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ABSTRACT OF THE THESIS 
 

NEW JELLIUM MODEL FOR ALKALI METALS AND ITS FUTURE APPLICATIONS 
TO METAL CLUSTERS 

by 
 

Guillermo Matranca 
 

Florida International University 
 

Miami, Florida 
 

Professor Xuewen Wang, Major Professor 
 

This research develops a new method for understanding the properties of 

materials. The new method was applied to alkali metals to examine how well it can 

predict the Wigner-Seitz radius, rs. Pseudo-potentials for the individual atoms were 

generated and utilized to obtain the interaction energy within these metals.  

The system involves 4 coulombic charges; two of them are the result of the 

neutral atom (one valence electron and one positive core charge for alkali atoms) and the 

other two are background charges of equal and opposite amount. This coulombic 

interaction will behave differently depending on the element that composes the system. 

There are four groups of energy for this system. One of them has the appearance of the 

Jellium model, which is solved with Density Functional Theory. From the other three 

groups, one of them will alter the minimum of the Jellium model for different elements 

in the system. This group is partially calculated with the help of Ewald summation. This 

calculation exemplifies that bcc is favored since it is lower in energy than fcc, which is in 

agreement with experiments for alkali metals. The correction to this energy will be due 
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to the core electrons' interaction with a uniform negative charge background. This new 

method will also be beneficial to calculate the ground state energy of clusters by 

introducing surface boundaries in the system. 
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Chapter 1 Introduction 

Properties for bulk materials are so well known and used in many mechanical 

and electronic instruments today that it gives little opportunity to conduct research on 

this scale for technological advancements. In order to improve our technology, one can 

transition the size of material from bulk to small clusters to explore new properties and 

have a deeper understanding of the material. However, this is a very different realm 

from bulk, so new conditions must be met when the size is reduced and quantum effects 

must be considered when finding the characteristic features of these clusters. Currently, 

scientists are involved in many experiments in parallel with theories for nano-material, 

but complications still arise because of multiple factors, one being that calculations 

become too lengthy because the configuration of the system increases exponentially as 

the number of atoms in the cluster increases. Difficulties tend to also be encountered 

when models are being used in a long-range spectrum for a system. So, most models 

that are built usually fit well with experiments in a narrow range of independent 

parameters. Scientists always try to minimize the computation depending on the system 

and try to find what variables truly make up the properties of the material being 

analyzed. This is how theories predict the outcome of experiments; but without 

experimentation, it is practically impossible to create a theory for phenomena that occur 

in nature. There still remains an enormous amount of research in the field of nano-

material, which can also help us understand nature better. 
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Nano-material has caught a lot of attention in different fields of science and 

engineering as a result of the drastic differences in the properties of materials on this 

scale. This mesoscopic region, which ranges from 1 nm to 100 nm, is the domain for 

these nano-size objects and there are many challenges to having a complete 

understanding of them, and the ability to manipulate them. One major criterion 

affecting these different properties is the structure and the large surface area-to-volume 

ratio nano-sized objects contain. This large surface area-to-volume ratio will give 

different spatial distributions for the electrons and cause the objects to become more 

reactive than bulk material. For example, noble metals such as Au and Ag, are great 

catalysts for chemical reactions when they become ultra fine particles and allow the 

growth of carbon nanotubes. Another reason for these different properties is the 

characteristic size of these structures being comparable to the wavelength of the 

electron. As a result, the system will exhibit quantum confinement. This quantum 

confinement will make the electrons adjust their energy discretely rather than a 

continuous manner as in the case of bulk material. Adjusting the size of these structures 

will show that these discrete energies will have size dependence and stability for a 

certain number of atoms or molecules in the structure. The numbers of constituents for 

these stable states are called magic numbers [1]. There are other factors that must be 

considered in order to understand properties of nano-materials. One is the effect of 

temperature change and the other is the morphology transitions at a certain time scale 
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[2]. However, since my research will involve the study of nano-materials at absolute 

zero temperature, these two factors are beyond the scope of my thesis. 

For this thesis, I will develop a new method to study the lowest energy state (the 

ground state) for alkali metals in bulk form and compare it with experimental values. 

My method will also be applicable to alkali metal clusters.  I will be able to extend my 

method to make it applicable to other elements in future research. The major goal is to 

achieve an understanding of all nano-cluster material, and especially the more exotic 

ones, which are of interest to scientists because their properties can be used to improve 

technology.   

Quantum Mechanics plays a crucial role in my research and I will present a 

method of obtaining a solution to the Schrödinger equation since it is not exactly 

solvable for a many-body system [3]. This approach will not only allow me to analyze 

nanoclusters but also minimize the computation to get results in a shorter time period. 

This will benefit the scientific community since efficiency is an important factor in 

research.  

Experimental and Theoretical Techniques for Nanoclusters 

First, I will discuss earlier studies at FIU which led to the current project. Then I 

will give an overview of other approaches for investigating nanoclusters and show the 

importance of this field. 

 One such study was to fabricate nano-size cobalt clusters uniformly on a 

titanium dioxide substrate, a task that proved to be challenging. There were too many 
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interactions between the cluster and the substrate that came into play, and these 

accounted for the lack of uniformity that was produced but also exhibited magic 

numbers. These magic numbers were encountered through the various experimental 

techniques that were performed. Another study showed the growth of carbon nanotubes 

using gold clusters as catalyst. These clusters ranged from 1 to 100 in the nanometer 

scale and the mechanism of catalytic growth still remains to be completely understood. 

From these experiments, it was realized that in order to understand the properties of the 

clusters, one must consider the structure and electronic configuration of these clusters. 

