRB Assay  

           The viability of osteoblast cells (ATCC, catalog# CRL11372) exposed to 

dissolved ions in PBS after corrosion were assessed by SRB assay. The cells were thawed 

on receiving and seeded in T-75 tissue culture flasks in culture medium that was made 

from 89% base media (Invitrogen, Catalog# 11039-021), 10% FBS (ATCC, Catalog# 30-

2020), 1% Penstrep (ATCC, Catalog# 30-2020) and 0.3mg/ml of G 418 of the base 

media. Once the cells were 90% confluent in the flask, the cells were trypsinzed and cell 

concentration was made upto 105cells/ml. 200µl of that cell solution (approx 20,000 

cells) were placed in three 96 well plates. Osteoblast cells in the 96 wells were exposed to 

three different concentrations of corrosion extract (10%, 50% and 100%) over periods of 

2, 4 and 7 days. The corrosion extracts were prepared by mixing FBS, penstrep and G 

418 with PBS after corrosion, so that aforementioned media and prepared extracts had 

similar concentrations of FBS, penstrep and G 418. The well plates were then placed in 

an incubator at 37 oC and 5% CO2 in a humidified environment. The viability of the 

osteoblast cells was assessed over different time periods using SRB assay and their 

relative survivability was  measured from the absorbance measured.   

As was discussed in section 7.2, again the total concentration of Mg, Zn, Ca, Gd 

and HA ions in 100% corrison extract was ~114.8 μg/mL, with individual ionic 

concentrations of: Mg = 33.0; Zn = 0.8; Ca = 81.0 and Gd = 0.01 μg/mL.  Subsequently, 

a 50%  corrosion extract contained a total dissolved ion concentration of ~57.4 μg/mL, 

with individual ionic concentrations of: Mg = 16.5; Zn = 0.4; Ca = 40.5 and Gd = 0.01 
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μg/mL; and 10% corrosion extract contained a total dissolved ion concentration of ~11.5 

μg/mL, with individual ionic concentrations of: Mg = 3.3; Zn = 0.1; Ca = 8.1 and Gd = 

0.001 μg/mL. 

Figure 7.5 shows the survivability of osteoblast cells in the presence of different 

concentrations (10%, 50% and 100%) of corrosion extracts. The growth rate increased in 

10% extract from all samples. With 50% and 100% extract from all samples, there was 

no significant difference in the net growth after 2, 4 and 7 days. However, as compared 

with the control, there was a decrease in net growth of ~ 30 and ~ 60 % of cells exposed 

to 50% and 100% extracts respectively from all samples.  

The cell exposed to 50% extract from Mg alloys/MMCs with HA exhibited an 

increase in growth after 4 days. This was due to the presence of HA, which is known to 

induce osseointegration. The chemical composition of HA is similar to the mineral 

crystallites present in human bone i.e. calcium phosphate (Ca10(PO4)6(OH)2), a 

bioceramic [56]. 
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Statistical Analysis 

A standard analysis was performed using SPSS software (IBM, Version 20, Armonk, 

New York) by comparing the significant differences in cytotoxicity of both endothelial and 

osteoblast cells and using a one-way analysis of variance (ANOVA) and post-hoc Tukey test. P 

values < 0.05 were considered statistically significant. The tests were conducted with respect to 

control values of the respective time periods.  

7.5 Monitoring Osteoblast Cell Growth on Mg Alloys/MMCs - Electrochemical 

Impedance Spectroscopy 

Electrochemical Impedance Spectroscopy (EIS) was used to monitor the osteoblast cell 

growth on the surface of Mg1Zn. During our previous attempts to grow cells on Mg 

alloys/MMCs, no cells were observed on the surface. This was attributed to simultaneous 

degradation, hydrogen evolution, localized pH increase and oxide formation. Hence, an 

electrochemical approach was adopted to monitor the cellular activity on Mg alloys/MMCs. The 

EIS data is presented in the form of Nyquist plots, where impedance at higher frequency 

corresponds to diffusion limited electron transfer process (solution resistance) and that at lower 

frequency corresponds to charge transfer limited process. Generally, the semicircle diameter 

signifies the magnitude of electron transfer resistance, which is controlled by surface 

modifications such as, coating, oxides, film, etc. In this investigation, adhesion of cells on the 

surface of sample (working electrode) delayed the interfacial electron transfer kinetics and 

increased the electron transfer resistance as shown in Table 7.3. 

A three-electrode corrosion cell was used for EIS employing carbon as counter electrode, 

silver/silver chloride (Ag/AgCl) as the reference electrode and magnesium alloys with an 

exposed area of 0.50 cm2 as the working electrode. All tests were conducted at a scan rate of 1.0 
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mV/s in an incubator under 5% CO2 at 34 oC in cell culture media. The frequency ranged from 

1.0E-02 Hz to 1.0E+05 Hz with 10 points per decade. Prior to conducting each experiment, the 

corrosion cells were first cleaned with detergent, then cleaned with acetone, ethanol and distilled 

water. Furthermore, the sterilization was performed by autoclaving at 126 oC for 30 minutes. 

Figure 7.6 (a and b) shows the Nyquist plots of Mg1Zn alloy before and after inoculation with 

osteoblast cells for 4 days (96 hours). Table 7.3 shows that the charge transfer resistance (Rct) 

increased gradually with increasing culture time. This indicated that cells adhered on the surface 

of the working electrode during the cell culturing process, which resulted in a higher electron 

transfer barrier. The double layer capacitance (Cdl) ranged between 9-16 μF/cm2, which indicated 

increase in the capacitative behavior at metal/oxide/cells interface. The value of the Cdl depends 

on many variables including electrode potential, temperature, ionic concentrations, type of ions, 

oxides, electrode roughness, impurity adsorption, etc. In this study, an increase in Rct was 

observed with increased incubation time, confirming cellular adhesion on the surface of Mg 

alloys. 

