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ABSTRACT OF THE DISSERTATION 

CARBON NANOSTRUCTURE BASED ELECTRODES FOR HIGH EFFICIENCY 

DYE SENSITIZED SOLAR CELL 

by 

Santanu Das  

Florida International University, 2012 

Miami, Florida 

Professor Wonbong Choi, Major Professor 

Synthesis and functionalization of large-area graphene and its structural, electrical and 

electrochemical properties has been investigated. First, the graphene films, grown by 

thermal chemical vapor deposition (CVD), contain three to five atomic layers of 

graphene, as confirmed by Raman spectroscopy and high-resolution transmission electron 

microscopy. Furthermore, the graphene film is treated with CF4 reactive-ion plasma to 

dope fluorine ions into graphene lattice as confirmed by X-ray photoelectron 

spectroscopy (XPS) and UV-photoemission spectroscopy (UPS). Electrochemical 

characterization reveals that the catalytic activity of graphene for iodine reduction 

enhanced with increasing plasma treatment time, which is attributed to increase in 

catalytic sites of graphene for charge transfer. The fluorinated graphene is characterized 

as a counter-electrode (CE) in a dye-sensitized solar cell (DSSC) which shows ~ 2.56% 

photon to electron conversion efficiency with ~11 mAcm−2 current density. Second, the 

large scale graphene film is covalently functionalized with HNO3 for high efficiency 

electro-catalytic electrode for DSSC.  The XPS and UPS confirm the covalent attachment 

of C-OH, C(O)OH and NO3
- moieties with carbon atoms through sp2-sp3 hybridization 
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and Fermi level shift of graphene occurs under different doping concentrations, 

respectively. Finally, CoS-implanted graphene (G-CoS) film was prepared using CVD 

followed by SILAR method. The G-CoS electro-catalytic electrodes are characterized in 

a DSSC CE and is found to be highly electro-catalytic towards iodine reduction with low 

charge transfer resistance (Rct ~5.05 Ωcm2) and high exchange current density (J0~2.50 

mAcm-2). The improved performance compared to the pristine graphene is attributed to 

the increased number of active catalytic sites of G-CoS and highly conducting path of 

graphene.  

We also studied the synthesis and characterization of graphene-carbon nanotube (CNT) 

hybrid film consisting of graphene supported by vertical CNTs on a Si substrate. The 

hybrid film is inverted and transferred to flexible substrates for its application in flexible 

electronics, demonstrating a distinguishable variation of electrical conductivity for both 

tension and compression. Furthermore, both turn-on field and total emission current was 

found to depend strongly on the bending radius of the film and were found to vary in 

ranges of 0.8 – 3.1 V/μm and 4.2 – 0.4 mA, respectively. 
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CHAPRER 1 

INTRODUCTION 

1.1. Overview of Carbon Nanomaterials 

 Now a day, nanomaterials and nanotechnology creates innumerable research 

interests in the field of materials science towards a goal to develop low power 

miniaturized devices with enhanced performance for future generation ultra-fast 

electronics1.  One nanometer is defined as one hundredth (10-3) of a micrometer (10-6 

meter) or one billionth (10-9) of a meter whereas nanotechnology involve the science and 

engineering with the materials dimensions belong to the category in the ranges from sub 

nanometers (Angstrom, Å) to several hundreds of nanometers. This scientific domain 

includes design, fabrication and application of nanomaterials of nanostructures, and the 

fundamental meaning of the relationships between physical properties and material 

dimensions.  

 Recently, carbon nanomaterials create unprecedented attention in academics and 

industries to be used as a next generation electronic and photonic material2-6. The basic 

building blocks of all the carbon nanostructures are single graphitic layer which is 

covalently functionalized sp2 bonded carbon atoms exist in a hexagonal honeycomb 

lattice which forms 3D bulk graphite, when the layers of single honeycomb graphitic 

lattices are stacked and bounded by a weak Vander wall force. The single graphite layer, 

when forms sphere is well known as 0-dimensonal fullerene or bulkyball, when rolled up 

with respect to its axis forms 1-dimensional cylindrical structure, very known as carbon 

nanotube (CNT) for past two decades and when it exhibit the planner 2D structure with 

one to couple of layers stacked to each other called graphene7. 
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 Among all the carbon nanomaterials CNT and graphene exhibits high 

conductivity8, 9, ballistic charge transport10, 11, high charge carrier mobility10, 12, good 

mechanical13 and thermal properties14 which are ideal for applications in electronics and 

photonics. Apart from their applications in electronics and photonics, these sp2 bonded 

graphitic allotropes (CNT and graphene) are also possesses high surface area, high 

electro catalytically active and chemically inert, hence could be applied in a vast number 

of electro-catalytically active devices for energy harvesting and storage15-19. On the other 

hand, graphene, a newly invented two-dimensional carbon allotropes has ignited an 

exponentially increasing publications in the research communities, particularly towards a 

goal to incorporate it into future nano-scale devices.  

 Owing to their remarkable electronic, mechanical and thermal properties, CNT 

and graphene has been projected for potential applications in transistors, integrated 

electronic circuits, super-capacitors, solar cells and batteries19, 20. Recently, in addition to 

the applications based on individual graphene and CNT, the graphene-CNT hybrid 

structure is also proposed owing to its highly beneficial applications in microelectronics 

as they can incorporate the advantages from individual properties of graphene and CNT 

in planner and axial directions respectively21-23.  
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1.2. Dye sensitized solar cell 

 Now a day’s it is a real challenge to develop permanent alternative energy devices 

which would constitute key elements for sustainable future energy sources.  In order to 

reduce the impact of “Global Warming” on the earth continuous research and 

development is required to improve the performance of the energy harvesting devices and 

their transition into commercial use. Solar cells are one of the major components among 

them which are considered as potential future energy harvesting devices. In this regards, 

US Department of Energy (DOE) has already been established their objective to guide 

the solar energy research growth up to 75% within 2015 where as European Renewable 

Energy Council (EREC) set their goal to be 30-40% minimum growth rates expected till 

2020. Till date there are no real cost effective solar cell devices with high photon to 

electron conversion efficiency and safe to reuse and disposal. Recently nano-materials 

attract keen attention of researchers to develop high energy efficient low cost hand on 

devices. DSSC is one of the low cost future generation energy harvesting devise currently 

exhibiting light to electricity conversion efficiency almost around 11.1%.  Furthermore, it 

is considered as a potential alternative for conventional Si-solar cells due to their 

remarkable stability, easy fabrication process, low cost and no toxicity. DSSC consist of a 

dye coated TiO2 semiconducting layer on FTO glass substrate (anode) and a coating of 

few nanometers thickness of platinum catalysts on FTO glass (Cathode). These two 

electrodes are sandwiched using a polymer spacer (15-20 micron thick) and liquid ionic 

electrolyte with I-/I3- redox couples is used as charge carrier in between the electrodes24, 

25.  The anode part of DSSC is functioned as current collector and charge separator where 

as the cathode materials act as charge injector by impinging back the electrons into the 
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liquid electrolyte, hence reduced the I3- redox couple as per the mechanism given below 

in equation 1.126. 

I3- +3e- ↔ 3I-       (1.1) 

 Counter electrode (CE) (Cathode) of DSSC is generally prepared by coating of 

few nanometers Pt thin film on FTO/ITO glass substrate or polymer substrate. However 

several articles have been reported to date regarding the catalytic activity of carbon 

morphologies in order to replace Pt from DSSC for increasing its stability27-29. Carbon 

nanomaterials are promising future CE materials showed potential alternative to replace 

Pt due to their remarkable electrochemical performance, large surface charge carriers, 

high conductivity and long term stability27, 30, 31.  Large surface carrier concentration and 

catalytic activities of carbon nanomaterials (e.g. graphene CNT) occurs due to its large 

surface to volume ratio and no space charge layer formation at the electrode-electrolyte 

interface.  

 

1.3. Motivation and goal 

 
 Commercialization of Dye Sensitize solar Cells has already been started and 

slowly acquiring the market of conventional high cost Si solar cells.  Systematic studies 

with scientific calculations and explanations will enhance the performance of DSSC and 

promote it for large scale prototype device fabrication. Similarly, improvement in 

efficiency and long term stability of DSSC will significantly increase DSSC’s 

applications as a potential source for low power electronics, household electricity and 

industrial high power devices at a significant low cost. On the other hand, disadvantages 
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like high cost, low abundance impedes the scalability and application of Pt based 

conventional DSSC in real life. Therefore, scalability as well as high efficiency and long 

term stability are the major concerns which appear as challenges to improve the overall 

performance of the device. 

 The motivation of this research is first optimize the synthesis of high quality large 

scale few layer graphene, carbon Nanotubes and graphene-CNT hybrid structure using 

thermal chemical vapor deposition technique. The transfer of carbon nanomaterials on 

different flexible and transparent substrates is also an another goal to replace toxic and 

fragile indium tin oxide (ITO) type conventional transparent conducting oxide which 

limits its future applications in flexible electronics devices as well as flexible solar cells. 

Moreover, due to remarkable mechanical properties, graphene is an ideal material which 

exhibits wide range of transparency from ultra violet (UV) to near infra-red (NIR) 

regions which can be used as potential window for its application in high efficiency solar 

cell for harvesting more light photons from the entire solar spectrum range. More 

specifically, graphene exhibits transparency in the entire infra-red (IR) region which is an 

added advantage of its use as infra-red solar cells18, 32. In this context, graphene could be 

most suitable for solar cell use as it can be transfer on any flexible substrates using 

several facile and scalable methods. In addition to this, graphene also possess high 

surface charge carrier concentrations, excellent thermal conductivity and chemical 

inertness which can be potentially used as transparent conducting electrodes as well as 

catalytic electrodes, hence can be readily opt out one interface in DSSC.  

 Several approaches have been made for replacing platinum counter electrode by 

graphite, carbon black, glassy carbon, carbon-nanotube, conducting polymers etc27, 33. 
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Nevertheless, Carbon based materials are highly promising for DSSC-CE, as they are 

highly stable, low in  cost and electro-catalytically active towards tri-iodide reduction28, 

29. Till date, several reports on graphene for solar cell were focused on replacing indium 

tin oxide (ITO) by graphene as a transparent conducting electrode.  

 In this context, there has been substantial interest for applying graphene as 

counter electrode towards tri-iodide reduction would offer enticing possibilities in 

flexible conducting counter electrode for dye-sensitized solar cells15, 34, 35. In DSSCs, 

counter electrode (CE) is one of the indispensable components which inject electrons into 

the electrolyte in order to catalyze the iodine reduction (I3- to I-) after the charge injection 

from photo-oxidized dye24, 28. The electro-catalytic reduction I3
- to I- at CE dictating the 

cathodic activity of DSSCs and influences on current generation at photo-anode counter-

part through dye-regeneration. In this context, utilizing the high surface area of 2-D 

graphene sheet (2630 m2/g)  in addition to its intrinsic high transmittance and charge 

mobility, provide greater versatility as a counter electrode in DSSCs. The surface 

modification protocols, either via chemical modification or physical treatment of 

graphene, are paid great attraction to increase the chemical reactivity of graphene for 

counter electrode for DSSCs35. It has been well reported that graphite intercalation 

compounds (GICs) significantly improve the conductivity and in-plane charge transfer 

compare to the graphite36. However the inert nature of graphene basal plane often 

restricts the graphene/liquid interfacial charge transfer although it shows high in-plane 

charge mobility, so tri-iodide reduction occurs only through their edge planes. Thus, 

surface modification is required for improving their in-line charge transfer characteristic 

and being performed as efficient catalytic counter electrode for tri-iodide reduction in 
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DSSCs. Till date, all the major reports concern about the surface modification of 

graphene using water-soluble polymers (polyelectrolyte) whose ionic charge has 

modifying the surface adsorption properties of graphene toward I-/I3
- reduction and the 

enhancement of the apparent electro-catalytic activity of graphene by functionalization 

using poly(ethylene-oxide)-poly (propylene-oxide)- poly(ethylene-oxide) tri-block 

copolymer34, 35. However, improved charge transfer characteristic of graphene itself 

toward I-/I3
- reduction in DSSCs is still unexplored and remains challenge.  

 

1.4. Scope of this dissertation 

 Chapter 2 provides the background and literature reviews of the dissertation and 

discusses the properties of carbon nanomaterials like graphene, CNT and graphene-CNT 

hybrid materials. Here, structural, electrical and optical properties of carbon 

nanostructures like graphene, CNT and graphene-CNT hybrid structure are described. 

The progress of the graphene nanostructure for transistors, solar cells and electrochemical 

applications are also discussed. A recent development in graphene based transparent and 

flexible electrodes has also been mentioned in this chapter. 

 Chapter 3 contain the major experimental part of this dissertation and describes 

the detail synthesis of different carbon nanomaterials like Graphene, Carbon nanotubes 

and graphene-CNT hybrid structure using chemical vapor deposition process. This 

chapter includes the brief description of CVD process parameters for different carbon 

nanomaterials growth. Furthermore, it also contains the detail process of graphene 

transfer and graphene-CNT hybrid structure transfer on different flexible or transparent 

flexible substrates using different facile and scalable methods. The electrochemical 
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measurements like cyclic voltammetry and electrochemical impedance spectroscopy 

experimental set up is also included in this chapter. This chapter also covers the in detail 

experimental procedure of dye sensitized solar cell fabrication and the current-voltage (J-

V) characterization method.  

 Chapter 4 addresses the detail structural characterization of different carbon 

nanostructures on different substrates. The detail structural characterizations includes, 

scanning electron microscopy (SEM), high resolution transmission electron microscopy 

(HRTEM) of graphene, carbon nanotubes and graphene-CNT hybrid structures. Atomic 

force microscopy and RAMAN spectroscopy was characterized for the carbon 

nanostructures also included in this chapter.  

 Chapter 5 describes the surface functionalization protocols of graphene nano-

structures and their structural and electrochemical characterizations. This chapter also 

addresses the in detail analysis of functionalized graphene for solar cell applications with 

detail mechanism study. In detail experimental techniques along with the charge transfer 

mechanism and the calculated electrochemical parameters are also described in this 

chapter. A brief application of graphene-CNT as cathode of flexible field emission 

devices was also described in this chapter. Finally, Chapter 6 and 7 describes the 

summary and the scope for the future work of this dissertation respectively.  
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CHAPRER 2 

BACKGROUND AND LITERATURE REVIEW 

2.1. Graphene 

 No doubt that graphene is rapidly proliferating in the horizon of materials science 

and condensed matter physics and bringing up a new paradigm of relativistic quantum 

phenomena due to is unusual electronics properties. Since its invention, graphene, two-

dimensional (2D) graphitic allotropes of carbon creates an immense research interest due 

to its exotic electronics, optoelectronics, thermal and mechanical properties1-5. The most 

fascinating properties of graphene include room temperature quantum Hall effect6, 7, 

ballistic charge transport2, 8, high charge carrier density1, 8, tunable band gap9, high 

thermal conductivity10 and ultra-high transmittance11, 12. Graphene can be defined as a sp2 

bonded two dimensional honeycomb graphitic carbon materials whose properties are 

strictly varied with its number of layers.  The mother of all the graphitic allotropes are 

consisting of a single sheet of graphite called graphene as shown in Figure 2.1. Figure 2.1 

illustrate the single graphite layer, when forms sphere is well known as 0 (zero) -

dimensional fullerene, when rolled up with respect to its axis forms 1-dimensional 

cylindrical structure, known as carbon nanotube and when it exhibit the planner 2D 

structure from one to few layers stacked upon each other called graphene. More 

specifically, graphene has a high electron (or hole) mobility with low Johnson noise 

(electronic noise generated by the thermal agitation of the charge carriers inside an 

electrical conductor at equilibrium, which appears regardless of any applied voltage), 

allowing it to be utilized as the quantum channel in a field effect transistor (FET). The 
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high optical and electrical conductivity promote graphene as a candidate for transparent 

conducting electrodes, required for applications in touch-screens, liquid crystal displays, 

organic photovoltaic cells and organic light-emitting diodes (OLEDs). Moreover, 

remarkable mechanical properties as well as flexibility of graphene are an added 

advantage of producing flexible transparent conducting electrodes for future transparent 

electronics.  Owing to its unusual electronic spectrum, graphenes’ properties are strictly 

dependent upon the number of layers, surface defects, ripples, substrate orientations and 

the formation of edge plane structures as well. In so called materials science point of 

view one graphitic layer is well known as monolayer or single layer graphene and two 

and three graphitic layers are known as bi-layer and tri-layer graphene respectively. More 

than 5 stacked layers up to 10 layers graphene is generally called as few layer graphene, 

around ~20-30 layered stacked graphene is addressed as multilayer graphene and more 

than 100-200 layers graphene structure are called as thick graphene or nano-crystalline 

thin graphite. This chapter reviews in detail the crystal structure, electronics properties, 

mechanical properties, thermal properties and electrochemical properties of graphene 

with current research status and future prospects. In addition to this a brief overview of 

recent research progresses of graphene will be described along with the future goal 

projected to the next generation electronics devices correlating the entire goal of this 

dissertation.  
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Figure 2.1: An atomic sheet of honeycomb carbon layer (top); when it forms a sphere, 

called 0-dimensional fullerene (left); cylindrical structure known as carbon nanotubes 

(center); and forms graphite when the layers stacked to each others in 3-dimension 

[Reprinted with permission from Reference 1].   

 

2.1.1. Graphene electronic structure and crystal lattice 

 Graphene lattice is consists of sp2 hybridized three in-plane (σ) (known as 

graphene basal plane) bonds/atom which are extremely strong and form the rigid 

backbone of the hexagonal honeycomb structure (as shown in Figure 2.2a).  Due to the 

strong in plane sigma bonds, graphene exhibit the excellent in-plane mechanical 

properties like elasticity, young modulus, flexural strength13 etc. The unusual electronic 

properties of graphene is owing to its partially filled p z orbitals (known as π orbitals) 

perpendicular to the basal plane (as shown in Figure 2.2b). When stacked, this 
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unsaturated π orbitals results in the layer dependent electronics properties like semi 

metallic behavior, band gap openings landau level quantization etc14-18. Similarly, the 

substrate dependent electronics properties and phonon dispersions of graphene are also 

due to the partially filled pz orbitals which forms various unsaturated dangling bond with 

different substrates surfaces as reported elsewhere19.  

 

Figure 2.2: (a) Honeycomb single layer graphite lattice representing graphene crystal 

structure; (b) atomic structure of graphene illustrating in-plane sigma bond and out of 

plane pi bonds [Reprinted with permission from Reference 20]. 

 

 The stacking of graphene layers occurred in three different ways to create 

materials like bi-layer, tri-layer, few-layer, multi-layer graphene and even graphite. Those 

three are most commonly named as: hexagonal or AA . . . stacking, Bernal or AB. . . 

stacking and rhombohedral or ABC. . . stacking as described earlier20. In this context, 

Bernal stacking is the minimal energy stacking order and most abundant form (80%) in 

single crystal graphite, which are strictly tailor the graphene’s band gap opening and 

electrical properties 21, 22. 

 

(a) (b)
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2.1.2. Properties of Graphene 

 High crystalline pristine mono-atomic graphene exhibits unusual intrinsic 

electronic properties owing to its semi-metallic behavior as the k and k/ bands touches in 

a single point at the Fermi Level (Ef) at the each of the corners of the Brillouin zone as 

shown in Figure 2.3 6. Moreover, graphene became the center of attraction of condensed 

matter physicist owing to its’ resemblance of the Dirac spectrum for mass-less fermions6 

and Landau level quantization under applied vertical magnetic field to the graphene basal 

plane 2. On the other hand, bi-layer graphene is of great research importance because its 

bandgap can be opened up to 250 meV by applying an external vertical electric field. 

Furthermore, most fascinating electronics properties of graphene include its high 

conductivity, significant carrier mobility, and quantum hall effect.  

 

Figure 2.3: Electronics band structure of graphene. The schematic illustrates the touching 

of K and K/ point at the Brillouin Zone a representative of semi-metallic behavior of 

graphene [Reprinted with permission from Reference 23].  
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Intrinsic graphene is characterized as a semi-metal or zero-gap semiconductor exhibiting 

remarkably high electron mobility at room temperature, with experimentally reported 

values in excess of 15,000 cm2 V−1s−1 8. The electron and hole mobility of graphene are 

the same and independent of the temperature in between 10K to 100K6, 24.  Hence, the 

scattering by intrinsic defects plays predominant role in limiting graphenes’ intrinsic 

carrier mobility which is also dependent upon its charge carrier concentrations25, 26. 

Similarly, at low dimensions, phonons are also play an important role in charge scattering 

at room temperature. However, it has already been demonstrated that the mobility in bi-

layer graphene exhibiting ~ 200,000 cm2V−1s−1 at a carrier density of 1012 cm−2 due to the 

weak electron phonon scattering24. Table 2.1 shows the recently reported values of carrier 

mobility of graphene under different condition.  At its outset, graphene possess lowest 

ever specific resistance which is even less than the Silver (Ag)25. 

 Monolayer graphene exhibits ultra-high transparency through the entire light 

spectrum from ultra violet (UV) to near infra-red (NIR) region. On the other hand, the 

optical transparency is decreasing with increasing number of layers. For example, 

monolayer graphene exhibits ~97% optical transmittance27 with ~2.2 KΩ/sq sheet 

resistance. Furthermore, transmittance and sheet resistance are inversely proportional to 

the number of graphene layers. More specifically, bi-layer, tri-layer and 4-layers 

graphene possess ~ 95%, ~ 92% and ~ 89% transmittance with corresponding sheet 

resistance of 1 KΩ/sq, ~700 Ω/sq and ~400 Ω/sq respectively as reported elsewhere 27. 

The Table 2.2 represents an overview of recent research status of sheet resistance and 

transmittance of graphene electrodes.  
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Table 2.1: Demonstrates a brief summary of Graphene mobility reported till date.  

Graphene 
Synthesis 
Process 

Numbe
r of 

graphe
ne 

layers 

Transfer 
Process 

Mobility ( cm2V-1s-1) 

References 

Field Effect Hall 

CVD grown 
graphene 

on Pt 
1 Bubbling 

Transfer 7,100 N/A 28 

CVD grown 
graphene 

on Cu 
1-few 

Chemical 
Transfer to 

SiO2/Si 

3600 under 
VGS = -3.2 V 

and 
2860 under 
VGS = 3 V 

N/A 29 

CVD grown 
graphene 

on Cu 
1 

Chemical 
Transfer to 

SiO2/Si 
4000 N/A 30 

CVD grown 
graphene 

on Cu 
1 

Chemical 
Transfer to 

SiO2/Si 
4050  31 

CVD grown 
graphene 

on Cu 
1 

Chemical 
Transfer to 

SiO2/Si 
- 

7350 at 
6K 

5100 at 
295K 

32 

CVD grown 
graphene 

on Ni 
1-few 

Chemical 
Transfer to 

SiO2/Si 
- 3700 33 

Epitaxial 
Graphene 

on SiC 
1-few N/A - 2000 at 

27K 
34 

Epitaxial 
Graphene 

on SiC 
1-few N/A - 

1500000 
(000ī) 

 
5800 on  
(0001) 

At 300 K 

35 

Suspended 
Grpahene 1 layer N/A 200,000 - 36 
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Mechanical
ly 

Exfoliated 
1 layer Scotch tape 

method 10,000 - 8 

 

Table 2.2: Demonstrates a summary of recent reports on transmittance and sheet 

resistance of graphene electrodes prepared using different synthesis techniques. 

Graphen
e on 

Different 
Substrat

es 

Synthesi
s Process 

Substr
ate 

Used 
For 

growt
h 

Transfer 
Method 

Sheet 
Resist
ance 

(Ω/sq.
) 

% 
Transmi

ttance 

Referenc
es 

Chemical Vapor Deposition 

Graphen
e on 
glass 

 

CVD Ni Chemical 
Transfer 620 85 37 

Graphen
e on 

quartz 
CVD Ni Chemical 

Transfer 280 80 33 

Graphen
e on 
PETa 

CVD Cu 
Hot Press 

Lamination 
method 

1.1k 89 38 

Graphen
e on 

quartz 
CVD Cu Chemical 

Transfer 
~200

0 90 27 

Graphen
e on Cu CVD Cu Roll to Roll 

transfer ~125 97.4 32 

Chemical methods/RGO 

Graphen
e on 

quartz 

RGOb-
Chemica
l Process 

- Spin coating 800 82 39 
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Reduced 
Graphen
e Oxide 

RGO 
chemica
l process 

- Dip coating 1.8k 80 12 

Graphen
e RGO - Spin coating 105 65 40 

a Polyethylene tetrapthalate; b Reduced Graphene oxide 
 

 Graphene exhibit remarkable mechanical properties and well known as one of the 

strongest materials ever measured. In the year 2009, Lee et. al. measured the breaking 

strength of graphene ~ 42 Nm-1 which resemblance of the graphene’s in-plane theoretical 

strength which represents almost defect free graphene sheet. Using atomic force 

microscopy (AFM) tips they further measured the Young’s modulus, third-order elastic 

stiffness and   intrinsic strength of suspended graphene is ~ 1 Tpa (150,000,000 psi), -2.0 

TPa and 130 GPa respectively which are higher than steel 13.   

