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ABSTRACT OF THE DISSERTATION 

DYNAMIC MODELING AND ANALYSIS OF SINGLE-STAGE BOOST 

INVERTERS UNDER NORMAL AND ABNORMAL CONDITIONS 

by 

Ali Kashefi Kaviani 

Florida International University, 2012 

Miami, Florida 

 Professor Behrooz Mirafzal and Professor Kang Yen, Co-Major Professors 

Inverters play key roles in connecting sustainable energy (SE) sources to the local 

loads and the ac grid. Although there has been a rapid expansion in the use of renewable 

sources in recent years, fundamental research, on the design of inverters that are 

specialized for use in these systems, is still needed. Recent advances in power electronics 

have led to proposing new topologies and switching patterns for single-stage power 

conversion, which are appropriate for SE sources and energy storage devices. The current 

source inverter (CSI) topology, along with a newly proposed switching pattern, is capable 

of converting the low dc voltage to the line ac in only one stage. Simple implementation 

and high reliability, together with the potential advantages of higher efficiency and lower 

cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to 

the existing SE-based power conversion technologies.  

The dynamic model is one of the most essential requirements for performance 

analysis and control design of any engineering system. Thus, in order to have satisfactory 

operation, it is necessary to derive a dynamic model for the SSBI system. However, 
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because of the switching behavior and nonlinear elements involved, analysis of the SSBI 

is a complicated task.  

This research applies the state-space averaging technique to the SSBI to develop 

the state-space-averaged model of the SSBI under stand-alone and grid-connected modes 

of operation. Then, a small-signal model is derived by means of the perturbation and 

linearization method. An experimental hardware set-up, including a laboratory-scaled 

prototype SSBI, is built and the validity of the obtained models is verified through 

simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to 

investigate the stability and dynamic behavior of the SSBI system over a typical range of 

operation.  
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CHAPTER 1 

INTRODUCTION 

 

Renewable or sustainable energy (SE) technologies such as photovoltaic (PV) 

panels, wind generators (WG), fuels cells (FC), and energy storage (ES) devices, have 

attracted widespread attention during the last decade. This is because their generated 

power is environmentally friendly, and the sources are not subject to the instability of 

price and availability that are common to the conventional energy sources like oil and 

gas. In this way, advancements in semiconductor technology have led to a large 

utilization of SE sources and an increasing penetration of distributed generation (DG) 

units into existing energy infrastructures. In these systems, typically a low dc voltage, 

which is provided from a SE source or ES device, must be boosted and converted to an ac 

voltage with a fixed frequency and amplitude. Power electronic converters have been 

widely used for this purpose.  

Several power electronic circuit topologies, for the purpose of converting the 

output of low dc voltage sources to the line ac voltage, have been proposed in literature 

[1-22]. A conventional power conversion system typically involves two stages of 

conversion, in which, a dc-dc converter is first used to isolate and/or boost the variable 

low-voltage input to a fixed dc output, and then a dc-ac converter (inverter) is employed 

to produce a sinusoidal output for either a stand-alone or a grid-connected conversion 

system. In order to realize the economic and environmental benefits of the low voltage 

dc-sources, like sustainable energy sources and ES systems, a significant amount of effort 
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is required to develop novel power electronic circuit topologies as the interfaces between 

the low voltage dc generation units and local loads and/or the grid.  

The current source inverter (CSI) topology, along with the associated switching 

patterns and control schemes, is capable of converting the low dc voltage to the line ac in 

only one stage. A switching pattern for the three-phase single-stage current source boost 

inverter has been recently proposed in [4]. Besides the simplicity of the proposed 

switching pattern, elimination of the electrolytic capacitors is one of the greatest 

advantages of this inverter, which can lead to a significant improvement in its reliability 

and lifetime. This feature is particularly interesting for photovoltaic energy conversion 

systems, in which the average lifetime of PV panels is about 20 years [6]. 

 

1.1 Motivation 

In DG systems, inverters play key roles in connecting SE sources to the local 

loads and the ac grid. Although there has been a rapid expansion in the use of SE sources 

in recent years, there has been a lack of fundamental research on the design of inverters 

that are specialized for use in DG systems. Hence, there is a need to reconsider the design 

of energy conversion systems based on the specifications, limitations, and requirements 

of different DG technologies. Recent advances in power electronics have led to proposing 

new topologies as well as switching patterns and control algorithms for single-stage 

electric power conversion systems [3-5, 8-22], which are appropriate for SE sources and 

ES devices. The new topologies, including the associated control schemes, can convert a 

low dc voltage to the line ac voltage in only one stage. In comparison with the 

conventional two- or multi-stage conversion systems, the single-stage conversion results 
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in reduction in size and cost of the system as well as an increase in its efficiency and 

reliability. However, like any emerging technology, the single-stage boost inverter 

(SSBI) can have as many disadvantages as advantages. The potential challenges, 

associated with the SSBI, must be addressed, investigated, and solved, in order to 

commercialize the technology, and make it a viable competitor to the existing 

technologies. Interconnection issues between the solid-state power converters and local 

networks (like a utility grid or local loads), stability and dynamics, protection, 

management, active and reactive power control, in either steady-state or transient 

conditions, and performance under abnormal operation, can be considered as some of the 

major technical concerns in design and implementation of the SSBI systems. 

