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ABSTRACT OF THE THESIS 

THE DISTRIBUTION OF TOXIC AND ESSENTIAL METALS IN THE FLORIDA 

EVERGLADES 

by 

Zhiwei Duan 

Florida International University, 2012 

Miami, Florida 

Professor Yong Cai, Major Professor 

   Concentrations of 18 metals, including toxic metals (As, Cd, Cr, Ni and Pb) and 

essential metals (Al, Ba, Be, Co, Cu, Fe, Li, Mg, Mn, K, Sr, V and Zn) in various 

compartments (sediment, floc, and periphyton) were measured in the Florida Everglades to (i) 

establish the spatial distribution pattern of the metals in the Everglades and (ii) quantify the 

major sources of the 18 metals present in the Everglades. The highest mean concentrations of 

all metals analyzed in the Everglades were detected in soil, followed by floc and periphyton. 

Most metals exhibited random spatial distribution patterns. Risk assessment using Sediment 

Quality Guidelines (SQGs) concluded that all toxic metals (Cd, Cr, Pb, Ni, Cu, Zn and As) 

exhibited average concentrations that were well below FL guidelines as well as other 

domestic and international guidelines. On the basis of the current study, the Everglades can 

be considered a pristine environment. 
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1. Introduction 

1.1 Metals in the environment 

1.1.1  Sources of metals  

Metals are an integral part of the earth and they can originate from both natural and 

anthropogenic sources (Nagajyoti et al. 2010). Some metals mainly originate from natural 

source, e.g., aluminum (Al), iron (Fe), calcium (Ca) and potassium (K). Geothermal sources, 

such as volcanic eruptions, are one of the major natural sources of metal (Nagajyoti et al. 

2010). Volcanic eruptions have been known to release high levels of toxic metals into the 

environment by wind force (Nagajyoti et al. 2010). Other natural sources include marine 

aerosols, forest fires, and sea sprays (Florea and Busselberg 2006). Some metals, such as 

cadmium (Cd), arsenic (As), and chromium (Cr), are mostly attributed to anthropogenic 

sources although those metals can also be found in nature at trace levels (Nagajyoti et al. 

2010). There are several types of major anthropogenic sources for metals, which include 

industry, agriculture, atmosphere, and others (Nagajyoti et al. 2010). Many potentially toxic 

metals, including Cd, Cr, lead (Pb), nickel (Ni), and zinc (Zn) can be generated from 

industrial activities. Lead was used in gasoline as an antiknock agent for almost a century 

before leaded gasoline was phased-out (Florea and Busselberg 2006). It is also used in the 

paint, radiation shields, car batteries, glass and soldering. Nickel is widely used in the metal-

processing industry such as stainless steel makings, coinage and alloys (Florea and 

Busselberg 2006). Burning of fossil fuels have contributed to the elevated levels of Ni in the 

city soils (Raposo et al. 2001). Cadmium has been used in the manufacturing of batteries, 

plating, pigments and plastics. Agricultural sources of toxic metals result from use of 

inorganic fertilizers (Cd, Cr, Ni, Pb and Zn), animal manure (Manganese (Mn), Zn, copper 
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(Cu) and cobalt (Co)) and sewage sludge (Zn, Cr, Pb, Ni, Cd and Cu) (Verkleji 1993; 

Nagajyoti et al. 2010). Toxic metals can be distributed as results of atmospheric sources, 

such as rain and snowfall. Other possible sources include coal burning plants (Cd, mercury 

(Hg), Mn, Ni, Al, Fe and titanium (Ti)), vehicle emissions (Cd, Cr, Hg, Ni, Pb and Zn) and 

landfill pollutions (Zn, Pb, Al, tin (Sn), Fe and Cu) (Verkleji 1993; Nagajyoti et al. 2010). 

Agricultural run-offs and wastes from industry are also responsible for the contamination of 

metals in the aquatic ecosystems (Sharma and Sohn 2009).    

1.1.2  Threat of toxic metals 

Metal pollution has emerged as a worldwide problem that results from increased 

anthropogenic activities as well as natural processes (Florea and Busselberg 2006). Of all 

metals, Cadmium, Hg, Pb, Cr, As, Cu, Ni, and Zn are of greatest concern because of their 

high toxicities and threats to human and wildlife (Florea and Busselberg 2006). Toxic metals 

are detrimental not only to terrestrial animals and plants but also to fish, birds, and other 

organisms in aquatic environments. Heavy metal pollution from domestic water and sewage 

alone can cause long-lasting harm to both aquatic plants and animals (Nriagu 1988).  

Toxic metals can affect plants via a variety of pathways. Zinc can cause chlorosis in 

young leaves and thus constrain the growth above and below ground (Lee et al. 1996). 

Chromium can significantly depress the capability of plants to carry out photosynthesis 

(Clijsters and Vanassche 1985). Lead is known as a non-essential metal for the growth of 

plants, and is considered detrimental to plants cells if accumulated (Kaznina et al. 2005).   

High level of Pb was found in algae in both short and long term exposure (Scheidegger et al. 

2011). Long term exposure to Pb could cause damage to metabolism, decrease in the 

photosynthetic activity, and elevation in the production of reactive oxygen species which 
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lead to the slow growth and development of plants (Kaznina et al. 2005). In addition, the 

excess of Pb may also inhibit enzyme activities and alter mineral nutrition (Sharma and Sohn 

2009).    Cadmium is another well-studied toxic metal (Tolley et al. 1992; Su et al. 2009). 

Cadmium along with Pb can cause lipid peroxidation, metabolite degradation, 

overproduction of H2O2, declination in the protein amount and DNA damage, and ultimately 

cell death (Piotrowska et al. 2010). Arsenite (AsIII) is the most toxic inorganic As forms  

(Mass et al. 2001). Trivalent arsenic has high affinity for biomolecules such as glutathione 

(GSH) and cysteinyl residues of enzymes, and can affect the activity of a number of enzymes 

(Aposhian and Aposhian 2006). Toxic metals at high concentration not only threaten plants, 

but also pose serious dangers to animals. Arsenic is one of the most well-known 

environmental pollutants because of its prevalent existence, high toxicity and 

bioaccumulation potential. It widely exists in water and soil and poses great threats to 

humans. Acute effects of As poisoning range from irritation to the nose and throat to nausea, 

vomiting and diarrhea (Florea and Busselberg 2006). Chronic exposure of As leads to cancer, 

liver damage and dermatosis (Florea and Busselberg 2006). Arsenic is also known to be toxic 

to many aquatic organisms from daphnids (water fleas) to fish (zebrafish and rainbow trout) 

(Elnabarawy et al. 1986). Lead can induce damage to and the part of nervous systems (Florea 

and Busselberg 2006). Prolonged exposure to Pb could affect encoding as well as storage and 

retrieval of verbal information (Marchetti 2003). Excess Pb in the human body can lead to 

harmful effects on calcium dependent proteins and neurotransmitters receptors (Florea and 

Busselberg 2006). Lead also can act as a strong neurotoxin that causes brain damage and 

cognitive deficits in children (Huang and Schneider 2004). The target organs of chromium 

(VI) toxicity include skin, mucous and respiratory tract (Salem et al. 1994). Cancer induced 
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by Cr has also been reported (Rossi and Wetterhahn 1989). Chronic inhalation exposure to 

Ni can cause respiratory problem and even death (Rendell et al. 1994).  Cadmium can have 

adverse effects on calcium metabolism, food intake, and hardness of eggshells (Burger 2008). 

Acute Cd poisoning can cause severe irritation to the stomach, leading to diarrhea and even 

death.   

1.1.3 Importance of essential metals 

Essential metals provide some critical biochemical components to enzymatic reaction 

for organisms (Goyer 1997). Animals will not survive in the absence of essential metals, 

which support functions of vital organs. Nine metals (Co, Cr, Cu, Fe, Mg, Mn, molybdenum 

(Mo), selenium (Se) and Zn) are considered nutritionally essential to human (Florea and 

Busselberg 2006). Trace elements including Al, boron (B), Co, Cu, Fe, Mn, Mo, Ni, 

rubidium (Rb), Ti, vanadium (V) and Zn are considered essential to plants (Kabata-Pendias 

2004). Although some of these essential metals can also be detrimental at high concentrations. 

Essential metals are necessary for a variety of processes in animals and plants. Some 

essential metals (e.g., Zn, Fe and Ca) are involved in key metabolic processes such as 

respiration, photosynthesis, fixation and assimilation of some major nutrients such as 

nitrogen and sulfur. Others are known to be important for maintaining the activity of 

enzymes (e.g., Cu, Fe, Mn, and Zn). Some metals (e.g., Al, Cu, Co, Mo, Mn, and Zn) are 

known to be responsible for protection mechanisms of frost-hardy and drought–resistant 

plant (Kabata-Pendias 2004). In the aquatic ecosystem, Cu and Zn are essential 

micronutrients for maintaining normal functions of many enzyme systems in both algae and 

higher plants. Manganese oxidation is important for the growth of algae (Knauer et al. 1999). 
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Manganese also plays an important role in the photosynthesis of algae (Jahnke and Soulen 

1978). 

1.1.4 Cycling of metals in the aquatic system 

 Elevated metals have been increasingly observed in wildlife of many aquatic 

ecosystems as results of the increase in human activities, posing severe threat to both human 

and environmental health. Metals can enter aquatic ecosystems through various sources (e.g., 

atmosphere deposition, runoffs, and river). Once in the aquatic ecosystem, metals will go 

through a number of biogeochemical processes and be distributed into various compartments 

of aquatic systems (Warren and Haack 2001). These processes mainly include 

adsorption/desorption, transformation between different metal species, exchange of metals in 

the sediment-water interface (diffusion and suspension/precipitation), uptake of metals by 

microorganisms or plants, and bioaccumulation along food chain (Christensen et al. 2001; 

Warren and Haack 2001; Weng et al. 2002). The biogeochemical cycling of As is shown in 

Figure 1-1. In the aquatic system, adsorption/desorption is an important biogeochemical 

process as it is one of the controlling factors of concentrations of toxic metals in the aquatic 

environment (Sullivan and Aller 1996). Arsenic, Pb and Cd are commonly involved in the 

adsorption/desorption process with metal oxides (e.g., Fe and Mn) in soil. The process is 

strongly affected by pH and concentrations of adsorbents (Davis and Leckie 1978). 

Furthermore, sediment-water interface reactions are responsible for metal partitioning 

between the solid and solution phases (Warren and Haack 2001). Metal partitioning is 

affected by many factors, such as the system pH, ionic strength, and content of dissolved 

organic matter (DOM) as well as the characteristics and concentrations of solid sorbents and 

the kinetics of relevant reactions (Warren and Haack 2001). After partitioning process of 
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metals in different phases, metals are initially taken up by either cyanobacteria or plants in 

the aquatic system. During the cycling processes, some metals are transformed under the 

influence of microorganisms, either by redox processes (e.g., Fe and Mn)  or  by akylation 

(e.g., Hg) (Ledin 2000). Bacteria can methylate arsenic to form both volatile (e.g., 

methylarsines) and nonvolatile (e.g., monomethylarsonic acid (MMAA) and dimethylarsinic 

acid (DMAA) compounds (Duester et al. 2005). Marine algae can also transform arsenate 

into MMAA and DMAA in seawater. Over time, accumulation of metals occur in two ways: 

sorption (passive) or intracellular, metabolism-dependent (active) uptake. Passive 

accumulation is affected by metal binding functional groups on the cell surface, as well as 

metal speciation in the aquatic phase. Active uptake of metals relies on an energy source 

(Ledin 2000). Fish and plants contaminated with heavy metals are consumed by larger 

organisms via digestions. The potentially toxic metals are then returned to the aquatic 

environment through excretion.    
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Figure 1-1 Diagram of As cycling in various matrices in an aquatic system 

Cycling and fate of metals in aquatic systems are determined by many environmental 

factors, including DOM, pH, redox potentials, and metal-metal interactions. A 

heterogeneous complex of different molecular weight species with variety of water 

solubilities and reactivities makes up DOM (Aiken et al. 2011). DOM can form soluble 

complexes with toxic metals, increasing their solubility and altering their biogeochemical 

cycles (Hesterberg 1998). Because of high natural production of organic carbon in many 

aquatic ecosystems, Dissolved Organic Matter could have a strong influence on the 

behavior of metals (Aiken et al. 2011). Soil/sediment pH has a substantial impact on the 

solubilities of metals. For example, metal cations (Cu, Pb, Zn, Ni and Al) become more 

adsorbed under more basic condition (Adriano 1986), whereas metal anions tend to be less 

adsorbed under the same condition. In addition, redox potential affects the metal cycles in 

the aquatic environment by changing phases of metal species (solid Mn (IV) mineral, Fe (III) 
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mineral reduced to aqueous Mn2+ and Fe2+) (Hesterberg 1998). As a result, toxic metals (As, 

Cd and Pb) associated with Mn- and Fe- oxides minerals can change their solubilities. 

