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ABSTRACT OF THE DISSERTATION 

EFFECTS OF ARCHITECTURAL FEATURES OF AIR-PERMEABLE ROOF 

CLADDING MATERIALS ON WIND-INDUCED UPLIFT LOADING 

by 

Ruilong Li 

Florida International University, 2012 

Miami, Florida 

Professor Arindam Gan Chowdhury, Major Professor 

Widespread damage to roofing materials (such as tiles and shingles) for low-rise 

buildings, even for weaker hurricanes, has raised concerns regarding design load 

provisions and construction practices. Currently the building codes used for designing 

low-rise building roofs are mainly based on testing results from building models which 

generally do not simulate the architectural features of roofing materials that may 

significantly influence the wind-induced pressures. Full-scale experimentation was 

conducted under high winds to investigate the effects of architectural details of high 

profile roof tiles and asphalt shingles on net pressures that are often responsible for 

damage to these roofing materials. Effects on the vulnerability of roofing materials were 

also studied. Different roof models with bare, tiled, and shingled roof decks were tested. 

Pressures acting on both top and bottom surfaces of the roofing materials were measured 

to understand their effects on the net uplift loading. The area-averaged peak pressure 

coefficients obtained from bare, tiled, and shingled roof decks were compared. In 

addition, a set of wind tunnel tests on a tiled roof deck model were conducted to verify 

the effects of tiles’ cavity internal pressure. Both the full-scale and the wind tunnel test 
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results showed that underside pressure of a roof tile could either aggravate or alleviate 

wind uplift on the tile based on its orientation on the roof with respect to the wind angle 

of attack. For shingles, the underside pressure could aggravate wind uplift if the shingle is 

located near the center of the roof deck. Bare deck modeling to estimate design wind 

uplift on shingled decks may be acceptable for most locations but not for field locations; 

it could underestimate the uplift on shingles by 30-60%. In addition, some initial 

quantification of the effects of roofing materials on wind uplift was performed by 

studying the wind uplift load ratio for tiled versus bare deck and shingled versus bare 

deck. Vulnerability curves, with and without considering the effects of tiles’ cavity 

internal pressure, showed significant differences. Aerodynamic load provisions for low-

rise buildings’ roofs and their vulnerability can thus be more accurately evaluated by 

considering the effects of the roofing materials.  
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1 Introduction 

1.1 Hurricane Hazards 

Wind hazards, especially those caused by hurricane or typhoon, are increasingly 

imposing a large amount of property losses and human suffering. Residential buildings 

are particularly vulnerable to damages caused by wind and wind-driven rain action. In 

addition, damages can also occur from the subsequent storm surge, flooding, and wave 

effects. Hurricane-induced economic losses have increased steadily in the U.S. during the 

past 50 years, with estimated annual total losses averaging $1.3 billion from 1949-1989, 

$10.1 billion from 1990-1995, and $35.8 billion per year during the last 5 years. In 

particular, during the 2005 season, estimated total economic losses from Hurricane 

Katrina are in excess of $125 billion and insured losses are $40.6 billion (FEMA549, 

2005). In addition, the intolerable and unnecessary loss of life was associated with 

hurricanes – 196 individuals perished from 1986-1995 and approximately 1,450 were lost 

in the past 2 years alone (NSF, 2007). Figure 1.1 shows the breakdown of costs due to 

damage by tornadoes and hurricanes compared with costs inflicted by floods and 

earthquakes (AAWE, 2004). It has been noted that the amount of loss due to hurricane is 

a large percentage of the total loss due to natural disasters. With such large amount of 

losses and social impacts, hurricane loss mitigation is still a big challenge that needs 

immediate attention.  
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Figure 1.1: Breakdown of Damage Costs (EERI report, 2003) 

 

US East Coast and Gulf Coast region are two of the most hurricane-prone areas in 

the world. Figure 1.2 provides 2011 Atlantic Hurricane Season tracks map which shows 

five hurricanes that that made landfall in this region. However, according to the United 

States Census Bureau, coastal county population has increased rapidly since 1930, 

especially from the east coast of Florida through the Gulf Coast. For example, the 

population of Harris County, Texas, has grown by nearly three times since 1960 (Pielke 

et.al, 2008). Due to the exceedingly large population growth in this region, the potential 

hurricane-induced loss and social impacts are also highly increased.  
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Figure 1.2: 2011 Atlantic Hurricane Season Track Map (Source: National Hurricane 
Center) 

Recent reports in reconnaissance of hurricane damage to physical structures 

indicate that hurricane-induced losses include a large number of damaged and destroyed 

residential buildings (FEMA, 2005; NIST, 2006). In most cases, the building envelope 

systems, including roof coverings, wall coverings, soffits, non-load bearing walls, 

exterior doors, windows, shutters, and skylights, are damaged by hurricane winds which 

allow wind-driven rain to enter building interiors and cause damages to building content 

due to water and subsequent mold growth. In order to identify failure mechanism of the 

building envelope, it is very important to conduct full-scale experiments that can advance 

our understanding of wind effects on building components. Experiments could also help 

in closely investigating the impacts of wind and wind-driven rain on the components of 

building envelopes. Significant coordinated efforts need to be undertaken to reduce 

property losses and human suffering caused by hurricanes. 
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1.2 Problem Statement 

Low-rise buildings and structures are located within the lower part of atmospheric 

boundary layer (ABL) where there is increased wind turbulence that can cause damages 

to structures. From the post-investigation of wind-induced damages, it is revealed that the 

roof and roofing system of low-rise buildings are the most vulnerable to high winds.  

Figure 1.3 shows different hurricane-induced damages to building envelopes. Exterior 

damage often leads to water intrusion and subsequent mold growth responsible for 

interior and content damages.  

      

Figure 1.3: Hurricane-induced Damage to Building Envelopes. 

However, with the progress of wind engineering, boundary layer wind tunnel 

testing technique has provided valuable information on the effects of wind on buildings. 

In addition, as a result of ongoing public and private efforts, a number of wind hazards 

mitigation measures have also been developed and put in practice in coastal areas. 

Enhanced building codes have resulted in design of buildings that are structurally 

resilient to severe windstorms. However, the poor performance of building envelope 

systems (roofs, wall claddings, etc.) still poses a significant concern during hurricanes. 
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Design guidance and additional code enhancements are needed (NIST, 2006) to improve 

the performance of building envelopes.  

Provisions on aerodynamic pressures are derived primarily from wind tunnel 

measurement on small-scale models. For low-rise buildings wind tunnel test results can 

significantly deviate from full-scale data because of: (1) the differences in the relative 

pressure-tap hole size between model and full-scale, (2) model Reynolds number effects, 

(3) differences in angular standard deviation of wind direction, (4) stability effects in the 

atmosphere, and (5) viscous dissipation in the smallest eddies of the modeled flow 

(Peterka et al., 1998). Recently, some comparisons between wind tunnel results and full-

scale measurements in natural wind show that the pressure predicted by wind tunnel tests 

can be lower by as much as half of their full-scale counterparts (Long et al., 2006; 

Richards et al., 2007). A graph from the paper by Long et al. (2006) is given as Figure 

1.4 which shows the pressure coefficient differences between wind tunnel and full-scale 

data. Figure 1.5 from Richards et al. (2007) shows that there is a reasonable agreement 

between the full-scale and wind-tunnel mean pressure coefficients, but the full-scale peak 

pressure coefficients are markedly larger than those obtained from the wind-tunnel. 

However, a better agreement is obtained if the peak pressures are normalized by using a 

peak dynamic pressure. It is also evident that area averaging is effective in reducing full-

scale peak pressure coefficients in the highest-pressure areas under the roof vortex 

(Peterka et al., 1998). 
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Figure 1.4: Graph Comparing Pressure Coefficients (Min. Cp) between Average Model 
Scale (Continuous Line) and Full Scale (Dotted Values) for Tap 10013; X-Axis: Angle of 

Attack, Y-Axis: Min. Cp (Long et al., 2006) 

 

Figure 1.5: Roof Tap 6 Mean and Peak Minimum Pressures. The Peak Minimum 
Pressures are Shown Normalized by Either (a) The Mean Dynamic Pressure at Cube 

Height for Each Run or (a) The Maximum Dynamic Pressure at Cube Height that 
Occurred During the Run. 
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The current code provisions for low buildings, based on small-scale wind tunnel 

test results, could significantly underestimate pressures on building envelopes, especially 

near roof corners, eaves and ridges. Such underestimation is consistent with damage 

initiation typically observed at critical areas – roof tiles and shingles failing at ridges and 

edges; envelope failures at soffits; and wall cladding failures at corners. 

Even though there are some full-scale tests, such as Aylesbury experiment 

building, Silsoe structures building, and Texas Tech University (TTU) building, and 

others, it is to be noted that many of the previous experiments were performed on a 

limited number of building shapes and with low resolution of pressure taps (Kopp et al., 

2005). High spatial resolution of pressure taps at critical roof regions for different roof 

pitches and wind directions (Uematsu et al., 1999) will allow the determination of 

detailed area-averaged loads without the inherent uncertainty in low spatial resolution 

pressure measurements. Even though good comparison of wind tunnel and full-scale 

point pressures and area-average pressures is found in a roof vortex region for 5:12 gable 

roof under non-hurricane winds (Peterka et al., 1998), it is still essential to study the 

effects of tropical cyclones and hurricane winds.  

For different roofing materials, including tiles and shingles, the wind-induced 

uplift mechanism, caused by the negative pressures associated with separation and 

conical vortices (Wu et al., 2001), is not the same as the uplift on the roof sheathing 

without the roofing materials (Peterka et al., 1997; Okada, 2009). In addition, current 

building codes used to designing low-rise building are mostly based on wind tunnel 

testing on scaled models which barely considered the effects of architectural shape of 

roofing materials on aerodynamic loads. Especially, the internal pressure under the 
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roofing material, which is ignored, might affect the net negative peak pressure 

significantly. Therefore, it is necessary to study the effects of roofing material on roof 

pressure distributions and peak pressure. 

Studies have been performed on fragility curves for different roof components 

and cladding (FPHLM, 2005). However, most of the wind loads for roof components are 

obtained from code provisions and effect of internal pressure under the roofing material 

has been neglected. It is necessary to study the effects of architectural features of roofing 

materials on net pressures that will influence the fragility curve or vulnerability curve.   

1.3 Goals and Objectives 

Damages from recent hurricanes have underscored the need for more research on 

wind effects on envelopes of low-rise buildings. For a better understanding of the 

building behavior under strong wind events, the current study focused on full-scale 

experimental to assess the effects of architectural shape of roofing materials and internal 

pressure on net loading. Also, effects of internal pressure on fragility curves were studied. 

The research used repeatable, controllable and programmable full scale 

experimentation using 6-fan Wall of Wind (WoW) located at Engineering Campus, 

Florida International University. Figure 1.6 shows the 6-fan WoW testing configuration. 

The objectives of this research are outlined as follows: 

1. To determine, through full-scale testing under controlled and repeatable 

hurricane level wind conditions, aerodynamic effects on three typical 

residential roof configurations. The measurements will facilitate the 

development of a consolidated database on aerodynamic pressures. 
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2. To determine the effects of architectural shapes of roofing materials on roof 

instantaneous peak pressures. 

3. To determine the effects of internal pressures under roofing materials on roof 

instantaneous peak pressures. To compare results with large-scale wind tunnel 

testing. 

4. To develop a more realistic fragility curves based on the results of wind tunnel 

and full-scale testing. 

 

Figure 1.6: 6-fan Wall of Wind Testing Facility 
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2 Literature Review  

2.1 Background 

In the past few decades, the study of wind effects on low-rise buildings have 

advanced through the combination wind tunnel testing and limited full-scale 

measurements in natural wind. However, post hurricane investigations show that low-rise 

buildings are the still the most vulnerable structures during high wind events such as 

hurricanes. Damage of building envelopes and subsequent water intrusion continue to 

raise concerns during hurricanes. The difficulty of assessing wind effects on low-rise 

buildings will be discussed in this section.   

Current building design codes are mostly based on wind tunnel testing on scaled 

and simplified model which barely consider the effects of architectural shape of roofing 

materials. Especially, in American Society of Civil Engineering Minimum Design Loads 

for Buildings and Other Structures (ASCE 7-05) for air-permeable roof cladding 

comments, it is noticed that since the air-permeable roof or wall claddings allow partial 

air pressure equalization between the exterior and interior surfaces, the pressures 

specified in ASCE 7-05 could overestimate the load on air-permeable cladding elements. 

It is necessary to conduct appropriate full-scale pressure measurements on the applicable 

cladding elements when the differential pressure acting across the air-permeable cladding 

element is needed for design purposes (ASCE 7-05). Also, it is shown that there could be 

significant difference in peak pressures between full-scale measurements and scaled 

model test results for critical locations on the building envelope (long et al., 2006, 



11 

 

Richardson, et al., 2007). Underestimation of peak pressures may lead to severe damages 

during hurricane.  

Estimation of aerodynamic effects on low buildings can be significantly affected 

due to various uncertainties. Low-rise buildings are located in the lower part of 

atmospheric boundary layer where there are significant turbulence effects that could 

affect the wind loading (Holmes, 2001). Also, wind-structure interaction is highly 

affected by the geometry of various local components.  

Figure 2.1 shows that the wind flow around a simple square building forms very 

complex wind flow patterns. The complexity increases if the building shape is irregular 

or if local components (roofing materials, wall claddings, roof top equipment, etc.) are 

interacting with the flow. Therefore, it is necessary to improve the understanding of the 

interaction of wind flow and building envelopes through full-scale testing to complement 

wind tunnel testing. Such knowledge will be critical for the development of mitigation 

guidelines and improvement of current building codes to make structures more 

sustainable and resilient and reduce property damage during hurricane. 

 

(a) Aerial view of flow streamline patterns 



12 

 

 

(b) Centerline flow streamline patterns 

Figure 2.1: Wind Flow Streamline Patterns around a Simple Low-Rise Building (Woo et 
al. 1977, Hunt et al. 1978). 

2.2 Full-scale testing 

A variety of experimental methods for research and development are available to 

determine wind effects and loadings on structures. These include wind-tunnel testing of 

small-scale models, full-scale field testing in the natural environment, and testing of 

components and structures under simulated wind forces. To date, the experimental focus 

in wind engineering has been on the use of wind tunnels, mostly boundary-layer wind 

tunnels. Wind tunnel facilities have provided a wealth of data on the nature of wind loads 

for a wide range of structures. Effective studies of wind effects on full-scale buildings 

have been limited (Levitan and Mehta, 1992). Frequently, instrumentation, power sources, 

and recording devices fail in severe windstorms, leaving large uncertainties on the 

response. Nevertheless, field studies based on measurements conducted, e.g., in 

Gaithersburg (Marshall, 1977), Aylesbury (Eaton and Mayne, 1975), Silsoe (Richardson 

et al., 1997), and Texas Tech building (e.g., Long et al., 2006), have provided valuable 

findings and data, and contributed to the validation or otherwise of certain wind tunnel 

techniques. One conclusion of such studies is that Reynolds number effects cause peak 



13 

 

pressures on low-rise buildings to be inadequately simulated in the wind tunnel. Some 

useful wind load data have been collected on roofs of residential homes during hurricanes 

through the Florida Coastal Monitoring Program (FCMP) 

(http://users.ce.ufl.edu/~fcmp/overview/house.htm). 