Steady-state and dynamic models are of the most essential requirements for 

performance analysis and control design of any engineering system. Thus, in order to 

have a satisfactory operation, it is necessary to derive the steady-state and dynamic 

models for the SSBI system. The developed models can be linearized around any 

operating point in order to derive the state-space representation of the system, as well as 

the transfer functions associated with different inputs and outputs of the system. These 

models and transfer functions can be used for many studies like frequency response 

analysis, stability, voltage regulation, seamless transition between stand-alone and grid-

connected operational modes, filter design, and performing control studies of the system 

such as controllability and observability, nonlinear and intelligent control, and optimal 

and adaptive control. However, it should be noted that, because of their switching 

behavior and nonlinear elements, the analysis of power electronic converters is generally 

considered as a complicated task [23].  
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1.2 Problem Statement and Research Objectives 

This study aims to derive the state-space-averaged model of the single-stage boost 

inverter, proposed in [4]. Then, the model will be used for sensitivity analysis of the SSBI 

system.  

Since the SSBI can operate in two different modes, i.e. stand-alone and grid-

connected, and each mode is associated with specific circuitry, the problem has to be split 

into two sub-problems. This results in developing two different large-signal state-space-

averaged models, one for the stand-alone and the other one for the grid-connected SSBI 

systems. However, the obtained state-space-averaged models are nonlinear with respect 

to the control parameters, modulation index and angle. In order to consider these 

parameters as inputs to the system, small-signal analyses have to be performed. This can 

be done through perturbation and linearization techniques. 

The small-signal models may be used for calculating the eigenvalues of the SSBI 

system. The placement of the eigenvalues on the s-plane is a measure of the stability of 

the SSBI system. An eigenvalue sensitivity analysis should be performed in order to 

investigate the stability and dynamic behavior of the system over a typical range of 

operation.  

A variety of operating conditions such as short circuit faults, grid interruption, 

islanded operation, component outage, non-ideality of the dc-source, loss of load, pulse 

loads, harmonic loads, unbalanced operation, and the switching of large loads can all be 

considered as abnormal conditions in a single-stage boost-inverter system. However, in 

this study we are mainly interested in addressing the non-ideality of the dc-source.  
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The validity of the findings of these studies has to be verified through simulation 

and experiments. Therefore, the stand-alone and grid-connected SSBI systems, as well as 

their state-space-averaged models must to be simulated, and an experimental hardware 

set-up, including a laboratory-scaled prototype SSBI, has to be built and tested. The 

obtained models are not valid, unless the outputs of the model follow those of the 

simulations and experiments.  

The state-space-averaged models are usually developed for ideal systems, in 

which all non-idealities like voltage drops and delays of the semiconductor devices 

(switches and diodes) as well as non-linearity of the circuit components are neglected. 

However, in practice, these devices do not behave perfectly. Since, the non-idealities 

affect the accuracy of the derived state-space-averaged models, it would be great if the 

averaged models could be modified in a way that the effects of the aforementioned non-

idealities could be included, and the models become practically applicable.   

Accordingly, the objectives of this PhD dissertation can be summarized as 

follows: 

i. Presenting and discussing the concept, topology, switching pattern, control 

strategy, and performance of the recently proposed [4] SSBI,  

ii. Developing the large-signal state-space-averaged models, for the stand-alone and 

grid-connected, SSBI systems, 

iii. Applying perturbation and linearization method in order to derive the small-signal 

models of the SSBI systems, with the control parameters, modulation index and 

angle, as inputs, 

iv. Verifying the validity of the obtained models through simulation and experiments, 
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v. Performing sensitivity analysis by inspecting the loci of the system eigenvalues 

on the s-plane, 

vi. Investigating the performance of the SSBI systems under the abnormal condition 

of variations in the dc-source voltage.  

 

1.3 Dissertation Roadmap 

 The rest of this dissertation is organized as follows: Chapters 2 presents a 

comprehensive review of the existing dc-ac power conversion systems, used for 

sustainable and renewable-based distributed generation applications.  

An extensive literature survey of related studies on the steady-state and dynamic 

modeling of power electronic converters is presented in Chapter 3, in which the previous 

and current achievements are categorized in relation to the work proposed in this 

dissertation. 

 The recently proposed single-stage boost inverter [4] is elaborated upon in 

Chapter 4. The circuit topology, switching pattern, control strategy, and steady-state 

performance of the single- and three-phase SSBIs are explained and discussed in details 

and the concept is proved through simulation and experiments. 