Metal-metal interactions may influence cycling of metals via several pathways, 1) formation 

of colloids which can influence the adsorption/desorption and bioavailability of metals, 2) 

formation of metal-metal complexes that enhance or inhibit the uptake of metal, and 3) 

competing for the binding sites on proteins or solids which can affect the 

adsorption/desorption or toxicity of metals. The metal-colloid complexes can be formed 

between toxic metals and metals that are considered micronutrients, such as Zn, Fe, and Ca 

(Peraza et al. 1998). Rahman and co-workers (2008) found a positive correlation between 

As and Fe concentrations in the same aquatic plant exposed to As solution suggesting the 

adsorption of As on ferric iron inhibited the mobility of As into the roots of duckweed. 

David Wright (1995) determined that an inversely correlation exists between Ca and Cd 

concentrations through experiments on perch eggs. Toxic metals can compete with essential 

metals for binding sites. Cadmium can potentially interfere with metabolism of four metals 

essential to nutrition (Fe, Zn, Ca and Cu). Furthermore, increased concentration of Cd 

decreases Fe and Cu absorption. Lead competes, with Ca for binding sites on intestinal 

mucosal proteins, with iron for transport systems of the intestine, and with Zn for Gastro-

Intestinal uptake, respectively. Arsenic is known to interact with Se and Zn. Antagonistic 

effects are also discovered between As and Se. Arsenic also binds with Zn although the 

mechanism is unknown (Peraza et al. 1998). It was postulated that trace metals inhibit gill 

Ca ATPase in the order Hg2+˃Pb2+˃Cu2+˃Cd2+˃Zn2+ (Viarengo and Nott 1993). In aquatic 

plants, Zn has been shown to reduce Cu toxicity by promoting antioxidant defense as well 
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as increasing chlorophyll and carotenoid contents in the freshly grown aquatic plant, 

duckweed (Upadhyay and Panda 2010).   

1.2 Metals in the Florida Everglades 

1.2.1 Overlook of the Everglades 

The Florida Everglades is a unique subtropical wetland environment (Fig 1-2), which 

varies seasonally in term of ecological conditions. Majorie Stoneman Douglas (1947) praises 

the uniqueness of the Everglades in her famous book “River of Grass”. It is large (originally 

~1.6 x106 ha), near sea level (3 ± 3m elevation), wet in summer and dry in most of winters 

(Merkel and Hickey-Vargas 2000). Water used to flow freely through the Kissimmee chain 

of lakes in central Florida into the Kissimmee River and south into Lake Okeechobee (Clarke 

and Dalrymple 2003).  Lake Okeechobee would overflow during the subtropical rainy season 

and send water to Florida Bay. As a result of the flat landscape, water used to proceed as a 

30-mile wide sheet of flowing water (Clarke and Dalrymple 2003). South Florida is known 

for its diverse plants species as well as some endangered animal species (Scheidt and Kalla 

2007). Cypress swamps, pine and mangrove forests are among major plants around the 

Everglades area (MePherson and Halley 1996). The suitable landscapes have supported 

animals including snail kite, wood stork, Florida black bear and Florida alligator. Among 

animal species living in the Everglades area, the Florida panther, alligators and manatees are 

on the endangered species list. Flooding has become a major issue for the early human 

settlers with agricultural interests. In order to minimize the damage flooding would cause on 

the crops, more than 400 miles of canals, levees and dams were constructed to drain the 

wetland in the south Florida by the early 1900s (Sklar et al. 1999). Even longer canals and 

levees, along with water control structures and pump stations, were installed in an effort to 
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further drain the area. Fresh water (1.7 billion gallons/day on average) was to be routed 

directly to the sea to avoid flooding upon storm events. The excessive drainage  dramatically 

altered the fragile balance of fresh to salt water in the south Florida area (Clarke and 

Dalrymple 2003). As a result of regulating overland flow of water, natural resources within 

the Everglades area (LNWR, WCA-2, WCA-3, ENP) were significantly degraded (SFWMD 

1999). Drained peat soils were oxidized because of the lowered water table (EAA), resulting 

in the sink of the land surface by 3-10 feet (Perry 2008). The increased nutrient level in the 

Everglades soil, from nearby agricultural and urban development, has shifted vegetation 

community dynamics (Davis 1991; Merkel and Hickey-Vargas 2000). Other adverse impacts 

include enhancement of organic matter decomposition and microbial activity leading to the 

increase of nutrient concentrations in floodwater (Wright and Reddy 2001).   

Today, the great Florida Everglades are dramatically different in terms of ecology and 

hydrology. The excessive drainage caused by water management results in increased highly 

productive algal-phytoplankton blooms, declines in sea grass beds and coral communities 

(MePherson and Halley 1996). Population of wading birds have been mitigated by a 

staggering 85-90% for those that nest their young in the Everglades (Clarke and Dalrymple 

2003). The change in the water distribution has alternated habitat for both plants and animals 

in addition to the salinity changes (Horrocks and Ogden 1994). The hydrological alternation 

is blamed for the dramatic declines of fish and wildlife populations. 

  In an effort to restore conditions in the Everglades back to the pre-development state 

where landscape can support abundant wildlife and plants, the Comprehensive Everglades 

Restoration plan (CERP) was created. In 2000, the legislation regulating CERP was signed 

into law By President Clinton with an estimated funding of $7.8 billion for a 30-year project. 
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The goal of the plan was to restore the ecological beauty in the Everglades area. However, 

the consideration for contribution by human activities to the pollution in the Everglades area 

has been largely neglected by CERP. A report prepared by the U.S. General Accounting 

office has called for the need to fill data gaps in the scientific information on potentially 

harmful contaminants and their risks to native aquatic organisms.   
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Figure 1-2 Satellite image of South Florida, including main components of the Florida 

Everglades: Everglades Agricultural Area (EAA); Arthur R. Marshall Loxahatchee National 

Wildlife Refuge (LNWR); Everglades Water Conservation Area 2 (WCA 2); Everglades 

Water Conservation Area 3; the eastern portion of Big Cypress National Preserve, and the 

freshwater portion of Everglades National Park (ENP). Light areas on the east are urban 

development (Scheidt and Kalla 2007).  

 

 

 



 
13 

 

1.2.2 Possible sources of metals in the Everglades 

Metal distributions in the Everglades are under influences from several sources, 

including agriculture, atmospheric deposition, road traffic, landfill, wastewater management, 

tourism (airboat), airport, cattle ranching and dairy farming (Chaney and Ryan 1993; Chen et 

al. 1997; Viard et al. 2004; Carriger et al. 2006; Dragovic et al. 2008) . With the flow of 

drainage water from Everglades Agriculture Area (EAA) into the Water Conservation Areas 

(WCAs), metals contained in pesticides and fertilizers (e.g., Mg, K, Al, Fe, Cr, Cd, As, Hg 

and Pb) can become inputs in the Everglades (Craft and Richardson 1997). Atmospheric 

inputs such as wind and rainfall can contribute to the metal distributions as well (Pironfrenet 

et al. 1994; Lu et al. 2003). Florida is one of the regional background locations with the 

highest rates of Hg deposition (Sillman et al. 2007). Atmospheric deposition of Cd and Pb 

from rains and aerosols originated in fertilizers (Pironfrenet et al. 1994; Dammgen et al. 2000) 

is another possible alternate source affecting metal distributions in the Everglades. Motor 

vehicle emissions on surrounding roads may also contribute to some metals (e.g., Zn, Pb, Cd) 

(Garcia et al. 1996; Othman et al. 1997; Viard et al. 2004; Calace et al. 2012). Waste water, 

including discharge from domestic and industrial treatment plant as well as runoff from 

landfill, can also contribute to aggravated levels of metals in the Everglades area (McPherson 

1990). The Florida Everglades is a well- known tourist spot with airboat guided tour being 

one of the most popular activities. Kendall-Tamiami Airport (KTMB), one of the “busiest 

general aviation airports in Florida”, is located not too far from the southeastern region of 

Everglades National Park. They might contribute to Pb in the Everglades because Pb is an 

ingredient used in the jet fuel (EPA 2010). Cattle ranching and dairy farming are another 

prominent agriculture activity that affects the ecosystem. High densities of cattle can be seen 
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in the surrounding areas of Everglades in Hendry, Palm Beach, Broward, Miami-Dade and 

Collier counties (MePherson and Halley 1996). Sewage biosolids that are applied to dairy 

farm lands surrounding the Everglades could contribute to the elevated levels of toxic metals 

(Cd, Cr, Ni, Pb) in underground water and runoffs (Richards et al. 2004).   

 
1.2.3 Previous studies on metals in the Everglades and surrounding areas  

Several previous studies have investigated levels of several metals in Biscayne Bay, 

the Florida Keys, Florida Bay, and surrounding estuaries (Windom et al. 1989; Strom et al. 

1992). Lead and Zn contamination were found in Biscayne Bay and Pensacola Bay as 

determined from comparisons between sample data with metal-aluminum relationships 

designed for natural uncontaminated sediments collected from the same region  (Windom et 

al. 1989). Carnahan and co-workers (2008) reported distributions of 11 heavy metals (Cu, Zn, 

Cr, Hg, Pb, Ni, Ag, As, Cd, Sb and Sn) in Biscayne Bay sediments in Florida. Silver, As, Sb, 

Sn, and Cd were rarely detected whereas Cu, Hg, Ni, Pb, and Zn were frequently detected 

using inductively coupled plasma-optical-emission spectrometry (ICP-OES) and a flow-

injection mercury system (FIMS). Elevated levels of Pb were found in most samples, 

compared with establish criteria. The highest concentrations of Cu, Zn, Cr, Hg, Pb, and Ni 

were found closest to Miami and near the mouths of several canals along the western margin 

of the bay. Strom et al. (1992) investigated trace metal concentrations (As, Pb, Cu, and Cd) 

in the sediments and producer as well as consumer organisms in samples from Florida Keys. 

Concentrations of As (<0.2 ppm), Pb (0.8-4.5 ppm), Cd (0.2-1.2 ppm), Cu (0.8-3.8 ppm) 

were measured. The results showed that the Florida Keys had low metal pollutions with a 

few anthropogenic effects (human inputs). A few studies have been done on the distribution 
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of metals and their implications in the surrounding areas of the Everglades (Caccia and 

Millero 2003; Carnahan et al. 2008; Rand and Schuler 2009). Caccia et al. (2003) studied 

distribution of trace metals (Sc, V, Ba, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn, Al, Mg, and Fe) in 

Florida Bay sediments and concluded all metals exhibited similar distribution pattern with 

except for Mn and Fe. The highest concentrations were influenced by the input and runoff 

from the Taylor Slough. Maximum concentrations of those metals in the Florida Bay were 

found to be lower than those in most estuarine systems in the United States. The organic 

material in the Florida Bay originated from detritus of sea grasses as determined using the 

ratio of the percentage of organic carbon and nitrogen in the sediments (Caccia and Millero 

2003). The strong correlations were found between Al and metals (Ni, Cr, Pb, Ba, Fe, V, Cu 

and Zn) suggesting close association of those metals with fine fraction of the sediments 

(aluminosilicates).      

Few studies conducted in the Everglades focused on source and fate of metals. Very 

little interest was given with regard to possible pollution associated with metals in the past 

century (Kushlan and Hunt 1979). A detailed study was conducted on major ions from a Big 

Cypress Swamp alligator pond during a dry season. High concentrations of Al, Fe, Mg, Hg, 

Pb and Zn were found.  Kushlan and Hunt determined that the high values were as results of 

reduced water volumes, rapid decomposition of animal and plant material, and reduction of 

bound compounds in anaerobic conditions. Rand and Schuler (2009) conducted a two-tier 

aquatic screening-level ecological risk assessment for several metals (As, Cd, Cr, Cu, Pb, Ni, 

Zn) in sediment at 32 sites from the south Florida freshwater canals inside the Everglades. 

