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by 
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The balance between the costs and benefits of conspicuous signals ensures that 

the expression of those signals is related to the quality of the bearer. Plastic signals could 

enable males to maximize conspicuous traits to impress mates and competitors, but 

reduce the expression of those traits to minimize signaling costs, potentially 

compromising the information conveyed by the signals.  

 I investigated the effect of signal enhancement on the information coded by the 

biphasic electric signal pulse of the gymnotiform fish Brachyhypopomus gauderio. 

Increases in population density drive males to enhance the amplitude of their signals. I 

found that signal amplitude enhancement improves the information about the signaler’s 

size. Furthermore, I found that the elongation of the signal’s second phase conveys 

information about androgen levels in both sexes, gonad size in males and estrogen levels 

in females. Androgens link the duration of the signal’s second phase to other androgen-

mediated traits making the signal an honest indicator of reproductive state and aggressive 

motivation.  
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Signal amplitude enhancement facilitates the assessment of the signaler’s resource 

holding potential, important for male-male interactions, while signal duration provides 

information about aggressive motivation to same-sex competitors and reproductive state 

to the opposite sex. Moreover, I found that female signals also change in accordance to 

the social environment. Females also increase the amplitude of their signal when 

population density increases and elongate the duration of their signal’s second phase 

when the sex ratio becomes female-biased. Indicating that some degree of sexual 

selection operates in females.  

 I studied whether male B. gauderio use signal plasticity to reduce the cost of 

reproductive signaling when energy is limited. Surprisingly, I found that food limitation 

promotes the investment in reproduction manifested as signal enhancement and elevated 

androgen levels. The short lifespan and single breeding season of B. gauderio diminishes 

the advantage of energy savings and gives priority to sustaining reproduction. I conclude 

that the electric signal of B. gauderio provides reliable information about the signaler, the 

quality of this information is reinforced rather than degraded with signal enhancement.  
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INTRODUCTION  
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The sensory drive model of sexually selected display signals views organisms as 

trapped amid the trade-offs of attracting mates and the physiological and environmental 

costs of signaling (Otte, 1974; Endler, 1992; Maynard Smith and Harper, 1995). The 

costs of sexual signaling impose an extra energetic load on males that results in stress 

because of energy imbalance. However, species and individuals differ in their 

vulnerability to stress and in the way they cope with stress (Creel et al., 1996; Boonstra 

and McColl, 2000; Sapolsky, 2000; McEwen, 2002; Wingfield and Sapolsky, 2003; 

Wingfield, 2005; Breuner et al., 2008; Romero et al., 2009). Species capable of 

behavioral plasticity might have an added advantage that could enable them to 

circumvent reproductive trade-offs by adjusting their behavior to the supply and demands 

of the current environment (West-Eberhard, 1989; Tomkins et al., 2005). In the context 

of sexual communication, animals produce signals that can be used by their competitors 

to learn about the fighting ability of the sender or by potential mates to infer the quality 

of the signaler (Andersson, 1994). Plastic signals could allow signalers to transiently 

escape environmental and physiological constraints of signaling and portray themselves 

as being of better quality than they actually are. Conversely, signal plasticity could help 

signalers minimize costs by reducing signaling intensity when return on signal 

investment is low. I studied how a species with a plastic communication signal would use 

that plasticity to navigate around reproductive trade-offs and the consequences that 

plasticity could have on the honesty of the information conveyed by the signal. 
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Signal plasticity and signal honesty 

Students of behavior have pondered why animal signals remain honest in 

competitive contexts despite the apparent temptations and benefits of cheating, lying, 

bluffing, or exaggerating (Dawkins and Krebs, 1978). Nonetheless, widespread 

dishonesty will turn the signals meaningless and receivers will ultimately ignore them 

(Otte, 1974). Thus, scholars have postulated numerous models for the persistence of 

honest communication in the face of pressures to cheat. According to the Handicap 

Principle, signal honesty is guaranteed when the advertising signal meets the following 

three conditions: 1) The expression of the signal depends on a sexually selected 

phenotypic trait of the signaler, 2) signals are expensive to produce or maintain and, 3) 

the costs of signaling rises faster than its benefits (Zahavi, 1975; Zahavi, 1977; Grafen, 

1990). An advertisement signal can be referred to as an “index” if its properties depend 

physically on the magnitude of a physical trait of the signaler, such that the signaler has 

no control over the magnitude of the signal and cannot exaggerate (Maynard Smith and 

Harper, 1995). Despite its cost, honest communication is evolutionary stable when it 

provides overall selective benefits to both signalers and receivers (Searcy and Nowicki, 

2005). 

A corollary puzzle then, is how deception can persist in communication systems if 

deception is not evolutionarily stable. Posterior models found that communication 

prevails when deceit is limited to the following scenarios: some signalers face reduced 

cost of signaling compared with other signalers (Grafen, 1990), aspects of the phenotype 

mask the genetic quality being advertised (Kokko, 1997), or when the benefit of signaling 
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at high intensity for low quality signalers outweighs the cost of increased signaling 

(Adams and Mesterton-Gibbons, 1995; Candolin, 1999). Grafen and Johnstone (1993) 

proposed that deception can be stable if receiver’s response to the signal is adaptive on 

average. In the latter case, dishonesty persists when the receiver’s cost of failing to 

respond to an honest signal is greater than the cost of responding to a dishonest signal 

(Wiley, 1994). 

Behaviorally plastic communication signals could provide a signaler with multiple 

advantages. For instance, plastic signals can be enhanced in the presence of potential 

mates and competitors but they can be decreased to reduce conspicuousness when 

predators are present or to reduce physiological costs (Nur and Hasson, 1984). Plastic 

signals could better portray current state of the individual, responding to immediate 

changes in the hormonal profile of the individual (Parker et al., 2002; McGraw et al., 

2005; McGlothlin et al., 2008; Lindsay et al., 2009).  

Wagner (1992) proposed three hypotheses to explain what could happen to the 

signal honesty when the signaler increases the magnitude of the signal. 1) The “signal of 

size” hypothesis proposes that increasing the signal’s magnitude makes the signal more 

honest, in other words, makes the signal a better predictor of body size. In this case, 

signalers are performing near their physiological maximum resulting in an improvement 

of signal reliability. The “signal of size” hypothesis could explain why, in some species, 

the honesty of the signal increases in the presence of mates (Gautier et al., 2008) or 

competitors (Howard and Young, 1998), when one would otherwise expect dishonesty 

because of bluffing. 2) The “signal of size-independent fighting ability” hypothesis states 



 5

that the increase in signal output is not related to size but to an additional attribute of the 

signaler such as fighting ability, motivation or, energetic condition. For example, fiddler 

crabs (Kim et al., 2008) and the barking tree frog (Murphy, 1994) increase signaling 

output when they have more food available. Although the fundamental frequency of 

cricket frogs’ song is normally related to the size of the signaler, males change the 

frequency of their calls during contests with other males without relation to their body 

size (Bee and Perrill, 1996; Burmeister et al., 1999). These changes in frequency are not 

related to body size but instead provide information about the aggressive intent of the 

signaler (Burmeister et al., 2002). 3) The “dishonest signal of size” hypothesis proposes 

that increasing signaling output exaggerates the apparent size of the signaler, thus 

conveying false information about the signaler. This scenario may occur when the 

potential benefits of signaling surpass the cost of signal exaggeration (Adams and 

Mesterton-Gibbons, 1995). For example, individuals in their last opportunity to 

reproduce may expend more energy in advertising than expected for their condition 

(Candolin, 2000a; Proulx et al., 2002). On the other hand, signal honesty can increase via 

socially imposed costs on low quality individuals that would otherwise bluff as 

intrasexual competition increases (Rohwer and Ewald, 1981; Candolin, 2000c; Candolin, 

2000b; Tibbetts and Dale, 2004).  

Even when signal exaggeration leads to a decrease in the honesty of the information 

conveyed by a particular signal parameter, other parameters can emerge as honest 

indicators of quality. For instance, the length of the vocal tract determines the 

fundamental frequency of acoustic signals, primarily the distance from the larynx to the 
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external environment (Fitch and Hauser, 2002). Thus, fundamental frequency should be 

an honest index of size, but animals could potentially exaggerate their size by elongating 

their vocal tract. Some mammals do, in fact, elongate their vocal tract by positioning the 

larynx deeper in the body, closer to the chest, while some birds elongate their vocal tract 

by elongating their trachea (Charlton et al.; Fitch, 1999; Fitch and Hauser, 2002). The 

elongation of the vocal tract disrupts the relationship between the call’s dominant 

frequency and body size. However, the larynx cannot be lowered beyond the sternum. 

Resonance in the acoustic path from the larynx to the external environment reinforces 

particular spectral frequencies, producing formant peaks. As a result, the active lowering 

of the larynx reinforces the relationship between body size and formant spacing, 

enhancing the honesty of formant frequency as an indicator of body size (Reby and 

McComb, 2003).  

Signal plasticity and cost savings 

I propose a model in which signalers benefit from producing lower quality signals 

(i.e., lower intensity) in order to reduce signaling costs. Reducing the quality of an 

expensive signal makes it a “disposable handicap”. The proposition may sound counter-

intuitive, since signaling benefits increase with signal intensity, thus signalers should 

always signal at their maximum capacity. However, the relationship between signal 

benefits and signal intensity is context-dependent as the value of the resource changes. 

Under high competition, resources are scarce, thus their value increases. Consequently, 

the benefit from signaling to defend or gain access to the resource increases while the 

cost function of signaling remains unchanged (Fig. 1). As competition increases, signal 
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intensity will increase until all individuals have regained their handicap and the signal is 

at its highest honesty. This model follows a similar rationale to Johnstone’s (1997) model 

for “signals of need” (e.g., nestling begging calls) in that the equilibrium of signaling 

intensity is reached when the difference between signal cost and benefit is the greatest. 

What is different from Johnstone’s (1997) model is that the benefit curve increases with 

competition, therefore the equilibrium point changes for the entire population and not just 

one individual.  

On the other hand, for signals that increase predation risk, competition should 

reduce the cost of signaling when high density of signalers dilutes predation risk. In this 

way, competition frees signals to increase further in intensity or complexity (Ryan et al., 

1982; Ryan, 1985). As long as the shape of the cost function remains unchanged, the 

cost-benefit equilibrium of signaling will still increase with competition (Fig. 1).  

Of course receivers will benefit if competition results in transmission of more 

accurate information. As predicted by Wiley’s (1994) “adaptive gullibility hypothesis”; 

in low competition, the cost of incorrectly rejecting an honest signal should outweigh the 

cost of responding to a dishonest signal, while the opposite should be true for high 

competition when the cost of believing a dishonest signal should outweigh the cost of 

disregarding an honest signal. For example, in low competition the cost of finding a new 

territory should be lower than the cost of engaging in an agonistic encounter with a 

territory holder who may be of better quality.  

Despite these models, the ultimate question about the origin of signal plasticity 

remains unanswered. Did plasticity arise as a mechanism to exaggerate the signaler’s 

condition until it reached a physiological ceiling causing honesty to emerge from 
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exaggeration? Or did signalers increase their signals progressively until they reached the 

physiological limit and then acquired the plasticity to reduce signal intensity and its 

associated costs, the disposable handicap model? Signal modulation mechanisms that 

may have initially evolved under the selective advantage of exaggerating the signaler’s 

quality could be maintained by the advantages of energy conservation under low 

competition, i.e., a disposable handicap. Conversely, energetic savings of handicap 

disposal could have been the original driver of signal modulation ability just as easily as 

exaggeration of perceived body size. Under this reversed scenario, competition could 

have driven the evolution of expensive signals, followed by the advantage of modulating 

the signal to save energy in during reduced competition.  

I tested the assumptions of the disposable handicap model in Chapter 2, looking at 

the effect of competition and signal enhancement on the honesty of the signal in a species 

known to increase the intensity of its signal during social competition. Chapter 3, I tested 

whether other aspects of the signal could convey size-independent information such as 

reproductive condition and motivational state. In Chapter 4, I tested whether females 

were also capable of adjusting their signaling output to competition intensity, just as 

males do.  

Cost savings and life-history 

The advantages of signal plasticity to save on signaling cost should depend on the 

life-history of the species. The energetic expense of reproduction typically entails 

reconfiguration of the individual’s energy budget. In response to an energy imbalance, 

iteroparous species favor investment in survival over investment on reproduction. On the 
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other hand, semelparous species favor investment on reproduction over survival 

(Williams, 1966). In vertebrates, glucocorticoids (GCs) fulfill an essential role in energy 

management, typically diverting energy supply away from reproductive behavior during 

a crisis to favor survival. However, energetic reallocation for reproduction is particularly 

extreme in semelparous species, to the extent that some species may use GCs to release 

the body resources needed for reproduction. Semelparous vertebrates are typified by a 

seasonal rise in GC levels, as they divert energy from somatic maintenance into 

reproduction, (McEwen and Wingfield, 2003; Wingfield and Sapolsky, 2003). 

Nonetheless, the rise in GCs depends on the intensity of investment in reproduction, 

which is inversely proportional to the duration of the breeding season. Semelparous 

species with short breeding seasons of few days or weeks show a particularly sharp rise 

in GC levels concurrent with the onset of reproduction (McDonald et al., 1981; Boonstra 

and McColl, 2000; Carruth et al., 2000; Barry et al., 2001). However, other semelparous 

species with longer breeding seasons (a few months) do not increase GC levels during the 

breeding season (Oakwood et al., 2001). I hypothesized that experimental shortening of 

the breeding season should cause energy to be reallocated away from survival and into 

reproduction and thus increasing intensity of reproductive signals. Likewise, whether or 

not GCs rise precipitously in semelparous species depends on the length of the breeding 

season itself. Semelparous species with a short breeding season are typically capital 

breeders, investing all their resources into a single bout of reproduction (Boonstra et al., 

2001; Wingfield and Sapolsky, 2003; Boonstra, 2005). On the other hand, I predict that 

semelparous species with a longer breeding season should be more conservative with 

their energetic allocation using current income to help fuel reproduction while preventing 
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a rise in GCs levels in order to endure throughout the breeding season. I questioned 

whether semelparous species with longer breeding seasons have mechanisms in place to 

prevent the rise in GCs and therefore reduce the detrimental effect of GCs on survival, 

more resembling the GC suppression of iteroparous species.  

Sterling and Eyer (1988) coined the term allostasis to describe the physiological 

adaptations an organism undertakes to maintain internal stability through change. 

Physiological mediators orchestrate the physiological processes necessary to maintain 

homeostasis. These mediators include catecholamines, cytokines, and GCs, among 

others. McEwen (1998; 2000; 2002) further developed the Allostasis Model to explain 

how the over-activation of allostatic systems in humans can lead to disease. The concept 

of allostasis was extended to model how various animals adapt to predictable and non-

predictable changes that affect their energetic balance (McEwen and Wingfield, 2003). 

Recently, the Reactive Scope Model extended the Allostasis Model by incorporating 

aspects of the life history of the animal and broadening the model’s inputs beyond GCs 

and outputs beyond energy balance to include multiple physiological processes (Romero 

et al., 2009). 

 To provide a framework for exploring the role of GCs in reproduction and social 

signals Dr. Philip K. Stoddard and I advanced the “Reproductive Opportunity Model” 

(Stoddard & Gavassa, unpublished). This model casts existing models of physiological 

regulation (Allostasis and Reactive Scope) against an axis representing opportunity for 

future reproduction. This axis derives from life history theory of iteroparity & 
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semelparity (Charnov and Schaffer, 1973), a connection proposed recently by Boonstra 

(2005).  

Elements of the model: The horizontal axis (Fig. 2) represents a continuum of 

opportunity for reproduction remaining in an individual’s life, or the intensity of 

reproduction. Animals with fewer opportunities to reproduce in the future should breed 

more intensely. This axis can be applied within the life history of the individual (e.g., 

young vs. old), between the sexes, or across taxa (iteroparous vs. semelparous). The 

vertical axis includes any physiological mediators of metabolism writ large, such as GCs 

levels. Energy consumption could be the regulated output, as in the Allostasis Model, but 

so could protein synthesis. Following from the Allostasis/Reactive Scope Models, the 

predictive homeostasis zone (gray band) describes the circulating range of the mediator 

evoked by circadian rhythms and normal activity. Animals may drop down into the 

under-performance zone, perhaps with a cost to fitness but not to survival (Romero et al., 

2009). Homeostatic failure occurs when the animal cannot maintain the minimum output 

needed to sustain life. Homeostatic overload represents an unsustainable output, in which 

output exceeds input, and somatic systems are expected to fail over time. Deleterious 

physiological effects accumulate when animals remain in homeostatic overload 

(McEwen, 1998; McEwen, 2000; McEwen and Wingfield, 2003; Romero et al., 2009). In 

many cases some headroom exists between predictive homeostasis and homeostatic 

overload, an area called “reactive homeostasis” (Romero et al., 2009). However, the dark 

gray triangle, where predictive homeostasis overlaps homeostatic overload, seems like a 
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contradiction because it describes a situation where failure is normal and expected 

(Stoddard & Gavassa, unpublished). 

Given the difficulties of estimating the opportunity for reproduction across the 

entire range of iteroparity and semelparity, I chose to focus on semelparous species with 

varying durations of the breeding season. Using only semelparous species, I can estimate 

the intensity of reproduction as a fraction of the duration of the breeding season to 

lifespan. Highly elevated glucocorticoids levels have been observed in semelparous 

species, for example sockeye salmon (Oncorhynchus nerka) (Carruth et al., 2000; Barry 

et al., 2001), arctic ground squirrels (Spermophilus parryii plesius) (Boonstra and 

McColl, 2000; Boonstra et al., 2001), and marsupial species from the genera Antechinus 

and Phascogale (Bradley et al., 1980; McDonald et al., 1981; Bradley, 1997). All of these 

species have a very short breeding season lasting from a few days (sockeye salmon) to a 

couple weeks (arctic ground squirrels and marsupials). However, the marsupial Dasyurus 

hallucatus shows no rise in cortisol levels during the breeding season (Oakwood et al., 

2001), even though its life-history is very similar to Antechinus and Phascogale species, 

where all males die after a single breeding season. However, the breeding season of 

Dasyurus hallucatus lasts 3-4 months, much longer than the breeding season of 

Antechinus and Phascogale species (2-3 weeks) (Bradley et al., 1980; McDonald et al., 

1981; Bradley, 1997; Oakwood et al., 2001).  

I tested the assumptions of the model using a group of marsupials in which the 

males show a characteristic die-off after the breeding season. This is an ideal group in 

which to study how GC levels vary with intensity of reproduction because the species in 
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this group are closely related, show great variation in the intensity of reproduction and 

have well documented breeding season and hormonal profiles. I found that published GC 

levels during the breeding season correlate almost perfectly with the intensity of 

reproduction (the ratio of the breeding days to life-span). Species in which breeding 

season lasts just a few days showed the highest levels of circulating GC during 

reproduction compared low GCs in species whose breeding season lasted a few months 

(Fig. 3 & Table 1). To further test the predictions of the model, in Chapter 4 I studied the 

effect of GC on the reproductive signal of the electric fish Brachyhypopomus gauderio, a 

semelparous fish species with a relatively long breeding season (3-4 months) (Silva et al., 

2003). 

Electric fish are an exceptional model for studying behavioral flexibility linked to the 

neuroendocrine response. 

I am interested in understanding the evolution of signal plasticity. In one hand, 

signal plasticity could offer great advantages to the signaler, allowing it to exaggerate its 

signal to mates and competitors and decrease it in the absence of conspecific receivers or 

in the presence of predators. However ideal this system from the signaler’s standpoint, 

dishonest signaling is disadvantageous for receivers, who should be selected to ignore 

such signals. Thus, on first pass, signal plasticity would not seem to be an evolutionary 

stable strategy. For signal plasticity to remain evolutionary stable it must balance the 

benefits to the signaler and the cost to the receiver. First, plastic signals must retain at 

least some information useful to receivers; and second, plasticity should provide an 

advantage to signalers, such as reduction on signaling costs. To test this hypothesis, I 



 14

need a species with a plastic communication signal, but which is easily measured and is 

easy to estimate the type of information and the quality of the information conveyed in its 

signals. The communication signal of the species should have measurable costs. 

Signaling cost should be high enough to provide incentive for energy savings.  

Electric fish offer great advantages for the study of animal behavior. The constant 

generation of EODs offers an exceptional opportunity to continuously monitor their 

behavior in a non-invasive manner. The ease of recording their behavior, the consistent 

hormonal and behavioral response to changes in the social environment, along with the 

tight correspondence of behavior to hormone administration, make electric fish unique 

models to study the interaction between the environment and endocrine state, and their 

effect on behavior. 

Neotropical electric fish of the order Gymnotiformes are distributed from northern 

Argentina to southern Mexico, largely contributing to the icthyofauna diversity of South 

America (Crampton, 1996; Albert and Crampton, 2005). Gymnotiforms produce electric 

organ discharges (EOD) for electrolocation and presumably for communication as well. 

Their nocturnal habits and the murky waters they inhabit suggest the importance of the 

EOD for navigation and communication (Moller, 1995). I studied Brachyhypopomus 

gauderio, a species that inhabits Uruguay, Southern Brazil and Northern Argentina. B. 

gauderio reproduces throughout the austral summer in its natural habitat (Silva et al., 

2003). Under field conditions, B. gauderio is an annual – only immature fish can be 

found during the austral winter, indicating that adults from the previous year have not 

survived the breeding season (Silva et al., 2002). The primary sex ratio is unity (A. Silva 
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& K. Dunlap, unpubl. data), but reproductive males disappear quickly from the 

population as the breeding season advances, leaving sex ratios of about 1:4 after one 

month of breeding effort (Miranda et al., 2008).  

Although males and females generate electric signals, in some species the 

discharges are sexually dimorphic (Hopkins, 1981; Hagedorn and Carr, 1985; Hopkins et 

al., 1990; Franchina and Stoddard, 1998). Brachyhypopomus gauderio produces a 

biphasic sexually dimorphic EOD. At night, males discharge at higher rates than females 

and generate EODs with different waveforms (Bass and Hopkins, 1983; Hopkins et al., 

1990; Hagedorn, 1995; Franchina and Stoddard, 1998; Franchina et al., 2001). The 

nocturnal male EOD has a higher amplitude and longer duration than the female EOD, 

increasing its energetic cost (Salazar and Stoddard, 2008) and predation risk (Stoddard, 

1999; Stoddard, 2002b).  

Some electric fish modulate their discharge rates, increasing the rates during 

courtship or agonistic interactions, and between daytime rest and nighttime activity (Bass 

and Hopkins, 1983; Zakon et al., 1991; Hagedorn, 1995; Franchina and Stoddard, 1998; 

Franchina et al., 2001; Dunlap, 2002; Silva et al., 2007). Brachyhypopomus gauderio 

enhances its EOD following a circadian rhythm: they reduce rate, amplitude and duration 

of the electric organ discharge during the day and increase them during the night when 

the fish are more active (Franchina and Stoddard, 1998; Franchina et al., 2001; Silva et 

al., 2007; Stoddard et al., 2007). Both, males and females follow this circadian pattern but 

it is enhanced in males (Fig. 4). The decline of the EOD during the day could be 

explained as a strategy to avoid predation during the day and reduce the cost of signal 
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production (Stoddard, 1999; Stoddard, 2002b; Stoddard, 2002a; Salazar and Stoddard, 

2008). Electric signals of males are costly handicaps; they are energetically expensive, 

consuming an average of 22% of the daily energetic budget (compared to 3% for 

females), and their energetic costs rise with the amplitude and duration of the EOD 

waveform (Salazar and Stoddard, 2008).  

The male’s further enhancement of his EOD at night seems to serve for attracting 

mates or deterring competing males. When given a choice, females prefer large males, 

which produce the most enhanced EODs (Curtis and Stoddard, 2003). Social isolation 

reduces the male’s EOD, accompanied by drops in androgens and cortisol (Salazar and 

Stoddard, 2009). The EOD partially recovers minutes after the introduction of a 

conspecific to the tank, and fully recovers after three days, a pattern consistent with the 

intermediate-term effects of melanocortins and long-term effects of androgen 

administration (Franchina et al., 2001; Stoddard et al., 2006). The EOD recovers faster 

with the introduction of a male, especially if that male has a higher EOD amplitude than 

the focal male (Stoddard et al., 2006).  

Neuroendocrine control of the EOD 

The EOD is the result of the summation of simultaneous electric discharges of 

individual electrocytes, which compose the electric organ (EO). The EO of B. gauderio 

extends bilaterally from the back of the pectoral fin to the end of the caudal filament, 

extending along most of the fish’s body. Each electrocyte is innervated on the posterior 

side by a spinal electromotor neuron driven by the medullary pacemaker nucleus (Pn). 

The Pn computes the input from the diencephalic prepacemaker nucleus (PPn) and the 
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sublemniscal prepacemaker nucleus (SPPn) to set the pace of the action potentials (APs) 

traveling down in the electromotor neurons (rev. Lorenzo et al., 2006). The APs 

ultimately reach the electrocytes and initiate the EOD. In the electrocyte, an AP induces 

the movement of ions across the excitable membrane resulting in an electric discharge of 

an individual electrocyte. 

At the cellular level, the EOD waveform depends on the geometry of the 

electrocyte and the kinetics of the ion channels in the excitable membranes of the 

electrocyte (Zakon et al., 1999). Brachyhypopomus gauderio generates a biphasic EOD, 

composed of a first, head-positive phase and a second, head-negative phase. The first 

phase occurs when all the electrocytes fire an action potential from the innervated 

posterior membrane of the electrocyte. This AP moves Na+ for the posterior side to the 

electrocyte ions into the cell creating a positive current flowing towards the head. The 

second phase is generated by the electrocytes in the caudal half of the fish. Theses 

electrocytes fire a second action potential from the anterior non-innervated membrane 

(Stoddard and Markham, 2008). The flow of Na+ ions into the cell from the anterior side 

creates a positive current towards the tail, resulting in a head-negative phase.  