However, the study of these transition elements is very complex because of the 

significant d-shell character [4]. In this situation, magnetism needs to be considered. So, 

one will first have to use simpler systems such as alkali metals as the starting point. 

Then with this foundation, complex systems can be analyzed by including their 

additional intrinsic properties.  

Techniques to detect nanoclusters still pose many challenges but have improved 

in recent times. The most common instruments used today are the scanning tunneling 

microscope (STM), low energy electron diffraction (LEED), atomic force microscopy 

(AFM), and transmission electron microscopy (TEM). Instruments like LEED follow the 

principles of diffraction in order to determine the structure of clusters. The 

interpretations of these diffraction patterns are based on calculations from theoretical 

constructions of clusters; however, understanding of the patterns is not completely 

straightforward [5].  Therefore other instruments are necessary to analyze clusters, and 
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this will allow scientists to narrow down all the possibilities for the construction of these 

cluster materials.  

There are many approaches to analyze a nano-scale system, but in general, 

finding the minimum binding energy between atoms within the cluster as the number of 

atoms increases, can determine the structure at different sizes of the cluster. This can be 

written in the form 

d  N c  N  b N a  E 31/ 32/ 
b +++= ,   (1.1) 

where the first term corresponds to a volume contribution and the other terms represent 

surface contributions. This equation shows that the major contribution to the binding 

energy is the volume and surface energy. To find a stable structure, the surface energy 

must be optimized for a given fixed volume. In a later chapter, I will illustrate how 

spherical shells give energy stability for a system. For fairly large clusters, Wulff 

construction can be used to find the optimal structure for stability. Other methods, like 

the Mackay icosahedron, can optimize the surface by using quasi-spherical shapes or the 

Marks decahedron approach [6,7]. From experiments, it has been found that the 

icosahedron shape is more favorable for small clusters and decahedra for intermediate 

clusters [8]. This could be the reason for the construction of bulk quasi-crystal materials, 

since these shapes can contain a fivefold axis of symmetry. However, the most favorable 

structure also depends on the material. Other factors like interaction range, bond order, 

and bond length must be considered, which can make the icosahedral shape less stable. 

Also, directionality of the bonds is imortant [9]. 
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It has been observed that when the valence electrons are delocalized, as in the 

alkali and noble metals, electronic shell closing works well. Experiments show this by 

observing the magic numbers of the system [10]. These clusters are usually called super-

atoms since they can mimic regular atoms because of the electronic shell configuration. 

One way to fill these electronic shells is through the spherical jellium model. The 

spherical jellium model assumes a uniform background of constant positive charge 

density with which the valence electrons interact, and are constrained because of a 

spherical boundary. However, filling up these shells fails when clusters are larger than 

2000 atoms and geometric shell effects are favored [11,4]. This spherical jellium clearly 

shows that one model cannot describe a large range of cluster sizes. So, more 

investigations within this realm must be considered in order to have a better 

understanding of clusters since the appropriate choice of an energetic model is 

important.  

Other methods to calculate the total energy of nanoclusters have been developed 

and applied extensively throughout the years. However, these methods can be 

computationally exhausting. For instance, the Hartree-Fock method can be used to 

calculate from 2 to 10 electrons in a system but gets computationally cumbersome for 

larger systems [12]. The density-functional theory (DFT) shows improvement in 

calculating up to a few hundred atoms in a system. Density-functional theory can even 

provide the total energy for difficult systems like transition metals and noble metals but 

it fails if the system is not tested properly since the exchange and correlation term is 
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approximated [13]. One approach to this approximation is the local-density 

approximation (LDA), but an additional term called the gradient correction must be 

included for complex systems like the transition metals [14].  

There are numerous strategies that can be applied to understand systems in the 

nano-scale but none of them are infallible. This is why there is a vast amount of research 

being done with material in this area.  

Layout of Thesis 

 Before discussing my method for analyzing alkali metals, I will explain in 

Chapter 2 some methods for solving Schrödinger’s equation for a many-electron system. 

In Chapter 3, I will discuss the Jellium model and find the total energy of the system in 

its ground state for different conditions. This allows me to analyze how bulk material 

and metal clusters behave. In Chapter 4, I will discuss psuedo-potentials and some 

applications. Chapter 4 is important for understanding the interaction within the 

material. What is described in these Chapters is essential for understanding how my 

method was constructed. In Chapter 5, I will present my results for alkali metals 

obtained by my method. I will compare these results with experimental results and 

discuss the similarities and differences. Finally, I will provide discussion on the analysis 

of clusters with this method. 
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Chapter 2 Methods for Many-Electron Systems 

In this chapter, I give an overview of a few important methods that are used to 

solve Schrödinger’s equation for a many electron system. First, I will discuss the one-

electron case. From Quantum Mechanics, the time-independent Schrödinger equation 

has the form 

)(E)()()(
2

2
2

rrrr ψψψ =+∇− U
m


    (2.1) 

where )(rU  is the potential energy for the single-electron. This potential is the result of 

all the other particles in the system and any external potential acting on this electron. 

Choosing an appropriate )(rU  for a real system like metal is a difficult task. A mean 

field for the potential can be used but this would not describe an accurate picture for the 

electron. In order to have a more accurate calculation, the wavefunction should involve 

all N-particles of the system that are non-static. Therefore, for a fully interacting, many-

electron system with fixed ions, the Schrödinger equation is 
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where Ψ  is the N-electron wavefunction, which is a function of the position of each 

electron. kZ  are the ionic charges, kR  are the positions of the ions and ir  are the 

electrons' positions. The second and last term on the left-hand side of the equation 

represents the attractive electrostatic potential and the repulsive potential between 

electrons, respectively. However, this equation cannot be solved exactly. 
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Approximations must be considered and the solution obtained from these 

approximation methods should provide an accurate picture for the particular problem. 