Wind engineering research is currently undergoing dramatic changes with new 

large- and full-scale testing facilities being built worldwide to address windstorm induced 

economic losses. Some of these facilities are: “Three Little Pigs” (Kopp et al., 2010) and 

the Wind Engineering, Energy and Environment (WindEEE) Dome (Natarajan and 

Hangan, 2010) at the University of Western Ontario, wind generator at the University of 

Florida (Mensaha et al. 2011), the new multi-peril facility of the Institute of Business and 

Home Safety (IBHS) (Liu et al. 2011), and the Wall of Wind at the Florida International 

University (FIU). Some of the full-scale testing facilities are described in more details in 

the following sub-sections. 

2.2.1 Aylesbury Experimental Building 

To improve the pressure data used for designing low-rise building and to validate 

wind-tunnel testing procedure for low-rise buildings, the Aylesbury experimental 

building with adjustable gable roof pitches from 5o to 45o was constructed in England in 

the early 1970s (Sill et al., 1992). The building dimension is mmm 53.137 ××  ( hLB ×× ). 

Totally seventy-two differential pressure transducers were installed on four walls and the 

roof. Figure 2.2 shows the Aylesbury experimental building and its instrumented pressure 

transducers location. Experimental results from the Aylesbury site indicated that the 

highly fluctuating nature of the wind pressures could lead to the high-pressure peaks in 

http://users.ce.ufl.edu/~fcmp/overview/house.htm�
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separated flow regions near the roof eaves and ridge, and near the wall corners (Holmes, 

2001).  

 

 

Figure 2.2: Aylesbury Experimental Building and Pressure Transducer Locations 

(Sill et al, 1989, Holmes, 2001) 
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In addition, comparative wind tunnel experiments were undertaken at seventeen 

laboratories worldwide using the 1:100 identical model of this building. After various 

testing techniques were used to simulate the upwind flow, two conclusions were made 

from the comparison between full-scale and wind-tunnel data: 1. the similarity 

parameter—Jensen number—was not sufficient to ensure the similarity when meeting 

significant isolated local roughness; 2. the variation in pressure coefficient for different 

laboratories was attributed to the difference in the method of data acquisition and the 

reference static and dynamic pressures (Sill et al, 1989, 1992). Holmes (1982) indicated 

that the turbulence intensity is an “important parameter to be scaled correctly in the wind 

tunnel test,” while the longitudinal integral scale similarity “does not seem to be a 

parameter of the greatest importance.” 

2.2.2 Silsoe Structure Building 

The Silsoe Structure Building (SSB), with dimensions of 24m long by 12.9m 

wide by 5.3m ridge height, and roof pitch o10=β , was constructed in the 1980s and 

located on a flat, exposed, open-country site at Silsoe Research Institute (SRI), England. 

Two different eaves cladding details were tested, including curved and sharp eaves. Two 

different full-scale pressure measurements setup were made on the SSB. One was with 

seventy-seven pressure transducers installed on the building and measurements only 

sampled two pressures at one time. The other was instrumented with thirty-two pressure 

sensors and simultaneous measurements could be made (Richardson et al. 1997). In 

addition, twelve strain gauges were also installed along the building’s centerline 

(Richardson and Surry, 1992). Comparing pressure results between the curved and sharp 
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eaves, it was concluded that the eave configuration could significantly affect the pressure 

distribution on the roof. These full-scale measurements can also be used for validating 

wind tunnel experiments and numerical simulations as a benchmark data. 

The wind-tunnel studies of Silsoe Structure Building were performed at Building 

Research Establishment (BRE) and University of Western Ontario (UWO). The 

comparison of full-scale and wind-tunnel measurements indicated that good agreement 

was obtained for mean pressure coefficients. However, the wind tunnel results from BRE 

underestimated the peak negative pressure while the results from UWO on peak negative 

pressures were overestimated.  

In addition, a 6 m cube was also built in SRI. Surface pressure measurements 

were performed at the centerline across the building with additional tapping points on the 

roof. Simultaneous building surface pressure and wind dynamic pressure were measured. 

The results were compared to published wind tunnel data. There was a general agreement 

for the windward wall pressures but the roof and leeward wall pressures were 

underestimated by the wind tunnel testing and such deviation was attribute to Reynolds 

number sensitivity and/or relative roughness effects (Richards et al. 2001). Figure 2.3 

shows the Silsoe Structure Buildings. 
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Figure 2.3: Silsoe Structure Buildings 

Comparative experiments were also conducted in fifteen different European 

institutions. It was recommended that the turbulence-independent normalizing parameter 

should be used to the spectral comparison and the limited low-frequency because of the 

size of wind tunnel could affect the turbulence intensities leading to lower peak pressures. 

But a reasonable agreement could be obtained by referring the peak pressure to maximum 

dynamic pressure observed during the run.  

2.2.3 Texas Tech University Wind Engineering Research Field Laboratory  

In order to obtain reliable data and improve the technique of wind-tunnel 

simulation, the Texas Tech University (TTU) experimental building, with 9.1m wide by 

13.7m long and 4m eave height, was constructed on an open field at TTU. This 

experimental building could be controlled by a rigid frame undercarriage and the angle of 

attack could be adjusted according to the natural wind direction. The field facility also 

includes a m49 tall meteorological tower which measures the wind speed at different 

heights on the building site (Levitan, 1992). Figure 2.4 shows the TTU Wind Engineering 

Research Field Laboratory Building. 
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Figure 2.4: TTU Wind Engineering Research Field Laboratory Building 

The comparison of wind-tunnel results with full-scale measurements indicated 

that most of the mean pressure coefficients were in good agreement but the peak and 

root-mean-square pressure coefficients were different than those obtained from wind 

tunnel results. However, Cheung (1997) showed that a better matching of peak negative 

pressure coefficients may be obtained with larger model scales.   

2.2.4 Jan Smuts Experiment 

Milford et al. (1992a) conducted a full-scale experiment on a portion of a large 

aircraft hangar at Jan Smuts Airport. In total, fifty differential pressure transducers were 

instrumented at one corner of the hangar. Wind-tunnel tests were also undertaken at the 

Division of Building Technology, Council for Scientific and Industrial Research (CSIR), 

for different wind angles of attack. Through the comparison of full-scale and wind-tunnel 

measurements, it was concluded that the mean and the root-mean-square pressure 

coefficients matched in general, but the agreement of peak pressure coefficients were less 

satisfactory. In some cases, a noticeable shift between full-scale and wind-tunnel mean 
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pressure coefficients was observed (Milford et al., 1992b). Figure 2.5 shows the view and 

geometry of the hangar from Jan Smuts Airport. 

 

 

 

Figure 2.5: Jan Smuts Airport View and Geometry of Hangar: a. Jan Smuts Airport 
Hanger Front View; a. Geometry and Instrumented Area View Of Hanger (Milford et al., 

1992a) 

2.2.5 C-130 Aircraft 

Zhu (2006) conducted controlled full-scale experiments on two low-rise 

residential buildings under the simulated wind flows generated by the propellers of a C-

130 aircraft. Figure 2.6 shows the C-130 aircraft testing setup. The wind speed 

anemometers were installed on the building roofs. Two wind-tunnel tests were conducted 

at the TTU boundary layer wind-tunnel. Some differences between C-130 simulation 

wind flows and boundary layer wind-tunnel simulation flows was observed regarding 

a 

b 



20 

 

turbulence intensity and roughness length. Through the comparison to ASCE7-02, it was 

concluded that ASCE7-02 provided an upper limit to current results, but a few exceptions 

were observed on the roof leading edge. The influence of reference pressure 

measurements in the full-scale tests was considered, and the correction of its influence 

was performed. It was demonstrated that the influence of buildings could be ignored 

when wind speed anemometer was located on the side of building models. 

 

Figure 2.6: C-130 Aircraft Testing Setup (Zhu, 2006) 

2.2.6 “Three Little Pig” Testing Facility 

The Insurance Research Lab for Better Homes, also named “Three Little Pigs”, 

with approximately mm 2250 × in plan and m12 high, is a test facility for subjecting a full-

scale specimen house to simulated extreme environmental loading due to wind, snow, 

and rain. The facility will permit the application of realistically simulated time and 

spatially varying wind loads to full-scale houses, in a controlled manner, up to failure. 

While under simulated loads, the specimen itself will be instrumented to capture forces in 

essential components and global and local deformations. Under simulated wind and rain, 

the specimen will be instrumented to capture the external and internal pressures, rain 
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characteristics and moisture penetration data, the growth and airborne propagation of 

mold. Research results will be implemented by: “1. modifying building codes to advance 

safer, yet less expensive houses; 2. working with the insurance industry and government 

to develop implementation strategies; 3. developing cost-effective mitigation devices for 

retrofitting the existing housing stock; and 4. developing quality-control strategies to 

minimize human error in construction” (Surry et al., 2005). Figure 2.7 shows the “Three 

Little Pigs”. 

Some testing results are reported by Kopp et al. (2010). The pressure load 

actuators (PLA) with airbags were used to apply the wind pressure load obtained from 

wind tunnel testing to the testing structure. The test results indicated good performance of 

the loading system and also were used to integrate with the computational models 

accounting for the variability in construction and in materials. However, since the PLA 

can only simulate the wind pressure field but not the flow field, for some building 

components, such as roofing materials, there are some limitations.   

 

Figure 2.7: The “Three Little Pigs” 
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2.2.7 Wall of Wind at Florida International University 

A new full-scale testing apparatus, namely the Wall of Wind (WoW), was 

constructed at the Engineering Campus, Florida International University (FIU) in 2007. 

The WoW facility is a part of the Laboratory for Wind Engineering Research (LWER) 

under the International Hurricane Research Center (IHRC) at FIU. The WoW has the 

capability of testing full and large-scale low-rise building models of site-built or 

manufactured housing and small commercial structures under a controllable, 

programmable, and repeatable hurricane environment. The 6-fan WoW system as shown 

in Figure 2.8 can generate wind speeds up to 125.5 mph (Blessing et al., 2009). The 

WoW can simulate controlled hurricane level winds with the wind-driven rain 

simultaneously that acts on a test building. This capability provides researchers a better 

understanding of wind-structure interaction and vulnerability of building envelope 

components under the action of wind and wind-driven rain. More details on the WoW are 

presented in Chapter 3.  

 

Figure 2.8: 6-fan Wall of Wind with a Testing Specimen 

2.3 Effects of Roofing Materials on Roof Wind Loading 



23 

 

Based on the building performance observed during the 2004-05 hurricanes, the 

most vulnerable building envelope component that, in most cases, continues to perform 

poorly is roofing material. The performance of roofing materials in hurricanes continues 

to raise concerns – roof tiles (clay and concrete) and roof shingles damage was 

predominant, especially at several ‘hot spots’, such as the ridge, corner and edge regions. 

While some of the weaker hurricanes of recent years (e.g., Wilma in 2005) caused little 

or no structural damage, they have all significantly affected roof tiles (MDC-BCCO 

2006).  

Current building codes used for designing low-rise buildings provide 

aerodynamic coefficients based on wind tunnel testing using simple building models 

which barely consider the finer geometric details of roofing materials (tiles and shingles). 

It is hypothesized that roofing materials, such as tiles and shingles, might significantly 

influence the roof pressure distribution and local flow patterns through their architectural 

features. Therefore, it is necessary to determine the effects of geometric details of roofing 

materials on low-rise building roof peak pressures. 

2.3.1 Roof Tiles 

Hazelwood (1981) studied the wind forces on roof tiles laid over a low-

permeability underlay by conducting wind tunnel testing. It was indicated that two 

principal mechanisms should be taken into account in the analysis -- the force due to the 

airflow over the roof tile surface and the force due to the internal flow between the tile 

and underlayment. In addition, it was also suggested that the details of tiles and overall 

roof shape could affect the forces. The application of these two forces in the British 
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Standards BS5534 was also studied by Hazelwood (1980). Kramer and Gerhardt (1983), 

Amano et al. (1988), and Gerhardt et al. (1990) also studied the characteristics of wind 

pressure on the loose-laid roof tiles through wind tunnel tests.  

Kawair and Nishimura (2003) took field measurements on both external and 

internal pressures to investigate instantaneous uplift force on hip roof tiles in natural wind. 

It is found out that the internal pressure in the leeward roof could balance the external 

peak suction pressures. For windward roofs, two cases, with or without sealing the eave, 

were studied. It was concluded that the peak uplift pressure from sealed case was smaller 

than the case without the seal. Robertson et al. (2007) studied the load distribution 

between tiles and underlays through selected external and internal pressure measurements 

at tiled gable roof under natural wind. Such load distribution was also dependent on the 

internal pressure. Huang et al. (2009) performed full-scale tile external pressure 

measurements on monoslope roof with 4:12 slope at two-fan WoW to assess the roof tile 

performance and identify the failure mode of roof tile under hurricane conditions. Five 

different tile configurations were tested. It was demonstrated that the roof tile 

architectural shape could significantly influence the external pressure distributions. Also, 

the workmanship was the major factor for roof tile performance. Comparative wind 

tunnel data on roof tiles were fed into computational fluid dynamic model to evaluate the 

wind load on entire roof system (Huang et al., 2009). It was found that the staggered 

setting of concrete tiles could significantly increase the resistance to hurricane. Okada 

(2009) studied the lift displacement of tile, which is the wind-induced tile dislocation 

with respect to the original tile position, as a criterion for evaluating the wind 

performance of tiled roof. However, studies focusing on the effects of roof tiles on roof 
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peak pressure through the comparison of results obtained from testing building models 

using bare and tiled roof decks are still limited.  

Tecle (2012) investigated the aerodynamic performance of three types of roof 

tiles (both ridge and field tiles) focusing on the tiles’ underside pressure; and performed 

computational evaluation of internal pressure for low-rise buildings using CFD 

simulations and compared the results with experimental data to assess their suitability for 

such applications. He found that the contribution of internal pressure underneath the roof 

tile was observed to be significant wherein which it dampens the net suction pressure 

unless the underneath openings were exposed to different pressure compared to the main 

external pressure on the tiles. In addition, the surface geometry of an individual tile was 

observed to have a significant impact on both the external pressure on the roof surface as 

well as the internal pressure underneath the tiles and the geometry of the roof could also 

affect tiles’ underside pressure.  

2.3.2 Pavers and Asphalt Shingles Roofing  

Bienkiewicz and Sun (1997) studied the effects of space between and beneath 

pavers on the wind resistance of the air-permeable systems. It was concluded that the 

space between pavers improves the wind resistance of the loss-laid roofing paver system 

and the higher the ratio of space-between to space-underneath pavers and the larger the 

pavers, the higher the wind resistance of the system. Peterka et al (1997) and Jones et al 

(1999) studied a quantitative wind uplift model for asphalt shingles. Figure 2.9 shows the 

uplift mechanism of asphalt roof shingle. This uplift mechanism was investigated using 

both wind tunnel and full scale testing. In wind tunnel testing, the pressure taps were 
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installed in upper and lower surfaces of several asphalt shingles. The quasi-steady 

pressure approximation method was used. It was suggested that the shingle uplift 

pressures from full scale measurements were in general agreement with the wind tunnel 

measured uplift forces.  