 The EOD is controlled by two largely independent mechanisms. The discharge 

rate is controlled via synaptic connections, by the interaction of the SPPn and the PPn 

with the Pn. The EOD waveform is controlled via endocrine messengers acting at the 

electrocyte. Serotonin injections in vivo promote changes in the EOD waveform similar 

to those observed during social interactions (Stoddard et al., 2003). However, serotonin 

has no effect in the electrocyte, in vitro, which suggests that it acts centrally to mediate 
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peripheral melanocortin release (Markham and Stoddard, 2005; Stoddard, 2006; Stoddard 

and Markham, 2008). The melanocortin hormones, adrenocorticotropic hormones 

(ACTH) and α-melanocyte-stimulating hormone (α-MSH), enhance the waveform when 

applied in vivo and in vitro to the electrocyte. Furthermore, blocking melanocortin 

receptors diminishes the EOD amplitude and duration (Markham et al., 2009a). In 

another electric fish species, Sternopygus macrurus, melanocortins were shown to 

increase the amplitude of the EOD by increasing the trafficking of ion channels into the 

excitable membrane of the electrocyte (Markham et al., 2009b). These data corroborate 

the idea of melanocortins being pivotal for EOD waveform modulation. Androgens are 

also known to change the waveforms, by initiating transcription of ion channels subunits 

with altered kinetics of ion channels (Bass and Hopkins, 1983; Carlson et al., 2000; Bass 

and Zakon, 2005; Liu et al., 2008). Androgen implants masculinize the female EOD 

(Allee et al., 2009) and further extend the amplitude and duration of male EOD (Goldina 

et al., 2011). Moreover, androgens synergize with melanocortins by increasing the 

responsiveness of the EOD to melanocortin hormones (Allee et al., 2009; Goldina et al., 

2011). 

To explore hypotheses related to honest signaling (e.g., disposable handicap 

hypothesis), it helps greatly to know what information the signals can convey to 

receivers. The EOD of B. gauderio could serve as an indicator of body length since the 

amplitude of the signal physically depends on the length of the electric organ, which runs 

the length of the fish’s body (Hopkins et al., 1990; Hopkins, 1999; Curtis and Stoddard, 

2003). Moreover, body length is key for mate-choice and male-male interactions, since 
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longer males are more attractive to females (Curtis and Stoddard, 2003) and more likely 

to win agonistic encounters (Salazar, 2009; Silva et al., 2010). Therefore, receivers 

should pay particular attention to any information about body length coded in the signal. 

Additionally, the energetic and predation cost of generating electric signals makes them 

costly handicaps.  

To test the Reproductive Opportunity Model, I need a semelparous species that goes 

readily into homeostatic overload. The model species should have (i) limited opportunity 

for reproduction, (ii) energetically expensive communication signals, and (iii) it must be 

tractable to experimental manipulation and measurement. B. gauderio is also the perfect 

model to test the extreme predictions of the Reproductive Opportunity Model. Their short 

reproductive lifespan and high energy signal expense marks males of this species as 

candidates for routine homeostatic overload. Their EODs are also advantageous to study 

since the EOD’s waveform reflects the hormonal profile of the signaler (Stoddard et al., 

2006; Gavassa et al., 2011). The Stoddard lab has developed the equipment needed to 

continuously record calibrated electric signals from freely behaving fish for as many days 

as necessary (Stoddard et al., 2003). Moreover, B. gauderio are easily bred in the lab, but 

they can also be reliably found in the field in Uruguay.  

Does signal plasticity compromise the reliability of the information conveyed by 

the signal, or instead, does it allow the signal to convey more current information? Do 

plastic signals allow individuals to better navigate through the trade-offs of costly 

signaling, mate attraction, and intrasexual competition while retaining sufficient 

information to stay relevant to receivers?  
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I present the data from my dissertation in five chapters (Chapters 2-6). In Chapter 

2, I investigate the effect of signal plasticity on the reliability of the information 

conveyed by the signal. I tested whether the ability to predict the size of the signaler from 

the amplitude of its EOD changes as the signaler enhances its EOD amplitude in response 

to competition. I compared changes in signal reliability in a natural population, 

estimating natural variation in population density. I tested the causality of the 

relationships found in the field with laboratory manipulations of population density. The 

combined field and lab approach provides a powerful test for the disposable handicap 

hypothesis. I found that as competition increases and promotes the enhancement of EOD 

amplitude, the reliability by which body size can be predicted from EOD amplitude 

increases. Therefore, I show that signal plasticity improves the information conveyed by 

the signal rather than compromising it.  

In Chapter 3, I studied whether the plasticity of the EOD would help the signal 

convey current state of the signaler. The duration of the EOD’s second phase is regulated 

by androgens, and androgens regulate multiple reproductive traits including gonad 

maturation and aggression. Thus, I expected the duration of the EOD’s second phase to 

be a good indicator of androgen levels and other androgen-mediated traits. I tested 

whether the duration of the EOD’s second phase correlated with androgen levels, gonad 

size, and sexual maturation. I recorded the EOD’s and sampled blood from 155 

individuals in the field. For each I measured androgen levels, gonad size, and sexual 

maturation. I found that the duration of the EOD’s second phase indicates circulating 

androgen levels, but more importantly, androgens link the duration of the EOD’s second 
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phase to other androgen-mediated traits. As a result, the duration of the EOD’s second 

phase is an honest indicator of reproductive condition in males, and estradiol levels in 

females. 

In Chapter 4, I tested whether females would modify their electric signals in 

response to changes in the social environment, as males do. I compared the signal 

parameters of females recorded in the field to the characteristics of the natural population 

where the females inhabited. Later in the lab, I tested the direct effects of population 

structure on female signaling behavior by manipulating the social environment and 

recording the EODs from the females. I found that females increase the duration of the 

EOD’s second phase when the ratio of adult males to adult females becomes female-

biased. Females also increase the amplitude of the EOD in response to an increased 

population density. 

In Chapter 5, I investigated whether B. gauderio, a semelparous species with a 

relatively long breeding season, would use signal plasticity to reduce allostatic load and 

compromise signaling effort when food availability was low. I increased allostatic load 

by reducing food availability while providing incentive for costly signaling using a staged 

challenge from a conspecific. In order to assess the degree of allostatic load, I measured 

cortisol levels. I also measured androgen levels to determine whether androgens 

increased or decreased in response to allostatic load. I found that when food was limited, 

males further increased their investment on reproduction, as indicated by an increase in 

signaling parameters and in circulating androgen levels. The combination of the 
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hormonal profile and behavioral response allowed me to infer a possible mechanism for 

B. gauderio to deal with stress.  

In Chapter 6, I used a sender-based approach to test what signal parameters are 

important in a specific social context. Combining what I learned in Chapters 2 and 3 

about what information is conveyed by each signal parameter and the context in which 

those parameters are enhanced, I aimed to elucidate the social function of EOD amplitude 

and duration. I found that males enhanced EOD amplitude in response to males but not to 

female social stimulus, while males elongated the duration of the EOD’s second phase in 

response to both, male and female social stimuli. I suggest that males cue into 

information about body size coded by EOD amplitude and aggressiveness coded by pulse 

duration, while females may be primarily concerned about information on reproductive 

condition coded by pulse duration.  
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FIGURES & TABLES 

 

 

 

Table 1.1. List of marsupial species used to test the reproductive opportunity model (see 

Fig. 3). For each species I present their respective duration of the mating season and 

cortisol levels for males during the mating season. Breeding intensity = lifespan/breeding 

days. Males of these species listed live up to one year. 
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Figure 1.1. Graphical model of signaling equilibrium. Signaling benefits increase with 

signal intensity, while cost of signaling increase as well. Benefit function change with 

competition while cost function may either remain unchanged or decrease*. Equilibrium 

lies where the distance between the benefit and cost function is the highest (Adapted from 

Johnstone, 1997). * The cost function can decrease with competition, e. g. high 

population density dilutes predation risk. 
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Figure 1.2. The Reproductive Opportunity Model predicts the homeostatic state of an 

individual based on its remaining opportunities for reproduction (Stoddard & Gavassa, 

unpublished). 
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Figure 1.3. Natural logarithm of cortisol levels in males during the breeding season vs. 

intensity of reproduction. Marsupial males from species with short breeding seasons 

show the greatest levels of circulating cortisol during the breeding season. See Table 1 

for species list. 
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Figure 1.4. Sexually dimorphic electric organ discharge. Males and females increase 

amplitude and discharge rate at night. Duration of the second phase is computed as the 

repolarization time constant of the 2nd phase of the electric organ discharge. (Figure 

from: Stoddard et al., 2007). 
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Abstract 

Signal honesty may be compromised when heightened competition provides incentive for 

signal exaggeration. Some degree of honesty might be maintained by intrinsic handicap 

costs on signalling or through imposition of extrinsic costs, such as social punishment of 

low-quality cheaters. Thus, theory predicts a delicate balance between signal 

enhancement and signal reliability that varies with degree of social competition, handicap 

cost and social cost. We investigated whether male sexual signals of the electric fish 

Brachyhypopomus gauderio become less reliable predictors of body length when 

competition provides incentives for males to boost electric signal amplitude. As expected, 

social competition under natural field conditions and in controlled laboratory experiments 

drove males to enhance their signals. However, signal enhancement improved the 

reliability of the information conveyed by the signal, as revealed in the tightening of the 

relationship between signal amplitude and body length. Signal augmentation in male B. 

gauderio was independent of body length, and thus appeared not to be curtailed through 

punishment of low-quality (small) individuals. Rather, all individuals boosted their 

signals under high competition, but those whose signals were farthest from the predicted 

value under low competition boosted signal amplitude the most. By elimination, intrinsic 

handicap cost of signal production, rather than extrinsic social cost, appears to be the 

basis for the unexpected reinforcement of electric signal honesty under social 

competition. Signal modulation may provide its greatest advantage to the signaller as a 

mechanism for handicap disposal under low competition rather than as a mechanism for 

exaggeration of quality under high competition. 



 38

Introduction 

Dynamic signals may be reliable indicators of current quality since they can 

respond rapidly to changes in the individual’s condition (Hill et al. 1999; Torres & 

Velando 2003). However, the lability of dynamic signals may allow signallers to 

transiently escape signalling constraints and temporarily exaggerate their quality and 

thereby decrease signal reliability. Signal exaggeration can benefit a signaller when there 

is high reward incentive for increased signalling (Andersson 1994; Searcy & Nowicki 

2005). Although signalling systems can survive a small degree of unreliability without 

completely impairing the stability of the communication system (Johnstone & Grafen 

1993; Kokko 1997), a high prevalence of cheating in the population would render signals 

meaningless for receivers and result in receivers ignoring the signals (Dawkins & Krebs 

1978; Johnstone & Grafen 1993). Thus, for signals to remain evolutionarily stable, 

dishonesty has to be contained. 

According to the handicap principle, signal honesty is maintained when the 

advertising signal meets the following three conditions: (1) the expression of the signal 

depends on a sexually selected phenotypic trait of the signaller, (2) signals are expensive 

to produce or maintain and (3) the costs of signalling rise faster than its benefits (Grafen 

1990; Zahavi 1975, 1977). A signal that satisfies the first condition is referred to as an 

‘index’ if it is physically associated with the sexually selected trait of the signaller 

(Maynard Smith & Harper 1995). Signalling cost may include the physiological cost of 

producing or maintaining the signal, the cost of predation risk that comes with increased 

conspicuousness due to signalling, and/or social cost from increased confrontation with 

conspecific males.  
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Signallers are thought to benefit by producing costly signals when signalling 

incentive is high, such as during intensified competition, high resource value, or when 

future reproductive opportunities are reduced. Empirical studies show that competition 

often induces males to increase signalling effort, producing more conspicuous and costly 

signals (Kodric-Brown & Brown 1984; Ryan 1985; Endler 1995; Franchina et al. 2001; 

Salazar & Stoddard 2009). Likewise, males typically signal more in the presence of 

females (Akre & Ryan 2011), and particularly in the presence of good-quality females 

(Wong & Svensson 2009). Males also tend to signal more intensively when they are close 

to their last reproductive opportunity (Candolin 2000a; Proulx et al. 2002; Hall et al. 

2009). Older males may benefit by reallocating energy from self-maintenance and 

survival to signalling if their survival probability has been reduced by age or time of 

season (Kokko 1997; Proulx et al. 2002; Lindstrom et al. 2009). Still, theory is unclear 

what effect signal enhancement should have on the reliability of the signal (Johnstone et 

al. 2009). Theoretical models predict that the marginal cost of signal augmentation should 

ultimately determine how signal enhancement affects honesty (Johnstone et al. 2009). (1) 

Low augmentation costs favour signal enhancement that reduces signal reliability (Zahavi 

1975; Grafen 1990; Wagner 1992). (2) If signal enhancement is prevented by social 

costs, such as punishment of low-quality cheaters by social dominants, signal reliability 

should increase under social competition as low-quality signallers contain their signal 

output more than high-quality signallers (Rohwer & Ewald 1981; Candolin 2000b). (3) 

Likewise, where signal enhancement disproportionally increases signal production costs, 

signal enhancement could reinforce the handicap effect and result in increased signal 

honesty (Wagner 1992; Johnstone et al. 2009).  
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An imbalance between incentive and signalling costs can decrease signal reliability. 

When the benefits of signalling outweigh the costs, signal reliability is decreased by 

‘cheating up’ wherein low-quality individuals signal at a level higher than expected for 

their quality (Wagner 1989a; Bee et al. 2000; Candolin 2000c). However, when the costs 

of signalling outweigh its benefits, signal reliability can also be reduced by ‘cheating 

down’ wherein high-quality individuals reduce their signalling output and reallocate that 

energy to self-maintenance as an investment in future reproduction (Lindstrom et al. 

2009) or predation avoidance (Endler 1987). An expensive signal that can be attenuated 

to reduce costs under low competition is effectively a ‘disposable handicap’. 

From this disposable handicap hypothesis we can derive three testable predictions. 

(1) Signalling output should track incentive, such as social competition. (2) Signal 

reliability should increase under social competition as individuals increase their handicap 

magnitude and approach their physical limits. (3) Individuals that have lowered their 

signals the farthest below the level predicted for their quality have disposed of most of 

their handicap but will have the most to catch-up to when competition resumes. Thus, 

low-signalling individuals, rather than low-quality individuals, should enhance their 

signals the most when social competition increases.  

We tested these predictions in Brachyhypopomus gauderio (Giora & Malabarba 

2009), a South American electric fish that produces a biphasic electric organ discharge 

(EOD). As with all gymnotiforms, the signal functions for active electrolocation and 

communication during their nocturnal active phase (Moller 1995). EODs of male B. 

gauderio and its sister species B. pinnicaudatus are greater in amplitude and second 

phase duration than those of females (Hopkins et al. 1990; Franchina & Stoddard 1998). 
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Moreover, the EOD of B. gauderio has the potential to serve as an indicator of body 

length since the amplitude of the signal physically depends on the length of the electric 

organ, which runs the length of the fish’s body (Hopkins et al. 1990; Hopkins 1999; 

Curtis & Stoddard 2003). Body length information is relevant for mate choice and male–

male interactions, since longer males are more attractive to females (Curtis & Stoddard 

2003) and more likely to win agonistic encounters (Salazar 2009; A. Silva, L. Zubizarreta 

& G. Costa, unpublished data). Additionally, electric signals of males are costly 

handicaps; they are energetically expensive, consuming an average of 22% of the daily 

energetic budget (compared to 3% for females), and their energetic costs rise with the 

amplitude of the EOD (Salazar & Stoddard 2008). However, the EOD of B. gauderio is 

highly plastic, varying in magnitude along multiple timescales (Stoddard et al. 2006). 

EOD amplitude and duration display short-term changes, both increasing during social 

interaction (Franchina et al. 2001; Silva et al. 2007) and in anticipation of night, when 

fish become active (Franchina & Stoddard 1998; Stoddard et al. 2007). These short-term 

signal increases are mediated by melanocortin peptide hormones such as ACTH and α-

MSH (Markham & Stoddard 2005; Stoddard & Markham 2008; Markham et al. 2009a). 

Social interaction also induces long-term changes across several days (Franchina et al. 

2001), and signals vary seasonally with the transition into reproductive condition (Silva 

et al. 2002). These long-term signal enhancements are mediated by androgens (Silva et al. 

2002; Allee et al. 2009; Gavassa et al. 2011; Goldina et al. 2011). 

Here we test whether signal enhancement affects signal reliability, and if so, in 

which direction. We studied the reliability of EOD amplitude as an indicator of body 

length, the main determinant of male–male competition and female choice. Given the 
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cost of the electric signal of B. gauderio and the intrinsic relation between body length 

and EOD amplitude, signal modulation could be used to reduce signalling cost when 

signalling incentives are low (i.e. ‘cheating down’). Conversely, the cost of signal 

enhancement may not be high enough to prevent dishonest exaggeration, in which case 

some individuals should be able to enhance their signal beyond their quality (i.e. 

‘cheating up’).  

 

Materials and Methods 

Subjects 

We studied B. gauderio (Giora & Malabarba 2009), sister species of B. 

pinnicaudatus (Hopkins et al. 1990), native to marshes and slow waters of Argentina, 

Uruguay and southern Brazil. Males have longer and broader caudal filaments than 

females and produce EODs of greater amplitude and longer duration than females. 

Brachyhypopomus gauderio is a short-lived species; adults disappear from natural 

populations after breeding during the austral summer (Silva et al. 2003), and males 

disappear faster than females (Miranda et al. 2008). Males maintain territories and 

females move freely between male territories, consistent with exploded lek polygyny 

(Miranda et al. 2008). We studied B. gauderio from a native population in Uruguay, and 

from our 18th generation captive-reared colony in Miami, FL, U.S.A. Collections and 

experimental procedures were performed under the guidelines and approval of the 

Comisión Honoraria de Experimentación Animal, Universidad de la República, 

Montevideo, Uruguay, and by the Institutional Animal Care and Use Committee of the 

Florida International University, Miami, FL (protocols 08-027 and 10-020). 
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Field Study  

Detailed field methods are described by Gavassa et al. (2011). In brief, we 

recorded the EODs of B. gauderio in situ from Laguna Lavalle (32º01.259'S, 055º 

22.498'W), Department of Tacuarembó, Uruguay. We sampled during 15, 16, 27 and 28 

October, 16–18 November, and 4, 12 and 13 December. Samples from consecutive days 

were pooled. All sampling took place during the breeding season reported for this species 

in this region of the Southern Hemisphere (Silva et al. 2003). All sampling occurred 

during the day (1100–1759 hours Uruguay Summer Time, UYST) on sites with similar 

depth and vegetation located along the shore of the lagoon. We located fish in their 

hiding places using an amplifier to convert their electric signals into sound. We recorded 

EODs of captured fish in a floating digitizer rig within 1 min of initial disturbance, before 

melanocortin-mediated EOD waveform modulation could take effect (Stoddard et al. 

2006). We performed a census in each of the seasonal sampling sites to estimate 

population abundance. We estimated the abundance of B. gauderio by recording the time 

a skilled fishing team took to capture 30 fish, and defined population abundance in terms 

of fish captured per unit of effort (CPUE fish/h). This method has been very successful 

for estimating population abundance in this species since these fish are nocturnal and 

spend the day motionless in their hiding place where they are easily captured (Silva et al. 

2003; Miranda et al. 2008). 

We confirmed the sex of the fish by gonadal inspection after sacrifice by 

immersion in an anaesthetic solution (eugenol 8 mg/litre). The body lengths of males 

collected ranged between 10.5 and 19.3 cm, corresponding to the size of adult males 

(Franchina 1997; Silva et al. 2003). Caudal filament damage affects the EOD waveform 
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(Hopkins et al. 1990); thus, only fish with intact caudal filaments were retained for EOD 

analysis. In each sampling event we captured 10 or more males, except for 12–13 

December, when we only captured eight males, two of which had damage to their caudal 

filaments and could not be used for EOD analysis. 

Laboratory Experiment 

We tagged 18 females and 18 males with alphanumeric elastomer tags and 

randomly placed them in 450-litre pools outdoors in groups of 2, 6, 12 or 18 fish, keeping 

sex ratio at unity. The body length of males used in this experiment ranged between 15.5 

and 24.0 cm. At a given time we had six pools with two fish each, two pools with six fish 

each and one pool with 12 fish, this set-up was replicated three times and followed by 

two pools with 18 fish each. This design manipulated fish density while controlling for 

sex ratio. After 1 week of social treatment, we recorded EODs of all fish. In between 

social treatments, fish remained with an opposite-sex companion for 1 week. All fish 

except two (one male and one female that became sick) underwent all treatments; the two 

fish that became sick were replaced partway through the experiment. Treatments were 

temporally interspersed, except for the 18-fish pool, which was performed at the end 

because it required using most of the experimental individuals.  

 In B. gauderio, the effect of temperature on EOD amplitude, Q10, is nonlinear 

(Silva et al. 2002), wherein EODs of sexually mature males partially resist effects of 

declining temperature (Silva et al. 1999). An early cold front arrived during the week of 

the 18-fish/pool treatment and lowered the temperature of the holding pools 6 ºC below 

the average for the other treatments. Brachyhypopomus gauderio remains socially active 

over wide temperature swings, and all fish in the 18-fish treatment experienced the same 
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temperature, so we expected the intragroup signal dynamics to continue to reflect the 

pool density. Thus, although we could not directly compare the absolute values of EOD 

amplitude in the 18 fish/pool treatment with the other treatment groups that experienced 

narrower temperature ranges, we did use these data in within-group amplitude analyses. 

EOD Recordings and Analysis 

In gymnotiforms, the repeatability of the recordings depends on the orientation of 

the fish and its relative distance to the recording electrodes (Hopkins 1986). Field EOD 

recordings took place inside the lagoon in a submerged plastic sheet cage (100 x 50 x 50 

cm) with recording electrodes located at either end, 100 cm apart. A mesh tube held the 

fish lengthwise, equidistant from the recording electrodes and 25 cm below the water 

surface. A ground electrode was located perpendicular to the fish. This EOD recording 

geometry was designed to permit high repeatability of amplitude measurements 

(Franchina & Stoddard 1998). Water conductivity was 38–57 μS/cm and water 

temperature was 19–28 ºC throughout the field study. The variability in environmental 

conditions and the underlying seasonal variability associated with field observations 

make laboratory tests crucial to confirm field observations. In the laboratory, we recorded 

the EODs inside a glass aquarium (120 x 40 x 40 cm), with water conductivity adjusted 

to 100 ± 6 μS/cm and 25.8 ± 1.3 ºC. Since we did not cross-calibrate the recording rigs, 

which differed in dimensions and water conductivity between field and laboratory, we 

could not directly compare absolute amplitude measurements of these populations.  

The EODs were differentially amplified 100x (World Precision Instruments, Inc., 

Sarasota, FL, U.S.A., DAM-50, AC-coupled, low-pass filter corner 0.1 Hz, high-pass 

filter corner 10 kHz). Signals were digitized by an RM1 mobile processor (Tucker Davis 
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Technologies, Alachua, FL, U.S.A.), and stored and analysed on a portable computer 

using custom software developed in MatLab (Mathworks, Natick, MA, U.S.A.). We 

analysed the EODs using custom MatLab software to calculate median values of peak-to-

peak amplitude (mV) (Stoddard et al. 2003). 

Model Fitting and Statistics 

Following Hughes (2000), we analysed the honesty of the signal as a remote 

indicator of body length by using signal residuals obtained from the regression of signal 

amplitude and body length. Based on the visual inspection of the scatter plots, we tested 

the fit of several regression models: linear, exponential, noninteger exponential and 

power function. We tested the validity of these regression models by checking whether 

their residuals were normally distributed, with a mean of zero, independent, uncorrelated 

and homeoscedastic. When we regressed EOD amplitude against body length using a 

simple linear regression model, the residuals were still correlated with body length (r = 

0.68, P < 0.0001), indicating higher-order or nonlinear relationship (Fig. 1). The residual 

plot also showed heteroscedasticity of the error. Linear regression of ln(EOD amplitude) 

against body length provided a strong fit while satisfying all the assumptions of linear 

regression; therefore, we used ln(EOD amplitude) to determine reliability of EOD 

amplitude as an honest indicator of body length. Differences between group means were 

tested using ANOVA for field observations or repeated measures ANOVA for laboratory 

manipulations. When significant differences were detected (P<0.05) by the ANOVA 

models, we used protected Tukey post hoc analysis to determine pairwise statistical 

differences at α = 0.05 level. All statistical analyses were performed using the MatLab 

Statistical Toolbox and SPSS v.18 (SPSS, Chicago, IL, U.S.A.).  
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Results 

Signalling Incentive and Signalling Output 

The first prediction of the disposable handicap hypothesis is that males should 

modulate their signal output in proportion to social incentive, such as intensity of 

competition. In the field, the local population density in the breeding marshes changed 

from one sampling event to the next by as much as a factor of two (CPUE: 5, 8, 4.5, 10 

and 5.7 fish/h). The highest mean signal amplitude in the field occurred at the highest 

population density (ANOVA: F4,50 = 6.39, P < 0.001; Fig. 2a). Moreover, residual signal 

amplitude adjusted for body length correlated significantly with population density, while 

sex ratio, season and temperature showed no relation to signal amplitude (Spearman 

correlations: population density: rs = 0.55, N = 55, P < 0.001; sex ratio: rs = -0.08, N = 55, 

P = 0.54; season: rs = 0.11, N = 55, P=0.40; temperature: rs = 0.23, N = 55, P = 0.08). Our 

experimental laboratory study confirmed the effect of population density on signal 

amplitude: males increased signal amplitude in the high-density treatments (6, 12 and 18 

fish/pool) with respect to the low-density treatment (repeated measures ANOVA:  F1,17 = 

71.64, P < 0.001; Fig. 2b). 

Signalling Incentive and Signal Reliability  

The second prediction of the disposable handicap hypothesis is that signal reliability 

should increase with competition. In the field, we found a strong relationship between 

EOD amplitude and body length throughout the season, but the strength of the association 

varied with population density (Fig. 3 a–e). When field population density was the 

highest, the residuals from the regression between ln(EOD amplitude) and body length 

had the lowest variance compared to any other sample (Bartlett test: χ2
4 = 10.95, P = 
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0.027). In the laboratory, only the highest-density treatments had significant relationships 

between EOD amplitude and body length (Fig. 3k–n). As predicted from the field data, 

experimental manipulation of fish density in the laboratory determined the reliability of 

body length as a predictor of electric signal amplitude. Under both natural field 

conditions and experimental laboratory conditions, the relation between body length and 

signal amplitude became stronger with population density (field: R2 = 0.95, N = 5, P = 

0.004, post hoc statistical power = 0.99; laboratory: R2 = 0.98, N = 4, P = 0.006, post hoc 

statistical power = 0.99; Fig. 4). Thus, the signal became more reliable with increased 

competition. 