The single-electron equation is usually a good starting point when the potential is not 

complicated. For instance, when the particles are non-interacting, the Schrödinger 

equation can be solved exactly. However, real systems tend to be intricate because of the 

repulsive interaction between the electrons. 

The Hartree Approximation 

 For this approach, the electrons in the system are considered to be independent 

of each other so that the electronic charge density will simply be the sum of each of their 

modulus squared stationary states associated with their charge. The form is shown to be, 


=

−=
N

j
je

1

2
)()()( rr ψρ  .    (2.3) 

This type of charge density is used for the electronic potential of the system. If the ith 

particle is removed from the charge density, then the potential energy will simply be the 

electric potential that results from all but the ith electron multiplied by the charge of the 

ith electron: 

)()()( rr i
el eU φ⋅−= ,     (2.4) 

where,  ′
′−

′
= r

rr
rr d

i
i

)()( ρφ , and    
≠
=

′−=
N

ij
j

je
1

2
)()()( rr ψρ  .   

Here, the electric potential of the remaining electrons is treated as a smooth distribution 

of negative charge since the stationary states are considered continuous with position. 
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The Hartree approximation also includes the interaction energy between the ionic 

charge and electron charge, 

 −
−=

k ki

k
iion

eZU
Rr

r
2

4
1)(
πε

 .    (2.5) 

The Hartree equation incorporates these two potential energies to the potential of a 

single-electron equation. For N-electrons there will be N equations:  
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The potential for each equation is different resulting in the single-electron 

wavefunctions not being orthogonal to each other. In order to satisfy orthogonality 

conditions, the charge density must be approximated with an average of the orbital 

density, which will lead to having only one equation. Now the Hartree equation is 

shown to be 

)(E)(
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 
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This equation clearly shows non-linearity. To get a solution from this equation, a self-

consistent approach is followed by finding a form for the electronic density and using it 

to get a solution for the one-electron wavefunction [15]. The wavefunction is then put 

back into the electronic density to get a potential, where the potential is used to solve 

Hartree equation again. This iteration is continued until the potential is consistent. This 
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method can give accurate results but numerical complications arise even though this 

equation is a crude approximation of the full Schrödinger equation. The physical feature 

cannot be fully described since this method assumes independent electrons. Therefore 

other properties must be included in order to obtain a better picture of the system. 

The Hartree-Fock Approximation 

 One condition the Hartree equation does not consider for the electrons is the 

antisymmetrization of the electrons because of the Pauli principle for fermions. The 

wavefunction in the Hartree equation has the form 

)()()(),,,( 2221112211 NNNNN ssssss rrrrrr ψψψ  ⋅=Ψ  (2.8) 

for an N particle system. The wavefunction needs to follow the condition where 

),,,,,,(),,,,,,( 1111 NNiijjNNjjii ssssssss rrrrrrrr  Ψ−=Ψ . (2.9) 

Applying Slater’s Determinant for the stationary orbitals can satisfy this condition. 
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The Hartree-Fock approximation applies equation (2.10) to the full electron 

wavefunction and minimizes the expectation value of the Hamiltonian with respect to 

the single-electron wavefunction: 

0Eˆ 2 =




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The minimization leads to the Hartree-Fock equations, 
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Equation (2.12) is similar to the Hartree equation, which only differs by the last term on 

the left-hand side of the equation. The second and third terms are known as the direct 

and exchange term, respectively. Note also that the self-interacting term cancels because 

of the exchange term. The exchange term only contributes when the spin state of the jth 

electron is parallel to the spin state of the ith electron. The Hartree-Fock equations are 

difficult to solve because the exchange term is a non-local integral operator and only a 

few cases are manageable. For instance, choosing a set of orbitals to be orthonormal 

plane waves for a constant periodic potential can solve the Hartree-Fock exactly. 

Configuration Interaction Method 

 There are many extensions to Hartree-Fock approach but the one most often 

used is the Configuration Interaction (CI). This method applies a linear combination of 

N-electron Slater determinants to the wavefunction [16]. The first term is simply the 

Hartree-Fock Slater determinant, while the following terms are excited states of the 

virtual Hartree-Fock orbitals. However, this approach tends to scale very poorly when 

the system size increases and is related to the binomial coefficient: 

N)!-(MN!
M!

N
M

=

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


     (2.13) 
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where M is the number of Hartree-Fock orbitals and N is the number of electrons. This 

method can be highly accurate for small systems but, as N increases, CI calculations 

require a lot of computational power. 

Density Functional Theory (DFT) 

The Density Functional Theory, which is formally an exact theory, is based on 

the charge density of a system. It also states that the charge density of a system cannot 

have two or more distinct potentials [17]. The potential is unique for the particular 

charge density. For such a system, the particle density for the ground state is given by 

 Ψ= NNGG ddN rrrrrr  2
2

2 ),,,()(ρ  .   (2.14) 

Now, for the single-electron equation, the potential is written differently. 
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)(rextV  is the external potential associated with the ions, )(rHV  is the direct potential 

term given by the Hartree equation, and [ ])(rρXCV  is the exchange and correlation 

potential. Equation (2.15) will allow expressing the energy of the system as a functional.  
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However, DFT assumes that the exchange-correlation functional is known but it has 

only been determined numerically for a few simple model systems. Therefore, most of 

the density functional calculations use the Local Density Approximation (LDA). The 

LDA approximates the exchange-correlation functional with a uniform homogeneous 

electron gas of density )(rn  at any position r . The expression for [ ])(E rnXC  using LDA 

is 

[ ]  ⋅≈ rrrr dnnn XCXC )())(()(E ε .    (2.17) 

This approximation can give very accurate values for the system but often fails when the 

system has electrons that are strongly correlated, as in states of electrons containing d 

and f orbitals. 