 

Figure 2.9: Local Wind Flow over Shingles Showing Uplift Mechanism (Peterka et al. 
1997) 

Marshall et al. (2010) reviewed the wind uplift models and its mechanism and 

discussed several factors that could affect the uplift resistance of asphalt shingles, 

including the type of shingle, design and workmanship, etc. Additionally, Cobin (2000) 

studied a new method to measuring the wind resistance of asphalt roof shingles, named 

“Local Model”, by conducting wind-tunnel and full-scale testing.  

2.4 Fragility Curve 

Fragility curve or vulnerability curve is used to measure the ability of certain 

components/structures to resist the wind-induced load. Fragility curve shows a certain 

damage level of probability at given wind speed. Vulnerability curve shows the mean 

damage level corresponding to different wind speed. 
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Many researchers have done valuable studies on vulnerability/fragility of light-

frame buildings’ components. Shinozuka et al. (2000) performed statistical analysis of 

structure fragility curves by considering both empirical and analytical methods for 

earthquake motions. In addition, the methods of testing the goodness of fit of the fragility 

curves were also presented. Rosowsky and Ellingwood (2002, 2004) used an analytical 

method for fragility analysis of wood frame housing exposed to various levels of natural 

and man-made hazards. Pinelli et al. (2004) suggested a hurricane damage prediction 

model for residential structures by using Monte Carlo simulation method and illustrated 

its application for a specific building type with hypothetical probability input. Li and 

Ellingwood (2006) developed a fully coupled reliability analysis method that integrates 

the structural fragility models with hurricane wind hazard models. The structure 

resistances, including few sets of root-to-wall connections, roof panel and glass, were 

determined by laboratory tests in this study. Henderson and Ginger (2007) presented 

vulnerability model of an Australian high-set house subjected to cyclonic wind loading. 

This study focused on the load transfer paths through connections from the roofing 

cladding fixings to the sub-floor bracing and demonstrated the use of probabilistic 

method for estimating percentage of cyclone wind induced high-set houses damages and 

related failure modes. Dao and Van de Lindt (2010) studied a combined methodology, 

including nonlinear structural analysis, computational fluid dynamics, reliability theory 

and particle dynamics, to develop fragility curves and fragility surfaces for the volume of 

rainwater intrusion and demonstrated on an example structure. 

Researchers working on the Florida Public Hurricane Loss Model (FPHLM) 

(FPHLM, Eng. Report Volume II, 2005) systematically and comprehensively studied the 
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residential buildings’ vulnerability in Florida (Pinelli et al., 2004, 2008, 2009 and 2010, 

Pita et al., 2009). A detailed survey was performed on residential building characteristics 

for manufactured and site-built homes from nine counties in Florida. The wind load was 

from selected modification of ASCE 7-98 based on engineering judgment. For 

determining fragility curves for roof covering only external pressure was considered and 

effects of internal pressure was neglected. However, it is hypothesized that the fragility 

curves for roof covering will be affected by the net pressures acting on the roof elements. 

Capacities of building components were selected from available literature and 

manufacturers’ data. The fragility curves for different damage levels were presented and 

validated by the application of national Association of Home Builders Research Center 

(NAHB) (1993) assessment of Hurricane Andrew damage data. Figure 2.10 shows the 

detailed structural damage simulation engine flowchart.  

 

Figure 2.10: Structural Damage Simulation Engine Flowchart 

(FPHLM, Engineering Team Final Report, Volume II, 2005) 
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3 Experiment Testing Apparatus and Setup 

This research is used to determine hurricane wind induced pressures on three 

typical residential building configurations for various wind directions through full-scale 

testing (6-fan Wall of Wind) under controllable and repeatable environment. The effects 

of architectural features of roofing materials, such as asphalt shingle and tile, on roof 

pressure distribution and local flow pattern were studied in detail. The internal pressures 

under the tile cavity or between the layers of shingle were carefully measured to 

understand their effects on roof net peak pressure. The related experiment setup is 

presented in this chapter. 

3.1 Background 

Due to the limitation of investigating the effects of roof components on roof 

pressures, such as roofing materials and roof top equipment, in wind tunnel and in order 

to better understand the wind-structure interaction during hurricane, the International 

Hurricane Research Center (IHRC) at Florida International University (FIU) has 

developed a open jet testing facility, namely Wall of Wind, for large- and full-scale 

testing. Figure 3.1 shows the Wall of Wind with test specimen. The Wall of Wind is 

capable of simulating the atmospheric boundary layer wind characteristics and 

performing full-scale testing with real roof components under different wind speed level 

with and without wind-driven rain (Gan Chowdhury et al. 2009 and Bitsuamlak et al. 

2009).  
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Figure 3.1: Full- or Large- Scale Testing Facility – Wall of Wind 

This full scale research is envisioned to address two high priority investment 

categories for hurricane research as suggested by the National Science Board (NSB), 

namely, ‘Impacts and interactions’ and ‘Preparedness and Building Resiliency,’ (NSB, 

2007). The WoW facility at FIU has made a significant impact on hurricane mitigation 

through extensive research, education and outreach activities conducted by the wind 

engineering team of FIU International Hurricane Research Center and Dept. of Civil and 

Environmental Engineering. The development of the WoW has been completed in stages, 

an incremental strategy that has enabled FIU researchers to gain experience in the 

development, testing, and operation of the facility, and helped reduce unnecessary 

expenses.  

The first phase includes airboat propellers and two marine-grade Chevrolet 496 

fuel injected engines generating a flow field measuring 4.88m high by 2.44m wide. This 

testing system was used to investigate the WoW approach of full scale testing and 

develop an active control system for future WoW expansion.  

The second phase of WoW includes six fans powered by gasoline engines and is 

capable of generating 125 mph wind speeds in the original configuration (Blessing et al., 

2009). The dimension of flow field is 4.88m high by 7.32m wide. To obtain realistic 
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aerodynamic wind flow characteristics, including atmospheric boundary layer, wind 

speed, turbulence intensity, integral length scale and wind spectra, the 6-fan WoW was 

modified by adding active and passive control devices. The detailed preliminary and 

modified 6-fan are shown at Figure 3.2.  

 

a. Preliminary 6-fan WoW 

 

b. Modified 6-fan WoW 

Figure 3.2: Preliminary and Modified 6-fan WoW 

The final phase of WoW comprises of twelve electric fan-motor units controlled 

by two variable frequency drives (VFDs). The 12-fan WoW is designed to generate 
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sustained wind speed up to 63 m/s (140 mph) (Category 4 wind speed being 59-69 m/s 

[131-155 mph]). Construction of the 12-fan WoW is completed and the commissioning is 

planned to be concluded by the beginning of year 2012. The initial testing including the 

wind flow characteristic generation and wind pressure validation were conducted using a 

1:15 scale model of the 12-fan WoW (Aly et al., 2010, Fu et al., 2011).  Figure 3.3 shows 

the full-scale 12-fan WoW. 

 

Figure 3.3: Full-scale 12-fan WoW 

3.2 6-fan WoW Testing Facility  

The current research was conducted using the 6-fan WoW testing apparatus. The 

6-fan system was funded by Federal and State agencies and private industry, and 

constructed at FIU Engineering Campus in 2007. Six big block carbureted Chevrolet 502 

fuel engines were combined into a two by three array as shown in Figure 3.2. A pair of 

counter rotating propellers, powered by each engine, was used to reduce the amount of 

propeller generated swirl in the flow and the overall propeller torque on the engine. The 

preliminary configuration included a “diffuser section” for channeling the wind flow into 

a square section to help combine the flow generated by each fan. Each engine had the 
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capability of changing the wind speed by changing each engine’s revolutions per minutes 

(rpm) which could be controlled by predefined waveforms. The maximum sustained wind 

speed is approximately 56.1 m/s with all engines running at 4500 rpm. The wind 

characteristics from initial configuration were measured and analyzed (Huang et al., 

2009c). Table 3.1 shows the detailed comparison of wind characteristics for the 6-fan 

WoW (preliminary configuration) generated wind and those obtained for tropical 

cyclones through the Florida Costal Monitoring Program (FCMP) (Yu et al., 2008).  

Table 3.1: Wind Characteristics Comparison between Preliminary Wow at 4000 rpm and 
FCMP (Huang et al., 2009) 

 

To obtain reliable aerodynamic testing results at the WoW facility, it is very 

important to replicate realistic wind characteristics such as those obtained from 

measurements during tropical cyclones. The detailed target wind flow generation at 

WoW was presented by Huang et al. (2009c). The 1:8 small scale model of 6-fan WoW 

was first constructed to help replicate the target wind characteristics by using the active 

and passive control methodologies. The passive controls included a contraction, an outer 

frame, inclined horizontal plates, and raised height of the WoW. The active control of the 

fan rpm was achieved by inputting a quasi-periodic waveform based on real tropical 

cyclone data obtained from FCMP. The resulted wind characteristics are presented in 

detail in Table 3.2. The suburban atmospheric boundary layer wind profile and quasi-
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periodic waveform (W4 – using superposition of three sinusoidal signals) was used in 

this research. 

The 6-fan WoW was able to generate wind-driven rain which could be used to 

simulate real hurricanes accompanied by heavy rain. A steel frame was mounted to the 

WoW outer frame. Spray nozzles and high pressure hosing were installed on the steel 

frame. Water for this injection system was pumped from the water tanks. This whole 

testing system could combine the hurricane level wind with wind-driven rain acting 

simultaneously on test buildings under controlled conditions. The detailed wind-driven 

rain system is described by Bitsuamlak et al. (Bitsuamlak et al., 2009). Figure 3.4 shows 

the wind-driven rain simulation at 6-fan WoW. 

       Table 3.2: Comparison of Wind Characteristics of Modified 6-Fan Wow (Huang et 
al., 2009) 
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Figure 3.4: Wind-Driven Rain Simulation at 6-Fan Wow 

3.3 6-Fan WoW Pressure Field Validation 

In order to ascertain that the open jet WoW tests generate realistic aerodynamic 

pressure distribution on roof models, in addition to simulating the requisite wind 

characteristics, pressure measurement validation for bare decks was necessary before 

performing the study on wind effects on tiled roofs. For this purpose, in addition to the 

5:12 gable roof model (mentioned earlier), a low-slope (1:12) full-scale gable roof model 

was also built. The two gable models with bare roof decks were tested under wind 

parameters as described in Section 3.2 and pressure data were measured. Next, two small 

scale (1:20) gable roof models (with 1:12 and 5:12 slopes) were built replicating the two 

bare deck roof models tested at WoW. These small-scale models were tested in a 2.43m 

by 1.98m Rowan Williams Davies and Irwin Inc.’s (RWDI) atmospheric boundary layer 

wind tunnel (Miramar, Florida) under similar flow conditions as used in the WoW 

testing. In wind tunnel, the mean wind speed profile had a power-law coefficient value 𝛼� 

= 1/4.0. The longitudinal turbulence intensity was 22.3% at an equivalent full scale height 

of 3 m. Seven different wind angles of attack (0°, 15°, 30°, 45°, 60°, 75° and 90°) were 
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tested for each of the bare deck model in the wind tunnel and the results were compared 

with those for the corresponding full-scale model tested in the WoW. The area-averaged 

peak pressures (selected locations to facilitate the comparison, see Fig. 3.5) were 

obtained by probabilistic analysis (Sadek and Simiu 2002) of the pressure data obtained 

by instantaneous spatial averaging of the measured point pressure time histories for the 

relevant taps. A reasonable agreement between the wind tunnel and WoW test results for 

the bare deck roof models was achieved. For brevity, results for 45° wind angle of attack 

are shown in Fig. 3.6a and b for the 1:12 and 5:12 slope models, respectively. 

 

Figure 3.5: Selected Locations to Facilitate the Area-Averaged Pressure Comparison 

  

Figure 3.6: Comparison of Area-Averaged Pressure Coefficients from Wind Tunnel and 
Wow for 45o: (a) Gable Roof with 1:12 Slope; (b) Gable Roof with 5:12 Slope 

a b 
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3.4 WoW instrumentations and data acquisition system 

The Setra model 265 bidirectional transducers were used to measure both positive 

and negative wind pressures on roof and walls of test buildings. The Setra transducers 

have a full-scale range of ±0.90 psi. Each transducer has two ports: one is the reference 

port for ambient pressure and the other is connected to the testing structure to measure 

the fluctuating pressure on model surfaces. The reference pressure measurement was 

taken from a pit at about 15m away from the testing building. The manifold was 

connected to the pit and distributed the reference pressure through 6m long silicon tube, 

functioning as restrictor tubing, to each pressure transducer. Detailed reference pressure 

and dynamic pressure port connection setups are presented by Blessing (2007) and Huang 

et al. (2009a).  

Each pressure transducer was calibrated using hand-held Omega PCL-1B with 

module PCL-MA-50BWC. Calibration curves were obtained through fitting the pressure 

data versus voltage data. Using the curves, the Data Acquisition (DAQ) system converted 

the voltage signal into pressure signal for each transducer.  

The data acquisition system using Compact RIO (cRIO) (see Figure 3.7) was 

installed inside the testing building. The design and construction of the DAQ system was 

based on the National Instruments (NI) Compact RIO platform (see Figure 3.8). A cRIO 

system with eight 32-channel voltage input modules were provided. Totally, two hundred 

fifty six channels in the cRIO could be used to measure pressures simultaneously. An 

Ethernet cable was connected from the cRIO to the desktop inside the control room. The 

DAQ software in the desktop was used to collect and save all the data measured at each 



38 

 

transducer. All of the LabVIEW-based control and DAQ software were developed by 

PrimeTest Automation, Inc.   

All the pressure data were sampled at 100 Hz and filtered at 20 Hz using low-pass 

filter. Before each test, to ascertain the reliability of the pressure data, the troubleshooting 

procedure is performed, including (i) checking the connector, the reference and active 

tubes connected to the right port, (ii) data quality check to minimize the natural wind 

effects, and (iii) minimizing noise issues. 

 

Figure 3.7: Data Acquisition System 

 

Figure 3.8: NI cRIO DAQ Platform 

3.5 Test specimens 

The open jet full- and large-scale testing facility, like WoW, is a new wind testing 

technology. To obtain reasonable and realistic pressure measurements, such testing 
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technology still has some challenges need to be addressed, such as the blockage effects. 

Bitsuamlak et al. (2010) used computational fluid dynamics (CFD) and Aly et al. (2011) 

performed physical experiments to evaluate the blockage effects for open jet facilities. 

The results indicated the capability of open jet tests to reproduce reasonable roof 

pressures for low buildings under relatively high blockage ratios, approximately 15%, 

compared to those for wind tunnels (Aly et al. 2011). Based on the wind field generated 

by 6-fan WoW and consider the blockage effects, the testing building base with 2.74m 

long by 2.13m wide by 2.13m height and four different interchangeable roofs with 0.46m 

wide overhang were built at Engineering Campus, FIU. The four roofs, including a 

monoslope roof with 4:12 slope, a gable roof with 5:12 slope and two hip roofs with 3:12 

and 5:12 slopes, were considered based on four different roof slope ranges specified in 

ASCE 7-05 (Figure 6-11). Especially, the 5:12 gable roof is considered to be the most 

representative roof slope for the population of site-built homes in Florida (FPHLM, 

Volume II, 2005). Two windows, each 0.53m long by 0.43m wide, were symmetrically 

placed on either side of the door with the dimension of 1.65m high by 0.75m wide. The 

windows were used to simulate a partially enclosed building condition (ASCE7-05 2006) 

as will be discussed later. For each test, the model building was fixed to the ground by 

connecting it to ground-secured angle through four guide steel wires. An uplift jack was 

used to rotate the model building for testing at different angles of attack.  