We defined the accuracy of EOD amplitude as a predictor of body length by 

calculating the standard deviation of the residuals from the regression of body length and 

ln(EOD amplitude) as a percentage of body length (100 x body length residuals/body 

length), encompassing 68% of the population (Fig. 3s). In the field, the accuracy with 

which EOD amplitude predicted the size of males varied from 7.3% at low density (Fig. 

3f–i) to 2.4% at the highest density (Fig. 3j). That is, at the highest density in the field, 

EOD amplitude could be used to predict the body length of 68% of males to within 2.4% 

of actual body length. The accuracy of EOD amplitude as a predictor of body length was 

lower in the laboratory, where EOD amplitude could predict body length with an 

accuracy of 9.1% at most (Fig. 3o–r). 

Handicap Disposal versus Social Cost 

The third prediction of the disposable handicap hypothesis is that males whose 

signal amplitudes are farthest below those predicted for their body lengths under low 

competition should enhance their signals the most under high competition to reveal their 
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full signalling capability. Comparison of males in the laboratory experiment that had 

experienced both low and high density (2 versus 12 fish/pool, random order) revealed 

that every male generated signals of higher amplitude under high social competition than 

under low social competition (paired t test: t15 = 8.2, one-tailed P < 0.001). Likewise, 

males whose signal amplitudes were the farthest below the body length regression line 

under low competition (2 fish/pool) increased signal amplitude the most under high 

competition (12 fish/pool) (R2 = 0.45, N = 16, P = 0.004; Fig. 5a). Body length did not 

predict the amount of amplitude change (R2 = 0.02, N = 16, P = 0.63; Fig. 5b), 

inconsistent with the hypothesis that social punishment might suppress small males from 

enhancing their signals.  

If social costs are constraining signal reliability, we would predict larger males to 

increase signal amplitude more than small males during high competition (Candolin 

2000b). However, neither in the field nor in the laboratory did the slope or the intercept 

of the regressions between body length and ln(EOD amplitude) differ significantly 

between population densities (ANCOVA: field: F4, 45 = 1.82, P = 0.141; laboratory: F3, 63 

= 0.36, P = 0.78). Thus, we found no evidence that social costs constrained enhancement 

of EOD amplitude. 

 

Discussion 

We sought to determine whether the ability of gymnotiforms to augment their 

electric signals could allow individuals to exaggerate their quality, in the process, 

reducing the reliability of their signals as indicators of body size. Alternatively, given the 

high energetic expense of the EOD, males might modulate EOD amplitude for the 
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opposite function, to reduce signal magnitude and dispose of handicap costs when the 

incentive for costly signalling is low. Under the disposable handicap model, high 

competitive incentive would pull signallers upward towards the physiological bound of 

their signalling capability where the signal serves as a reliable index of size or quality. In 

our studies, EOD amplitude was highest when population abundance was highest, 

showing that competition did provide incentive for enhanced signalling. Such enhanced 

signalling also increased reliability of the signal as an index of body length. Thus, signal 

enhancement no longer functioned to exaggerate body size; on the contrary, it resulted in 

a more reliable indication of body size. These findings support the predictions of the 

‘disposable handicap’ hypothesis and contradict the hypothesis that signal enhancement 

degrades signal reliability.  

Information Coded by the Amplitude of the EOD 

We expected electric signals of male B. gauderio to code information about body 

length since body length is the main determinant both of female preference and of male–

male contest outcome. In the laboratory, females select longer males, which typically 

produce EODs of greater amplitude and duration (Curtis & Stoddard 2003). Moreover, in 

staged resident–intruder contests, the longest male always wins the encounter despite 

residential status or body condition (Salazar 2009; A. Silva, L. Zubizarreta & G. Costa, 

unpublished data). From the tight relationship between body length and EOD amplitude, 

a receiver could use the amplitude of the signaller’s EOD as an indicator of his resource-

holding potential. Although signal reliability increased with competition in both the 

laboratory and the field, signal reliability was slightly greater in the field. Our laboratory 



 51

fish are accustomed to high densities, possibly making it harder to simulate increased 

competition. 

Although it has not been shown that gymnotiforms use electric signals to estimate 

body length of conspecifics, detailed laboratory studies indicate that electric fish have the 

sensory capability to disambiguate strong, distant signals, from weak, close signals. 

Electric fish can determine the distance of an active signal source from the curvature of 

the field lines. Gymnotus carapo and Brachyhypopomus diazi follow the curvature of 

field lines to locate electric sources (Davis & Hopkins 1988; Shieh et al. 1996), but 

Gymnotus will cut across the field lines to attack a familiar signaller, showing it has 

analysed the field structure to separate signal intensity and source location (Scudamore & 

McGregor 1993). Mormyrids have been shown to distinguish between a large distant 

object, and a close small object (von der Emde et al. 1998). From these studies we infer 

that signal amplitude is not made ambiguous by source distance, so receivers can most 

likely ascertain EOD amplitude independently of distance to obtain information about the 

signaller.  

EOD Modulation as a Mechanism for Handicap Disposal 

Both field and laboratory results satisfy the first prediction of the disposable 

handicap hypothesis, that males should modulate their signals in proportion to signalling 

incentive, such as competition intensity. Prior laboratory studies had also found that EOD 

amplitude of male B. gauderio varied with social context (Franchina et al. 2001), 

increasing with the number and proportion of male fish in the pool (Salazar & Stoddard 

2009). 
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The second prediction of the disposable handicap hypothesis is that signal reliability 

increases with competition. This prediction is key to the hypothesis since it distinguishes 

between signal enhancement for dishonest versus honest signalling. If signal modulation 

is used to exaggerate body length (cheating up), the signal should be the least reliable 

under high competition, whereas if signal modulation is used to economize under low 

competition (cheating down), the signal should be least reliable under low competition. 

Consistent with the disposable handicap hypothesis, the reliability of the signal was 

lowest when signal intensity and signalling incentives were low (cheating down), while 

signal reliability increased with competition intensity. 

Johnstone et al. (2009) proposed that when the marginal cost of signal enhancement 

rises disproportionally with signal intensity, the quality of the information conveyed by 

the signal improves with signal enhancement. Accordingly in B. gauderio, the energetic 

cost of producing a male EOD rises in proportion to EOD amplitude (Salazar & Stoddard 

2008). Given the exponential relationship between EOD amplitude and body length (Fig. 

1a), for a male to effectively exaggerate his size, he would have to boost his EOD 

amplitude exponentially and bear the exponential cost of doing so. Furthermore, Salazar 

& Stoddard (2008) showed that males spend 10 times more of their total energy budget in 

signalling than females. Moreover, males (but not females) trade-off between energy 

allocated to signals versus other metabolic compartments (Stoddard & Salazar 2011). 

Additionally, by extending the duration of the second phase of the EOD, males divert 

energy to the low-frequency spectrum, detected by ampullary electroreceptors of 

predators (Stoddard & Markham 2008), making male electric signals more conspicuous 

than female signals, and increasing their predation risk (Hanika & Kramer 1999, 2000; 
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Stoddard 1999, 2002). The increased predation risk and energetic metabolic trade-off of 

male signals should provide great incentive for handicap disposal during low 

competition.  

The third prediction of the disposable handicap hypothesis is that social competition 

drives signal catch-up. Under low competition, males whose EOD amplitudes are farthest 

below those predicted for their body length should enhance their signals the most under 

high competition. In other words, the farther a male’s amplitude has strayed from his 

individual limit under low signalling incentive, the greater his catch-up under high 

signalling incentive. This prediction allows us to distinguish between signal modulation 

for energy savings and signal modulation to avoid social costs; the latter would be 

concentrated among smaller individuals that face punishment for appearing larger than 

they are. We found that the magnitude of male EOD enhancement under social 

competition depends on the male’s prior signal magnitude and capacity for increase 

rather than on his quality (size). Under a social costs constraint, we also would have 

expected larger males to increase signal amplitude more than small males during high 

competition, resulting in a steeper relationship between body length and ln(EOD 

amplitude) under high competition than under low competition (Candolin 2000b). But we 

found no evidence that social costs prevent small, low-quality males from increasing 

signal amplitude. The slopes of the regressions between body length and ln(EOD 

amplitude) did not differ significantly between low and high competition, disfavouring 

the idea that signal enhancement is constrained by social costs.  
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Mechanisms Ensuring Honesty 

In addition to constraints from energetic expense and predation risk, signal 

exaggeration by male B. gauderio might be subject to allometric or biophysical 

constraints. For instance, electric signal amplitude might be limited either by the number 

of electrocytes that can be packed into a given length of fish, or by sodium channel 

retention levels in electrocyte membranes. Animals in which the degree of signal 

expression is physically linked to the sexually selected trait of the signaller presumably 

cannot exaggerate their signals (cheat up) and thus their signals should be intrinsically 

honest (Maynard Smith & Harper 1995). In frogs, the spectral frequency of the male’s 

call is allometrically related to body size. The fundamental frequency of the call is 

determined in part by the size of the laryngeal apparatus, which varies with body length, 

resulting in a negative correlation between body length and fundamental frequency (Ryan 

1980, 1985; Gerhardt 1994). Similar to the effect of competition on signal reliability in B. 

gauderio electric fish, in the toad, Bufo americanus, a decrease in fundamental frequency 

of the call results in a tighter relationship between frequency and body size (Howard & 

Young 1998). However, some allometric constrains can be circumvented through 

evolution of bypass mechanisms wherein signal enhancement reduces signal honesty. For 

instance, in most of the anuran species studied, exaggeration of male body size through 

the dynamic reduction of call frequency degrades reliability of the signal as an indicator 

of body size (Wagner 1989b, 1992; Bee & Perrill 1996; Bee et al. 2000).  

Selection on signallers to circumvent allometric relationships may hit additional and 

more restricting constraints. Although the fundamental frequency of acoustic signals is 

determined by the size of the larynx, resonance in the acoustic path from the larynx to the 
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external environment reinforces particular spectral frequencies, producing formant peaks. 

The frequency of those formants depends on the characteristics of the vocal tract, 

primarily the distance from the larynx to the external environment (Fitch & Hauser 

2010). Animals could potentially exaggerate their size by positioning the larynx deeper in 

the body, closer to the chest, therefore elongating their trachea to lower the pitch (Fitch 

1999). Howbeit, a new constraint arises, as the larynx cannot be lowered beyond the top 

of the sternum (Reby & McComb 2003). As a result, the active lowering of the larynx 

reinforces the relationship between body size and formant frequency, enhancing the 

honesty of formant frequency as an indicator of body size (Reby & McComb 2003).  

In electric fish, the amplitude of the EOD physically depends on the length of the 

fish: longer fish can accommodate more electrogenic cells, electrocytes, along their 

bodies and therefore produce EODs of greater amplitude (Hopkins et al. 1990; Hopkins 

1999; Curtis & Stoddard 2003). Furthermore, the electric field of Brachyhypopomus 

resembles a dipole, and separation of the dipole is proportional to the fish’s length 

(Stoddard et al. 1999). Thus, longer fish have longer electric organs with greater dipole 

separation resulting in an exponential relationship between body length and EOD 

amplitude. At least two potential mechanisms could allow an increase in EOD amplitude 

outside the intrinsic relationship with body length. First, gymnotiform electric fish can 

increase the amplitude of their signals by augmenting the number of voltage-gated 

sodium channels in their electrocyte membranes (Markham et al. 2009b). Second, male 

B. gauderio can increase the temporal offset of the opposing action potentials in the 

biphasic EOD, which increases the EOD amplitude up to 25% (Markham & Stoddard 

2005; Markham et al. 2009a). The latter mechanism merely unmasks the signal and thus 
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should not require additional metabolic energy, whereas the former increases energy 

consumption in proportion to the opening of added ion channels. These mechanisms 

possibly evolved to exaggerate the signaller’s quality. Nevertheless, these mechanisms 

could have reached their own intrinsic limits: (1) maximum number of sodium channels 

per electrocyte membrane, (2) maximum temporal offset of the two phases of the EOD, 

(3) maximum energy diverted to EOD production before other bodily functions begin to 

fail and/or (4) increased predation risk. Therefore, further constraints on size-independent 

mechanisms for electric signal enhancement still maintain a strong one-to-one 

relationship between body length and EOD amplitude. 

Adaptive Significance of the ‘Disposable Handicap’ Hypothesis for Receivers 

Receivers will benefit from obtaining the most accurate information from the 

signal, however, the benefits of receiving reliable signals may be greater under high 

competition than under low competition. Wiley’s (1994) ‘adaptive gullibility hypothesis’ 

predicts that, under low competition, it costs more to incorrectly reject an honest signal 

than to believe a dishonest one, while under high competition, it costs more to believe a 

dishonest signal than to reject an honest one. For example, under low competition, the 

cost of finding a new territory might be lower than the cost of failing to believe a signal 

from a high-quality individual that could inflict damage while defending a contested 

territory. Conversely, under high competition, when territories are scarce, the cost of an 

agonistic encounter may be lower than the cost of suckering for a dishonest signal and 

abandoning attempts to obtain a particular territory. So, if signals become unreliable 

under high competition, they become virtually worthless to receivers, and thus not worth 

producing, whereas under low competition, receivers benefit by being more trusting, 
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allowing signallers to cheat down a bit without losing their option for honesty under high 

competition when the reliability of signals matters more.   

Conclusion 

While signal modulation by B. gauderio may have arisen as a mechanism for signal 

exaggeration, in the present day when every male has this capacity, signal modulation 

appears to benefit the individual by allowing a reduction in signalling costs during low 

competition (cheating down) rather than by effective exaggeration of body length during 

high competition (cheating up). This conclusion is supported by (1) downward 

modulation of signal amplitude during low competition, (2) increased predictive value of 

the signal (greater honesty) with elevated signal amplitude during increased social 

competition, (3) ubiquitous increase in signal amplitude with social incentive, 

independent of signaller quality and (4) the dependence of the magnitude of amplitude 

increase under high social incentive on deviance from the predicted value measured 

under low social incentive. 

Signal modulation mechanisms that may have initially evolved under the selective 

advantage of exaggerating the signaller’s quality could be maintained in the signaller by 

the advantages of energy conservation under low competition (i.e. a disposable 

handicap). Under this scenario, competition should improve the reliability of disposable 

handicaps as indicators of quality. The enhancing effect of signal augmentation on signal 

reliability suggests an evolutionarily stable strategy where signals still increase, but no 

receivers are fooled, and no signaller can afford not to boost his signal. Thus, attention to 

signals by receivers should be reinforced, rather than degraded, by the signaller’s 

capacity to enhance the signal, provided the signal costs rise with the signal output faster 
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than the increasing benefits of enhanced signalling. Furthermore, handicap disposal 

(energetic savings) could have served as the originating driver of signal modulation just 

as easily as exaggeration of body size. 
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Figure 2.1. Relation between electric organ discharge (EOD) amplitude and body length 

in electric fish Brachyhypopomus gauderio. (a) Body length is plotted against signal 

amplitude in a linear scale. (b) Body length is plotted against the natural logarithm of 

EOD amplitude. CPUE is ‘catch per unit effort’, our index of population density in the 

field. 
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Figure 2.2. Relation between signal amplitude and population density of electric fish 

Brachyhypopomus gauderio under (a) natural field conditions (b) experimentally 

controlled laboratory conditions. Circles indicate raw data; crosses indicate means ± SE. 

Significant differences between groups, based on Tukey post hoc analysis (α = 0.05), are 

noted by lower case letters.  
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Figure 2.3. Relation between signal amplitude, body length and density of 

Brachyhypopomus gauderio in the field and in the laboratory. Scatterplots and linear 



 69

regressions show relationships between body length and the natural logarithm of signal 

amplitude in the field (a: N = 14, P = 0.0002; b: N = 10, P = 0.001; c: N = 6, P = 0.013; d: 

N = 13, P < 0.0001; e: N = 12, P < 0.0001) and in the laboratory (k: N = 18, P = 0.3; l: N 

= 18, P = 0.10; m: N = 18, P = 0.05; n: N = 17, P = 0.01). *P ≤ 0.1; **P ≤ 0.05. Bar plots 

show the accuracy of EOD amplitude as a predictor of body length in the field (f–j), and 

in the laboratory (o–r). The X-axis values represent the accuracy of EOD amplitude as a 

predictor of body length, calculated from the residuals of the regression between ln(EOD 

amplitude) and body length (s), expressed as a percentage of body length. The height of 

the bars indicates the number of fish whose length could be predicted from the EOD at a 

given accuracy level. Horizontal bars indicate ± SD accuracy of the EOD amplitude as a 

predictor of body length. Note that the accuracy of EOD amplitude as a predictor of body 

length was within 2.4% of the fish’s actual body length (j) for the highest population 

density in the field (e). 

 

Figure 2.4. Reliability of electric organ discharge (EOD) of Brachyhypopomus gauderio 

as a predictor of body length at different population densities in (a) the field and (b) the 

laboratory. Linear regression of R2 obtained from the linear regressions between body 

length and ln(EOD amplitude) (Fig. 3 a–e, k–n) plotted against fish density.  
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Figure 2.5. (a) Percentage change in electric organ discharge (EOD) amplitude of male 

Brachyhypopomus gauderio between low competition (2 fish/pool) and high competition 

(12 fish/pool) in the laboratory relative to that predicted based on male body length at 

low competition. The significant negative slope shows that the farther below their 

predicted signal amplitude at low competition (negative residuals of regression between 

body length and ln(EOD amplitude)), the greater the males increased their signal 

amplitudes under high competition. (b) Relation between body length and percentage 

change in signal amplitude.  
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Abstract 

Hormones mediate sexually selected traits including advertisement signals. 

Hormonal co-regulation links the signal to other hormonally-mediated traits such that the 

tighter the integration, the more reliable the signal is as a predictor of those other traits. 

Androgen administration increases the duration of the communication signal pulse in 

both sexes of the electric fish Brachyhypopomus gauderio. To determine whether the 

duration of the signal pulse could function as an honest indicator of androgen levels and 

other androgen-mediated traits, we measured the variation in sex steroids, signal pulse 

duration, and sexual development throughout the breeding season of B. gauderio in 

marshes in Uruguay. Although the sexes had different hormone titres and signal 

characteristics, in both sexes circulating levels of the androgens testosterone (T) and 11-

ketotestosterone (11-KT) were strongly related to signal pulse duration. Consequently, 

signal pulse duration can serve as an honest indicator of circulating androgens in males 

and females alike. Additionally, through phenotypic integration, signal pulse duration 

also predicts other sexual traits directly related to androgen production: gonad size in 

males, and estradiol (E2) levels in females. Our findings show that tight hormonal 

phenotypic integration between advertisement signal and other sex steroid-mediated traits 

renders the advertisement signal an honest indicator of a suite of reproductive traits.  
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Introduction 

Sex steroids coordinate broad suites of physiological and behavioural traits 

necessary for reproduction (Wingfield et al., 1990). Of these, androgens in particular 

regulate the expression of signals relevant for sexual communication by changing 

structures and activity in neural circuits (Moore et al., 2005; Ball et al., 2008; Bass, 2008; 

Godwin, 2010). A largely unresolved question is whether communication signals that are 

regulated by sex steroids can accurately reflect sex steroid levels themselves as well as 

other behaviourally relevant traits also regulated by sex steroids, which are not directly 

related to the signal. The signal could predict other sex steroid-mediated traits through 

second order relationships between the signal and the advertised traits that arise from first 

order relationships between sex steroids and traits, including the communication signal. 

Sex steroids would serve as intermediaries of these higher order relationships.  However, 

phenotypic integration can be masked or impaired by differences in tissue sensitivity, in 

receptor density or binding affinity, in the time scale of the response to hormone levels, 

the plasticity of the signal, and the intervention of other hormonal regulators, any of 

which can compromise the reliability of the signal (Adkins-Regan, 2008; Ball et al., 

2008; Kempenaers et al., 2008; Karubian et al., 2011). The central question of this study 

is whether the integration of the communication signal and its hormonal regulator (in this 

case androgens) is sufficiently tight to make the signal a reliable predictor of 

instantaneous endocrine and reproductive states.  

Animals produce communication signals that advertise their quality to potential 

mates or their fighting ability to potential competitors (Searcy and Nowicki, 2005). In 
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both contexts the signaller could benefit from exaggeration, but a high prevalence of 

cheating would turn the signals meaningless to receivers and the communication system 

would degrade and possibly vanish (Johnstone and Grafen, 1993). Signal honesty, on the 

other hand, might be stable under a select group of circumstances: when the expression of 

the advertisement signal depends on a sexually selected phenotypic trait of the signaller 

(Maynard Smith and Harper, 1995), when signals are expensive to produce or maintain, 

or when high quality males receive greater benefit from signalling than low quality males 

(Zahavi, 1977; Grafen, 1990). A related mechanism to maintain honest signalling is 

through hormonal control of suites of characters, of which at least one character is costly 

(Folstad and Karter, 1992). Hormones such as sex steroids can regulate communication 

signals as well as life-history traits that trade-off against one another, such as mate 

attraction versus parental care and immunocompetence (Wingfield et al., 1990; Casto et 

al., 2001; Hau, 2007). Sexually selected signals that are regulated by these same 

hormones should be honest due to the cost or trade-offs associated with elevated hormone 

levels (Folstad and Karter, 1992; Owen-Ashley et al., 2004; McGlothlin et al., 2008). 

Signallers could escape the cost of elevated hormone levels by increasing sensitivity of 

the advertisement signal to the regulating hormone or by uncoupling signal expression 

from the circulating hormone entirely (Ketterson and Nolan, 1999; Hau, 2007; Adkins-

Regan, 2008; Ketterson et al., 2009). The success of hormonally controlled suites at 

assuring signal honesty will depend entirely on the tightness of phenotypic integration 

between circulating hormone levels and the traits they influence, at the levels of both the 

individual and the population (McGlothlin and Ketterson, 2008; Ketterson et al., 2009). 

Tight hormonal phenotypic integration guarantees that a communication signal will 
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reliably indicate hormonal levels as well as upstream and downstream hormone-mediated 

traits, allowing signal receivers to make rapid and accurate comparisons of endocrine 

state and inferences of reproductive condition among signalling individuals in a 

population (Fig. 1).  

The electric fish, Brachyhypopomus gauderio (Giora and Malabarba, 2009), sister 

species of B. pinnicaudatus (Hopkins et al., 1990), produces a biphasic pulse-type electric 

organ discharge (EOD, Fig. 2) used for active electrolocation and communication during 

their nocturnal active phase, as is typical of weakly electric fish (Moller, 1995). The male 

EOD waveform is greater in amplitude and 2nd phase duration than the female EOD 

(Hopkins et al., 1990; Franchina and Stoddard, 1998). Both sexes increase the amplitude 

and 2nd phase duration of the EOD at night when active (Franchina and Stoddard, 1998; 

Stoddard et al., 2007) and as intrasexual competition intensifies (Franchina and Stoddard, 

1998; SG unpublished; Salazar and Stoddard, 2009). Socially induced enhancements of 

EOD parameters are accompanied by increases in testosterone (T) and 11-

ketotestosterone (11-KT) (Salazar and Stoddard, 2009). In both sexes, androgen 

treatments mimic the effects of prolonged social interaction on the duration of EOD 

(Silva et al., 1999; Allee et al., 2009; Goldina et al., 2011). However, the reliability of 2nd 

phase duration as an indicator of androgen level could be compromised by the strong and 

rapid enhancing effects of melanocortins on waveform 2nd phase duration (Markham and 

Stoddard, 2005; Stoddard et al., 2006) or the interaction between androgens and 

melanocortins (Goldina et al., 2011). On the other hand, extending the duration of the 2nd 

phase of the EOD significantly increases energetic expense (Salazar and Stoddard, 2008) 
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and may increase predation risk (Stoddard, 1999). Additionally, extension of the 2nd 

phase through increasing androgen titres may impose a fitness cost by compromising 

immunocompetence (Folstad and Karter, 1992). 

The effect of experimental androgen treatment on EOD duration, the costs 

associated with extending EOD 2nd phase duration, and the known effects of androgens in 

vertebrate reproductive physiology and behaviour, collectively prompted us to predict 

that EOD 2nd phase duration had the capacity to serve as an honest indicator of androgen 

levels and androgen-mediated traits in B. gauderio.  However, because so many 

mechanisms can weaken the relationship between hormone titers and trait expression, it 

is uncertain whether the signal could indicate other hormonally-mediated traits (Adkins-

Regan, 2008). To determine the strength of phenotypic integration between signals, 

steroids, and reproductive condition in B. gauderio, we estimated the relationship 

between androgen levels (T and 11-KT), 2nd phase duration (parameterized as tP2, the 

time constant of repolarisation, Fig. 2), and gonadosomatic index (GSI) in a natural 

population that we followed throughout the breeding season.  

 

Materials and methods 

We sampled B. gauderio during the breeding season in Laguna Lavalle (32º 01.259' 

S, 055º 22.498'W) in Department of Tacuarembó, Uruguay, Oct–Dec 2009. Water 

conductivity was 38–57 μS cm-1, and temperature was 19–28ºC throughout the study. All 

sampling took place during the day (11:00–17:59 UYST) when the fish are inactive in 
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their refuges among the plant roots.  All sampling was conducted at sites with similar 

depth, distance to shore, and vegetation. In total we sampled 42 sexually mature females 

and 31 sexually mature males. Female body length ranged from 11.9 to 17.5 cm and body 

weight ranged from 4.0 to 13.0 g. Male body length ranged from 11.2 to 19.3 cm and 

body weight ranged from 5.1 to 12.0 g. 

Fish were located using an audio amplifier to convert their electric signals into 

sound, netted rapidly, and taken into a floating EOD recording rig. EODs were recorded 

within a minute of disturbing the fish, before melanocortin-mediated EOD waveform 

modulation can take effect (Stoddard et al., 2006). Immediately after recording the EOD, 

fish were anesthetized by immersion in a fast-acting eugenol solution (1.2 mg l-1) for 

blood sampling. In the lab we have observed that taking the fish out of the water and 

injecting it, even with saline, causes a rapid drop in EOD amplitude. However, it quickly 

recovers after the fish is returned to its tank (Stoddard, 2007). On the other hand, steroids 

take several minutes before noticeable changes in the circulating levels can be observed. 

We took the blood samples within the time range usually used for lab studies in 

gymnotiforms (Dunlap, 2002; Salazar and Stoddard, 2008).  