 

 

 

 

 

 

 

 

 



 15

Chapter 3 Jellium Model 

 When solving a many-electron problem that contains many ions in the system, a 

large degree of freedom in terms of crystalline structure arises. This large degree of 

freedom makes the Schrödinger equation difficult to solve. In this chapter, I will discuss 

the Jellium model, which is an approximation to the ions, as a means of simplifying the 

system. This model will be solved for a volume of infinite size and for a spherical 

boundary. 

Jellium Model for an Infinite Volume 

The Jellium model, which is a much cruder model to describe metals, can also be 

used to find properties for a system, but only when the system is large or comparable to 

bulk. The theory behind this model replaces the structural ions, which have localized 

charge, with a uniform charge distribution throughout the region of the material. This 

so-called “background” charge distribution will interact with the electrons of the 

material [18]. The Hamiltonian for this model with N-electrons confined in space of 

volume V is as follows. 
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)(rρ  is the electronic density and )(Rn is the background charge density. As a result of 

the uniformity of the charges and a volume of infinite size, this will allow the 

wavefunction to be a set of free electron plane waves. The solution for the energy of the 

system using the Hartree-Fock approximation will have a form of  
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a  is the Bohr radius and sr  is the Wigner Seitz radius. The Wigner Seitz radius is 

related to the average uniform density of the system given as 3

3
41

sr
π=

VN
. The units 

for energy are in rydberg (Ry), where 1Ry = 13.6 eV. To correct the Hartree-Fock result, 

exact leading terms in a high-density expansion are added.  
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These corrections required much labor [19]. The last three terms are called the 

correlation energy, which is a misnomer since they have no physical meaning. Figure 3.1 

shows the energy per atom as a function of ars  using the Jellium model for a volume 

of infinite size. The minimum in energy occurs at a Wigner Seitz radius of 3.83 a , which 

is constant in this model for any atom that composes the system. The Wigner Seitz 

radius does not agree with the experimental values as shown in Table 3.1. Table 3.1 only 

lists a few elements from the periodic table that have one electron in the conduction 

band, and shows other properties for these elements that will be used for analysis later  
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Table 3.1. * The values obtained for metal Hydrogen 
are calculated theoretically. 

Figure 3.1.  The plot shows the  minimum energy per 
atom for a uniform charge density occurs at 3.83. 

 

in my research. The reason for this disagreement is that real systems lack homogeneity 

whereas Jellium assumes uniformity for the ionic structure. In order to incorporate this 

effect, one can consider replacing this uniform background with some form of potential 

that can describe the ionic structure of the system, but then this will increase the 

complication of computational calculation where the wavefunction will not have the 

form of a plane wave.  

Jellium Sphere 

In the previous section, I discussed the Jellium model involving the material 

occupying all of space. This condition and applying the Hartree-Fock approximation 

allowed the Jellium to be solved. Then the correlation terms were included to have a 

more accurate calculation for the electron-electron interaction. The total energy per atom 

for this system depends only on the density. In contrast, I will consider a boundary, 

Elements 

Lattice 
constant 
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Seitz 
radius 
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Bulk 
modulus B 
(1011N/m2) 

Crystal 
structure 

*H 3.27 1.61  bcc 

Li 3.49 1.72 0.116 bcc 

Na 4.23 2.08 0.068 bcc 

K 5.23 2.57 0.032 bcc 

Rb 5.59 2.75 0.031 bcc 

Cs 6.05 2.98 0.020 bcc 

Cu 3.61 1.41 1.37 fcc 

Ag 4.09 1.60 1.007 fcc 

Au 4.08 1.59 1.732 fcc rs/ao
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constrained to a sphere, for the Jellium model. This will input an additional parameter, 

which I will use to investigate the energy of the system. This variable parameter will 

pertain to the radius of the sphere, which is proportional to the number of atoms to the 

one-third power in the system. However, having this constraint, the Schrödinger 

equation needs to be solved numerically by a self-consistent approach. A trial function 

along with an assumed potential associated with the charges will initiate the iteration. 

For this system, the total potential energy is given as  

)]([U)(U)(U)U( LDA-XCHext rrrr ρ++= .   (3.6) 

Uext(r) is the potential energy of the positive charges distributed uniformly within the 

sphere that interacts with the electrons. UH(r) is the Hartree term, also called the direct 

term, and is expressed as  

r
rr
rr

rr
r

r ′
′−

′
−−=′

′−

′−=  
=

de
N
Nd

e
N
N

i

N

j i

j  )()(1)(1
1

22 ρψ
    )(UH .  (3.7) 

 
UXC-LDA[ρ(r)] is the exchange-correlation potential, which is a functional of density, and is 

approximated by the LDA. In order to solve the Schrödinger equation, an electronic 

charge density must be given. Since the density is related to the single-particle 

wavefunction, 
=

′−=′
N

j
je

1

2
)()()( rr ψρ , a trial wavefunction can be given first. Then the 

potential energy of the system can be solved using this density. This potential is 
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substituted in Schrödinger’s equation to get a solution. The process can continue by 

using the solution to get the new density. A flow chart is shown in figure 3.2. A program 

written in FORTRAN code was used to generate a loop for this iteration until the result 

converged to a stable value. From this, the eigenvalues can be summed to get to total 

energy of the system. This simulation is executed every time when a new number of 

charges are added to the system.  