In order to study the effects of overhang dimension on roof pressure distributions, 

an extra wall was designed for adding to the original building which changed the soffit 

dimension from 0.457m to 0.152m, (thus covering two typical overhang dimensions). 
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Figures 3.9 and 3.10 show the original and modified test structure (in front of the 6-fan 

WoW), respectively. 

 

 

Figure 3.9: Original Testing Structure with the 6-Fan WoW 

 

 

Figure 3.10: Modified Testing Structure with the 6-fan WoW 

All the roof configurations were tested for bare roof deck with plywood sheathing 

only (referred as bare deck case) and tiled roof deck installed with Santafe Spanish “S” 

clay roof tiles (Notice of Acceptance (NOA) # 07-0626.03) using foam adhesive set over 

asphalt based underlayment over plywood sheathing (referred as tiled deck case). Two of 

the four roof configurations (monoslope roof with 4:12 slope and hip roof with 3:12 
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slope) were also tested for shingled roof deck installed with asphalt shingles (referred as 

shingled deck case). The installation of clay tiles was performed as regulated by Section 

1507.3 and 1518.8 of the Florida Building Code (FBC 2007), and the installation of 

asphalt shingle was regulated by section 1507.2 and 1518.7 of the Florida Building Code 

(FBC 2007). They should comply with the recommendation by the Florida Roofing, 

Sheet Metal and Air Conditioning Contractors Association (FRSA) and the Tile Roofing 

Institute (TRI). In addition, Miami-Dade County further requires that all building 

products and components being considered for installation within its jurisdiction must be 

approved by the county’s Product Control Division (FBC, 2007, Section 1515). 

Moreover, Product Approvals and FBC (2007) do not require mechanical fasteners for 

roofing materials when the roof slope is less than 6:12. Figures 3.11 - 3.13 show an 

example of bare, tiled and shingled roof decks for hip roof with 3:12 slope. 

 

Figure 3.11: Bare Roof Deck 
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Figure 3.12: Tiled Roof Deck 

 

Figure 3.13: Shingled Roof Deck 

In addition, the overall background leakage of the particular test specimen was 

also estimated using American Society for Testing and Materials "Standard Test Method 

for Determining Air Leakage Rate by Fan Pressurization" testing protocol (ASTM E 779 

– 03, 2007). The ACH50 (air changes per hour leakage when the house is depressurized or 

pressurized to 50 Pascal with respect to outdoors) value for the test specimen was about 

14.3. Thus the testing model was leakier compared to average single family residential 

homes in Florida (~5.2 ACH50) (Swami et al. 2006) 
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3.6 Pressure tap layout 

The pressure tap layout configuration for each type of roof (monoslope or hip or 

gable) followed the same pattern on the horizontal projection of the roof for bare, 

shingled, and tiled roof decks to facilitate one to one comparisons of area-averaged 

pressures. The bare, tiled, and shingled roof decks were instrumented at nine locations. 

Each location had twelve external pressure taps and at least one internal tap which 

measured differential pressures using Setra model 265 low differential pressure analog 

transducers. The nine locations and the external pressure taps are shown in Figures 3.14 - 

3.16. The nine locations were selected based on representative ‘hot spots’ on the roof – 

areas considered to experience high peak suctions due to flow separation and vortex 

generation (such as near the corners, eaves, and ridges of the roofs). All four roofs were 

tested with bare and tiled roof deck. In addition, two roofs were tested with shingled roof 

deck, including a monoslope roof (4:12 slope) and a hip roof (3:12 slope) 

 

Figure 3.14: 4:12 Monoslope Roof Pressure Tap Layout 

α  

Wind 0 degree 
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Figure 3.15: 5:12 Gable Roof Pressure Tap Layout 

 

Figure 3.16: 3:12 and 5:12 Hip Roofs Pressure Tap Layout 

Internal pressures were studied in detail for their contribution to the roof area-

averaged net peak pressures. Three kinds of internal pressure taps were used for tiled roof 

deck. The first is the pressure tap, located under the tile batten space, and applied to all 

the tiles; the second is located at the tile joint overlaps, and applied to the tiles located in 

the middle of the roof; the third is the external tap placed at the birdstep sheeting but 

treated as internal tap, and applied to the tiles at the roof edge by considering the same 

mechanism of the high correlation between soffit and wall pressures (Vickery, 2008). The 

detailed third internal tap location is shown in Figure 3.17.   

  

 

Wind 0 degree 

 

Wind 0 degree 
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Figure 3.17: Internal Pressure Tap Located at the Birdstep 

For shingled roof deck, the internal pressures between the layers of shingle were 

studied. All the internal taps were installed at the region cantilevered downslope from the 

sealant of the asphalt shingle. For 3:12 hip roof, each location was instrumented with 

three internal pressure taps. However, for 4:12 monoslope roof, only locations 1, 2, 5, and 

7 were instrumented internal taps. Figure 3.18 shows the external and internal pressure 

taps of location 1 from 3:12 hip roof. 

 

Figure 3.18: An Example of the External and Internal Tap Locations for Shingled Roof 
Deck 
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In addition, to study pressure equalization between the internal pressure under the 

tile’s cavity (or between the layers of shingles) and the internal pressure inside the 

building, two pressure transducers were installed inside the building to measure the 

internal pressure for two scenarios: enclosed and partially enclosed building. 

3.7 Testing protocol 

To obtain reasonable pressure measurement on low-rise building, optimizing the 

distance of the test model from the contraction exit where the flow becomes open to 

atmosphere is another challenge inherent in open-jet facilities in addition to the blockage 

effects. Extensive computational fluid dynamics (CFD) simulations for open jet facilities 

was also used to assessing the effect of distance to the pressure measurements and 

concluded that the distance of the test building model from open jet contraction exit 

should be approximately equal to the wind field height at the exit (Bitsuamlak et al. 

2010). The windward wall pressure could be exaggerated due to block effects if the 

model is placed closer. The roof aerodynamic pressures appear less sensitive compared to 

the windward wall pressures. Based on this finding and considering the development of 

wind flow and the wind speed requirement, the current testing was performed with the 

windward face (or windward corner in case of oblique wind angle of attack) of the 

building model located at a distance approximately equal to the height of the wind field at 

the exit. 

All the pressure measurements were taken at various wind angles of attack (AOA) 

with a sampling rate of 100 Hz over 3 minutes duration. The peak 3-sec gust wind speed 

values and other wind characteristic parameters are shown in Table 3.2 for W4 quasi-
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periodic waveform case. Based on model configuration and cross checking of results for 

selected aerodynamically symmetric cases (say, for AOA = 0° and 180° for a gable roof 

model), different wind angles of attack were tested for each type of roof. The detailed 

testing protocol is presented at Table 3.3. According to Simiu et al. (2007), Category 1 

hurricanes on the Saffir-Simpson scale correspond to a minimum of approximately 1.07 x 

33.1 m/s = 35.4 m/s (79.2 mph) peak 3-s gust speed at 10 m above open terrain. 

Therefore, for the current testing the wind speeds corresponded to Category 1 hurricane 

conditions.  

Table 3.3: Detailed Testing Protocol 

Roof  type Roof  
slope 

Roofing 
materials 

Testing wind angles of attack (degree) 

Monoslope 
roof 4:12 

Underlayment 0, 15, 30, 45, 75, 90,135,180 

Shingle 0, 15, 30, 45, 55, 65, 75, 90, 112.5, 135, 157.5, 
180 

Tile 0, 15, 30, 45, 55, 65, 75, 90, 112.5, 135, 157.5, 
180 

Gable roof 5:12 
Underlayment 0, 20, 40, 55, 60, 65, 70, 80, 90, 135, 180, 270 

Tile 0, 20, 40, 55, 60, 65, 70, 80, 90, 135, 180, 270 

Hip roofs 

3:12 

Underlayment 0, 15, 22.5, 30, 45, 60, 75, 90 

Shingle 0, 15, 22.5, 30, 45, 60, 75, 90 

Tile 0, 15, 22.5, 30, 45, 60, 75, 90 

5:12 
Underlayment 0, 15, 22.5, 30, 45, 60, 75, 90, 135, 180, 270, 

315 

Tile 0, 15, 22.5, 30, 45, 60, 75, 90, 135, 180, 270, 
315 

3.8 Data processing 
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The pressure coefficient at the ith tap is estimated as follows:  

      
2

2
1 U

PC i
Pi

ρ

∆=                                                                    (3-1) 

where iP∆ is the differential (external minus internal) pressure; ρ is the air density; and U 

is the 3-sec gust wind speed at the mean roof height, except that eave height shall be used 

for roof slope θ ≤ 10 o. The pressure coefficients determined for the bare roof deck were 

only calculated from external pressures measured at the plywood surface (referred to as 

surface peak pressure coefficients in this dissertation). The net pressure coefficients for 

the tiled roof decks were determined by using the vector sum of the external pressures 

measured on the tiles’ exterior surfaces and the cavity internal pressures measured 

underneath the tile and also in the tile joint overlap region. The net pressure coefficients 

for the shingled roof decks were determined by vector sum of the external pressures 

measured on the shingles’ exterior surfaces and the internal pressures measured 

underneath the surface layer of shingle. It is to be noted that the net peak pressure 

coefficients are not equivalent to the net pressure coefficients described in ASCE 7-05 

which include the contribution of the internal pressure coefficients inside the building.  

To remove the uncertainties inherent in the randomness of the peaks, probabilistic 

analysis was applied to all the analysis using an automated procedure developed by 

Sadek and Simiu (2002) for obtaining estimated statistical peak pressure coefficients for 

different durations using the observed pressure time histories. Because estimates obtained 

from this approach are based on the entire information contained in the time series, they 

are more stable than the “observed peaks” in the time histories. However, it is not the 

point peak pressures but the area-averaged peak pressures over the area of the tile that are 
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of interest to the designer. The estimated area-averaged peak pressure coefficients were 

obtained by applying the Sadek and Simiu method to a new time history obtained by 

instantaneous spatial averaging of the point pressures measured at all taps placed on a tile 

(or shingle). Such estimated area-averaged peak pressure coefficients (e.g., 

𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 , 𝐶̂𝑝,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 , 𝐶̂𝑝,𝑛𝑒𝑡,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ) used in the following 

comparisons were obtained using the 3-minute experimental data and generating 

estimates for a 1-hr storm duration with 95% quantiles (probabilities of non-exceedence 

P=0.95). 
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4 An Experimental Study on Wind Effects on Tiled Roof 

4.1 Introduction 

Following the pressure validation study described in Section 4.5, WoW tests were 

performed to study the wind effects on tiled roofs. The effects of architectural details of 

high profile roof tiles on net pressures were investigated through full-scale and wind 

tunnel experimentation. Four different roof models (4:12 monoslope, 3:12 and 5:12 hip, 

5:12 gable) with bare and tiled roof decks were tested at full-scale (6-fan WoW). Internal 

pressures in the cavity region between the tile and the underlayment and in the joint space 

between two overlapping tiles were measured to understand their effects on the net peak 

pressures. The estimated area-averaged peak pressure coefficients (e.g., 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 , 

𝐶̂𝑝,𝑐𝑎𝑣𝑖𝑡𝑦_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, 𝐶̂𝑝,𝑛𝑒𝑡) obtained for bare and tiled roof decks were compared. Wind 

tunnel tests on a tiled roof deck model were conducted at RWDI atmospheric boundary 

layer wind tunnel (Miramar, Florida) to verify the effects of tiles’ cavity internal 

pressure. Both the full-scale and the wind tunnel test results showed that the tiles’ 

geometric configuration and the cavity internal pressures could significantly affect the 

tiled roof net peak pressures. Such effects were found to be dependent on the tile joint 

(joint between two overlapping tiles) orientation with respect to the wind angle of attack. 

Aerodynamic loading on low-rise buildings’ roofs can thus be more accurately evaluated 

by considering the effects of the roofing components.  
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4.2 Effects of Tile Cavity Internal Pressure on Tiled Roof Net Peak Pressure 

The effects of tile cavity internal pressure on net peak pressures were investigated 

through the comparison of area-averaged external and net uplift peak pressure 

coefficients obtained for the tiled roof decks. To estimate the adequacy of fewer number 

of pressure taps for obtaining the area-averaged cavity internal pressure for each tile, the 

coefficient of variation (CV) of the mean and peak pressure coefficients obtained from 

individual cavity taps were determined. The CV values were low for all tiles examined 

(e.g., 5:12 gable roof location 3: for AOA 0°, CV = 4.7E-04 (for mean) and 2.5E-02 (for 

peak); for AOA 180°, 1.9E-04 (for mean) and 8.9E-03 (for peak)). These low values 

showed that there were not any significant spatial gradients on the underside pressure of a 

tile. The spatial gradients on the underside pressure of roof pavers as reported by 

Bienkiewicz and Sun (1997) were dependent on the ratio of the space-between to space-

underneath the pavers. Unlike the roof tiles studied in this paper, the roof paver systems 

had interconnected open spaces underneath and gaps between adjacent pavers. This could 

possibly explain the difference in spatial gradients on the underside pressure of a roof tile 

and a paver system. However, further study is needed to better quantify such differences.  

Figure 4.1 shows the comparison of area-averaged external and net uplift peak 

pressure coefficients obtained for the tiled roof decks for 4:12 monoslope roof with tiled 

roof deck for two oblique wind angles of attack, AOA = 30° and 135°. The results show 

significant contribution of the cavity internal pressure on the net peak pressure. For AOA 

= 30° all the tile joints (joints between overlapping tiles, see Fig. 4.8) had nearly 

windward orientation and faced the approaching wind and the tiles’ cavity internal 

pressures were positive (e.g., for location 7, the peak and mean cavity internal pressure 
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coefficients were 𝐶̂𝑝,𝑐𝑎𝑣𝑖𝑡𝑦_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ≈ 2.2, 𝐶𝑝̅,𝑐𝑎𝑣𝑖𝑡𝑦_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ≈ 0.39, respectively). Thus the 

cavity internal pressure on the underside of the tile was acting in the same direction as the 

external uplift pressure on the upper surface of the tile. This contributed to an increased 

(in magnitude) net uplift peak pressure on the tile (e.g., Figure 4.1a, location 7, 𝐶̂𝑝,𝑛𝑒𝑡 ≈ -

1.8 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ≈ -0.6). However, when the tile joints had leeward orientation and 

were sheltered from the approaching wind, such as for AOA = 135°, the cavity internal 

pressures were negative (e.g., for location 7, the peak and mean cavity internal pressure 

coefficients were 𝐶̂𝑝,𝑐𝑎𝑣𝑖𝑡𝑦_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ≈ -2.5, 𝐶𝑝̅,𝑐𝑎𝑣𝑖𝑡𝑦_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ≈ -0.9, respectively), acting in 

the opposite direction as the external uplift pressure on the upper surface. This 

contributed to a reduced (in magnitude) net uplift peak pressure (e.g., Figure 4.1b, 

location 4, 𝐶̂𝑝,𝑛𝑒𝑡  ≈ -1.1 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  ≈ -2.3 and location 7, 𝐶̂𝑝,𝑛𝑒𝑡  ≈ -2.0 versus 

𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ≈ -3.2). Figure 4.2 shows another two oblique wind angles of attack, AOA = 

15° and 180°, for 4:12 monoslope roof with tiled roof deck to strengthen the above 

findings. 