 

2.2. Graphene synthesis 

2.2.1. Overview 

 Till date, several methods have been developed for graphene synthesis. However, 

Mechanical Cleaving (Exfoliation)8, Chemical Exfoliation41, 42, Chemical Synthesis43 and 

Thermal CVD Synthesis  are most commonly used methods for graphene synthesis. 

Some other techniques are also reported so far like unzipping nanotube, microwave 

synthesis etc; however, those techniques are further required to explore more. The 

overview of the graphene synthesis techniques are shown in the schematic flow chart in 

Figure 2.4. In the year of 1975, few graphite layers was synthesized on single crystal 

platinum surface via chemical decomposition methods but not designated as graphene; 
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however, due to lack of characterization techniques or may be the scarcity of its possible 

applications the graphene research were completely ignored that time44.  

 

Figure 2.4: A schematic representation of the overview of different graphene synthesis 

methods [Reprinted with permission from Reference46].  

 In 1999, mechanical cleaving of HOPG by AFM tips was first developed in order 

to fabricate few layers to monolayer graphite 45. Nevertheless, mono layer graphene was 

first produced and reported in the year 2004 where simple scotch tape was used for 

repeatedly sliced down the graphene layers on any substrate 8. This technique was found 

as capable enough to produce different layers of graphene and relatively easy fabrication 

technique. 

 Mechanical exfoliation using AFM cantilever also found equally capable of 

fabricating few layer graphene but the process is limited to production of graphene 

thickness ~10 nm which is comparable to 30 monolayer graphene or nano-crystalline 

graphite. Similarly, chemical exfoliation is another method where solution dispersed 

graphite flakes are exfoliated by inserting large alkali ions between inter-planner layers. 

On the other hand, reduced graphene oxide method (RGO) consist of several fabrication 
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steps namely preparation of graphite oxide, disperse in a solution down to the monolayer 

followed by reduce it with hydrazine are generally called as reduced graphene oxide.  

Like, carbon nanotube synthesis, catalytic thermal chemical vapor deposition (CVD) is 

proved to be the best for large scale graphene fabrication where thermally dissociated 

carbon is deposited on to a catalytically active transition metal catalyst surface to form a 

honeycomb graphene lattice at elevated temperature under ambient or low pressure. 

When thermal CVD process is carried out under resistive heating furnace, it is known as 

thermal CVD, and when the process consists of plasma assisted growth called Plasma 

Enhanced CVD or PECVD. Particularly, all the techniques stand popular in their 

individual field of researchers. However, all synthesis methods have their own 

advantages as well as disadvantages depending upon the desired properties and 

applications of graphene. For example, mechanically exfoliation method is capable to 

fabricate different layers of graphene (from monolayer to few layer), whereas the 

reliability of obtaining similar structure throughout the substrate is quite difficult. 

Moreover large area, defect free graphene production using mechanical cleaving is a 

serious challenge at present scenario. Furthermore, chemical synthesis processes (that 

involve the synthesis of graphite oxide and reduced it back to graphene in a solution 

disperse condition) are low temperature processes which make easier to fabricate 

graphene on any types and dimensions of substrates at ambient temperature, particularly 

on polymeric substrates (those have low melting point). However homogeneity and 

uniformity of the large area graphene synthesized by this method is not up to the mark. 

Surface coated with a solution disperse graphene exhibit several layers stacked to each 

other results in the formation of inhomogeneous film that can gradually degrades the 
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optical and electrical properties of the film. Furthermore, graphene synthesized from 

reduced graphene oxides (RGO) are often causes incomplete reduction of graphite oxide 

(which is insulator) results in the successive degradation of electronics and 

optoelectronics properties depending on its degree of reduction. In contrast, CVD 

methods are comparatively advantageous for large area device fabrication and favorable 

for future CMOS technology by replacing Si47. Epitaxial Graphene or thermal 

graphitization of a SiC surface is one of the candidate, but the excessive high process 

temperature and inability to transfer on any substrates is a serious drawback of this 

method.  In this context, thermal chemical vapor deposition methods can comparatively 

produce uniform layer of thermally chemically catalyzed carbon atoms deposited on to 

the catalyst metal surfaces and thereby can be transferred over a wide range of substrates. 

However, graphene layer controllability and low temperature graphene fabrication on any 

substrates, (specifically, substrates with low melting point, like polymer substrate) is 

another serious limit of this technique.  

 

2.1.2. Different methods for graphene synthesis 

2.1.2.1. Mechanical exfoliation, chemical exfoliation and RGO method 

 Mechanical exfoliation was the first recognized method of Graphene synthesis 

and is one of the top down techniques in nanotechnology, by which a longitudinal or 

transverse stress is generated on the surface of the layered structure materials using 

simple scotch tape or AFM tip in order to slice down a single or few layers from the 

material on to the substrates. Graphite interlayer distance and interlayer Van-der-Walls 

bond energy is 3.34 Å and 2 eV/nm2 respectively and due to the interlayer weak Van-der 
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wall force it is relatively easy to separate an atomic layer thin graphite from its bulk. For 

mechanical cleaving, 300 nN/µm2 external forces is required in order to separate one 

mono-atomic layer from graphite, which is subsequently low 48. In the year 1999, Ruoff 

et. al.45 first proposed the mechanical exfoliation technique of plasma etched pillared 

HOPG using AFM tip to fabricate layer graphite down to the single layer which later on 

named as graphene. Later on an abrupt impact has been created on the field of carbon 

nano-electronics when K. S Novoslov and A. K. Geim from Manchester University first 

reported the isolation of single graphene on SiO2/Si substrate and its unusual electronics 

properties. Their novel approach of synthesis and extraordinary properties of thin flake of 

simple graphite brought them Nobel Prize in Physics in the year of 2010 49. The graphene 

produced by this adhesive tape exfoliation technique was used for Field effect Transistor 

(FET) brought up a research boom in the field of carbon nanoelectronics. Now days the 

number of publications based on graphene research increased exponentially due to its 

scientific and technological significances for future applications. In this context, the 

process can further be extended for fabricating some of the layered structured materials 

like Boron Nitide (BN), Molybdenum Di-Silicide (MoS2), NbSe2 and Bi2Sr2CaCu2O 50.  

 Chemical exfoliation is another top down approach by which alkali metals are 

intercalated in the graphite structure in order to separate out the 2D graphene layer out of 

its 3D structure. Alkali metals are periodic table are highly reactive and can easily forms 

graphite intercalate structure by forming various stoichiometric compounds of graphite 

with wide range from lower to higher stage of intercalated compounds. R. B. Kanar and 

his research group from UCLA, first reported their work in Science42 on chemically 

exfoliated few layer graphite (later on named as graphene) using potassium (K). 
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Potassium (K) forms KC8 intercalated complex (KC8) when reacting with graphite at 

200oC under inert helium atmosphere (Less than 1 ppm H2O and O2).  The interacted 

compound KC8 undergoes an exothermic reaction when reacting with the aqueous 

solution of Ethanol (CH3CH2OH) as per the equation 2.1. 

KC8 + CH3CH2OH         8C + KOCH2CH3 + 1/2H2    (2.1) 

 Later on, the area was further explored using the exfoliation process with a variety 

of alkali metals like Cs and their alloys like NaK2
51. Unlike Li and Na, K ionization 

potential (4.34 eV) is less than graphite’s electron affinity (4.6 eV), thus react directly 

with graphite in order to form intercalated compounds. Cs (3.894 eV) possesses lower 

ionization potential than K (4.34 eV), therefore, react with graphite more violently than 

potassium which brings into a significant improvement in intercalation of graphite at 

sufficiently low temperature and pressure. Similarly, Sodium-potassium alloy (Na-K2) 

form eutectic melt at -12.62oC, expected to occur rapid exfoliation reaction at room 

temperature which can separate out the graphene layers of thickness from 2 nm to 150 

nm. 

 Chemical Synthesis is a top-down indirect synthesis method of graphene and 

more preciously, first ever method which demonstrated the graphene synthesis by 

chemical route.  In the year 1962, Boehm et al. first demonstrated monolayer flakes of 

reduced graphene oxide which is recently acknowledged by the graphene inventor A. K. 

Geim52-54. The method involve the synthesis of a graphite derivative namely graphite 

oxide (GO), disperse the flakes by sonication followed by reduced it back to graphene. 

Three typically used for GO synthesis methods are knows as follows: i) Brodie55, ii) 

Staudenmaier56 , and iii) Hummers and Offeman57 method. All three methods involve 
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graphite as a precursor material which turns into GO in presence of strong acids and 

oxidants. The degree of the oxidation can be varied by the reaction conditions (e.g. 

temperature, pressure etc.), stoichiometry and the type of precursor graphite used for the 

reaction. Despite of a wide range of research has been carried out already to describe the 

atomic structure of GO, still several models are under debate to explain the atomic 

structure of GO. GO was first prepared by Brodie et. al.55, a chemist of Oxford 

University, in the nineteenth century by mixing graphite with potassium chlorate and 

nitric acid. However, the process contains several steps which are time consuming, 

unsafe and hazardous. In the year of 1958, W .S. Hummers 57 developed the oxidation 

method for graphite by the mixing graphite with sodium nitrite, sulphuric acid and 

potassium permanganate, very popular as Hummers method. 

 As graphite turns into graphite oxide, the interlayer spacing is increased two or 

three times higher than the graphite. For graphite, the interlayer distance is 3.34 Å which 

expanded up to 5.62 Å after 1 hour oxidative reaction and then further expands to 7.0 

±0.35 Å upon prolonged oxidation to 24 hours.  Boehm et. al. reported that the interlayer 

distance can be further increased by inserting polar liquids e.g. sodium hydroxide. 

Therefore it helps to expand further interlayer distance which in fact separates a single 

layer from the bulk GO. Furthermore, GO reduces back to graphene by reacting with 

hydrazine hydrate. The whole process flow chart is illustrated as follows in the schematic 

in Figure 2.5.  
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Figure 2.5: A schematic representation of the process steps of graphene synthesis by 

chemical method [Reprinted with permission from Reference46]. 

 Chemical reduction process is carried out using dimethylhydrazine or hydrazine 

in the presence of either polymer or surfactant in order to produce homogeneous colloidal 

suspensions of electrically conducting graphene. The method was brought into focus 

again in the year of 2006 when Ruoff and his coworkers from Northwestern University, 

was the first to report the solution-based process for producing mono-atomic graphene 

layer58, 59. GO is a stacked layer of squeezed sheets with AB stacking which exhibit 

oxygen containing functional group like hydroxyl and epixoide to their basal plane when 

highly oxidized as reported in a separate report 60. Stankovich et al. showed that chemical 

functionalized GO flakes by organic molecules can homogeneously suspended in organic 

solvents 59. They reported that reaction of graphite oxide with isocyanate group results in 

isocyanate-modified graphene oxide sheets those are well dispersed in polar solvents like 

DMF, N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), 

hexamethylphosphoramide (HMPA) etc. Xu et. al.61 further reported the colloidal 

suspensions of chemically modified graphene (CMG) decorated with small non-

covalently functionalized organic molecules like 1-pyrenebutyrate (PB-). In this regard, 

few reports have also been found related to the stabilizers or surfactants free synthesis 

methods. Li. et. al. demonstrated the surfactants and stabilizer free aqueous suspension 

(0.5 mg ml-1) of RGO sheets under basic conditions (pH 10)62. Tung et. al. reported 
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oxygen functionalities free GO and restore the planar geometry of the single sheets of 

graphene at large scale. In this report, large-scale (~20 mm × 40 mm) solution processed 

production of single-layer chemically converted graphene (CCG) over the entire area of a 

SiO2/Si wafer has been demonstrated63. However, the approach of Tung et al. is 

somewhat different as they reduced as well as dispersed the GO film directly in hydrazine 

which creates hydrazinium graphene (HG) through the formation of counter ions. 

Nevertheless, the process needs to be improved further for large scale, defect free, high 

purity graphene for its feasible applications in nano-electronics. In this regard, Liang et. 

al.  proposed an interesting method for wafer scale graphene fabrication by cut-and-

choose transfer printing method for integrated circuit, but still uniform large scale 

graphene fabrication with controlled layer is still under challenge64. 

 Chemical Synthesis or RGO process is versatile as it is a low cost solution-phase 

method, scalable, and would be capable of depositing graphene in wide range of 

substrates which is comparatively difficult using other process as mentioned before. 

Furthermore, the method can be extended to produce graphene-based composites/films 

which are the key requirement for many other composite applications, such as thin-film 

transistors, transparent conductive electrodes in order to replace costly, fragile and toxic 

existing indium tin oxide. 

 Chemical synthesis possesses several advantages like, low temperature process 

therefore, readily processed on any polymeric substrates. The low temperature process 

always beneficial to control the wide range of large scale fabrication. In-situ 

functionalization of graphene sheet with different polymers, organic functional group, 
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hydrophobic and hydrophilic groups can easily carried out using this method for several 

chemical and bio applications. Despite all, the most exciting features of this process is 

low cost as graphite is abundant (supplied natural graphite worldwide has been estimated 

at 800M tones) in the nature. Free Standing graphene produced by this method also 

exhibit high tensile strength up to 42 GPa. However, the chemical synthesis process has 

several disadvantages like small yield, defective graphene, partially reduced GO which 

readily degrade graphene properties. On the other hand, the process involves lot many 

hectic and tedious steps which involve the handling of hazardous explosive chemicals 

etc. During chemical reduction of GO, incomplete reduction dictate the possible 

deterioration of the conductivity, charge carrier concentration, carrier mobility etc. As 

GO is an insulator, a sharp degradation in electrical properties are observed based on the 

degree of reduction. Similarly, introduction of defects in the final product results in the 

lowering in electronics properties of graphene. Although GO well disperse in a solvent 

due to the hydrophilic ions are attached with the basal planes, however, to prepare 

suspended pure graphene is another challenge of this synthesis technique as monolayer 

graphene exhibits high surface area, therefore readily segregated when reduced. During 

the chemical synthesis, complete removal of residue amount of chemicals like, acids, 

bases, hydrazine etc. are difficult; therefore, the purity of the final product is still not up 

to the mark.  

 Several other methods of graphene synthesis have already been established. Few 

of them are as follows: unzipping nanotubes, epitaxial growth on SiC, direct pyrolysis 

etc. The unzipping of nanotube yields the thin elongated strip of graphene with straight 

edges, named as graphene nano-ribbons (GNR). Graphene, when narrowing down along 
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the width, deliberately transforms its electronic state from semimetals to 

semiconductors65. Therefore the electronics properties of thin strip of graphene nano 

ribbons are also under vigorous investigation at this moment66, 67. Depending upon the 

starting nanotube, whether they are multi-walled or single walled, final product will be 

multi-layered graphene or single layer graphene respectively. 

 

2.1.2.2. Graphene synthesis using chemical vapor deposition process 

 Thermal Chemical vapor deposition (CVD) is a high temperature chemical 

process by which a substrate is exposed to volatile precursors/gases which when react to 

each other formed the desired product deposited onto the substrate surface.  The process 

is well known in the academic and industry as a thermal chemical vapor deposition 

process or chemical vapor deposition process. In the early research of graphite synthesis 

Eizenberg  and his coworkers reported  the graphite layer formation on Ni (111) at high 

temperatures68. They reported the carbon phase condensation on Ni (111) with detail 

thermodynamic analysis which shows the enthalpy and entropy of carbon segregation on 

Ni (111) is ∆Hseg = -0.55 +/- 0.01 eV; ∆Sseg = 0.17+0.13-0.07 k respectively. Finally, they 

concluded that, the carbon phase segregation on Ni (111) is solely depending upon the 

rate of quenching.  

Table 2.3: Represents a brief summary of graphene synthesis status using CVD method. 

Substra
te used 

Substrate 
Preparatio

n 

Growth 
Temperat
ure (oC) 

Growt
h 

Pressu
re 

Precursor 
Materials 

No. of 
Layer of 
graphen

e 

Referen
ce 

Cu 
Annealing 

at 990oC, 20 
mbar 

880-980 0.1-1 
mbar 

CH4, Ar and 
H2 

1- Few 
layers 

29 
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Cu Annealing 
at 1000oC 1000 1 atm 

pr. 
CH4, H2 and 

Ar 
Few 

Layers 
69 

Cu Annealing 1000 500 
mTorr 

CH4, H2 and 
Ar 

Monolay
er 

31 

Cu 

Chemical 
Treatment 
using 1M 
acetic acid 

850 1 torr 

Liquid  
precursors 

like 
methanol, 

ethanol, and 
propanol 

Monolay
er 

70 

Thin 
film Cu 

Epitaxial 
Thin film on 

Alumina 
1000 700 

mTorr CH4, H2 
Monolay

er 
71 

Cu Spin coating 
with PMMA 800-1000 30 

mTorr 

Solid 
Carbon: 

poly(methyl 
methacrylat

e) 
(PMMA) 

Monolay
er 

72 

Ni Thin 
Film - 1000 - CH4, H2, Ar 1- F

ew layers 
33 

SiO2/Si 

100-400 nm 
e-beam 

evaporated 
Cu 

1000 
100-
500 

mTorr 
  73 

SiO2/Si 

Formation 
of diffusion 
couple made 

up of   
carbon-

nickel/subst
rate 

25-160 - 
carbon-

nickel/subst
rate 

1-few 74 

Ni-Mo 
Alloy - 1000 1 atm 

pr. CH4, H2 
Monolay

er 
graphene 

75 

Pt - 750 1 atm 
pr. CH4, H2 

Monolay
er 

28 
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Several other reports were also found regarding different condition and morphologies of 

graphene formation over several noble and transition metals. Large area graphene 

synthesis traverse a unique direction when Ruoff group discovered catalytic graphene 

deposition on Cu occurs at elevated temperature, by decomposition of hydrocarbon 

gases31. They showed single layer uniform large area (1 cm2) graphene growth on Cu foil 

by thermal CVD technique. This method involve heating the quartz tube furnace ~ 

1000oC in hydrogen atmosphere with pressure of 40 mTorr under a 2 sccm flow, 

annealed the Cu film at 1000oC followed by introducing 35 sccm of methane gas (CH4) at 

~500 mTorr ambient pressure. The following Table 2 illustrates different graphene 

synthesis techniques in CVD using different catalyst, temperatures, pressures, gas flow 

rates etc by a wide number of research groups worldwide reported recently.  

2.3. Graphene transfer to any substrates 

 Due to some technical constraints as grown graphene layers cannot be used for 

electronics applications and hence need to be transfer in different dielectric substrates. 

Presently, the major graphene transfer process is chemical floating process. Different 

other methods like hot press lamination methods for graphene/polymer flexible film and 

roll to roll production of graphene on Flexible PET has also been demonstrated. Several 

graphene transfer processes like stamping technique and bubbling transfer also proposed 

for large scale direct transfer methods32, 38. Bae et al.32 reported the roll to roll production 

of graphene of area as large as 30 inch diagonal length as shown in the Figure and 

demonstrated as touch screen panel. The transfer process involve the following steps: i) 

Attachment of a thermal release tape on the top surface of Cu foil coated with graphene 
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ii) Etched away Cu using Cu-etchant iii) then the thermal release tape was inserted 

between the rollers together with a target substrate and finally, iv) exposed the whole 

system together in a mild heat (90–120 oC).  They demonstrated the transparent 

conducting film of transparency ~ 97.4% and sheet resistance ~ 125/sq.  

2.4. Graphene: doping and functionalization: tailoring properties 

 Till date doping of graphene or functionalization of graphene create a lot research 

interest in order to tailor graphenes’ properties for further device applications. Table 2.4: 

summarizes the different doping elements with their corresponding effects on 

development of graphene properties. Correspondingly, several other reports are also 

found based on graphene functionalization with poly (m-phenylenevinylene-co-2,5-

dioctoxy-p-phenylenevinylene)(PmPV)96, 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N[methoxy(polyethyleneglycol)-5000](DSPE-mPEG) 97, poly(tert-

butyl acrylate) and so on. In view of technological applications, several recent reports are 

found based on the poly(N-vinyl pyrrolidone) graphene naocomposite for humidity 

sensing98, GO-polymer for organic solar cells99, Dye sensitized solar cell100, 101 Organic 

memory devices102, Li ion battery103 and so on. Apart from the stable dispersion of 

graphene with different polymer and surfactants, some recent reports also available based 

on the modification of graphene with inorganic nano-particles like Au104, TiO2
105, 106, 

Fe3O4
107and CuO108 etc.  
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Table 2.4: Illustrates the list of doping elements with their corresponding effect on the 

improvement of graphene properties. 

Graphene 
doping or 

functionalization 
with 

Properties Applications References 

Chlorine (Cl-) 
 

The graphene 
resistance increases  
4 folds of magnitude 

and a band gap 
appears upon 

photochlorination 
 

Band Gap opening 

Electronics and 
Photochemical 

 
 

Field Effect 
Transistors 

 
 

76 
 
 
 
 
 

Bromine (Br-) 
 

Band gap opening 
 
 

Work Function 
Shifts, band gap 

formation 
 

Semiconductor 
technology, Sensors 

 
- 
 

77 
 
 
 

78 
 

Iodine (I-) 
 

Work Function 
shifts, band gap 

formation 
- 

78 
 

Sodium (Na+) 
 

Work function 
Changes - 79 

Potassium (K+) 
 

charged impurity 
density can be 
controlled by 

potassium doping 

- 80 

Fluorine (F-) 
 

p-type doping, work 
function changes 

 
Perfluorographane 

(CF) formation with 
the calculated band 

gap ~3.07 eV 
 

Excessive hole 
doping 

Electrochemical 
applications, 

 
 

Electronics and 
optoelectronics 

applications 
 

Transistors 
applications p-n-n 

device 

69 
 
 
 
 

81 
 
 
 

82 
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Nitric Acid 
(HNO3) 

 

Conductivity 
Increases 

Transparent 
Conducting Oxide 

83 

Gold 
nanoparticles 

(Au) 

Conductivity 
Increases 

Transparent 
Conducting Oxide 

84 

Nitrogen (N) 
 

charge-carrier 
densities 

and enhance the 
electrical or thermal 

conductivities 
 

n-type doping 
 

Electro-catalytic 
activity 

Electrochemical 
Sensing, energy 

storage 
 

Li ion battery 
 

Fuel Cells 

85 
 
 

86 

Boron (B) 

Electro-catalyst 
 

Electronics Structure, 
Carrier 

concentrations 
 

p-type doping 

Fuel Cells 
 
- 
 
 

Li ion battery 

87 
 

88, 89 
 
 

85 

Oxygen (O) 

Hole doping 
 

electron–hole 
transport asymmetry, 
intrinsic energy gap 

- 
 

Electronics 

90 
 
 

91 

Hydrogen Enhances thermal 
conductivity   

Electronics, heat 
dissipation 

92 

Sulfur (S) Enhances Electro-
catalytic activity 

Oxygen reduction for 
fuel cells 

93 

Selenium (Se) Enhances Electro-
catalytic activity 

Oxygen reduction for 
fuel cells 

93 

Toluene 
(C6H5CH3) 

toluene acts as a 
donor, 

but that the transfer 
of electrons can be 

controlled by an 
electric field, Fermi 

energy shift 

Electrochemical 
Charge transfer 

94 
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Sulfonated 
polyaniline Electro-catalyst 

Electro-catalysis and 
electrochemical 

sensing 
 

95 

 

2.5. Graphene carbon nanotube hybrid structure synthesis: status & prospects 

 Graphene and carbon nanotubes(CNTs) have significant potential for applications 

in electronics, but the discontinuities in the metal to graphene (or CNTs) contacts is the 

primary source for the reduction in thermal and electrical conductivity. In recent years 

two-dimensional (2D) carbon nano structure, graphene, and one-dimensional (1D) carbon 

nanotubes(CNTs) have initiated enormous research activities due to their exceptional 

properties like high current carrying capacity, ballistic charge transport, high thermal 

conductivity, chemical inertness, high mechanical strength and excellent electron 

emission at nanometer scale 1, 4, 5, 8, 23, 109-119. The outcome of those exceptional properties 

have led to demonstration of various prototype devices in every aspect including field 

emission cathode, sensors, alternative energy generations and storage and so on 5, 110-112, 

116, 118-120. Despite of the applications based on individual graphene and individual CNT, 

applications based on the hybrid composite structure of graphene and CNT have also 

been proposed in few reports to utilize both the planner and axial properties 117, 118, 121. 