For tier 1, As, Cd, Cr, Cu, Pb, Ni and Zn were identified as the metals of potential ecological 

concern (COPECs) as their concentrations have exceeded Florida sediment quality 



 
16 

 

assessment Guideline (SQAG) at 10 sites.  For tier 2, a probabilistic risk assessment method 

was used to compare distributions of predicted pore water exposure concentrations of seven 

metal COPECs with distributions of species response data from laboratory toxicity tests to 

quantify the likelihood of risk.  Arsenic and Cr at sites surrounding the Everglades National 

Park were found to be the most frequently detected COPECs in sediment. Potential risks 

associated with Pb and Cu were estimated to be high.  However, this study only set up about 

20 sites around Everglades, most of which were at the boundary of Everglades. However, 

only 7 toxic metals were studied in Rand’s research with goals to conduct a screening-level 

ecological risk assessment. Most studies associated with metals in the Everglades have 

focused on mercury because of its high toxicity to humans and its relatively high 

concentrations found in the Everglades ecosystem (Cai et al. 1999; Evans and Crumley 2005; 

Cohen et al. 2009). Cai et al. (1999) studied the interaction between organic C and Hg 

species in natural water in the Florida Everglades, and concluded Total Hg (THg) and Methyl 

Hg (MeHg) shared different distribution pattern in different phases. Furthermore, colloidal 

forms were found to contain most of THg, while MeHg is present almost exclusively in the 

lower molecular weight fraction of the colloid and in the truly dissolved fraction. Using 

stable isotopes of carbon, nitrogen, and sulfur measured in fish from the Florida Bay, Evans 

and Crumley (2005) concluded that MeHg and nutrient elements shared pathways through 

the food web, and the accumulation of MeHg sustained in gamefish supported by epibenthic 

feeders. Cohen and co-workers (2009) mapped soil total Hg concentrations per mass (THgM) 

and area (THgA) across the Everglades and predicted its spatial pattern. Sources of elevated 

THg including canal water from EAA and subsidence or oxidation of peal soil were proposed 

by the same group. 
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Over the last two decades, several programs supported by federal and state agencies 

have been carried out to examine Hg pollution in the Everglades. For example, studies on Hg 

were conducted through the Regional Environmental Monitoring and Assessment Program 

(REMAP). Hg contamination was examined in terms of distribution among different matrices 

(water, mosquitofish, periphyton), and bioaccumulations (Scheidt and Kalla 2007). The goal 

of R-EMAP was to provide accurate and timely scientific information for management 

decisions on the restoration efforts in the Everglades (Scheidt and Kalla 2007). The 

Everglades R-EMAP area covers areas from north of Lake Okeechobee to the mangrove 

fringe on Florida Bay and from the ridge along the east coast to the west of Big Cypress 

National Preserve. The whole sample areas covers over 750 miles of canals and over 3,000 

square miles of freshwater marsh. In May 2005 and November 2005, phase III of the 

program was conducted as samples were extracted from 228 Everglades marsh sites, 

covering marsh and canal locations throughout the freshwater Everglades and Big Cypress 

(Scheidt and Kalla 2007). Liu et al. (2008) analyzed samples from R-EMAP in 2005, and 

determined the concentrations for THg in the increasing order: periphyton < floc < soil. In 

addition, the same study concluded that condition for bioaccumulation of Hg is favored, on 

the basis of the distribution patterns of THg and MeHg (Liu et al. 2008).  Bioaccumulation 

and spatial patterns in Hg cycling were then investigated, which lead to the identification of 

important factors (surface water dissolved organic matter (DOCsw, pH, chloride, etc.)  in 

controlling THg distribution (Liu et al. 2009). Using samples collected in both summer and 

winter seasons of 2005, mass inventories of THg and MeHg as well as mass budgets of Hg 

were constructed, in an effort to evaluate the magnitude of legacy Hg contamination and help 

predict the fate of new Hg in the Everglades area (Liu et al. 2011). Li and co-workers 
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investigated the degradation of MeHg in the Everglades using stable isotope (Me201Hg) 

addition method. The study demonstrated that the degradation of MeHg can be attenuated by 

sunlight, a controlling factor in the distribution of MeHg in Everglades’ water.   

1.3 Rationale and objectives of this study 

Most of the previous work done on metals in the Everglades has focused on Hg, 

although other metals of environmental concerns deserve an equal share of the spotlight. The 

few studies that have been conducted for other metals rather than Hg in the Everglades have 

dealt with the assessment of eco-toxicity for a limited number of metals using data measured 

in Everglades’ soil/sediment (Caccia et al. 2003; Carnahan et al. 2008; Rand and Schuler 

2009). There is still a general lack of knowledge on the source, distribution, transport, and 

risk of metals in the Everglades.    

Soil, flocculent materials (floc) and periphyton are three important components of the 

Everglades. Investigation of metal contamination in soil can help us assess the potential risk 

of metal pollution on aquatic organisms, and make efforts to prevent further deteriorations 

(Rand and Schuler 2009). Periphyton, an omnipresent feature of Everglades’ marshes, is a 

community comprised of plants, algae and certain animals (MePherson and Halley 1996). It 

is responsible for almost half of primary production of the Everglades and serves as food 

source for small consumers like small fish, grass shrimp at the base of food chain 

(McCormick et al. 1996; Gaiser et al. 2006). Trace metals present in periphyton could enter 

higher trophic levels. Identification of metals in periphyton can help trace and estimate 

concentrations and source of metals in organisms higher up in the food chain. Flocculent 

material (floc), on the other hand, is composed of microorganisms, organic particles (detritus, 

cellular debris), inorganic particles (clays and silts) and pores (Neto et al. 2006). The  
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important role played by floc in aquatic system lead to the belief that floc can dictate the fate 

and effect of particle-associated contaminates (Droppo 2001). In the Everglades, higher plant 

detritus, periphyton, carbonates, and remains of aquatic organisms in the freshwater and 

estuarine make up the floc (Neto et al. 2006).  Floc also represents a significant part of food 

web for invertebrate and fish, and a thorough investigation of metal pollutions associated 

with it is essential to predict overall fate and source of trace metals in the Everglades 

ecosystem. A comprehensive study on metals in these important matrices (soil, periphyton 

and floc) is of great importance for a better understanding of the biogeochemical cycling of 

metals in the Everglades. Results of this study will also provide background information that 

is needed to aid the restoration effort set forth by the CERP.     

The main objective of this research is to assess the current status of toxic and 

essential metals in the Florida Everglades.  The following specific aims will be pursued in 

order to successfully accomplish this objective: 

1. To determine the concentrations of 18 metals, including toxic metals (As, Cd, Cr, Ni 

and Pb) and essential metals (Al, Ba, Be, Co, Cu, Fe, Li, Mg, Mn, K, Sr, V and Zn) in 

various compartments (sediment, Floc, and periphyton) in the Florida Everglades. 

2. To establish the spatial distribution pattern of the metals in the Everglades. 

3. To quantify the major sources of the 18 metals present in the Everglades. 
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2. Methods 

2.1  Experimental section 

2.1.1  Sample collection  

Sampling covered the entire freshwater Everglades, including Arthur R. Marshall 

Loxahatchee National Wildlife Refuge (LNWR), water conservation area 2 (WCA-2), WCA-

3, and Everglades National Park (ENP). Soil, floc and periphyton were collected at 195 

random located stations during the REMAP project in 2005 (Scheidt and Kalla 2007). 

Probability-based sampling design, adopted by the REMAP project was selected. 

Soil samples were extracted with a 3-inch diameter clean polycarbonate coring tube 

to sample the top 10 cm. The flocculent detrital material (floc) is the top layer of the soil is 

composed of suspended organic material containing mostly detritus from plants and algal 

inputs from periphyton (collected separately during soil sample collection. Three types of 

periphyton, floating mat (floating), soil mat (lying on the soil surface), and epiphytic 

(associating with macrophytes), were collected in the field. A layer of periphyton mat, if 

found on the top of the soil core, was separated and stored in a separate container. Samples in 

both dry and wet seasons (May and November 2005) were collected (Figure 2-1). All 

samples, soil, floc, and periphyton were stored in refrigerator at -20ºC before sample 

processing and analysis.   
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Figure 2-1 A map showing sampling sites in the Florida Everglades. Sites were sampled 

during the dry (May) and wet season (November). LNWR: Arthur R. Marshall Loxahatchee 

National Wildlife Refuge; WCA-2 and WCA-3: Water Conservation Areas; ENP: Everglades 

National Park  

2.1.2  Sample preparation and analysis 

Soil, floc, and periphyton samples were dried in the laboratory oven at 60̊C for four 

days, and then were homogenized using pestle and mortar. Approximately 0.5 g of each 

sample was transferred to a clean polypropylene digestion tube (50 ml). Five ml concentrated 

nitric acid (trace metal grade) was added to each sample and the mixture was heated at 95 ± 

5˚C on a hot block for an hour.  After samples cooled to the room temperature, one ml of 

30% hydrogen peroxide was added and then the samples were heated again at 95 ± 5˚C for 
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additional 20 minutes.  The samples were diluted with deionized water to 50 ml.  Prior to 

analysis, samples were filtered (0.2 µm filter size) and diluted on the basis of their 

concentrations (rough estimation for each metal analyzed).  Twenty µL of yttrium was added 

to 10 ml of sample solution to serve as the internal standard.  

Concentrations of metals were analyzed using an ELAN DRC-E inductively coupled 

plasma-mass spectrometry system (ICP-MS). Personal Computer-based data acquisition and 

analysis software (ELAN version 3.4) was used.  

Quality assurance/quality control (QA/QC) was taken to ensure data duplicity and 

highest accuracy possible. For every 20 samples prepared, two additional aliquots of one 

selected sample were spiked at the level of 1-5 times estimated concentration of metals in 

samples to serve as matrix spike and matrix spike duplicate (MS/MSD), along with two 

method blanks (containing only 2% HNO3 (v/v) and DIW) to assure quality and reliability of 

the analysis. For every 20 samples prepared, one sample was selected for triplicate analysis. 

 2.1.3 Data analysis  

 Concentrations of Li, Be, V, Mn, Co, Cu, Tl, Zn, Sr, Ba, Al, Fe, K, Mg, As, Cd, Cr,  

Ni and Pb from all matrices collected in both dry and wet seasons were calculated on the 

basis of dry weight. Total recoverable analytes (mg/kg, dry weight basis) in solid samples 

were calculated for each sample analyzed using the equation below: 

 

Csample= (Cextract×Vextract)/Wdry  (1) 
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Where Csample is the concentration for total recoverable analyte; Cextract is the 

concentration of analyte in the extract (mg/L); Vextract is the volume of extract (L); Wdry is the 

dry weight of sample aliquot extracted (Kg). 

Parameters, including maximum, minimum, standard deviation, and median values 

were calculated as well.  Contour maps of each metal from both dry and wet seasons were 

plotted using SURFER.  Pearson’s correlation analyses of all metals were conducted intra 

and inter all matrices using Statistical Package for the Social Sciences (SPSS). The detection 

limits of ICP-MS techniques for all metals analyzed are listed in Table 2-1. 

 

Table 2-1 Detection Limits of trace metals by ICP-MS 

Element Detection Limit 
[mg/Kg] 

Element Detection  Limit 
[mg/Kg] 

Al 0.2 Li 0.01 
As 0.02 Mg 0.06 
Ba 0.01 Mn 0.004 
Be 0.001 Ni 0.01 
Cd 0.004 K 0.3 
Cr 0.02 Sr 0.001 
Co 0.003 Tl 0.001 
Cu 0.05 V 0.05 
Fe 0.2 Zn 0.2 
Pb 0.005   
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3. Results  

3.1  Metal concentrations in Florida Everglades soil, floc, and periphyton 

 All three matrices, soil, floc and periphyton, had different trends in terms of average 

concentrations and concentration ranges (Table 3.1 and 3.2).   For soil samples, some metals 

(Al, Cu, Ni and Pb) had higher concentrations in the dry season than in the wet season (Fig 3-

1). Concentrations of Be, V, Co, Tl, Zn, Sr, Ba, Fe, Mg and Cd varied little during the year, 

while Cr and K was twice more concentrated in the wet season than in the dry season. The 

dry season also had a larger concentration ranges for most of metals than the wet season. 