  

Figure 4.1: Comparison of Estimated Area-Averaged External and Net Peak Pressure 
Coefficients for 4:12 Monoslope Roof: (a) AOA=30°, (b) AOA=135° 

a b 
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Figure 4.2: Comparison of Estimated Area-Averaged External and Net Peak Pressure 
Coefficients for 4:12 Monoslope Roof: (a) AOA=15°, (b) AOA=180° 

Figure 4.3 shows the comparison of area-averaged external and net uplift peak 

pressure coefficients for the 3:12 and 5:12 hip tiled roofs for AOA = 15° (wind nearly 

normal to the windward eave). For both cases for the windward tiles (at locations 1, 2, 3, 

4, and 5) the tile joints were oriented windward and the cavity internal pressure 

contributed to an increased net uplift peak pressure (e.g., Figure 4.3a, location 2, 𝐶̂𝑝,𝑛𝑒𝑡 ≈ 

-2.2 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ≈ -0.8, Figure 5.3b, location 1, 𝐶̂𝑝,𝑛𝑒𝑡 ≈ -1.3 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ≈ -

0.3). However, for the leeward tiles (at locations 8 and 9) the tile joints were oriented 

leeward and the cavity internal pressure contributed to a reduced net uplift peak pressure 

(see Figs. 6.3a and 6.3b). In addition, for 3:12 hip roof ridge tile at location 7 the effect of 

internal pressure on net peak pressure was minimal. However, for 5:12 hip roof ridge tile 

at location 7 the cavity internal pressure effect was significant (Figure 4.3b, location 7, 

𝐶̂𝑝,𝑛𝑒𝑡 ≈ -1.9 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ≈ -1.0). Thus no definitive conclusions could be made for 

tiles on the top ridge of a roof and further research is needed. Figure 4.4 shows 

comparison of area-averaged external and net uplift peak pressure coefficients for the 

3:12 and 5:12 hip tiled roofs for AOA = 30° to strengthen the above findings. 

a b 
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Figure 4.3: Comparison of Estimated Area-Averaged External and Net Peak Pressure 
Coefficients for AOA=15°: (a) 3:12 Hip Roof, (b) 5:12 Hip Roof 

   

Figure 4.4: Comparison of Estimated Area-Averaged External and Net Peak Pressure 
Coefficients for AOA=30°: (a) 3:12 Hip Roof, (b) 5:12 Hip Roof 

Figure 4.5 shows the effect of cavity internal pressures on net peak pressures for 

5:12 gable tiled roof for AOA = 20° (wind nearly normal to the windward eave) and 

AOA = 180° (wind normal to the windward eave). For some of the instrumented 

windward tiles for AOA = 20° the cavity internal pressure contributed to an increased net 

uplift peak pressure (e.g., Figure 4.5a, locations 3 and 4, 𝐶̂𝑝,𝑛𝑒𝑡 ≈ -1.0 versus 𝐶̂𝑝,𝑛𝑒𝑡 ≈ -

0.1). However, for the leeward tiles (at locations 8 and 9) the cavity internal pressure 

contributed to a reduced net uplift peak pressure (see Fig. 6.5a). For the ridge tiles (at 

a b 

a b 
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locations 6 and 7), the effects of cavity internal pressure were minimal. For AOA = 180°, 

the cavity internal pressure contributed to an increased net uplift peak pressure for the 

windward tiles at locations 8 and 9 and a reduced net uplift peak pressure for the leeward 

tiles at locations 1, 2, 3, 4, and 5 (see Fig. 6.5b). For ridge tiles at locations 6 and 7 net 

uplift peak pressures were alleviated. 

   

Figure 4.5: Comparison of Estimated Area-Averaged External and Net Peak Pressure 
Coefficients for 5:12 Gable Roof: (a) AOA=20°, (b) AOA=180° 

Results for all the three different types of tiled roofs (monoslope, hip, and gable), 

for wind  being oblique, nearly normal, and normal to the windward eave, showed that 

the estimation of realistic net aerodynamic uplift loading (often the cause of roof 

components failures during extreme wind events) on tiled roof needs careful modeling of 

the tile cavity internal pressure. The cavity internal pressure could contribute to an 

increased area-averaged net uplift peak pressure for tiles having windward oriented tile 

joints and reduced net pressure for tiles having leeward oriented tile joints. Thus tile 

cavity internal pressure could either aggravate or alleviate wind loading on a tile based 

on its orientation on the roof with respect to the wind angle of attack. Neglecting the 

effect of cavity internal pressure could lead to the underestimation of the net peak 

a b 
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pressure by as much as 60%. This finding is in agreement with the results presented by 

Kawai and Nishimura (2003) based on full-scale field measurements carried out at 

Shionomisaki Wind Effect Laboratory of Kyoto University on an experimental house 

with a hip roof (roof pitch: 4.5/10; house dimensions: 4.1m long x 3.1m wide x 2.8m 

height). 

4.3 Effects of Tile Geometry on Tiled Roof Peak Pressures 

The effects of the geometry of roof tiles on area-averaged net uplift peak 

pressures were studied through the comparisons of peak pressure coefficients for bare and 

tiled decks. Figure 4.6 shows the comparison of external area-averaged uplift peak 

pressure coefficients for 4:12 monoslope bare and tiled roof decks for AOA = 0°. The 

figure also shows the net area-averaged uplift peak pressure coefficients for the tiled deck 

case. The external area-averaged uplift peak pressure on a high profile tile surface could 

be larger than that for a flat surface as modeled by the bare deck (e.g., Figure 4.6, 

locations 2 and 3, 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ≈ -1.0 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑏𝑎𝑟𝑒 𝑑𝑒𝑐𝑘 ≈ -0.6). Such 

findings support the conclusion presented in Huang et al. (2009a) that surface geometry 

of the high profile tiles can generate higher peak pressures as compared to those for 

flatter roofing components owing to the effect of component geometric profile on the 

local flow pattern. The finding also supported the conclusion made by Kawai and 

Nishimura (2003) and Morisaki et al. (1994) that  external  pressure  on  a  tile  was  

strongly influenced  by  local  flow  pattern  over  the  tile  surface. Also, the net uplift 

peak pressure on a tiled roof deck model could be significantly larger than that for a bare 
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roof deck model (e.g., Figure 4.6, locations 7 and 8, 𝐶̂𝑝,𝑛𝑒𝑡,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘  ≈ -1.3 versus 

𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑏𝑎𝑟𝑒 𝑑𝑒𝑐𝑘 ≈ -0.3).  

 

Figure 4.6: Comparison of Estimated Area-Averaged External and Net Peak Pressure 
Coefficients for 4:12 Monoslope Roof for AOA=0° 

Figure 4.7 shows the comparison of external area-averaged uplift peak pressure 

coefficients for 3:12 hip bare and tiled roof decks for AOA = 90° (wind parallel to the 

ridge). The figure also shows the net area-averaged uplift peak pressure coefficients for 

the tiled deck case. The results show that the external peak pressure on a high profile tile 

surface could be larger than that for the bare deck (e.g., Figure 5.7, location 3, 

𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ≈ -1.5 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑏𝑎𝑟𝑒 𝑑𝑒𝑐𝑘≈ -0.9). Also, the net uplift peak 

pressure on a tiled deck model could be larger than that for a bare deck model (e.g., 

Figure 4.7, location 3, 𝐶̂𝑝,𝑛𝑒𝑡,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ≈ -1.6 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑏𝑎𝑟𝑒 𝑑𝑒𝑐𝑘≈ -0.9, location 

7, 𝐶̂𝑝,𝑛𝑒𝑡,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ≈ -1.2 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑏𝑎𝑟𝑒 𝑑𝑒𝑐𝑘≈ -0.6).  
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Figure 4.7: Comparison of Estimated Area-Averaged External and Net Peak Pressure 
Coefficients for 3:12 Hip Roof for AOA=90° 

Through the comparisons of peak pressure coefficients obtained on bare and tiled 

roof decks, it was demonstrated that the geometric features of roofing components could 

significantly affect the net peak pressure coefficients. In addition to the effect of the 

cavity internal pressure (see Sect. 5.2), the effect of the external geometry of the roofing 

components on net peak pressure could be significant. In some cases the peak pressures 

obtained on bare roof deck models could underestimate the peak pressures acting on roof 

tiles by as much as 50%. This indicates the importance of careful consideration of roofing 

components modeling, as opposed to simplified (bare surface) modeling in traditional 

experiments, for realistic estimation of wind loading on roofs.  

4.4 Cavity Internal Pressure versus Building Internal Pressure  

Limited research has been performed to study the batten space internal pressure 

(e.g., pressure in the space between the roof sheathing and roof covering Robertson and 

Hoxey (2007).In absence of test-based data, some researchers and loss estimation 



59 

 

modelers use roof external pressure coefficients given in code provisions and assume 

zero internal pressure while estimating wind loading on roof coverings. As an example, 

the Florida Public Hurricane Loss Model (FPHLM) ignores the cavity internal pressure 

effects and assumes zero internal pressure in the simulation of vulnerability curves for 

roof covering (FPHLM, 2005, Volume II, pg. 55). The hypothesis being that for properly 

sealed ceilings there may not be any degree of equalization between the building internal 

pressure (as estimated by internal pressure coefficients given in code provisions, such as 

in ASCE 7-05) and the batten space internal pressure.  

As described in Section 4.1, the background leakage of the particular test 

specimen built (indicated by 14.3 ACH50) for this study was relatively high as compared 

to that for average single family residential homes (~5.2 ACH50). To test the above 

mentioned hypothesis, the tiles’ cavity internal pressure and the internal pressure inside 

the building were measured simultaneously using two different models with tiled roof 

decks, including a gable roof (5:12 slope) and a hip roof (5:12 slope). The goal was to 

assess whether there could be any degree of pressure equalization between the attic space 

underneath the roof deck and tiles’ cavity space. If the hypothesis is proven to be correct 

for the test specimen with higher leakage, then it should be also valid for average single 

family residential homes that are more airtight.  

Two building enclosure classifications were simulated for experimentation – 

enclosed and partially enclosed building conditions (ASCE 7-05 2006). The tests were 

conducted for AOA = 0° with and without dominant windward openings to simulate the 

partially enclosed and enclosed building conditions, respectively. The internal pressure 

inside the building model (estimated by averaging the data from the two internal pressure 
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taps inside building model) was compared to the tiles’ cavity pressures. Figure 4.8 shows 

such comparative results for the 5:12 gable roof deck model. The results showed that the 

internal pressure within the building for both enclosed and partially enclosed building 

conditions was significantly different than the tiles’ cavity internal pressures for most 

locations. Thus the building internal pressure coefficients specified in the code provisions 

may not be used for estimating net wind uplift on roof tiles and this finding should be 

applicable for average single family residential homes. Further research is needed to 

include cavity (or batten space) internal pressure coefficients in the wind provisions to 

facilitate realistic estimation of wind loading on various roofing components.   

 

Figure 4.8: Comparison of Building Internal Pressure and Tiles’ Cavity Internal Pressure 
Coefficients for 5:12 Gable Roof Model for AOA = 0°: (a) Enclosed Building Condition, 

(b) Partially Enclosed Building Condition 

4.5 Wind Tunnel Testing Setup and Results 

In order to verify the effects of tiles’ cavity internal pressure on net peak 

pressures, a selected set of testing was conducted at RWDI atmospheric boundary layer 

wind tunnel (Miramar, Florida). The test section dimension of the wind tunnel was 2.44 

a b 
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m high by 1.98 m wide. Testing was performed for a typical residential building with a 

hip roof (3:12 slope). The equivalent full-scale dimensions of the building were: 18.3 m 

(60ft) length x 9.2 m (30 ft) width x 5.1m (16.7 ft) roof ridge height. The 1:15 scale 

model’s roof was built using especially molded plastic roof covering (see Fig. 6.9) laid 

over Plexiglas panel roof deck to replicate high profile roof tiles and cavity zones 

underneath the roof covering. The wind tunnel blockage was about 8.5% (close to the 

maximum blockage of 8% given in ASCE 7-05 2006). Selected tiles were instrumented 

for measuring tile surface external and tile cavity internal pressure using multichannel 

Scanivalve pressure scanner. A typical open terrain profile was generated with 𝛼� = 1/6.5 

and a turbulence intensity of about 20% at the mean roof height. The atmospheric 

boundary layer and turbulence profiles used for the wind tunnel testing are shown in Fig. 

6.10. It is to be noted that the building dimensions and the target terrain profile for the 

wind tunnel testing were different from those for the full-scale testing. However, the 

purpose of the wind tunnel study was not to quantify (or compare with the full-scale data) 

roof pressure coefficients on tiles but to study the phenomenon pertaining to the effects of 

the tiles’ cavity internal pressures on net peak pressures as was observed from the full-

scale results. The Reynolds numbers for wind tunnel testing was approximately 2.24x105 

(as compared to 3.2x106 for WoW testing). 
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Figure 4.3: Top View of Wind Tunnel Testing Model for 3:12 Hip Tiled Roof Deck 

 

Figure 4.4: Mean Wind Speed and Turbulence Intensity Profiles for RWDI Wind Tunnel 

Thirteen tiles located at the windward and leeward part of the roof were 

instrumented (see Fig. 6.9 for locations). Due to size limitation, each tile had one or two 

external taps to measure the exterior surface pressure and one internal tap to measure the 

tile cavity internal pressure. The model was tested for AOA = 0°, 10°, 20°, and 30° to 

study such effect for the wind being normal to slightly oblique to the windward eave. The 

external, cavity internal, and net peak pressure coefficients were obtained from the 

pressure time histories using similar procedures used for analyzing the Wall of Wind test 

data. It is to be noted that using one or two external taps per tile precluded the estimation 
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of area-averaged peak pressure over the tile surface as was possible for the full-scale tiles 

for which area-averaging resulted in reduction of the external pressure on a tile. Figure 

4.11 shows the comparison of the estimated uplift peak (external and net) pressure 

coefficients obtained for the 3:12 hip roof with tiled roof deck for AOA = 0° and 10°. It 

was noted that for most of the windward tiles (at locations 1 to 5) the cavity internal 

pressure contributed to an increased net uplift peak pressure (e.g., Figure 4.11b, location 

2, 𝐶̂𝑝,𝑛𝑒𝑡≈ -3.8 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙≈ -2.9). However, for the leeward tiles (at locations 6 to 

13) the cavity internal pressure contributed to a reduced net uplift peak pressure (see 

Figs. 6.11a and 6.11b). Similar findings were obtained for the other two wind angles of 

attack. The wind tunnel results were in agreement with the conclusion made from the 

full-scale experimentation results that the cavity internal pressure could contribute to an 

increased or reduced net uplift peak pressure based on the tiles’ orientation with respect 

to the wind angle of attack. The limited wind tunnel tests provided only a preliminary 

validation of the findings from full-scale experimentation and more extensive wind 

tunnel testing will be performed on tiled roof models in the future to facilitate a more 

comprehensive comparison. 
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Figure 4.5: Comparison of Estimated External and Net Peak Pressure Coefficients for 
3:12 Hip Tiled Roof Model (Wind Tunnel Testing) for: (a) AOA=0°, (b) AOA=10°. 