This hetero-junction structure of graphene and CNT combine their individual properties 

in nano-scale including both planar and axial directions respectively. As we know, the 

thermal conductivity of a multi wall nanotube (MWNT) is ~3000 W/mK which reduces 

by several orders even up to 20 W/mK or lower when the MWNTs forms as a mat or 

forest structure 116, 117. The discontinuities in the metal contacts joining the bottom part of 

CNT mat structure forms the schottky junction which is the primary reason for the 
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reduction in thermal conductivity 116, 117. Similarly, electrical conductivity is also affected 

due to the hybrid junction formed between the CNT and metals (i.e. ohmic or schottky) 

that also influences the electrical transport properties in nano-scale 109, 116, 117, 121-123. Some 

of these limitations can be solved by the unique graphene-carbon nanotube hybrid film, 

consisting of CNTs connected perpendicularly to graphene layers. This hetero-junction 

formed in-situ during the growth process can result in a junction between all the 

concentric walls of the CNT with graphene thus forming an electrically and mechanically 

stable nano-contact. One most interesting approach was found to grow vertically aligned 

MWNTs on spin coated stacked graphene oxide platelets in a two step process in order to 

prepare a composite graphene-MWNT hybrid structure and transfer it to a flexible 

polymer substrate 124. Several hybrid structures have also been demonstrated till date in 

focus to other electronics applications.   

 

2.6. Dye sensitized solar cell 

 Carbon nanomaterials are potential low cost counter electrodes for tri-iodide 

reduction in dye sensitized solar cells due to its good catalytic activity and excellent 

stability. The electrocatalytic reduction I3
- to I- at CE dictating the cathodic activity of 

DSSCs and influences on current generation at photo-anode counter-part through dye-

regeneration105, 120, 125-127. Different allotropes of carbon like Carbon black, amorphous 

carbon, glassy carbon etc. has been demonstrated as unique low cost high stability 

electrocatalytic electrodes for DSSC. The advantages of carbonaceous materials are i) 

chemically inert, ii) high surface area, iii) conductive and iv) electro-catalytically active. 

However, the further improvement of conductivity and catalytic activity of the 
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carbonaceous materials is required for improved performance of DSSCs. In this context, 

MWCNT and SWCNT have been widely proposed as potential materials for dye 

sensitized solar cell counter electrodes as utilizing the high surface area of carbon 

nanomaterials provide greater versatility as a counter electrode in DSSCs.   The potential 

advantages of the carbon nanotubes are their high surface area and high conductivity. 

However, the transparency and the uniform bottom contacts are not up to the mark which 

limits the voltage drops at the CE-electrolyte interface. Moreover the carbon nanotubes 

based DSSC CE possesses low catalytic activities as the surface of the CNTs are not so 

electro-catalytically active.  

 Graphene is newly discovered 2D material exhibits high carrier mobility, good 

mechanical properties, high transparency and excellent thermal stability1, 8, 128-130. To 

date, considerable works have been demonstrated in applications of graphene including 

transistors, super-capacitors, solar cells etc 5, 8, 12, 131, 132. In particular, application of 

graphene as an electro-catalytic electrode in electrochemical solar cells with the enhanced 

efficiency is of great interest12, 99, 101, 133-135. Since graphene has been exhibited 

remarkable transmittance in the entire light spectrum including near infra-red (IR) region, 

it is an added advantage of its application in high efficiency solar cell for absorbing more 

light photons from the solar spectrum12, 38, 136, 137. In addition to this, graphene exhibits 

remarkable mechanical properties with excellent flexibility which can transfer on any 

flexible substrates using several facile and scalable methods32, 38. This versatile 

transformation property remains a promising opportunity for developing light-weighted 

flexible electrodes for flexible electronics32, 33, 38. The transferred graphene layer shows 

excellent continuity in its electrical properties even under different stretching and 
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bending conditions. In this context, there has been substantial interest for applying 

graphene as counter electrode towards tri-iodide reduction would offer enticing 

possibilities in flexible conducting counter electrode for dye-sensitized solar cells 

(DSSCs).  However, the inert graphene basal planes restrict faster charge transfer at the 

counter electrodes-electrolyte interfaces with limited catalytic activities. The surface 

modification protocols, either via chemical modification or physical treatment of 

graphene, are paid great attraction to increase the chemical reactivity of graphene for 

counter electrode for DSSCs100, 134, 138, 139. It has been well reported that graphite 

intercalation compounds (GICs) significantly improve the conductivity and in-plane 

charge transfer compare to the graphite140. Although high in-plane charge conductivity 

and mobility the inert nature of graphene basal plane often restricts the graphene/liquid 

interfacial charge transfer, hence tri-iodide reduction occurs only through their edge 

planes. Thus, surface modification is required for improving their in-line charge transfer 

characteristic and being performed as efficient catalytic counter electrode for tri-iodide 

reduction in DSSCs. Recently, Hasin et.al. report surface modification of graphene using 

water-soluble polymers (polyelectrolyte) whose ionic charge has modifying the surface 

adsorption properties of graphene toward I-/I3
- reduction100. Similarly, Roy-Mayhew et. 

al. demonstrate the enhancement of apparent electro-catalytic activity of graphene by 

functionalize graphene using poly(ethylene-oxide)-poly (propylene-oxide)- 

poly(ethylene-oxide) tri-block copolymer101. Apart from the tri-iodide reduction, other 

Co-based redox couples can be easily reduced at the graphene based CE interface, 

therefore can be used in a wide range of redox electrolytes. However, improved charge 
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transfer characteristic of graphene towards I-/I3
- reduction in DSSCs is still unexplored 

and remains challenge.  
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CHAPTER 3 

EXPERIMENTAL 

3.1. Synthesis of Graphene 

3.1.1. Graphene synthesis using chemical vapor deposition 

 In Thermal Chemical vapor deposition (CVD) process, a substrate is exposed to 

one or mixtures of volatile precursors which dissociate at high temperatures and the final 

byproducts of the reaction is deposited on the substrate surface. 

 

Figure 3.1: (a) Thermal low pressure chemical vapor deposition (LPCVD) system 

(ATOMATE, USA) for graphene growth; (b) schematic representation of the LPCVD 

system. 

Substrates

(a)

(b)
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 The CVD process is very well known in nanotechnology research and widely 

applied in semiconductor industries for the fabrication of complex semiconductor 

devices. In our lab we have one low pressure thermal CVD system which is dedicated for 

the graphene synthesis at different ambient conditions as shown in Figure 3.1a. Figure 

3.1b is the schematic representation of the thermal CVD system as shown in Figure 3.1a. 

The system consist of 2// 99.99% pure quartz tube which is connected with both ends 

using a vacuum sealing clamp. One end is connected with a gas inlet and a pressure 

sensor where as the other part is associated with a roughing pump, one gas outlet 

(exhaust) and a loader. The samples loader is also consist of two horizontally placed 

quartz tubes (in a cantilever configuration) connected with the end part. The whole 

system is covered up with porous alumina (Al2O3) insulation with kanthal heating 

elements which can withstand temperature up to 1000oC.  

 Nanometer thick graphite fabrication on the metal substrates were an well 

established methods using CVD on different metals like, Pt1, Pd2, Ru3, Ir4, Rh2,Co5 and 

Ni6-8. These noble/transition metals surfaces are highly susceptible to absorb carbon and 

formed graphene at high temperature because of the highly catalytic metal surfaces. 

Furthermore, these transition/noble metals have strong electron affinity towards carbon 

and they have strong lattice matched with graphene basal plane, hence used as substrate 

for graphene growth. However, monolayer to few layer graphene growth using CVD 

became very popular recently due to the high quality graphene film can be obtained with 

layer controllability and the process is easy to industrially scalable. 

 Commercial grade Cu foils (99.9% Purity) of different thicknesses 25 -500 µm was 

purchased from NIMROD Hall, USA and sonicate it in 2- propanol, methanol and 
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acetone followed by dry nitrogen spray in each steps. The cleaned substrates were placed 

in a tube furnace and increased the temperature up to 1000oC at a heating rate of 

25oC/min.   

 

Figure 3.2: Schematic showing the process flow of graphene growth process. 

 

 The substrates were soaked at 1000oC for 1 hr in Ar gas atmosphere and slowly 

cooled down to room temperature at a heating rate of 25oC/min. The objective of this 

annealing step is to reduce the inbuilt stress in the Cu foil during cold-rolling process. 

Now the Cu foil is acid treated with hot acetic acid for 20 min in order to remove the 

Cu Foil (25-500µm; 99.9%)

CVD Process

H2, CH4, Ar 

Thermal Annealing 
1000 oC

Annealed Cu Foil

Cu Substrate

Graphene on Cu Substrate
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surface oxide layers followed by the further sonication with 2-propanol, methanol and 

acetone. The cleaned substrates were dried with blowing dry nitrogen carefully to avoid 

the bending and crumpling of the thin foils.  

 

Figure 3.3: LPCVD furnace time-temperature profile with the flow of corresponding 

gases required for graphene growth..  

 

 Now the metal foils were ready to be used for graphene growth. In case of Ni 

metal, we used Ni thin film (thickness ~ 300 nm) on SiOx/Si (500 nm) for graphene 

growth. The thin film Ni was fabricated using CHA e-beam evaporators at room 

temperature deposition with 5 Å/sec deposition rate.  
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Furthermore, the metal foils or thin films were placed inside a 2// quartz tube of a low 

pressure thermal CVD system and increased the temperature up to 1000oC as shown in 

the furnace temperature profile in Figure 3.3.  The ambience of LPCVD furnace was kept 

under the constant flow of inert gas (Ar) and CH4 (methane):H2 (0.25:1) was used as a 

precursor gas mixture for graphene growth at 1000oC for 10 minutes. After the furnace 

was cooled down to room temperatures, the substrates were taken out for further 

structural characterizations and transfer process. 

 

3.1.2. Graphene-CNT hybrid structure synthesis using chemical vapor deposition 

method 

 In past, several other research groups reported the graphene-CNT hybrid structure 

synthesis using two step methods9-11. Kondo et. al. first reported the self organized 

graphene-CNT structure using thermal CVD12.   In-situ synthesis of Graphene-CNT 

hybrid structure was consist of following steps of (i) Substrate preparations, (ii) Thin film 

catalyst deposition followed by (iii) growth of graphene-CNT hybrid structure at high 

temperature using thermal CVD system (Firstnano, USA) as shown in Figure 3.4 a and b. 

The substrate preparation steps consist of the cleaved the boron (B)-doped p+ type SiO2 

(500 nm)/Si (111) substrate (from University wafers, USA) for required size and shape 

using diamond cutter and washed those wafers in a high power sonicator with 2-propanol, 

methanol and acetone followed by dry N2 blowing. The substrates were again cleaned 

using reactive oxygen (O2) plasma etching at 150 W power and 300 mT pressure for 60 

sec. The cleaned substrates were further placed in a CHA ebeam evaporator system and 

pull down the vacuum up to 2.3 x 10-6 Torr. 20 nm Fe Thin films were deposited at a 



 57   
 

deposition rate of 1-2 Ǻ/sec . On the other hand, patterning was done on a SiO2/Si 

substrate using standard photolithography (µPG 101 from Hieldelbergh Instruments) and 

Fe catalyst was deposited on the substrate by varying thickness of ~10 to 30 nm. The 

photolithography process was consist of spin coating the substrates with AZ 1518 

photoresist (Microchem Inc., USA) with spin sped 6000 rpm for 30 sec in order to 

achieve the desire film thickness. The spin coated photoresist were baked at 110oC for 8 

min followed by oven backing at 90oC for 5 min. The photoresist coated substrates were 

placed inside a micro-laser writer for photolithography (µPG 101 from Hieldelbergh 

Instruments) and exposed under laser with 3 mW power in order to fabricate a patterned 

area of size 100 µm x 100 µm. After that, the developing process consists of preparing a 

solution of AZ400K and water (1:4) and mixed it thoroughly followed be dipping the 

exposed substrates for 50 sec. The whole process was optimized by changing the spin 

speed of photo resist, baking temperatures, baking time, laser dose power and developing 

time. It was found that the parameters are well optimized for obtaining very good 

undercut patterning with smooth side walls.  The each row of patterning were further 

covered with mask properly followed by Fe Thin film deposition of corresponding 

thickness of 10 nm, 20 nm and 30 nm. The objective of different patterning over the same 

substrate is to observe the effect of thin film thickness effects on the graphene-CNT 

hybrid structure growth. All the thin film deposition was done under the identical e-beam 

evaporation conditions. The further investigation on this work was found to be very 

justified Fe thin film thickness effect which plays a major role in order to construct the 

hybrid structure was will be discussed in chapter 4 section 4.2.5.  
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Figure 3.4: (a) & (b) Picture showing the atmospheric pressure chemical vapor deposition 

system (FIRSTNANO, USA) for graphene-CNT hybrid structure growth; (c) schematic 

representation of the growth process and gas flow mechanisms at the CVD.  

 

 After the thin film deposition process, Graphene-CNT hybrid structure was 

synthesized on Si/SiO2 substrate, by thermal chemical vapor deposition method. The 

substrates with different catalyst thin film was placed in a 2// quartz tube of an 

atmospheric thermal CVD system (as shown in Figure 3.4c) and purge the ambient 

furnace atmosphere with hydrogen (H2), Ar and ethylene (C2H4) for 15 min.  As shown in 

figure 3.5c, the quartz tube is completely covered with the Al2O3 insulation embedded 

with kanthal heating system.  

(a) (b)

(c)

Quartz Tube
Loader
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Figure 3.5: Temperature-Time profile for graphene-CNT hybrid structure growth with 

corresponding gas flow rates during the growth process. 

 

 The furnace was ramped up to 700oC at a heating rate of 60oC/min and soaked at 

700oC for 1 hr. During the ramping, Ar and H2 gas mixtures were flow constantly in 

order to achieve a oxygen free atmosphere at 760 Torr pressure. Now, Ethylene (C2H4) 

and Argon (Ar) (1:7) of total 800 sccm precursor gas mixtures were flowed inside the 

furnace for ~60 minutes at 700oC under constant pressure of 760 Torr. After completion 

of the growth process, the substrate was cooled under a constant flow of (1000 sccm) Ar 

to room temperature with average cooling rate 7oC/sec. The detailed temperature-time 

profile for graphene-CNT hybrid structure growth is shown in Figure 3.5 with 

corresponding area represents the total flow of gas mixtures.  
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3.2. Graphene transfer  

3.2.1. Graphene transfer on polyethylene tetrapthalate. 

3.2.1.1. Hot press lamination method 

 We used a unique roll to roll transfer process which we recognized as hot press 

lamination technique for graphene transfer. The process is versatile and industrially 

scalable and the process can be easily optimized towards the transfer process suggests 

that the method could be applied to transfer of graphene onto wide range of flexible 

polymer electrodes. The process consist of a combination of hot press lamination of 

graphene/Cu to PET/graphene/Cu where top surface of graphene get attached with the 

flexible Polyethylene Tetrapthalate (PET) film (200 µm) followed by chemical etching 

process. The schematic of Figure 3.6 is briefly demonstrating the process flow chart 

consisting of each and every transfer step. First, Cu foils with graphene were hot press 

rolled with a transparent flexible PET film having thickness ~25-50 μm. A PET film was 

placed on the top surface of the graphene/Cu foil and hot press rolled by a hot press roller 

followed by etched away the Cu using concentrated FeCl3 solution. As we observed, the 

higher the thickness of the Cu foil, the quality of transfer getting less. 

 The optimized pressure for the transfer process is ~1 MPa and temperature of the 

process is optimized at ~130oC. Further, the higher the thickness of the Cu foils, the 

larger the time it takes to dissolve the Cu in FeCl3 solution hence the process gets slower. 

The temperature was optimized at ~130oC as the glass transition temperature of the PET 

film is known to be in the range of ~75oC which facilitate transfer the polymer into a 

viscous melt which adhere the graphene/PET interface. However, a slight deformation is 

observed at the Cu foil due the hot rolling process which doesn’t make very difference in 
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etching process. After the completion of etching process the film was washed thoroughly 

with deionized water, 2-propanol, methanol, acetone followed by dry nitrogen blowing at 

room temperature. 

 

 

 

Figure 3.6: Schematic flow chart represents the graphene transfer using hot press 

lamination method followed by the chemical etching process. 
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3.2.2. Graphene transfer on glass and SiO2/Si and free standing graphene 

3.2.2.1. Chemical transfer 

 

Figure 3.7: Chemical transfer of graphene on different substrates: (a) schematic 

represents the process flow charts of the chemical transfer of graphene from metal 

substrates to any other substrates. (b) Graphene grown on Cu foil; (c) graphene transfer 

on glass substrates using chemical transfer process; (d) & (e) illustrates the glass 

substrates before and after graphene transfer respectively; (f) floated graphene on water; 

(g) transferred graphene layers on SiO2(300 nm)/Si substrates as large as 40 mm x 30 

mm.  

 

 Thermal CVD grown graphene on Cu foil was placed floated on a Cu etchant 

(FeCl3) in order to etch away the Cu foil. The total time required for etching of Cu foil is 

(a) (b) (c)

(d) (e)

(f) (g) Graphene on SiO2/Si
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40 min and 20 min for 54 µm and 25 µm Cu foil respectively. The floated graphene on 

the top of the FeCl3 solution was transferred carefully on a FTO substrate subsequently 

washing with water, acetone, and IPA as shown in schematic Figure 3.7a. Figure 3.7d 

and e demonstrates the picture of FTO glass before and after graphene transfer 

respectively. Similarly, the same floated graphene samples can be transferred on to any 

other dielectric substrates like Al2O3, SiO2/Si, quartz and sapphire.  

 The mechanism of Cu dissolution in FeCl3 occurs according to redox reactions as 

follows: 

Fe3+ is a strong oxidizer and Cl- is a strong complexing agent for Cu2+ions. 

The etching process in solution often occur as 

2Fe3+ + Cu → 2Fe 2+ + Cu2+ 

Now, the chloride ions plays an essential role as follows 

2Fe3+ + Cu + 4Cl- → 2Fe2+ + CuCl42- 

2FeCl4
- + Cu → 2Fe2+ + CuCl4

2- + 4Cl- 

When all Fe3+ is converted to Fe2+, then the CuCl4
2- ion in turn also oxidizes copper metal 

very easily, where Cu+ species are formed: 

CuCl4
2- + Cu → 2CuCl2- 

The overall reaction processes are occurring as follows: 

FeCl3 + Cu → FeCl2 + CuCl 

FeCl3 + CuCl → FeCl2 + CuCl2 

 Similarly, in case of graphene/Ni thin film/SiO2/Si, the transfer process includes 

two additional step as shown in the process flow chart of Figure 3.8. First the substrate 

was spin coated with 2% Poly-(methyl methacrylate) (PMMA) solution in PMMA 
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thinner (Microchem Inc.) and bake it at 180oC for 3 min. In case of Ni thin film, the 

PMMA/graphene/Ni on SiO2/Si was immersed into a 50% hydrofluoric acid (HF) 

solution in order to dissolve amorphous SiO2 as shown in Figure 3.8 (c) and (d). When 

SiO2 get completely dissolve in the HF solution, the  

 

 

Figure 3.8: Schematic representation of the process flow charts of the graphene transfer 

process from Ni thin film to any substrates. 

 

 PMMA/graphene/Ni was floated out of the solution and was transferred carefully 

on the top of the Ni etchant (Transee Company, USA) solution as shown in Figure 3.8(e). 

When Ni gets dissolved in the Ni etchant the PMMA/graphene was transferred on to any 
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substrate by scooping method after subsequesnt washing with 2-propanol, methanol, and 

acetone. Finally, PMMA on the top surface of graphene was dissolve with acetone.  

The subsequent graphene substrate bonding is not that much good in order to handle the 

substrate for further fabrication process.  For this reason, we applied different thermal 

annealing process in order to achieve the good graphene-substrate adherence strength. 

We found that different substrate graphene adherence is increases with different 

annealing process. We applied the rapid thermal annealing (RTA) at 600 oC for 30 sec 

and found that the graphene substrate adherence energy increases compared to the un-

annealed samples.  

 

3.2.3. Graphene transfer on Parylene (Biocompatible Polymers) 

 Graphene on parylene was transfer in a STS parylene coater (speciality coating 

systems PDS 2010, SCS, USA). The graphene on Cu foil was placed on a SiO2/Si 

substrate and the conjugated system was placed in the STS parylene coater vacuum 

chamber. The typical 50-60 gm parylene C dimer (SCS coatings, USA) was used in order 

to achieve 20-30 µm target thickness of the parylene coating. There were four parts of the 

system for e.g. i) Chamber ii) furnace, iii) vaporizer and iv) vacuum pump. The 

corresponding temperature of furnace and vaporizers were maintained at 690oC and 

175oC respectively. The deposition chamber vacuum pr should be maintained at 10-17 

mTorr in order to achieve very clean and homogeneous deposition. The total deposition 

time was kept at 22 hr long in order to achieve the ~30 micron parylene film thickness. 

The as deposited parylene over the Cu foil was taken out from the furnace and then float 
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over the Cu etchant in order to etch away the metal substrate. The complete process flow 

chart is shown in Figure 3.9a.  

 

Figure 3.9: (a) Shows the process flow chart of Graphene transfer from metals to 

parylene  and (b) the parylene coater system.   

 

 Figure 3.10a shows the graphene on parylene deposited using parylene coater. 

The graphene on parylene substrate is flexible transparent and conducting. The corner to 

corner resistance of the graphene parylene sample was found to be ~1.2-1.5 kΩ/sq. The 

advantage of this process is the adherence of the graphene on parylene is very good with 

robust mechanical properties and flexibility. Furthermore the transfer process is unique as 
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it can be extended to a wide range of parylene thickness as per the requirements; the 

process is also scalable and controllable for wide range of applications. However, the 

major disadvantages of the process are very slow and time consuming. Sometimes, the 

parylene doesn’t comes out from the substrate surface as it stick to the substrates surface 

very strongly which create a lot problems of peeling off of the samples.  

 

Figure 3.10: (a) Pictures of graphene on parylene showing (b) &(c) Flexible, and (d) 

conducting.   

 

 Graphene on parylene via was fabricated in two step fabrication methods, as 

follows: i) parylene via fabrication followed by ii) graphene transfer onto it using 

chemical transfer process. The first process parelyne via fabrication is shown in a process 

flow schematic in the Figure 3.11. The process consist of spin coating of AZ 1518 photo-

resist over the SiO2(500nm)/Si substrate followed by two step baking at 110oC and 95oC 

~ 34.2 mm
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over the hot plate and inside a pre-heated oven respectively. After that parylene film was 

deposited on the photo-resist coated wafer in the parylene coater chamber followed by 

300 nm aluminium (Al) deposition using CHA e-beam evaporation. Furthermore, the 

substrate again spin coated with AZ 1518 photo-resist followed by one step baking at 

110oC over the hot plate. Patterning was done on the substrate using standard 

photolithography (µPG 101 from Hieldelbergh Instruments) process with different 

diameter of holes from 5 µm to 100 µm. 

 

Figure 3.11: Process flow chart of parylene via fabrication. 
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 The photolithography process was consist of spin coating the substrates with AZ 

1518 photo-resist (Microchem Inc., USA) with spin sped 6000 rpm for 30 sec in order to 

achieve the desire film thickness. The spin coated photoresist were baked at 110oC for 8 

min on a hot plate. The photo-resist coated substrates were then placed inside a micro-

laser writer for photolithography (µPG 101 from Hieldelbergh Instruments) and exposed 

under laser with 3 mW dose power in order to fabricate a patterned area of required size. 

After that, the developing process consists of preparing a solution of AZ400K and water 

(1:4) and mixed it thoroughly followed by dipping the exposed substrates for 50 sec. The 

whole process was optimized by changing the spin speed of photo resist, baking 

temperatures, baking time, laser dose power and developing time as shown in Figure 3.11 

e and f. Aluminium etching was done using Al etchant (Transee company, USA) for 

required time followed by cleaning the substrates with 2-propanol, methanol, acetone and 

dry nitrogen blowing. Reactive ion etching (RIE) was applied in order to etch the open 

position of the parelyne as shown in Figure 3.11h. Care has been taken to slowly etch the 

parylene film using oxygen plasma of power 150 W under 150 mTorr pressure and 5 

sccm O2 flow rate. Finally, the substrate was immersed correspondingly in acetone, Al 

etchant and acetone in order to obtain the parylene via on the parylene film as shown in 

the Figure 3.12. Figure 3.12 illustrating the optical micrograph of the parylene via with 

homogeneous spacing between each hole over a large area.  