 Two cases will be considered. For the first case, the positive charge density value 

will be fixed throughout the sphere and sr  will vary smoothly while the average 

electronic charge density is the same as the positive charge density. The second case will 

consist of having a spherical shell at the outer end of the sphere with a certain thickness 

that depends on the inter-planer distance of the atoms. The sr  value within the spherical 

shell will vary while sr  of the sphere inscribed in the shell will be fixed. This variable sr  

will have a limited range depending on the thickness of the shell and the fixed sr  value 

within the sphere. In notation terms, fix svar. s rr      
 4
V 3 3

1

≤≤







π
, where V is the volume of  

 

Figure 3.2. Flow chart to solve Jellium sphere.
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the shell. Adding this spherical shell to the model mimics the surface effects that occur 

in real systems. The data for the two cases are superimposed on one plot to see their 

differences. The plot is shown in figure 3.3 for rs fix = 2.0 a . A new shell gets added for 

the next atom when rs var reaches 2.0 a . N is the number of atoms in the system and is 

related to the radius, R, of the sphere, by 33
s R 

3
4r 

3
4 N ππ = . The shell model shows 

large oscillations compared to the case without a spherical shell. Having this large 

energy difference produces stability of a system at certain discrete values of N. These 

discrete values are called magic numbers. The energy difference needs to be larger than 

the energy at room temperature, which is about one milli-Hartree, in order for the 

system to be stable. Without the surface effect, the Jellium sphere clearly shows 

instability. In addition, this also shows that this “core” region has negligible effects so it 

can be replaced with a constant. The same effect occurs with the shell model when N is 

large, which should be the case since the energy of the infinite jellium is fixed for a given 

Figure 3.3. Energy versus the number of electrons to the one-third power. The energy units are in Hartree (1 Hartree = 
2 Ry). The shell model shows larger energy difference, which indicates stability. 
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sr  value. The shell model is a good approximation for understanding the stability of 

clusters but does not indicate correctly the magic numbers. It also overestimated the 

energy difference for certain magic numbers. Ignoring the structure of clusters gives a 

major discrepancy to the model but should not be completely disregarded. 

 I will continue to use the Jellium model for alkali metals; however, I will not 

ignore the lattice structure. Including the lattice structure will give different rs minimum 

values for different elements that compose the bulk system. My scheme will be 

explained in detail in chapter 5, but first I need to discuss the pseudo-potential, which is 

also an essential method for my analysis of alkali metals. Pseudo-potential will be 

applied to the alkali atoms to describe how charges interact in the core region of the 

atoms.  
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Figure 4.1. A pseudo-potential to 
approximate a coulomb potential. 

Chapter 4 First Principle Pseudo-potential 

When calculations require substantial computational power, as in many-body 

problems, it is useful to apply the Pseudo-potential method. This method helps reduce 

calculations by introducing a cut-off to the system where it is least significant. The 

approximated system has to satisfy certain conditions in 

order for calculations to not deviate from the actual 

results in the region of interest. The features of pseudo-

potentials are usually used to remove the core electrons 

in the system. Removal of core electrons allows the 

valence electrons to be the main contribution since they 

tend to be the ones that interact the most with outside 

sources. Consider a coulombic potential between the electrons and the nuclei as shown 

in figure 4.1. The pseudo-potential will differ from the region of the coulombic potential 

where the wavefunction has rapid oscillations, which is considered to be the core 

electrons interacting with the nuclei. Outside this region of the core, the pseudo-

potential must fit the true potential exactly. This is where valence electrons are located 

and the wavefunction is unaltered in this region.  In order to have a satisfactory pseudo-

potential, the integral of the squared amplitude, where the core electrons are located, has 

to match as in the case of the real potential. This is known as the norm-conservation [20]. 

Another condition that the pseudo-potential must satisfy is the charge density in the 

valence region should be identical to the true charge density.  
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One-dimensional Pseudo-potential 

When generating a pseudo-potential, it is important to determine which parts are 

essential for your system and this is usually simple when a potential is symmetric. More 

importantly is the transferability when using the pseudo-potential. I will describe a 

special case in detail since the pseudo-potential is an important factor for my analysis of 

alkali metals. I consider a one-dimensional double-well harmonic oscillator 

interconnected by a constant potential V .  
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where the spring constants are set equal to 1. Now, for the pseudo-potential I have two 

harmonic oscillators cut in half with an infinite potential and also interconnected with 

the same constant potential V . 
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These two potentials are shown in figure 4.2. I will call V and Vpseudo full harmonic and 

half harmonic respectively. Accordingly, the full and half harmonic wavefunctions are 

fullψ  and halfψ  respectively. Using the WKB approximation, their solutions are 



 24

Figure 4.2. Shows a double harmonic potential interconnected with a constant potential and two half harmonic 
potential also interconnected by constant potential. 
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where, E)(V2 and ,)(VE2k −=−= xmxm


κ . Now, since the potential is 

symmetric, the wavefunctions can always be taken to be either even or odd. So, two 

conditions must be satisfied: 0)0( =ψ  for odd solutions and 0)0( =′ψ  for even 

solutions. This will lead to two transcendental equations for full harmonic and also for 

the half harmonic oscillator. The equations are shown to be, 

x1 x2-xo x3 x4 xo

V

x2 x3-xo xox4

V
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The plus term for the full harmonic is the result of the odd solution while the minus 

term for the half harmonic is from the odd solution. Plotting both sides of the equation 

individually on the same graph to get intersecting points will provide the energy values 

for the system. The two systems, the full and the half, show degeneracy splitting when 

the distances between the potential of zero value approach each other. Also, the energy 

between the even and odd solutions for the different potentials shows a greater 

difference when the constant potential interconnecting the wells is lower. As can be seen 

in the graph, the pseudo-potential matches well with the full harmonic potential well 

but only for a certain region. Therefore the transferability to pseudo-potential is limited 

by the distances between the wells and the constant potential value. 
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Figure 4.3. The two graphs shows that the transferability improves when Vo increases and for large values of xo. 