Table 7.3: The electrochemical impedance parameters of Mg1Zn in cell culture media with 
osteoblast cells at different time intervals 

Mg1Zn Rct (Ω.cm2) Cdl (μF/cm2) 

Before Cell Culture, Day 4 1.36E+03 16 

After Cell Culture, Day 1 2.28E+03 9 

After Cell Culture, Day 2 3.87E+03 13 

After Cell Culture, Day 3 3.97E+03 14 

After Cell Culture, Day 4 4.09E+03 14 
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8.0       EFFECT OF SURFACE ROUGHNESS  

8.1       Effect of Surface Roughness on Electrochemical Behavior and Wettability 

Surface defects and roughness are known to initiate corrosion. In most cases, pitting 

corrosion occurs in which an intense attack of chloride ions occur at localized sites on the surface 

of an implant, while the remainder of the surface corrodes at a much lower rate, either because of 

the formation of a protective oxide layer or due to physiological conditions. Another contributing 

factor is the presence of reactive sites, where a specific region on the surface behaves as if they 

are more anodic or cathodic in nature. 

Cell adhesion and proliferation are essential properties of an implant, where such 

inefficiency could lead to poor integration with the tissue. Wettability, roughness, morphology, 

texture, charge and chemical composition also influence cellular activity on implants [109]. 

Several mechanical (polishing, coating) and chemical treatments (electropolishing, anodizing, 

etc.) have been employed to enhance the performance of magnesium (Mg) alloys for implant 

application. Nevertheless, surface roughness is an ideal parameter for assessing the performance 

of an implant. Roughness affects corrosion potential, and thus, the alloy’s susceptibility to pitting 

corrosion [180]. Furthermore, the diffusion of the corrosion species (e.g. chloride ions) can be 

affect by surface roughness [180,181,182]. With the surface roughness it is possible to change 

the surface features mainly energy level and topography. It has been reported that implants 

success is not only dependent on surface physiochemical properties but also on its roughness 

[144,145,146,147,148,149,150,151]. The integration of these new class of alloys into the human 

body is complex and a challenge. SFE is an important parameter for cellular activity. The surface 

roughness and irregularity contribute to biomechanical interlocking, which are responsible for 

osseointegration reinforcement [154]. 
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This chapter compares the contact angle (CA), surface free energy (SFE), fractional 

polarity (FP) and corrosion rate (CR) parameters at different surface roughness.  As cast 

Mg1Zn1Ca (wt%) alloys were mechanically polished to various degrees of surface roughness. 

Electrochemical techniques (potentiodynamic and electrochemical impedance spectroscopy, EIS) 

and wettability tests were performed to study the influence of surface roughness on 

electrochemical passivation and surface free energy, respectively. Furthermore, microstructure, 

and surface morphology of the alloys were assessed using SEM/EDS. 

Ingots of Mg1Zn1Ca (wt%) were cut into cubes of dimensions 0.4x0.4x0.1 (inch), which 

were then mechanically polished to achieve four different degrees of roughness. The roughness 

of the alloys was varied by polishing the alloy with Silicon Carbide (SiC) and carbimet surfaces. 

The abrasive sheets and diamond paste (DP) were purchased from Buehler® and lubricants 

(ethanol, 99.9% and ethylene glycol) from Sigma-Aldrich. The usage of water based solutions 

was avoided during sample preparation, in order to prevent hydrolysis of the alloy. Instead of 

water, ethanol was used with SiC and a mixture of ethanol:ethylene glycol (3:1) with diamond 

paste on the carbimet surface. The surface roughness of the alloys was determined by optical 

profilometer and the data was analyzed by Scanning Probe Image Processor (SPIP).  

Phosphate Buffered Saline (PBS, Sigma Aldrich) was used as the standard test solution 

for electrochemical studies. Potentiodynamic polarization and electrochemical impedance 

spectroscopy tests were performed at 37 oC in accordance with ASTM G 102-89 [160] and 

ASTM G 3-89 [183], respectively. Potentiodynamic polarization tests were conducted at a scan 

rate of 1.0 mV/s. The electrolyte was purged with high purity nitrogen for 30 minutes prior to 

immersion of the sample, as well as continuously during the corrosion test. Faraday’s law was 
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used to calculate the corrosion rate (CR), in terms of penetration rate of the alloys, determined 

by:  

CR = (Icorr.K.EW)/(ρ.A) 

Where, Icorr is the corrosion current (amps), K is a constant for the corrosion rate (3272 

mm/amp.cm.year), EW is the equivalent weight in grams/equivalent, A is the sample area (0.28 

cm2) and ρ is the density (1.69 g/cm3) of the alloy calculated by Archimedes principal.  

EIS tests were also conducted in PBS under high purity nitrogen to determine the effect 

of alloying elements on the charge transfer resistance and were conducted in the frequency range 

from 1.0E-02 Hz to 1.0E+05 Hz with 10 points per decade. 

Contact angles and surface free energy were measured using a Kyowa contact angle meter model 

DM-CE1 and adopting the sessile drop method. Surface morphologies of the alloys were studied 

by scanning electron microscopy (SEM, JEOL JSM 6330F), at an accelerated voltage of 20 kV. 
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The potentiodynamic polarization corrosion and EIS tests were performed in PBS at 37 

oC. Table 8.2 summarizes the corrosion parameters, where the corrosion decreased with a 

decrease in surface roughness. This corresponded to a shift of the corrosion potential (Ecorr) in a 

more noble direction rates with decrease in roughness. The sample with lowest surface roughness 

of 0.04 μm had a corrosion potential of -1.5 V (vs. SCE); whereas that of the other samples 

ranged between -1.7 to -1.9 V. The corrosion current decreased from 48.4 μA to 6.8 μA, as the 

roughness decreased from 0.63 μm to 0.04 μm.  