 Now, graphene has been transferred on to parylene via using the process flow 

chart showing at the flow chart 3.13. The final graphene over the parylene via has been 

demonstrated in Figure 3.14. Figure 3.14 a&b and Figure 3.14 c&d shows the scanning 

electron micrograph (SEM) of the parelyne via of 8 µm diameter before graphene transfer 



 70   
 

and after the graphene transfer. A homogeneous graphene film has been transfer 

successfully over the parylene surface followed by the RTA under the nitrogen (N2) 

atmosphere.  

 

Figure 3.12: Optical micrograph of parylene Via under different magnifications.  

 

Figure 3.13: Process flow chart showing the free standing graphene transfer process on 

parylene via. 
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Figure 3.14: (a) & (b) Scanning electron micrograph of parylene via before graphene 

transfer; (c) & (d) free standing graphene on parylene via.   

 

 A graphene structure with full of ripple can be observed over the parylene surface 

as shown in Figure 3.14 c & d. We believe that the formation of ripple in graphene is due 

to the substrate surface roughness and also due to the different thermal conductivities of 

metals and graphene which generates a mismatch during thermal cooling. Furthermore, 

the free standing graphene can also covered/partially covered of the parylene holes as 

shown in Figure 3.15. Figure 3.15a, b, c and d showing the graphene covered over the 

parylene holes of almost ~1/4th , half , 3/4th and full respectively which could have a wide 

potential applications as nano-mechanical resonators/cantilever in MEMS or NEMS 

system.   
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Figure 3.15: Scanning electron micrograph of free standing graphene on parylene via 

showing different coverage of graphene on 8 µm holes. 

 

3.3. Graphene-CNT hybrid structure transfer 

3.3.1. Graphene-CNT hybrid structure transfer on to PDMS 

 In this section we will discuss the fabrication of different transfer process of 

graphene-CNT hybrid structure over the different polymer substrates for its ultimate use 

in flexible electronics. We fabricated polymer electrodes by impregnating the Graphene-

CNT hetero-junction composite into a transparent PDMS matrix. Our approach of 

fabricating the PDMS structures is shown schematically in a flow chart in Figure 3.16. 

The process involve first, PDMS polymer (DOW Corning, USA) solution preparation i.e. 

 (a) (b)

(c) (d)
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mixing of base and curing agent with a weight ratio of 10:1and poured over the substrates 

containing the graphene-CNT hetero-junction structure in a Petri-dish. Second, the 

excessive PDMS solution was removed carefully in order to obtain the optimum 

thickness PDMS composite film.  

 

Figure 3.16: Schematic Illustrating the graphene-CNT hybrid structure transfer on to 

flexible PDMS substrates 

 

 Third, the PDMS was cured for 24 hours in normal atmospheric conditions or 6 

hr. at 70oC inside an oven and finally the PDMS composite films (800-1000 µm thick) 

were peeled off carefully from the native SiO2/Si substrates as shown in Figure 3.16.  

Further structural characteristics and surface of the transferred graphene-CNT hybrid 

structure over the PDMS will be discussed in next chapter sec.   

 

3.3.2. Graphene-CNT hybrid structure transfer on to Nitto-Denko and conducting 

adhesive Cu. 

 This transfer method of graphene-CNT hybrid structure over the Cu adhesive 

tapes or over the Nittodenko adhesive tape is relatively direct method and easily 

accessible without any hazards. This transfer process consist of cutting the adhesive Cu 
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tapes or Nitto-Denko thermal release tape in required size and shapes and applied with 

adhesive side facing towards the Graphene-CNT was placed on as grown substrates. By 

applying uniform pressure and careful peeling off, the hybrid film was transferred on to 

the Cu and Nitto Denko polymer substrates with uniform graphene layer underneath with 

vertically aligned CNTs are on top of it as shown in Figure 3.17. 

 

Figure 3.17: Illustrate the transfer of graphene-CNT hybrid structure on adhesive tape 

(Nittodenko) and conducting adhesive Cu tape. 

 

3.4. Electrochemical Characterization 

 All electrochemical characterization was carried out under symmetric cell 

configuration using pristine and functionalized graphene multilayers counter electrodes 

and Pt coated FTO glass referred as a standard cell. Symmetric half cell was prepared by 

sandwiching 2 identical electrodes separated with Surlyn (Solaronix) spacer (thickness ~ 

25 micron) and a liquid electrolyte (Same electrolyte used for DSSC full cell test) is filled 

in between.  Cyclic voltametry was done for all the symmetric cells using GAMRY 

Reference 6000 potentiostat/ galvanostat (GAMRY, USA) from -1.0 V to 1.0 V with 

50mV/s scan rate. EIS spectra of symmetrical half cell was performed using GAMRY 

Reference 6000 potentiostat/ galvanostat (GAMRY, USA) from the frequency range 1 
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MHz to 100 mHz under open circuit voltage condition at different temperature (From 0oC 

to 60oC). The charge transfer resistance (Rct) was determined by fitting the EIS data by 

Randles circuit (inset of Figure 3b) in Echem Analyst software (GAMRY, USA).  

 

3.5. Dye sensitized solar cell fabrication 

3.5.1. Photo-anode fabrication and dye solution preparation 

 The TiO2 working photoanodes about ~12 µm were prepared on FTO substrate 

using TiO2 paste(Ti-nanooxide T20/SP) by doctor blade technique and subsequently 

sintered at 450 ºC for 30 minutes in ambient atmosphere.  

 

Figure 3.18: Process flow chart showing dye sensitized solar cells fabrication methods. 

TiO2 electrodes were immersed overnight in the 0.3mM dye solution containing a 

mixture of acetonitrile (ACN) and t-butyl alcohol (1:1 v/v) and dried at room 

temperature.  
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 To avoid the back travel electron flow from FTO substrate to electrolyte, thin 

TiO2 blocking layer was prepared in between TiO2 photoanode and FTO layer by spin 

coating of 0.2 M di-isopropoxy titanium bis (acetylacetonate) solution in anhydrous 

ethanol and subsequent calcination at 450 °C. The Ru(dcbpy)2(NCS)2 (dcbpy = 2,2-

bipyridyl-4,4-dicarboxylato)dye (535-bisTBAN719, Solaronix) was used to sensitize the 

TiO2 photo electrodes. 

 

3.5.2. Electrolyte preparation 

 The electrolyte was prepared as follows:  0.6M MPII (1-methyl-3-

propylimidazolium iodide), 0.03M I2, 0.1M of GuSCN and 0.5M of tBP was mixture 

with acetronitrile/valeronitrile (85:15) solvent and it was loaded into the cell through 

capillary force. A sandwich-type configuration was employed to measure the 

performance of the dye-sensitized solar cells as is depicted in Figure 3.20.  

 

Figure 3.19: Photograph showing the liquid electrolytes and solid state electrolytes used 

for dye sensitized solar cell fabrication.  
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3.5.3. Solar cell assembly and Testing 

 A sandwich-type configuration was employed to measure the performance of the 

dye-sensitized solar cells (as shown in process flow chart in Figure 3.18), using GMLs on 

F-doped SnO2 glass and 0.5M MPII (1-methyl-3-propylimidazolium iodide)  with 0.05M 

I2 in ACN as the electrolyte solution. Pt-coated F-doped SnO2 film also used as a counter 

electrode for the reference cell. Current–voltage characteristics of DSSCs were obtained 

under 1 sun illumination (AM 1.5G, 100 mW cm−2) with a Newport (USA) solar 

simulator (300W Xe source) (Figure 3.21) and a Keithley 2400 source meter (Figure 

3.21).  

 

Figure 3.20: Schematic showing the assembly of dye sensitized solar cell using graphene 

counter electrodes. 
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Figure 3.21: Solar simulator attached with Kiethley multimeter used for dye sensitized 

solar cells J-V characterization [Source: Prof. Kang's Lab in Hanyang University].  
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CHAPTER 4 

STRUCTURAL CHARACTERIZATIONS OF CARBON NANOSTRUCTURES 

ON DIFFERENT SUBSTRATES 

4.1. Graphene 

 Structural Characterizations of chemically vapor deposited graphene on different 

substrates were done using scanning electron microscopy (SEM), High resolution 

Transmission microscopy (HRTEM), Atomic force microscopy (AFM) and Raman 

Spectroscopy. HRTEM was used to visualize the number of layers formation during the 

CVD process. Raman spectroscopy is one of the historically used probe for 

nondestructive structural characterizations and electronic characteristics of graphite 

allotropes1, 2. The technique was ignored earlier till the invention of the laser of specified 

wavelength as carbon materials are the ideal absorber of the visible and IR light. Raman 

spectroscopy provides the useful information regarding the graphitic structures namely, 

defects structure, substrate mismatch, crystal vibration, phonon transitions etc. More 

specifically, defects and substrate mismatch in the graphene lattices can be recognized 

using the appearance of D band, in-plane vibration can be identified G band which is the 

key signature of sp2 bonded carbon atoms in the graphitic lattice and the order of stacking 

can be distinguished using 2D band. We investigated the structural morphologies of 

graphene on different substrates such as Cu, Ni, SiO2/Si, glass, quartz, Mica, fluorinated 

tin oxide (FTO) coated glass, polyethylene tetrapthalate (PET) and parylene. We also 

investigated the structural behavior of free standing graphene (as described the 

fabrication procedure in chapter 3 section 3.2.2) and a comparison of graphene different 

structure over different substrates.  
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4.1.1. Scanning electron microscopy 

 

Figure 4.1: (a) & (b) graphene on Cu; (c-f) illustrating the different magnification of 

graphene film on Cu grain and grain-boundaries. 

(a) (b)

(d)(c)

(e) (f)
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 Generally, Scanning electron microscopy was used for characterizing the surface 

morphology, crystallographic information, grain and grain boundaries in graphene on Cu 

and Ni. Surface topography and interface of graphene-CNT hybrid film was observed 

using a field emission scanning electron microscopy (FE-SEM) from JEOL of model no 

JSM7000F using bias Voltage: 1-5 KVolt in a distance from 5 to 6 mm. Figure 4.1 a-f, 

shows the as grown graphene on Cu substrates under different magnifications. As could 

be observed from the Figure 4.1a & b, the large scale graphene growth occurs on the Cu 

substrates with overlapping patches of the different layers on each others. Figure 4.1c and 

f clearly reveals the deposition of graphene over the Cu grain boundaries. Transition 

metal like Cu, Ni, Co are acts as catalyst for graphene growth as reported earlier where 

catalytic decomposition of hydrocarbon gases occurs at high temperature and graphene 

growth occurs on Ni and Cu via different growth mechanisms like segregation-

precipitation and decomposition-absorption respectively3-5. Figure 4.2 a & b shows the 

graphene deposition on Ni using chemical vapor deposition method. In comparison 

between graphene growth on Cu and Ni, we need to first compare the basic structure of 

Cu and Ni. Both Cu and Ni exhibit same FCC crystal structure along with equal 

coordination number and almost equivalent electro negativity which is 1.9 and 1.91 for 

Cu and Ni respectively. However the basic difference is the electronics structure of Cu 

and Ni. Cu possesses the completely filled 3d band where Ni exhibits the partially filled 

3d band. One recent report nicely correlates those properties with the calculated 

adsorption energy of both the Cu and Ni surface. 
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 Figure 4.2: (a) and (b) Graphene on Ni thin film under different magnifications. 

 

 Hu et al. 6 reported the first principles calculations of the low-index Cu and Ni 

surfaces, namely (100), (110) and (111) by using Density Functional Theory (DFT). It 

was found that the absorption energies of C atom on those stable low-index Cu and Ni 

sites as tabulated in their report6. The report says that i) (100) sites for Ni and Cu are 

most stable absorption sites which can accommodate C atoms easily; ii) (111) planes 

exhibit lowest diffusion barrier which facilitate the easy movement of adsorbed "C" 

atoms; iii) Adsorption energy of carbon on Ni is ~ 2 eV higher than the Cu. In this 

context, d-bands at Fermi level plays the significant role in the C adsorption on Cu and 

Ni surfaces where partially filled Ni d orbital hybridized with the carbon atoms more 

strongly than the completely filled in Cu d orbital. Therefore the binding energy of 

carbon with Ni is stronger than the binding energy of C with Cu. 

4.1.2. High resolution transmission electron microscopy 

 Figure 4.3 a, b, c and d showing the high resolution transmission electron 

microscopy of graphene on Cu. A thin silver (Ag) layer was deposited on the graphene 

(a) (b)
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before the sample preparation in order to avoid any structural damage during the sample 

preparation. Furthermore, the sample for HRTEM was prepared by conventional cross 

section method using dimple grinder.  

 

Figure 4.3: (a) & (b) Shows transmission electron microscopy of graphene on cu foil; (c) 

& (d) showing few layer graphene depositions on Cu surface by chemical vapor 

deposition of methane at 1000oC. 

 

 Then High Resolution Transmission Electron Microscopy (HRTEM) was carried 

out using FEI Technai F20 field emission gun microscopy. 
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4.1.3. Micro-Raman spectroscopy 

 Raman spectroscopy is a form of vibrational spectroscopy, and can be thought of 

in its simplest form as a process where a photon of light interacts with a sample to 

produce scattered radiation of different wavelengths. The spectrograph shows the 

recorded vibrations of covalent bonds in the molecules and provides highly detailed 

molecular information. Raman scattered light is frequency-shifted with respect to the 

excitation frequency, but the magnitude of the shift is independent of the excitation 

frequency. This "Raman shift" is therefore an intrinsic property of the sample7. 

 

Figure 4.4: Schematic representing Raman spectroscopy set up. 

 

 The  RAMAN SPECTROSCOPY setup is consist of a 514.5 nm Ar+ ion laser 

source, Beam splitter 50/50; 514/NOTHC mirror; COHERENT 53-2218 mirror and a 

CCD detector as shown in Figure 4.5.  CW argon ion (Ar+) laser form Spectra Physic 

(model177G02) of 514.5 nm in wavelength was used as a source of monochromatic 
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radiation for the experiment. Backscattered Raman spectra were collected using a high-

throughput holographic imaging spectrograph from Kaiser Optical System (model 

HoloSpec f/1.8i) inbuilt with volume transmission gratings associated with a holographic 

notch filter, and a thermoelectrically cooled CCD detector from Andor Technology. The 

Raman system has spectral resolution of 4 cm−1.  

 

Figure 4.5: Pictures showing different components of Raman spectroscopy as shown in 

the schematic  Figure 4.4 (a) Raman setup; (b) Beam splitter 50/50; (c) Pinhole; (d) 

spectrometer pinhole; (e) 514/NOTHC mirror; (f) COHERENT 53-2218 mirror (g) The 

last lens which laser goes through before hitting the sample [Source: CESMEC. FIU]. 

 

 Raman spectroscopy has widely been used to characterize the structural and 

electronic characteristics of carbonaceous materials specially graphite materials2. The 
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(c) (d) (e)

(f) (g) (h)



 87   
 

technique provides us the useful information regarding defects and substrate mismatch in 

graphene lattices which can be recognized using the appearance of D band. Moreover, in-

plane sp2 bond vibration is represented by the intensity and position G band which is the 

key signature of sp2 bonded carbon atoms in the graphitic lattice and the order of stacking 

can be distinguished by 2D band position. The typical band positions of D band, G band 

and 2D band are appears at the frequencies of ~1350 cm-1, 1580 cm-1 and 2690 cm-1 

respectively for single layer graphene8. Monolayer graphene exhibits unique 

characteristics of intensity ratios of G band and 2D band (i.e. IG/I2D) which is ~ 0.4-0.59. 

Similarly the defect structure can also be scrutinized using the D and G band ratio i.e. 

ID/IG
1.  The increasing value of ID/IG ratios represents the degree of incorporation of 

defects in the graphene structures8. The ratio of IG/I2D for graphene also increases with 

increasing number of layers and this is another fingerprint to characterize the number of 

layers in graphene structure. However, peak positions of the 2D peaks are also important 

which get blue-shifted with increasing no of layers10. Similarly, different intensity ratios 

of the different bands like ID/IG and IG/I2D also one of the key identification marks of the 

graphene defect intensities and the number of layers. 

 Figure 4.6 illustrates the comparison Raman spectra obtained from the graphene 

on Cu and Ni both. The characteristics spectra consist of a signature of G band and D 

band at 1579.5 cm-1 and 2709 cm-1 for Ni and 1580 cm-1 and 2709 cm-1 respectively. A 

tiny D band appears for graphene/Cu foil which is absent in case of Ni thin film. The 

IG/I2D intensity ratios for graphene/Cu foil and graphene/Ni thin film is calculated as 0.43 

and 0.88 respectively depicting the signature of few layers graphene on the both the 
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substrates11. However, from the intensity ratios it could be specified that the number of 

graphene layers on Ni is higher than the no of layers on Cu.  

 

Figure 4.6: A comparison Raman Spectra of graphene on Cu foil and graphene on Ni thin 

film.  

 

Figure 4.7: (a) Characteristics Raman spectra of graphene on different substrates (b) 2D 

band, (c) showing the magnified view of 2D band and (d) G band.  
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Furthermore, Raman spectra collected from samples of graphene on a wide range of 

substrates under identical conditions and plotted in a single plot and found that all the 

spectral band intensity is strictly influenced via substrates12. As seen in Figure 4.7 a-d all 

the G and 2D band intensity is higher for metal substrates compared to the dielectric 

substrates. We believe that the free electrons in conducting substrates intensify the in-

plane phonon transitions of the sp2 bonded carbon atoms as well as the vibrational 

transition of phonons due to the stacking order of graphene1, 8.  

 

Figure 4.8: (a) Schematic showing free standing graphene and the procedure for the 

marking of different holes for Raman spectroscopy. (b) Comparison plot of Raman 

spectra of free standing graphene on parylene transferred from Cu and Ni respectively, 

(c) G band and (d) 2D band. 
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 In this context, we also justifies the graphene phonon responses without substrates 

using Raman spectroscopy and for this reason, we fabricate free standing graphene on 

parylene by transferring the graphene from different Ni and Cu substrates on parylene. 

Further we observed that graphene from Cu has higher 2D band intensity compare to the 

graphene from Ni which is due to the higher number of graphene layers formation on Ni 

than Cu (as shown in Figure 4.7b & d) whereas the G band intensity is almost same for 

both the cases (Figure 4.7 c).  

 

Figure 4.9: Raman spectroscopy of free standing graphene on different marked holes on 

parylene (a) transferred from Cu and (b) transferred from Ni, (c) and (d) showing the 

variations in IG/I2D ratio on different holes for Cu-graphene and Ni-graphene respectively. 

 

 Figure 4.7 b shows the IG/I2D ratio for Ni & Cu exhibit ~0.7 and 0.33 which 

corroborate that Ni has higher no. of layers than Cu. Moreover, we can see the blue-shift 
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in 2D peak positions for Ni/graphene than Cu/graphene which is 17 cm-1 shift as shown 

in Figure 4.8 d which also may be due to the higher number of layers on Ni than Cu10.    

Figure 4.8 a & b, shows the Raman mapping from the free standing graphene from Cu 

and Ni respectively on different marked holes on parylene as shown in Figure 4.7a. As 

could be seen from the Figure 4.8 a & b there is no as such distinguishable difference on 

different holes. However, the Figure 4.8 c and d shows the IG/I2D ratios of graphene from 

Cu and Ni respectively. In case of Cu/graphene the majority of the ratios varies ~0.4 

ranges whereas for graphene from Ni majority of the points ~0.7. The significant 

difference in the peak intensity ratios manifests that the Ni substrates has much more 

graphene layers than in Cu11.  

 

4.1.4. Atomic force microscopy 

 AFM reveals the surface topography of the graphene at atomic scale and is used 

here to measure the step height of graphene over the atomically cleaved mica substrates. 

The surface topography of graphene on mica (Ted Pella Inc.) was investigated using 

AFM (NanoScope IIIa, Veeco Instruments Inc., USA) under tapping mode. The Non-

contact/TappingMode AFM probes were purchased from NanoWorld AG 

(NANOSENSORS™, Switzerland) which had relatively stiff cantilevers with a high 

spring constant (30.0 - 59.0 N/m). Figure 4.10 shows the homogeneous surface topology 

of graphene with vertical step height of ~2.7 nm.  
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Figure 4.10: Atomic force micrograph showing the surface topology of graphene on mica 

with vertical step height of 2.7 nm.   

 

4.2. Graphene-CNT hybrid structure 

 Graphene exhibit its in-pane high thermal and electrical conductivity in 2D 

whereas CNT exhibit its conductivity in its axial direction (1D). Therefore nano-hybrid 

structure consisting vertically aligned CNT with 2D graphene is always beneficial to 

combine the effect of both 2D and 1D structure in a single structure13. Several recent 

reports14-16 shows an interesting approach to grow vertically aligned MWCNTs on 

reduced graphene oxide platelets using CVD method or using dispersed graphene and 

dispersed CNT separately and coat those consecutively on flexible substrates in order to 

fabricate the high performance transparent graphene-CNT hybrid structure17.  In this 
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context, several other applications have been proposed of this hybrid structure in flexible 

and bendable electronics devices. However, the reduced graphene oxide involve lot of 

issues like, low conductivity, less uniformity and high temperature robustness that 

deteriorate  its heat dissipation even at high temperature. Similarly, incorporation of 

volatile ingredients from the RGO makes the hybrid structure not useful for applications 

in vacuum electronics. At the same time, the proposed multi-step method involves several 

rigorous processing steps like, graphene fabrication from reduced graphene oxide, spin 

coating, catalyst deposition, CNT growth followed by the transfer process onto a flexible 

substrate. Therefore, in-situ growth of graphene-CNT hybrid structure using CVD is the 

purest method as well as bypasses those processing steps. On the other hand, spin coated  

graphene flakes produced short range graphene structure, which readily deteriorate the 

film electrical conductivity as well as heat dissipative properties14. Hence, the utmost 

concern at this moment is to fabricate large scale in-situ graphene-CNT hybrid structure 

and transfer it to a flexible polymer substrate. Some of these shortcomings of this process 

can be overcome by growing in-situ graphene-CNT hybrid structure consisting of CNTs 

connected perpendicularly to graphene layers. In this regards, even few layer thick 

graphene bottom layer could be more advantageous as it could provide the vigorous 

mechanical properties along with good electrical and thermal conductivities.  

 Therefore, controlled growth of self-organized graphene-CNT hybrid structure 

and a single step transfer process on to a flexible substrate is more practical approach for 

devising flexible electronics and vacuum-electronics like field emission, vacuum gauge 

etc. Furthermore, a controlled fabrication technique of the graphene-CNT hybrid 

structure would open new possibilities for nanoscale devices including interconnect, 
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flexible nano-electronics, flexible field emission displays, and strain gauges and so on18-

23. 

 In our lab we grow the in-situ graphene-CNT hybrid structure consists of 

multilayered graphene connected with vertically aligned carbon nanotube and its 

electrical and electro-mechanical properties. After that we performed a comprehensive 

analysis of the structure, morphology, and bonding chemistry of the hybrid graphene-

VACNTs structure using a combination of high resolution transmission electron 

microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), X-ray 

photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and micro-Raman 

spectroscopy.  A thorough correlation with different oxide and carbide formation with 

CNT growth at high temperature is also explained in order to elucidate probable growth 

mechanism of the hybrid. We further investigate the effect of catalyst thickness on hybrid 

structure growth and we elaborate the growth mechanism. In-addition, we present a facile 

and scalable method for transferring the film on to different flexible substrates i.e. a soft 

poly di-methylsiloxane (PDMS) matrix and a Cu foil. The resulting flexible graphene-

CNT films are demonstrated as strain gauges and field emission devices as a function of 

bending radius.  

 

4.2.1. Electron microscopy 

4.2.1.1.  Scanning electron microscopy 

 Electron Microscopy is scientific techniques that examine objects on a micro to 

nano scale using beam of highly energetic electrons under high applied bias. This 
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technique can yield the following information regarding the sample to be investigated: (a) 

Surface Topography, (b) Morphology and (c) Crystallographic information. 