 

Pseudo-potential for alkali atoms 

 Before I analyze the alkali metals I need to consider the properties of the 

individual alkali atoms. All the alkali atoms have one electron in the valence level, 

which is the main component for the atom. The rest of the electrons are in closed shells 

and require more energy to remove. This closed shell region can be considered the core 

region of the atom and is unaffected when outside sources interact with the atom. In 
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order to ignore the energy of this region, a pseudo potential must be produced. This 

effective potential will be used to study the properties of alkali metal. 

 To construct a suitable pseudo-potential I need to use a program and see whether 

the energy is comparable to the valence energy from an all-electron calculation of the 

atom. Certain input parameters are required for the program which will generate values 

of the pseudo-potential at different radial distances. I need to indicate which element to 

use. From there, I need to indicate what level of the electronic configuration is 

considered the boundary of the core region. Then, I input the number of valence levels 

and a particular set of principal and azimuthal quantum numbers. For instance, if I were 

to use Sodium (Na), I can choose three valence levels 3s, 3p, and 3d. Next, I put a 

fractional amount of an electron (or electrons if there is more than one in the valence 

region) in each valence level. If the valence levels are 3s, 3p, and 4s, I can input 0.7, 0.2, 

and 0.1, respectively, for the one electron. For this specific setting, the program will first 

output results that pertain to all the electrons of the atom. These results will contain 

eigenvalues for each state and properties for each single electron wavefunction. In order 

for the program to generate a pseudo potential, I need to find an appropriate cut-off by 

examining the wavefunction of the last state from the all-electron calculation. The cut-off 

is chosen to be in between where the wavefunction has a node farthest from the origin 

and the last peak value, which is depicted in figure 4.4.  

 I generated multiple pseudo-potentials and tested the results by inputting 

different mixtures of the electrons in the valence levels. Then I compared the energy of 
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the electron to the energy of the valence electron in the all-electron calculation. This will 

indicate which pseudo-potential is a suitable fit. Table 4.1 shows results for the Na atom. 

I used three valence levels for the electron, 3s, 3p, and 3d. Figure 4.5 shows that trial 10 

has a good linear fit. Additional tests were completed for the other alkali atoms. These 

tests allow me to collect pseudo-potentials for the alkali element, which is necessary to 

calculate the interaction energy in the system. The next chapter shows the pseudo-

potentials for the alkali elements. 
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Figure 4.4. Shows the selection of the cut-off region in the wavefunction from the all electron calculation.

Figure 4.5. Plot of the total energy of trial 10 against the valence energy from the all electron calculation.  
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  Pseudo-potential test 

Fraction of electron for the 
valence levels 3s, 3p, 3d 

Valence energy from all 
electron calculation Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

0.8, 0.1, 0.1 -0.20328 -0.20221 -0.20326 -0.20321 -0.20322 -0.20322 -0.20323 -0.20327 -0.20327 -0.20327 -0.20328 

0.7, 0.2, 0.1 -0.19306 -0.18044 -0.19289 -0.19300 -0.19300 -0.19300 -0.19301 -0.19304 -0.19304 -0.19303 -0.19305 

0.7, 0.1, 0.2 -0.19749 -0.17502 -0.19341 -0.19743 -0.19743 -0.19737 -0.19743 -0.19747 -0.19746 -0.19746 -0.19747 

0.6, 0.2, 0.2 -0.18510 -0.16139 -0.17372 -0.18504 -0.18504 -0.18489 -0.18505 -0.18507 -0.18506 -0.18505 -0.18507 

0.6, 0.3, 0.1 -0.18211 -0.15934 -0.17844 -0.18206 -0.18206 -0.18203 -0.18206 -0.18208 -0.18208 -0.18207 -0.18209 

0.6, 0.1, 0.3 -0.18647 -0.15742 -0.16887 -0.18641 -0.18641 -0.18602 -0.18641 -0.18643 -0.18643 -0.18640 -0.18643 

0.5, 0.2, 0.3 -0.17280 -0.14282 -0.15022 -0.17276 -0.17275 -0.17208 -0.17275 -0.17275 -0.17275 -0.17270 -0.17276 

0.5, 0.3, 0.2 -0.17249 -0.13903 -0.15443 -0.17244 -0.17244 -0.17214 -0.17244 -0.17244 -0.17244 -0.17241 -0.17245 

0.5, 0.4, 0.1 -0.1706 -0.1431 -0.1582 -0.1705 -0.1705 -0.1704 -0.1705 -0.1706 -0.1705 -0.1705 -0.1706 

0.5, 0.1, 0.4 -0.1718 -0.1392 -0.1451 -0.1717 -0.1717 -0.1705 -0.1717 -0.1717 -0.1717 -0.1716 -0.1717 

Table 4.1. Several trials for a pseudo-potential for Sodium (Na) atom.  The energy of the pseudo-potential system must be compared to the all electron system to find a proper fit.
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Chapter 5 Results for Alkali Metals 

 In the previous three chapters, I discussed various methods to solve the 

Schrödinger’s equation for a multi-electron system. I also discussed how to construct 

pseudo-potentials to remove particular parts of the system that are insignificant. Each of 

these tactics has limitations and is usually a too large of an approximation to fully satisfy 

a system. However, these methods should not be completely ignored. In this chapter, I 

will show how these methods are supplemental to my calculations for alkali metals. 