After blood sampling, fish were then euthanized in a stronger eugenol solution (8 

mg l-1) and fixed in 10% formalin. We weighed and measured the fish, and noted whether 

the tail was intact, since tail damage changes the EOD waveform (Hopkins et al., 1990). 

In this genus it is almost impossible to accurately remove all gonad tissue from fresh 

samples. Therefore, it is typically done in fixed specimens (Schaan et al., 2009). After 5 

days of fixation, we determined sex by gonadal inspection and weighed the gonads to 
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calculate the gonadosomatic index (GSI) [100*gonad weight / body weight]. Collections 

and experimental procedures were performed under the guidelines and approval of the 

FIU IACUC (08-027). 

EOD measurements 

Field EOD recordings took place inside the lagoon in a submerged plastic sheet 

cage (100 x 50 x 50 cm) with recording electrodes located at either end, 100 cm apart. A 

mesh tube held the fish lengthwise, equidistant from the recording electrodes and 25 cm 

below the water surface. A ground electrode was located perpendicular to the fish. EODs 

were differentially amplified 100X (World Precision Instruments Inc., Sarasota, FL. 

DAM-50, AC-coupled, high pass filter corner 0.1 Hz, low pass filter corner 10 kHz). 

Signals were digitized by an RM1 mobile processor (Tucker Davis Technologies, 

Alachua, FL), and stored and analyzed on a portable computer using custom software 

developed in MATLAB. We analyzed the EODs to calculate amplitude and second phase 

duration, parameterized as tP2, the time constant of an inverse exponential function fitted 

to the repolarisation curve of the second phase between 30% and 70% of the amplitude 

(Fig. 2).  

Blood collection and hormone assays 

After recording the EOD, and within four minutes of capture, we drew blood from 

the ventral vertebral sinus into a syringe containing 5 μl 10% EDTA.  Sample handling 

and androgen extraction and quantification (T and 11-KT) followed a validated protocol 

for this species (Salazar and Stoddard, 2009). In females we assayed E2 as well. Plasma 

was diluted 1:12.5 in buffer provided with the immunoassay kit (Cayman Chemical, Inc., 
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Ann Arbor, MI). For the assay, 250 μl of diluted plasma was extracted four times in 4:1 

hexane:ethyl acetate solution, solvent was evaporated in a vacuum centrifuge, and the 

sample resuspended in immunoassay buffer. Because we were short on plasma after the 

androgen assays, and the sensitivity of the E2 assay was not high enough for the volume 

of plasma we had remaining, we biased sample E2 concentrations into the dynamic range 

of the EIA by spiking the samples with E2 standard provided with the kit. The sensitivity 

of the E2 assay (19 pg/ml) is low compared to the sensitivity of T (6 pg/ml) and 11-KT 

(1.3 pg/ml), for which we could dilute the female plasma 1:50 and 1:12, respectively, and 

still be within the dynamic range of the assay. However for E2, a dilution of 1:12, which 

was the highest concentration we could get with the amount of plasma left and the 

volume required by the EIA kit, was below the dynamic range of the assay for some 

samples. Thus, we had to spike the samples with E2 to be sure. All samples were plated 

in duplicate as specified by the kit manufacturer. To verify extraction recovery, we 

extracted EIA kit standards alongside the plasma samples. Sample concentrations were 

corrected for EDTA addition, dilution, and percentage of recovery. Extraction of T and 

11-KT were run in three batches, with a recovery percentage of T: 98.9%, 98.1%, and 

96.9% each, and 93.1%, 97.7%, and 94.4% for 11-KT. E2 extractions were run in two 

batches, with a recovery percentage of 95.8% and 91.9% each. We ran samples in six T 

assays, five 11-KT assays, and two E2 assays and calculated the coefficient of variation 

from pooled samples. For T, the intra-assay coefficients of variation were 5.37%, 5.61%, 

8.5%, 2.3%, 4.5% and 4.96% and the inter-assay coefficient of variation was 14.58%. For 

11-KT, the intra-assay coefficients of variation were 6.69%, 1.67%, 2.96%, 6.26% and 

0.95%, while the inter-assay coefficient of variation was 3.51%. For E2, the intra-assay 
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coefficients of variation were 6.46% and 4.48%, while the inter-assay coefficient of 

variation was 7.07%.   

Data analyses 

 We normalized all the variables with a natural log transform, verified with 

Shapiro-Wilk test. We selected an appropriate regression model to test the relationships 

among steroid levels, signal duration, and gonad maturation, and tested the fit of the 

regression models using residual analysis. Prior studies used linear regressions on raw 

data between steroid levels and EOD parameters (Salazar and Stoddard, 2009). However, 

our large data set allowed us to do residual analysis of the fit of the regression, as 

explained above. The residual analysis showed that a linear regression on raw data was 

not the best fit since it violated the assumption of heteroskedasticity, and the residuals 

were still correlated with the predicting variable, indicating a higher order relationship. 

We performed an analysis of covariance to test whether the linear regressions differed 

between the sexes. Significant differences were then tested for differences in slope and 

intercept using Fisher’s LSD post hoc test. All statistical analyses were performed using 

the MATLAB Statistical Toolbox, setting α=0.05. Analyzing 11-KT or T by themselves 

does not give a reliable picture since both androgens act on the EOD waveform in males 

(Goldina et al., 2011) and individuals may have a different ratio of T to 11-KT. Thus, we 

had to construct a model to combine both androgens and take into account both 

androgens simultaneously. We know from a prior lab study that 11-KT is 1.15 times 

more potent than T in increasing EOD tP2 in males (Goldina et al., 2011), we assumed the 
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same was true for females, although no studies have addressed this issue. Therefore, our 

combined model weighted 11-KT 1.15 times over T.  

 

Results 

Sex differences in tP2 and androgen levels 

Males had greater EOD tP2 than females (p<0.001, t=-6.10, df=59, Fig. 3a). Males 

also had slightly greater mean circulating levels of testosterone than females but the 

ranges overlapped considerably. Males had much greater circulating levels of 11-

ketotestosterone than females (ANOVA, F3,95=96.5, p<0.001, Fig. 3b). Moreover, males 

had similar levels of 11-KT and T, while females had significantly higher levels of T than 

11-KT. In both sexes the levels of 11-KT and T were strongly related (Table 1, Fig. 4), 

although the slopes of these relationships did not differ between the sexes, the intercepts 

were significantly different (ANCOVA, Fstat=0.81, d.f.=32, slope p=0.37, intercept 

p<0.001).  

Signal duration as an honest indicator of androgen levels  

Plasma levels of T and 11-KT were both highly correlated with EOD pulse duration 

(tP2 parameter) in the field population (Table 1). However, the relationship between T 

levels and tP2 was steeper in males than in females, probably because males also have 

greater 11-KT acting on tP2 than females (Table 1 & Supplementary Table 1; T: 

ANCOVA, F=4.8, df=42, slope p=0.034, intercept p<0.001; 11-KT: ANCOVA, F=1.01, 

df=32, slope p=0.32, intercept p=0.53). Because both androgens are biologically active in 
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regulating the waveform in males (Goldina et al., 2011), we used a weighted sum of these 

two androgens as the independent variable in our regression model, weighting 11-KT 

plasma titres by 1.15 relative to T. Under the weighted model, the relationship between 

tP2 and androgen levels remained significant in males but it was lost in females (Table 1, 

Fig. 5). Our combined model is not better nor worse than using only 11-KT to explain tP2 

variation in males (F1,18=0.224, p=0.64), but it is our best attempt to account for both 

androgens acting on the EOD waveform. Although tP2 can serve as a reliable indicator of 

the circulating levels of T and 11-KT in both sexes, the combined model may not apply 

to females as we constructed it, or the combined relationship suffered from a reduced 

sample size, since we had very few females for which we had enough plasma to measure 

both androgens. 

Phenotypic integration and the information conveyed by the electric signal 

In males but not in females, EOD tP2 predicted GSI, a 2nd order relationship (males: 

Table 1, Fig. 6a). Androgens should be the logical mechanistic linkage between GSI and 

EOD tP2. Accordingly, we found a significant relationship between GSI and both T and 

11-KT levels in males, but neither androgen nor E2 was related to GSI in females (Table 

1).  

T levels predicted E2 levels in females (Table 1), a 1st order relationship since E2 is 

synthesized from T. EOD tP2 also predicted circulating level of E2 in females, 

presumably a 2nd order relationship, with T as the common link (Table 1, Fig. 6b).  
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As a consequence of these significant 2nd order relationships with circulating 

androgen levels, extension of the waveform’s 2nd phase, EOD tP2, can function as an 

honest indicator of other reproductive traits, such as gonad size in males and estradiol 

levels in females.  

Discussion 

We found tight phenotypic integration between androgen-mediated traits, which 

resulted in tP2 predicting androgen levels (T, 11-KT) in both sexes, GSI in males, and E2 

in females.  Under tight phenotypic integration, a strong correlation between androgen 

levels and androgen-mediated traits would allow any one of those traits to serve as an 

honest indicator of the others. The tight relationships we have found between androgens, 

signal structure, reproductive condition, and other steroids in B. gauderio indicate that the 

2nd phase duration of the electric signal waveform can serve as a reliable intraspecific 

signal of circulating androgen levels, as well as expression levels of androgen-mediated 

traits. Through phenotypic integration, EOD tP2 can serve as an honest indicator of traits 

not directly involved in signal regulation, such as gonad size in males and E2 levels in 

females. Thus, EOD tP2 could be used by the opposite sex to assess the signaller’s 

reproductive condition. By assessing male gonad size from the electric signal, females 

might benefit by being able to identify males with mature gonads that would fertilize 

their eggs with greater reliability. The information conveyed by EOD tP2 remains honest 

since the hormones (androgens) that regulate its expression also regulate the traits that 

EOD tP2 is advertising. 
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The relationship between EOD tP2 and GSI may originate from the action of sex 

steroids in gonadal development. In teleost fish, 11-KT is released by testicular Leydig 

cells and acts on adjacent Sertoli cells to induce maturation of spermatogonia 

(Nagahama, 1994; Devlin and Nagahama, 2002). Nonetheless, gonadal development in 

fish requires a complex interplay between brain gonadotropin-releasing hormone, 

pituitary gonadotropins, and gonadal and non-gonadal sex steroids (Devlin and 

Nagahama, 2002; Zohar et al., 2010). Thus, other sex hormones upstream of sex-steroids 

such as gonadotropins and gonadotropin-releasing hormone can also contribute to the 

integration between EOD tP2, steroid levels, and gonadal size.  

In females, EOD tP2 also predicts E2 levels even though E2 probably does not 

increase tP2. Long-term E2 treatment did not affect EOD duration of the female B. 

occidentalis (Hagedorn and Carr, 1985), a congener of our study species B. gauderio. 

Moreover, acute E2 injections did not affect EOD duration of male B. gauderio (PKS, 

unpublished). Therefore, we think the relationship between tP2 and E2 arises from the 

phenotypic integration of T as a precursor of E2 and a modulator of EOD tP2 parameter. 

Inexplicably, though, the relationship between E2 and tP2 was stronger than either the 

relationship between T and E2, or between T and tP2. 

Ketterson et al. (2009) hypothesized that selection favouring strong phenotypic 

integration in both sexes should result in both sexes expressing a similar phenotype when 

their levels of a particular hormone are the same. The steeper slope in the relationship 

between T and tP2 in males compared to females would indicate a greater sensitivity to T 

in males. However, males also have about 100 times more circulating 11-KT than 
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females (Fig. 3b & 4), which also increases tP2 (Goldina et al., 2011). To make sense of 

the whole picture, we should note that females have a lot more T than 11-KT while males 

have more 11-KT than T (Fig. 3b & 4). Since both androgens act on EOD waveform, 

plotting each androgen separately does not allow us to determine whether sex differences 

in signal phenotype are due to differences in tissue sensitivity or just to differences in 

circulating androgen levels. Unfortunately, our combined androgen model did not result 

in a significant relationship between androgen levels and EOD tP2 in females, although 

there is a high degree of overlap between total androgen levels and EOD tP2 in the sexes 

(Fig. 5). It is possible that the relative sensitivity of T and 11-KT is different in females 

and males; future studies should address this issue. At this point we cannot determine 

whether the differences in EOD tP2 between males and females are due to differences in 

circulating androgen levels or to differences in tissue sensitivity or receptor affinity. 

Females implanted with the non-aromatizable androgen 5-dihydrotestosterone increased 

EOD tP2, and females with the highest implant doses produced EODs of greater tP2 than 

untreated males (Allee et al., 2009). Testosterone levels in the two sexes are highly 

correlated in teleosts, indicating weak or nonexistent selection to decouple female 

testosterone production from that of males (Mank, 2007). However, the end products 

differ profoundly between the sexes, with male teleosts converting much of their 

testosterone to 11-ketotestosterone, and females converting theirs to estrogens.  Thus, 

sexual selection appears to act on the downstream enzymatic pathways, and not on the 

production of testosterone per se. Therefore, the apparent extension of female EODs by 

testosterone may be a non-adaptive by-product of estradiol biosynthesis, in combination 
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with direct selection on males for expression of androgen receptors in electrocytes 

causing their expression in both sexes. 

Phenotypic integration among sex steroid actions allows the social signal to convey 

reproductive condition, and possibly serve as an honest indicator of other steroid-

mediated traits that we did not measure (Fig. 7). For instance, the androgen-regulated 

structure of the electric signal, EOD tP2 could provide information about the signaller’s 

dominance status and aggressive behaviour (Wingfield et al., 1990; Balthazart et al., 

1996). 11-KT in particular is implicated in regulating dominance, aggression, and 

secondary sexual characteristics in male teleost fish (Schaefer and Zakon, 1996; Dunlap, 

2002; Oliveira et al., 2005; Fernandes et al., 2010; Maruska and Fernald, 2010). Male B. 

gauderio increase EOD amplitude and duration more when interacting with males than 

with females (Franchina et al., 2001), while androgen-treated females increase their 

aggression and EOD responsiveness to female intruders but not to male intruders (Allee 

et al., 2009). Thus it is likely that a conspecific receiver could attend to signal duration to 

infer the aggressiveness of the signaller through a secondary relationship similar to those 

in our field data shown above. 

Phenotypic integration is neither fixed nor resistant to evolution (Adkins-Regan, 

2008). Phenotypic integration may arise from correlational selection favouring the co-

expression of traits that work well together and thus will be maintained as long as 

selection continues to favour the correlations within that suite of traits (Wingfield et al., 

1997; McGlothlin and Ketterson, 2008; Ketterson et al., 2009). If females screen 

prospective mates for reproductive condition to minimize the cost of unfertilized eggs, 
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males would benefit from advertising to prospecting females their degree of reproductive 

investment, thus favouring tighter integration of signal and reproductive state. Dishonesty 

in the form of exaggerated signals may be discouraged by energetic expense (Salazar and 

Stoddard, 2008) and predation costs of spectral shifting from 2nd phase extension 

(Stoddard, 1999).  Alternately, honest signalling may be sustained by evolutionary inertia 

caused by phenotypic integration (McGlothlin and Ketterson, 2008; Ketterson et al., 

2009). In addition to advertising his reproductive condition and capability to fertilize 

eggs, a male could extend EOD tP2 to advertise genetic quality by broadcasting his ability 

to bear an energetically expensive (Salazar and Stoddard, 2008) and potentially risky 

signal (Stoddard, 1999). Females, on the other hand, may not need to advertise their 

reproductive condition, since they do not engage courting males except when they are 

ready to spawn (PKS unpublished). We should also recognize that the relations found in 

this study between signal structure and other androgen-mediated traits account for 

roughly 20–40% of the variance. The remaining variance still leaves room for some 

degree of dishonest signalling. 
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 Table  

 

Table 3.1. Log-log relationships among sex steroid levels and steroid-mediated traits. 

Non-significant relationships are shown in italics. Please note that second order 

relationships are indirect, arising from serial ordering of first order, causal relationships. 

From a statistical standpoint, correlation analysis could suffice to show second order 

relationships, without implying causation. But, we want to show how much of the 

variance in the dependent variables can be inferred from the independent variable, 

something only regression analysis allows. For the regression equations please refer to 

supplementary figure 1 
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Figures 

 

Figure 3.1. Through tight phenotypic integration, a hormonally controlled 

communication signal could reliably indicate circulating levels of its hormonal regulator. 

More importantly, under phenotypic integration, the signal could indicate other traits that 

are regulated by the same hormone via indirect, second order relationships. Second order 

relationships arise from direct first order relationships (i. e. the hormone regulating the 

expression of traits, such as the advertising signal). If the phenotypic integration is 

sufficiently tight, a receiver can use the communication signal as an external indicator of 

the expression of less perceptible traits.  
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Figure 3.2. The biphasic EOD waveform of B. gauderio varies in peak-to-peak 

amplitude and the duration of the 2nd phase, as measured by EOD tP2, the repolarization 

time constant of the second phase. The gray trace shows an EOD after an increase in tP2 

parameter.  The asymmetric extension of the second phase is important to perception 

because it shifts energy to the low frequency spectrum (Stoddard et al., 1999). 

 

 

 

 

Figure 3.3. Androgen levels and EOD tP2 parameter in males and females plotted on a 

log scale. (A) Males have longer duration of the EOD’s second phase as estimated by the 
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tP2 parameter. (B) Androgen levels in males and females. Horizontal lines indicate group 

means and vertical lines indicate standard error of log-transformed data. Lower case 

letters indicate significant differences between groups. Males had greater levels of T and 

11-KT than females. Males had statistically indistinguishable levels of 11-KT and T, 

while females had significantly higher levels of T than 11-KT.  

 

 

 

Figure 3.4.  Testosterone levels are related to 11-ketotestosterone levels in males and 

females and estradiol in females, here plotted on a log scale.  However, males have more 

11-KT per amount of T than females, while females have high levels of E2 per amount of 

T. 
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Figure 3.5. First order relationship between androgen levels and the EOD’s tP2 

parameter.  Considering each androgen by itself ignores the important fact that both 

androgens act on the EOD waveform, so we constructed a model to account for both 

androgens simultaneously. The weighted sum of circulating androgens is strongly related 

to EOD tP2 in males (regression line) but not in females. The difference in the 

predictability of both androgens for the parameter tP2 may depend on the relative potency 

of each androgen in each sex, and on sex differences in circulating levels of androgens 

(see Discussion). 
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Figure 3.6. The EOD can serve as an indicator of other traits via indirect second order 

relationships. (A) A receiver could use EOD tP2 to predict the gonad size (estimated as 

GSI) of males but not of females. (B) Similarly, a receiver could use the EOD’s 2nd phase 

elongation parameter, tP2, to predict circulating levels of estradiol in females.
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Figure 3.7. In B. gauderio the EOD duration parameter tP2 reliably indicates androgen 

levels, a relationship that arises from direct action of androgens on EOD tP2.  Through 

second order relationships, EOD tP2 can be used to estimate other, less obvious traits that 

are also causally related to androgen levels, such as E2 levels, gonad size, and gonad 

maturation. Both androgens, T and 11-KT, can serve as intermediaries of these higher 

order relationships.  
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Supplementary table 

 

Supplementary table 3.1.  Equations for the regression analyses of the traits studied.  
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Abstract 

Male intrasexual competition and female choice explain the evolution of male 

ornaments. Except in sex-role-reversed taxa, female ornaments have been regarded as an 

epiphenomenon of genetic correlation, with no female-specific function or independently 

selected basis. Females from species with conventional sex-roles may still experience 

some degree of female-female competition and male choice that could explain the 

persistence of female ornaments. We studied the effect of female competition on the 

expression of a sexually dimorphic communication signal. In the electric fish 

Brachyhypopomus gauderio, both sexes produce an electric signal pulse for 

communication and electrolocation. Male electric pulses are longer in duration and 

greater in amplitude than those of females. As competition increases, males further 

enhance their signals in response to elevated androgen levels. We explored whether 

females respond to social competition as males do, by enhancing their communication 

signals and increasing androgen levels. We measured amplitude and duration of the 

electric signal pulse, and testosterone levels in female B. gauderio in their natural habitat 

in Uruguay and estimated social competition by calculating population density and adult 

sex ratio (ASR). In the lab, we manipulated ASR and population density independently to 

separate these factors and eliminate seasonal confounds. Under both field and lab 

conditions, signal pulse amplitude increased with population density while pulse duration 

increased with female bias in ASR. In the field, but not the lab, androgen levels increased 

when ASR was female-biased. Our findings indicate that the socially-mediated 

mechanism of signal regulation is shared by the sexes, although whether androgens 

regulate this signal plasticity in females remains unclear.    
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Introduction 

In species with conventional sex roles, sexual selection acts on males either through 

male-male competition or via female choice to produce conspicuous ornaments and 

behaviors (Andersson 1994). Ornaments serve as communication signals allowing 

conspecific receivers to infer the quality of the signaler (Bradbury and Vehrencamp 

1998). Conversely, sexual selection favoring elaborate ornaments in females has been 

assumed to be weak or absent, and the presence of male-like ornaments in females has 

been attributed to genetic correlation with positively selected male traits (Ketterson et al. 

2005; Mank 2007). Nonetheless, male mate choice of females has been found even in 

species with conventional sex roles (Amundsen et al. 1997; Wong and Svensson 2009), 

demonstrating that some degree of sexual selection acts on females regardless of the 

mating system (Borg et al. 2002; Forsgren et al. 2004; Clutton-Brock 2007). Likewise, 

sexual selection may also act on females via female-female competition to promote the 

evolution of elaborate traits and behaviors. Heightened female competition is common in 

species with reversed sex-roles (Colwell and Oring 1988; Geberzahn et al. 2009; 

Geberzahn et al. 2010), and in species where females compete for direct benefits offered 

by a male (Yasukawa and Searcy 1982; Sandell and Smith 1997; Langmore 1998; 

Sandell 1998; Langmore et al. 2002). Less well documented is whether female-female 

competition has a similar effect on signaling behavior and androgen levels on females of 

species with conventional sex roles, lacking male parental care or similar direct benefits 

offered by males to females.  
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The social environment is a key factor in determining the intensity of competition 

and, therefore, the strength of sexual selection acting on a particular sex. For instance 

when the availability of one sex is limited, the intensity of competition among individuals 

of the opposite sex will increase while individuals of the limited sex will have greater 

opportunity to exercise mate choice (Emlen and Oring 1977; Kvarnemo et al. 1995; Borg 

et al. 2006; Clutton-Brock 2007). The operational sex ratio (OSR), or the ratio of 

breeding females to breeding males at the site and time of mating, serves as an indicator 

of the intensity of sexual selection (Emlen and Oring 1977). OSR depends on two factors 

1) the adult sex-ratio (ASR), and 2) the potential reproductive rate (PRR) of each sex, 

which is the maximum number of offspring a given sex can produce per unit of time 

(Clutton-Brock and Parker 1992). Since PRR depends on the time and energy each sex 

allocated to their progeny, PRR is set by life-history of the species and the particular sex. 

On the other hand, OSR is intrinsically correlated to ASR (Clutton-Brock and Parker 

1992). Changes in population density can also affect the strength of selection 

independently of sex-ratio (Kokko and Rankin 2006). For instance, increased encounter 

rates between same-sex individuals increases competition and the possibility of an 

individual becoming dominant over a larger number of animals, or the possibility of mate 

monopolization. Likewise, mate encounter rate may affect mate-choice, or act as a switch 

point between alternative mating strategies (Kokko and Rankin 2006).  

In response to competition, male vertebrates frequently elevate androgen levels and 

aggressiveness (Wingfield et al. 1990). Androgens, in turn, commonly increase the 

intensity of sexually selected signals and promote aggression (Moore et al. 2005; Oliveira 
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et al. 2005; Ball et al. 2008; Bass 2008; Godwin 2010). The association between 

androgen levels, aggressive behavior, and signaling effort in social competition is very 

clear for male vertebrates (Hirschenhauser et al. 2003; Ball and Balthazart 2004; 

Hirschenhauser and Oliveira 2006). Conversely, socially-mediated changes in behavior 

and androgen levels in females has received little attention. Nonetheless, females may 

have significant circulating androgen levels, even in species where the male is the 

dominant sex (Ketterson et al. 2005; Mank 2007). Whether female aggression is 

regulated by androgens or other hormones corresponds to differences in breeding systems 

and the degree of sexual dimorphism (Wingfield et al. 1999a; Wingfield et al. 1999b; 

Ketterson et al. 2005). Studies in birds have suggested that androgens may play a greater 

role in monogamous species than in polygamous species, as well as in monomorphic 

species compared to sexually dimorphic ones (Wingfield et al. 1999b; Ketterson et al. 

2005). However, the relationship between T levels and degree of sexual dimorphism is 

less clear for polygamous species (Wingfield et al. 1999b). Here we studied whether 

female-female competition promotes changes in behavior and androgen levels in females 

from a sexually dimorphic, polygynous species with conventional sex roles.  

The electric fish Brachyhypopomus gauderio (Giora & Malabarba 2009), sister 

species of B. pinnicaudatus, produces a biphasic and sexually dimorphic electric organ 

discharge (EOD, Fig. 1) for communication and navigation (Hopkins et al. 1990). Males 

maintain exclusive home ranges and females move among males consistent with an 

exploded lek polygamous mating system (Miranda et al. 2008). Females have a fractional 

spawning event about once a week during the breeding season but can spawn several 
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times during a spawning night (PKS, unpublished). Males produce EODs of greater 

amplitude and second phase duration than females (Franchina and Stoddard 1998). At 

night when active, males and females increase the amplitude and second phase duration 

of the EOD (Franchina and Stoddard 1998; Stoddard et al. 2007). Under male-male 

competition, males increase in circulating levels of T and 11-KT (Salazar and Stoddard 

2009) and further increase EOD amplitude and second phase duration (Franchina et al. 

2001; Salazar and Stoddard 2009). Treating males with T or 11-KT mimics the effects of 

long-term social interaction on the duration of EOD (Silva et al. 1999; Pouso et al. 2010; 

Goldina et al. 2011), while 11-KT treatment slightly increases EOD amplitude (Goldina 

et al. 2011). The duration of the female EOD also increases with androgen administration 

(Allee et al. 2009), as shown in other pulse-type electric fish with sexually dimorphic 

second phase extension (Hagedorn and Carr 1985; Bass and Volman 1987). Moreover, 

EOD duration in both sexes is correlated with androgen levels (Gavassa et al. 2011). 