Among all the metals, iron and Al had the highest concentrations in both dry and wet seasons. 

For floc samples, average concentrations varied significantly from dry season to wet season 

(Fig 3-2). Copper, Mg, Cr, Ni, Pb had higher concentrations in the dry season compared to 

the wet season; Li, Co, Tl, Cd and As had little concentration variations between seasons. 

Aluminum and K had higher mean concentrations in the wet season. Iron had the highest 

concentrations of all the metals analyzed. Mean concentration of almost all metals analyzed 

from periphyton varied little between seasons (Fig 3-3). Only Be, Al, Fe, Pb, Cd and Zn 

exhibited visible concentration changes. Aluminum and Pb had higher concentrations in the 

dry season while Be, Zn, Cd, and Fe were more concentrated in the wet season. Other metals 

(Li, V, Mn, Co, Cu, Tl, Sr, Ba, Cr, Cd, Ni and As) had few changes in terms of mean 

concentrations. Similar to the other two compartments, iron is the most concentrated metal in 

periphyton. As for the distribution of metals among different compartments, average 

concentrations of most metals follow the order of soil>floc>periphyton, except for Mn, Sr, 

Ba, K, Ni, Cu and Zn.  Floc had the highest concentrations of Cu and Zn while periphyton 

had the most concentrated values for Mn, Sr, Ba, K and Ni. Aluminum and Fe had the 
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highest concentrations among all metals from sediment samples in both dry season (May 

2005) and wet season (November 2005), while Tl was the least concentrated metal.   

Table 3-1 Average concentrations of metals in all matrices (soil, floc, and periphyton) in dry 

season (mg/kg for all metals except for Al, Fe and Mg given in (mg/g)) 

  

 

 

 

 

 

Metals Soil  Floc  Periphyton  
 Mean Range Mean Range Mean Range 
Lithium 1.58±3.06 0.061-20.9 0.79±0.37 0.10-1.94 0.63±0.52 0.10-1.90 
Beryllium 0.096±0.109 0.002-0.542 0.07±0.05 0.001-0.3 0.033±0.02 0.01-0.09 
Vanadium 12.23±9.76 2.40-70.1 7.75±6.8 0.32-37.0 2.32±1.89 0.69-8.61 
Manganese 92.0±72.1 1.40-363 138±94.7 16.9-411 586±570 83.2-1,883 
Cobalt 0.675±0.340 0.013-1.72 1.13±0.41 0.45-2.16 0.68±0.26 0.24-1.19 
Copper 6.10±10.8 0.161-71 17.8±22.4 2.76-120 4.07±6.02 0.56-24.0 
Thallium 0.027±0.0230 0.001-0.166 0.013±0.012 0.001-0.087 0.006±0.01 0.001-0.02 
Zinc 7.15±4.87 0.013-26 19.9±8.82 5.77-59.8 7.16±4.10 2.42-16.8 
Strontium 360±224 13.1-1098 367±331 20.3-2301 602±480 150-1,890 
Barium 42.9±15.8 12.6-87.5 49.1±12.4 26.7-84.7 65.0±50.1 26.1-215 
Aluminum 4.12±5,26 .328-46.3 .706±.750 0.015-4.76 1.27±1,69 0.051-4,84 
Iron 6,10±5,04 .602-25.9 5.50±5.31 0.037-27.1 4.27±4,11 .242-14.8 
Potassium 157±86.2 2.17-368 395±326 39-2,25 522±338 186-1,251 
Magnesium 2.11±1.86 .0676-17.2 2.24±1.43 .166-7.59 2.66±2,04 .240-7.28 
Chromium 4.28±4.93 0.065-30.6 5.89±3.70 2.00-17.9 1.95±1.31 0.59-5.44 
Nickel 4.87±3.83 0.383-19.6 9.35±7.71 3.51-39.1 16.5±8.63 4.05-33.7 
Arsenic 2.82±1.97 0.142-8.41 4.41±2.45 0.84-13.7 1.26±1.00 0.22-4.06 
Cadmium 0.118±0.127 0.004-1.07 0.114±0.108 0.01-0.78 0.03±0.02 0.01-0.08 
Lead 18.5±38.5 0.122-280 2.67±4.12 0.05-19.3 0.87±1.29 0.02-4.74 
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Table 3-2 Average concentrations of metals in all matrices (soil, floc, and periphyton) in wet 

season (mg/kg for all metals except for Al, Fe and Mg given in (mg/g))  

 

Metals Soil  Floc  Periphyton  
 Mean Range Mean Range Mean Range 
Lithium 1.27±1.65 0.064-10.3 0.80±0.94 0.17-5.72 0.50±0.51 0.09-1.75 
Beryllium 0.084±0.064 0.007-0.395 0.42±0.31 0.01-1.55 0.09±0.09 0.02-0.38 
Vanadium 11.8±7.17 1.35-43.6 11.2±7.18 2.99-32.9 3.23±1.91 1.21-9.87 
Manganese 67.7±46.5 7.09-197 371±412 17.8-2,278 532±484 86.9-1,881 
Cobalt 0.82±1.1 0.14-8.96 1.07±0.40 0.43-2.70 0.86±0.36 0.43-1.67 
Copper 2.89±2.02 0.127-9.97 7.39±4.91 2.54-30.8 4.36±4.95 0.68-20.3 
Thallium 0.025±0.041 0.001-0.264 0.016±0.01 0.004-0.059 0.01±0.02 0.001-0.11 
Zinc 7.29±4.95 0.404-20.9 16.7±6.62 6.05-35.2 12.6±7.79 3.06-30.4 
Strontium 346±205 60.0-856 391±308 76.8-1,579 543±405 81.9-1,976 
Barium 43.3±17.6 9.07-95 68.5±39.0 24.1-227 67.0±41.2 18.7-171 
Aluminum 3.08±4.30 0.051-21.9 1.13±1.59 0.058-9.96 0.494±0.580 0.070-2.97 
Iron 6.16±3.99 0.808-20.9 5.98±4.77 0.524-19.5 5.86±4.68 0.770-17.5 
Potassium 335±225 1.9-958 570±591 97-4294 742±511 140-1,988 
Magnesium 2.04±1.61 0.0071-13.4 0.961±0.864 0.127-4.26 2.07±1.61 0.340-7.04 
Chromium 12.1±15.2 1.80-59.8 3.08±1.26 1.31-9.15 1.62±0.92 0.62-4.15 
Nickel 3.423±2.03 1.06-13.0 3.37±1.63 1.31-11.12 17.7±10.9 4.82-46.8 
Arsenic 3.13±2.77 0.074-14.9 3.39±1.91 0.49-8.74 2.12±1.79 0.38-7.17 
Cadmium 0.12±0.12 0.007-0.83 0.092±0.033 0.022-0.186 0.07±0.15 0.01-0.99 
Lead 1.27±1.65 0.24-146 0.80±0.94 0.37-21.6 0.50±2.88 0.02-12.2 
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Figure 3-1 Comparison of metal concentrations from soil in dry and wet season 

Figure 3-2 Comparison of metal concentrations from floc in dry and wet season 

 

Figure 3-3 Comparison of metal concentrations from periphyton in dry and wet season 
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Correlation matrixes for metals present in the three compartments are shown in 

Tables 3.3, 3.4, and 3.5. Between soil and periphyton metals, soil metals (Mn, As, Cd and Zn) 

and periphyton metal (Zn) were significantly correlated. Periphyton Sr and Mg had strong 

correlation with soil metals (Co, Cu, Cd, Tl, Pb and Sr) (Table 3.3).  Between soil and floc 

metals, Cr in soil correlated well with Tl and Pb in floc. Soil metals (Ni and As) correlated 

with floc metals (Sr and Fe), respectively (Table 3.4). Between floc and periphyton, 

periphyton metal Ni correlated well with floc metal Zn. Strontium in periphyton correlated 

significantly with Sr, Ba and Mg in floc (Table 3.5).



 
29 

 

Table 3-3 correlation matrix of metals (soils, x axis) versus periphyton (y axis) 
 

    

 

 

 

 

 

 

 

 
 
 
 
 
 

++ indicates p<0.01 level 
+ indicates p<0.05 level 
-indicates p>0.05 level 

 Li Be V Cr Mn Co Ni Cu As Cd Tl Zn Pb Sr Ba Al Fe K Mg 
Li +                   
Be - -                  
V - - -                 
Cr - - - -                
Mn - - - - -               
Co - - - - - -              
Ni - - - - ++ - -             
Cu - - - - - - - ++            
As - + - - ++ - + - +           
Cd - - - - - - - - - -          
Tl - - - - - - + - - - -         
Zn + + - - ++ - - - ++ + - ++        
Pb - - - - - - - + + - - + -       
Sr - - - - - ++ + ++ - ++ ++ - ++ ++      
Ba - - - - - - - - - - - - + - -     
Al - - - - + - - - - - - - - - - -    
Fe - - - - - - - - - - - - - + - - -   
K - - - - - - - - - - - - - - - - - -  
Mg - - - - - ++ - ++ - ++ ++ - ++ ++ ++ - - - ++ 

Metals in soil 

M
et

al
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n 
pe

rip
hy
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Table 3-4 Correlation matrix of metals (soils, x axis) versus floc (y axis)  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

++ indicates p<0.01 level 
+ indicates p<0.05 level 
-indicates p>0.05 level 
 

 

 Li Be V Cr Mn Co Ni Cu As Cd Tl Zn Pb Sr Ba Al Fe K Mg 
Li ++                   
Be - -                  
V - - ++                 
Cr - - - +                
Mn - - - - -               
Co - - - - + -              
Ni - - - - - - -             
Cu - - ++ - + - - -            
As - - - - - - - - ++           
Cd - - - - - - - - - -          
Tl - - - ++ - - - - - - -         
Zn - + - - + - - + - - - +        
Pb - - - ++ - - - - - - - - -       
Sr - - - - + - ++ - - - - - - ++      
Ba - - - + - - - - - - - - - - -     
Al + - + + - - - - - - ++ - - - - +    
Fe - - - - - - - - ++ - - - - - - - ++   
K - - - - - - - - - - - - - - - - - -  
Mg + - - - - - - - - - - - - ++ - - - - - 

metals in soil 

M
et

al
s i

n 
flo
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 Table 3-5 correlation matrix of metals (floc, x axis) versus periphyton (y axis) 

 

 Li Be V Cr Mn Co Ni Cu As Cd Tl Zn Pb Sr Ba Al Fe K Mg 
Li -                   
Be - -                  
V - - -                 
Cr - - - -                
Mn - - - - -               
Co - - - - - -              
Ni - - - - - - -             
Cu - - + - - - - +            
As - - - - - - - - ++           
Cd - - - - - - - - - -          
Tl - - - - - - - - - - -         
Zn - - - - - - ++ - - - - -        
Pb - - - - - - - - - - - - -       
Sr - - - - - - - - - - - - - ++      
Ba - - - - - - + - - - - - - ++ -     
Al - - - - - - - - - - - - - - - -    
Fe - - - - - - - - - - - - - - - - -   
K - - - - - - + - - - - - - - - - - -  
Mg - - - - -  - - - - - - - ++ - - + - - 
++ indicates p<0.01 level 
+ indicates p<0.05 level 
-indicates p>0.05 level 

Metals in floc 

M
et

al
s i

n 
pe

rip
hy

to
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3.2 Spatial distribution of metals in Everglades soil, floc and periphyton 

3.2.1 Spatial distribution of metals in soil 

 Spatial distribution patterns of toxic metals (Cd, Cr, Ni, As and Pb) in soil were 

grouped together (Fig 3.4 -3.6).  Although Cu and Zn are considered toxic at high 

concentrations, the two were mixed with essential metals because 1) those two metals are 

essential to plants and other organisms at low concentrations; 2) average concentrations of 

Cu and Zn from all matrices were low.  
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Figure 3-4 Spatial variation of toxic metals in soils of the Florida Everglades (A) Cd, (B) Cr, 
(C) Ni, (D) As, and (E) Pb during the dry season (Top, labeled with capital letters) and wet 
season (bottom, labeled with lowercase letters). 