 
 

Figure 4.11: (a) (b) and (c) Scanning Electron Micrograph (SEM) of graphene-CNT 

hybrid structure on SiO2/Si substrates with different morphologies; (d) Crosssectional 

view of the hybrid structure showing  vertically aligned CNT covered with a top 

graphene layers; (e) and (f) showing the vertically entangled CNT in graphene-CNT 

hybrid film. 
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 Surface Morphology and interface of graphene-CNT hybrid film was observed 

using a field emission scanning electron microscopy (FE-SEM) (JEOL, JSM7000F) using 

bias Voltage: 3-5 KVolt in a distance from 5 to 6 mm. The representative FE-SEM 

images showing morphology of the hybrid structure is presented in Figure 4.11 a b c & d. 

The structure is composed of vertically aligned multiwall carbon nanotubes on SiO2/Si 

substrate and a multilayered graphene film on top of it. Average length of MWCNTs was 

measured as ~30-40 µm. Morphology of the MWCNTs are known to be related to the 

size of catalytic nano-particles, which in turn, is dictated by the catalyst film thickness. 

The MWCNT growth by thermal CVD process is strongly dependant on the nature of the 

catalysts through; transformation of metal catalyst particles into metal carbide particles; 

nucleation and growth of catalyst particles and diffusion of carbon atoms inside the 

catalyst matrix24, 25.   

 

4.2.1.2. High resolution transmission electron microscopy 

High Resolution Transmission Electron Microscopy (HRTEM) (FEI Technai F20 field 

emission gun microscopy). The sample for HRTEM was prepared by conventional cross 

section method using dimple grinder, and subsequently thinned using 691 Gatan-PIPSTM 

ion mills from the graphene-carbon nanotube hybrid film on as grown substrates. As seen 

in the HRTEM image, Figure 4.12a shows the top portion of the hybrid structure consist 

of multilayered graphene and the bottom portion is CNT. The graphene thickness is ~15-

20 nm which consists of ~40 graphene monolayer and the measured distance between 

each monolayer is 3.4 Å 26.  
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Figure 4.12: (a) Transmission electron micrograph showing the microstructure of as-

deposited graphene-CNT hybrid film (b) Bright field transmission electron microscopy of 

the “B” region as shown in Figure 4.12 a. (c) High resolution TEM image of CNT 

showing the presence of iron carbide particles inside the CNT tube (d) high resolution of 

TEM image of Graphene film (about 40 graphene mono layer) on the top of the nano-

hybrid film.  (e) & (f) HRTEM showing the clear interface between graphene and CNT. 
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 Figure 4.12 b and c manifests the iron carbide (Fe3C) nanoparticles were (as 

shown in the SAD pattern in the inset of Figure 4.12b) found at the interface between the 

graphene and CNT layer and also inside the CNT tube (Figure 4.12c). Therefore, it can 

be concluded that Fe3C plays the major role in CNT growth.  From the HRTEM we 

found that the average diameter of CNT was ~10-15 nm as shown in Figure 4.12c & f) 

and the presence of iron carbide particles at the interface between graphene and 

MWCNT. The presence of nano-scopic iron carbide particles evidenced the tip growth of 

CNTs from the iron carbide catalyst particles as explained in the previous section. A clear 

interface between a CNT and graphene film is illustrated in the Figure 4.12 e & f which 

demonstrates the catalyst assisted interface formation between graphene and CNT. 

 Although the mechanisms of co-formation of CNTs and graphene are still not 

very cleat but Chernozatonskii et al.27, proposes the van der Waals force between tubes 

and graphene layers may be the main forces that keep this attachment stable. As 

mentioned earlier, the axial/planar arrangement of elemental carbon would be beneficial 

to obtain higher thermal conductivity in three dimensions. On the other hand, as 

mentioned by Ho et al.28, Lennard-Jones potential model shows both metallic or 

semiconducting behavior of this structure which is highly dependent on alignment of 

nanotubes and graphene layers. However, the interface formation mechanism between 

graphene and CNT needs further systematic investigations and optimizations of the 

growth parameters.   
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4.2.2. Micro-Raman spectroscopy 

 The basic difference between highly ordered pyrolytic graphite (HOPG) and 

graphene is the shape of 2D Raman band, for graphene, it is symmetric and for HOPG, it 

is un-symmetric with a shoulder or small peak to the left 29-31. The symmetric 2D Raman 

band of graphene-CNT indicates that it is not HOPG. The representative D, G and 2D 

band positions and full width half maxima (FWHM) of graphene-CNT and MWCNT are 

shown in Table 4.1. For mono and bi layer graphene, the FWHM of 2D band is ~30  and 

for graphene-CNT it is ~69.1430. We believe that the 2D peak broadening can be 

attributed to the number of layer increases in graphene structure1. The blue shift in band 

positions of graphene -CNT also indicates relatively stronger bonding between graphene 

and CNT.  

 

Figure 4.13: Comparative Raman spectra showing the CNT and graphene-CNT hybrid 

structure. 
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 The Raman spectroscopy results statistically agreed with eight separate studies 

conducted on three samples. G and 2D band position of graphene is also related to its 

supporting substrate and shape is the function of number of layers and synthesis method1, 

30. The Raman spectrum in Figure 4 is from graphene present on top of ~40 µm tall CNT 

on SiO2/Si substrate. The length of CNT is much higher than the penetration depth (60 

nm) of the 514.5 nm wavelength (λ) Ar+ laser, so we expect minimal influence of the 

substrate on graphene-CNT Raman spectrum. However, further analysis is required in 

order to understand the differences in the shape and position of the observed Raman 

bands.  

 

Table 4.1: Comparison RAMAN peak-positions and full width half maxima for carbon 

nanotubes and graphene-CNT hybrid film. 

 
 
 Furthermore, the Raman spectra and images of as grown CNT and iron 

compounds (Fe2O3, Fe3C) nanoparticles were observed from the sample shown in Figure 

4.11 a.  Figure 4.14 shows the Raman spectra of CNT representing characteristic D, G 

and 2D band. Figure 4.14 b and c showing the Raman spectrum of Fe3C and Fe2O3 

nanoparticles respectively. Optical image of micro Raman mapping for CNT and iron 
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oxide is shown in Figure 4.14 d and Figure 4.14 e & f depicts the Raman mapping from 

both CNT and Fe2O3. A higher magnification of SEM image on the boundary between 

CNT rich area and iron oxide region which shows the faceted Fe2O3 nanoparticles 

homogeneously distributed on the substrates (as shown in the inset of the Figure 4.12 d). 

Presence of Fe3C nanoparticles (as shown in the HRTEM Figure 4.12b) was also detected 

during Raman analysis. 

 

Figure 4.14: (a) Raman spectra of as grown CNT; (b) & (c) Raman spectroscopy of 

catalyst particles on the substrate showing the iron compounds (Fe2O3 , Fe3C 

nanoparticles) formed during CNT growth; (d) Optical microscopy image of micro 

Raman mapping for CNTs and iron oxide particles, which is illustrated in Figure 4.14 e 

and f. 
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 In Figure 4.14 b, the characteristics peaks of iron carbide nanoparticles obtained 

in lower frequncies regions.  In particular, the signaure of Fe3C peaks at 710 cm-1 

appeared at the graphene-CNT interface region which also justifies the growth 

mechanism of CNT via catalytic activity of Fe to Fe3C. Therefore, it should be mentioned 

that since iron nanoparticles is a well known catalyst for CNt growth, it is probable that 

iron carbide nanoparticles formed during nucleation and growth of CNT24, 32. On the 

other hand, main signature of iron oxide nanoparticles (Fe2O3) was also observed by 

Raman spectroscopy, and is represented in Figure 4.14 c. However, Fe2O3 rich area was 

not found in between CNT and graphene interface regions. The spectrum closely matchs 

with the spectrum of Fe2O3 phase. Additionally, a relatively sharp peak is seen at around 

521 cm-1, which is attributed to Si substrate. In order to characterized the distribution of 

CNT and iron oxide nanoparticles, linear Raman mapping was carried out in the region as 

shown in the Figure 4.14 d. The Raman mapping was collected in the range of 100 to 

3000 cm-1, by keeping in mind that point to point resolution of Raman map was adjusted 

to 2 µm. Althoguh characterstic Raman peaks of CNT (especially multi-walled), Si and  

Fe2O3 are seen, but intensities of CNT and iron oxide peaks are highly influenced by Si 

substrate where Fe2O3 is not. Figure 4.14 e & f, illustrates the Raman maps from CNT 

and Fe2O3 respectively.  

 

4.2.3. X-Ray photoelectron spectroscopy 

 The high resolution XPS spectra for core level of C and Fe compounds obtained 

for excitation energy of 1486.4 eV is shown in Figure 4.15. The core line of C1s 

photoelectron peak is located at 284.5 eV which associates with CNT in the binding 
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energy range of 278 to 298 eV which exhibit the electron attenuation length for 

photoelectron incident angle of 90° is about 2.11 nm. Furthermore, by considering the 

fact that CNT length is > 10 µm long, thus detection of C1s associated with graphene is 

unlikely and only adatoms or atoms nearer to surface are discernible. However, applying 

XPS for detection of iron species indicates the existence of iron compound as shown in 

Figure 4.16. Position of Fe2p3 peak is attributed to chemical state of Fe2O3 (Figure 4.16), 

which is in agreement with the Raman spectroscopy results as shown in Figure 4. 14 f.   

 

Figure 4.15: High resolution XPS spectra of CNTs showing carbon with C1s peak. 

 
 
4.2.4. Auger Electron spectroscopy 

 Elemental distribution of the carbon and iron was mapped by Auger electron 

spectroscopy from 670xi Scanning Auger Nanoprobe. In order to identify the role of the 

iron catalyst for the CNT or graphene growth, AES analysis was carried out on the iron 

oxide rich layer. After the background subtraction AES spectrum is represented for 
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carbon (KLL), iron (LMM) and oxygen (KLL) are shown in Figure 4.17 a. The C (KLL) 

located at 275 eV represents auger peak for CNT. Keeping in mind the XPS and micro 

Raman results, position of Fe (LMM) and O (LMM) peaks suggests the co-existence of 

iron oxide (III). Figure 4.17 b shows elemental Auger maps of C, Fe and O which implies 

a relatively fine distribution of iron oxide nanoparticles.  

 

 

Figure 4.16:  High Resolution X-Ray photoelectron spectroscopy of  Fe 2p3 core level 

photoelectron peak.  

 

 In addition, there is very less amount of carbon signature from the iron oxide, 

which indicates that the oxide particle would not participate in catalytic activity, instead 

iron or iron carbide nanoparticles were involved as key catalytic sites. We believe that the 

SiO2 layer is likely to be a source of oxygen during the growth which plays an important 
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role in Fe2O3 formation. Thus, the control of the silicon oxide layer might be critical for 

the growth of the graphene-CNT composite structure.  

 

Figure 4.17: (a) 𝑑(𝐸.𝑁)
𝑑𝐸

 Auger electron spectra obtained for C (KLL), Fe (LMM) and O 

(KLL) by using 10 KeV and 10 nAmp. (b) The elemental mapping obtained from Auger 

electron spectroscopy for C, Fe and O. 

 
 
4.2.5. Graphene-CNT hybrid structure growth mechanism 

 So far using different experimentations we believe that, catalyst thin film 
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graphene-CNT hybrid film on SiO2/Si substrates is yet to be understood clearly. 

However, as explained by Kondo et al, we believe that initially, multilayered graphene 

film precipitated on the top of the Fe thin film followed by the CNT growth (as shown in 

the schematic in Figure 4.18). 

 

 
Figure 4.18: Schematic representating the growth mechanism of graphene-CNT hybrid 

nanostructure using CVD method.  

 

 Morphology of the MWCNTs are known to be related to the size of catalytic 

nano-particles, which in turn, is dictated by the catalyst film thickness13. However the 

precipitation of graphene is dependent upon the surface morphologies of the catalyst and 

type of the catalyst. In this context, the MWCNT growth by thermal CVD process is 
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consist of the following  i) type of the catalysts ; ii) transformation of metal catalyst 

particles into metal carbide particles; iii) nucleation and growth of catalyst particles and 

iv) diffusion of carbon atoms inside the catalyst matrix24, 25.   

 
 

Figure 4.19: (a) Optical micrograph of patterened Fe catalyst on SiO2/Si substrates (b) the 

hybrid structure growth after the growth process.  

 

 

Figure 4.20: (a), (b) and (c) Scanning electron micrograph representing the growth of 

graphene-CNT hybrid structure from catalyst thickness 10 nm, 20 nm and 30 nm 

respectively.  

  

 Similarly, a clear distinction was observed among the morphologies of the hybrid 

films when different catalyst thicknesses were used. To showcase the effect of catalyst 

thickness, we used photolithography (as described in the chapter 3 scetion 3.1.2) to 
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prepare areas of different catalyst film thicknesses on a single substrate and carried out 

the graphene-CNT growth process under the same condition as shown in Figure 4.19 a 

&b which illustrates the before and after the hybrid growth structure respectively. 

Figure 4.20 a, b & c are the characteristics FESEM pictures illustrating the effect of iron 

thin film thickness on in-situ formation of graphene-CNT hybrid film on a SiO2/Si 

substrate. Figure 4.20a shows the formation of only thin CNT from the 10 nm thickness 

of Fe thin film catalyst. On the other hand, Figure 4.20 b shows the in-situ formation of 

graphene-CNT hybrid structure from the 20 nm Fe thin film, however Figure 4.20 c 

demonstrating no hybrid structure growth from 30 nm Fe thin film which just exhibited 

thick agglomerated catalyst particles after the CVD growth process. 

 

Figure 4.21:  (a) & (b) Formation of nanoparticles on the substrate for CNT growth and 

the particles at higher magnifications respectively.  

 

4.2.6. Electrical and electro-mechanical characterizations 

 Electrical conductance was measured to evaluate the conductivity and the 

continuity of the top layer along the lateral direction of the graphene-CNT hybrid film. In 

graphene transport properties are dependent on various factors including distribution of 
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carriers among the graphene layers and impurity density33-37. Since the low-energy bands 

of graphene are mostly localized on atoms which are not coupled to neighboring layers, 

the hybridization between graphene layers does not favor interlayer hopping33, 35 . 

Therefore, the charge transport property in multi-layer graphene is significantly lower 

than mono or bi-layer graphene33-36. Nevertheless, a linear relationship of I-V 

characteristics was observed for all the measurements with low resistance values varying 

from 100-400 Ω with increasing electrode distance as shown in Figure 4.22.  Moreover, 

uniform conductance over the large area of the hybrid film attributed to the ohmic 

contacts between graphene and CNT, thus indicating good structural integrity of the 

nanostructure.  

 In addition to the good electrical properties, the graphene-CNT hybrid film has 

excellent electro-mechanical properties and good structural integrity when used to make 

flexible film or stretchable electrodes. The fabrication process of graphene-CNT-PDMS 

film and its flexibility is demonstrated in Figure 4.23a & b and the morphology of the top 

surface of the polymer-hybrid film is shown in a FESEM picture in the inset of Figure 

4.23b. Similarly the structure was also transferred onto a flexible adhesive Cu tape as 

illustrated in Figure 4.23a. After the transfer process, the hybrid structure on the Cu foil 

was observed in a SEM shows the graphene under layer on Cu foil an vertically aligned 

CNT are on the top of it as depicted in the Figure 4.24.  
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Figure 4.22: Representative plot of electrical resistance (R) as a function of distance 

curves measured form the graphene-CNT hybrid film on as grown SiO2/Si substrate by 

two terminal measurement methods. Resistance measured as a function of distance to 

demonstrate the structural integrity and electrical performance of large area graphene-

CNT hetero-junction composite electrode. 

 

 

Figure 4.23: Schematic illustration of graphene-carbon nanotube hybrid film transfer 

process on flexible Poly di-methylsiloxane (PDMS) and Cu foil (b) Image demonstrating 

flexibility of the graphene-CNT hybrid film-PDMS composite and inset showing the 

FESEM pictures of the top surface of the composite. 
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 We evaluated the flexibility (tension as well as compression) of as obtain 

graphene-CNT-PDMS polymer film by measuring the resistance with respect to the 

folding radii. In Figure 4.25a & b the resistance shows a distinguishable variation of 

0.85-2.3 kΩ and 0.9-5.5 kΩ from the bending radius of flat to 3.3 mm in tension and flat 

to 1.4 mm in compression respectively. The resistance of the graphene-CNT-PDMS film 

is 850 Ω which is similar to the obtained CVD grown monolayer graphene film38. In 

addition to this, further resistance of the hybrid film can be improved when the quality of 

graphene film is enhanced. From Figure 4.25 a we can observe that the resistance of the 

film is linearly increasing from 0.85 kΩ to 2.1 kΩ with decreasing bending radius from 

flat to 13.5 mm (Figure 4.25a). 

 

Figure 4.24: graphene-CNT structure after transfer over the adhesive Cu substrates 

illustrating the graphene at the bottom and CNT on the top. 

 

 The change in resistance is due to the stretching of the interface between CNT and 

graphene film as well as relative movement of the catalyst particles. Furthermore, 

decreasing bending radius from 1.5 mm to 3.3 mm leads to the decrease in slope of the 
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resistance curve on that region. Whereas, the resistance under compression (Figure 4.25b) 

illustrates a continue increase of resistance with decrease of bending radius. Finally, the 

resistance is completely recovered upon release of stress in both the cases of tension and 

compression.  Several reports show that the electrodes prepared from aligned CNT pillars 

and PDMS, tensile loading destroyed the integrity of the nanotube pillars resulting in 

increased electrical resistance21-23, 39-41. In graphene-CNT hybrid film electrodes, the 

continuous graphene film connecting the MWCNT preserved the structural integrity of 

the PDMS electrode, underlining the possibility of utilizing these structures directly as 

mechanical (strain/ pressure/touch) sensors. 

 

 

Figure 4.25: Illustrates the variations of electrical resistance as a function of bending 

radius (a) tension (b) compression, inset displays the test structure of graphene-CNT-

PDMS composite electrode. 
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CHAPTER 5 

SURFACE FUNCTIONALIZATION OF GRAPHENE FOR APPLICATION IN 

ELECTROCATALYTIC ELECTRODES FOR DYE SENSITIZED SOLAR 

CELLS 

5.1. Graphene functionalization  

 Since its invention, graphene, two-dimensional (2D) graphitic allotropes of 

carbon creates an immense research interest due to its exotic electronics, optoelectronics, 

thermal and mechanical properties1-4. The most fascinating properties of graphene 

include room temperature quantum Hall effect5, 6, ballistic charge transport2, 7, high 

charge carrier density1, 7, tuneable band gap8, high thermal conductivity9 and ultra-high 

transmittance 10, 11. Numerous graphene based devices have already been demonstrated 

for the potential applications in transistors7, 12, Li-ion battery13, 14, supercapacitor15-18 and 

solar cells10, 11, 19-23. Particularly, application of graphene in solar cells with high 

efficiency, large open circuit voltage and high current density is of primary interest21-23.  

 It has already been reported that graphene exhibited remarkable transmittance 

through the entire solar spectrum from ultra-violate (UV) to infra-red (IR) region10, 11. 

Therefore, graphene based electrodes are quite advantageous for those types of solar 

cells/tandem solar cells which need to absorb entire range of photon energies (from UV-

visible to IR) in order to generate excitons efficiently. On the other hand, large scale 

graphene can be grown and transferred on any flexible polymer substrates using various 

facile and scalable methods which are quite feasible towards industrialization24, 25. 

Therefore, the versatility of graphene and its fabrication process has been projected to 

offer immense opportunity for next generation efficient, lightweight, flexible device 
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applications. In particular, dye sensitized solar cells (DSSCs) are one of the major 

candidates among all23, 26, 27. In DSSCs, dye coated TiO2 photo-anode and Pt coated FTO 

cathode is sandwiched between a liquid electrolyte in order to form a photo-

electrochemical solar cell. The DSSC counter electrode (CE) is one of the indispensible 

components which directing the regeneration of oxidized dye back to their ground state. 

Concurrently, CE injects electrons into the electrolyte in order to catalyze the iodine 

reduction (I3
- +2e- ↔ 3I-) after the charge injection from the photo-oxidized dye28, 29. The 

catalytic effect of CE is expected to play a decisive role for the operation of DSSCs 

through controlling the current generation of the photo-anode.  In this context, utilizing 

the high surface area of 2D graphene sheet (2630 m2/g) in addition to its intrinsic high 

charge concentration and carrier mobility, provide greater versatility as a counter 

electrode in DSSCs. Recent reports demonstrate a very low resistance of graphene film 

with high transparency which can be further utilized for the replacement of both 

transparent conducting oxides (TCOs) and CEs. In particular, improvement of catalytic 

activity of graphene while maintaining its unique properties is of great interest in 

application of graphene as replacement of expensive and inadequate Pt counter 

electrode30. 

 Doping or chemical functionalization is one of the prevailing methods among the 

various approaches which offer enticing possibilities to tune the charge carrier density31-

34, band gap8, work function35, 36 and catalytic activity26, 37 of graphene. For example, 

Fermi energy (EF) of graphitic allotropes can be tuned using chemical (like, halogens38-40, 

acid35, 41-43 and alkali metals44) or electrochemical doping45. However, the phlegmatic 

nature of graphene basal planes often restricts the charge transfer at the 
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electrode/electrolyte interface, thus limits its functionality in a wide range of 

electrochemical devices. Therefore, enriching electro-catalytically active sites of 

graphene is currently in demand in achieving efficient catalytic CEs for stipulating the 

charge transfer at the electrode/electrolyte interface46-49.  Recently a few reports 

demonstrated the improvement of graphene catalytic activity by surface modification 

protocols using water-soluble polymers (polyelectrolyte) and poly(ethylene-oxide)-poly 

(propylene-oxide)- poly (ethylene-oxide) tri-block copolymer26, 27. However, the electro-

catalytic activities of large scale chemically vapour deposited (CVD) graphene has not 

been well scrutinized and possesses a serious challenge.  

 Apart from these functionalities, enhanced chemical reactivity of graphene is 

indispensable as a CE for DSSCs, which can be proceeded by surface modification 

protocols, either via chemical modification or physical treatment of graphene 26, 42, 50. It 

has been well reported that graphite intercalation compounds (GICs) significantly 

improve the conductivity and in-plane charge transfer, as compared to graphite51. 

However inert nature of graphene basal plane often restricts graphene-liquid interface 

charge transfer although it shows high in-plane charge mobility, so tri-iodide reduction 

occurs only through their edge planes. Thus, surface modification is required for 

improving their in-plane charge transfer characteristic and application as efficient 

catalytic counter electrode for tri-iodide reduction in DSSCs. Furthermore, functional 

nano-particle decorated graphene film instantly increase the electrode-electrolyte contact 

area which is known as triple junction catalytic effect; hence improves the electron 

transfer kinetics at the interface52. Additionally, decoration with catalytically active 

functional nanoparticles (NPs) are highly beneficial for enhancing electro-catalytic 
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reactions for practical applications such as hydrogen generation 53, Li-ion batteries 54, 

pseudo-supercapacitors 55 etc.    

 This chapter describes the different functionalization protocols applied to 

graphene in order to improve its electrocatalytic behaviour. First, Fluorine functionalized 

graphene fabrication process is descried and explains its electrocatalytic activity towards 

tri-iodide reduction. A mechanism is also proposed to explain the possible reason for 

enhancing electrocatalytic activity of tri-iodide reduction. Second, the chapter also 

included how acid doping enhances the electrocatalytic activity of graphene. As, Niric 

acid (HNO3) doped in graphene lattice as p-type, therefore enhances its conductivity and 

catalytic activity by Fermi level pinning. Hence, this section included all the structural 

and electrochemical characterizations of HNO3 doped graphene and its final device 

application as counter electrode for DSSC. Furthermore, graphene-CoS hybrid structure 

was synthesized using successive ionic layer absorption and reactions (SILAR) method 

and applied for DSSC counter electrode.  In this case, the graphene-CoS triple junction 

catalytic effects enhance the further charge transfer kinetics, hence improve the catalytic 

activities of graphene. Finally, the last section included the graphene-CNT hybrid 

structure applied as flexible field emission (FE) devices and FE properties were measured 

with different bending radius.  

 

5.1.1. Fluorine functionalization using low pressure plasma treatment 

 The plasma ion treatment is a promising tool offering several advantages such as 

precise control in surface treatment and thus higher reactivity with a functionalized 

surface with the carbon atoms. In particular, applying highly electronegative fluorine ion 
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stems from CF4 reactive ion plasma seems to functionalize the carbon atoms of graphene 

with fluorine ion. This may improve graphene’s characteristic properties i.e. density of 

states in Fermi energy level, ionization potential, etc. like halogen ion functionalized 

graphitic materials56. Apart from that, our focus is to create more catalytically active 

edges in graphene through plasma treatment and functionalize them with fluoride 

functional group for enhancing interfacial electron transfer sites at the graphene-

electrolyte interface 38, 47, 57, 58. The plasma treated edges are expected to tailor their 

surface properties as well as improve tri-iodide reduction capability, which paves a path 

way for improving the performance of DSSCs.  