Therefore, androgens regulate EOD duration in both sexes of B. gauderio. 

We studied whether females respond to social competition as males do, by 

increasing EOD amplitude and duration along with androgen levels. We investigated the 

relationship between the intensity of competition, EOD duration, EOD amplitude, and 

androgen levels in females in an observational study in the field followed by an 

experimental study in the lab in order to control for any confounding effects observed in 

the field.  
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Materials and Methods 

Field study  

We recorded the EODs of B. gauderio from Laguna Lavalle (32º 01.259' S, 055º 

22.498'W), Department of Tacuarembó, Uruguay. We sampled five times during the 

breeding season: October 15-16, 27-28, November 16-18, December 04, 12 and 13, 2009. 

Fish were located using an audio amplifier to convert their electric signals into sound, 

netted rapidly, and taken into the EOD recording setup. Only fish with intact tails were 

retained for analysis (Hopkins et al. 1990). We estimated population abundance by 

recording the time a skilled fishing team took to capture 30 fish, and defined population 

density in terms of fish captured per hour. Fish were euthanized by immersion in a 

eugenol solution (8 mg l-1) and fixed in 10% formalin. After 5+ days of fixation, we 

determined sex by gonadal inspection. Females with vitelogenic oocytes and males with 

gonadosomatic index above 0.6% were considered reproductively active and were used to 

estimate ASR. We could not estimate OSR directly since OSR depends on both ASR and 

the PRR of each sex. However, the PRR of B. gauderio has not been determined. 

Therefore, we used ASR as a proxy for OSR. Anecdotal evidence indicates that males 

have a higher PRR than females, with males being capable of spawning every night and 

females spawning every 3-8 nights (PKS, unpublished), as expected for a species with 

conventional sex roles (Clutton-Brock and Parker 1992). Thus, true OSR will be more 

male-biased than inferred from ASR alone. Detailed sampling methods are described by 

Gavassa et al. (2011).  
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ASR experiment  

We carried out a parallel lab experiment using sexually mature B. gauderio from our 

eighteenth generation captive-reared colony, from May to October 2010 in Miami, 

Florida, USA. We manipulated ASR to match the range of values observed in the field, 

one female per male or four females per male. Seven males and 13 females were held 

with an opposite sex companion for a week prior to study, then placed in a 450L pool 

outdoors for another week in groups of either five males and five females (ASR 1:1) or 

two males and eight females (ASR 1:4). After the week of social treatment, we netted up 

all the fish and recorded their EODs. We took a blood sample from the first two females 

captured from each pool. Each ASR treatment was replicated six times, each time using 

randomly selected fish from our colony, for a total of 30 females in the unity sex ratio 

treatment and 48 females in the 4:1 treatment. 

Population abundance experiment 

We randomly selected 18 females and 18 males B. gauderio from our captive-reared 

colony. We tagged the fish with individual alphanumeric elastomer tags and placed them 

at random in outdoor 450L pools of 2, 6, or 12 fish, keeping sex ratio at unity. After a 

week of social treatment, we recorded their EODs. In between social treatments, fish 

remained with an opposite sex companion for a week. Female fish went through all 

treatments in random order, except for one female who died and was replaced with 

another female from our colony. Treatments were temporally interspersed; we run the 

experiment in three rounds, in each round we had six fish per treatment. We did not take 

blood samples from females in this experiment, since blood sampling would impair the 
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females from going through all the treatments. Detailed methods are described by 

Gavassa et al. (2012). 

EOD recordings 

Field EOD recordings took place inside the lagoon in a submerged plastic mesh cage 

(100 x 50 x 50 cm) with recording electrodes located at either end, 100 cm apart. A mesh 

tube held the fish lengthwise, equidistant from the recording electrodes and 25 cm below 

the water surface. A ground electrode was located perpendicular to the fish. Water 

conductivity was 38–57 μS cm-1 and water temperature was 19-28ºC throughout the field 

study. In the lab, we recorded the EODs inside a glass aquarium (120 x 40 x 40 cm), in 

water adjusted to 100 ± 6 μS/cm and 25.8 ± 1.3º C.  

In the field and in the lab, EODs were differentially amplified 100x (WPI, Inc. 

DAM-50, AC-coupled, highpass filter corner 0.1 Hz, lowpass filter corner 10 KHz). 

Signals were digitized by an RM1 mobile processor (Tucker Davis Technologies, 

Alachua, FL) at a sampling rate of 48.8 kHz, and stored and analyzed on a portable 

computer using custom software developed in MATLAB. We analyzed the EODs of fish 

with intact caudal filaments, determining peak-to-peak amplitude (mV) and second phase 

duration as the parameter τP2, the time constant of repolarisation of the second phase (Fig. 

1; Stoddard et al. 2003).  

Blood collection and hormone assays 

After recording their EODs, we anesthetized the fish by immersion in eugenol solution 

(1.2 mg l-1) for about a minute. Within five minutes of capturing the fish, we drew blood 

from the ventral vertebral sinus into a syringe containing 5 μl 10% EDTA, then 
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centrifuged the blood for 15 min at 6000 rpm at 4ºC, transferring the plasma to a 

polypropylene tube to be stored at -80ºC until analysis.  

We measured total levels of circulating sex steroids following a validated protocol 

of extraction and quantification for this species (Salazar and Stoddard 2009). In the field 

we measured T, 11-KT and E2. However, since we were short on funds, and all these 

steroid hormones are highly correlated in this species and females have very little 11-KT 

(Gavassa et al. 2011), we only measured T in the lab population. Detailed hormone assay 

protocols are described in Gavassa et al. (2011). 

Data analysis 

We normalized all the variables with a natural log transform, verified with Shapiro-Wilk 

test. For the field observations, we performed Pearson correlations between EOD 

parameters (amplitude and duration), hormone levels (T, 11-KT, and E2) with population 

density and ASR. For the population density lab manipulations we used repeated 

measures analysis of variance (ANOVA) to test whether population density had a direct 

effect on EOD parameters. For the ASR manipulation, we used t-test to examine the 

difference between the two ASR treatments in EOD parameters and testosterone levels. 

We used MATLAB Statistical Toolbox for statistical analysis.  

 

Results 

ASR in the field varied from 4.0 to 1.0 females per male (4.0, 3.7, 0.6, 0.7 and 1.5; 

probability of unity: P = 0.05, P = 0.03, P = 0.3, P = 0.3, and P = 0.3 respectively; 
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collection dates: October 15-16 and 27-28, November 16-18, December 4 and 12-13, 

2009 respectively). Population density in the field varied from 4.5 to 10 fish captured per 

hour. Season was confounded with other variables in our field observations. Seasonal 

progression correlated with ASR and water temperature, but not with population density 

nor water conductivity (ASR: r = -0.93, P = 0.02; water temperature: r = 0.82, P = 0.01; 

population density: r = 0.25, P = 0.68; water conductivity: r = 0.41, P = 0.31).  

The strong correlation between time into the breeding season and ASR makes 

multiple linear regression useless to disentangle which one of those two variables has a 

stronger effect on the EOD. Thus, we performed individual linear regressions using time 

into the breeding season and ASR separately. EOD amplitude was positively correlated 

with population density (r = 0.57, P < 0.001; Fig. 2a, Table 1), and time into the breeding 

season (r = 0.37, P = 0.001; Fig. 2c), but negatively correlated with female-bias in ASR 

(r = -0.34, P = 0.004; Fig. 2b). On the other hand, EOD duration (τP2) did not correspond 

to population density (r = -0.03, P = 0.78; Fig. 2d), though we found a strong positive 

correlation between τP2 in the field and female-bias in ASR (r = 0.61, P < 0.001; Fig. 2e). 

However, τP2 also shows a strong seasonal effect, decreasing with time into the breeding 

season (r = -0.70, P < 0.001; Fig. 2f).  

In the field, changes in sex steroid levels parallel those found in the τP2 parameter of 

female EODs. Female-bias in ASR corresponded to elevated T, 11-KT, and E2 levels in 

females (T: r = 0.53, P < 0.001; 11-KT: r = 0.77, P < 0.001; E2: r = 0.56, P = 0.003; Fig. 

3 a & c). Here again, a negative seasonal trend is evident in T, 11-KT, and E2, all of 

which declined in serum concentration as the breeding season progressed (T: r = -0.53, P 
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< 0.001; 11-KT: r = -0.74, P < 0.001; E2: r = -0.63, P < 0.001; Fig. 3 b&d). Because of 

seasonal trends, we consider manipulative lab tests critical for testing causality of effects 

seen in the field.  

As in the field, EOD amplitude in the lab study increased with population density 

(Repeated measures ANOVA, F1,16 = 12.89, P = 0.002, n = 17; Fig. 4a). However in 

contrast to the field observations, our lab experiment yielded no effect of ASR on female 

EOD amplitude (t-test: tstat = 0.59, d.f. = 74, P = 0.55; Fig. 4b, Table 1).  

Unlike the field, population density in the lab did correlate with EOD duration (τP2) 

(repeated measures ANOVA, F1,16 = 58.01, P < 0.001, n = 17; Fig. 4c).  In the lab as in 

the field, τP2 was higher in the treatment with a female-biased ASR (t-test, tstat = -2.43, 

d.f. = 74, P = 0.017; Fig. 4d).  On the other hand, the lab manipulations of ASR produced 

no difference in females’ T levels (t-test, tstat = 1.01, d.f. = 19, P = 0.32; Fig. 5). We did 

not measure T levels in females at different fish density treatments. 

 

Discussion 

We found that females respond to social competition by increasing the amplitude of their 

EODs as population density increases, and they respond to intrasexual competition by 

elongating their EODs if the adult sex-ratio becomes female-biased. In the field, 

androgen levels were correlated with the intensity of female intrasexual competition, 

although this relationship was confounded by other variables and no such correlation was 

found in the lab. In response to social competition, female B. gauderio enhance their 
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electric signal waveforms the same way as males, just to a lesser extent. Females did not 

express the strong effect of social competition on androgen levels seen in males, which 

may account for the difference in degree of signal enhancement displayed by the two 

sexes in response to same-sex competition. 

Across our field and lab studies, EOD amplitude appeared to be driven by 

population density, whereas EOD second phase duration (τP2) responded strongly to 

ASR. EOD amplitude enhancements may signal resource holding potential under social 

competition (Salazar 2009; Silva et al. 2010; Gavassa et al. 2012) or may improve 

electrolocation by overcoming the increase in background noise that results from greater 

population density. Both field and lab studies provided strong evidence that females 

increase τP2 with female intrasexual competition. Thus, duration of the EOD’s second 

phase may serve as a signal during intrasexual competition while EOD amplitude may 

function as a signal for competition between and within sexes. Interestingly, changes in 

female EOD waveform parallel those found in males (Salazar and Stoddard 2009; 

Gavassa et al. 2012). Our results show that females are capable of responding to social 

competition just as males do.  

Effects that were unique to our observational field studies or our experimental lab 

studies might have been real, the result of confounds, or our inability to fully replicate 

field conditions in the lab. For instance, only in the field did EOD amplitude decrease as 

ASR became female-biased. This result could be explained by a seasonal effect on EOD 

amplitude that is confounded with ASR in the field (Fig. 2). In the lab, but not the field, 

females increased EOD pulse duration (τP2) as population density increased. In the lab, 
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we created a range of population densities three times greater than we measured in the 

field, thus the more extreme change in population density in the lab could explain why 

females increased τP2 with population density only there. Alternatively, the underlying 

seasonal variation may have prevented us from finding a relationship between population 

density and τP2 in the field. 

Although testosterone levels did not increase with competition in our experiment, a 

prior lab study found that females in the lab housed in outdoor breeding pools under high 

competition (6 females with either 2 or 6 males per pool) had circulating T levels that 

surpassed those of males (Salazar and Stoddard 2009). Perhaps the effect of social 

competition on androgen levels is sensitive to time in the breeding season. Nonetheless, 

we did find an increase in EOD duration, which is regulated by androgens (Silva et al. 

2002; Allee et al. 2009; Pouso et al. 2010; Goldina et al. 2011). It is possible that the 

change in signal duration we found in the lab resulted from a small change in androgen 

levels that we failed to detect. Androgens mediate long-term changes in EOD duration 

(Silva et al. 2002; Allee et al. 2009; Goldina and Stoddard 2009), while peptide hormones 

mediate short-term changes (Markham and Stoddard 2005; Stoddard et al. 2006; 

Markham et al. 2009). Furthermore, androgens greatly potentiate the effect of 

melanocortin administration on EOD duration (Allee et al. 2009; Goldina et al. 2011). 

Therefore, a small increase in androgens could result in a much greater increase in EOD 

duration through synergy with melanocortin action. 

Given their life-history (exploded lek polygyny, larger male signal structures, no 

parental care; Franchina and Stoddard 1998; Miranda et al. 2008), one might not predict 
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female B. gauderio would respond to intrasexual competition. Female B. gauderio do not 

defend territories (Miranda et al. 2008) nor compete for direct male benefits or parental 

care; however, females may compete for access to high quality males, particularly when 

males are scarce. In the Japanese medaka (Oryzias latipes) (Clark and Grant 2010) and 

the sand goby (Pomatoschistus minutus) (Kvarnemo et al. 1995), females compete for 

access to males when OSR is female-biased, while males compete with other males when 

OSR is male-biased. In the electric fish B. gauderio, female aggression may prevent other 

females from interrupting their mating bouts, as suggested for other species (Karvonen et 

al. 2000). At the beginning of the breeding season the relative scarcity of males may 

result from males taking longer than females to mature. In order to breed, females only 

have to develop a few oocytes at a time (Quintana et al. 2004) while males have to grow 

to a certain size that is attractive to females (Curtis and Stoddard 2003). However, 

breeding early is often very advantageous, thus females might be under great pressure to 

find the best mate to fertilize their few eggs at the beginning of the season and so 

intrasexual competition may be critical to their fitness.  

Although we didn’t test directly whether EOD enhancement provides females with 

a mating advantage as expected from a sexually-selected trait, we are confident that 

signal enhancements are not the result of natural selection. We see compelling evidence 

of natural selection constraining the evolution of conspicuous signals (Stoddard 1999; 

Stoddard 2002; Salazar and Stoddard 2008). The EOD is expensive in predation terms, 

elongating the duration of the EOD’s second phase makes the signal more conspicuous to 

predators (Hanika and Kramer 1999; Stoddard 1999; Hanika and Kramer 2000). Electric 
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signals are also energetically expensive, their cost increasing with the amplitude and the 

duration of the signal (Salazar and Stoddard 2008). Female signals are less expensive and 

less conspicuous than male signals (Stoddard 1999; Salazar and Stoddard 2008). When 

competition is low, males reduce their signaling effort to reduce the energetic and 

predation cost of signaling. However, once competition resumes, males regain the 

handicap costs of signaling (Gavassa et al. 2012). Enhancing the amplitude of the signal 

increases the honesty of the information conveyed by the signal. Body length is tightly 

related to EOD amplitude and this relationship improves as EOD amplitude increases 

during competition as males signal the closest to their physiological limit (Gavassa et al. 

2012). Body size information is key for mate choice and male-male aggression, longer 

males are preferred by females (Curtis and Stoddard 2003) and are more likely to win an 

agonistic encounter (Salazar 2009; Silva et al. 2010). On the other hand, signal duration 

in males and females conveys information about the reproductive state of the signaler, 

and possibly its aggressive intent (Gavassa et al. 2011). Thus, elongating the signals may 

serve to attract mates and it may also warn competitors about the aggressiveness of the 

signaler.  

Signal plasticity allows both sexes to adjust their signaling effort and subsequent 

signaling cost to the intensity of competition. In both males and females, intrasexual 

competition promotes the elongation of the duration of the EOD’s second phase, while 

intersexual competition promotes the increase in EOD amplitude. The similarity in the 

response to competition in males and females suggests either 1) both sexes face parallel 

selective forces, albeit with different strength, or 2) female behavior may still be the 



 117

result of genetic correlations with sexually selected male traits, despite strong natural 

selection to make female signals less conspicuous and less expensive (Stoddard 1999; 

Stoddard and Salazar 2011). Signal amplitude and duration is greater in males than in 

females (Franchina and Stoddard 1998; Stoddard et al. 2007; Salazar and Stoddard 2008) 

indicating that overall sexual selection is stronger in males of this species than in females. 

If both sexes are subjects of sexual selection, the temporal changes in the population 

structure seem to be responsible for the maintenance of some degree of sexual selection 

in females. However, future studies are needed to test whether signal enhancements 

provide females with a competitive advantage, as would be expected if female signals are 

indeed under direct sexual selection.  

The strength of sexual selection on a given sex depends on the OSR. We could not 

measure OSR directly since we do not have an accurate estimate of the PRR for each sex 

of B. gauderio. Nonetheless, the PRR of females is lower than that of males (see 

methods) so that a unity ASR is actually a male-biased OSR. If the difference in the PRR 

between the sexes is high enough, the OSR may still be male-biased even when the ASR 

is female-biased. Throughout the time we sampled we found either a unity ratio or a 

female-based ratio. Therefore, we do see an increase in female competition as ASR 

becomes female-biased, but the OSR may still be male-biased resulting in stronger sexual 

selection in males than in females.  

We show that the social environment can have great effects in female behavior 

through same-sex competition. Interestingly, the presence of female-female competition 

can neither be explained by sex role reversal nor by competition for male direct benefits. 
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We conclude that female intrasexual competition may be more common than expected 

from theory on mating systems. Particularly, our study highlights the importance of 

temporal variation in population structure affecting the degree of sexual selection 

experienced by either sex.   
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Table 

 

Table 4.1. Summary of changes in electric organ discharge (EOD) parameters and 

testosterone levels with population density, adult sex-ratio (ASR) and season between the 

field observations and the lab manipulations. Horizontal line indicates non-significant 

change. Testosterone levels were not assayed (NA) for population density manipulation 

in the lab 
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Figures 

 

 

Figure 4.1. The electric organ discharge (EOD) waveform of B. gauderio is composed of 

a positive phase (P1) and a negative phase (P2). Amplitude was measured peak-to-peak. 

Duration of the second phase was characterized by second phase duration (τP2), the time 

constant of repolarization 
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Figure 4.2. Electric organ discharge (EOD) waveform parameters in the field; amplitude 

and second phase duration (τP2), vary with adult sex-ratio (ASR), density, and time into 

the breeding season. In the field, EOD amplitude was positively correlated with 

population density (a) and with time into the breeding season (c). b, EOD amplitude was 

negatively correlated with ASR. d, EOD duration (τP2) did not vary with population 

density in the field. e, As the ASR became more female-biased, τP2 increased. f, 

Conversely, τP2 decreased with time into the breeding season. Circles depict raw data, 

correlation lines are shown when the correlation was significant (P < 0.05) 
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Figure 4.3. Steroid levels in relation to adult sex-ratio (ASR) and time into the breeding 

season. Circles indicate individual levels while lines indicate the estimated linear 

relationship. Both testosterone and estradiol levels in the field increased as the number of 

females per males increased (a & c), but decreased with time into the breeding season (b 

& d) 
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Figure 4.4. Changes in electric organ discharge (EOD) amplitude and EOD duration 

when fish density and adult sex-ratio (ASR) were independently manipulated in the lab. 

a, EOD amplitude increased as population density increased. b, EOD amplitude in the lab 

did not respond to changes in ASR, as oppose to field observations (Fig. 2b). c, EOD 

second phase duration (τP2) steadily increased with population density in the lab. d, 

Females increased EOD τP2 as the ASR became female-biased. Circles depict raw data 

while crosses represent mean ± SEM. Pairwise comparisons among groups significant (P 

< 0.05) are shown by lower case letters 
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Figure 4.5. Testosterone levels from females at different adult sex-ratio (ASR) in the lab. 

There were no significant differences in testosterone levels between females at a unity 

versus a female-biased ASR 
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Abstract 

Vertebrates exposed to stressful conditions release glucocorticoids to sustain energy 

expenditure. In most species elevated glucocorticoids inhibit reproduction. However 

individuals with limited remaining reproductive opportunities cannot afford to forgo 

reproduction and should resist glucocorticoid-mediated inhibition of reproductive 

behavior. The electric fish Brachyhypopomus gauderio has a single breeding season in its 

lifetime, thus we expect males to resist glucocorticoid-mediated inhibition of their sexual 

advertisement signals. We studied stress resistance in male B. gauderio (i) by examining 

the effect of exogenous cortisol administration on the signal waveform and (ii) by 

investigating the effect of food limitation on androgen and cortisol levels, the amplitude 

of the electric signal waveform, the responsiveness of the electric signal waveform to 

social challenge, and the amount of foraging activity. Exogenous cortisol administration 

did reduce signal amplitude and pulse duration, but endogenous cortisol levels did not 

rise with food limitation or social challenge. Despite food limitation, males responded to 

social challenges by further increasing androgen levels and enhancing the amplitude and 

duration of their electric signal waveforms. Food-restricted males increased androgen 

levels and signal pulse duration more than males fed ad libitum. Socially challenged fish 

increased food consumption, probably to compensate for their elevated energy 

expenditure. Previous studies showed that socially challenged males of this species 

simultaneously elevate testosterone and cortisol in proportion to signal amplitude. Thus, 

B. gauderio appears to protect its cortisol-sensitive electric advertisement signal by 

increasing food intake, limiting cortisol release, and offsetting signal reduction from 

cortisol with signal-enhancing androgens.
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Introduction 

The energetic expense of reproduction typically entails reconfiguration of the individual’s 

energy budget. Energetic reallocation is particularly extreme in semelparous species, 

which breed only once in their lifetimes. Semelparous species favor investment in 

reproduction over investment in survival during their single breeding season (Williams, 

1966). Semelparous vertebrates are typified by a seasonal rise in glucocorticoid (GC) 

levels, as they divert energy from somatic maintenance into reproduction, (McEwen and 

Wingfield, 2003; Wingfield and Sapolsky, 2003). Semelparous species with short 

breeding seasons of few days or weeks show a particularly sharp rise in GC levels 

concurrent with the onset of reproduction (McDonald et al., 1981; Boonstra and McColl, 

2000; Carruth et al., 2000; Barry et al., 2001). However, other semelparous species with 

longer breeding seasons (a few months) do not increase GC levels during the breeding 

season (Oakwood et al., 2001). We hypothesize that whether GCs rise precipitously in 

semelparous species depends on the length of the breeding season itself. Semelparous 

species with a short breeding season are typically capital breeders, investing all their 

resources into a single bout of reproduction. On the other hand, semelparous species with 

a longer breeding season should be more conservative with their energetic allocation 

using current income to help fuel reproduction while preventing a rise in GCs levels in 

order to endure throughout the breeding season. We asked whether semelparous species 

with longer breeding seasons have mechanisms to prevent the rise in GCs and therefore 

reduce the detrimental effect of GCs on survival, somewhat resembling what occurs in 

iteroparous species, which breed multiple times throughout their lifetimes.  
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Sterling and Eyer (1988) coined the term allostasis to describe the physiological 

adaptations an organism undertakes to maintain internal stability when external or 

internal conditions change. Allostatic load is the effort of maintaining homeostasis, the 

difference between the energy available and the energy needed for physiology and 

behavior while engaged in the demands of life history: finding mates, breeding, 

defending territories, surviving, etc. Allostatic load increases when energy available 

diminishes or when the energetic demands of the organisms increase. Allostatic overload 

occurs when energetic demands surpass the amount of available energy (rev. McEwen 

and Wingfield, 2003). To reduce allostatic load, an overloaded individual could increase 

energy consumption or decrease energy expenditure by reducing the amount of energy 

allocated to functions not essential for immediate survival, such as reproduction 

(McEwen and Wingfield, 2003). Since glucocorticoids regulate behavioral and 

physiological mechanisms related to energy expenditure and intake, their circulating 

levels are commonly taken as indicators of allostatic load. In most species elevated 

glucocorticoids result in reproductive inhibition. However, those species for which 

forgoing reproduction to benefit survival would not increase fitness have evolved 

mechanisms to resist stress while continuing to reproduce. Following the logic of G.C. 

Williams (1966), we expect semelparous species to go into allostatic overload during 

reproduction (Wingfield and Sapolsky, 2003).  

We investigated the strategy by which a semelparous vertebrate with a relatively 

long breeding season fuels and sustains reproductive behavior. Specifically, we studied 

the effect of increased allostatic load on foraging behavior and reproductive signal 

production in the electric fish Brachyhypopomus gauderio, and whether the 
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advertisement signal of B. gauderio resists the inhibitory effects of cortisol. We consider 

three possible responses of B. gauderio to allostatic load: (i) Although semelparous 

species are not expected to forgo reproduction when resources are limited, semelparous 

species with long breeding seasons could postpone reproduction or reduce reproductive 

investment for the short term until environmental conditions improve. In this case, a rise 

in GCs may beneficially inhibit reproductive behaviors and physiology. (ii) Short-lived 

species with a long breeding season will have mechanisms to reduce allostatic load, such 

as increasing food supply to sustain reproduction and prevent the rise of GCs. (iii) 

Alternatively, when allostatic load increases semelparous species with long breeding 

season might respond like those species with short breeding seasons, through a sharp 

increase in circulating GCs and direction of all remaining energy capital towards 

reproduction. In the latter case, a rise in GCs should not inhibit reproductive behaviors or 

physiology.  

The gymnotiform electric fish B. gauderio (southern sister species of B. 

pinnicaudatus) is an excellent model to study the behavioral and physiological effects of 

allostatic load. B. gauderio reproduces throughout the austral summer in subtropical 

regions of the southern hemisphere (Silva et al., 2003). Under field conditions, B. 

gauderio is an annual – only immature fish can be found during the austral winter, 

indicating that adults from the previous year have not survived the breeding season (Silva 

et al., 2003). Thus, a single reproductive season lasting a few months (Silva et al., 2003), 

combined with energetically expensive signals (Salazar and Stoddard, 2008; Stoddard 

and Salazar, 2011) marks males B. gauderio as likely candidates for routine allostatic 

overload.  
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B. gauderio generate electric organ discharges (EODs) 24 hours a day that reflect 

their hormonal profiles (Stoddard et al., 2006; Gavassa et al., 2011). Male B. gauderio 

produce EODs of higher magnitude, longer duration and greater energetic cost than 

females or subadults (Hopkins et al., 1990; Franchina and Stoddard, 1998; Silva et al., 

2002; Salazar and Stoddard, 2008). At night and especially when challenged by a 

conspecific male, males increase EOD amplitude and duration of the second phase 

(Franchina et al., 2001; Silva et al., 2002; Silva et al., 2007) resulting in a further increase 

on the energetic expense of signaling (Salazar and Stoddard, 2008; Stoddard and Salazar, 

2011). Social competition increases androgen and cortisol levels along with signal 

enhancement (Salazar and Stoddard, 2009). The concurrent increase in cortisol levels 

with androgen levels and signal enhancement suggests that the electric signal of B. 

gauderio resists suppression by cortisol.  