 As I showed in the Jellium model section, the electrons interact with a uniform 

positive charge disbursed throughout space. This system is solvable and it is able to 

generate a minimum for the total energy per atom. However, the problem with this 

system is that it did not match with the minima found for alkali metals, which have 

different sr  values. In order to correct this, the structural ion cannot be ignored. For my 

model, I will include the positive charges from the ions throughout space in the Jellium 

model. These ions are considered to be discrete charges. To have the system neutral in 

charges, I will also include a negative uniform charge distribution throughout space. 

This will give a total of 4 different charge distributions, which interact with each other. 

The system can have an imbalance of charge because of the ions and electrons but the 

uniform negative background has equal and opposite amount of charge compared to the 

uniform positive background. I will now have a total of 10 interaction energy terms 

instead of 3 terms as in the Jellium model. They are Uele-ele, Uele-ρ+, Uρ+ρ+, Uion-ion, Uion-ρ-, Uρ-ρ-

, Uion-ele,  Uion-ρ+, Uele-ρ-, and Uρ+ρ-. The subscripts ele, ion, ρ+, and ρ- indicate the charge 



 31

associated with the electron, ionic core, uniform positive charge, and uniform negative 

charge, respectively. I want to group these terms in such a way that it will give me a 

group that is identical to the Jellium model. This group will be called the electronic effect 

and it will contain the kinetic energy term of the electron. A second group will have the 

ion-ion interaction and I will call it the ionic effect. The rest of the terms that remain will 

approximate to zero since the charge distribution of ρ+ and ρ- is the same as the electron, 

ele. This form is expressed as 

0.  U  U
0,  U  U

, U  U  U  E
, U  U  U  K  H

---ele
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ˆ

  (5.1) 

The electronic effect will be solved through Quantum Mechanics while the ionic effect 

will be solved Classically. The first term in the ionic effect expression is calculated by 

Ewald summation [21]. The calculation involves summing the long-range interaction in 

Fourier space and the short-range interaction in real space. Depending on the lattice 

structure, Uion-ion will have different results. For alkali metals, the lattice type is body-

centered cubic (bcc). Each of the terms in the ionic effect diverges individually as the 

system increases, however, the sum of the 3 terms will converge to a constant value for a 

fixed sr . Uion-ρ- will differ for each element when ρ- interacts with the core region of the 

ion. This core region has a different electric potential for each element. To describe the 

electric potential of the ions, I will generate pseudo potentials with the program that was 

explained in the previous chapter for alkali atoms. The pseudo-potential from the ion is 
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used to calculate the potential energy between the ion and any charge that interacts with 

it. The generated pseudo-potential for alkali atoms is shown in figure 5.1. If I ignore the 

ion having a core and treat it as a positive point charge, the ionic effect will not change 

for different elements. The ionic effect energy for bulk will be -1.7918585/ sr  for a bcc 

lattice type and -1.7917525/ sr  for fcc (face-centered cubic). These results also show that 

bcc is favored since it is lower in energy than fcc, which is in agreement with 

experiments for alkali metals. With this ionic effect energy, I can correct it by removing 

the interaction energy between the positive point charge and ρ- within the core region, 

and add the energy due to the pseudo-potential of the ion and ρ- from the core region. 

This correction is accomplished computationally. Table 5.1 shows the ionic effect energy 

for alkali metals at different sr  values. Adding this ionic effect to the Jellium model (the 

electronic effect) adjusts the sr minimum. As I showed in figure 3.1, ars  has a 

minimum at 3.83 for the Jellium model.  
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Figure 5.1. Pseudo-potentials (Ry/charge) for alkali atoms versus r(ao). These are used to calculate the 
interaction energy.   
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 Ionic effect 

rs/ao Li Na K Rb Cs 
8.594 -0.195 -0.188 -0.177 -0.175 -0.168 
8.141 -0.204 -0.195 -0.183 -0.180 -0.172 
7.734 -0.213 -0.203 -0.188 -0.185 -0.176 
7.366 -0.222 -0.210 -0.193 -0.190 -0.179 
7.031 -0.230 -0.217 -0.197 -0.193 -0.180 
6.725 -0.238 -0.223 -0.201 -0.196 -0.181 
6.445 -0.246 -0.228 -0.203 -0.198 -0.181 
6.187 -0.254 -0.234 -0.205 -0.199 -0.180 
6.066 -0.257 -0.236 -0.206 -0.199 -0.180 
5.837 -0.264 -0.240 -0.206 -0.199 -0.177 
5.729 -0.267 -0.242 -0.206 -0.199 -0.175 
5.524 -0.274 -0.246 -0.206 -0.197 -0.171 
5.334 -0.280 -0.248 -0.204 -0.195 -0.166 
5.156 -0.285 -0.251 -0.202 -0.191 -0.159 
4.990 -0.290 -0.252 -0.198 -0.187 -0.151 
4.834 -0.295 -0.253 -0.194 -0.181 -0.142 
4.687 -0.299 -0.253 -0.188 -0.174 -0.131 
4.550 -0.303 -0.253 -0.182 -0.166 -0.119 
4.420 -0.307 -0.252 -0.174 -0.157 -0.106 
4.297 -0.309 -0.250 -0.165 -0.147 -0.091 
4.238 -0.311 -0.248 -0.160 -0.141 -0.083 
4.181 -0.312 -0.247 -0.155 -0.135 -0.075 
4.125 -0.313 -0.245 -0.150 -0.129 -0.066 
4.018 -0.314 -0.241 -0.138 -0.116 -0.047 
3.966 -0.315 -0.239 -0.131 -0.108 -0.037 
3.916 -0.315 -0.236 -0.125 -0.101 -0.027 
3.867 -0.316 -0.234 -0.118 -0.093 -0.016 
3.819 -0.316 -0.231 -0.110 -0.085 -0.005 
3.773 -0.316 -0.227 -0.103 -0.076 0.006 
3.683 -0.316 -0.221 -0.086 -0.058 0.031 
3.516 -0.313 -0.204 -0.050 -0.017 0.085 
3.400 -0.310 -0.189 -0.018 0.018 0.131 
3.300 -0.305 -0.173 0.013 0.053 0.176 
3.200 -0.299 -0.154 0.050 0.094 0.229 
3.100 -0.291 -0.132 0.093 0.141 0.290 
3.000 -0.281 -0.105 0.143 0.196 0.360 