 

 

Figure 5.1: Schematic showing the graphene functionalization procedure in a plasma 

treatment chamber.  

 

 After the CVD growth process, the graphene was transferred on a FTO substrates 

as described in chapter 3 section 3.2.2. Then graphene /FTO was treated with CF4 

reactive ion plasma (RIP) for 15 seconds & 45 seconds which we addressed as 15 second 

surface treated graphene (ST15-G) and 45 second surface treated graphene (ST45-G) 
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respectively. The graphene/FTO substrates were placed inside a reactive ion etching 

chamber and pull down the vacuum up to 50 mT. Then CF4 gas was passed through the 

chamber while maintaining the vacuum pressure 100 mT. The flow of the CF4 gas was 

kept constant at 5 sccm as shown in the schematic Figure 5.1. Graphene film on FTO 

substrates were also characterized by Raman spectroscopy before and after the plasma 

treatments as described in upcoming section. 

 

5.1.2. Micro-Raman spectroscopy 

 Raman spectra was measured in a system with a spectral resolution of 4 cm-1 

inbuilt argon ion (Ar+) laser (Spectra Physics, model 177G02 wavelength of 514.5 nm). 

As could be observed from Figure 5.2, pristine graphene (P-G) on FTO exhibit 

symmetrical strong 2D band, G band and D band peaks of corresponding positions of D, 

G and 2D bands which are ~1345 cm-1, ~1582 cm-1 and ~2701 cm-1 respectively.  Like 

pristine graphene, strong symmetric 2D band and G band peaks appears for ST15-G and 

ST45-G, which confirm the presence of graphene multilayer even after plasma treatment 

with CF4 reactive ions. 

 As could be seen from Figure 5.3a, the intensity of D band peaks was found to 

increase with increasing plasma treatment time for P-G, ST15-G and ST45-G 

respectively. The increase in D band peak intensity indicates the introduction of F- ions 

(surface defects) inside the graphene and transformation of sp2 to sp3 bonds between the 

carbon atoms 59, 60. Further, the peak intensity ratio of D and G bands, i.e. ID/IG, increases 

with an increase in plasma treatment time as shown in Figure 5.3d. On the other hand, 

there is a distinct peak shift of the 2D band with increasing CF4 plasma treatment time as 
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shown in the Figure 5.3c. The 2D peak position of P-G, ST15-G and ST45-G is found to 

be ~2701 cm-1, ~2709 cm-1 and ~2711 cm-1, respectively corroborating the formation of 

intercalated compounds of graphene. In this context, there are no peak shift was found for 

the G band peaks which represents the existence  of graphene structure remain same even 

after the plasma treatment.   

 

Figure 5.2: Comparative Raman spectra of different fluorine functionalized graphene. 

 

 Furthermore, the blue shift in the 2D band with increasing plasma treatment time 

justifies the incorporation of F- ions with an increase in number of edge plane like active 

carbon sites in graphene as reported earlier 59. Furthermore, the peak intensity ratio of G 

and 2D bands, i.e. IG/I2D is found to be ~0.5 pristine graphene. Figure 5.3d designates the 

significant increase in IG/I2D ratio with an increase in plasma treatment time initially, but 
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no further increase is found after that. However, the substantial evidence of fluorine 

doping in graphene layer is discussed in the upcoming XPS section 6.1.4. 

 
Figure 5.3: Comparative Raman spectra of (a) D band, (b) G band and (c) 2D band of 

different fluorine functionalized graphene. (d) Illustrate the changes in Raman peak 

intensity ratios (□, ID/IG and ∆, IG/I2D) with increasing plasma treatment time. 

 

5.1.3. Atomic force microscopy 

 The graphene samples (ST15-G and ST45-G) for Atomic Force microscopy 

(AFM) were prepared under the same condition using CF4 reactive plasma ion on a 

cleaved mica surface (Ted Pella Inc.). The surface topography of all the samples was 

investigated using atomic force microscopy (AFM) (NanoScope IIIa, Veeco Instruments 
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Inc., USA) under tapping mode condition.  Figure 5.4 a, b and c illustrates the AFM 

images of the surface topography of P-G, ST15-G and ST45-G respectively. The 

subsequent increase in surface roughness is clearly seen with increasing chemical 

functionalization of graphene with plasma treatment time. The RMS values (Rq) of 

surface roughness are found to be 2.6 nm, 2.94 nm and 3.6 nm for P-G, ST15-G and 

ST45-G sheet respectively. It infers that the surface of P-G, ST15-G and ST45-G films 

are modified with fluorine functionalization which causes the variation in vertical 

deviations The change in vertical deviations is increased significantly for ST15-G and 

ST45-G compare to the P-G as illustrated in Figure 5.4 d, e and f 46, 48.  

 

 
 Figure 5.4: Show of Atomic Force Micrographs of (a) Pristine Graphene (P-G); (b) Low 

surface treated graphene(ST15-G); (c) High surface treated graphene ST45-G; (d), (e), 

and (f) represents the corresponding surface roughness profiles of the Figure 5.4 (a), (b) 

and (c) respectively.   
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 The increase in surface roughness attributes to the fluorine functionalization with 

basal plane carbon atoms of graphene film thus increases in edge planes leads to the 

enhancement of the catalytic activity of graphene. Therefore, edge planes of graphene 

contribute to the enhancement of in-plane charge transfers at the electrode-electrolyte 

interface leads to the increase in catalytic activity of graphene towards charge transfer at 

the electrode-electrolyte interface.  

 

5.1.4. X-ray photoelectron spectroscopy 

 
Figure 5.5: (a) X-ray Photoelectron Spectra of three different counter electrodes of PG, 

ST15-G and ST45-G (b) showing the carbon (C1s) peaks from graphene. 
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 It is well reported that edge planes of graphene show more catalytic effects than 

the basal planes 18, 46, 48, 61. It is assumed that F- ions may react in graphene electronic 

structure during CF4 reactive ion treatment resulting in a semi ionic or covalent bond, 

thus bringing structural modification in basal planes. This assumption was further 

verified with XPS spectra, in which (as illustrated in Figure 5.6) a peak at ~688.4eV 

attributed to the characteristic of a C-F covalent bond in ST15-G and ST45-G electrodes. 

F- ions are more electronegative than that of carbon atom leading to the formation of  C-F 

covalent bonds. Therefore the basal plane turns electrochemically active and offers in-

plane charge transfer than pristine graphene (P-G) layer 26, 39. 

 

 Figure 5.6: Illustrates the XPS spectra of F1s orbital peak shows that intensity increases 

with increasing CF4 plasma treatment time compare to the pristine graphene. 

 

 These structural changes in graphene under CF4 plasma treatment were previously 

discussed in Raman section 5.1.2  and confirmed with the IG/I2D band ratio from Raman 
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spectroscopy (as shown in Figure 5.2 & 5.3). As is evident, reactive ion plasma 

fluorination in graphene sheets (ST45-G) improve their electrochemical reactivity with 

redox species (I3
-/I-), and raise the possibility in tri-iodide reduction. This thus enhances 

the dye regeneration, which leads to the high short-circuit current density in this system 

50, 62. 

 

5.1.5. Ultra-violet photoemission spectroscopy 

 For further understanding this behavior, the work function of CF4 reactive ion 

plasma treated graphene multi-layers was characterized by the Kelvin probe method and 

the values are listed in Table 5.1. As shown in Figure 5.7 a & b of ultraviolet 

photoemission spectra of graphene electrodes, the intensity of the peak increases for 

ST15-G and then decreases for ST45-G. The work function of the pristine graphene 

initially increases about 0.57 eV because of the plasma treatment for 15 s and was found 

to decrease about 0.02 eV when further increasing plasma treatment time to 45 s. It 

clearly reveals that due to long duration of plasma treatment (45s), an excess amount of 

negative charge formation takes place in graphene leading to lower work function. This is 

attributed to the widening of the graphene band gap due to the subsequent chemical 

functionalization of F- ions with carbon atoms.  We believe that the lowering in the 

valence band is due to the interaction of the p orbital of F- ion with the π orbital of carbon 

atom resulting in the formation of sp3 bonds 42, 63. 

 Work function changes by fluorine doping were determined in air by a Kelvin 

probe method (model KP-6500, McAllister).  We obtained contact potential difference 
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(CPD, ∆V) relative to a stainless steel reference electrode from this method, which is 

related to a work function difference ∆Φ, (∆V= -e∆Φ). 

 
 

Figure 5.7:  Ultraviolet photoemission spectra of different plasma treated and pristine 

graphene and (b) the magnified view of the UP spectra showing a clear shift of graphene 

work function. 

 

Table 5.1: The contact potential difference and change in work function of different 

graphene electrodes measured using Kelvin Probe Microscopy.  
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5.1.6. Electrochemical characterizations 

 Electrochemical characterization was carried out under symmetric cell 

configuration using pristine and functionalized graphene counter electrodes and Pt coated 

FTO glass referred as a standard cell as delineated in chapter 3 section 3.4.  

As is observed from Figure 5.8, the limiting current (Ilim) of symmetric dummy cells and 

Ilim for P-G is apparently lower when compared to the ST15-G and ST45-G, which is in 

agreement with the J-V characteristics of the DSSCs illustrated in  Figure 5.11. The 

current density which is measured under a slow scan rate (50 mV/s) is a representative of 

the diffusion of the ionic carriers in the electrolytes between two electrodes of the 

symmetric cell. In fact, the diffusion coefficient is proportional to the Ilim as per the 

equation 5.1 30.  

    (5.1) 

 Here, l is the inter-electrode distance; n = 2, the number of electrons contributing 

to the charge transfer; F is Faraday’s Constant; CI3
- is tri-iodide ion concentration per unit 

volume (5x10-6 mol/cm3).  

 The estimated diffusion coefficient values of I3- redox species at different counter 

electrodes were estimated and listed in Table 5.2.  It is inferred that diffusivity of P-G 

electrodes are apparently improved by F- ion treatment and is comparable to Pt electrode. 

Therefore, the diffusion coefficient of the ionic carriers at counter electrode-electrolyte 

interface is increased with increasing catalytic activities of graphene. Tafel plot is applied 

to investigate the insight of interfacial charge-transfer property at the interface of 

graphene-electrolytes under symmetric cell configuration (electrode/electrolyte/electrode) 

using different counter electrodes. 

 DI3
-
 = {[l]/2nFCI3

-} Ilim  
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Figure 5.8:  Steady state cyclic voltammogram of symmetric cell based on plasma treated 

graphene counter electrodes at 20oC. 

Table 5.2: Illustrates the electrochemical parameters calculated from Tafel plots with 

different counter electrodes. 

 

 

 

 The experimental polarization curves were fitted with the Butler-Volmer equation 

(equation 5.2), describing the dependence of electrical current on electrode potential by 

assuming that both cathodic and anodic reactions occur on the same electrode. 

  (5.2) 

 

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.02

-0.01

0.00

0.01

0.02  P-G
 ST15-G
 ST45-G
 Pt

Cu
rre

nt
 D

en
si

ty
 (m

Ac
m

-2
)

Potential (V) 

Electrode Dn 
(cm-2s-1) 

α β Cathodic 
Tafel 

Anodic 
Tafel 

Exchange 
Current 

Density (A) 

Over 
potential                          

(mV) 
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I= nFAKs {Co
surf exp ((αnF) η /RT) – CR

surf exp ((βnF) η /RT)}  
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For estimating the tri-iodide reduction rate at the counter electrode, over potential is 

calculated by, 

η = (RT/αF) ln (I0) - (RT/αF) ln (Ilim)      (5.3) 

 Here Ilim is the limiting current, I0 exchange current, A is the electrode active 

surface area, Ks is the standard rate constant, η is the over potential (estimated from 

equation 5.3), Co
surf is the reactant concentration near the electrode, CR

surf is the product 

concentration near the electrode, α is the anodic transfer coefficient, and β is the cathodic 

transfer coefficient 64.  

  

 

Figure 5.9:  (a) J-V  plot of different graphene electrodes (b) Nyquist plot of symmetric 

half cell with different counter electrodes ( , Pristine Graphene) ( , ST15-G) ( , ST45-

G) and ( , Pt ). 

 

 Figure 5.9a shows the polarization curves of the symmetric electrodes cells 

configured with different counter electrodes. The exchange current density was 

calculated from the intersection of the linear anodic and cathodic curves for different 
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electrode (PG, STG-15, STG-45 and Pt) and listed in Table 5.2. By substituting equation 

5.3 in equation 5.2 with necessary parameters (as shown in Table 5.2), rate constant (Ks) 

of redox species conversion at different counter electrode can be derived. 

 From Table 5.2, the exchange current density for P-G is apparently lower when 

compared to the ST15-G and ST45-G. This implies that pristine graphene has poor 

interfacial charge transfer activity with I3
- redox species, since there are fewer numbers of 

active edge planes in the crystal lattice. Furthermore, F- ion treatment drastically 

improves the construction of edge plane sites at the pristine graphene electrode, which 

promote their interfacial transfer activity with I3
- redox species 46. This reflects on 

exchange current density, for instance, a 45s plasma treated graphene electrode (ST45-G) 

sample shows a higher exchange current density value which indicates that I3
- reduction 

kinetics are faster at this electrode/electrolyte interface than other graphene 

electrode/electrolyte interfaces.  

 

Figure 5.10:  (a) Charge transfer resistance vs. temperature plot and (b) exchange current 

density vs. temperature plot of different counter electrodes. 

2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
100

101

102

 Pristine Graphene
 ST15-G
 ST45-G                
 Platinum

 

 

 1000/T [K-1]

J 0 [
m

A/
cm

2 ]

2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
10-1

100

101

 

 

 

 Pristine Graphene
 ST15-G
 ST45-G                
 Platinum

1000/T [K-1]

R c
t [

Ω
cm

2 ]

(a) (b)



 134   
 

 In view of understanding the electron transport phenomena at 

graphene/electrolyte interfaces, electrochemical impedance spectroscopy (EIS) was 

utilized for testing a thin symmetry cell (graphene/electrolyte/graphene) and resultant 

Nyquist spectra of different samples is presented in Figure 5.9b. As shown in the inset of 

Figure 5.9b, the equivalent circuit of the symmetric cell is denoted by Randles circuit 

which consists of Rct (charge transfer resistance) in series of Zw (Warburg Impedance) 

where both elements are in parallel with Cdl (double layer capacitance). A series 

resistance Rs is included in the circuit as it arises from the total contribution from the load 

and the FTO resistance. The charge transfer resistance (Rct) and Nernst diffusion 

impedance (Zw) at the counter electrodes was estimated from the diameters of the 

leftmost semicircles using Echem Analyst software with the Randles circuit.  Figure 

5.10a illustrates the decrease in charge transfer resistance with increases in plasma 

treatment time of graphene and temperature. The charge transfer resistance Rct of pristine 

graphene was apparently reduced under CF4 plasma treatment and shows comparable 

resistance with conventional Pt electrode (Table 5.3).  

Table 5.3: Illustrates Photovoltaic parameters of different counter electrodes and the 

simulated EIS parameters. [a] 

 
[a] 

VOC: Open circuit voltage, JSC: Short circuit current density, FF: Fill factor and: efficiency, Rct: charge transfer resistance and ZW: 
diffusion impedance. 
 
 

Counter 
Electrodes 

VOC 
(V) 

JSC 
(mAcm-2) 

FF 
(%) 

η 
(%) 

Rct 
(Ω)   

Zw 
  (Ω) 

PG 0.69 7.8 26.0 1.43 38.0 76.1 
STG-15 0.74 8.3 38.8 2.41 17.2 34.4 
STG-45 0.66 10.9 35.9 2.56 8.5 17.1 

Pt 0.68 15.7 61.1 6.65 4.6 10.0 
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 As a result, CF4 plasma treatment enhances the reaction kinetics of redox species 

at ST15-G and ST45-G electrodes yielding high exchange current density (As shown in 

Figure 5.10b). This observation is satisfactory with earlier discussions for the 

predominant catalytic behavior of the ST45-G electrode. Zw values of pristine and plasma 

treated graphene electrodes are significantly different. The low Zw value (17.1Ω) 

obtained at the ST45-G electrode/electrolyte interface implying that there is less 

resistance for the I3
-/I- electrolyte species due to faster in-line charge transfer. As is 

evident, the enhanced electrocatalytic behaviors of graphene by F- functionalization 

through enhancing electron charge transfer sites is responsible for efficient tri-iodide 

reduction in this system. Furthermore, the temperature dependence of charge transfer 

resistance of pristine and surface treated graphene electrodes is shown in Figure 5.10 a & 

b. The result illustrates that the Rct decreases as exchange current density increases with 

increasing temperature from 273K to 333K.  Likewise, decreases in charge transfer 

resistance are also associated with the increase in exchange current density J0 (calculated 

using the equation 5.4) at the electrode-electrolyte interface as shown in Figure 5.10b).   

   J0 = RT/nFRct      (5.4) 

 Here, Rct is the charge transfer resistance calculated from the EIS spectra, R is the 

universal gas constant, T is the temperature in K, n is number of electrons contributing to 

the charge transfer at the interface and F is the Faraday’s constant. Exchange current 

density is a kinetic component that arises due to the charge transfer from the counter 

electrode to the tri-iodide ions at the electrode-electrolyte interface. The temperature 

dependent exchange current density curves for different graphene counter electrodes 

(Figure 5.10b) follow the Arrhenius equation as per the equation 5.5. 
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   J0 = I0 exp(-Ea/RT)      (5.5) 

 Here, Ea is the activation energy, and the other terms follow their usual meanings. 

As shown in Figure 5.10b, the successive increase in exchange current density with the 

plasma treatment time and temperature for PG, ST15-G ST45-G substantiates the 

enhancement of higher catalytic activity of the fluorinated graphene electrodes. As 

explained earlier, the creation of graphene active sites in graphene contribute enhancing 

the catalytic activity of the graphene for tri-iodide reduction. We believe that the increase 

in exchange current density is attributed to the enhancement of electrocatalytic activity of 

the large scale CVD graphene. Therefore, F- functionalized graphene with active edge-

plane sites can be further applied in a wide range of electrocatalytic systems for iodine 

reduction apart from the DSSC.  

 

5.1.7. DSSC full cell characterizations using fluorine doped graphene counter 

electrodes 

 The TiO2 working photoanodes of ~12 µm thickness were prepared on FTO 

substrate using TiO2 paste by doctor blade technique and, subsequently, sintered at 450 

ºC for 30 minutes in ambient atmosphere. The Ru(dcbpy)2(NCS)2 (dcbpy = 2,2-bipyridyl-

4,4-dicarboxylato)dye (535-bisTBAN719, Solaronix) was used to sensitize the TiO2 

photo electrodes. A sandwich-type configuration was employed to measure the 

performance of the dye-sensitized solar cells, using graphenes on F-doped SnO2 (FTO) 

glass and 0.5M MPII (1-methyl-3-propylimidazolium iodide)  with 0.05M I2 in ACN as 

the electrolyte solution. Current–voltage characteristics of DSSCs were carried out under 
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1 sun illumination (AM 1.5G, 100 mW cm−2) with a Newport (USA) solar simulator 

(300W Xe source) and a Keithley 2400 source meter.  

 
 Figure 5.11 compares the performance of DSSCs employing the three different 

counter electrodes (CE) of P-G, ST15-G and ST45-G. The Pt coated CE was also tested 

under similar condition for elucidating the feasibility of graphene as a CE of DSSC. The 

short-circuit current density (Jsc) of DSSCs based on graphene is found to be increasing 

with an increase in plasma treatment time as listed in  Table 5.3. The improvement of Jsc 

in surface treated graphene  electrodes can be explained based on the progress of catalytic 

behavior in reduction of tri-iodide to iodine (I3
-+ 2e-3I-), which determines the actual 

driving force for dye regeneration at the photoanode  part. On the other hand, a shift in 

open circuit voltage (Table 5.3) for ST15-G electrode evidenced a shift in graphene 

surface redox potential towards the more negative side due to F- ion functionalization as 

illustrate in Figure 5.12. To decipher these phenomena further, we applied steady state 

cyclic voltammetry for exploring the mass transfer of tri-iodide in different graphene 

electrodes (Figure 5.8) which are discussed elaborately in the section 6.1.6. It is clearly 

seen in the Tafel plot (Figure 5.9a) that slopes of the cathodic and anodic part of the J-V 

plot increases for ST15-G and ST45-G in comparison to the P-G.  

 Evidently, the increase in slope of Tafel plot corresponds to the enhancement in 

exchange current density (J0) at the electrode-electrolyte interface which is quite 

harmonious with the solar cell measurements where a sharp increase in current density 

was found in the fluorine functionalized graphene compared to the pristine one. This 
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implies that CF4 plasma treated graphene (ST15-G and ST45-G) substantially increase 

the mass transport pathway and render efficient tri-iodide reduction. 

 
Figure 5.11:  J-V measurements of DSSCs using different plasma etched graphene 

counter electrodes (○, Pristine Graphene) (�, ST15-G) (∇, ST45-G) and (∆, Pt ), 

performed under light illumination. 

 
 
 Figure 5.12:  J-V measurements of DSSCs using different plasma etched graphene 

counter electrodes (○, Pristine Graphene) (�, ST15-G) (∇, ST45-G) and (∆, Pt ), 

performed under dark condition. 
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5.2. Graphene functionalization using nitric acid  

5.2.1. Functionalization of graphene with HNO3 

 So far, it has been well reported that nitric acid (HNO3) introduces p-type donors 

in graphitic materials43, 65, 66 which significantly improves the conductivity and charge 

transfer efficiency of the carbon structures 46-49 51, 67. Furthermore, graphene doped with 

HNO3 does not cause any detrimental oxidants and results in thermally stable structure 

which is beneficial for robust solar cell applications 68, 69. Hence it is of fundamental 

interest to study how HNO3 doped graphene affects tri-iodide reduction in DSSCs. Here 

we report a systematic investigation of enhancement in electro-catalytic properties of 

nitric acid doped graphene for tri-iodide reduction. We find that this strategy is easy to 

apply for a large scale CE of DSSCs with enhanced efficiency of the tri-iodide reduction.  

The large area graphene on Cu was transferred to FTO using chemical method as follows. 

First, graphene/Cu was placed floated on a Cu etchant (FeCl3) in order to etch away the 

Cu foil. After etching away the Cu foil using Cu etchant and then transfer over the FTO 

using subsequent washing with water, isopropanol (IPA) and acetone. Furthermore the 

graphene/glass samples were annealed at 500oC by using rapid thermal annealing method 

(RTA). The transferred graphene on glass was functionalized using different 

concentration of HNO3 (ALFA-AESAR) solution by dip casting method for the same 

time followed by cleaning the surface by blowing dry nitrogen. The graphene layer was 

transferred onto FTO glass substrates by a chemical method as explained in the 

experimental section 3.2.2. Furthermore, pristine graphene on FTO (PG) was doped with 

different concentrations of HNO3 solutions of 20%, 50%, 70% and 100% which we 

addressed as 20HDG, 50HDG, 70HDG and 100HDG graphene samples respectively. 
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5.2.2. Raman spectroscopy 

 The pristine and nitric acid treated graphene electrodes were further characterized 

with Raman spectroscopy (as shown in Figure 5.13) in order to elucidate graphene 

structures, in-plane sp2 vibration of carbon atoms (which appear as G band) as well as 

any alteration in the sp2-sp3 hybridization due to doping.  As could be seen in the 

comparison Raman spectra in Figure 5.13 that the pristine graphene (PG) shows a 

minuscule D band at 1342 cm-1 with peak intensity ratio of ID/IG~0.2 which is 

corresponding to the presence of armchair like edges-planes at the graphene.70   

 

Figure 5.13: Comparison Raman spectra of large scale CVD-graphene doped  with 

different concentration of nitric acid. The comparative spectra depicted the characteristics 

D,  G and 2D Raman bands of pristine and nitric acid treated graphene. 

 

1000 2000 3000

2D
D

PG

100HDG

50HDG

70HDG

20HDG

 
In

te
ns

ity
 (A

rb
itr

ar
y U

ni
t)

Raman Shift (cm-1)

 

 

G



 141   
 

 Furthermore, the intensity of D-band increases (Figure 5.14a) with increasing 

nitric acid concentration which inferred that the electronic structure of graphene is 

altered. We believe that alteration of graphene electronic structure occurred by two ways. 