We tested response of the electric signal of B. gauderio to experimentally elevated 

cortisol levels. We also manipulated the allostatic load by manipulating energy 

availability and demand. We reduced the availability of energy by manipulating food 

availability, and we increased energetic demand by staging social challenges from 

conspecific males. If B. gauderio is typical of semelparous vertebrates, we might expect 

to see cortisol elevate at the onset of reproduction while reproductive physiology and 

signaling behavior continue or increase. Alternatively, since this species has a relatively 

long breeding season for a semelparous species, food limitation might reveal a capacity 

for cortisol-mediated suppression of reproduction, such as reduced signal output, or 

individuals might seek to compensate through increased foraging effort.  
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Materials and methods 

Animals 

In the experiment manipulating allostatic load we used 48 sexually mature male 

Brachyhypopomus gauderio (mean ± s.d.: total length = 19.3 ± 1.9 cm, weight = 9.97 ± 

2.64 g) from the captive-bred 18th generation colony at Florida International University. 

In the cortisol administration experiment we used 36 sexually matured males from the 

17th generation of the same colony (total length = 18.0 ± 1.8 cm, weight = 7.81 ± 1.88 g). 

We kept fish in 450-liter outdoors pools in mixed-sex groups containing from 6 to 14 fish 

with water hyacinths, Eichhornia crassipes as natural hiding and spawning sites. We 

maintained water conductivity in the pools between 70-100 μS cm-1. Seasonal rain and 

temperature fluctuations of South Florida stimulated breeding. We fed the fish live 

oligochaete blackworms three times a week. Experiments were conducted during the 

breeding season, May-Sept 2009 and 2010. Experimental procedures were performed 

under the guidelines and approval of the Institutional Animal Care and Use Committee at 

Florida International University (protocol 08-027). 

Experimental design 

Experiment 1: cortisol administration 

Males were isolated in 40-liter tanks for one week, a treatment that standardizes 

circulating cortisol levels among males (Salazar and Stoddard, 2009). After isolation, 

males were assigned to receive either cortisol or a vehicle (control). We manipulated 

cortisol levels by adding cortisol to the water of the fish’s tank. Hydrocortisone (98% 

HPLC grade, Sigma Aldrich, St Louis, MO) was initially dissolved in 90% ethanol at a 

concentration of 15 mg ml-1 and then dissolved in aquarium water to a concentration of 
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150 ng ml-1 for cortisol, which is the upper limit of endogenous cortisol concentration in 

socially challenged fish (Salazar and Stoddard, 2009), and a final concentration of 10 μl l-

1 of ethanol in aquarium water. Fish in the control groups had the same volume of 90% 

ethanol dissolved in aquarium water (10 μl l-1). We recorded electric signals for three 

days after cortisol treatment, while fish remained in the treated water. We took a blood 

sample to verify the rise in circulating cortisol levels among the treated males. We drew 

sufficient blood samples from eight cortisol-treated fish and six controls. 

Experiment 2: allostatic load manipulation 

We randomly assigned males to one of four treatments: 1) ad libitum (AL) food and 

social challenge, 2) food restriction (FR) and social challenge, 3) ad libitum food and 

isolation, and 4) food restriction and isolation. Each male went through one single 

treatment. The food restriction diet consisted of two blackworms per day. A pilot study 

showed that males fed ad libitum eat approximately 20 blackworms per day, thus two 

worms supplied 10% of the average daily food intake. Before the experiment, we isolated 

all males for one week. On experiment day 1, we transferred each male to an EOD 

machine tank, initiated continual EOD recording, and began the 10% diet for the males in 

the food restriction treatments. After 10 days of food treatment, a conspecific male of 

similar size was added to the recording tank of each male in the social challenge 

treatments for another five days (Fig. 2).  

EOD recordings  

We recorded EODs in the automated system for calibrated EOD recordings called the 

EOD machine (Franchina and Stoddard, 1998; Stoddard et al., 2003). The EOD machine 

automatically records EODs from free-swimming fish and analyzes the EODs 
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simultaneously. The EOD machine consists of 12 tanks, each one divided in three 

compartments by two screen-mesh partitions. An unglazed ceramic tube connects the two 

mesh partitions. The focal fish resides in the two outer compartments. When the fish rests 

in or swims through the ceramic tube connecting those compartments, a set of electrodes 

placed on top of the tube detects the fish’s position and triggers a recording of the EOD 

from a pair of nichrome electrodes located at both ends of the tank. EODs are amplified 

500X and low-pass filtered. The EOD parameters analyzed are (1) EOD amplitude, 

calculated as the sum of the peak amplitude of each phase, and (2) the duration of the 

EOD’s 2nd phase estimated by the variable tP2, the time constant of the repolarization of 

the second phase (Fig. 1). When used, a stimulus fish was placed in the inner 

compartment, where it could interact electrically with the focal male through the 

electrically transparent mesh, but with no direct mechanical contact. 

Blood collection and analysis  

For males in the allostatic manipulation experiment, we sampled blood on the last day of 

recordings (day 15), between 10:00 and 11:00. For fish in the cortisol administration 

experiment, we sampled blood a week after the start of cortisol treatment, between 14:00 

and 15:00. Prior to drawing blood, fish were anesthetized in a fast acting eugenol solution 

(0.8 mg l-1). We drew blood from the subveretebral sinus into a syringe with 5 μl of 10% 

EDTA. The sample was then centrifuged at 7000 rpm for 15 minutes. Plasma was stored 

at -80°C until analysis. Plasma samples were collected, extracted and analyzed following 

a validated protocol for this species (Salazar and Stoddard, 2009). Plasma was diluted 

1:100 using the buffer provided by the immunoassay manufacturer (Cayman Chemical 

Inc. Ann Arbor, MI). We extracted 250 μl of diluted plasma four times in a mixture of 
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7:3 hexane:ethyl-acetate for cortisol (F) and testosterone (T), and 9:1 hexane:ethyl-

acetate for 11-ketotestosterone (11-KT). All samples were plated in duplicate as specified 

by the kit manufacturer. To verify extraction recovery, we extracted EIA kit standards 

alongside the plasma samples. For the allostatic load manipulation experiment we used 

one plate for each hormone assay. Unfortunately, isolated fish had very low testosterone 

concentration that fell bellow the detection limit of the assay, and we did not have 

another plate to re-run the samples at a higher concentration. The detection limits of the 

EIA kits reported by the manufacturer were 35 pg ml-1 for F, 6 pg ml-1 for T, and 1.3 pg 

ml-1 for 11-KT. The intra-assay coefficients of variation were: 5.54% for F, 5.29% for T, 

and 6.88% for 11-KT. For the cortisol administration experiment, the intra-assay 

coefficient of variation for the cortisol plate was 3.65%.  

Data analysis 

We log transformed all variables to fulfill the normality assumption and verified 

normality using Shapiro-Wilk’s test. For experiment 1 we used a t-test to analyze the 

differences in EOD parameters between cortisol-treated and control males. For 

experiment 2 we divided the analysis in two parts: first we tested the effect of diet on the 

EOD waveform and body weight before social treatment, comparing the changes that 

occurred between days 1 and 10 of the experiment. Then we tested the effect of social 

treatment combined with diet by comparing the percentage change in EOD waveform and 

body weight between days 10 and 15 of the experiment. We analyzed the effect of social 

treatment and diet using a two-way ANOVA, with two factors and two levels each: 1) 

diet treatment (AL vs. FR), and 2) social treatment (social vs. isolated). We used Tukey 

post-hoc test to determine significant pairwise differences. We used nonparametric 
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analysis to study changes in worm consumption since the average number of worms 

eaten per day could not be normally transformed. We used Wilcoxon sign test to test for 

differences in worm consumption within each social treatment. We used a Wilcoxon rank 

sum test to test for differences in average worms eaten between social and isolated 

treatments, both before and after social treatments. Since the treatments were compared 

twice (days 1-10 and days 10-15) we used a Bonferroni-corrected α=0.025. All analyses 

were performed using MATLAB Statistical Toolbox and SPSS v.18.  

Results 

Effect of cortisol in the amplitude of the EOD 

Cortisol administration in the water elevated the levels of circulating cortisol in 

treated fish over untreated controls (t-test: t=-2.83, p=0.015 d.f.=12; Fig. 3A) within the 

physiological range. Cortisol administration decreased both amplitude and the duration of 

the EOD in treated fish relative to untreated controls (amplitude: t-test t=2.90, p=0.006, 

d.f.=33; duration: t-test t=2.34, p=0.025, d.f.=33; Fig. 3B,C). Thus, cortisol on its own 

has a suppressive effect on the EOD waveform. However, we found no significant 

correlation between circulating levels of cortisol and change in signal parameters 

(cortisol vs. amplitude change in untreated fish: r=0.23, p=0.65; cortisol vs. amplitude 

change in cortisol-treated fish: r=0.28, p=0.51; cortisol vs. duration change in untreated 

fish: r=0.59, p=0.21; cortisol vs. duration change in cortisol-treated fish: r=-0.33, p=0.42, 

Pearson correlations).  

Effect of food restriction on the electric signal 

We tested the effect of 10 days of food restriction on EOD parameters before 

adding the social stimulus. We found no significant difference in the percentage change 
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in EOD amplitude between fish in ad libitum diet and food restricted diets (day EOD 

amplitude t-test: t=0.58, p=0.57 d.f.=44; night EOD amplitude t-test: t=0.42, p=0.67 

d.f.=44; Fig. 4A). Neither did we find a significant difference in the percentage change in 

EOD duration between the two diet treatments (day EOD duration t-test: t=-0.25, p=0.80 

d.f.=44; night EOD duration t-test: t=-1.11, p=0.27 d.f.=44; Fig. 4B).  

 

Effect of food restriction and social challenge on the electric signal 

Fish in both food treatments increased the amplitude and duration of their electric 

signals when exposed to a conspecific male. However, in response to social stimulus, fish 

in the food restricted treatment increased the amplitude of their EOD more than fish fed 

ad libitum (day amplitude change: social effect: F1,42=51.51, p<0.001, diet effect: 

F1,42=3.24 p=0.079, interaction: F1,42=1.48 p=0.23; night amplitude change: social effect: 

F1,42=68.42, p<0.001, diet effect: F1,42=5.87 p=0.019, interaction: F1,42=3.71 p=0.061; 

Fig. 5A). Likewise, fish in the FR treatment increased EOD duration more in response to 

social stimulation than AL fish. However, FR males that remained in isolation show 

changes in EOD duration comparable to AL males with social treatment (day EOD 

duration change: social effect: F1,42=20.19, p<0.001, diet effect: F1,42=4.64 p=0.037, 

interaction: F1,42<0.01 p=0.95; night EOD duration change: social effect: F1,42=20.75, 

p<0.001, diet effect: F1,42=7.74 p=0.008, interaction: F1,42=0.97 p=0.33; Fig. 5B).  

Effect of food restriction and social challenge on the hormonal profile 

The differences in EOD duration reflect differences in 11-ketotestosterone levels. 

Males in the social treatments had higher 11-KT levels, despite food treatment, while 

males that remained in isolation and food restriction had 11-KT levels in between those 
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of social challenged fish and isolated fish with ad libitum food (social effect: F1,31=8.96, 

p=0.005, diet effect: F1,31=0.68 p=0.41, interaction F1,31=0.46 p=0.51; Fig. 6B). Neither 

food restriction nor social challenge had a detectable effect on circulating levels of 

testosterone or cortisol (testosterone social effect: F1,25=1.88, p=0.18, diet effect: 

F1,25=0.02 p=0.88, interaction: F1,25=2.74 p=0.11; cortisol social effect: F1,31=0.08, 

p=0.78, diet effect: F1,31=1.36, p=0.25, interaction: F1,31=0.46, p=0.50; Fig. 6A,C).  

Effect of food restriction and social challenge on body condition and feeding behavior 

Although all male groups lost weight before social stimulus was added, some males 

in AL diet maintained their weight and some even gained weight, while no male in FR 

diet gained nor maintained his weight (2-tailed t-test: t=2.67, df=45, p=0.01; Fig. 7A). 

Following the social challenge, males receiving the social treatment with ad libitum diet 

held their weight better than all the other treatments (2-way ANOVA, Social effect: 

F1,41=9.96, p<0.01, diet effect: F1,41=5.13, p=0.03, interaction: F1,41=9.08, p=0.004; Fig. 

7B). Social challenge seems to increase feeding behavior, at least in the FR groups, 

where we counted the number of worms consumed, socially challenged males ate more 

worms after the social challenge while the males that remained in isolation for the same 

period of time ate fewer worms (within group comparison worms eaten in days 1-10 to 

worms eaten days 10-15, Wilcoxon sign test, isolated p=0.31, social p=0.039; between 

group comparison worms eaten in social vs. isolated, Wilcoxon rank test, days 1-10: 

p=0.732*, days 10-15 p=0.004*; *Bonferroni corrected α=0.025 Fig. 8). 
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Discussion 

Response to allostatic load in the context of life history theory 

Semelparous species should resist stress and continue to reproduce during stressful 

periods while iteroparous species should postpone reproduction in response to stress and 

focus on survival (Wingfield and Sapolsky, 2003). However, semelparous species vary in 

duration of their breeding season from just a few days to a few months. We studied how 

food restriction affects the energetically demanding signal of a semelparous species with 

a relatively long breeding season. Male B. gauderio in our study could have responded to 

the increased allostatic load in one of three ways: (i) reducing the load by lowering 

energetic expense by decreasing signaling effort, thereby compromising reproduction, (ii) 

“pay as you go”, reducing the load by foraging more to increase the energy supply, 

preventing a rise in GCs and sustaining the signal, or (iii) “go for broke”, burning energy 

stores to fuel reproductive signaling resulting in a negative energy balance. In response to 

increasing allostatic load B. gauderio males did not reduce energy output by diminishing 

their signals; in fact the biggest signals came from food-restricted males exposed to social 

challenge. Males signaling at high intensity foraged more when that was possible (higher 

food availability), or in the absence of food, simply burned faster through their remaining 

energy stores. Males sustained reproductive signaling, varying their fueling strategy 

depending on food availability. When food was plentiful, males opted for a “pay as you 

go” strategy to fuel signaling; when food was scarce, males switched to a “go for broke” 

strategy. Social challenge induced male B. gauderio to increase their energetically 

expensive electric signal parameters, especially when under energetic stress from dietary 

restriction. This general pattern of investment in signals is consistent with the “go for 
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broke” energetic strategy expected of animals facing time-limited reproductive 

opportunity, and contrasts with the “postpone” strategy of animals that can forestall 

reproduction until more favorable conditions reappear. However, cortisol levels did not 

rise even in animals that had to burn energy stores to fuel reproduction.  

Alternative 1: Postpone reproduction  

According to the Energetics-Hormone Vocalization (EHV) model (Emerson, 2001), 

signaling output should decrease as energy reserves decline. The EHV model proposes 

that energetically expensive signaling would elevate circulating androgens, as predicted 

by the Challenge Hypothesis (Wingfield et al., 1990), but it would also elevate GCs to 

fuel signaling. Prolonged signaling will decrease energetic stores until GCs rise to a level 

at which they inhibit androgen release. The resultant drop in circulating androgen then 

causes signaling output to decline (Emerson, 2001; Moore and Jessop, 2003). For 

instance, male barking tree frogs (Hyla gratiosa) increase the number of nights they 

attend a chorus when supplemented with extra food (Murphy, 1994), although food 

supplementation has no effect on the amount of time spent at the chorus on a given night 

(Murphy, 1999). Likewise, male fiddler crabs (Uca lactea), though not regulated by 

androgens and GCs, nevertheless increased courting effort on the day after food 

supplementation (Kim et al., 2008). Food limitation prevents signal exaggeration of low 

quality male sticklebacks (Gasterosteus aculeatus) (Candolin, 2000). Conversely, in male 

green anole lizards (Anolis carolinensis), food limitation does not compromise signal 

expression (dewlap size) but it does compromise the advertised trait expression (bite 

force) (Lailvaux et al., 2012). Iteroparous species seem to compromise traits important 

for reproduction when under food limitation (Moore and Jessop, 2003). Barking tree 
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frogs, sticklebacks, and green anoles are iteroparous species that can live up to several 

years. Conversely, as expected from their semelparous life-history, B. gauderio males in 

the food restriction treatments did not compromise their signaling output compared to 

males with unrestricted food (Fig. 4).  

Alternative 2A: Prevent GC rise by compensatory feeding 

To protect their reproductive signaling output, males can reduce allostatic load and 

prevent GC rise by increasing energy intake. In our experiment, B. gauderio in the FR 

diet increased foraging behavior to compensate for additional energetic expenditure of 

EOD enhancement during social challenge. Within the food-restricted treatments, social 

interactions stimulated worm consumption (Fig. 7). Although we did not count the 

number of worms consumed by males in the ad libitum treatments, we did find that males 

in the ad libitum treatment with social challenge lost less weight than males in other 

treatments (some even gained weight), possibly a result of differential foraging activity 

(Fig. 6b). This finding was unexpected, since in most species males trade off between 

time spent signaling and time spent foraging (Fernald and Hirata, 1977; Nolan Jr, 1978; 

Abrahams, 1993; Griffiths, 1996; Lindstrom et al., 2009). For many taxa, male sexual 

displays are incompatible with feeding behavior and in others, spatial separation between 

preferred feeding and signaling grounds prevents simultaneous foraging and reproductive 

signaling. However, B. gauderio can display their enhanced electric signal and feed 

simultaneously.  

Unexpectedly, fish with AL diet lost weight during isolation. It appears that social 

interaction is necessary to stimulate feeding and prevent weight loss in B. gauderio. This 

may explain why fish in FR diet under isolation and social conditions lost similar weight, 
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the former probably due to lack of appetite while the latter lost weight due to lack of food 

availability. The increase in worm consumption even with a restricted diet, might have 

prevented a further weight loss in FR social fish. Alternatively, isolation may have 

additional effects on weight loss besides lack of appetite. For instance, the social 

environment can cause fish to either grow or shrink even when food supply is equal 

(Hofmann et al., 1999). We have noticed that our isolated fish tend to reduce the size of 

their caudal filaments.  

Alternative 2B: Prevent GC rise by physiological adaptation 

EOD regulation in B. gauderio involves the interplay between hormones of the 

hypothalamus-pituitary-interrenal (HPI) and the hypothalamus-pituitary-gonadal (HPG) 

axes. Social stimulation increases both EOD parameters over two time scales: 1) Rapid 

increases in EOD parameters are induced in minutes by direct action of HPI 

melanocortins (adrenocorticotropic hormone, ACTH; and alpha-melanocyte stimulating 

hormone, α-MSH). Melanocortins act directly on electrocytes (electrogenic cells) through 

the intracellular cAMP-PKA pathway (Markham and Stoddard, 2005; Stoddard, 2007; 

Markham et al., 2009). 2) Slower increases in EOD parameters are mediated by 

androgens. Androgen implants greatly increase the amplitude and the duration of the 

EOD’s second phase after three days (Stoddard et al., 2006; Allee et al., 2009; Goldina et 

al., 2011), and endogenous levels of circulating testosterone (T) and 11-ketotestoterone 

(11-KT) are tightly related to the EOD’s second phase duration (Gavassa et al., 2011). 

Androgens are also known to augment the waveforms of other electric fish taxa 

(Hagedorn and Carr, 1985; Bass and Volman, 1987; Landsman et al., 1990; Dunlap et al., 

1998; Herfeld and Moller, 1998; Zakon et al., 1999; Silva et al., 2002; McAnelly et al., 
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2003), possibly by altering the density and kinetics of ion channels (Bass and Hopkins, 

1983; Carlson et al., 2000; Bass and Zakon, 2005). Furthermore in B. gauderio, rapid and 

slow mechanisms have synergistic effects on the EOD: androgens potentiate the effect of 

melanocortins on both EOD amplitude and the duration of the second phase (Allee et al., 

2009; Goldina et al., 2011). Action of androgens and melanocortins fully account for the 

enhancing effects of a social challenge on duration of the EOD’s second phase, though 

their experimental administration has smaller effects on EOD amplitude (Goldina et al., 

2011) leaving open the possibility that another hormone also regulates EOD amplitude.  

Paradoxically, male B. gauderio produce larger, and thus more expensive signals 

under periods of energy imbalance typically associated with strong release of 

glucocorticoids. These results allow us to consider Wingfield and Sapolsky’s (2003) five 

possible mechanisms for resisting cortisol-mediated deactivation of reproductive 

behavior. The first two deal with preventing a rise in GCs: (i) HPA/HPI activation is 

prevented at the level of the central nervous system precluding the stressor to be 

perceived as stressful. As mentioned above, the increase in EOD parameters requires 

release of HPI melanocortin hormones. Therefore, the enhancement of the EOD reveals 

HPI activation. However, both ACTH and a-MSH stimulated EOD enhancement 

(Markham and Stoddard, 2005; Markham et al., 2009; Goldina et al., 2011), but 

commonly only ACTH stimulates cortisol release (Wendelaar Bonga and Balm, 1995). 

Whether B. gauderio can limit ACTH release while permitting a-MSH release is 

unknown. (ii) blockage of the HPA/HPI axis glucocorticoid release pathway. The lack of 

a significant cortisol increase in food-restricted and socially challenged males is 

consistent with such a blockage. However in prior studies that simulated higher social 
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competition than the experiment presented here (five challenging males vs. one 

challenging male), cortisol increased simultaneously with increased EOD parameters 

(Salazar and Stoddard, 2009) despite the finding presented here that cortisol by itself 

reduces EOD parameters. Thus, B. gauderio may only block cortisol release during 

intermediate levels of competition. B. gauderio appears to use different stress-resistance 

mechanisms depending on the intensity of the stressor. Alternatively, our food restriction 

and social treatments were not strong enough to evoke a rise in cortisol levels.   

Alternative 3: simultaneous increase of GC and reproductive signaling  

Although we did not find a rise in cortisol in this study, males exposed to more 

intense social competition than what we presented here, show elevated levels of cortisol 

(Salazar and Stoddard, 2009). If male B. gauderio routinely experience sustained 

elevations of cortisol during periods of intense social competition (e.g., early in the 

breeding season), they should have a mechanism in place to prevent cortisol-mediated 

inhibition of reproductive signaling. In the previous section we explored mechanisms that 

prevented cortisol rise. The last three mechanisms for resisting cortisol-mediated 

deactivation of reproductive behavior proposed by Wingfield and Sapolsky’s (2003) deal 

with blocking GC-mediated inhibition of reproductive physiology:(iii) resistance of the 

hypothalamic-gonadal axis (HPG) to the suppressive effects of glucocorticoids. We 

found that direct cortisol administration decreased EOD amplitude (Fig. 3). Thus, our 

experimental reduction of EOD parameters with physiological levels of cortisol rules out 

this mechanism. However, we found no correlation between cortisol levels and change in 

signal parameters. The time elapsed between signal recordings and blood collection 

might have allowed signals to dissociate from cortisol levels. (iv) compensatory 
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activation of the gonadal axis to offset glucocorticoid suppression. Consistent with this 

mechanism, circulating cortisol correlates with EOD amplitude and circulating 

testosterone (Salazar and Stoddard, 2009), while both T and 11-KT increased in males on 

the food-restricted treatments. Interestingly, hormones from the HPA/HPI can be 

responsible for compensatory HPG activation. For example in the Arctic ground squirrel, 

ACTH injection promotes testosterone release in males (Boonstra and McColl, 2000). (v) 

protection from corticosteroid-binding proteins by sequestering free glucocorticoids. 

Since we measured only total steroids, we cannot address this mechanism. Our results 

indicate that B. gauderio resists stress by preventing cortisol accumulation, compensatory 

activation of the HPG axis (increase in androgen production), and direct action of HPI 

hormones promoting reproductive behaviors.  

Conclusion 

Resistance to glucocorticoid inhibition on reproduction has been observed in semelparous 

species in which glucocorticoid levels soar during the breeding season, for example 

sockeye salmon (Oncorhynchus nerka) (Carruth et al., 2000; Barry et al., 2001), arctic 

ground squirrels (Spermophilus parryii plesius) (Boonstra and McColl, 2000; Boonstra et 

al., 2001), and marsupial species from the genera Antechinus and Phascogale (Bradley et 

al., 1980; McDonald et al., 1981; Bradley, 1997). All of these species have a very short 

breeding season lasting from a few days (sockeye salmon) to a couple weeks (arctic 

squirrels and marsupials). However, the marsupial Dasyurus hallucatus shows no rise in 

cortisol levels during the breeding season (Oakwood et al., 2001), even though its life-

history is very similar to Antechinus and Phascogale species, where all males die after a 

single breeding season. However, the breeding season of Dasyurus hallucatus lasts 3-4 
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months, similar to the length of the breeding season in B. gauderio, and much longer than 

the breeding season of Antechinus and Phascogale species (2-3 weeks) (Bradley et al., 

1980; McDonald et al., 1981; Bradley, 1997; Oakwood et al., 2001).  

We do not believe that B. gauderio is glucocorticoid resistant since we did not see 

a significant increase in cortisol levels with allostatic load, and because exogenous 

cortisol administration diminishes EOD parameters. Instead B. gauderio appears to 

prevent the rise in glucocorticoids when possible, or compensates with enhanced 

androgen release (Salazar and Stoddard, 2009). A more severe diet treatment and social 

challenge than what we performed here is necessary to test whether B. gauderio prevents 

cortisol increase or compensates cortisol effects by other mechanisms.  