Potentiodynamic plot of the sample with lowest roughness (C-DP 0.05 µm) initially 

displayed distinct passivation as evidenced by the vertical straight line of the anodic curves, 

Figure 8.3. Furthermore, polarization resistance (Rp) which evaluates the protective behavior of 

the surface was calculated by using the following formula:  ܴ = ߚߚ 2.3. ߚ)ܫ − )൘ߚ  

where ߚ	and	ߚ are anodic and cathodic slopes, respectively. 

Rp increased with decreasing roughness, due to the formation of a relatively uniform and 

compact oxide layer. This behavior was further confirmed with the EIS plots. The increased in 

Rp may be attributed to the formation of mixed oxides of Mg and Zn.  
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Figure 8.3: Potentiodynamic polarization curves of Mg1Zn1Ca alloys at different roughness in 
PBS at 37 oC. 

Table 8.2: Results of potentiodynamic corrosion tests of the samples in PBS at 37 oC 

Sample Finish Ecorr (V) Rp (Ωcm2) CR (mm/year) 

SiC P 240 -1.8 114.5 87.1 

SiC P 320 - 1.9 107.9 63.4 

SiC P 400 -1.7 136.5 58.8 

C-DP 0.05 μm -1.5 503.0 13.0 

 

The influence of surface roughness on the general corrosion resistance was investigated 

by EIS using a Gamry Echem Analyst software. Figure 8.4 shows the Randles equivalent circuit, 
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Figure 8.6 shows the Bode plot, where the impedance modulus and the phase shift, as a 

function of frequency provide information on the nature of the electrochemical processes. In the 

case of impedance modulus vs frequency (Figure 8.6a), the high frequency domain represents the 

solution resistance (Rs) and the low frequency domain represents the system resistance, which 

mainly depends on polarization resistance of the passivating film. Several oxides are produced, 

which resulted in a higher degree of phase shift at a frequency of ~80 Hz, Figure 8.6b. This is 

most likely due to an increase in surface film capacitance with an increase in the adsorbed 

amount of ions on the electrode surface. The oxide layers produced on the surface of the alloys 

act as an electric barrier (resistance) dependent upon the charge transfer, and the symmetry of the 

Bode plot is an indication of the uniformity of the surface oxides. The loop is depressed and 

shifts a loop towards high frequency, which could be associated to the adsorption and desorption 

phenomena occurring on the surface of the samples. A layer of corrosion products and salt 

deposits from the solution formed instigated the slow degradation process. The formation of 

these oxides can impart long term stability of an implant in biological environment and lead to 

slow degradation rates at the initial stage of implantation. Increase in concentration of ions in 

solution decrease modulus value, while phase shift to higher frequency. This could be due to 

increase in surface film capacitance with an increase in adsorbed ions on the electrode surface.  
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Figure 8.7 compares the contact angle (CA) and corrosion rate (CR) parameters at 

different surface roughness. An, increase in contact angle was observed with a decrease in 

surface roughness, where it shifted from hydrophilic to hydrophobic (CA ranged 44 - 95 degree). 

The surface free energy (mJ/m2) components were calculated by using Kitazaki-Hata theory: 

௧௧ߛ = ௗߛ ߛ	+  ߛ	+

Where, γtotal is the total SFE; γd is SFE dispersion component; γp is SFE polar component 

and γh is SFE hydrogen bond component.   

Three liquids of different surface tensions (water, ethylene-glycol and diiodomethane) 

were used under ambient conditions. The SFE for 0.05 μm surface finish was 29.7 mJ/m2, 

whereas at higher roughness it ranged between 96.0 – 88.0 mJ/m2 (Table 8.4). Studies have 

shown that cellular adhesion and cell activity are favorable on materials with low SFE (~25-35 

mJ/m2) [110,186,187]. Furthermore, fractional polarity (FP) was calculated, where Fractional 

Polarity = polar/(polar+dipersion). It was previously reported that a fractional polarity of less 

than 0.3 is a favorable parameter for good cellular adhesion [186,187]. In this study, a decrease 

in FP from 0.13 to 1.0 was observed with decreased roughness. Therefore, lower roughness is 

conducive to improved biocompatibility.  
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9.0      DISCUSSION 

The development of Mg based alloys/MMCs is a challenge due to limitations of 

controlled and non-uniform degradation, hydrogen evolution, localized pH increase and 

biocompatibility as well as sustained mechanical integrity. The main function of biodegradable 

alloys/MMCs is spontaneous dissolution as new tissue develops and provision of required 

structural support. This has prompted a significant amount of research on the development of Mg 

based biodegradable alloys/MMCs. Although advances have been made in controlling the 

degradation rates of these implants, there is still a dearth of information on their 

biocompatibility. However, most Mg samples have their own characteristic behavior (mechanical 

integrity, degradation behavior, low density and biocompatibility) as a result of their unique 

microstructure and/or the existence of intermetallic phases. In this investigation, nine different 

compositions of Mg based alloys and MMCs were subjected to two types of surface treatments, 

mechanical polishing and anodization. Mechanical polishing results in the development of an 

oxide layer of ~20-50 nm, whereas anodization produces an oxide layer of thickness ~5-10 μm. 

This passivating layer imparts enhanced corrosion resistance in both cases. Considering the 

aforementioned limitations of currently investigated metallic bioabsorbable materials, this 

investigation addresses the beneficial attributes of surface treatment and composition on 

mechanical properties and biocompatibility of Mg alloys/MMCs. The following discussion 

addresses each limitation and how any deleterious effect can be mitigated.   