Firstly, changes take place in sp2 hybridization of carbon atoms due to the bond 

formation between the graphene carbon atoms with different functional moieties like 

C=O-, C(O)OH- and NO3
-; and secondly, the formation of unsatisfied valance bonds may 

also play a key role in   creation of edge-planes like catalytic sites in graphene60, 71. 

However, further evidences related to the alterations in hybridization and different bond 

formations are presented in the upcoming sections (XPS section). 

 

Figure 5.14:  Raman spectra of different HNO3 functionalized graphene showing 

comparative (a) D band, (b) G band, (c) 2D band and (d) a comparative plot of IG/I2D 

ratio with different doping concentrations. 

(a) (b)

(c) (d)
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 Furthermore, the G and 2D band position occurred at 1579 cm-1 and 2704 cm-1, 

respectively and their corresponding intensity ratio of G and 2D band (IG/I2D
~ 0.5) 

confirms the few layer graphene structure on the FTO substrate72. As shown in Figure 

5.14b, no significant variations are found in the intensity and position of G band peaks 

~1579 cm-1 even after employing acid doping which reveals that no massive structural 

deformation occurs in the graphene lattice/sub-lattice. There is small changes in full 

width half maxima (FWHM) of G peaks with increasing doping concentrations and a 

slight blue shift (~5 cm-1) in G band peak for 100HDG ascribed to conventional 

fluctuation due to the hole doping in graphene59. We believe that, the G peak broadening 

is due to the splitting of band structure of the graphene.  

 We also observed the successive blue shift in 2D band peak at 70HDG (2714 cm-

1) samples (as shown in Figure 5.14c) compared to PG (2704 cm-1), manifesting the 

functionalization of different functional groups with carbon atoms through sp3 

hybridization. In this context, the shift in the position of the 2D band with increasing acid 

doping concentration affirms that the HNO3 carriers randomly doped in the graphene 

lattice, which clearly understands that numbers of edge-plane like active carbon sites in 

graphene are promoted. On the other hand, 2D peak broadenings (i.e. increase in FWHM) 

are found with successive increase in HNO3 doping concentrations which proclaim the 

splitting of the electronic band structure of graphene73. As could be seen from the Figure 

5.14d, the IG/I2D ratio increases with increasing the doping concentration in graphene, 

represents the formation of graphene intercalated structures due to the attachments of 

different functional moieties. We believe that the splitting of the electronic band structure 

of graphene is due to the increase in proton concentration in graphene lattice which also 
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causes the Fermi level shift in graphene. However, we will further discuss (by using XPS 

and UPS) in upcoming sections how the electronic band structure splitting and Fermi 

level pinning of graphene occurs under acid doping and their subsequent effects on 

enhancing catalytic activity of graphene for tri-iodide reduction. 

 

5.2.3. X-ray photoelectron spectroscopy 

 

Figure 5.15: Illustrate comparison X-ray photoelectron spectra of pristine graphene and 

acid doped graphene electrodes. 

  

 X-ray Photoelectron Spectroscopy (XPS) is a potential tool to investigate the 

chemical environment of modified graphene lattice by foreign doping74. We performed 

XPS in order to ensure the HNO3 doping in graphene lattice and study their chemical and 
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electronic state. X-ray photoemission spectra (XPS) were obtained using an angular 

resolved electron analyzer with a monochromatic Al Kα source (model Theta Probe, 

Thermo Fisher Scientific).  The emitted electrons were detected at the angles between 23º 

and 83º. The conduction band maximum was studied using ultraviolet photo-emission 

spectroscopy. The resultant full comparative spectrum is presented in Figure 5.15. The 

full-width half maximum (FWHM) of C1s peak increases (as shown in Figure 5.16a) 

monotonically as the HNO3 concentration increases which is ascribed to sp2, sp3 

hybridizations. Such hybridizations affirm the occupancy of doping carriers in the 

graphene matrix which is analogous to the p-type doped carbon nanotube. The intensity 

of C-C bonds found to be gradually increases with increasing doping concentrations. This 

is also attributed to the formation of weak chemical bonding due to the π − π interaction 

in the graphene interlayer, and leads to the de-screening of nucleus charges which results 

in the increase in core electron binding energies25.  

 Further, the core level high resolution spectra represents the N1s (~399) and O1s 

(530 eV) peaks (as shown in Figure 5.16b and 5.16c respectively) confirm the presence 

of NO3 entities in the graphene lattice. These atomic concentrations of C, N and O 

entities were estimated from Figure 5.16 and the results are summarized in Table 5.4. 

Table 5.4 inferred that the oxygen content of pristine graphene is drastically enhanced 

from 1.4% to ~21% upon HNO3 doping, which is attributed to the electron restoration by 

oxygen (protonation). Figure 5.17 a, b. c and d shows the de-convoluted spectra of 

oxygen peaks represent the different stretching modes of C-O covalent bonds for 

different concentration of HNO3 doping of 20HDG, 50HDG, 70HDG and 100HDG 

respectively. 
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However, it is noteworthy to comment that the XPS data were recorded where the 

graphene films are coated on FTO substrates. Therefore, it is inevitable to avoid the 

accountability of the oxygen molecules’ contributions which may be arising from the 

FTO substrates. On the other hand, the N1s peak shifts to a higher energy at ~ 400.79 eV 

that infers the presence of nitrogen in oxygen rich environment. Therefore, atomic 

concentrations of nitrogen constituents are found to be reduced when increasing the 

HNO3 concentration, since oxygen is more electronegative than nitrogen.   

 

Figure 5.16:  XPS core level spectra of (a) C1s (b) O1s (c) N1s and (d) schematic 

structure of HNO3 doped few layer graphene (doping atoms are indicating different 

colors, grey: carbon, red: oxygen, black: hydrogen and blue: nitrogen) 
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Figure 5.17: De-convoluted X-ray photoelectron spectra of oxygen peaks represent 

different stretching modes of C-O covalent bonds for (a) 20% HNO3 treated (b) 50% 

HNO3 treated (c) 70% HNO3 treated and (d) 100% HNO3 treated graphene.  
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Table 5.4: Atomic concentration of C, N and O of pristine (PG) and HNO3 doped 

graphene (HDG). 

 

 It is noteworthy to mention that the protonation that occurred in the graphene 

lattice varying with doping concentration can be explained by the following relation75  

6HNO3+25C → C25+NO3
-4HNO3 + NO2+H2O   (5.6) 

 According to the chemical doping mechansim in equation 5.6, it is expected that 

NO3
- molecules are to be interclated with graphene layers. Primarily, when HNO3 

concentration increses from 20% to 50%, the bond formations of C(O)OH (~531.8 eV) 

and C-OH (534.5 eV)  takes place. Furthermore, C= O groups (532.5 eV)  are introduced 

into the graphene lattice upon high concentration (70 and 100%) of HNO3 treatment. 

 

5.2.4. Ultraviolet photoelectron spectroscopy (UPS) 

The doping and electronic configurations is further scrutinized by ultraviolet 

photoemission spectroscopy (UPS) of pristine and HNO3 doped graphenes as shown in 

Figure 5.18a&b. 

Samples C1s (%) N1s (%) C(O)OH O1s (%)

C=O C-OH

PG 98.6 - - 1.4 -

20HDG 90.6 0.43 0.43 - 4.02 (9.0)

50HDG 84.6 0.91 5.42 - 3.65 (14.4)

70HDG 77.2 0.40 13.87 6.12 1.79 (21.7)

100HDG 78.8 0.33 13.31 6.23 1.27 (20.8)
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Figure 5.18: (a) Ultraviolet photoelectron spectroscopy of pristine and HNO3 doped 

graphene electrodes under various concentration (20 to 100%) and (b) Enlarge view of 

UPS Spectra in Figure 5.18a which depicts the shift in binding energy of the doped 

graphene. 

 

 The work function of these electrodes were estimated from the following 

relation76 as shown in equation 5.7,  

     (5.7) 

 Where, hω = 21.2 eV (He I Source), Esec is the onset of the secondary emission, 

and EFE is the Fermi edge (sample bias at -20V in the beam line at RIKEN Nanoscience 

Laboratory).  

 The estimated work functions of graphene and HNO3 modified graphenes are 

presented in the schematic Figure 5.19. From Figure 5.19, it is clearly illustrated that the 

work function of graphene is modulated from 4.52 eV (φPG) to 5.31eV (φ100HDG) due to 

the effect of chemical doping of different functional moieties during HNO3 treatment.  It 

(a)

(b)
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seems that the doping of substantial amount of oxygen molecules in graphene lattice 

(protanation) successively increase the hole concentration, which further lowers the 

Fermi level of graphene from the Dirac point (p-doping). This observation supports our 

earlier discussion on XPS data in the previous section. It is also noted that the work 

function of pristine graphene prepared from our CVD method is consistent with other 

previous reports on CVD graphene (4.3 eV) 25, 77.  

 

Figure 5.19:  Schematic demonstrating the Fermi level pinning in graphene under 

different concentrations of HNO3 doping. 

 

 These heavily doped p-type carriers in graphene catalytic counter electrodes of 

DSCs causes’ band bending at the electrode/electrolyte interface which further results in 

the efficient charge injection from graphene to FTO substrate and effectively reached in 

the external circuit without having any charge recombination loss. Furthermore, 

electronic interface of HNO3 doped graphene encounter a great potential for applications 

in the field of organic field effect transistors (OFETs) and organic photovoltaic devices 

with improved open-circuit potential and short circuit current. 
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5.2.5. Fourier transform infra-red spectroscopy 

 

Figure 5.20: Comparison fourier transform infra-red spectra (FTIR) of Pristine and 

different concentrations of HNO3 doped graphene show the formation of additional C-

NO3 and C-H stretching bonds. 

 

 The above discussion is further testified with FTIR analysis as shown in Figure 

5.20, which illustrates the comparative spectra of pristine and different HNO3 doped 

graphene. The predominant peak appeared at ~1398 cm-1 in the doped sample over 

pristine sample, which corresponds to the vibrational stretching of NO3
-
 assigned to 

doubly degenerate IR-active vibrations of υ3(E1)  along with α, a non-degenerate IR-

active mode  of NO3
- peak at ~831 cm-1 78. Figure 5.20 inset picture showing the 

systematic change in the NO3
- peaks with different doping concentration.  In addition to 
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this, a strong C-H bond is identified at ~2970 cm-1
, this observation is quite consistence 

with XPS results in section 6.2.3. In general, there are several factors such as electronic 

configuration, energy level and structural properties which have a forthright influence 

over the electro catalytic reactions on the catalyst surface. 

 

5.2.6. Electrochemical characterizations 

 In order to study the charge transfer characteristic of graphene counter electrodes, 

we performed impedance analysis using symmetric half cell configuration (see 

experimental section 3.4 for the detail experimental procedure) using the same electrolyte 

used for the full dye sensitized solar cell characterization. The resultant Nyquist spectra 

are presented in Figure 5.21a where the first semicircle is assigned to the charge transfer 

resistance (Rct) of counter electrode/electrolyte interface and the second semicircle at low 

frequency region represents the Warburg diffusion impedance (Zw) of the redox couple in 

the electrolyte. The Rct and Zw values of pristine and HNO3 doped graphene counter 

electrodes are estimated by fitting the equivalent circuit (inset: Figure 5.21) model and 

their parameters are summarized in Table 5.5. The   pristine graphene shows a very high 

charge transfer resistance [Rct] value (45.2 Ω -cm2) compared to the doped graphene 

electrodes indicating the poor catalytic activity of their inherent basal planes. 

Surprisingly, the HNO3 doped graphene electrodes showed a noticeably lower Rct value 

of 7.52 Ω-cm2 (Table 5.5), which is ~ 6 times lower than pristine sample. 
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Figure 5.21: (a) Nyquist plot of different counter electrodes in symmetric cell 

configuration and (b) showing the effect of different doping concentration on the charge 

transfer resistance and exchange current density of the cells. 

 

 These results inferred that the HNO3 doped graphene surface offered enhanced 

electro-catalytic activity by introducing active catalytic sites of C-H, C(O)OH and NO3
- 

in graphene lattice as mentioned in previous sections 6.2.3.  Unambiguously, this 

enriched catalytic effect is responsible for enhanced catalytic activity of doped graphene 

electrodes which attributed to the amplified photocurrent in the cell. The decrease in 

charge transfer resistance is attributed to the increase in exchange current density J0 at the 

electrode-electrolyte interface as shown in the Figure 5.22 a & b.  The exchange current 

density was calculated using the following equation 5.8: 

 𝐽0 = 𝑅𝑇
𝑛𝐹𝑅𝑐𝑡

     (5.8) 

 

(a)

(b)
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 Where, Rct is the charge transfer resistance calculated from the EIS spectra, R is 

the universal gas constant, T is the temperature in K,  n = number of electrons 

contributing to the charge transfer at the interface and F is the Faraday’s constant.  

Exchange current density is the kinetic component which arises due to the charge transfer 

from the counter electrode to the I3- ions at the counter electrode-electrolyte interface. 

The temperature dependent charge transfer resistance exchange current density curves for 

different graphene counter electrodes are illustrated in Figure 5.22 b which follows the 

Arrhenius equation as per the equation 5.9. 

 𝐽0 = 𝐼0𝑒
(−𝐸𝑎𝑅𝑇)     (5.9) 

 Where, Ea is the Activation Energy; R is the Universal gas constant; I0 is the 

exchange current density at T = infinity; and T is the Temperature in K. 

Figure 5.22 b, illustrates the exchange current density of the symmetric cell with the 

temperature for different un-doped and doped graphene electrodes.  We found that, the 

exchange current density increases with increasing doping concentrations (enhancement 

of C-O bonds which attributed to the protonation in the graphene as described in the XPS 

section of the main manuscript) which is support the enhancement of improved electro 

catalytic activity of the graphene counter electrodes owing to its Fermi level shift. On the 

other hand, the temperature dependence of Rct and J0 for the PG and HNO3 doped 

graphene electrodes are demonstrated in Figure 5.22  a & b (supporting information) 

which clearly shows the J0 and Rct are stable throughout the entire temperature range 

from 273K to 333K.  
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Figure 5.22: (a) Charge transfer resistance vs. temperature and (b) exchange current 

density vs. temperature plot for graphene and different concentration of acid doped 

graphenes represent the stability of different counter electrodes at temperature from 273K 

to 333K.  

Table 5.5: Illustrates EIS parameters of pristine and HNO3 doped graphene catalytic 

counter electrodes.  

 

  

Electrodes Rct (Ωcm-2) ZW (Ωcm-2) Dn (cm-2s-1)

PG 45.2 161.4 1.38 x 10-6

20HDG 16.4 75.7 2.01 x 10-6

50HDG 13.3 46.5 2.31 x x 10-6

70HDG 7.91 34.5 3.24 x x 10-6

100HDG 19.3 63.9 1.68 x x 10-6
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Figure 5.23:  Linear sweep cyclic voltammogram of a graphene on FTO electrodes. 

 

Figure 5.24: Illustrates frequency dependent scan rate of different HNO3 doped graphene.  
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Figure 5.25: Cyclic voltammogram of 70HDG graphene on FTO electrodes with different 

scan rates. 

 

 Furthermore, it is also observed that the excessive doping of HNO3 limits the 

active catalytic surface area of graphene and therefore results in higher charge transfer 

resistance of 19.3 Ωcm -2.   On the other hand, the decrease in Warburg diffusion 

resistance [ZW] of HNO3 doped samples reveals that the high diffusivity [Dn] of the tri-

iodide species at graphene catalytic surface is due to the presence of higher catalytically 

active doping carriers (C-H, C(O)OH and NO3
-). We employed the polarization 

measurements using symmetry cell configuration as described in impedance 

measurements section chapter 3 sections 3.4. The apparent diffusion coefficient of I3
- can 

be obtained from the relation as described in equation (5.10) 79,  
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 𝐷𝐼3− = 𝑖𝑙𝑖𝑚𝑙
2𝑁𝐹𝐶𝐼3−

0       (5.10) 

 Where, ilim is the limiting current derived from polarization measurements, l is 

distance between two electrodes of symmetric cells, n =2 number of electrons 

participating in the reduction, F=faraday constant, C0
i3

- is concentration of iodide. Figure 

5.23 shows the typical cyclic voltammetry curve of symmetry cell. The hysteresis plot 

from Figure 5.23 exemplifies the steady state condition, and saturated portion denotes the 

limiting anodic current (ilim). By applying those limiting current values in equation 5.10 

we calculate the diffusion coefficient (Dapp) of I3
- at pristine and modified graphene 

electrodes. All the electrochemical parameters obtained using equation 5.10 is listed in 

Table 5.5. From the Table 5.5, it is clearly depicted that the diffusivity of tri-iodide at 

pristine graphene CE (1.38 x 10-6) is inferior than the optimized HNO3 doped (70HDG) 

graphene CE (3.24 x 10-6).  On the other hand Figure 5.24 delineated the current vs. linear 

sweep cyclic voltammetry (as shown in Figure 5.23) scan rates plots of the different 

HNO3 doped graphene samples. The increase in current with the scan rates shows the 

scan rates dependent catalytic behavior for tri-iodide reduction where at the counter 

electrodes/electrolyte interface the charge diffusion kinetics is increasing with increasing 

CV scan rates. Similarly, Figure 5.25 shows the cyclic voltammetry curve of 70HDG (the 

highest efficiency of solar cell as shown in Table 5.6) electrodes with different scan rates 

illustrate the sharp increase in the oxidation and reduction peaks in the counter electrode 

part with different scan rates. However, the increase in oxidation and  reduction peaks 

with different scan rates is due to the oxidation and reduction kinetics at the electrodes as 

follows the equation I3
- +2e-→ 3I* and 3I-* - 2e- →I3

- respectively.  Furthermore, the 
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increase in oxidation and reduction peaks with different scan rates is also due to the 

enhancement of charge diffusion kinetics as explained earlier in this section.  

This evidenced that HNO3 doped graphene electrodes possesses additional in-plane 

charge transfer sites which can further accommodate and reduce tri-iodide species 

exceedingly on its surface. Thus, results in high catalytic reduction of tri-iodide compared 

to the PG, which is in good agreement with the photovoltaic performance of DSSCs 

constitutes with these counter electrodes.  

 

5.2.7. DSSC full cell characterizations using HNO3functionalized graphene counter 

electrodes 

 Figure 5.26 represents the current density-voltage curves which demonstrate the 

average values of at least three different cells. The device characteristics for DSSCs with 

pristine and HNO3 doped graphene counter electrodes are summarized in Table 5.6. The 

device constitutes with HNO3 doped graphene electrodes showed higher performance 

than that of pristine counter electrodes. To emphasize the phenomena, we believe that the 

low catalytic behaviour of pristine graphene attributed to its inert basal planes often limit 

the reduction feasibility under I3
-/I- redox shuttle which severely impacted the dye 

regeneration37. Therefore regeneration of oxidized dye molecule is less progressive by 

pristine graphene (Jsc = 8.3mAcm-2) in comparison with HNO3 doping electrodes (Jsc = 

11.8 mAcm-2).  

 It is believed that amplifying catalytic sites through tailoring HNO3 moieties in 

graphene lattice facilitate more iodine species reduction, which further affords the 

regeneration of oxidized dye molecules.  The higher photo-conversion efficiency about 
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c.a 3.21% is achieved at 70% of HNO3 doping where weak basal planes are triggered by 

C-H, C(O)OH and NO3
- foreign functional group formation in graphene lattice as 

discussed in XPS section, Figure 5.16.  However, the device performance found to be 

reduced c.a 2.2% with a further increase in the doping concentration, which is ascribed to 

the detrimental effect in charge transfer at heavy dosage of HNO3 on the counter 

electrode surface.  It is noted that the enhancement in open-circuit voltage (Voc) of doped 

electrodes may be related with the high dye regeneration at TiO2/dye interfaces. 

Seemingly, high dye regeneration by HNO3 doping in graphene electrodes substantially 

promotes the charge injection from the dye HOMO level to the TiO2 conduction band. 

 

Figure 5.26: J-V curve of full DSSC cell consist of different HNO3 doped graphene 

counter electrodes. 
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Table 5.6: Photovoltaic parameters of pristine and HNO3 doped graphene catalytic 

counter electrodes  

 

 Now the Fermi level of TiO2 is rising in the upward direction, which enhances the 

potential difference between redox species (Voc = Ef (TiO2) – Eredox) in the device. 

Therefore, we can argue that device performance improvement is attributed to the HNO3 

doping in graphene which offer efficient dye-regeneration through improving the 

catalytic properties of graphene counter electrodes.  Apart from Voc and Jsc, the fill factor 

values of doped graphene based devices are also raised due to the HNO3 doping (p-type). 

We consider that the interfacial contact between FTO/graphene is highly modified by 

doping carriers and offers high charge injection possibilities at the interfaces. 

  

5.3. Graphene CoS hybrid structure  

 During past two decades people are in search for low cost efficient 

electrochemical energy harvesting devices like photo-electrochemical cells.  In this 

context, graphene has been suggested as a new electrode in DSSC and organic cells due 

to its high transparency, prominent conductivity, high specific surface area and feasible 

Electrodes VOC 
(V)

JSC
(mAcm-2)

FF
(%)

η
(%)

PG 0.63 8.3 23.9 1.26

20HDG 0.69 10.5 27.5 2.01

50HDG 0.70 11.5 34.7 2.83

70HDG 0.73 11.8 37.0 3.21

100HDG 0.70 11.5 29.1 2.29
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electro-catalytic activity 11, 23, 26. In particular, to fabricate high performance graphene 

counter electrode of DSSC, surface functionalization plays a great role in rendering high 

catalytic activity in iodine reduction as reported elsewhere 63. Graphene basal plane is not 

catalytically active in nature, thus inhibiting the charge transfer kinetics at the 

electrode/electrolyte interface 46. In order to make efficient electro-catalytic graphene for 

electrochemical reactions, it is required to create catalytically active reaction sites in 

graphene while maintaining its high charge carrying capacity. In this context, surface 

functionalization of graphene has been employed to improve the catalytic function of 

graphene. Furthermore, functional nanoparticles decorated graphene film instantly 

increase the electrode-electrolyte contact area which is known as triple junction catalytic 

effect; hence improves the electron transfer kinetics at the interface 52. Additionally, 

decoration with catalytically active functional nanoparticles (NPs) are also beneficial for 

enhancing electro-catalytic reactions for some other practical applications like hydrogen 

generation 53, Li-ion batteries 54, pseudo-supercapacitors 55 etc.    

 Cobalt sulphide (CoS) is newly introduced as a catalytic material for high 

efficiency energy generation and conversion 30. Recently CoS has been suggested as a 

high efficiency catalysts for tri-iodide reduction and consequently is expected to replace 

expensive Pt electrode in DSSC 30, 80. Quantum chemical calculations showed that the 

catalytic activity of CoxSy is analogous to Pt due to the corresponding surface structure 

which creates electron transfer pathways for oxygen reduction kinetics 81. Like Pt, a 

counter electrode in DSSC should exhibit low resistivity as well as high electro-catalytic 

activity towards iodine reduction.  Although, CoS NPs are an active electro-catalytic 

species, their charge conductivity and mobility are not up to the mark. Hence, creating 
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synergistic catalytic CoS NPs cohered with ultra-conductive large scale graphene is more 

advantageous for low cost counter electrode application in DSSC.  

 This section describe the synthesis of CoS NPs on a large scale CVD grown 

graphene film by followed by successive ionic layer adsorption and reaction (SILAR) 

process 82 followed by their structural and electrochemical characterizations. We 

investigate the electro-catalytic activities of the CoS NPs decorated graphene electrode, 

by using impedance spectroscopy, cyclic voltammogram (CV), Raman and XPS, and 

explore in DSSC as a counter electrode relies to replace Pt electrode. The characterization 

condition of DSSC is described elsewhere (Supporting Information). We find that CoS 

NPs decoration boosts the graphene electrode efficiency by enhancing catalytic activity 

and reducing internal resistance. 

5.3.1  Synthesis of CoS using SILAR method 

 In order to fabricate graphene-CoS hybrid structure, CoS nano-particles (NPs) 

were decorated on to the graphene surface by a step-by-step successive ionic layer 

absorption and reaction (SILAR) method.  Two different chemical bath solutions of metal 

and sulfide precursors were prepared separately. 0.05M of Cobalt Nitrate is dissolved in 

ethanol and kept in first bath and second bath contains methanol solution of 0.05M of 

sodium sulfide (Na2S). One coating cycle of CoS means 15 minute dip coating of 

graphene electrodes in to the first chemical bath (Co2+) and subsequently in to the sulfide 

solutions. In order to remove the excess amount of un-reacted residuals on the graphene 

electrode, it is thoroughly rinsed with corresponding ion-exchange solvent about 15min 

after each dipping of respective chemical bath as shown in the schematic in Figure 5.27.  
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Figure 5.27: Schematic demonstrating the step-by-step SILAR process. 