The relatively long breeding season of B. gauderio may favor a stress resistance 

mechanism that avoids the deleterious effects of elevated GC, extending survival 

throughout the breeding season. However, when survival conflicts with sustained 

signaling, B. gauderio would benefit from switching to a ‘go for broke’ strategy typical 

of semelparous species with short breeding season. The longer EOD duration and higher 

androgen levels observed in food restricted fish make us hypothesize that food 

availability acts as a cue for a decline in future reproductive opportunities, forcing males 

to increase immediate reproductive investment, as revealed by their high signaling output 

and androgen levels when food was limited. Life-history is the main determinant of how 

reproduction is regulated. This study illustrates the great diversity of mechanisms for 

stress resistance even within species that share a semelparous life-history.  
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Figures and tables 

 

Figure 5.1. The EOD of B. gauderio is a biphasic pulse. We analyzed EOD amplitude by 

measuring the voltage difference between the positive and negative peaks. We estimated 

the duration of the signal using the time constant of the repolarization of the EOD’s 2nd 

phase (tP2). 

 

 

Figure 5.2. Experimental design of Experiment 2: manipulating allostatic load. 

Following a week of isolation, the signals of all males were recorded around the clock for 

15 days. When EOD recordings started, males were divided in two diet groups: food 

restriction vs. ad-lib food. After 10 days of diet treatment, half the males in each diet 

received a social stimulus, resulting in four treatment groups among a 2x2 design of 

[food restriction vs. ad-lib food] and [social isolation vs. social challenge]. After five days 

of food and social treatment, we collected a blood sample from all males. 
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Figure 5.3. Effect of cortisol administration on circulating levels of cortisol and on the 

EOD waveform. (A) Cortisol administration significantly increased circulating levels of 

cortisol. (B) Cortisol treatment resulted in a decline in EOD amplitude and (C) on the 

duration of the EOD’s 2nd phase. For each group, vertical bar = SE, horizontal bar = 

mean. Effect sizes are given by Cohen’s d; p values are also displayed.  
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Figure 5.4. Effect of 10 days of diet (FR: food restricted, AL: ad libitum) on the electric 

organ discharge (EOD). Although most fish decreased both EOD parameters during the 

first 10 days in the experiment, the change in EOD amplitude (A) and EOD duration (B) 

were not related to diet treatment. Effect sizes are given by Cohen’s d; p values are also 

displayed. Circles depict data points, horizontal lines and vertical lines indicate mean and 

SEM respectively.  
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Figure 5.5. Effect of food restriction and social treatment on the electric organ discharge 

(EOD). Males in both diet treatments (FR: food restricted, AL: ad libitum) increased the 

amplitude (A) and duration (B) of their EODs in response to social challenge. Changes in 

the EOD occur for daytime and nighttime recordings. However, males in FR diet increase 

both the amplitude and the duration of the EOD further than males in AL diet. Lower 
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case letters indicate group differences within a plot. Circles indicate data points, 

horizontal lines indicate treatment means, while vertical lines indicate SEM.  

 

 

 

Figure 5.6. Hormone profile for each treatment group in experiment 2. 11-

ketotestosterone (B) increased with social challenge and increased slightly with food 

restriction. However, neither testosterone (A) nor cortisol (C) were affected significantly 

by food or social treatment. Significant differences between treatments, when present, are 

indicated by lower case letters. Group means and SEM are depicted by horizontal and 

vertical lines respectively.  
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Figure 5.7. Percentage of change in body weight. A) After 10 days of food treatment, the 

groups in the food restricted (FR) diet lost more weight than fish in the ad libitum (AL) 

treatment. B) After five days of social interaction, the group with AL food with social 

companion had lost less weight than the other groups, and some males even gained 

weight, while no fish in the other treatments gained weight. Effect sizes are given by 

Cohen’s d and p values are also displayed. Lower case letters indicate significant 

differences between treatments within a graph.  
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Figure 5.8. Average number of worms eaten daily by fish in the food-restricted 

treatments before social treatment (days 1 to 10) and after social treatment (days 10 to 

15). For the fish that remained in isolation throughout the experiment, their worm 

consumption did not change, while fish that received a social stimulus significantly 

changed the number of worms they ate. Moreover, while social and isolated groups ate 

similar number of worms before social treatment, they differ once the social stimulus was 

added. Numbers in parenthesis indicate the number of points in the cluster. *Since we 

tested for differences between social treatment twice (days 1-10 and days 10-15), we used 

a Bonferroni corrected α=0.025.  
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Abstract 

Male costly signals are the result of sexual selection acting via male-male 

competition and/or female mate choice. Dynamic signals allow the adjustment of their 

display intensity to the costs and benefits of the social context. The social context of 

changes in the signal provides indirect clues to the traits that are relevant for receivers. 

The presence of females increases the expression of signals relevant for mate choice, 

while the presence of competitors promotes the enhancement of signals involved in male-

male competition. The electric fish Brachyhypopomus gauderio produces a biphasic 

electric signal pulse for electrolocation and communication. Male pulses are greater in 

amplitude and second phase duration than female pulses. Moreover, males further 

enhance the amplitude and duration of their pulse when the number of males and females 

increase simultaneously. The amplitude of the pulse conveys information about body size 

while the duration of the second phase conveys information about reproductive state and 

possibly aggressive intent. Here I tested the relative effect of female presence and male 

presence on signal enhancement. I also tested whether the size of the male competitor 

affected signal enhancement. I found that male presence drives the enhancement in both 

pulse amplitude and second phase duration. However, signal enhancement was 

irrespective of the opponent’s size. Female presence only had an effect on the duration of 

the pulse’s second phase. I suggest that males cue into information about body size coded 

by EOD amplitude and aggressiveness coded by pulse duration, while females may be 

primarily concerned about information on reproductive condition coded by pulse 

duration.  
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Introduction 

The evolutionary stability of a communication system depends on the quality of the 

information conveyed by the signaler and the receiver’s ability to decode that information 

(Andersson 1994; Bradbury and Vehrencamp 1998; Searcy and Nowicki 2005). Thus, 

understanding the function of communication signals requires the study of the signaling 

system from the sender-perspective and the receiver-perspective (Vehrencamp et al. 

2007). The sender-based approach involves the study of the information conveyed by the 

signal and the context in which those signals are produced (Font and Carazo 2010; 

Seyfarth et al. 2010). The receiver-based approach involves the study of receiver’s 

response to signals (Vehrencamp et al. 2007). The receiver-perspective has been the 

subject of multiple studies of signal function in aggression and territoriality, where a 

receiver is presented with a playback signal and its response is recorded. However, this 

receiver-based approach has been criticized because of the ambiguity in the interpretation 

of the receiver’s response. For instance, while a threatening signal may result in retreat or 

weak response from the receiver, a motivated receiver in good condition may instead 

increase its aggression and responsiveness to the signal. Thus, a receiver-based approach 

confounds the function of the signal with the motivation and condition of the receiver 

(Searcy and Nowicki 2005). Therefore, a sender-based approach may provide an 

alternative or complementary information to the study of signal function (Vehrencamp et 

al. 2007).  

I used a sender-perspective to study the function of the electric signal of the 

gymnotiform Brachyhypopomus gauderio. The electric fish B. gauderio is an excellent 
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model to study the function of the electric signal in communication, the signal is easily 

quantified, the signal changes accordingly to the social context, and recently I have 

elucidated the information conveyed by these signals. Male and female B. gauderio 

produce a biphasic electric organ discharges (EOD) for communication and navigation 

(Stoddard 2007). The male EOD is greater in amplitude and longer in the duration of the 

second phase (Hopkins et al. 1990; Franchina and Stoddard 1998). Males further enhance 

EOD amplitude and second phase duration during the night and when social competition 

increases (Franchina and Stoddard 1998; Franchina et al. 2001; Salazar and Stoddard 

2009). Two main mechanisms modulate the changes in the EOD, each mechanisms is 

regulated by a different set of hormones and operates at a different timescale (Franchina 

et al. 2001; Stoddard et al. 2006). The first mechanism results in short-term changes that 

occur within minutes of social interaction and with the transition from day to night, these 

changes are regulated by melanocortin hormones a-melanocyte stimulating hormone (a-

MSH) and adrenocorticotropic hormone (ACTH) (Markham and Stoddard 2005; 

Stoddard et al. 2006; Markham et al. 2009). The second mechanism results in long-term 

changes noticeable after days of social interaction, these long-term changes are regulated 

primarily by androgens (Hagedorn and Carr 1985; Silva et al. 2002; Stoddard et al. 2006; 

Allee et al. 2009; Goldina et al. 2011).  

The amplitude of the EOD is physically related to body length (Hopkins et al. 

1990; Curtis and Stoddard 2003; Gavassa et al. 2012). Body length is related to EOD 

amplitude in two ways: 1) the EOD is produced by the electric organ, which runs along 

the fish’s length, longer fish have longer electric organs capable of producing EOD’s of 
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greater amplitude (Hopkins 1999), and 2) a fish generating an EOD is also modeled as a 

dipole source, voltage output increases with dipole separation, while dipole separation is 

proportional to body length (Stoddard et al. 1999). Amplitude enhancements further 

tighten the relationship between body length and EOD amplitude, at the highest EOD 

amplitude 96% of the variation in EOD amplitude is explained by body length (Gavassa 

et al. 2012). However, the EOD is energetically expensive forcing B. gauderio to be very 

conservative with its EOD enhancement (Salazar and Stoddard 2008; Stoddard and 

Salazar 2011). Males decrease the amplitude of the EOD during the day and with social 

isolation (Franchina and Stoddard 1998; Franchina et al. 2001), reducing energetic 

expenditure but also compromising the quality of the information about body size 

conveyed by the signal (Gavassa et al. 2012).  

On the other hand, the duration of the EOD’s second phase conveys information 

about reproductive condition and androgen levels (Gavassa et al. 2011). The duration of 

the EOD’s second phase is regulated by androgens (Silva et al. 2002; Stoddard et al. 

2006; Allee et al. 2009; Goldina et al. 2011); thus, it reflects endogenous levels of the 

circulating androgens testosterone (T) and 11-ketotestosterone (11-KT). Moreover, 

androgens link the duration of the EOD’s second phase to other traits related to androgen 

levels such as gonad size in males (Gavassa et al. 2011). It is possible that aggressive 

motivation, which is commonly regulated by androgens in male vertebrates, is also 

indicated by EOD duration. Extending the duration of the EOD’s second phase is costly 

in terms of predation, the asymmetry between the two phases turns the EOD more 

conspicuous to predators (Hanika and Kramer 1999; Stoddard 1999; Hanika and Kramer 
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2000). Furthermore, the EOD’s second phase duration may also be energetically 

expensive (Salazar and Stoddard 2008), and potentially physiologically expensive too 

due to androgen-associated costs in immune function (Wingfield et al. 1990). Once again, 

the cost of signal enhancement should encourage a very conservative use of the EOD’s 

second phase elongation.  

Although I now understand the information conveyed by the signal, and how that 

information is regulated, I still do not know whether this information is relevant to 

receivers and whether receivers use this information to modify their behavior. Here I use 

a signaler-based approach to study what information signalers broadcast when interacting 

with potential mates, potential competitors or both. I also tested whether the signaler’s 

response depended on the relative competitive ability of the competitor, by presenting a 

challenger male who was larger, smaller or similar size than the focal male. This signaler-

based approach will guide me towards what information is more relevant to a specific 

type of receiver, and is the beginning in the understanding of the evolutionary forces 

driving signal enhancement.  

Materials and methods 

Subjects 

I sampled 18 sexually matured males from our 19th generation captive-reared 

colony at Florida International University (mean ± s.d.: total length = 19.1 ± 2.4 cm, 

weight = 9.6 ± 2.4 g). Our colony is maintained in outdoor pools covered with water 

hyacinths (Eichornia crassipes). Water conductivity kept at 70-100 μS cm-1. Each male 
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was weighed, measured, and individually marked with alphanumeric elastomer tags. 

Experimental procedures were performed under the guidelines and approval of the 

Institutional Animal Care and Use Committee of the Florida International University, 

Miami, FL (protocol 09-012). 

EOD recordings 

Signal recordings were made by the automated system for recording calibrated 

EODs from freely swimming fish around the clock called the EOD Machine (Stoddard et 

al. 2003). The EOD Machine is composed of 12 tanks, each divided into three sections by 

mesh partitions. The outer segments are connected by an unglazed ceramic tube. The 

focal fish is placed in either one of the outer segments and the fish seeks shelter inside the 

ceramic tube, strategically positioned in the center of the tank for accurate EOD 

recordings. A set of electrodes in the tube detect when the fish is in place and trigger the 

recordings from a pair of nichrome electrodes located at the ends of the tank. The signal 

is amplified 500X and low-pass filtered, and instantly analyzed by the EOD Machine’s 

computer. Water conductivity was kept at 100 ± 5 μS cm-1 and water temperature at 29 ± 

1 °C. I focus here on EOD amplitude, estimated at the voltage difference between the 

positive and negative peaks of the EOD, and EOD second phase duration (tP2), the time 

constant of repolarization of the second phase (Fig. 1). When used, social stimuli are 

placed in the inner segment of the tank, where they can interact electrically with the focal 

fish but with no physical contact. 
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Pharmacological partitioning of signal enhancement mechanisms 

Melanocortins are responsible for the first mechanism for signal enhancement, 

which consists of short-term and energetically inexpensive changes to the signal 

(Markham and Stoddard 2005; Stoddard et al. 2006; Stoddard and Markham 2008). The 

second mechanism is regulated by androgens, which drive long-lasting changes that are 

likely to increase energetic expenditure (Stoddard et al. 2006; Allee et al. 2009; Goldina 

et al. 2011; Stoddard and Salazar 2011). In order to separate signal enhancements caused 

by melanocortin action from androgen driven changes I blocked melanocortin effects 

using a synthetic cyclic-a-MSH analog (Fig. 2), which either blocks or attenuates 

melanocortin effects (Markham et al. 2009).  

Prior to presenting the stimulus, each male was isolated 8 days to maximally 

reduce androgen-driven enhancement in the EOD (Franchina et al. 2001; Salazar and 

Stoddard 2009). Then, males were housed with two mature females for 3 days in the 

EOD Machine to partially elevate the EOD baselines, leaving room for further increase or 

decrease (Franchina et al. 2001). On the third day in the EOD Machine, females were 

removed at 9:00 EST. An hour after removing the females (10:00 EST), experimental 

males where injected with cyclic-a-MSH (Markham et al. 2009), blocking the short-term 

effects of melanocortins on the waveform, the remaining expression of EOD parameters 

is caused by the fish’s length and long-term changes promoted by androgens (mechanism 

1) (Stoddard et al. 2006; Allee et al. 2009; Goldina et al. 2011; Gavassa et al. 2012). The 

EOD parameters following the initial cyclic-a-MSH provide the baseline levels for 

androgen and size driven EOD parameters (Fig. 2). The following afternoon (16:00 EST), 
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focal males were presented with a social stimulus, according to treatment and experiment, 

and allowed to interact electrically but not physically for three nights. On the morning 

after the third night of social interaction, the social stimuli were removed (9:00 EST) and 

focal males were injected one last time with cyclic-a-MSH (10:00 EST) to prove the 

extent of androgen-driven changes in the EOD.  

Experiment 1: Effect of stimulus sex 

I randomly assigned each male to one of four treatments: 1) male stimulus, 2) female 

stimulus, 3) male and female stimuli, or 4) no stimulus (isolation). The day following a-

MSH injection, the designated stimulus type was introduced to the middle compartment 

of the focal male. All fish went through all treatments in random order. Females used for 

stimulus looked gravid, evidenced by swollen abdomens. Males used as stimulus where 

matched within 1 cm to the focal fish’ total length.  

Experiment 2: Effect of stimulus size 

The protocol was the same as in experiment 1, but with different treatments. All males 

went through each of three treatments in random order: 1) larger male, 2) male of similar 

size, and 3) smaller male. Like in experiment 1, the size-matched male was within 1 cm 

in total body length from the focal male. Larger or smaller stimulus males differed by at 

least 3 cm in total body length to the focal male. To minimize the number of study 

subjects, I run experiments 1 and 2 simultaneously on the same individuals. However, 

treatment order was completely randomized. The similar size male stimulus treatment 

was shared by both experiments.  
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Analyses 

The difference between the knocked down daytime EOD parameters before social 

interaction (following the first cyclic-a-MSH injection) and knocked down daytime EOD 

parameters after three days of social interaction (following the second cyclic-a-MSH 

injection) indicated the magnitude of long-term changes (mechanism 2, Fig. 2). I 

estimated the slope of long-term changes and used it as a baseline to calculate short-term 

changes. The difference between the estimated baseline from mechanism 1 and the 

nighttime peak on the first night with the social stimulus indicates the magnitude of 

melanocortin-driven EOD enhancements after initial presentation of the stimulus (initial 

mechanism 1). The magnitude of melanocortin-driven EOD enhancements was estimated 

a second time, after three nights of social interaction, calculating the difference between 

estimated baseline from long-term changes and the nighttime peak EOD parameters on 

the third night of social interaction (final mechanism 1). These pharmacological 

manipulations allow me to estimate the relative contribution of short-term (mechanism 1) 

and long-term (mechanism 2) mechanisms in EOD enhancement during social 

interactions. Changes in EOD parameters are shown as the percentage of change. For 

experiment 1 I performed two-way repeated measures ANOVA using a factorial design 

with two factors (male or female stimulus) and two levels (presence or absence) to test 

for significant differences among groups. I tested the effect of each stimulus type (male 

or female) as well as the interaction of simultaneously presenting a male and a female. 

For experiment 2 I used one-way ANOVA with repeated measures with three treatments: 
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larger, similar or smaller stimulus male. Statistical analyses were performed using the 

MatLab Statistical Toolbox and SPSS v.18 (SPSS, Chicago, IL, U.S.A.).  

Results 

Experiment 1: Effect of stimulus sex 

As seen in a previous study (Franchina et al. 2001), I found that EOD amplitude 

and tP2 both responded to male presence, while tP2 was more responsive to female 

presence than EOD amplitude (Fig. 3). EOD amplitude rapidly increased after adding a 

stimulus male, reaching a higher nighttime peak in the treatments that included a stimulus 

male than those with just a female or no stimulus (initial mechanism 1, Table 1, Fig. 3a). 

After three days of social interaction, the proportional increase in EOD amplitude at 

nighttime remained significantly higher in the treatments with a male stimulus (final 

mechanism 1, Table 1, Fig. 3b). Likewise, long-term changes in EOD amplitude were 

only seen in treatments including a male stimulus (mechanism 2, Table 1, Fig. 3c). 

Accordingly, the combination of mechanism 1 and 2 in EOD amplitude was also only 

influenced by male stimulus (Table 1, Fig. 3d).  

In contrast to what happened in EOD amplitude, tP2 rapidly increased on the first 

night of social interaction in treatments receiving either male or female stimulus (Table 1, 

Fig. 3e). However, the female effect on nighttime increase had disappeared by the third 

night of social interaction and only the male stimulus effect was still evident (Table 1, 

Fig. 3f). Interestingly, only female presence had an effect on the long-term, mechanism 2, 

enhancement of tP2 parameter (Table 1, Fig. 3g). Yet, the total change in tP2 (combining 

short and long-term changes) was only apparent in treatments with a male challenger 

(Table 1, Fig. 3h). 
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Experiment 2: Effect of stimulus size 

Prior studies had suggested that the responsiveness to a challenging male could 

depend on the relative size of the challenger in respect to the focal male (Franchina et al. 

2001; Salazar 2009). Here I systematically tested whether the effect of the stimulus male 

size had an effect on the response of the focal male. I could not detect an effect of the 

stimulus male’s size on the modulation of neither EOD amplitude nor tP2 for neither 

mechanism (Table 2, Fig. 4).  

 

Discussion 

 The purpose of this study was to investigate how signalers modify their displays 

depending on the social context. My assumption was that one can infer the function of 

specific signal parameters by studying the social contexts that promote the enhancement 

of those parameters. For instance, if a signal parameter is enhanced in the presence of 

females but not in the presence of males, then I could infer that the signal parameter is 

relevant for female choice. On the other hand, a signal parameter that is enhanced in the 

presence of males but not in the presence of females may be relevant for male-male 

competition. Alternatively, a signal parameter could have dual function and be present in 

both contexts.  

Signal changes accordingly to stimulus sex 

Consistent with prior reports, I found that the amplitude of the EOD is more 

responsive to other male social challengers than to female companion, while EOD 

duration responds to the presence of challengers of either sex (Franchina et al. 2001). 
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However, in this study I dissected the relative contribution of each EOD enhancement 

mechanism to the observed changes as opposed to prior studies where just total changes 

in the signal were analyzed. My approach allowed me to see that long-term changes have 

opposite sensitivity to sex of the stimulus fish, with EOD amplitude’s mechanism 2 

responding to male stimulus and EOD duration’s mechanism 2 responding to female 

stimulus only.  I also show the relative magnitude of each mechanism for EOD 

enhancement, with mechanism 1 being almost an order of magnitude greater than 

mechanism 2.  

Unexpectedly, I did not find an effect of female stimulus on EOD amplitude 

enhancement at any timescale. Female-induced changes in EOD amplitude seem to take 

longer than male-induced changes, taking up to two weeks to see considerable changes 

(Franchina et al. 2001). On the other hand, tP2 significantly increased on the first night of 

social interaction regardless of the stimulus sex, although the response to male stimulus 

was larger. The effect of female presence on tP2 enhancement via mechanism 1 had 

disappeared by the third night of social interaction. Interestingly, only females had an 

effect on the longer-lasting enhancement of tP2 via mechanism 2. The subtle response of 

tP2 to female stimulus sex disappeared once I compared total change. The greater 

magnitude of tP2 changes via mechanism 1 masked any variation in mechanism 2 once 

they were combined.  

The magnitude of EOD change for each mechanism are comparable to the 

changes observed with hormone administration of the respective hormonal modulator, 

where tP2 has been found to be more responsive than EOD amplitude. For instance, 
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melanocortin injection causes about a 100% increase in tP2 within a couple hours of 

injection, while EOD amplitude has only increased about 25% (Markham and Stoddard 

2005; Markham et al. 2009; Goldina et al. 2011). Likewise, 11-KT administration causes 

about 80% increase in nighttime tP2, while it only causes about a 10% difference in EOD 

amplitude compared to sham-implanted fish (Goldina et al. 2011). In figure 4 I plotted tP2 

and amplitude together to visualize the relative magnitude in change of each parameter. 

While mechanism 1 is more prevalent in tP2 enhancement than amplitude enhancement, 

the range of mechanism 2 is quite comparable for both EOD parameters.  

Effect of stimulus size 

It had been suggested that males increased the amplitude of their EOD more in the 

presence of males larger than themselves than in the presence of smaller males (Salazar 

2009). However, I found that males responded very similarly to male stimulus of various 

sizes (Table 2, Fig. 4). My finding was unexpected, since body size is the main 

determinant of the winner of an agonistic encounter between B. gauderio males (Salazar 

2009; Silva et al. 2010). Small resident males should value their resource more and were 

expected to invest more in defending it by enhancing the amplitude of their EOD and 

appear or larger size. Nonetheless, signal enhancement is ultimately constrained by the 

signaler’s body length (Gavassa et al. 2012). Thus, even when males have plenty of 

motivation to exaggerate their body size by enhancing EOD amplitude, the highest EOD 

amplitude they can reach is tightly related to the fish’s body length (Gavassa et al. 2012).  
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Assessing signal function 

Signal enhancement is expected to benefit receivers when it improves the 

assessment of the information coded by the signal or stimulates reproduction (Akre and 

Ryan 2011). The enhancement of EOD amplitude greatly improves the assessment of 

body size information since the strength by which EOD amplitude predicts body size 

increases as EOD amplitude increases (Gavassa et al. 2012). As mentioned above, body 

size information should be relevant to potential competitors since competitive ability 

depends on body size (Salazar 2009; Silva et al. 2010). Accordingly, EOD amplitude 

should increase in the presence of potential competitors as I found here. By enhancing its 

EOD amplitude, the focal male is facilitating the receiver’s assessment of his body size 

and consequently the assessment of his fighting ability. My findings corroborate the 

notion that EOD amplitude functions as an initial assessment of fighting ability and 

potentially avoiding the need to physical contact. 

Body size information should be relevant for females too. When given a choice, 

females prefer longer males (Curtis and Stoddard 2003). However, females would not 

mate with males who are smaller than a certain threshold (Curtis and Stoddard 2003). 

Contrarily to what I expected, males did not enhance their EOD amplitude in the 

presence of females, unless there was another male present. It is possible than given the 

way female-choice seems to operate in this species, when there is only a female present, 

males just need to make sure their EOD amplitude is above the acceptable threshold for 

female choice and there is no further advantage on enhancing their EOD beyond that. 

However, when another male is present, the female chooses the best out of the two. In the 
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later case a male who doesn’t increase its EOD amplitude while his competitor enhances 

his EOD would be at a mating disadvantage, even if his EOD is above the acceptable 

threshold for females.   

The duration of the EOD’s second phase is an indicator of reproductive state and 

possible aggressive motivation (Gavassa et al. 2011). Information about reproductive 

state should be particularly relevant to females, who may pay a great cost of unfertilized 

eggs when mating with a male in poor reproductive condition. Alternatively, tP2 may be 

necessary to stimulate females to breed, as suggested for male signals of other species 

(Akre and Ryan 2011). Accordingly, female presence resulted in an initial rapid increase 

in tP2 via mechanism 1, and in a long-term increase via mechanism 2. Males should also 

pay attention to tP2 since it may provide information about the aggressive motivation of 

the signaler. Correspondingly, male presence also stimulated an increase in tP2 but only 

via mechanism 1.  

Conclusions 

Since androgens regulate mechanism 2 enhancements in EOD amplitude and tP2, I 

expected to find a simultaneous increase in both parameters. However, I found an 

increase in EOD amplitude but not tP2 via mechanism 2 in response to male stimulus, 

while the opposite was found in response to female stimulus. It is possible that another 

hormone regulates EOD amplitude enhancements via mechanism 2. For instance, 

melanocortins may have long-term effects on EOD amplitude in addition to the already 

known short-term effects (PKS, unpublished). In support to this hypothesis, male 

presence resulted in greater short-term increases in EOD parameters than female presence 
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indicating higher levels of circulating melanocortin levels in males when receiving a male 

stimulus than a female stimulus.   

The plasticity of the EOD could make the information coded by the EOD 

vulnerable to dishonesty via signal exaggeration. To prevent signal dishonesty with signal 

exaggeration, the mechanisms that regulate signal plasticity should be implicated in 

regulating the information coded by the signal. As mentioned earlier, androgens also 

regulate reproductive condition and likely aggressive motivation linking the long-term 

changes in the signal to changes in the information coded by the signal (Gavassa et al. 