(i) Effect of Microstructure on Mechanical and Degradation Properties of Mg 

Alloys/MMCs 
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The main function of biodegradable alloys/MMCs is spontaneous dissolution as new 

tissue develops and the provision of adequate structural support. Pure magnesium (as-cast) has 

low overall yield strength (YS ~ 27 MPa), tensile strength (TS ~ 90 MPa) and is susceptible to 

corrosion, which can lead to the loss of mechanical integrity before the surrounding implant 

tissue has fully healed [115]. Alloying is one method of improving the mechanical properties and 

corrosion resistance of Mg [66]. In this investigation, a reduced grain size was observed with the 

addition of alloying elements, which may be attributed to the precipitation of intermetallic phases 

(Ca2Mg6Zn3, MgCa2, CaZn2, Ca5(PO4)3(OH) and MgZn2) at grain boundaries. During 

solidification, alloying elements are rejected by the α-Mg and restrict grain growth. Li et al. 

(2008) showed that α-phase (matrix) and Mg2Ca phase precipitated along the grain boundaries 

[65]. Enhanced mechanical properties were attributed to a fine grain size of 60-100 µm and a 

stable microstructure, that consisted of fine precipitates of β’-Mg15RE3, dispersed precipitates of 

Mg24RE5 (sheet-shaped) and Mg5RE (polygon-shapes) [93]. Zhang et al. (2010) [90] 

manufactured MgZn alloys by melting and casting, where α and γ-MgZn phases were observed 

to precipitate along the grain boundary. Pekguleryuz achieved an effective grain refinement with 

Zn, which was explained by its segregation and minimization of surface energy [129]. Tao et al. 

(2008) [87], manufactured Mg-6Zn-xCa (x=3, 5, 7.5, 10 wt%) alloys by twin-roll rapid 

solidification that were subjected to rapid solidification and annealing at 200 oC for 1 hour. 

Improved strength, creep resistance and moderate ductility were observed during age hardening. 

This was attributed to the formation of various phases such as, Mg2Ca, Mg2Zn3, MgZn2 and 

Ca2Mg6Zn3 [87]. Peng et al. manufactured Mg-Gd based alloys and reported superior mechanical 

properties of YS = 280 MPa and TS = 310 MPa were achieved at room temperature due to a 

microstructure composed of fine metastable precipitates dispersed in the matrix [89]. Li et al. 
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showed that the addition of HA reduced the solid/liquid interfacial energy in Mg alloys [113]. 

Hort et al. (2010) investigated Mg2Gd, Mg5Gd, Mg10Gd, Mg15Gd (wt%) manufactured by 

casting, where Gd was used to enhance the mechanical properties [93]. The yield strength and 

tensile strength of the as-cast alloy (YS = 37.99-127.65 MPa and TS = 103.73-175.22 MPa) 

increased with Gd content and solid solution formation [93].  

In this investigation, an increase in tensile strength (~ 0.9 – 1.1 GPa) was observed with 

the addition of Zn and HA, which is comparable with those of cortical bone (0.5 GPa) as shown 

in Table 9.1. The modulus of Mg alloys/MMCs ranged between (41 - 52 GPa), which is also 

comparable with that of human bone (3 - 20 GPa) and is lower than that of traditional metallic 

implants (73 - 230 GPa), see Table 9.1. Young’s modulus of the AZ91D and Mg-MMC/HA was 

reported as 40 GPa [177], which is comparable with the values obtained in the current study. 

The formation of the aforementioned intermetallic phases, reduced grain size and 

anoidzation can be utilized to control the degradation rate of Mg alloys/MMCs. This was 

illustrated during potentiodynamic corrosion tests, where anodized samples exhibited smooth 

anodic curves that were indicative of strong passivation, whereas mechanically polished samples 

showed jagged anodic curves that were indicative of continuous breakdown (pitting corrosion) 

and repassivation. The anodized Mg1Zn1Ca8Gd, Mg5Zn1Ca, Mg1Zn1Ca1HA and 

Mg5Zn1Ca1HA exhibitted slowest degradation rates (~ 0.17 – 1.76 mm/year) as shown in Table 

9.1. The reduced corrosion rates in the aforementioned samples was mainly due to the formation 

of stable and uniform protective oxide layer, whereas composites with a higher concentration of 

HA displayed faster degradation due to agglomeration of HA particles in the composites. Such 

locations are prone to corrosive attacks. Similarly, Ling-Ling et al. (2008) investigated anodized 
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AZ91 and reported an increase in corrosion resistance due to the formation of passivating oxide 

[166]. 

(ii) Hydrogen evolution and pH from Anodized Mg Alloys/MMCs 

Mg alloys/composites were anodized in an attempt to improve the corrosion resistance 

and initial implant stability due to the formation of Mg oxide, which varied with processing 

parameters, such as exposure time, electrolyte and temperature. Anodization of biodegradable 

Mg alloys/MMCs imparts initial corrosion resistance and mechanical integrity after implantation 

and ensures sufficient time for the surgical region to heal. The oxide layer on anodized samples 

was approximately 5 - 10 μm. However, anodize coatings of Mg alloys have been reported to 

consist of two layers, ranging in thickness from 5 - 50 μm [6, 131, 132].  Shi et al. (2006) 

reported the initial occurrence of pitting corrosion on anodized specimens followed by filiform 

or general corrosion [130]. The anodize coating was hard and porous as compared with other 

conventional coating or fluoridated coating [114].  

According to Zberg et al., hydrogen evolution from Mg based cardiovascular stents 

during clinical studies was of minimal concern and observed good biocompatibility with reduced 

inflammatory response [86]. In the case of orthopedic implants, hydrogen evolution was a major 

concern due to poor transport mechanisms [122, 123]. Song (2007) reported both unanodized 

and anodized Mg alloys are susceptible to localized corrosion at which sites hydrogen is evolved 

[167]. In this investigation, a decrease in hydrogen evolution from the anodized samples was 

attributed to the presence of various surface oxides. These oxides limit the exposure of substrate 

materials to the electrolyte. Additionally, the higher the concentration of Zn in MMC, the lower 
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was the volume of hydrogen evolved. This was attributed to the formation of two type of oxides; 

those of light metals Mg and Ca; and those of heavy metals, Zn and Gd [158]. 