4.6 Conclusions 

The experimental results conducted on roof deck models simulating high profile 

roof tiles showed that the geometric configuration of the roofing materials and the tiles’ 

cavity internal pressures could affect the net peak pressures. Estimation of and designing 

for these peak pressures is important for reducing tiled roof damage in hurricanes. The 

tiles’ cavity internal pressure was dependent on the tile joint (joint between two 

overlapping tiles) orientation with respect to the wind angle of attack. For wind being 

oblique, nearly normal, and normal to the windward eave, the cavity internal pressure 

contributed to: (i) an increased net uplift peak pressure when the tile joints had windward 

orientation, (ii) a reduced net uplift peak pressure when the tile joints had leeward 

orientation. Thus tile cavity internal pressure could either aggravate or alleviate wind 

loading on a tile based on its orientation on the roof with respect to the wind angle of 

attack. Neglecting the effect of cavity internal pressure could lead to the underestimation 

of the net peak pressure by as much as 60%.  

 

a b 
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The surface geometry of the high profile tiles could generate higher peak 

pressures as compared to those for a bare deck owing to the effect of component 

geometry profile on the local flow pattern. In some cases the peak pressures obtained on 

bare roof deck models could underestimate the peak pressures acting on roof tiles by as 

much as 50%. It was also shown that without the presence of high background leakage 

(for properly sealed ceilings) the internal pressure within the building could be 

significantly different than the tiles’ cavity internal pressures. Thus the internal pressure 

coefficients specified in the code provisions are not applicable for estimating net wind 

uplift on roof tiles. Further research is needed to include cavity (or batten space) internal 

pressure coefficients in the wind provisions to facilitate realistic estimation of wind 

loading on various roofing components.     

In summary, the effects of the tiles’ cavity internal pressure and tiles’ surface 

external pressure could result in net uplift peak pressure on a tiled deck being much 

larger than that for a bare deck. This indicates that aerodynamic testing to estimate 

realistic roof pressures for low-rise buildings entails careful modeling of the roofing 

components (such as roof tiles for tiled roofs) as opposed to simplified modeling 

replicating only the overall geometry but not simulating the finer architectural details of 

the components.   

This research is not intended to suggest tiled roof pressure coefficients for wind 

load provisions but is a preliminary effort to show how modeling of roofing components 

could play an important role in wind tunnel or full-scale testing based estimation of wind 

loading on roofs. The current research was limited to pressure measurements to evaluate 

the differences between pressure coefficients on bare and tiled roofs. Detailed local flow 
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field measurements are needed to determine whether such differences apply to both 

separated flow near the roof edge or in the field of the roof where there is attached flow. 

This important aspect will be studied in the future when hot-film anemometry and 

requisite flow visualization capability will become available at the WoW facility. Such 

study will help show how the local flow field around a tile induces the uplift.  

More detailed research is needed in the future to develop an extensive database on 

the effects of various roofing components (e.g., tiles and shingles) on roof peak pressures. 

Such estimation can improve the aerodynamic load provisions for low-rise building roofs 

by considering the effects of the roofing components which are often damaged during 

extreme wind events. 
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5 An Experimental Study on Wind Effects on Shingled Roofs 

5.1 Introduction 

As described the effects of architectural features of roof tile on roof peak 

pressures in previous chapter, this chapter focused on the effects of architectural features 

of roof shingle on roof peak pressures. Full-scale experimentation was conducted under 

high winds to investigate the effects of architectural details of asphalt shingles on net 

pressures that are often responsible for damage to these roofing materials. Different roof 

models with shingled roof decks were tested. Pressures acting on both top and bottom 

surfaces of the roof shingles were measured to understand their effects on the net uplift 

loading. The area-averaged peak pressure coefficients obtained from shingled roof decks 

were compared with the results obtained from bare and tiled roof decks. For shingles, the 

underside pressure could aggravate wind uplift if the shingle is located near the center of 

the roof deck. In addition, the shingle bottom surface pressure also compared to the 

building internal pressure to check if the building internal pressure specified in ASCE 7 is 

applicable to estimate the shingle bottom surface pressure. Also, the effect of overhang 

dimension to the wind uplift pressure was also studied by testing two different overhang 

dimensions. 

5.2 Effects of Shingle Bottom Surface Pressure 

Air-permeable roofing materials allow partial air pressure equalization between 

the exterior (top) and interior (bottom) surfaces of the materials. Such effects for tiles and 

shingles were investigated based on the results of the WoW tests. Comparison of area-
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averaged top surface and net uplift peak pressure coefficients showed the effects of 

bottom surface pressure in terms of either alleviating wind uplift (through partial air-

pressure equalization) or aggravating wind uplift.  

Figure 5.1 shows results for 3:12 hip shingled roof deck for AOA = 75° and 90° 

and 4:12 monoslope shingled roof deck for AOA = 0° and 15°. For shingles near the 

center of the roof decks, the bottom surface pressures were positive (e.g., for location 6 of 

the hip at AOA = 90°, and location 5 of the monoslope roofs at AOA = 0° 

𝐶̂𝑝,𝑏𝑜𝑡𝑡𝑜𝑚,𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ≈ 0.96 and 0.85, respectively, and 𝐶𝑝̅,𝑏𝑜𝑡𝑡𝑜𝑚,𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ≈ 0.05 and 

0.17, respectively). Thus for normal (or nearly normal) winds, the pressures on the top 

and bottom surfaces both acted to lift the shingles located near the center of the roofs. 

This contributed to an increased (in magnitude) net uplift peak pressure on the shingles 

(e.g., Figure 5.1b, location 6, 𝐶̂𝑝,𝑛𝑒𝑡,𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ≈ -0.7 versus 𝐶̂𝑝,𝑡𝑜𝑝,𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 ≈ -0.4). 

This phenomenon of increased wind uplift on shingles near the center of the roofs was 

observed for AOA = ±15°. This finding is in agreement with the results of pressure 

measurements on upper and lower surfaces of several shingles located near the center of a 

shingled deck tested in a wind tunnel (Peterka et al. 1997). However, for windward 

shingles located in other regions of the roof (locations 1 and 2 in Fig. 5.1c and 5.1d) and 

for leeward shingles (all locations except 6 in Fig. 5.1a and 5.1b), there was partial air-

pressure equalization that contributed to a reduced (in magnitude) net uplift peak 

pressure. 
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Figure 5.1: Comparison of Estimated Area-Averaged Net Peak Pressure Coefficients for 
Shingled roof decks: (a) 3:12 Hip Roof, AOA=75°, (b) 3:12 Hip Roof, AOA=90°, (c) 

4:12 Monoslope Roof, AOA=0°, (d) 4:12 Monoslope Roof, AOA=15° 

5.3 Effects of Geometry of Roofing Materials on Roof Peak Pressures 

The full-scale experimentation results were also used to evaluate the effects of the 

architectural features of air-permeable roofing materials on pressures to ascertain the 

importance of modeling their geometric details for wind load estimation. To accomplish 

this objective, the area-averaged net uplift pressures on the tiled and shingled roof decks 

were compared to the area-averaged uplift pressures on bare roof decks (analogous to 

simplified models) that did not consider the effects of roofing materials.  

c d 

a b 
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Figure 5.2 shows the comparison of area-averaged uplift peak pressure 

coefficients for 4:12 monoslope for AOA = 0°, 15° , 30° and 45° and Figure 5.3 shows 

the comparison of area-averaged uplift peak pressure coefficients for 3:12 hip for AOA = 

45°, 60°, 75° and 90° on bare, tiled, and shingled roof decks. It is to be noted that the net 

uplift peak pressure coefficients obtained for most locations on the tiled roof decks were 

significantly larger than those for the corresponding bare roof decks (e.g., Figure 5.2a, 

location 7, 𝐶̂𝑝,𝑛𝑒𝑡,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘  ≈ -1.3 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑏𝑎𝑟𝑒 𝑑𝑒𝑐𝑘 ≈ -0.3, Figure 5.3d, location 

3, 𝐶̂𝑝,𝑛𝑒𝑡,𝑡𝑖𝑙𝑒𝑑 𝑑𝑒𝑐𝑘  ≈ -1.6 versus 𝐶̂𝑝,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑏𝑎𝑟𝑒 𝑑𝑒𝑐𝑘 ≈ -0.9). Thus bare deck modeling can 

result in significant underestimation of estimating wind uplift loading on tiled roofs. On 

the other hand, the net uplift peak pressure coefficients obtained for most locations on the 

shingled roof decks were somewhat lower than those for the corresponding bare roof 

decks. However, the wind uplift for the windward shingles near the center of the roof 

decks (location 5 for 4:12 monoslope roof and location 6 for 3:12 hip roof) were 

marginally larger than those for the same locations on the corresponding bare roof decks. 

Thus for design purposes, bare deck modeling mostly applicable for estimating wind 

uplift loading on shingled decks other than for those windward shingles near the center of 

the decks. 
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Figure 5.2: Comparison of Estimated Area-Averaged Net Peak Pressure Coefficients for 
4:12 Monoslope Roof: (a) AOA=0°, (b) AOA=15°, (c) AOA=30°, (d) AOA=45° 

 

   

a b 
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Figure 5.3: Comparison of Estimated Area-Averaged Net Peak Pressure Coefficients for 
3:12 Hip Roof: (a) AOA=45°, (b) AOA=60°, (c) AOA=75°, (d) AOA=90° 

Through the analysis of effects of the geometry of roof shingles on the wind uplift 

peak pressures, it was demonstrated that the geometry of roof shingle could significantly 

affect the load acting on the roofs. For shingled deck, top and bottom surface pressures 

can act in the same direction and aggravate the wind uplift loading for windward shingles 

located near the center of the roof deck. For windward shingles located away from the 

center region (field zone) and for all leeward shingles, partial air-pressure equalization 

alleviates the wind uplift loading. 

5.4 Bottom Surface Pressure versus Building Internal Pressure  

As described in Section 4.4, the tiles’ cavity internal pressures were studied to 

evaluate if the building internal pressure specified in ASCE 7 (2006) is applicable to the 

cavity internal pressure. In this section, the similar study was also performed by 

comparing the shingle bottom surface pressure to the building internal pressure. To test 

the above mentioned hypothesis, the shingle bottom surface pressure and the internal 

pressure inside the building were measured simultaneously using two 4:12 monoslope 

c d 
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roof (4:12 slope) model with shingled roof deck. Two building enclosure classifications 

were simulated for experimentation – enclosed and partially enclosed building conditions 

(ASCE 7 2006). The tests were conducted for AOA = 0° with and without dominant 

windward openings to simulate the partially enclosed and enclosed building conditions, 

respectively. The internal pressure inside the building model (estimated by averaging the 

data from the two internal pressure taps inside building model) was compared to the 

shingle bottom surface pressures. Figure 5.8 shows such comparative results for the 4:12 

monoslope roof deck model. The results showed that the internal pressure within the 

building for both enclosed and partially enclosed building conditions was significantly 

different than the shingle bottom surface pressures for most locations. Thus the building 

internal pressure coefficients specified in the code provisions may not be used for 

estimating net wind uplift on roof tiles and this finding should be applicable for average 

single family residential homes. Further research is needed to include shingle bottom 

surface pressure coefficients in the wind provisions to facilitate realistic estimation of 

wind loading on various roofing components.   

Figure 5.4: Comparison of Building Internal Pressure and Tiles’ Cavity Internal Pressure 
Coefficients for 4:12 Monoslope Roof Model for AOA = 0°: (a) Enclosed Building 

Condition, (b) Partially Enclosed Building Condition 

a b 
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5.5 Effects of Overhang Dimensions on Roof Peak Pressures 

The effects of overhang dimension on roof area-averaged peak pressure 

coefficients were investigated through the experimentation on 3:12 hip shingled roof 

deck with two different overhang dimensions, including 0.457m (18 inches) and 0.152m 

(6 inches). Five angles of attack were tested, including 30o, 45o, 60o, 75o and 90 o. Nine 

different locations located at the edge, corner, ridge and middle of the roof. Each location 

was instrumented twelve external pressure taps with three internal pressure taps. The 

Instantaneous external and net area-averaged peak pressure coefficients were compared. 

Figures 5.5 shows the comparison between the external and net area-averaged peak 

pressure coefficients obtained from two different overhang dimensions for 30o, 45o, 75o, 

90o. It was noticed that the external and net area-averaged peak pressure coefficients 

obtained from 0.152m overhang dimension is very close to the peaks obtained from 

0.457m overhang dimension for most of the nine instrumented locations. Therefore, it 

was concluded that the effect of overhang dimension on roof shingle area-averaged peak 

is minimal. Such effects on other roof components still need to be carefully studied. 
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Figure 5.5: External and Net Area-Averaged Peak Pressure Coefficients Comparison for 
Two Different Overhang Dimensions from 3:12 Hip Roof with Shingle: (a) 30 degree, (b) 

45 degree, (c) 75 degree, (d) 90 degree 

5.6 Conclusions 

For shingled deck, top and bottom surface pressures can act in the same direction 

and aggravate the wind uplift loading for windward shingles located near the center of 

the roof deck. For windward shingles located away from the center region (field zone) 

and for all leeward shingles, partial air-pressure equalization alleviates the wind uplift 

loading. In addition, it was also found that similar to the tiles’ cavity internal pressure, the 

internal pressure coefficients specified in the code provisions are not applicable for 

estimating net wind uplift on roof shingle. Also, the effect of overhang dimensions on 

c d 
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roof shingle area-averaged peak is minimal and further research on such effects still need 

to be carefully studied. 

The results show that wind uplift on low-rise buildings’ roof shingles can be more 

accurately evaluated by considering the effects of the geometric features of these roofing 

materials. The research work also suggested that for different air-permeable roofing 

materials, it is better to differentiate the design wind uplift load based on the type of 

materials being used (high profile tiles versus asphalt shingles). 
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6 Effects of Modeling Roofing Materials for Estimation of Wind uplift 

6.1 Introduction 

Through the analysis of effects of the geometry of air-permeable roofing materials 

on the wind uplift peak pressures, it was demonstrated that the geometry of air-permeable 

roofing materials could significantly affect the load acting on the roofs (chapters 4 and 5). 

Such effects are barely considered in the current building codes for designing low-rise 

building roofs that are mainly based on testing results from building models which 

generally do not simulate the architectural features of roofing materials. Therefore, it is 

important to quantify these effects in terms of design purpose. The ratios of area-

averaged net uplift peak pressure coefficients obtained from tiled or shingled roof decks 

to the area-averaged surface peak pressure coefficients obtained from bare roof were used 

to quantify effects of architectural features of tiles and shingles on wind-induced uplift. 