 
33 

 

-81 -80.8 -80.6 -80.4

25.4

25.6

25.8

26

26.2

26.4

26.6

0

2

4

6

8

10

25.4

25.6

25.8

26

26.2

26.4

26.6

0

4

8

12

16

20

(A)_Li

(a)_Li

-81 -80.8 -80.6 -80.4

0

0.08

0.16

0.24

0.32

0.4

0

0.1

0.2

0.3

0.4

0.5

(B)_Be

(b)_Be

-81 -80.8 -80.6 -80.4
0

8

16

24

32

40

V

0

12

24

36

48

60

(C)_V

(c)_V

-81 -80.8 -80.6 -80.4
0

40

80

120

160

200

0

60

120

180

240

300

(D)_Mn

(d)_Mn

-81 -80.8 -80.6 -80.4

0

1

2

3

4

5

0

0.3

0.6

0.9

1.2

1.5

(E)_Co

(e)_Co

 

Figure 3-5 Spatial variation of essential metals in soils of the Florida  Everglades (A) Li, (B) 

Be, (C) V, (D) Mn, and (E) Co during the dry season (Top, labeled with capital letters) and 

wet season (bottom, labeled with lowercase letters). 
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Figure 3-6 Spatial variation of essential metals in soils of the Florida Everglades (A) Cu, (B) 

Tl, (C) Zn, (D) Sr, and (E) Ba during the dry season (Top, labeled with capital letters) and 

wet season (bottom, labeled with lowercase letters). 
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Figure 3-7 Spatial variation of essential metals in soils of Florida Everglades (A) Al, (B) Fe, 

(C) K and (D) Mg during the dry season (Top, labeled with capital letters) and wet season 

(bottom, labeled with lowercase letters). 
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Spatial distributions of metals in soils from both seasons are very complex. For 

example, Sr decreased in concentration from east to west, while Pb and Ba decreased in 

concentration from north to south (Fig 3-4). In the dry season, hot spots, defined as areas 

where significantly higher concentrations of metals are observed, were mainly observed in 

several distinctive areas of LNWR, WCA-2, WCA-3, and ENP (Fig 3-4 through Fig 3-7). 

Maximum concentrations were observed in the western area of ENP for Li, Be, V, Mn, Co, 

Tl, Al, Fe, Cd, Cr, and Ni; WCA-2 for Cu, Sr, Pb, and Ba; eastern area of ENP for Li, Be, V, 

Mn, and Zn; northern area of ENP for Mg. The highest concentration of As was found in the 

northern area of WCA-3 near the Tamiami Trail. There is no distinctive pattern presented for 

K. In terms of minimum concentrations, all metals except for Cu, Sr, Ba, and K had cold 

spots located in Loxahatchee National Wildlife Refuge. The least concentrated samples 

containing Cu and Ba were extracted from south of ENP, while least concentrated Sr samples 

came from western area of WCA-3. 

The distribution patterns in the wet season were similar to those in the dry season. 

Some essential metals (Li, V, Tl, As, Pb, Al, and Fe) were observed to have hot spots and 

cold spots in the same locations where the maximum and minimum concentrations occurred 

in the dry season (Fig 3-4 through Fig 3-7). Hot spots were seen in the western area for Li, V, 

Cu, Tl, Ba, Al, and Fe, WCA-2 for Cu, Pb, Sr, and Ba, northeastern area of ENP for Be, Li 

and V, and Zn; LNWR for Cd, Cr, Pb, Mg and Co. The distribution pattern was ambiguous 

for K and Mn. Minimum concentrations were detected in LNWR for all metals except for Co, 

Cu, Zn, Sr, Ba, and Magnesium.  Cobalt, Cu, Zn, Ba and Mg had the lowest concentrations in 
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the southern part of ENP, whereas the lowest concentrated samples in Sr and Ba were spotted 

in the western area of Water Conservation Area-3. 

3.2.2 Spatial distribution of metals in the Florida Everglades floc 

 Distributions of metals in floc were group in the same way as did the soil.  Dry season 

and wet season had drastically different spatial patterns. In dry season, concentrations of Pb, 

Sr and Mg attenuated from north to south (Fig 3-8, 3-9 and 3-10). Other metals had more 

complex spatial distribution patterns. Several regions covered with highly concentrated 

metals in floc samples. The distribution of metals had hot spots in western area of WCA-3 

for Li, Be, V, Cr, As, Mn, Co, Cu, Tl and Al and WCA-2 for Sr, Ba, Ni and Magnesium (Fig 

3-7 through Fig 3-10). Zn and Ba had the lowest concentrations in the mid region of Water 

Conservation Area-3.  

In wet season, concentrations of Mn, Sr, K and Mg decreased from north towards 

south (Fig 3-9, 3-10 and 3-11). Chromium, As, and Pb were similarly distributed as in the dry 

season. Several metals，including Li, Be, Mn, Sr, and Mg，had the highest concentration 

discovered in the eastern area of WCA-3, whereas western area of WCA-3 contained 

maximum concentrations of V, Co, Cu, Tl, Zn, Fe, and K (Fig 3-9 through Fig 3-11). On the 

other end of spectrum, the minimum concentrations of Li and Be were located in the western 

zone of Water Conservation Area-3. The south of ENP contained least concentrated of some 

metals including Mn, Cu, Zn, Sr, Mg and Barium. Western area of the ENP and eastern area 

of WCA-3 contained minimum concentrations of V, Cu, Tl, Al, Fe and Cobalt.   
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Figure 3-8 Spatial variation of toxic metals in floc of the Everglades (A) Cd, (B) Cr, (C) Ni, 

(D) As, and (E) Pb during the dry season (Top, labeled with capital letters) and wet season 

(bottom, labeled with lowercase letters). 
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Figure 3-9 Spatial variation of essential metals in floc of Florida  Everglades (A) Li, (B) Be, 

(C) V, (D) Mn, and (E) Co during the dry season (Top, labeled with capital letters) and wet 

season (bottom, labeled with lowercase letters). 
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Figure 3-10 Spatial variation of essential metals in floc of Florida Everglades (A) Cu, (B) Th, 

(C) Zn, (D) Sr, and (E) Ba during the dry season (Top, labeled with capital letters) and wet 

season (bottom, labeled with lowercase letters). 
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Figure 3-11 Spatial variation of essential metals in floc of Florida Everglades (A) Al, (B) Fe, 

(C) K, and (D) Mg during the dry season (Top, labeled with capital letters) and wet season 

(bottom, labeled with lowercase letters). 
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3.2.3 Spatial distribution of metals in periphyton 

Spatial distribution patterns were plotted for benthic periphyton (Fig 3-12 through Fig 

3-14), epiphytic periphyton (Fig 3-15 through 3-17) and floating periphyton (Fig 3-18through 

3-20).  Toxic and essential metals were categorized in the same way as soil and floc.  Hot and 

cold spots were shown on each figure. 
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Figure 3-12 Spatial variation of toxic metals in Benthic Periphyton of Florida Everglades (A) 

Cd, (B) Cr, (C) Ni, (D) As, and (E) Pb during the dry season (Top, labeled with capital letters) 

and wet season (bottom, labeled with lowercase letters). 
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Figure 3-13 Spatial variation of essential metals in benthic periphyton of Florida  Everglades 

(A) Li, (B) Be, (C) V, (D) Mn, (E) Co, (F) Cu (G) Tl  during the dry season (Top, labeled 

with capital letters) and wet season (bottom, labeled with lowercase letters). 
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Figure 3-14 Spatial variation of essential metals in benthic periphyton of Florida  Everglades 

(A) Zn, (B) Sr, (C) Ba, (D) Al, (E) Fe, (F) K, (G) Mg during the dry season (Top, labeled 

with capital letters) and wet season (bottom, labeled with lowercase letters). 
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Figure 3-15 Spatial variation of toxic metals in Epiphytic periphyton of Florida Everglades 

(A) Cd, (B) Cr, (C) Ni, (D) As, and (E) Pb during the dry season (Top, labeled with capital 

letters) and wet season (bottom, labeled with lowercase letters). 
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Figure 3-16 Spatial variation of essential metals in epiphytic periphyton of Florida  

Everglades (A) Li, (B) Be, (C) V, (D) Mn, (E) Co, (F) Cu (G) Tl during the dry season (Top, 

labeled with capital letters) and wet season (bottom, labeled with lowercase letters). 
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Figure 3-17 Spatial variation of essential metals in epiphytic periphyton of Florida  

Everglades (A) Zn, (B) Sr, (C) Ba, (D) Al, (E) Fe, (F) K, (G) Mg during the dry season (Top, 

labeled with capital letters) and wet season (bottom, labeled with lowercase letters). 
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Figure 3-18 Spatial variation of toxic metals in floating periphyton of Florida Everglades (A) 

Cd, (B) Cr, (C) Ni, (D) As, and (E) Pb during the dry season (Top, labeled with capital letters) 

and wet season (bottom, labeled with lowercase letters). 
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Figure 3-19  Spatial variation of essential metals in floating periphyton of Florida  

Everglades (A) Li, (B) Be, (C) V, (D) Mn, (E) Co, (F) Cu (G) Tl during the dry season (Top, 

labeled with capital letters) and wet season (bottom, labeled with lowercase letters). 
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Figure 3-20 Spatial variation of essential metals in floating periphyton of Florida  Everglades 

(A) Zn, (B) Sr, (C) Ba, (D) Al, (E) Fe, (F) K, (G) Mg during the dry season (Top, labeled 

with capital letters) and wet season (bottom, labeled with lowercase letters). 
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In the dry season, Ni, Sr and Mg exhibited clear spatial distribution pattern in which 

the concentration decreased from north to south for benthic periphyton (Fig 3-11 and 3-13). 

For epiphytic periphyton, concentrations of Sr and Mg decreased also from north to south. 

The distribution patterns were less clear for floating periphyton. The maximum 

concentrations were observed in several distinct locations in the dry season for all periphyton 

samples involved (Fig 3-12 though 3-14). In epiphytic periphyton, two locations, eastern and 

western area of WCA-3, contained hot spots for Li, V, Sr, Mg, Cd, Cr and Ni as well as Be, 

Mn, Co, Cu, Tl, Zn, Al, Fe and Pb, respectively (Fig 3-15 through 3-17).  In benthic 

periphyton, the eastern area (Li, Cu, Sr, Ba, K, Mg, Pb, V, Co, Tl, Zn and Fe) of WCA-3 

contained most of hot spots (Fig 3-12 through 3-14).  Other hot spots were location in areas 

including western ENP (Be, Tl, Al, Fe), western WCA-3 (Mn, Cd, As) (Fig 3-13 and 3-14).  

In floating periphyton, west (Li, V, Mn, Co, Cu, Tl, Zn, AL, Fe and K) and east (Sr and Mg) 

of WCA-3 were home to most hot spots (Fig 3-19 and 3-20). Two metals, Be and Ba, were 

mostly concentrated in the western area of WCA-3 (Fig 3-19 and 3-20). 

 In the wet season, no clear trends of spatial distribution patterns of metals were 

observed for periphyton. The distribution patterns for the wet season varied significantly 

when compared with the dry season (Fig 3-12 through 3-20). For epiphytic periphyton, 

maximum concentrations of metals (Li, Be, Mn, Co, Al, Fe, Mg) were observed in the 

western corner of ENP (Fig 3-16 and 3-17).  Other areas, such as mid ENP (V, Mn, Tl, Zn, 

Sr), west of ENP (Cu) as well as east of WCA-3 (Ba and K), were also home to hot spots 

(Fig 3-16 and 3-17). Toxic metals (Cr, Ni and As) had maximum concentrations near EAA 

(Fig 3-17).  For benthic periphyton, the maximum concentrations were spotted in several 
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places: west (Li, Be, Mn, Co, Tl, Ba and Cd) and east (Cu, Sr, Mg, Ni and Pb) of WCA-3 

(Fig 3-13 and 3-14). For floating periphyton, hot spots were located in either east or west of 

WCA-3 under limited data (Fig 3-18 through 3-20).   