Anodization limits the concentration of Mg(OH)2 ions in the electrolyte and restricts further 

increase in pH. An increase in pH could affect not only the corrosion behavior of the implant but 

also cell viability or hemolysis [115, 124]. The pH of PBS after corrosion of mechanically 

polished and anodized samples ranged between ~7.2-8.4 and ~7.2-7.5, respectively, due to 

greater passivation of the latter. Wang et al. reported the precipitation of less soluble products, 

such as magnesium phosphate, Mg3(PO4)2; magnesium apatite; zinc phosphate, Zn3(PO4)2; and 

calcium phosphate, Ca3(PO4)2 due to a local increase in pH [127].  

 

(iii) Wettability Parameters Conducive for Cellular Proliferation 

Implant contact angle, wettability, interfacial free energy and surface free energy had 

significant influence on biocompatibility of implants [109]. In this investigation, all surfaces 

exhibited high electron donor (basic) character and low electron acceptor (acidic) character with 

polar solvent (water), which are reported to be conducive to cell viability [109]. Studies have 

shown that lower interfacial free energy can be associated with optimum biocompatibility for 

surfaces such that their water interfacial energies are minimized [109]. The minimal interfacial 

free energy obtained for the Mg samples in this investigation may correspond to good 

biocompatibility. Ponsonnet et al. reported that lower surface free energy corresponded to higher 

cell proliferation and indicated an inflection point in the range of 30-50 mJ/m2 [109]. Mani et al. 

(2006) reported that high surface energy increased the risk of thrombogenicity [111]. The 

fractional polarity (FP = polar / dispersion + polar) of Mg alloys/MMCs used in this 
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investigation ranged between ~ 0 - 0.9. It was reported that when FP is >0.3 good cellular 

adhesion was achieved [109].  

(iv) Low cytotoxicity with osteoblast and endothelial cells 

The cytotoxicity assessment by SRB assay of 10% extract from all samples on osteoblast 

and endothelial cells suggested that the concentration of dissolved ions released were non-toxic. 

There was no appreciable difference between the net growth rate of cells exposed to 10% 

corrosion extract and that of the control over time. The concentrations of  Mg, Zn, Ca, Gd and 

HA ions in the 10% extract had no cytotoxic effect on osteoblast and endothelial cells. However, 

the concentrations present in 50% and 100% corrosion extracts did have a deleterious effect. 

Osteoblast cell growth was observed to occur on Mg1Zn samples, which was monitored by an 

increase in impedance in the Nyquist plots as shown in the in-vitro biocompatibility section of 

Table 9.1.  

In summary, the results obtained from this work would serve as a useful tool in predicting 

the degradation behavior and mechanical properties of Mg alloys/MMCs under various 

physiological conditions. In addition, it provides information to enable the selection of the 

appropriate composition for a particular biodegradable implant.  
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The following summarizes the limitations of Mg based alloys/MMCs and attempts to 

address their deleterious effects. In so doing, properties of materials currently employed in the 

manufacture of implant devices are compared with those of Mg based alloys/MMCs developed 

in this investigation.  
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10.0     CONCLUSION 

The Mg alloys/MMCs studied in this investigation appear to have tremendous 

potential as a biomaterial for the manufacture of surgical implants. However, these 

alloys/MMCs face major challenges of controlled and non-uniform degradation, 

hydrogen evolution, localized pH increase and biocompatibility as well as sustained 

mechanical integrity in physiological media. Of the aforementioned challenges, fast 

degradation and hydrogen evolution pose the greatest concern due to premature failure of 

the implant, the formation of subcutaneous gas bubbles and gangrene in clinical studies. 

Nevertheless, much research has been conducted worldwide to further improve the 

mechanical properties and biocompatibility of biosorbable materials by alloying and 

surface treatments. Among the surface treatments attempted, anodization has proven to 

be a good candidate for improving mechanical properties and corrosion resistance of 

biodegradable Mg alloys/MMCs.  

The results obtained in this investigation have indicated that MgZnCa/nHA has 

great potential as an implant material for orthopedic and cardiovascular applications 

especially when anodized. The following are conclusions derived from this research: 

 In general, the microstructure of Mg alloys/MMCs consisted of α-Mg solid 

solution, grain boundary segregation phases (enriched with Zn and Ca), as well as 

binary and ternary intermetallics (Mg2Ca, CaZn2, MgZn2, CaZn5, Ca2Mg6Zn3 and 

Ca5(PO4)3(OH)), all of which contributed to improved mechanical properties and 

corrosion resistance.  
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 Mg alloys/MMCs manufactured utilizing the same procedure exhibited a 

reduction in the average grain (90 to 60 µm) size as the concentration of HA 

increased. 

 Anodization resulted in the formation of a distinct oxide layer of thickness ~5-10 

μm as compared with that produced on mechanically polished samples (~20-50 

nm) under ambient conditions. The passivating layer resulted in a uniform 

degradation rate of ~0.2 – 4.0 mm/year and hydrogen evolution of 1 – 3 mL/cm2 

as compared with ~3 – 23 mm/year and 3 – 6 mL/cm2 for mechanically polished 

samples. 

 The range of modulus (45 - 53 GPa) and density (1.69 - 1.76 g/cm3) of Mg 

alloys/MMCs were similar to those of human bone, which are instrumental for 

avoiding stress shielding. The modulus and micro hardness increased with the 

addition of alloying elements. The increase in hardness was much more 

significant with the addition of HA. At 3 wt% HA, inhomogeneous distribution of 

HA resulted in micro-hardness, which varied across the surface. 

 The surface of Mg alloys/MMCs were generally hydrophobic (contact angle ~85-

110 degree); surface free energy (25-35 mJ/m2); and fractional polarity (0.0 - 0.7). 