 

 

Figure 5.28: (a) Illustrates chemically etched floated graphene; (b) the floated graphene 

transferred to a FTO glass, (c) formation schematic of G-CoS through the step-by-step in-

situ growth of CoS NPs in graphene film by successive ionic layer absorption and 

reaction method, (d) schematic represents the tested dye sensitized solar cell using CoS-

graphene electrode. 
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 Finally the CoS nanoparticles coated graphene electrode is dried in nitrogen for 

few minutes. We prepared 5 consecutive coating cycles of CoS on graphene matrix, 

which optically opaque compare to pristine graphene. In order to accommodate sufficient 

amount of CoS nanoparticles in graphene matrix, we fabricate few layer (4-5 layer) 

graphene on FTO electrode as described in the chapter 3 section 3.2.2. 

 

5.3.2 High resolution transmission electron microscopy  

 

 

Figure 5.29: Transmission Electron Micrograph of Graphene-CoS shows the randomly 

dispersed CoS nano-particles on graphene membrane (Scale 400 nm), inset showing 

selected area diffraction patterns of Cobalt Sulphide formation over graphene film. 

 

 As evidenced in HRTEM (as shown in Figure 5.29) graphene film accommodates 

CoS NPs randomly on its surface with particle size of ~30-60 nm. The particle size and 
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their distribution on the graphene matrix will further described in the AFM section 6.3.4.  

Selected area diffraction (SAD) pattern of CoS nanoparticles confirm the existance of 

non-stoitiometric compound CoS on the graphene membrane with characteristics planes 

of (101) and (100) as shown in the inset of Figure 5.29. 

 

5.3.3 Micro-Raman spectroscopy 

Pristine graphene (PG) and G-CoS structure are characterized using Raman spectroscopy 

a nondestructive characterizations technique for graphene structural and electronic 

behavior.  The characteristic D-band, G-band and 2D band peaks of graphene are 

observed at ~1352, 1579 and 2704 cm-1 respectively as shown in Figure 5.30.  

 
 
Figure 5.30: Depicts Raman spectra of PG and G-CoS demonstrating almost no change in 

graphene structure after CoS anchored. 
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 The symmetric G band and 2D band positions and their corresponding band 

intensity ratio of IG/I2D~ 0.436 firmly depict the few layer graphene sheets on the glass 

substrates. A small D-band appears at 1352 cm-1 for pristine graphene owing to the 

presence of armchair like graphene edges and incoherence between the graphene and 

substrates 70.  

 

 

 
Figure 5.31: (a) and (b) Shows Raman spectra of D-band and G-band of graphene and 

graphene-CoS hybrid structure respectively. 

  

 Figure 5.30 shows no significant differences in both the peak position of G and 

2D bands and their peak intensity ratios (IG/I2D of 0.436 and 0.44 respectively) for PG 

and G-CoS hybrid samples as shown in the Figure 5.31. This implies that the nearly 

unchanged graphene structure even after the decoration of CoS NPs on graphene film. As 

shown in the Figure 5.32b, CoS-Graphene Raman spectra shows the splitting of G band 

which results in the appearance of a D/ band at its base. In this context, the increase in the 
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D band intensity as well as the appearance of D/ band at ~ 1620 cm-1 also manifests the 

prevailing heterogeneous superstructure at the interface of graphene and CoS as depicted 

in the Figure 5.32. 

 

Figure 5.32:  Demonstrates the G band of (a) CoS-Graphene hybrid structure and (b) 

pristine graphene. 

  

 However, ID/IG ratio increases 2.21 times in G-CoS than PG which is attributed to 

the formation of incoherent interface between CoS NPs and graphene83. In this context, 

the D/ band at 1612 cm-1 of G-CoS (As shown in Figure 5.32b) suggests the formation of 

dangling bonds between CoS NPs and carbon atoms at the interface 60. 

 

5.3.4 Atomic force microscopy 

 Furthermore, surface morphology of the CoS-graphene was characterized using 

atomic force microscopy (AFM) and the graphene surface and graphene-CoS surface 

morphologies are clearly illustrated in the Figure 5.33 a & b respectively. As illustrated in 

Figure 5.34 a, b, c & d, the step height of the different CoS particle size are in the range 
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between 30-60 nm. Furthermore, the analysis of CoS particle size distribution shows in 

the Figure 5.35d. Form the Figure 5.35d it can be seen that a wide range of CoS particles 

were grafted on the graphene membrane from 20 nm to 90 nm. However the major 

portion of the particles size was covered in between the range of 30-60 nm. 

 

 
Figure 5.33: AFM images depicts the topological behavior of (a) pristine graphene (PG) 

and (b) CoS decorated graphene film (G-CoS).  

 

Figure 5.34: (a), (b), (c) and (d) Atomic force micrographs (AFM) illustrate the surface 

morphology of CoS decorated graphene film and (c), (d), (e) & (f) show the 

corresponding AFM height profiles. 
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Figure 5.35: (a) & (b) Particles size measured using AFM on the surface of G-CoS 

composite electrodes; (c) Illustrates the step height of CoS particles along the line as 

indicated in Figure 5.35b; (d) CoS particle size distribution over graphene membrane 

depicts the formation of 30-60 nm size particles via SILAR method. 

 

5.3.5 Optical transmittance measurement 

 UV-visible absorption/transmittance spectra were recorded using Jasco V-670 

double beam spectrophotometer and the spectra recorded at 350nm to 2400nm 

wavelength with 1 nm interval. Thedeuterium and halogen lamps were used for light 

source. Initially the base line correction was achieved by reference to air, and then 

graphene electrode sample were placing in the sample holder and kept the pristine FTO 

substrate in reference holder during measurements. The CoS nanoparticles implantation 
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on graphene by SILAR process was further confirmed using the optical transmittance 

spectroscopy.  

 

Figure 5.36: Optical Transmittance Spectroscopy of pristine and graphene-CoS hybrid 

electrodes from the visible to near infra-red regions. 

 

 Figure 5.36 shows the optical absorbance of the graphene-CoS hybrid film which 

is higher than the pristine graphene. The possible reason for the same is due to the CoS 

nanoparticles which exhibit the higher absorbance than the graphene. However, the 

absorbance in the near infra red regions is comparatively smaller than the visible 

spectrum regions which will further added advantage of this type of electrocatalytic 

electrodes for application in the IR based solar cells.  

 

5.3.6 X-ray photoelectron spectroscopy 

The electronic structure of the G-CoS interface was further characterized using X-ray 
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~779.5 - 782.5 eV attributable to cobalt (Co) 2p3/2 and confirming the presence of Co (II) 

and Co (III) species on the graphene film ( as shown in Figure 5.37a).  

 

 
Figure 5.37: Illustrates X-Ray photoelectron spectra of CoS implanted graphene 

composite electrodes, (a) Cobalt Co2p peaks and (b) Sulfur S1s peaks.  

 

Figure 5.38: X-ray Photoelectron Spectra of Carbon C1s peaks for pristine graphene and 

graphene-CoS hybrid film.   

 

 Similarly, Figure 5.37b represents the sulfur (S) 2p3/2 peaks at ~163.5. Since, CoS 

is a non-stoichiometric compound, we believe that inconsequential amount of CoxSy 
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(x=1, 2…4; y=1, 2, 3…9) compounds are formed which is based on a small peak shifts 

along with the appearance of additional peaks around ~166 - 172 eV. However, no 

change was found in the carbon peak (C1s) intensity and position in both the cases of PG 

and G-CoS as demonstrated in Figure 5.38. 

 

5.3.7 Electrochemical characterizations 

 In order to elucidate the electro-catalytic behaviors of the G-CoS hybrid the 

electrochemical analysis was conducted by using symmetric cell configuration as 

described in section 3.4. Importantly, CoS NPs significantly improve the electro-catalytic 

properties of graphene electrode as could be evidenced from the Nyquist plot (Figure 

5.39), polarization curve (Figure 5.40) and cyclic voltammogram (Figure 5.41).  

 

Figure 5.39: Nyquist spectra of PG and G-CoS counter electrode delinate substantial 

decrease of charge transfer resistance owing to CoS implantation in graphene film.
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 The Nyquist plot (as shown in Figure 5.39) manifests semi circle shift in PG 

towards the higher frequency owing to the catalytic effect of CoS NPs which drastically 

reduce the charge transfer resistance (Rct) at graphene/electrolyte interfaces. Furthermore, 

CoS NPs in graphene film increases the electrode/electrolyte interfacial area which 

known as triple junction catalytic effect seems to be boosting the electron transfer from 

graphene electrode to electrolyte. On the other hand, CoS NPs may help facilitate the 

mass transport of redox carriers at graphene counter electrodes/electrolyte interfaces. 

This reflects on the reduction in Warburg resistance (W) of G-CoS hybrid electrode 

compare to the PG electrode (as shown in Table 5.7).  

 Here the reduction in Warburg impedance (W) implies that weak basal planes of 

PG are significantly modified upon inclusion of CoS NPs. In order to further testify this 

phenomenon, substantial evidences of G-CoS electro-catalytic activity are demonstrated 

in polarization curve (Figure 5.40). As shown in Figure 5.39, a sharp increase occurs in 

the slope of the G-CoS electrode owing to its increase in exchange current density (J0) at 

the interface. Furthermore, Cyclic voltammogram of PG and G-CoS electrodes was 

carried out at 20oC using electrolyte containing methoxypropionitrile solvent with 10 mM 

LiI, 1 mM I2 and 0.1 M LiClO4 under the scan rate of 50 mVs-1 in an inert (N2) 

atmosphere. As shown in Figure 5.41, a characteristic redox peak for G-CoS hybrid 

structure appears at -0.54 V which is attributed to the tri-iodide reduction reaction of I3
- 

+2e ↔ 3I-. These results clearly indicate that the tri-iodide reduction kinetics is enhanced 

at the interface of G-CoS film.  
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Figure 5.40: Polarization curves of PG and G-CoS under symmetric half cell 

configuration 

 

Figure 5.41: Cyclic voltammogram (CVs) of PG and G-CoS delineates the higher tri-

iodide reduction capability of G-CoS owing to its faster electron transfer kinetics at the 

electrode/electrolyte interface compared to the PG. 
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5.3.8 DSSC full cell characterizations using graphene-CoS hybrid counter 

electrodes 

 The performance of G-CoS electrode is characterized in a test cell of DSSC (as 

shown in the schematic in the Figure 5.42) by employing two different electrodes of PG 

and G-CoS (Figure 5.43). The detail cell fabrication process and measurement conditions 

are delineated in “experimental chapter 3” section 3.5. We found short circuit current 

(JSC) of graphene counter electrodes is improved by ~17% after anchoring CoS NPs on its 

surface as shown in Table 5.7. The improvement of Jsc in G-CoS CE can be explained on 

basis of two successive phenomena occurred concurrently. Primarily, an increase in 

contact area of G-CoS CE/electrolyte than that of PG which creates triple junction 

catalytic area for electron transfer at electrode/electrolyte interface. Secondly, enhancing 

catalytic activity of graphene by CoS NPs for reducing tri-iodide to mono-iodide (I3
-+ 2e- 

↔ 3I-), which is prevailing driving force for dye regeneration at the photo-anode 

counterpart.  

 

Figure 5.42: Schematic representing the assembly of graphene-CoS film counter 

electrode for DSSC.  
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Figure 5.43: Current-density vs. voltage characteristics of DSSC consist of pristine 

graphene and graphene-CoS hybrid film.  

Table 5.7: Photovoltaic and electrochemical parameters of dye sensitized solar cells and 

symmetric half cells with various counter electrodes. 

 

 In particular, a large improvement in fill factor (FF) is observed in G-CoS which 

are almost two times higher than the PG-DSSC, thus, doubling the efficiency of the G-

COS-DSSC (as shown in Table 5.7).  We believe that the increase in FF for G-CoS CE is 

attributed to both the improved catalytic activity by incorporation of CoS NPs and the 

electronic coupling between CoS NPs and underlying graphene film which forms an 

additional conducting pathway and accelerates electron transfer from CE to electrolyte. In 

other words, the lower Rs value yields higher efficiency. 
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5.4. Graphene-CNT hybrid structure as field emission cathode 

 As described in the chapter 3 section 3.3.2 for transferring of the graphene-CNT 

hybrid film on to a adhesive Cu foil, the adhesive side of Cu foil (thickness ~100 µm) 

was placed on the top of the graphene-CNT substrate of area 5 mm x 13 mm by applying 

nominal pressures. Later, the tape was peeled off carefully in order to complete transfer 

of graphene-CNT hybrid structure on to the flexible Cu tape of area 5 mm x 13 mm. The 

resulting film was a top layer of vertically aligned CNT with a homogeneous bottom 

contact of a multilayered graphene film on a flexible copper foil as shown in the Figure 

4.24. The transferred graphene-CNT film was used to study its flexible field emission 

behavior in AC bias, at different curvatures using another Cu foil as anode (as shown in 

schematic Figure 5.44a). 

 In order to measure the electron emission properties, field emission experiments 

were carried out in a parallel-plate diode configuration inside a field emission (FE) 

vacuum chamber of ~5 x 10-7 Torr vacuum level, with an inter-electrode distance (d) of 

~1000 µm and using electrodes of surface area 5 mm x 13 mm. FE studies were 

performed after transferring the graphene-CNT structure on Cu foil and another Cu-foil 

was used as an anode. Electron emission was investigated under AC bias condition as a 

function of different curvatures of the devices and sufficient care was taken to keep the 

inter-electrode distance constant using a spacer while investigating FE as a function of 

curvatures. During the FE tests, an Agilent function generator (model 33220A), coupled 

with a Trek high voltage amplifier (model 20/20C) was used to generate the electric field, 

and the emission current was measured using a PEARSON current monitor (model 4100, 
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having 1.0 V/A), attached with an Agilent oscilloscope (model MSO6034A). Frequency 

of the sine-wave signal was kept at 400 Hz for all the tests. 

 Figure 5.44a-d illustrates the schematic of our flexible FE setup, effect of bending 

radius in electron emission, FN plots of each bending and FE stability data respectively. 

As could be observed from Figure 5.44b, with increasing curvature, turn-on field (ETO, 

defined as field to produce 0.2 mA RMS emission current) shifts to higher values (from 

0.8 V/µm for flat sample to 3.1 V/µm for the sample with sharpest bend) and the highest 

achievable emission current reduces from 4.2 mA for flat sample to 0.4 mA for the 

sample with sharpest bend respectively. This behavior suggests appearance of extra 

barriers to electron tunneling with higher bending. Presence of such barriers could also be 

related to the appearance of Fowler-Nordheim (F-N) plots, as shown in the Figure 5.44c. 

The emission current-voltage characteristics were interpreted using Fowler–Nordheim (F-

N) equation as follows: 

         

    (5.11) 

 Where, a=1.54x10−6 A eV V −2 , b=6.83x107 eV -3/2 V cm −1, A is the emission 

area, β is the field enhancement factor, E is the applied electric field in volt per 

centimeter and φ is the work function in electron volt. 

 F-N plots show more deviation from linearity (expressed by lower degree of fit 

with a linear curve) with increasing bending of the flexible sample. The β value, 

calculated from the slope of the F-N plot, was found to be ~ 92347, 84508 and 23105 for 

different bending radius of FED of 0, 13.75 mm and 3.5 mm respectively. Higher 

resistivity of the graphene-CNT structure, with sharper bending could be related to this 
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kind of behavioral shift during field emission. Increasing resistivity imposes higher 

tunneling barrier to electrons, resulting to higher turn-on field and lower emission 

current. 

 

Figure 5.44: (a) Schematic representing the Flexible Field emission setup of graphene-

CNT on Cu substrate (The black area representing the area of graphene-CNT hybrid 

structure transferred on Cu foil). Cu foil was also used as anode for the test. (b) Effect of 

bending on field emission response of graphene-CNT hybrid film on flexible Cu foil (c) 

FN plots of three consecutive bending (d) FE Stability test from the flat substrate. 
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graphene-CNT hybrid structure on a flat copper substrate is presented in Figure 5.44d and 

was found to be relatively stable for period of 5 hours, operated at an average emission 

current (RMS) of 1.4 mA. Difference between the initial and final emission current was 

observed to be negligible. It shows that the emission sources are quite stable, even when 

operated at higher operating fields and for longer duration. Such good stability of the 

structure at extreme operating conditions is beneficial for application of this hybrid film 

in practical devices. 
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CHAPETR 6 

SUMMARY 

 
 Large-area graphene and graphene-CNT hybrid structure synthesis are 

demonstrated by high temperature, thermal chemical vapor deposition (CVD) technique 

using different transition metals catalysts like Cu, Ni and Fe etc. Graphene growth on Cu 

and Ni surfaces has been carried out using CVD of methane (CH4) at high temperature. 

We optimized graphene growth as large as 15 cm x 6 cm on Cu foil and transferred it to a 

transparent flexible polymer e.g. polyethylene tetrapthalate (PET). Different transfer 

process, like hot press lamination technique, chemical wet process has been developed to 

transfer graphene on several other surfaces like PET, parylene, SiO2/Si, glass etc. 

Structural characterizations of graphene are carried out using Scanning electron 

microscopy, high resolution transmission electron microscopy (HRTEM), and Raman 

spectroscopy. From SEM observation, we found that graphene grown on Cu is 

overlapping multilayered structure which covered the Cu grain and grain boundaries. 

However, there were no systematic graphene growth pattern was found that can have a 

direct correlation with the Cu grain and grain boundaries. HRTEM and Raman 

spectroscopy revealed that there were 4-5 layers graphene growth on the Cu and Ni 

surface, with subsequent lattice mismatch with its substrates. Graphene surface 

topography is carried out using atomic force microscopy (AFM) and found that the 

surface is atomically smooth and the step height of the graphene film on cleaved mica is 

2.7 nm which further testified the 4-5 layers graphene successfully transferred on the 

mica surface. We also observed that the free standing graphene’s Raman response is quite 
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different than the graphene on different substrates which is due to the substantial phonon 

scattering at the graphene-substrate interface. Furthermore, we characterize graphene on 

different substrates and found that graphene on metals exhibits comparatively higher 

Raman intensity than the graphene on dielectrics.  

 Graphene on FTO glass was functionalized with F- ion by CF4 plasma treatment 

for replacing platinum in cathode part of dye sensitized solar cells (DSSCs). CF4 reactive-

ion treated graphene shows promising electrocatalytic activity toward tri-iodide reduction 

while maintaining its conductivity and transparency. The electrochemical studies 

illustrate that charge-transfer resistance decreases and exchange-current density increases 

with controlled plasma treatment time for graphene-based electrodes. We believe that an 

increase in exchange-current density, as well as the decrease in charge-transfer resistance, 

may be attributed to the faster tri-iodide reduction kinetics occurring at the fluorinated 

graphene counter-electrode/electrolyte interface. Therefore, we suggest that the CF4 

plasma-treatment approach is suited for tailoring electron-transfer sites in graphene under 

controlled C–F covalent bond formation.  

 On the other hand, we explored the chemical doping of p-type donors (HNO3) in 

graphene lattice. The structural and charge transfer characteristics of pristine graphene 

(PG) and HNO3 doped graphene (HDG) were studied and discussed using X-ray 

photoelectron spectroscopy. It is affirm that different C-H, C(O)OH and NO3
-
 moieties 

were covalently attached with carbon atoms through sp2-sp3 hybridization which play an 

important role in the shift of graphenes’ Fermi levels with doping concentration, from 

4.52 to 5.31 eV. DSSC comprising of HDG counter electrodes exhibited three times 

higher photo-conversion efficiency than PG electrodes, which we believe is due to the 
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improvement of the in-plane charge transfer of basal planes and further fortifies the 

electro-catalytic activity of HNO3 doped graphene.  

 Furthermore, large scale Graphene-CoS (G-CoS) hybrid electrode was 

synthesized using successive ionic layer absorption and reaction (SILAR) that is a simple 

and scalable process which can easily adapted for a large scale solar cells The CoS 

deposition onto graphene reduced charge transfer resistance and enhanced exchange 

current density at the electrode-electrolyte interfaces, results in 3 times higher efficiency 

than PG in DSSC cell. Deposition of CoS NPs on graphene film is an unambiguous 

evidence of enhancement of its higher electro-catalytic behavior towards iodine reduction 

which is attributed to creation of active electrode/electrolyte triple junction interfaces. In 

this context, control over the charge diffusivity of redox species at the graphene counter 

electrode, and surface charge transfer resistance by the different doping and composite 

electrodes offers enormous new insights of catalytic electrode development opportunities 

for electro catalytic devices. 

 Finally, we also synthesized in-situ self-organized graphene-CNT hybrid film by 

thermal CVD technique and its characterization. The structure is unique as it contains 

graphene top layer connecting to vertical CNT at the bottom. The hybrid film can easily 

be transferred to various polymer substrates, including PDMS, adhesive polymer tapes 

and flexible metal foils. The film exhibits excellent electro-mechanical properties 

demonstrating a distinguishable variation of electrical conductivity for both under tension 

and compression. Furthermore, controllable field emission currents with respect to 
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bending radius has been demonstrated and would be of great utility for future flexible 

field emission cathode. 
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CHAPETR 7 

SCOPE OF FUTURE WORKS 

 
 Graphene is a recently invented material which shows the distinctive electronics 

properties based on its unique band structures, density of states (DOS), number of layers 

and surface defects. In fact, graphene exhibit semi-metallic behavior due to its k and k/ 

point touches each other at the brillouin zone; hence exhibit high charge carrier 

concentration and mobility which is highly beneficial for the ultrafast transistor 

application with high on and off ratio. However, the large scale graphene patterning and 

its applications for ultrafast transistors is still unexplored. On the other hand controlling 

charge carrier concentrations in graphene and their mobility is still a bigger challenge as 

there were surface atomic density is limited in the graphene.  

 When consecutive layer increases, graphene’s semi-metallic property converts to 

semiconducting and then to metallic which strictly depends upon the number of graphene 

stacking layers on it. Graphene also shows its extraordinary conductivity, however due to 

the lower atomic density, the controlling resistivity is highly restrictive. Introducing 

doping in the graphene lattice and controlling its resistivity/conductivity is still a 

challenge at this moment and need to explore vigorously. On the other hand, graphenes’ 

optical transparency is another layer dependent property which increases with decreasing 

graphene no of layers whereas resistivity decreases with increasing number of layers. In 

this context, high transparent graphene with low resistivity will need to optimize for 

future potential transparent conducting oxide for replacing toxic and fragile ITO and 
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FTO. It would highly in demand this type of graphene transparent conducting electrodes 

for potential future applications in flexible electronics and solar cells.  

 Due to their high surface area graphene also exhibit a potential transparent 

electro-catalytic material for different electro-catalytic devices, e.g. dye sensitized solar 

cells. To date Pt is the only highest performance electro-catalytic metal electrode 

possesses electro-catalytic redox reactions at its surface. Owing to its cost issue and 

potential scarcity researchers are still looking for a good alternative for platinum. 

Although graphene exhibit very low resistivity, electro-catalytic activities of graphene are 

not yet explored. In particular, these restrictions arise as graphene exhibits less number of 

electro-catalytic sites for charge transfer that could be controlled by different molecular 

doping and their concentrations. Controlling molecular doping concentrations, is still a 

challenge as doping causes some structural damages in the graphene lattice. Conversely, 

doping shifts the Fermi level and work function of graphene that is one of the prime 

focuses of this thesis. However, controlled doping and change in work function with high 

stability is needed to explore for future electronics and electro-catalytic devices.  

 Finally, graphene is a 2D structure; therefore when get contacted with 3D metals 

exhibit different electronics density of states and electronics transport at the interface. 

Uniform ohmic contact between graphene and metal has not been studied yet 

systematically in order to solve these existing critical issues. Therefore, electron transfer 

from graphene to metal is comparatively sluggish due to the mismatch of their 2D and 3D 

DOS respectively. Similarly, due to the anomalous interface there is a strong band 

bending at the vicinity of the metal–graphene junction which hampers the efficient 

photocurrent generation in graphene based optoelectronics devices.  Therefore, graphene-
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electrodes contact issues need to be solved in order to achieve low loss, energy efficient 

high performances electronics devices.   
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