4. Discussion 

4.1  Factors influencing the spatial distribution of metals in the Florida Everglades  

          4.1.1  Effects of possible sources on metal distribution in the Everglades 

  Metals in the Everglades could originate from natural sources as well as 

anthropogenic sources. The Everglades is a 500,000 ha freshwater wetland mainly composed 

of sawgrass and open water slough (Craft and Richardson 1997). The soil matrix is 

composed of the most abundant metals in the earth’s crust such as Al, Fe, Mg, K and Ca 

(Schulze 1989). Peat soils, primarily found in the central Everglades, and marl soils, found in 

the shallow peripheral marshes, are two major soil types in the Everglades (Scheidt and Kalla 

2007). Peat soils are formed as results of plant matter decay while marl soils are more calcitic 

in composition in association with calcitic algae mat (periphyton) (MePherson and Halley 

1996), which contributes to the natural concentrations of Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb 

(Nagajyoti et al. 2010). Under the soils, a large volume of carbonate sediments composed 

exclusively of limestone dolomite and anhydrite serve as sources to minerals such as Fe, Al 

and Magnesium. Two major sloughs in the Everglades, Taylor and Shark Sloughs, carry 

surface water sheet flow from WCAs and EAA to Everglades National Park.  They might 

serve as sinks for elements from erosion of soils and weathering of the underlain sediment 

rocks (Gough et al. 2000).          
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Anthropogenic sources could include farming activities in the EAA area, atmospheric 

deposition, road traffic, tourism (airboat), and the regional airport. The distribution of metals 

could partially be explained by the impact of these potential sources. Everglades Agricultural 

Area is about 7,000 acres (account for 27% of total historic Everglades) with major 

productions in sugarcanes (Light 2010). A large amount of fertilizer was used to enhance the 

growth of sugarcanes, snap beans, cabbage, and other crops in EAA area  (Förstner and 

Wittmann 1981; MePherson and Halley 1996).  Nitrogen and phosphate containing fertilizers 

are widely used in the agricultural production at the rate of 7 tons/mi2 for nitrogen and 3 

tons/mi2 for phosphate. Average concentrations of toxic metals (Pb, As, Cd, Cr and Ni) 

presented in the phosphate (P) fertilizers in the U.S. are shown in Table 4.1.  Since currently 

there are no data on the background concentrations of toxic metals in the Everglades area, 

toxic metals in the P fertilizers were compared with sediment quality guidelines (SQGs) 

designed for freshwater sediment assessment. All toxic metals from fertilizers exceeded 

limits of “no effect” category, and some metals surpassed limits set for “probable effect” 

category. Several major canals including Miami canal, North new river canal and Hillsboro 

canal, along with large capacity pump stations, were constructed in an effort to prevent 

flooding in EAA by diverting water into WCAs and LNWR (Figure 4-3).  Toxic metals from 

fertilizers might be carried by the canals and enter WCAs and LNWR. Because of the 

absence of background concentrations of toxic metals in the Everglades, The concentrations 

of As, Pb, Cu and Zn from the current study were compared to Sediment Quality Guideline 

values. All metals compared exceeded no-effect category of SQGs. The high concentrations 

found in WCAs and LNWR varied for Cu  (52-65 mg/Kg), As (7.5-10 mg/Kg) ,Pb (125-250 

mg/Kg) and Zn (20-25 mg/Kg) for the dry season (Fig 4-1). The detected concentrations 
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were well above FL SQGs in the no effect category which might be attributed to agricultural 

applications (e.g. fertilizers) in the Everglades Agricultural Area.   

Table 4-1 Comparison of toxic metals in P fertilizers and in sediment quality guidelines 
(SQGs) LEL=Lowest Effect Levels; TEL= threshold effect levels; SEL=severe effect level; 
PEL=probable effect levels   

 

 

 

 

 

 

 

 

SQGs As 
(mg/Kg) 

Cd 
(mg/kg) 

Cr 
(mg/kg) 

Ni 
(mg/kg) 

Pb 
(mg/kg) 

No effects      
LEL(Florida) 6 0.6 26 16 31 
TEL(Florida) 5.9 0.6 37 18 35 
Probable 
effects 

     

SEL(Florida) 33 10 110 75 250 
PEL(Florida) 17 90 197 36 91.3 
P fertilizers 12 11 109 37 12 
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Figure 4-1 Metals with elevated concentrations (mg/Kg) for Cu, As, Pb and Zn in soils from 

the dry season that are possibly affected by fertilizers applied in EAA  

Areas in the immediate vicinity of major roads could be under stress of metals that 

result from the elevated heavy metal concentrations from roadway emissions generated 

mainly from vehicle component and equipment (brakes, tires, parts wear and lubricant oil in 

engine) (Pagotto et al. 2001; Viard et al. 2004; Apeagyei et al. 2011). The deposited metals 

from roads might be accumulated on the road surface and eventually be transported via re-

suspension or carried by runoff to the nearby soil (Turer et al. 2001). Schauer et al. (2006) 

studied metals in crushed brake pads and housing dust and confirmed Fe, Cu and Ba to be the 

most abundant elements. The tire analyses from the same study found that Zn concentrations 

were about 15 times higher than concentrations of Zn in brakes. Other parts of the motor 

vehicles such as rotor (made from cast iron) or drum against which the brake pad presses can 

contribute to the elevated concentrations of iron. In addition, Ba was found in a large amount 

in brake wear emissions. Zinc and Ba components are employed extensively in lubricant oils 
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for diesel and other combustion engines (deMiguel et al. 1997). Exhaustive studies have 

shown correlations between metal concentrations and road side soils (Turer et al. 2001; 

Apeagyei et al. 2011; Mejia et al. 2011; Mikalajune and Jakucionyte 2011; Zafra et al. 2011). 

Lead and Zn originated from vehicular traffic were detected at high concentrations 26, 988 

and 6,156 ug/g, which became the major components of metal pollutions to Sydney estuary 

catchment soils (Birch et al. 2011). Turer et al. (2001) determined that Pb sampled in the 

roadside soil could mainly originate from vehicle exhaust when leaded fuel was still used in 

Cincinnati, Ohio. Concentrations of Zn, Cu, K, Ti, Sr and Ca found in brake pads were found 

to correlate with elevated concentrations in road dust (Apeagyei et al. 2011). Previous studies 

indicated that road dusts associated with high traffic road could contain high concentrations 

of Cr, Fe, Cu, Pb, and Zn, in both urban and rural area (Pagotto et al. 2001; Viard et al. 2004; 

Apeagyei et al. 2011). Similar results of elevated metal concentrations were found in my 

study: several of toxic metals including Cr, As and Zn (Figure 4-2) showed several “hot 

spots” in soil samples near two major roadways, US I-75 and US Route 41. US Route 41 is a 

major road that extends from Miami in the east of South Florida to Naples in the west of 

South Florida, The highest Cr level varied between 48 to 60 mg/kg was found in the vicinity 

of I-75, a major interstate highway traveled from south of Florida to Michigan. Elevated 

concentration of Zn (20 mg/Kg) was also found near both roads, implying that road dusts 

might play an important role in the distributions of both Cr and Zn in the Everglades.    
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Figure 4-2 Distribution of metals (Cr, As and Zn) in soil (mg/kg) from the dry season 

possibly influenced by road traffic, airboat trails and airport 

Airboats have been used extensively in the marshes of the Everglades. Numbers of 

airboats have been increased since the 80s of last century (Johnston 1984). Several studies 

have done on adverse impact of airboat activities on the hydrology (Weeks 1989), soils 

(Yamataki 1994) and vegetation (KcKee 1993). Alongside of U.S. Route 41, multiple 

businesses offer airboat tours with routes regulated under the state laws (FWC 2012). Routes 

taken by commercial airboats in the Everglades were indicated in Figure 4-2. Although few 

studies were conducted on the metal pollutions in the Everglades area in association with 

airboat activities, use of airboats would probably cause alterations of flow pattern, soil 

displacement (oxidation), and change in plant composition (Wright 2000; Rehage and 

Trexler 2006). The oxidation in the soil and change in vegetation communities might 

negatively impact the cycling of metals in different matrices (soil, floc and periphyton). Boat 

paint and parts involved in airboat operation and emission from gas burning could also 
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contribute to the elevated levels of As and Zinc (Figure 4-2). Arsenic (>7.5 mg/kg) and Zn 

(>20 mg/kg) showed elevated concentrations in the immediate surrounding areas of the 

regulated airboat trails, suggesting potential correlations with airboat activities.   

Aircraft emissions containing toxic metals can potentially harm both the environment 

and animal health (Lee et al. 2010). The main emitted species are generated from combustion 

of kerosene with ambient air in the engine combustion chamber. Some emitted species may 

contain metals (Cu and Zn) from fuel system (Lee et al. 2010), and from erosion of metal 

parts (Demirdjian et al. 2007). Chromium plating has been used in gas turbine engine 

maintenance operations to repair worn Darts and replace worn or damaged Cr used (Schell 

and Rechsteiner 2000). High emissions of Cr (VI) were found from aircraft engines (Agrawal 

et al. 2008). The elevated concentrations of Cr (>25 mg/Kg) and Zn (>25mg/Kg) were 

detected near Kendall-Tamiami Executive Airport (KTMB) located in the vicinity of 

northwestern region of Everglades National Park (Fig 4-2). As one of the busiest general 

aviation airports in Florida (KTMB 2012), the aviation activities from KTMB might 

contribute to the high concentrations of Cr and Zn in the nearby Everglades area.     

The eastern panhandle of the ENP, along with Shark River slough, and Taylor River 

slough regularly receive water from canal constructed in the 70s as part of Central and South 

Florida (C&SF) project (Sklar et al. 1999).  Shark River slough receives water from canal (L-

67A) that was originated in Everglades Agricultural Area. Furthermore, canal S-332 was 

constructed to deliver water from north (EAA) into Taylor river slough (Figure 4-3). 

Manganese, K and Sr in soil all had high concentrations in the surrounding areas of EAA in 

the north and in the south of Everglades National Park (Figs 3.4 through 3.6). The elevated 
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concentrations of Mn, K and Sr in the surrounding areas of EAA could be attributed to the 

terrestrial input and runoff from EAA, as water move from north of Everglades to the south 

carrying input influenced by agricultural and rural development area (EAA). The arid regions 

of North Africa are inordinate source of soil dust. Large amounts of soil containing toxic 

metals are taken during the dust storm and transported to other continents on the prevailing 

winds (Perry et al. 1997).  Atmospheric deposit of African dust may contribute to the 

elevated concentrations of Pb, As, Cu and Fe in the Florida Bay area during the low tide flux 

(Thornberry 2008).     

 

Figure 4-3 Diagram showing canals and levees in the Everglades (Light and Dineer 1994). 
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4.1.2  Effects of environmental parameters and metal-metal interactions on the 

distribution of metals in the Florida Everglades 

In addition to the above-mentioned sources, some important environmental factors, 

such as soil natural organic matter (NOM), soil pH, oxidation-reduction potential (redox) and 

dissolved organic matter (DOM) could potentially impact on the distributions of metals. 

NOM is mainly composed of carbon, oxygen and small amount of N and P (EPA 2007). It is 

formed by all detrital organic matter in a natural system, making it an important component 

of the majority of freshwater environment (Warren and Haack 2001). Aquatic NOM could be 

categorized based on size: DOM and particular organic matter (POM).  DOM is defined as 

the organic matter that passes through a 0.45 µm pore filter while POM does not. Organic 

matter is known to have strong binding ability to retain inorganic soil contaminants (metals) 

(Hesterberg 1998; Perkins et al. 2000). In the Everglades, the highest organic matter content 

was found in LNWR with median of 94%, followed by WCA-3 and WCA-2 with 75% 

organic matter. The peat soils in the north are generally rich in organic while the marl soils in 

the south are minerals (Scheidt and Kalla 2007). Humic substances are major parts of NOM 

in soil and water. (Frimmel 1998). Peat soils are also highly enriched in humic substances 

(Hajje and Jaffe 2006). Humic substances bind with metals either through forming soluble 

organic complexes to retain metals in soil or forming insoluble complexes resulting in 

reduction in bioavailability of metals (Logan et al. 1997). Mineral surface reaction with 

metals occurs mainly through sorption process (Brown et al. 1999). Variables controlling rate 

of sorption depend on several factors including pH, mineral surface charge, and type of 

sorption complex formed, among others (Brown et al. 1999). As pH increases, metals (such 

as Pb) existing as cations over a wide pH range have higher affinities for a mineral surface, 
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while metals (such as As) behaving as anions have lower affinities. In contrast, NOM is 

always negatively charged under normal environmental conditions and show high affinity for 

cationic metal species (Warren and Haack 2001).        