2011). On the other hand, the rapid changes on EOD amplitude orchestrated by 

melanocortins may help reduce signaling costs when there is low incentive for costly 

signaling and unmask the signal to show its full potential when competition increases 

(Stoddard and Markham 2008). Melanocortins have even greater effect on tP2, it is 

possible that melanocortins also regulate aggression and therefore their release further 

strengthens the relationship between the signal and its information (Ducrest et al. 2008). 

Therefore, the enhancement of EOD parameters improves the assessment of information 

relevant to the specific type of receiver.     
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Tables 

 

 

Table 6.1. Results of repeated measures two-way ANOVA for experiment 1, effect of 

stimulus sex. Effects with p values below 0.05 are shown in bold. Male presence 

stimulated an increase in EOD amplitude via mechanisms 1 and 2, but only an increase in 

tP2 via mechanism 1. On the other hand, female presence had no effect on EOD amplitude 

but it increased tP2 via mechanisms 1 and 2.  
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Table 6.2. Results of repeated measures one-way ANOVA for experiment 2, effect of 

stimulus size. There were no significant differences in the response of the focal male to 

stimulus males of different sizes for neither mechanism of signal enhancement.  
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Figures 

 

 

Figure 6.1. The electric organ discharge (EOD) of Brahyhypopomus gauderio. I analyzed 

total EOD amplitude, measured as the distance from peak-to-peak between the positive 

and negative phase of the EOD. I estimated the duration of the 2nd phase of the EOD 

using the parameter tP2, the time constant of the repolarization of the EOD’s second 

phase. The gray trace shows an EOD with enhanced tP2 parameter. 

 

 

 

Figure 6.2. Dissecting signal enhancement mechanisms. This diagram shows a 

representation of the data collected for each EOD parameter throughout the seven days 

each fish spent in the EOD Machine on a given experimental round. Cyclic-MSH was 

administered twice in order to separate short-term changes (via mechanism 1) from long-
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term changes (via mechanism 2) in the EOD. The social stimulus was added the day after 

the first cyclic-MSH injection.  

 

 

 

Figure 6.3. Percentage change in EOD amplitude and tP2 at the two timescales measured 

for experiment 1: Effect of stimulus sex. Horizontal lines depict mean values and vertical 

lines depict SEM for each of the four treatments (M: male stimulus, M&F: male and 

female stimuli, F: female stimulus, Nn: no stimulus). The p-values for male and female 

effects resulting from two-way ANOVAs (Table 1) are shown.  
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Figure 6.4. Percentage change in EOD amplitude (black) and tP2 (gray) for experiment 1: 

Effect of male stimulus size. Horizontal lines depict mean values and vertical lines depict 

SEM for each of the three treatments: a stimulus male (i) larger, (ii) similar or (iii) 

smaller than the focal male. Note that the range of mechanism 1 change in tP2 is more 

than twice as high as the range of amplitude change. There was no significant effect of 

the size of the stimulus on EOD enhancement (see Table 2).  
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The goals of my dissertation research were to i) estimate the reliability of 

information conveyed by signals of electric fish, ii) study how the quality of the 

information changes when the signal changes, and iii) explore the effect of the social and 

physical environment on signal plasticity.  

Is signal modulation decreasing the reliability of the EOD an honest indicator of body 

size? 

Despite the good understanding of the neuroendocrine mechanisms behind signal 

modulation, the effects of signal plasticity on the honesty of the signal were unknown. 

Salazar & Stoddard (2008) had proposed that signal enhancement could provide 

information about the body condition of the signaler. An alternative hypothesis was that 

EOD modulation would be used for dishonest communication purposes, to exaggerate the 

signaler’s size (Stoddard, NSF grant 2009). The former hypothesis was supported in a 

study by Salazar & Stoddard (2008) that found a correlation between the residuals of 

EOD amplitude (obtained from a linear regression between body length and EOD 

amplitude) and the residuals of body weight (obtained from a linear regression between 

body length and body weight). However, residual analyses are very sensitive to the shape 

of the relationships between the variables (Jakob et al., 1996; Green, 2001). The limited 

sample size from lab studies makes it impossible to test the adequate fit of the linear 

regression. All prior studies had assumed a linear relationship between EOD amplitude 

and body length (Hopkins et al., 1990; Curtis and Stoddard, 2003; Salazar and Stoddard, 

2008). My extensive field data set allowed me to test the fit of a linear regression 

between both: 1) EOD amplitude and body length, and 2) body length and body weight. 
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In Chapter 2, I show that neither one of these relationships is linear, EOD amplitude and 

body weight both increase exponentially with body length. Therefore, the prior thought 

connection between body condition and EOD amplitude was just an effect of the lack of 

fit of both linear regressions. Moreover, I found that in the field body length determines 

up to 96% of the variation in EOD amplitude, leaving very little room for another factor 

to explain the remaining variation in EOD amplitude. In fact, the 4% of the variation left 

unexplained corresponds to my measuring error of 0.2 cm for body length measurements.  

I also provide a possible explanation for the non-linear relationships. I suggest 

that the exponential relationship between body length and EOD amplitude comes from 

the combination of two linear effects of body size on EOD amplitude: longer fish have 

longer electric organs, with more electrocytes connected in series (Hopkins, 1999), from 

which we expected a linear relationship between length and EOD amplitude. However, a 

fish generating an electric discharge resembles a dipole, longer fish have a greater dipole 

separation (Stoddard et al., 1999), which on its own would result in a linear relationship 

between body length and EOD amplitude. When both effects, more electrocytes in series 

and greater dipole separation, are combined, they explain the exponential relationship 

between body length and EOD amplitude.  

Despite my improvement in the model of signal production, my field data 

revealed a great degree of natural variation in the tightness of the relationship between 

body length and EOD amplitude. Based on the dishonest communication hypothesis, one 

would expect that the reliability of the relationship between EOD amplitude and body 

length would decrease as males enhance their EOD amplitude. However, I found the 
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opposite. The tightest relationship between EOD amplitude and body length occurs at the 

highest population densities when EOD amplitude is the highest, precisely when one 

would expect the greatest benefits from bluffing. I replicated the field observations in a 

controlled lab experiment and again showed the relationship between EOD amplitude and 

body length tightening with competition intensity.  

The exponential relationship between body length and EOD amplitude also 

contributes to reinforcing the honesty of the EOD, since for a male fish to effectively 

exaggerate his size; it would have to greatly increase the amplitude of its EOD. The 

expected EOD amplitude doubles with every 3.3 cm difference in length. For example, 

for a 15 cm male to appear to be 18 cm long, he would have to double the amplitude of 

his EOD, an energetically expensive and perhaps physiologically unattainable 

undertaking.  

Given that the EOD is very sensitive to hormonal manipulation, can we predict the 

hormonal profile of a signaler from its EOD? 

The hormonal drivers of EOD plasticity have been identified as androgen driving 

long-term changes (Silva et al., 2002; Stoddard et al., 2006; Allee et al., 2009; Goldina et 

al., 2011), and peptide hormones driving mid-term changes, with serotonin acting 

centrally (Stoddard et al., 2003; Allee et al., 2008) and melanocortins acting directly on 

the electrocyte (Markham and Stoddard, 2005; Stoddard and Markham, 2008; Markham 

et al., 2009). However, a prior lab study failed to correlate endogenous circulating 

androgen levels and EOD parameters (Salazar and Stoddard, 2009).  
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Sex steroids coordinate broad suites of physiological and behavioural traits 

necessary for reproduction (Wingfield et al., 1990). Of these, androgens in particular 

regulate the expression of signals relevant for sexual communication by changing 

structures and activity in neural circuits (Moore et al., 2005; Ball et al., 2008; Bass, 2008; 

Godwin, 2010). Nonetheless, communication signals that are regulated by sex steroids 

rarely reflect sex steroid levels at the time the signals are produced, which makes it even 

less likely that signals can accurately reflect other behaviourally relevant phenotypic 

traits regulated by sex steroids. Differences in tissue sensitivity, in receptor density or 

binding affinity, in the time scale of the response to hormone levels, the plasticity of the 

signal, and the intervention of other hormonal regulators can mask or impair phenotypic 

integration and ultimately compromise the reliability of the signal (Adkins-Regan, 2008; 

Ball et al., 2008; Kempenaers et al., 2008; Karubian et al., 2011). Despite these 

theoretical limitations, in Chapter 3, I found a strong relationship between endogenous 

androgen levels (testosterone and 11-ketotestosterone) and the duration of the EOD’s 

second phase. Moreover, I found that androgens also linked the duration of the EOD’s 

second phase to other androgen-mediated traits such as gonad size in males and estrogen 

(which derives from the aromatization of testosterone) in females. Once again, the large 

sample size I was able to obtain in the field and the almost simultaneous EOD recording 

and hormone sampling made this possible. On one hand, the variation in EOD parameters 

and hormone levels was much greater in the field that what we have observed in the lab 

(see Chapter 4). On the other hand, the large sample size from the field provided me with 

greater statistical power to find these relationships between hormone levels, signal 

parameters and other phenotypic traits.  



 194

Interestingly, I found that gonad size can be predicted from the duration of the 

second phase of the EOD in males but not in females, although it predicted estradiol 

levels in females. Males may not require information about the female’s gonad size, since 

females that engage in reproductive behaviors will be those that are ready to spawn 

(Stoddard, unpublished). Moreover, females may pay a large cost of unfertilized eggs if 

they mate with a male that will not provide enough sperm. Females may also be 

interested in mating with males with large testes to ensure their sons will have large testes 

too. Thus, we expect females to pay close attention to the reproductive condition of the 

male. Additionally, information about circulating androgen levels should also be relevant 

to same-sex receivers to assess the fighting motivational state of the signaler. Androgen 

treatment makes females, and probably males too, more aggressive. Females are more 

likely to attack and bite other females when implanted with androgens (Allee et al., 2009; 

Perez et al., unpublished). Consequently, conspecifics can gather valuable information 

from the EOD; females benefit by inferring the reproductive state of males, while both 

sexes benefit from inferring the motivational state of same-sex signalers. 

Is the regulation of EOD plasticity in females similar to that of males? 

Females increase the amplitude and duration of their EODs at night, albeit to a 

lesser extent than males (Franchina and Stoddard, 1998; Stoddard et al., 2007). Signal 

plasticity among females was hypothesized to save energetic cost during the day 

(Stoddard et al., 2007; Salazar and Stoddard, 2008) but no social functions were 

considered. In Chapter 4, I found that female signals also respond to changes in the social 

environment in a similar way as males do (Salazar and Stoddard, 2009). In general, 
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females increase the amplitude of the EOD in response to increases in population density, 

while the duration of the EOD’s second phase increases in response to a greater ratio of 

females to males. However in the lab, EOD amplitude and second phase duration both 

increased with population density.  

A prior study on female B. gauderio found that androgens increase the 

responsiveness of the EOD to social and hormonal challenges (Allee et al., 2009). I also 

found a correlation between androgen levels, EOD duration and intrasexual competition 

in the field. However, I was unable to replicate this finding in the lab. Nonetheless, I did 

find an increase in EOD duration, which is regulated by androgens (Silva et al., 2002; 

Allee et al., 2009; Pouso et al., 2010; Goldina et al., 2011). Enhancements of EOD 

duration are mediated by androgens in conjunction with melanocortins (Allee et al., 2009; 

Goldina et al., 2011), and are particularly stimulated by intrasexual competition. Males 

enhance EOD duration more in the presence of other males than in the presence of 

females (Franchina et al., 2001; Chapter 6), while androgen-treated females enhance 

EOD duration more in the presence of females than with males (Allee et al., 2009). 

Moreover, In Chapter 3 I found a strong relationship between EOD duration and 

androgen levels. Peripherally acting melanocortins (adrenocorticotropic hormone 

(ACTH) and alpha melanocyte stimulating hormone (α-MSH)) act directly on the electric 

organ to increase EOD duration (Markham and Stoddard, 2005; Stoddard et al., 2006; 

Stoddard, 2007; Markham et al., 2009). Furthermore, androgens greatly potentiate the 

effect of melanocortin administration on EOD duration (Allee et al., 2009; Goldina et al., 

2011). Therefore, I suspect that the increase in female’s EOD duration seen in the lab 
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experiments presented in Chapter 4 correspond to a small increase in androgens (not 

statistically significant) that nonetheless increased sensitivity to endogenous 

melanocortins, resulting in a much greater increase in EOD duration when females 

outnumbered males than when the sex-ratio was unity.  

Communication function of EOD parameters 

I propose that the parameters of the EOD have relatively similar functions in male 

and female communication. In females, the duration of the EOD’s second phase serves as 

a signal during intrasexual competition while EOD amplitude may function as a signal 

for intraspecific competition. In males, the duration of the EOD’s second phase serves for 

mate attraction and intrasexual competition while EOD amplitude functions as a signal of 

resource holding potential (RHP) during intrasexual competition.  

In Chapter 4 I show that females increase the duration of their EOD’s second 

phase when the adult sex ratio is female-biased, corresponding to an increase in 

intrasexual competition. I observed the same phenomenon in the field; at the beginning of 

the breeding season when sexually matured males were scarce and females had the 

highest motivation to mate and compete to mate with the best male available. Moreover, 

EOD duration reflects androgen levels (Chapter 3), which in turn regulate female-female 

aggression (Allee et al., 2009; P. Perez et al. unpublished).  

The duration of the EOD’s second phase may have a similar role in male-male 

competition as seen in female-female competition. In Chapter 6 I found that males 

increased the duration of their EODs in response to male challengers. Since the duration 
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of the EOD’s second phase predicts androgen levels and aggression providing valuable 

information to individuals of the same sex, it makes sense that the EOD’s second phase is 

most responsive to changes in intrasexual competition. Likewise, the duration of the 

EOD’s second phase also predicts testis size; this information should be relevant to 

females. As mentioned before, females in particular should pay attention to the male’s 

reproductive condition. As expected, in Chapter 6 I found that males also increase the 

duration of their EOD in the presence of females.  

In Chapter 4 I show that EOD amplitude increased in females in response to an 

increase in population density in the lab and in the field. The increased in population 

density may either increase competition for resources necessary for both sexes such as 

food or shelter. Alternatively, an increase in population density may increase background 

noise and promote an increase in EOD amplitude in order to be noticed out of the crowd, 

or in order to improve the electrolocation function of the signal.  

Males show a similar use of EOD amplitude, increasing with population density 

as shown in Chapter 2. However in Chapter 6, I show that males increase EOD amplitude 

in response to a male challenger but not to a female challenger. It seems that in males 

EOD amplitude functions primarily for male-male competition. EOD amplitude 

enhancement improves the assessment of the information about size conveyed by the 

signal (Chapter 2). Since body size is the main determinant of RHP in this species 

(Salazar, 2009; Silva et al., 2010), amplitude enhancements will help determine RHP 

without engaging in costly physical contests. Females should also be interested in mating 

with large males. However, this preference in females can only be exercised when there 
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are multiple males to choose from. Thus, EOD amplitude enhancements will be necessary 

to impress females only when there is at least another male present.  

Is reproductive signaling favored over energy savings, as expected from a semelparous 

species? Alternatively, is signal plasticity used to reduce costs when energy is limited?  

From its semelparous life-history, B. gauderio is expected to resist stress and 

continue to reproduce even when its glucocorticoids levels, primarily cortisol, soar. A 

previous study in the lab had shown an increase in cortisol levels with social competition, 

and, interestingly, cortisol was tightly correlated to EOD amplitude (R2=0.90, p=0.004; 

Salazar and Stoddard, 2009). The concurrent increase in cortisol levels with signal 

enhancement plus the relationship between cortisol and signal amplitude suggests that the 

electric signal of B. gauderio is resistant to cortisol inhibition, and raises the possibility 

that cortisol positively regulates EOD amplitude.  

Cortisol has been shown to regulate courtship displays in other fish, including 

electric fish. For instance, cortisol induces courtship vocalization in type I (singing 

morph) males of the plainfin midshipman (Porichthys notatus) (Remage-Healey and 

Bass, 2004; Remage-Healey and Bass, 2007). In the brown ghost knifefish (Apteronotus 

leptorhynchus), a gymnotiform electric fish, social interactions raise cortisol levels and 

increase the production of electric chirp signals, rate modulations produced during 

aggressive interactions (Dunlap, 2002). The effects of social interactions on chirping in 

brown ghosts could be replicated by two weeks of cortisol administration (Dunlap, 2002). 

Cortisol has been proposed to enhance signal production indirectly by increasing cell 
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addition and radial glial fiber density in the diencephalic periventricular zone of brown 

ghost (Dunlap et al., 2006; Dunlap et al., 2008). 

Contrary to those predictions, in Chapter 5 I found that cortisol administration 

decreases EOD amplitude. Nevertheless, I still found a positive relationship between 

cortisol levels and EOD amplitude in socially challenged fish (Fig. 1). Since cortisol 

administration not only failed to enhance EOD waveform but actually decreased the EOD 

waveform, I do not think the relationship between cortisol and EOD amplitude is causal. 

Instead, it may have resulted from pleiotropic action of melanocortins (ACTH, 

adrenocorticotropic hormone, and α-MSH, alpha-melanocyte stimulating hormone), 

which in addition to promoting the release of cortisol, regulate EOD amplitude 

(Markham et al., 2009) and synergize with androgens to produce even greater effects in 

EOD amplitude (Allee et al., 2009; Goldina et al., 2011). As androgens increase in the 

social treatments, the effect that melanocortins have on the amplitude of the EOD 

increases as well, resulting in a better correlation between cortisol and EOD amplitude.  

 In Chapter 5 I show that B. gauderio is not resistant to cortisol inhibition as 

commonly found in other semelparous species, and the prior correlations in our lab had 

suggested. Therefore, I propose that because B. gauderio has a breeding season relatively 

long compared to most semelparous species, B. gauderio should be more conservative in 

its energetic allocation in order to survive most of the breeding season. In support of my 

hypothesis, in Chapter 5 I found that when energy is limited and competition increases, 

B. gauderio increases foraging intensity in order to fuel costly signaling before 

compromising its energetic reserves. However, when there is no food available and 
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competition intensifies, B. gauderio increases reproductive output while it burns through 

its energetic reserves as a typical semelparous species. This flexible strategy for energy 

management maximizes survival throughout the breeding season without compromising 

reproductive performance.  

The intermediate levels of competition simulated in Chapter 5 have no effect 

rising cortisol levels. However, higher competition intensity results in an increase in 

cortisol (Salazar and Stoddard, 2009). The hormonal pattern resembles what predicted 

under the Energetics-Hormone Vocalization (EHV) model (Emerson, 2001). According 

to the EHV model, signaling output should decrease as energy reserves decline. The EHV 

model proposes that energetically expensive signaling would elevate circulating 

androgens, as predicted by the Challenge Hypothesis (Wingfield et al., 1990), but it 

would also elevate glucocorticoids to fuel signaling. Prolonged signaling will decrease 

energetic stores until glucocorticoids rise to a level at which they inhibit androgen 

release. The resultant drop in circulating androgen then causes signaling output to decline 

(Emerson, 2001; Moore and Jessop, 2003). However, I do not think the EHV entirely 

applies to B. gauderio. Although exogenous cortisol administration decreased the EOD, 

endogenous cortisol levels that parallel the doses administered have been reported 

concomitantly with EOD enhancements (Salazar and Stoddard, 2009). I predict that B. 

gauderio prevents cortisol release during intermediate levels of social competition, but 

when competition intensifies and cortisol levels do rise, B. gauderio must have an 

additional mechanism to prevent cortisol from inhibiting signaling. Such mechanism, I 

propose, could be a compensatory increase in androgen levels. Compensatory androgen 
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release has been proposed as a mechanism for stress resistance in other species, such as 

male olive baboons and male Arctic ground squirrels (Sapolsky, 1982; Boonstra et al., 

2001; Wingfield and Sapolsky, 2003). Although social stimulation increases androgen 

levels in all socially stimulated fish in Chapter 5, the group with social competition and 

food limitation showed the greatest increase in androgen levels.  

I conclude that B. gauderio has a flexible stress resistance strategy that changes 

with food availability and urgency to breed. Social stimulation and food limitation both 

trigger an investment in reproductive signaling, when possible B. gauderio increases 

foraging to fuel signaling, when no food is available, instead of compromising signaling, 

B. gauderio increases signaling output and turns to body reserves to fuel signaling.  

What have we learned and where to go from there 

My dissertation research shows that information about body size, reproductive 

state and aggressive motivation is conveyed by the signal. I also show that the quality of 

the information improves instead of degrading when males boost their EOD parameters. 

Although I explored the function of each EOD parameter in communication, my 

approach was rather indirect using a sender-perspective to infer signal parameters that 

could be of interest to receivers. I did not show whether potential mates and potential 

competitors use the information conveyed by the signal to make behavioral decisions. 

Future studies are needed to show whether receivers can assess the information conveyed 

by the signal and what degree of discrimination receivers show for multiple signals.  
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This dissertation corroborates a hypothesis previously proposed that in males 

EOD amplitude tracks the degree of social competition while EOD duration tracks 

intrasexual competition (Salazar and Stoddard, 2009). Accordingly, I found that EOD 

amplitude responds to changes in population density in males. Interestingly females also 

respond to changes in population density by increasing EOD amplitude. On the other 

hand, EOD duration in females changes with intrasexual competition. Therefore I 

conclude that in females, EOD amplitude tracks overall competition, but EOD duration is 

specific to intra-sexual competition. The latter is particularly relevant since EOD duration 

indicates androgen levels, and androgens increase the likelihood of aggression in females 

(P. Perez et al., unpublished). Nonetheless, it would also be important to test the fitness 

consequences of elevated androgen levels in females.  

Finally, I found that the social signals of B. gauderio do not resist the negative 

regulation by cortisol as positive correlations had suggested. However, the signals of B. 

gauderio do resist inhibition under the degree of energetic stress simulated in Chapter 5. 

It would be interesting to test B. gauderio stress tolerance over a broader range of 

stressors. For instance, extend the period of food restriction from 2 weeks (Chapter 5) to 

a few weeks and increase the intensity of competition. It is also possible that stress 

tolerance changes with time into the breeding season, with males becoming more tolerant 

as the breeding season progresses. It would be interesting to test stress tolerance in males 

in the field at different points into the breeding season. Although I suggest that 

compensatory androgen release could work as a stress-resistance mechanism, this 
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hypothesis still needs to be tested. Moreover, other stress-resistance mechanism may 

exist for more intense stressors.  
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Figure 7.1. Cortisol versus EOD amplitude corrected for body length. (A-B) Cortisol 

levels were not related to EOD amplitude in the isolation treatments. Cortisol levels 

correlated with EOD amplitude only in the social treatments (C-D), regardless of food 

supply. However, it is unlikely that cortisol is promoting EOD amplitude since cortisol 

administration decreases EOD amplitude (Chapter 5). 

 

 



 208

VITA 
 

SAT GAVASSA BECERRA 
 

April 8, 1982   Born, Bucaramanga, Colombia 
 
2001-2006    B.A., Biology 

Universidad de los Andes 
Bogota, Colombia 

 
2002     Teaching Assistant 

Vertebrate Anatomy Lab 
Universidad de los Andes 
Bogota, Colombia 

 
2003     Teaching Assistant 

Invertebrate Biology Lab 
Universidad de los Andes 
Bogota, Colombia 
 

2004-2005    Teaching Assistant 
Plant Physiology Lab 
Universidad de los Andes 
Bogota, Colombia 
 

2006-2007    Teaching Assistant 
General Biology Lab I & II 
Florida International University 
Miami, FL 
 

2007-2009    QBIC Teaching Assistant 
Freshmen Journal Club 
Florida International University 
Miami, FL 
 

2008-2009    QBIC Teaching Assistant 
QBSS Summer 
Florida International University 
Miami, FL 
 

2009     QBIC Teaching Assistant 
Statistical Modeling 
Florida International University 
Miami, FL 
 



 209

2009-2010    Dissertation Evidence Acquisition Fellow 
Florida International University 
Miami, FL 
 

2010-2011    Research Assistant 
    P.I. Dr. Philip K. Stoddard 

Florida International University 
Miami, FL 
 

2012     Dissertation Year Fellow 
Florida International University 
Miami, FL 

 
 
 

PUBLICATIONS 
 
Gavassa, S., Roach, J. P., Stoddard, P. K., (submitted). Social regulation of electric signal 
plasticity in male Brachyhypopomus gauderio. J. Comp. Physiol. A. 

Gavassa, S., Stoddard, P. K., (in press). Food restriction promotes signaling effort in 
response to social challenge in a short-lived electric fish. Hormones and Behavior. 

Gavassa, S., Silva, A., Gonzalez, E., Molina, J. & Stoddard, P. K. 2012 Social 
competition affects the electric communication signal of female Brachyhypopomus 
gauderio through androgen action. Behavioral Ecology and Sociobiology. 66, 1057-1066. 

Gavassa, S., Silva, A., Gonzalez, E. & Stoddard, P. K. 2012. Signal modulation as a 
mechanism for handicap disposal. Animal Behaviour. 83, 935-944 

Gavassa, S., Silva, A., Stoddard, P. K., 2011. Tight hormonal phenotypic integration 
ensures honesty of the electric signal of male and female Brachyhypopomus gauderio. 
Hormones and Behavior. 60, 420-426. 

Goldina, A., Gavassa, S., Stoddard, P. K., 2011. Testosterone and 11-ketotestosteone 
have different regulatory effects on electric communication signals of male 
Brachyhypopomus gauderio. Hormones and Behavior. 60, 139-147. 

Weeks, O. I., Villamor, E., Tracey, M., Stoddard, P. K., Shapiro, S., Makemson, J., 
Garcia, R., Gavassa, S., Philippi, T., Pitzer, T., Dewsbury, D., Narasimhan, G., McGoron, 
A., Tashakkori, A., 2011. QBIC, an interdisciplinary and quantitative biological sciences 
curriculum:  concept to implementation. Science Education. 12, 11-14. 


	Florida International University
	FIU Digital Commons
	6-28-2012

	Social and Environmental Regulation of Signal Plasticity and Signal Reliability in the Electric Fish Brachyhypopomus gauderio
	Sat Gavassa Becerra
	Recommended Citation


	Social and Environmental Regulation of Signal Plasticity and Signal Reliability in the Electric Fish Brachyhypopomus gauderio