6.2 Analysis Results 

Figure 6.1 shows these ratios for tiled versus bare decks for 4:12 monoslope roof 

and 3:12 hip roof for windward corner and edge locations. It is noted that the ratios for 

corner tiles could be as high as 1.5 and 1.8 for the 4:12 monoslope and 3:12 hip roofs, 

respectively, for oblique winds. In other words, bare deck modeling without considering 

the tile geometry effects could underestimate design wind uplift by as much as 45%. 

Similar underestimation could occur for edge tiles. Figure 6.2 shows the ratios for 3:12 

hip and 5:12 gable roofs for ridge loactions. The ratios were as high as 2.2 for the 3:12 

hip roof (location 3) for cornering winds and 3.2 for the 5:12 gable roof (location 6) for 
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normal winds. Thus for ridge tiles, the bare deck modeling could underestimate design 

wind uplift by 55 – 69%.  

   

Figure 6.1: Ratio of Area-Averaged Net Peak Pressure Coefficients Obtained from Tiled 
Versus Bare Roof Decks for Locations 1 And 2: (a) 4:12 Monoslope Roof, (b) 3:12 Hip 

Roof 

    

Figure 6.2: Ratio of Area-Averaged Net Peak Pressure Coefficients Obtained from Tiled 
Versus Bare Roof Decks: (a) 3:12 Hip Roof for Locations 3 and 7, (b) 5:12 Gable Roof 

for Locations 6 and 7 

Figure 6.3 shows the ratios for shingled versus bare decks for 4:12 monoslope and 

3:12 hip roofs for near the center of the deck (field) locations. It is to be noted that the 

ratios could be as high as 2.6 for 4:12 monoslope roof (loation 5) and 1.4 for 3:12 hip 

roof (location 6); underestimation being 60% and 30%, respectively. Thus, bare deck 

a b 

a b 
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modeling to estimate design wind uplift on shingled decks may be acceptable for corner, 

edge, and ridge locations but not for field loactions where top and bottom surface 

pressures could both contribute to the uplift of the shingles.  

 

Figure 6.3: Ratio of Area-Averaged Net Peak Pressure Coefficients Obtained from 
Shingled Versus Bare Roof Decks for 4:12 Monoslope Roof Location 5 and 3:12 Hip 

Roof for Location 6 

6.3 Conclusions 

Bare deck modeling without considering the tile geometry effects could 

significatnly underestimate design wind uplift on tiled decks by as much as 45% for 

corner and edge tiles. For ridge tiles, the bare deck modeling could underestimate design 

wind uplift by 55 – 69%. Bare deck modeling to estimate design wind uplift on shingled 

decks may be acceptable for corner, edge, and ridge locations but not for field locations it 

could underestimate the uplift on shingles by 30-60%.  

This research is not intended to suggest air-permeable roofing materials’ pressure 

coefficients for wind load provisions but is a preliminary effort to show how considering 
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the geometric details of roofing materials could play an important role in wind tunnel or 

full-scale testing based estimation of wind uplift loading on roofs. The findings 

demonstrated the importance of modeling geometric details of roofing materials as 

opposed to modeling only the overall roof geometry. 
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7 Effects of Tile Cavity Internal Pressure on Vulnerability of Roof Tiles 

7.1 Introduction 

The vulnerability curve and fragility curve are widely used to assess the 

performance and reliability of the building components at different wind speeds. In order 

to obtain realistic and reliable vulnerability curve of the building component, the wind 

load and wind resistance of the building component need to be carefully evaluated. Since 

there are too many uncertainties that could affect the wind load and wind resistance of the 

building component, such as the building code, enforcement of the building code, 

building shape, building ages, structure type and the topographic details, and so on, 

developing an accurate vulnerability curve is still a significant challenge. 

In absent of test-based data, some researchers and loss estimation modelers use 

roof external pressure coefficients given in the code provisions and assume zero internal 

pressure while estimating wind loading on roofing materials, such as roof tiles and roof 

shingles. As an example, the Florida Public Hurricane Loss Model (FPHLM) ignores the 

cavity internal pressure effects and assumes zero internal pressure in the simulation of 

vulnerability curves for roofing materials (FPHLM, Volume II, pg.55). However, as the 

effects of tiles’ cavity internal pressure and shingle bottom surface pressure on roof peak 

pressures were carefully investigated (Chapter 4) and such effects were found to 

significantly affect the load acting on roofing materials, this chapter is only focused on 

such effects on the vulnerability of roof tiles since the pressure measurement conducted 

at full scale is based on the location of the tiles and such measurement was not perform 

on a entire piece of shingle. Instead of using the external pressure coefficients given in 
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the code provisions and to better consider the effect of directionality, the external 

pressure coefficients were obtained through a series of wind tunnel testing conducted at 

RWDI boundary layer wind tunnel at Miramar, Florida. 

Additionally, to obtain realistic and reliable wind resistance of roof tile, a series of 

tile uplift load tests was performed at Polyfoam testing lab using pressure data. Such 

wind resistance was used in the simulation of vulnerability curves of roof tiles. 

7.2 Fundamental Concepts of Vulnerability Curve and Fragility Curve 

Uncertainties affect the wind load acting on and wind resistance of building 

components. Due to such uncertainties, a building component could either be undamaged 

(0% damage), partially damage or totally damaged (100% damage) at a given wind 

speed. Therefore, there will be a damage distribution to describe the effects of such 

uncertainties at this given wind speed. When the damage distributions are obtained for a 

series of wind speeds, the vulnerability curve and fragility curve for that building 

component can be determined. A fragility curve provides the probability of exceedence 

of certain damage percentage with different wind speeds. The vulnerability curve shows 

the mean damage as a function of wind speed. Figures 9.1 and 9.2 show typical 

vulnerability curve and fragility curve. 
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Figure 7.1: Vulnerability Curve Generation (FPHLM, Volume II, 2005) 

 

 

Figure 7.2: Fragility Curve for the Damage State of 60% Overall Structural Damage  

(FPHLM, Volume II, 2005)     

7.3 Wind Load on Roof Tiles 

The wind load for roof tiles can be estimated using external pressures obtained 

from a series of wind tunnel testing (as a substitute to using ASCE 7 based external 

pressure, such as done for FPHLM) and cavity internal pressures obtained from 6-fan 

WoW full scale testing. These pressures were combined to obtain the net load on the roof 

tiles.  
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7.3.1 Tile External Pressure 

Instead of using the modified pressure coefficients given in code provisions as 

external load for roof tile and to better consider the effects of directionality, a series of 

wind tunnel testing was conducted in RWDI’s 2.43m by 1.98m boundary layer wind 

tunnel facility at Miramar, Florida. 1:20 scale model of the buildings tested at the WoW 

were built, including a monoslope roof with 4:12 slope, a gable roof with 5:12 slope and 

two hip roofs with 3:12 and 5:12 slopes. These bare roof deck were tested in the wind 

tunnel. In wind tunnel, the target mean wind speed profile was a power-law profile with 

𝛼 = 1/4 (typical suburban terrain). The wind tunnel gradient height wind speed at 0.15m 

(3m at full scale) from the wind tunnel ground was approximately 8.69 m/s. The 

longitudinal turbulence intensity at a full scale match height of 3m was 22.3%. The 

longitudinal integral length scale at a full scale match height of 3m was estimated to be 

approximately 0.7m in model scale. Figures 9.3 and 9.4 show the mean wind speed and 

longitudinal turbulence intensity profile simulated in the wind tunnel. The longitudinal 

turbulence spectrum at roof eave height is shown in Figure 9.5, along with a comparison 

to the Von Karman spectrum and a typical suburban profile spectrum defined by 

Engineering Sciences Data Unit (ESDU). Different wind angles of attack were tested. All 

the pressure measurements were recorded at 512Hz for 36 seconds, and low-pass filtered 

at 135Hz. Figure 9.6 shows the wind tunnel testing models.  
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Figure 7.3: Mean Wind Speed Profile Comparison 

 

Figure 7.4: Longitudinal Turbulence Intensity Profile Comparison 

 

Figure 7.5: Normalized Longitudinal Spectral Density at H=0.15m 
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Figure 7.6: Wind Tunnel Testing Model for Each Type of Roof: (a) Monoslope Roof 
with 4:12 Slope, (b) Gable Roof with 5:12 Slope, (c) Hip Roof with 3:12 Slope, (d) Hip 

Roof with 5:12 Slope 

Figure 9.7 shows the superposition of tiles on the models tested at the wind 

tunnel. The tiles’ locations were exactly the same as for the full-scale models so that the 

net load for each tile could be obtained by combining the external pressures from the 

wind tunnel and cavity internal pressures from the WoW test based data. Due to the 

limitation of number of taps installed on each small-scale roof, the interpolation between 

taps was applied to estimate the external pressures acting on each tile.  

a b 

c d 
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Figure 7.7: Pressure Tap Layouts with Tile Location Superposition Sketch for Each Type 
of Roof: (a) Monoslope roof, (b) Gable roof, (c) Hip Roof 

7.3.2 Tile Cavity Internal Pressure 

As presented in Chapter 4, the tiles’ cavity internal pressure could significantly 

affect the load acting on roof tiles. Such effects are dependent on the tile join orientation 

with respect to the wind angle of attack. It was concluded that for wind being oblique, 

nearly normal, and normal to the windward eave, the cavity internal pressure contributed 

to (i) an increased net uplift peak pressure when tile joints had windward orientation; (ii) 

a reduced net uplift peak pressure when the tile joints had leeward orientation. In 

addition, since only nine tiles were measured for each full-scale roof model, the 

a b 

c 

0 degree 

AOA 

Wind 
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interpolation method was used to apply the cavity internal pressure to each tile based on 

the conclusions made in Chapter 4.  

7.4 Wind Resistance of Roof Tiles 

The wind resistance of roof tile is the ability of roof tile withstanding the wind 

force. Wind-induced damage to roof tile allowed wind-driven rain to enter building 

interiors causing not only loss of function, but substantial damage to building contents 

due to water and subsequent mold growth. However, only limited information is available 

about the wind resistance of roof tile. An experimental method is provided by Florida 

Building Code (FBC, 2007) Testing Application Standard (TAS) Chapter 101-95 “Test 

Procedure for Static Uplift Resistance of Mortar or Adhesive Set Tile Systems”. Two 

testing systems, including moment based system and uplift based system, are introduced 

in this testing protocol. In the current research, the overturning moment based damage 

was considered to be the most dominant damage pattern for roof tile. Therefore, the 

moment based system was used in the following tile uplift testing. According to the 

testing protocol, for the moment based systems, the static uplift load applied at a point 

along the center of the tile,  0.76 × 𝑙 (𝑙 = tile length) from the head of the tile. However, 

this incorrectly assumed that same loading point is applicable to all the roof tiles for each 

type of roof. The location of loading point was studied through the pressure distribution 

analysis of full scale measurement. The substantial tile resistance capacity testing was 

conducted at Polyfoam testing lab, Coral Spring, Florida. It is to be noted that the tile 

manufacturers are also based on the two testing systems, provide typical wind resistance 
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values for each type of tile (Notice of Acceptance), which is obtained by certified test 

agencies. 

7.4.1 Tile Uplift Testing 

7.4.1.1 The Location of Tile Loading Point 

Based on the full scale pressure measurements on four different roofs, including a 

monoslope roof (4:12 slope), a gable roof (5:12 slope) and two hip roofs (3:12 and 5:12 

slopes), with tiled roof decks, the loading centers of instantaneous peak pressure applied 

on the Spanish ‘S’ tile and Mission Barrel tile were obtained. In order to find some 

typical loading position, the effects of wind angles of attack were ignored. Based on the 

equivalent moment arm principle, all the loading points out of the centerline of the tile 

were converted into the centerline of the tile. Figure 9.8 shows this principle which 

projects point B onto point A. In addition, the eccentricity in y-direction is defined to 

describe the distance of equivalent loading center to the head of roof tile, since the x-

coordinate of the centerline is constant.  

                    

Figure 7.8: Converting Loading Point off the Centerline of Tile into The Centerline 
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Figure 9.9 shows the Spanish ‘S’ tile loading position in y direction distance from 

the head of tile for four different roofs through the analysis of the pressures measured 

from WoW. It is noticed that the eccentricity of loading point in y-direction is ranged 

from 8 inches to 12 inches. Therefore, two different eccentricities of Spanish ‘S’ tile, 

including 9.5 and 10.5 inches from the head of tile are chosen as typical eccentricities in 

y-direction of loading point for Spanish ‘S’ tile.    

   

    

Figure 7.9: Spanish ‘S’ Tile Loading Point in Y-Direction Distance from the Head Of 
Tile for Each Type of Roof: (a) 4:12 Monoslope Roof; (b) 5:12 Gable Roof; (c) 3:12 Hip 

Roof; (d) 5:12 Hip Roof 

Figure 9.10 shows the eccentricity of barrel tile in y direction for 5:12 gable roof 

and hip roofs. The eccentricity of barrel tile in y direction ranged from 7 to 14 inches and 

a b 

c d 
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most of them were around 8 inches. Therefore, 8 inches from the head of barrel tile is 

chosen as a typical eccentricity for barrel tile. 

    

 

Figure 7.10: Barrel Tile Loading Point in Y-Direction Distance from the Head of Tile For 
Different Type of Roof: (a) 5:12 Gable Roof; (b) 3:12 Hip Roof; (c) 5:12 Hip Roof. 

7.4.1.2 Testing Setup 

Based on the tile loading point eccentricity study results, two typical eccentricities 

(9.5 and 10.5 inches) for Spanish ‘S’ tile and one typical eccentricity (8 inches) for 

Mission Barrel tile were used to conduct the tile uplift testing. Twenty samples for each 

eccentricity value were tested at Polyfoam testing laboratory, Miramar, Florida. 

According to the TAS 101-95 specification, five 4 ft by 8 ft wood frames consisting APA 

32/16 span rated sheathing of ¾ in. thickness installed over 2 in. by 6 in. perimeter and 2 

a b 

c 
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in. by 6 in. intermediate supports spaced 24 in. apart was constructed at Polyfoam testing 

laboratory. In addition, the underlayment, namely MSA Quik-Stick HT, was installed on 

the plywood to better simulate the construction procedure in residential buildings. Prior 

to the testing, each tile was drilled with a hole in excess of 1/4 inch steel bolt fastened to 

a load transfer device consisting of a 3/8” washer to avoid premature failure due to stress 

concentration. The tiles were then attached using Polypro AH 160 roof tile adhesive to 

the underlayment on the wood frame which was mechanically fastened to the ground. 

The barrel tiles were attached to 5 inches high metal sheeting which is widely used in 

residential buildings. The average weight of the foam was approximately 27 grams per 

tile. Also, the average overlap between tiles was approximately 3 inches to better 

represent the field conditions.  Figure 9.11 shows the testing specimens. 

      

Figure 7.11: Tile Uplift Testing Specimens 
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Before testing, all the testing specimens were maintained inside the laboratory at 

room temperature for five days. A hydraulic jack with a load cell was assembled to 

functioning as the testing device (see Figure 9.12). Displacement controlled testing (2 

in/min) was performed. 