 

 

 

 

Table 5.1. The ionic effect energy (Ry/atom) of alkali metals for different rs/ao values. 
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rs/ao Li Na K Rb Cs Jellium 

Experimental 3.25 3.93 4.86 5.20 5.63  
Theoretical 3.80 4.42 5.16 5.33 5.77 3.83 

 

 

When including the ionic effect, the results begin to show a shift of the minimum 

towards the experimental value, which gives good indication that this approach is valid. 

The values are shown in table 5.2, and graphically in Figure 5.2, for alkali metals. The 

theoretical values for the lighter alkali elements have a slightly larger discrepancy than 

the heavier alkali elements. That is because I assumed the electrons to be free in the 

system. However, the electrons for the lighter elements seem to not behave in that 

manner since the core of the ion is smaller, which gives less screening effects. The last 

two groups from equation 5.1 will not approximate to zero and the electronic effect will 

be altered since the electrons will not be uniform throughout the system. 
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Figure 5.2. Total energy (Ry/atom) versus rs/ao for alkali metals. 

Table 5.2. Minimum rs/ao for alkali metals. The Jellium is shown as a reference point. 
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B (1011 N/m2) Li Na K Rb Cs Jellium 

Experimental 0.116 0.068 0.032 0.031 0.020  
Theoretical 0.089 0.056 0.032 0.027 0.020 0.028 

 

 

Another property that can be determined from this system is the bulk modulus. 

The relationship for bulk modulus is defined as 

2

2

dV
EdV  

dV
dPV-  B == ,   (5.2) 

where P is the pressure applied to the system and V is the volume of the system that the 

pressure is being applied to. In terms of energy and rs/ao, the bulk modulus at the 

equilibrium, P = 0, is expressed as  
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)

1
π

= .   (5.3) 

Table 5.3 compares these results with experimental results for alkali metals, which 

shows good agreement. Again, the lighter elements have a slightly larger discrepancy. 

The calculation for the bulk modulus is sensitive to the data since it relies on the 

curvature of the data. 

This new scheme shows significant improvement compared to the Jellium 

model. One reason that the Jellium model could not replicate correctly a real system is 

the result to the fact that it does not consider the lattice structure. It also showed no 

change when the system used a different element. That is because the Jellium model 

assumes uniform charge density throughout the system. Through this new method, I 

Table 5.3. Bulk modulus for alkali metals. The value for Jellium is also calculated at the equilibrium.
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was able to demonstrate change to the system when the system was used to analyse a 

different element and when it incorporated the lattice structure. This new jellium model 

approach may also be applied to other elements that are not alkali atoms; however, 

other properties must be factored in to get better results. 
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Chapter 6 Conclusion 

 After observing the results for alkali metals, one can understand how to apply 

this new method to smaller systems. The results are essentially composed of the 

electronic effect and the ionic effect since I considered 4 charge distributions that interact 

with each other in the system and produced 4 interacting terms that approximate to 

zero. The electronic effect was calculated by using the Jellium model while the ionic 

effect involved an electrostatic summation for an infinite system. For a cluster-size 

system, these two effects will now have boundary constraints. To include this boundary 

constraint for the electronic effect I can simply apply the Jellium sphere that was 

discussed in the Jellium model chapter. For the ionic effect, the electrostatic summation 

will truncate depending on how many atoms will be in the system. This will modify the 

results of the Jellium sphere. One will discover that the energy of the system will 

oscillate differently and have different magic numbers for a given element (or rs fix value) 

as the number of atoms increases in the cluster. This could improve the results on 

describing the stability of certain cluster size since the spherical shell model 

overestimated the energy difference as was explained for rs fix = 2.0 a .  

A Jellium sphere is just one of the various geometric shapes that can be applied 

to the electronic effect when analyzing nano-clusters. As I discussed in the first chapter, 

clusters can have different constructions depending on the size of the cluster and the 

type of material that composes it.  For instance, icosahedron shapes have been observed 

for small clusters and decahedra for intermediate size clusters of numerous elements. 
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Therefore altering the boundary of the Jellium can improve the results for clusters. 

However, the shape can depend on the material, so finding the correct interaction 

energy within the system is an important factor. For this new method I developed, the 

interaction energy involved 4 columbic charges; two of them are due the neutral atom 

(one valence electron and one positive core charge) and the other two are background 

charges of equal and opposite amount. This interaction will behave differently 

depending on the element that composes the system and will determine the geometric 

shape of the boundary by selecting the lowest energy from all the possible forms of the 

boundary. Applying this method can produce fruitful results for cluster systems but the 

most challenging task is determining how the material interacts in the system. Other 

materials that are not alkali metals have additional properties that cannot be ignored, 

and these properties can simply be added to my method.  
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