Dissolved organic matter has a strong influence on the fate of dissolved metal in 

metal-organic complexes (Sauve et al. 2000). DOM is known to strongly bind toxic metals 

such as Cu, Pb, Cd, Zn and Ni (Weng et al. 2002). In the aquatic environment, humic 

substance makes up majority of DOM (Weng et al. 2002). Humic-metal complexes can be 

categorized into two groups: outer sphere complexes, which are favored by alkali and 

alkaline (e.g., Be, Mg, Ca, Sr, Ba) earth metals that metal is held more loosely than inner 

sphere complexes, which is preferred by transition elements (e.g., Cu, Cd, Zn and Pb) based 

on formation of a covalent bond between ligands and metal ions (Logan et al. 1997). Metal 

cations (e.g., Mg2+, Al3+) that are compact and not very polarizable prefer reactions with 

ligands that are also less polarizable (e.g., O-containing ligands). These are known as hard 

acids and bases. Large and more polarizable metals (e.g., Cd2+, Cu2+) are likely to react with 

more polarizble ligands (e.g., S-, P- and N-containing ligands. Table 4-2 illustrated some 

examples of both hard and soft acids as well as bases.  Significant correlation were observed 

between DOC and metals in soils (Ni, Cu, As, K and Mg) (Table 4.3) (p<0.01). The close 

correlation between DOM and Pb confirmed the statement that organic matter content plays 

an essential role in the Pb sorption by soil (Lee et al. 1998). Other study showed that Pb was 

preferably associated with soil organic fraction, as verified by the current study (Dragovic et 

al. 2008). Ash free weight represents the content of organic matter in soils. The significant 

correlations found between ash free weight (OM in soil) and transitional metals (Cu, As, Pb 
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and Zn) were probably resulted from formation of inner sphere complexes of those two 

groups (Fig. 4-4).  Most metals were significantly correlated with ash free weight of the soil 

(except for V, Cr, Fe, K and Mg), indicating the important role that NOM play in regulating 

metal distribution.   

 

Figure 4-4 Distributions of Cu, As, Pb and Zn (mg/Kg) as well as ash free weight (%) from 

the dry season. 
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Table 4-2 Hard and soft acids (metal ions) and bases (ligands) (EPA 2007). 

Hard acids  Al2+, Ba2+, Be2+, Co3+, Cr3+, Fe3+, Mn2+, Sr2+ 

Borderline acids (between hard and soft) Cu2+, Fe2+, Ni2+, Pb2+, Zn2+ 

Soft acids  Cd2+, Cu+, Tl3+, Tl+ 

Hard bases  F-, H2O, OH-, SO42-, HCO3-  

Borderline bases (between hard and soft)  Cl-, Br-, NO2
-, SO32- 

Soft bases I-, HS-, S2-, CN-, SCN-, Se2-, S2O32-, 2-, -SH,  

-SCH3, -NH2, R-, C2H4, C6H6, RNC, CO, 
R3P, (RO)3P, R3As, R2S, RSH, RS- 

 

Soil pH is probably the most important property regulating solubility of metals in 

soils (Hesterberg 1998). The soil pH influences virtually the solubility of all metals and their 

biogeochemical processes in soil, including complexation and acid-base reactions of metal 

species, dissolution and precipitation of metal solid phases as well as metal sorption. 

Furthermore, pH controls binding and speciation of metals by affecting distribution of 

dissolved ligands (e.g., phosphate, sulfate, carbonate, humic substances) as well as surface 

charge of binding sites on DOM and solid phases (EPA 2007). In the sediment, sorption to 

the solid phase controls the concentration of metals in the dissolved phase (common phase of 

metals exist in oxic sediment pore water). Metal cations (e.g. Mn, Al and Fe) usually increase 

in solubility (less adsorption) with decreasing in pH as the surface binding sites are 

protonated. Conversely, metal cations decrease in solubility (more adsorption) with 

increasing in pH (Adriano 1986). The sorption and dissolution patterns are opposite for 

anionic species such as oxyanions of As, Mo, Se, and Cr, since at high pH oxyanions 

competes with OH- ions for sorption sites. In my study, the pH values in soil were around 5-6 
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in LNWR, 7-7.5 in WCA-3, 6.5-7 in WCA-2, and 7-7.5 in ENP (Scheidt and Kalla 2007). 

Cations, including Ni, Mn, Li and Be in soil, had elevated concentrations from dry season in 

ENP where the pH is the highest (Fig 4-5). The explanation was mentioned earlier. The 

correlation study showed significant correlations between pH and most of metals analyzed 

(Li, Be, Mn, Ni, Cu, As, Cd, Zn, Pb, Sr, Al and K) (p<0.01) in soil (Table 4.3). 

 

Figure 4-5 Distributions of Ni, Mn, Li and Be (mg/Kg) as well pH from the dry season. 

Redox potential affects metal dynamics through metals redox species with more than 

one possible oxidation state (Warren and Haack 2001). Redox status can impact partitioning 

of elements between solution and solid phase, resulting in the changes of solubilities of 

associated toxic metals (Hesterberg 1998). For example, oxyhydroxides solid Fe (III) phase 

as a result of Fe3+ hydroxylation and precipitation could provide a highly reactive surface for 

trace metals in aqueous environment. Reduction of Fe and Mn, under reducing conditions, 

could release associated metals into the water or pore water. Ultimately, those dissolved 

metals probably would be carried upward by diffusion or downward by precipitation  (EPA 

2007).  In the aquatic environment, oxidation/reduction potential (Eh) measures tendency of 
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the solution to gain/lose electrons. High Eh values are maintained in oxidizing or aerobic 

conditions while low Eh values are maintained in reducing and anaerobic conditions (EPA 

2007).  Correlations between Eh and most of metals analyzed were not significant except for 

Sr (p<0.01). The weak correlations between metal concentrations in the Everglades and Eh 

are probably results of stronger influence from other environmental factors (NOM and pH). 
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 Table 4-3 Correlations between metals in matrices (soil and floc) and environmental parameters (DOM, pH, ash free weight 

(AFW) and Eh)  

Metals pH (r value) pH Eh (r value) Eh Ash free weight(r) Ash free weight 
Li 0.216 ++   -0.250 ++ 
Be 0.301 ++   -0.263 ++ 
V       
Cr       
Mn 0.45 ++   -0.548 ++ 
Co     0.186 + 
Ni 0.461 ++   -0.476 ++ 
Cu -0.184 +   0.303 ++ 
As -0.197 ++   0.489 ++ 
Cd -0.267 ++   0.360 ++ 
Tl     0.156 + 
Zn -0.419 ++   0.556 ++ 
Pb -0.199 ++   0.289 ++ 
Sr 0.458 ++ -0.256 ++ -0.377 ++ 
Ba   -0.169 + 0.187 + 
Al 0.216 ++   -0.216 ++ 
Fe       
K -0.302 ++     
Mg   -0.159 +   

++ indicates p<0.01 level 
+   indicates p<0.05 level
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  The key parameters affecting metal bioavailability in soils, besides organic matter, 

soil pH, Eh, are Fe and Mn oxyhydroxides (EPA 2007). Iron oxyhydroxides include oxides, 

hydroxides, and oxide hydroxide forms. All forms are very stable and exhibit high energies 

of crystallization. Fe3+ hydrolyzes and precipitates as oxyhydroxides solid Fe (III) phase 

which provides a very reactive surface for trace metals in aqueous environment (Warren and 

Haack 2001). Like Fe oxides, Mn oxides are very stable state with low solubility. Overall, 

Mn oxyhydroxides are considered more reactive than Fe oxides. Both Mn and Fe oxides have 

high affinities for trace metals, contributing to the variations in concentrations of those 

metals (Warren and Haack 2001). Both adsorption and co-precipitation (solid solution) might 

occur between metals and Fe hydroxides as well as Mn hydroxides under oxidizing 

conditions; then reduction and dissolution reactions under reducing conditions (EPA 2007) . 

My study showed strong correlations between metals (Ni, As, Cd, Tl, Zn and Sr) and Mn or 

Fe (Fig 4-4), which may be explained by the strong affinities of Mn or Fe oxides for those 

metals. 

Concentrations of metals in periphyton might be strongly influenced by soil metals 

uptake by plants  (Albers and Camardese 1993). The processes governing availability of trace 

metals to plants include complexation with organic and inorganic ligands and adsorptions, 

precipitation and dissolution of solids. Adsorption and precipitation could occur in the uptake 

of soil metals in roots and shoots (EPA 2007). In strongly acidic soils, plant uptake of Zn, 

Mn and Co increase, which might explain the elevated concentrations of those metals in 

epiphytic periphyton (typically associated with macrophyte) in my study. Manganese, Zn and 

Co in epiphytic periphyton all had the highest concentrations in soil with pH less than 7 (Fig 
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4-6).  In the benthic periphyton, the distribution of metals might under strong influence of 

OM content because of its close association with soils. High concentrations of Cu, As, Pb 

and Zn were detected in the soil with highest OM content (Fig 4-7).  

 

Figure 4-6 Distributions of Mn, Zn and Co (mg/Kg) in epiphytic periphyton from the dry 
season  
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Figure 4-7 Distributions of Cu, As, Pb and Zn (mg/Kg) in benthic periphyton from the dry 

season  

In soil (Table 4.4), Zn was significantly correlated with Mn, Co, Cu, As, Cd and Tl 

(P<0.01). Pb was correlated with Mn, Co, Cu, As, Cd, Tl and Zn (p<0.05).  Iron had strong 

correlation with Cr and As (P<0.01). Copper, Zn, and As are all elements contained in 

fertilizers, bactericides, and fungicides used in the agriculture. It might explain the close 

associations among those metals. Underground flow as well as atmospheric deposition from 

nearby agriculture area might lead to the elevated levels of those metals (Chen et al. 2000). 

Manganese correlated well with Ni, As, Cd, Tl, Zn and Sr.  Results imply that potentially 

toxic metals Pb, As, Ni, Cd and Zn maybe closely associated with Mn- and Fe- oxides 

minerals as reported in the literature (Hesterberg 1998).  Toxic metals (Cd, Pb, Ni, As and Cu) 

correlated among themselves.  The possible colloids formed between toxic metals (Cr, As, 

Cd) and micronutrients (Zn and Fe) might explain the indicative correlations between these 

two groups. In floc (Table 4.5), Zn was correlated well with Cu, As and Al (P<0.01). Iron 

had strong correlation with As.  Manganese in floc only correlated with As (P<0.05), maybe 
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as a result of low concentrations in surface peats in the Everglades (Craft and Richardson 

1997). In periphyton (Table 4.6), zinc correlated strongly with Ni, Cu, As and Cd (p<0.01). 