 

Figure 7.12: Tile Uplift Testing Device 

7.4.1.3 Testing Results and Discussion 

Sixty tiles, including forty Spanish ‘S’ tiles and twenty Mission Barrel tiles, were 

tested at Polyfoam testing laboratory. The failure load for each tile was recorded. Two 

typical failure modes were observed for the Spanish ‘S’ tiles: (1) bonding failure at the 

interface between the tile and the foam, (2) failure within the foam paddy itself. Figure 

9.13 and Figure 9.14 show these two failure modes. However, there was one Spanish ‘S’ 

tile failure with the debonding mode for which the underlayment was also detached from 

Load cell 
Hydraulic jack 
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the deck. Figure 9.15 shows this underlayment detachment from the deck. For barrel tile 

tests, the typical failure mode was the bonding failure at the interface between the tile and 

foam. Figure 9.16 shows this typical failure mode. 

 

 

 

Figure 7.13: Bonding Failure at the Interface between Tile and Foam (Spanish ‘S’ tile) 

 

Figure 7.14: Failure within the Foam Paddy (Spanish ‘S’ tile) 
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Figure 7.15: Underlayment Detachment from the Deck (Spanish ‘S’ tile) 

 

Figure 7.16: Bonding Failure at the Interface between Tile and Foam (Barrel tile) 

Table 7.1 shows all the testing results. The mean failure forces for Spanish ‘S’ 

tiles with 9.5 and 10.5 inches eccentricities were 133.8 lb and 125 lb, respectively.  It is 

noticed that the average of failure load for 9.5 inches eccentricity was about 10 lb larger 

than that for the 10.5 inches eccentricity. In addition, based on TAS Chapter No. 101-95, 

the attachment resistances Mf were also calculated and compared to the values provided 

by the tile manufacturer. The mean attachment resistances of these two eccentricities 

were 55.9 ft-lbf and 56.4 ft-lbf, respectively. For barrel tile test, the mean failure force 

was 457.8 lb and the mean attachment resistance was 185.4 ft-lbf. However, from 
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structural dynamics point of view, if the amount of foam is the same used for both 

eccentricities testing, the mean attachment resistance should be the same. It was indicated 

that the reasonable results were obtained from the tile uplift testing. Also, the results are 

comparable to the attachment resistance specified in Notice of Acceptance (NOA) 

obtained from manufacturers’ website. Table 7.2 shows the comparison results. 

               Table 7.1: Failure Loads for All the Tiles 

Tile No. 
Failure load (lb) 

Spanish ‘S’ tile  
(9.5 inches) 

Spanish ‘S’ tile  
(10.5 inches) 

Barrel tile  
(8 inches) 

1 140.2 134.1 371.2 
2 135.6 102.6 473.6 
3 131.4 117.1 437.6 
4 122.1 135.5 312.4 
5 117 127.1 512.3 
6 99.6 122.8 559 
7 153.4 148.4 438.5 
8 136.1 126.6 575.5 
9 109.4 122.9 571.4 

10 152.2 116.7 367.7 
11 147.8 99.7 402.3 
12 121 113 422.6 
13 148.4 143.4 341.3 
14 117.3 127.7 413.5 
15 129.3 132.7 547.9 
16 149.3 141.4 415.1 
17 139.1 112.9 551.6 
18 150.6 137.1 412.8 
19 162.4 122 571 
20 114.7 115.3 * 

   Note: “*” indicates that the tile was not installed correctly. 
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Table 7.2: Wind Resistance comparison of Tile Uplift Testing to Notice of Acceptance 

 
Source 

Failure Load (ft-lbf) 

Spanish ‘S’ tile 
(9.5 inches) 

Spanish ‘S’ tile 
(10.5 inches) 

Barrel tile 
(8 inches) 

Tile uplift testing 55.9 56.4 185.4 

Notice of Acceptance 61.9 61.9 141.8 

 

7.5 Simulation Engine 

The Matlab based Monte-Carlo simulation engine was created to simulate the 

performance of roof tiles during hurricane winds. In the simulation engine, two parts, 

including the wind load and resistance of roof tiles, were carefully simulated based on the 

analysis presented in the above sections. 

The current building codes are mainly based on wind tunnel testing. FPHLM used 

the modified Components and Cladding wind pressure coefficients from ASCE 7 (2006) 

as the wind load of roof cover but ignored the internal pressure under tile’s cavity. The 

wind pressures obtained from wind tunnel testing described in Section 9.3 were directly 

used as the external pressures for roof tiles. Also, the internal pressures under tile’s cavity 

obtained from WoW full scale testing were used to the underside pressure for the tiles. 

Similar to FPHLM, the Gaussian distribution was selected as the probability density 

functions for wind load of roof tiles. The 3 sec gust wind speed was simulated from 50 

mph to 250 mph with 5 mph increments. Considering the effects of turbulence inherent in 

the hurricane wind and its effect on aerodynamic pressures, the discrete value of the wind 

speed, and the discrete value of the pressure coefficients were randomized for each 
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simulation. The function randn () was used in the MatLAB based code. The mean value µ 

of desired wind load was determined from wind tunnel testing, the coefficient of variance 

(COV) was selected to be 0.1 (10% of the mean value) for wind speed and pressures. 

The Gaussian distribution was also selected as the probability density function of 

the wind resistance of roof tiles. The mean value of resistance of roof tile was determined 

from the tile uplift testing results. However, the safety factor in the analysis of the wind 

resistance of roof tile was removed. The COV was selected to be 0.4 by considering the 

variety of products, quality of workmanship, the ages and roof shapes of residential 

building, and so on. The MatLAB function randn() was also used to randomize the wind 

resistance due to the uncertainties. In addition, to avoid unrealistic wind resistance in the 

simulation process, each wind resistance was checked to ensure that they are bound 

within two standard deviations of the mean wind resistance.  

The final wind load and wind resistance of roof tiles were calculated by using 

Equation 9-1, where 𝑧 is a randomly generated number from standard normal distribution 

using MatLAB function randn(), 𝜇 is the mean value of the wind load or wind resistance, 

and COV is the coefficient of variation of the wind load or wind resistance. The resulting 

𝑥 value was used in the simulation of vulnerability curve of roof tile through Monte Carlo 

method. 

𝑥 = (𝑧 × 𝐶𝑂𝑉 + 1)𝜇                                                          (9-1) 

In addition, only the wind angles of attack used for the full scale testing were 

considered in the simulation. A uniform distribution of wind angles was used. Figure 9.17 

shows the simulation procedure. Three nested loops were used in the simulation: loops 
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for wind angles of attack, 3-second gust wind speed and different roof types (FPHLM, 

Volume II, 2005).  

 

Figure 7.17: Structural Damage Simulation Engine Flowchart 

Two different sets of vulnerability curves were developed with different 

combinations of wind load on and wind resistance of roof tiles. In the first set, the wind 

load was based on wind tunnel testing results without considering the effects of cavity 

internal pressure, similar to the simulation process of FPHLM, and wind resistance was 

from tile uplift testing results. The second set considered the effects of internal pressure 

under tile’s cavity on the net load acting on the roof tiles. Each set was simulated for four 

different roofs, including a monoslope roof (4:12 slope), a gable roof (5:12 slope) and 

two hip roofs (3:12 and 5:12 slopes).  

7.6 Results and Discussions 

In the Monte Carlo Simulation engine, two matrices were generated for a specific 

roof type at a given wind speed, including the wind load matrix and wind resistance 

matrix. The comparison of each corresponding value of these two matrices was used to 
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check the status of each tile. When the wind resistance is larger than the wind load, the 

tile is secured; when the wind resistance is smaller than the wind load, the tile is 

considered fail. The damage level was defined as the ratio of the area of damaged tiles to 

the area of the roof. It is to be noted that in the simulation process the interaction among 

tiles was not taken into account. Such interaction need to be considered in the future 

research.  

Figures 9.18 shows the comparison of vulnerability curve of roof tile for 

monoslope roof (4:12 slope) with and without considering the effects of tiles’ cavity 

internal pressure through 5000 simulations. It is noticed that there are significant 

differences between the vulnerability curves of with and without considering the effects 

of tiles’ cavity internal pressure. If effect of cavity internal pressure is ignored, mean 

damage of roof tile at a given wind speed could be significantly underestimated. For 

example, at wind speed 150 mph, the mean damage ratios of with and without 

considering the effects of tiles’ cavity pressure are approximately 75% and 55%.  

 

Figure 7.18: Comparison of Vulnerability Curve of Roof Tile with and without 
Considering the Effects of Tiles’ Cavity Internal Pressure for Monoslope Roof with 4:12 

Slope 
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Figure 9.19 shows the comparison of vulnerability curve obtained from with and 

without considering the effects of tiles’ cavity internal pressure for gable roof (5:12 

slope). Such comparison still shows significant effects of tiles’ cavity internal pressure on 

vulnerability curve of roof tiles. The mean damage factor underestimation could reach to 

approximately 20%. 

 

Figure 7.19: Comparison of Vulnerability Curve of Roof Tile with and without 
Considering the Effects of Tiles’ Cavity Internal Pressure for Gable Roof with 5:12 Slope 

 

 

Figure 9.20 show the comparison of vulnerability curve of roof tile with and 

without considering the effects of tiles’ cavity internal pressure for hip roofs (3:12 and 

5:12 slope). The same phenomenon was observed through the comparison. Without 

considering the effects of tiles’ cavity internal pressure, the mean damage of roof tiles 

could be significantly underestimated. Such underestimation could reach approximately 

15%. 
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Figure 7.20: Comparison of Vulnerability Curve of Roof Tile with and without 
Considering the Effects of Tiles’ Cavity Internal Pressure for Hip Roofs: (a) 3:12 Slope, 

(b) 5:12 Slopes 

The above vulnerability curves were also compared to the vulnerability curve 

from FPHLM, as shown in Figure 9.21. It is to be noted that the roof cover vulnerability 

curve from FPHLM matches well the vulnerability curve from this research without 

considering the effects of tiles’ cavity internal pressure. It is concluded that reasonable 

agreement was obtained between the vulnerability curves using current procedure using 

wind tunnel data and FPHLM procedure using ASCE 7 provision. 

a 

b 
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Figure 7.21: Roof Cover Vulnerability of South / Key CGB Homes (FPHLM, Volume II, 
2005) 

7.7 Conclusions 

Through the study of simulating the vulnerability curve of roof tiles, it was found 

that the tiles’ cavity internal pressure could significantly affects the mean damage of roof 

tiles at a given wind speed. Without considering the tiles’ cavity internal pressure, the 

mean damage of roof tile could be underestimated by approximately 20%. In addition, it 

is concluded that reasonable agreement was obtained between the vulnerability curves 

using current procedure using wind tunnel data and FPHLM procedure using ASCE 7 

provision. Also, through the tile uplift testing, it was found that reasonable wind 

resistance could be obtained by different loading point eccentricities. Since in process of 

developing the vulnerability curve of roof tiles, the interaction among adjacent tiles were 

not taken into account, such interaction needs to be carefully studied in the future.  
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8 Conclusions and Future Work 

8.1  Conclusions 

Based on the full-scale and wind tunnel studies on the effects of architectural 

features of roof tile and shingle on wind uplift loading, the following conclusions have 

been made. 

1) In addition to simulating the requisite wind characteristics, pressure measurement 

was validated for 6-fan WoW by performing the comparison of area-averaged 

peak pressures obtained from full scale and wind tunnel testing results on bare 

roof decks. 

2) Wind flows with no low-frequency content that simulate correctly the mean wind 

profile in the atmospheric boundary layer are adequate for the simulation of 

pressures induced by atmospheric flows on low-rise buildings with dimensions 

comparable to those of individual homes.  The proposed technique allows the use 

of larger test models allowing the modeling of architectural details, Reynolds 

number improvements enhancing aerodynamic accuracy, and higher spatial 

resolution of pressure measurements.  

3) The effect of tiles’ cavity internal pressure on roof peak pressures was dependent 

on the tile joint (joint between two overlapping tiles) orientation with respect to 

the wind angle of attack. For wind being oblique, nearly normal, and normal to 

the windward eave, the cavity internal pressure contributed to: (i) an increased net 

uplift peak pressure when the tile joints had windward orientation, (ii) a reduced 

net uplift peak pressure when the tile joints had leeward orientation. Thus tile 
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cavity internal pressure could either aggravate or alleviate wind loading on a tile 

based on its orientation on the roof with respect to the wind angle of attack. 

4) The surface geometry of the high profile tiles could generate higher peak 

pressures as compared to those for a bare deck owing to the effect of component 

geometry profile on the local flow pattern. In some cases the peak pressures 

obtained on bare roof deck models could underestimate the peak pressures acting 

on roof tiles by as much as 50%. 

5) The internal pressure coefficients specified in the code provisions are not 

applicable for estimating net wind uplift on roof tiles. 

6) For shingled deck, top and bottom surface pressures can act in the same direction 

and aggravate the wind uplift loading for windward shingles located near the 

center of the roof deck. For windward shingles located away from the center 

region (field zone) and for all leeward shingles, partial air-pressure equalization 

alleviates the wind uplift loading. 

7) The effect of overhang dimensions on roof shingle area-averaged peak is minimal 

and further research on such effects still need to be carefully studied. 

8) The research work also suggested that for different air-permeable roof materials, 

it is better to differentiate the design wind uplift load based on the type of 

materials being used (high profile tiles versus asphalt shingles). 

9) Bare deck modeling without considering the tile geometry effects could 

significantly underestimate design wind uplift on tiled decks by as much as 45% 

for corner and edge tiles. For ridge tiles, the bare deck modeling could 

underestimate design wind uplift by 55 – 69%. Bare deck modeling to estimate 
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design wind uplift on shingled decks may be acceptable for corner, edge, and 

ridge locations but not for field locations it could underestimate the uplift on 

shingles by 30-60%.  

10)  Reasonable agreement was obtained between the vulnerability curves using 

current procedure using wind tunnel data and FPHLM procedure using ASCE 7 

provision. 

11)  Tiles’ cavity internal pressure could significantly affect the vulnerability curve of 

roof tiles. The mean damage ratio for roof tile could be underestimated as high as 

approximately 20%. 

8.2  Future Work 

Based on the current research works, the following future works were suggested 

by the author: 

1) Future tests are planned to further refine the technique and validate it for a 

wide range of model-to-full-scale ratios. Additional research will also 

concentrate on the appropriate ratios between mean speeds in the flows 

with and without low frequency content. 

2) Detailed local flow field measurements are needed to determine whether 

the differences between pressure coefficients on tiled versus bare roof 

decks and shingled versus bare roof deck apply to both separated flow 

near the roof edge or in the field of the roof where there is attached flow. 

This important aspect will be studied in the future when hot-film 

anemometry and requisite flow visualization capability will become 
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available at the WoW facility. Such study will help show how the local 

flow field around a tile induces the uplift.  

3) More detailed research is needed in the future to develop an extensive 

database on the effects of various roofing components (e.g., tiles and 

shingles) on roof peak pressures. Such estimation can improve the 

aerodynamic load provisions for low-rise building roofs by considering 

the effects of the roofing components which are often damaged during 

extreme wind events. 

4) More detailed pressure measurement on full-scale low-rise building is 

needed in the future to develop more accurate vulnerability curve for roof 

covering.  

5) More detailed pressure measurement is needed by using 12-fan Wall of 

Wind, which is the facility capable of simulating the wind characteristics 

of different terrain (e.g., open terrain, suburban terrain), generating 

different hurricane level wind speed and testing the large- and full-scale 

building under controllable and repeatable wind environment. 
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