These parameters have been reported to be favorable for cellular proliferation. 

 Mg, Zn, Ca, Gd and HA ions at a total concentration of 114.8 μg/mL (individual 

concentrations: Mg = 33.0; Zn = 1.0; Ca = 81.0 and Gd = 0.01 μg/mL) were toxic 

to osteoblast and endothelial cells.  This was the concentration of dissolved ions 

in the 100% corrosion extract. On an individual bases 1 μg/mL of Zn appeared to 



 

178 
 

be the prime dissolved ion responsible for a decrease in the survivability of the 

cells. 

 Smoother samples (roughness ~ 0.05 μm) with surface parameters of surface free 

energy (~29.0 mJ/m2) and fractional polarity (0.13) were generally more resistant 

to corrosion. Note that a surface free energy of 30-50 mJ/m2 and FP >0.3 has been 

reported to be conducive to good cellular adhesion.  

The findings of this research will be useful for introducing a new class of Mg 

based biodegradable alloys/MMCs that will coincide with the emergence of innovative 

cardiovascular and orthopedic implant devices. The devices manufactured from these 

alloys such as, stents, pins, screws, nuts, etc. will provide greater efficacy for treating 

patients as compared with permanent implants currently available. The usage of Mg 

based biodegradable implants will therefore, negate repeat surgical procedures and 

reduce medical cost. 
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11.0      RECOMMENDATIONS FOR FUTURE RESEARCH 

The aim of the current research was to explore the potential of Mg alloys/MMCs 

and surface treatment for short-term applications for orthopedic and cardiovascular 

implants. The studies presented in this dissertation are preliminary and further research 

need to be conducted to elucidate platelet adhesion, clotting time, etc. for understanding 

thrombosis as well as in-vivo response.  

The results obtained are very promising, however further investigation, especially 

in blood environment will determine the usefulness of proposed compositions and surface 

treatments for improving the initial stability and mechanical integrity of the implant. 

Some of the other recommendations for future work: 

 Grain size refinement and homogeneous distribution of HA in the matrix 

 Coating the implants with biodegradable drug eluting polymers 

 Design and manufacture for in-vivo implantation 
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Table A.1: Kitazaki Hata, average values of surface free energy components (mJ/m2) 
mechanically polished samples 

Surface Free Energy Components (mJ/m
2

) 

Mechanically Polished 
Samples  

Dispersion (d) Polar (p) 
Hydrogen 

component (h) 
Total 

Fractional 
polarity 

 

Mg1Zn (ACI) 33.7 0.0 0.0 33.7 0 

Mg1Zn1Ca (ACI) 25.7 3.7 0.3 29.7 0.13 

Mg1Zn1Ca8Gd (ACI) 32.7 0.0 0.3 33.0 0 

Mg1Zn1Ca 14.9 46.1 3.4 64.4 0.76 

Mg1Zn1Ca1HA 19.1 10.7 3.8 33.6 0.36 

Mg1Zn1Ca3HA 14.0 26.9 2.2 43.1 0.66 

Mg5Zn1Ca 18.8 16.7 1.2 36.7 0.47 

Mg5Zn1Ca1HA 8.6 89.6 8.2 106.4 0.91 

Mg5Zn1Ca3HA 12.8 73.0 8.1 93.9 0.85 

 

Table A.2: Kitazaki Hata, average values of surface free energy components (mJ/m2) 
anodized samples 

Surface Free Energy Components (mJ/m
2

) 

Anodized Samples 
Dispersion 

(d) 

Polar 

(p) 

Hydrogen 

component 

(h) 

Total 
Fractional 

polarity 

Mg1Zn (ACI) 21.9 24.1 0.2 46.2 0.53 

Mg1Zn1Ca (ACI) 24.4 9.2 0.0 33.6 0.27 

Mg1Zn1Ca8Gd (ACI) 25.0 0.0 0.0 25.0 0 

Mg1Zn1Ca 18.2 26.2 0.9 45.3 0.59 

Mg1Zn1Ca1HA 21.0 16.5 2.6 40.1 0.44 

Mg1Zn1Ca3HA 23.3 5.1 0.0 28.4 0.18 

Mg5Zn1Ca 15.1 50.5 1.0 66.6 0.77 

Mg5Zn1Ca1HA 29.0 2.7 0.0 31.7 0.09 

Mg5Zn1Ca3HA 23.8 11.3 0.0 35.1 0.32 
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Table A.3: Acid-Base, average values of mechanically polished samples: contact angle, 
interfacial free energy and work of adhesion 

Mechanically 
Polished Samples 

 

Contact Angle (Deg) Interfacial Free Energy (mJ/m2) Work of Adhesion (mJ/m2) 

 
Water 

 

Ethylene 
Glycol 

Diiodo- 
methane 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Mg1Zn (ACI) 99.5 64.4 57.3 42.5 9.8 3.1 60.8 68.6 78.2 

Mg1Zn1Ca (ACI) 95.1 72.7 59.8 35.2 14.5 3.1 66.3 62.1 76.4 

Mg1Zn1Ca8Gd (ACI) 93.0 65.6 56.7 35.2 11.6 3.5 69.0 67.7 78.7 

Mg1Zn1Ca 85.0 68.7 60.5 22.0 10.9 3.3 79.1 65.3 75.8 

Mg1Zn1Ca1HA 84.9 70.8 64.3 19.6 10.3 4.1 79.3 63.7 72.8 

Mg1Zn1Ca3HA 91.3 76.8 69.1 26.3 12.4 5.2 69.9 58.9 69.0 

Mg5Zn1Ca 93.1 74.1 63.8 30.3 13.2 4.0 68.9 61.1 73.2 

Mg5Zn1Ca1HA 78.0 68.0 64.7 10.8 8.0 4.2 87.9 65.8 72.5 

Mg5Zn1Ca3HA 73.7 61.3 56.5 10.2 7.6 2.5 93.2 70.9 78.9 

 