Pb correlated significantly with As, Cd and Zn. Iron correlated with As, Cd, Zn and Al. It is 

probably because of strong affinity of Fe hydroxides for these metals. Living algae and other 

organism are part of floc and periphyton (Smith 2004). The close correlation among Zn, Fe, 

Cu, Pb might indicate that same origins exist for those metals.     
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Table 4-4 Correlation of metals among soil 

 

 Li Be V Cr Mn Co Ni Cu As Cd Tl Zn Pb Sr Ba Al Fe K Mg 
Li 1                   
Be - 1                  
V ++ - 1                 
Cr ++ + ++ 1                
Mn - - + - 1               
Co - - - - - 1              
Ni - - - - ++ ++ 1             
Cu - - - - + + - 1            
As - - - - ++ ++ - + 1           
Cd - - - - ++ ++ ++ ++ ++ 1          
Tl - - - - ++ ++ ++ ++ ++ ++ 1         
Zn - - - - ++ ++ - ++ ++ ++ ++ 1        
Pb - - - - + ++ - + + + + ++ 1       
Sr - - + - ++ - ++ - - + + + - 1      
Ba - + ++ - - - - - - - - - - ++ 1     
Al ++ - ++ - - - - - - - - ++ - - + 1    
Fe ++ - ++ + + - - - ++ - - - - - - ++ 1   
K - + ++ ++ - - ++ - - - + - - - + ++ - 1  
Mg - - - - - - - - - ++ - - - ++ ++ - - ++ 1 
++ indicates p<0.01 level 
+ indicates p<0.05 level 
-indicates p>0.05 level 
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Table 4-5 Correlation of metals among floc 

 

 Li Be V Cr Mn Co Ni Cu As Cd Tl Zn Pb Sr Ba Al Fe K Mg 
Li 1                   
Be - 1                  
V ++ - 1                 
Cr - ++ - 1                
Mn - - - - 1               
Co - ++ - ++ - 1              
Ni - - + - - + 1             
Cu + - + - - - - 1            
As - - - - + ++ - - 1           
Cd - - - - - - - - - 1          
Tl - ++ - ++ - ++ - - - - 1         
Zn ++ - - - - - - ++ ++ - - 1        
Pb - ++ - ++ - ++ - - - - ++ - 1       
Sr - - - - - - ++ - - - - ++ - 1      
Ba - ++ - ++ - ++ - - - - ++ - ++ - 1     
Al ++ - ++ - - - - - - - - ++ - - - 1    
Fe - - + - - - - - ++ - - - - - - + 1   
K - - ++ - - - + - - - - - - - - - - 1  
Mg - - + - - - ++ - - - - - - ++ - - - - 1 
++ indicates p<0.01 level 
+ indicates p<0.05 level 
-indicates p>0.05 level 
 

 
Table 4-6 Correlation of metals among periphyton 
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 Li Be V Cr Mn Co Ni Cu As Cd Tl Zn Pb Sr Ba Al Fe K Mg 
Li 1                   
Be + 1                  
V - - 1                 
Cr ++ - ++ 1                
Mn - - - - 1               
Co - - - - - 1              
Ni - - + - - ++ 1             
Cu - - - - - - + 1            
As - - + + - + ++ ++ 1           
Cd - ++ ++ ++ - + ++ - ++ 1          
Tl + ++ + - - - - - - ++ 1         
Zn - + - ++ - - ++ ++ ++ ++ + 1        
Pb - - ++ - - + - - ++ ++ - ++ 1       
Sr ++ - ++ - - - + - - - - - - 1      
Ba - + - - ++ - - - - - - - - + 1     
Al + + - + - - - - - - ++ - - - - 1    
Fe - ++ + - - + - - ++ ++ ++ ++ - - - ++ 1   
K - - - - - - - - - - - - - - - - - 1  
Mg - - + - - - ++ - - - - - - ++ - - - - 1 
++ indicates p<0.01 level 
+ indicates p<0.05 level 
-indicates p>0.05 level 
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4.2 Risk assessment of toxic metals in the Florida Everglades 

Soil is an essential part of ecosystem as it serves as home to most of aquatic plants 

and animals (Dragovic et al. 2008). Furthermore, toxic metals existing in water at trace level 

can be accumulated in the sediment. Risk of metals in aquatic systems is commonly 

evaluated by measuring metal concentrations in soils (Lourino-Cabana et al. 2011). To assess 

the risk of metals, the background levels of trace metal have to be determined. One of the 

common ways for conducting risk assessment on metals in sediment is to compare 

experimental data in sediment with Sediment Quality Guidelines (SQGs). Sediment Quality 

Guidelines were originally derived using a database generated from studies conducted in both 

saltwater and freshwater, later better quality data were added to the database (Long et al. 

1995).  Sediment Quality Guidelines could be divided into two classes, mechanically  and 

empirically based guidelines (Chapman et al. 1998). The mechanical approach accounts for 

bioavailability through monitoring the chemical and biological processes. Mechanistically 

based guidelines are derived from theoretical understanding of factors that control the 

bioavailability of sediment contaminants (Wenning and Ingersoll 2002), which addresses the 

sources of sediment toxicity, not whether or not the existence of toxic substances in the 

sediment.  Empirical approach utilizes database of sediment chemistry and their biological 

effects. The most commonly used methods from this approach includes Effects Range-

median (ERM), Apparent Effects Threshold (AET), Sediment Quality Guideline Quotient 1 

(SQGQ1) and Logistic Regression Model (LRM) (Buchman 1999). Out of those methods, 

SQGQ1 was derived from less number of chemicals than other approaches.  Logistic 

Regression Model approach is difficult to apply because of complex of regression must be 

utilized to determine probability of toxicity. All guidelines, which can be roughly categorized, 
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are used as screening tools for the assessment of potential toxic metals. Table 4.7 listed 

SQGs used to compare with the current studies, including those derived from U.S., Australia, 

New Zealand, Italy and Netherland. The category includes: background (BK), which depicts 

background levels of a constituent in a region or nation; empirically derived (ED), which 

utilizes sediment chemistry and their biological effects; equilibrium partitioning (EP), which 

based on aquatic toxicity values;  consensus based (CB), which was defined as the average of 

various SQGs from the same class  (Apitz et al. 2007).      

When compared average concentrations of potentially toxic metals from the current 

study (As, Cd, Cr, Ni, Pb, Cu, and Zn) with those of the background-based guidelines, the 

results from current study are closest to Flemish reference, a background-based guideline 

(Table 4.7). All results, except for Pb, were below the limit of Flemish reference. The 

average concentration of toxic metal, Pb, was still less than other background-based 

guideline. None of toxic metals had mean concentrations exceeded criteria set in the non-

effects guidelines as well as probable-effects guidelines.  In addition, the results of current 

study were on par with LEL and TEL values from similar studies conducted in Florida for 

each compound investigated (Table 4.7). Limited studies have been conducted on the risk 

assessment of metals in the Everglades.  
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Table 4-7 Summary of sediment quality guidelines (SQGs) summary SQG derivation: BK = 

background based; ED = empirically derived; CB = Consensus based. (Apitz et al. 2007)  

SQGs Type As 
(mg/Kg) 

Cd 
(mg/kg) 

Cr 
(mg/kg) 

Ni 
(mg/kg) 

Pb 
(mg/kg) 

Cu 
(mg/kg) 

Zn 
(mg/kg) 

Background-
based 

        

Flemish ref. BK 11 0.4 17 11 14 8 67 
No effects         
LEL(Florida) ED 6 0.6 26 16 31 16 120 
TEL(Florida) ED 5.9 0.6 37 18 35 36 123 
TEL ED 7.2 0.7 52.3 15.9 30.2 18.7 124 
ERL ED 8.2 1.2 81 20.9 46.7 34 150 
US TEC CB 7.7 0.9 66.7 18.4 38.5 26.4 137 
Probable 
effects 

        

ERM ED 70 9.6 370 52 220 270 410 
SEL(Florida) ED 33 10 110 75 250 110 820 
PEL(Florida) ED 17 90 197 36 91.3 197 315 
PEL ED 41.6 4.2 160.4 42.8 112.2 108.2 271 
AET ED 35 3 62 110 400 390 410 
PEC(I) CB 54.3 5.8 268.5 58.3 296 214.6 396.2 
US PEC CB 56.2 5.5 208.8 68.1 253.4 256.1 363.7 

 

Table 4-8 Percentages of toxic metals over the SQG’s limit from sediment and floc samples 

 

Although the mean values of the toxic metals did not exceed the no-effects SQGs, 

multiple samples had concentrations of toxic metals over several SQGs (LEL (FL), US TEC, 

TEC (I) and SEL (FL)) in the no-effect category (Table 4.8). Given relatively high 

Soil (N=195) As Cd Cr Ni Pb Cu Zn 
LEL(FL) 8.2(16) 0.5(1) 10.1(20) 1.5(3) 16.9(33) 3.6(7) None 
US TEC 2.1(4) none none  6.7(13) 1.5(3) None 
TEC (I) None None none  5.1(10) 1.5(3) None 
SEL(FL) None none none  0.5(1)  None 
floc (N=151)        
LEL(FL) 15.2(23) 0.7(1) None 5.3(8) None 11.3(17) None 
US TEC 2.6(4) none none 2.6(4) none 9.3(14) None 
TEC (I) None None none 1.3(2) none 3.3(5) None 
SEL(FL) None none none none none 0.7(1) None 
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background concentrations of As in the Everglades soils compared to rest of the state of 

Florida with 7.02 mg/Kg being the highest concentration in the state (Chen et al. 2001), both 

wet and dry seasons’ As concentrations in soils didn’t exceed the background value. Other 

toxic metals (Cd, Cr, Ni and Pb) have no known background concentrations information. 

Both LEL and SEL are guidelines made specifically based on sediment samples from state of 

Florida.  Both TECs were average values of guidelines made in domestic and international 

respectively. Lead and Cr from sediments, as well as As and Cu from Floc, had 

concentrations over LEL level set in Florida in more than 10% of total sample. However, 

only one sample from each compartment contained concentrations of toxic metals (Pb and 

Cu) over criteria of probable-effects SQGs. The use of various SQGs, derived both 

domestically and internationally, has been utilized to evaluate the possibility of toxicity 

levels of COPECs in the Everglades.  Even though most surveyed area contained samples 

with concentrations well under the limit set by SQGs from the probable-effects class, some 

areas, such as LNWR, northwestern part of WCA-3 in the surrounding area of EAA) should 

be subjected to site-specific risk assessment for carrying high concentration of toxic metals at 

several sites. Arsenic, Cr, and Pb from sediment contained concentration levels that pose 

dangers to ecological and human receptors as multiple samples exceeded background SQGs 

(Table 17) in the northern region in ENP and part of LNWR and Water Conservation Area-2. 

For floc, samples were found in the northern area of WCA-3 with elevated concentrations in 

As, Ni and Cu (Figure 4-8). The elevated level of those toxic metals (As, Pb and Ni) might 

affect aquatic plants and animals in the vicinity of contaminated area, causing biological 

harms such as metabolite degradation, enzyme activity inhibition, calcium metabolism 

problem, among others.  
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. 

Figure 4-8 Spatial distribution of selected toxic metals with concentrations exceeding SQGs 

in soils (A) As, (B) Cr, (C) Pb, and in floc of Florida Everglades (D) As, and (E) Ni, (F) Cu 

5. Conclusions  

 The highest mean concentrations of all metals analyzed in the Everglades were 

detected in soil, followed by floc and periphyton. Most of metals in soil exhibited maximum 

concentrations in the dry season. The nearly opposite occurred for floc, where only Cr, Ni, 

and Cu were more concentrated in the dry season. Seasonal variation had little influence on 

the concentration in metals from periphyton. Most metals exhibited random spatial 

distribution patterns.  

 The distribution and concentration of dissolved metals in soils are possibly under the 

influence of major anthropogenic sources: agriculture and development activities (Cu, Pb, Zn, 

and As), road dusts and associated pollutions (Cr and Zn), air-boat tours (As and Zn) and air 

trafficking (Cr and Zn). The environmental parameters, including NOM and pH, are essential 

in the control over the distribution of metals in the Everglades as well. The highest 

concentrations of Cu, As, Pb and Zn were found in the peat soil where OM content is high. 
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Cations (Ni, Mn, Li and Be) had elevated concentrations in the south of the Everglades 

where pH is the highest.  

 Risk assessment using SQGs concluded that all toxic metals (Cd, Cr, Pb, Ni, Cu, Zn 

and As) exhibited average concentrations that were well below FL guidelines as well as other 

domestic and international guidelines. Although none of concentrations of toxic metals 

exceeded SQGs levels defined by “probable effects”, several metals (As, Cr, Pb, Ni and Cu) 

had elevated concentrations at several sampling sites in northern ENP, WCA-2 and LNWR.   

Overall, based on the current study, the Everglades can be considered a pristine environment. 

This study can serve as a baseline for future analysis of metals in the Everglades area. 

6. Future work 

 Some areas, such as northwestern and northeastern zone of ENP, contained elevated 

concentrations of toxic metals (Cr, As and Ni) which warrant further investigation into their 

sources and impacts.  High concentrations of toxic metals (Cd, Cr and Pb) in the surrounding 

areas of EAA encourage the additional study of the influence on the toxic metals from the 

agricultural and developmental activities.  A screening level Ecological Risk Assessment 

(ERA) with metals is recommended to quantify the likelihood that detrimental effects will 

incur in the sediment from metal exposures. The study of toxic metal pollutions in the 

Everglades fish and plants should be conducted as to assess the potential risk associated with 

metals. Future sediment-toxicity studies should also be carried out to distinguish between 

natural and anthropogenic effects on distributions of metals.   
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