Table A.4: Kitazaki Hata, average values of mechanically polished samples: contact 
angle, interfacial free energy and work of adhesion 

Mechanically Polished 
Samples 

Contact Angle (Deg) Interfacial Free Energy (mJ/m
2
) Work of Adhesion (mJ/m

2
) 

 
Water 

 

Ethylene 
Glycol 

Diiodo- 
methane 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Mg1Zn (ACI) 98.0 70.4 55.7 43.9 17.7 5.1 62.6 63.7 79.4 

Mg1Zn1Ca (ACI) 95.2 74.8 58.9 36.3 17.2 3.4 66.2 60.2 77.1 

Mg1Zn1Ca8Gd (ACI) 93.1 65.7 57.3 37.0 13.4 5.6 68.8 67.3 78.2 

Mg1Zn1Ca 83.4 77.7 54.9 56.1 54.3 35.2 81.1 57.8 80.0 

Mg1Zn1Ca1HA 84.4 69.7 64.3 26.4 17.0 11.5 80.0 64.3 72.9 

Mg1Zn1Ca3HA 91.1 83.1 65.4 44.4 37.3 22.0 71.5 53.5 71.9 

Mg5Zn1Ca 92.1 79.2 60.6 39.1 27.6 11.8 70.4 56.8 75.7 

Mg5Zn1Ca1HA 75.9 79.7 57.6 88.7 97.9 79.2 90.5 56.2 78.0 

Mg5Zn1Ca3HA 72.1 71.1 50.5 71.6 78.5 61.6 95.1 63.1 83.1 
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Table A.5: Acid-Base, average values of anodized alloys: contact angle, interfacial free 
energy and work of adhesion 

Anodized 
Samples 

Contact Angle (Deg) Interfacial Free Energy (mJ/m
2
) Work of Adhesion (mJ/m

2
) 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Mg1Zn (ACI) 95.6 70.9 56.1 37.9 15.1 2.5 65.7 63.6 79.1 

Mg1Zn1Ca (ACI) 100.3 74.7 59.4 41.9 16.3 3.1 59.8 60.5 76.6 

Mg1Zn1Ca8Gd 
(ACI) 

107.0 82.0 67.5 45.5 17.6 4.8 51.6 54.6 70.3 

Mg1Zn1Ca 93.8 73.2 61.7 32.4 13.8 3.5 68.0 61.7 74.9 

Mg1Zn1Ca1HA 85.2 67.5 58.2 23.6 11.3 2.8 78.8 66.2 77.6 

Mg1Zn1Ca3HA 106.3 78.4 61.5 48.2 18.0 3.5 52.3 57.6 75.0 

Mg5Zn1Ca 93.6 72.8 61.2 32.5 13.8 3.4 68.2 62.0 75.3 

Mg5Zn1Ca1HA 99.5 72.7 56.3 42.7 16.5 2.5 60.8 62.1 79.0 

Mg5Zn1Ca3HA 106.0 74.3 54.2 52.0 19.0 2.2 52.7 60.8 80.5 

 

Table A.6: Kitazaki Hata, average values of anodized alloys: contact angle, interfacial 
free energy and work of adhesion 

Anodized 
Samples 

Contact Angle (Deg) Interfacial Free Energy (mJ/m
2
) Work of Adhesion (mJ/m

2
) 

Water 
 

Ethylene 
Glycol 

Diiodo- 
methane 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Water 
Ethylene 
Glycol 

Diiodo- 
methane 

Mg1Zn (ACI) 94.2 81.1 49.7 51.5 38.8 13.3 67.5 55.1 83.7 

Mg1Zn1Ca 
(ACI) 

100.0 82.2 55.3 46.2 27.1 4.7 60.2 54.2 79.7 

Mg1Zn1Ca8Gd 
(ACI) 

105.0 81.4 69.7 43.9 17.8 7.4 53.9 54.9 68.4 

Mg1Zn1Ca 92.2 81.5 56.5 48.0 38.2 17.3 70.1 54.8 78.8 

Mg1Zn1Ca1HA 84.6 70.3 56.4 33.2 24.0 12.0 79.7 63.8 78.9 

Mg1Zn1Ca3HA 102.4 83.7 61.5 44.0 23.1 4.1 57.2 53.0 75.1 

Mg5Zn1Ca 91.3 86.0 52.7 68.2 63.3 35.8 71.2 51.0 81.6 

Mg5Zn1Ca1HA 98.7 76.2 54.6 42.7 20.3 2.2 61.8 59.1 80.3 

Mg5Zn1Ca3HA 99.9 83.0 54.6 47.6 29.3 5.7 60.3 53.5 80.2 
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Table A.9: Properties of elements used in this study 

Element 
Atomic 
Radius 
(nm) 

Valency 
Crystal 

Structure 
Density 

g/cc 

Melting 
Point 

oC

Standard 
Electrode 

Potential (V) 
Magnetic Property 

Ca 0.197 2 FCC 1.55 839 -2.868 diamagnetic 

Mg 0.16 2 HCP 1.738 649 -2.363 paramagnetic 

Zn 0.133 2 HCP 7.14 420 -0.763 Diamagnetic 

Gd 0.18 1, 2, 3 HCP 7.9 1312 
 

Ferromagnetic/ 
paramagnetic 

HA   
Hexagonal 

6/m – 
dipyramidal 

1.55 1614   
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Table A.10: Mean concentration values of Ca, Mg, Zn and Gd measured by ICP-MS. All concentrations and standard deviations were estimated for 
3 replicates. Concentrations are reported in ppm (µg/mL) 

 Composition 
Magnesium Calcium Zinc Gadolinium 

ppm (μg/mL) % RSD ppm (μg/mL) % RSD ppm (μg/mL) % RSD ppm μg/mL % RSD 

M
ec

ha
ni

ca
l P

ol
is

he
d 

S
ta

ti
c 

Im
m

er
si

on
 

Mg1Zn (ACI) 21 1 NA NA 0.301 1 NA NA 
Mg1Zn1Ca (ACI) 1 3 48 2 0.447 1 NA NA 

Mg1Zn1Ca8Gd (ACI) 2 3 59 3 0.225 1 0.0066 0.1 
Mg1Zn1Ca 1.5 1 52 2 0.141 1 NA NA 

Mg1Zn1Ca1HA 1.5 1 70 1 0.111 1 NA NA 
Mg1Zn1Ca3HA 1 2 59 3 0.073 1 NA NA 

Mg5Zn1Ca 1.2 2 65 3 0.753 1 NA NA 
Mg5Zn1Ca1HA 0.6 2 69 2 0.539 1 NA NA 
Mg5Zn1Ca3HA 1.3 1 69 1 0.496 0.2 NA NA 

A
n

od
iz

ed
 S

ta
ti

c 
Im

m
er

si
on

 

Mg1Zn (ACI) 23 0.2 NA NA 0.012 2 NA NA 
Mg1Zn1Ca (ACI) 17 1 72 2 0.012 2 NA NA 

Mg1Zn1Ca8Gd (ACI) 23 2 70 1 0.011 3 0.0066 0.1 
Mg1Zn1Ca 27 1 63 1 0.013 2 NA NA 

Mg1Zn1Ca1HA 12 2 68 4 0.009 1 NA NA 
Mg1Zn1Ca3HA 44 1 66 2 0.013 5 NA NA 

Mg5Zn1Ca 37 2 63 2 0.015 2 NA NA 
Mg5Zn1Ca1HA 17 1 67 2 0.014 2 NA NA 
Mg5Zn1Ca3HA 1.3 1 58 4 0.007 1 NA NA 

M
ec

ha
ni

ca
ll

y 
P

ol
is

h
ed

 S
ta

ti
c 

Im
m

er
si

on
 

Mg1Zn (PBS+C) 0.9 2 NA NA 0.054 0.2 NA NA 
Mg1Zn (PBS+Q) 1 2 NA NA 0.73 1 NA NA 
Mg1Zn (PBS+W) 0.8 3 NA NA 0.574 1 NA NA 

Mg1Zn1Ca (PBS+C) 1.1 5 82 2 0.165 1 NA NA 
Mg1Zn1Ca (PBS+Q) 2.2 1 63 2 0.68 1 NA NA 
Mg1Zn1Ca (PBS+W) 1 1 71 2 0.412 2 NA NA 

Mg1Zn1Ca8Gd (PBS+C) 1.8 2 58 3 0.239 0.4 0.0066 0.1 
Mg1Zn1Ca8Gd (PBS+Q) 1 1 67 2 0.339 1 0.0066 0.1 
Mg1Zn1Ca8Gd (PBS+W) 0.6 2 68 3 0.457 2 0.0066 0.1 

A
n

od
iz

ed
 D

yn
am

ic
 Mg1Zn (ACI) 20 2 NA NA 0.012 1 NA NA 

Mg1Zn1Ca8Gd (ACI) 20 1 71 2 0.01 2 0.0078 0.3 
Mg1Zn1Ca 26 2 87 3 0.004 6 NA NA 

Mg1Zn1Ca1HA 29 5 67 8 0.012 2 NA NA 
Mg1Zn1Ca3HA 24 1 81 2 0.005 2 NA NA 

Mg5Zn1Ca 33 1 65 3 0.003 5 NA NA 
Mg5Zn1Ca1HA 27 0.4 80 10 0.007 3 NA NA 
Mg5Zn1Ca3HA 32 1 67 1 0.002 5 NA NA 



 

 

203 
 

 
B. Appendix - II 

List of publications during Ph.D. 

JOURNAL ARTICLES  

1. P. Gill, N. Munroe, “Review on Magnesium Alloys as Biodegradable Implant 
Materials”. International Journal of Biomedical Engineering and Technology. 
(Accepted)  

2. P. Gill, N. Munroe, "Investigating Carbon Nanotubes in Cu-Cr Metal Matrix 
Composite", Journal of Materials Engineering and   Performance Journal of Materials 
Engineering and   Performance, 2012. DOI: 10.1007/s11665-012-0198-z. 

3. P. Gill, N. Munroe, R. Dua, S. Ramaswamy, “Corrosion and Biocompatibility 
Assessment of Magnesium Alloys”. Journal of Biomaterials and Nanobiotechnology, 
2012, 3 (1), p. 10-13. DOI: 10.4236/jbnb.2012.31002. 

4. P. Gill, N. Munroe, C. Pulletikurthi, S. Pandya, W. Haider, "Effect of Manufacturing 
Process on the Biocompatibility and Mechanical Properties of Ti-30Ta Alloy". 
Journal of Materials Engineering and Performance, 2011, 20, p. 819-823, DOI: 
10.1007/s11665-011-9874-7. 

5. C. Pulletikurthi, N. Munroe, P. Gill, S. Pandya, D. Persaud, W. Haider, K. Iyer, A. 
McGoron, “Cytotoxicity of Ni from Surface-Treated Porous Nitinol (PNT) on 
Osteoblast Cells”. Journal of Materials Engineering and Performance, 2011, 20, p. 
824-829, DOI: 10.1007/s11665-011-9930-3. 

6. W. Haider, N. Munroe, V. Tek, P. Gill, Y. Tang, A. J. McGoron, “Cytotoxicity of 
Metal Ions Released from Nitinol Alloys on Endothelial Cells”. Journal of Materials 
Engineering and Performance, 2011, 20, p. 816-818, DOI: 10.1007/s11665-011-9884-
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