 The large- and small-signal state-space-averaged models of the stand-alone SSBI, 

in the synchronous dq-frame of reference, are developed in Chapter 5. The dynamic 

behavior of system is investigated by analyzing their responses to different inputs. This is 

achieved by applying step changes in the dc-source voltage and the modulation index. 

The validity of the obtained models is verified through simulation and experiments. Then, 
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the loci of the system’s eigenvalues are plotted and the sensitivity of the stability, speed, 

and oscillation of the system with respect to its different parameters are discussed.  

 Chapter 6 includes the same tasks as performed in Chapter 5, but for the grid-

connected SSBI inverter. The differences arise from the presence of the grid, which adds 

to the complexity of the models. Finally, the dynamics of the system, as well as the 

response of the models, under abnormal operation of the dc-source is investigated. 

 Chapter 7 provides the conclusion of the dissertation and identifies future research 

subjects. 

 Overviews of the averaging theory as well as perturbation and linearization 

technique, which are key concepts of this work, are presented in the Appendices. 
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CHAPTER 2 

DC-AC CONVERSION IN DISTRIBUTED GENERATION SYSTEMS 

 

This chapter provides a review of the history and contribution of existing 

literature that relates to dc-ac power conversion systems. The focus of the work is on 

sustainable- and renewable-based distributed generation systems, in which the converters 

have to produce high voltages from low voltage dc inputs.  

This chapter contains five sections. The six-step inverter is introduced in Section 

1. Four major types of pulse-width-modulated inverters are presented in Section 2. 

Section 3 reviews three common configurations of multilevel inverters. The background 

work, related to existing boost-inverting power conversion systems for distributed 

generation applications are reviewed in Section 4, and Section 5 is the summary of the 

chapter.   

 

2.1 Six-Step Inverter 

The six-step inverter, with an H-bridge topology, is the simplest type of dc-ac 

conversion system. The three-phase H-bridge converter topology, which serves as the 

basis for nearly all three-phase inverters, is presented in Figure 2.1. Metal-oxide field-

effect transistors (MOSFETs) have been used as switches in this figure. However, 

different types of semiconductor controllable switches, like bipolar junction transistors 

(BJTs), insulated-gate bipolar junction transistors (IGBTs), and metal-on-silicon 

controlled thyristors (MCTs), can be used in this inverter [28].  
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Figure 2.1: Six-step inverter 

 

 

Figure 2.2: Gate signals and line-to-line voltages of six-step inverter 
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The gate signals that are driving the switches of a six-step inverter, and its line-to-

line output voltages are shown in Figure 2.2, where the hat sign (   �) denotes the logical 

complement. As can be seen in this figure, each switch conducts for 180 electrical 

degrees per each switching cycle. Also, using this figure, one can calculate the line-to-

line rms voltage of the six-step inverter: 

𝑉𝐿𝐿 = � 1
2𝜋
𝑉𝑑𝑐2 �

4𝜋
3
� = �2

3
𝑉𝑑𝑐                                                                                        (2.1) 

This equation indicates that the output voltage of the six-step inverter is only a function 

of the applied dc voltage; therefore, the output voltage cannot be regulated unless the 

applied dc voltage is adjusted. High total harmonic distortion (THD), especially at low-

order harmonics of {5, 7, 11, 13, 17, 19, …}, is another major disadvantage of the six-

step inverter. This is due to the square waveform of the generated voltage.  

  

2.2 Pulse-Width-Modulated Inverter 

 Similar to the six-step inverter, the output line-to-line voltage of this type of 

inverter can be at three voltage levels, i.e. −𝑉𝑑𝑐, 0, and 𝑉𝑑𝑐. However, a pulse-width-

modulation (PWM) strategy allows the rms voltage (and amplitude of the fundamental 

component) to be readily controlled. There are various schemes to pulse-width modulate 

the inverter switches. Four major types of these schemes, i.e. sinusoidal PWM, third-

harmonic injection, selective harmonic elimination, and space-vector modulation, will be 

discussed in the following subsections.  
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2.2.1 Sinusoidal Pulse-Width-Modulation (SPWM) 

Sinusoidal pulse-with-modulation is based on generating a sequence of voltage 

pulses at a certain frequency and sinusoidal modulated pulse-widths. This can be 

achieved through comparing three sine-wave control voltages, 𝑣𝑐,𝑎, 𝑣𝑐,𝑏, and 𝑣𝑐,𝑐, with a 

triangular waveform, 𝑣𝑡𝑟𝑖, which is called the carrier. The ratio between the amplitude of 

the control voltages, 𝑉𝑐, and peak of the triangular voltage, 𝑉�𝑡𝑟𝑖,  is defined as the 

modulation index, 𝑚 = 𝑉𝑐 𝑉�𝑡𝑟𝑖⁄ . The frequency of the triangular waveform, which is 

usually kept constant, establishes the inverter switching frequency, and the frequency of 

the control voltages determines the output voltage frequency. Because of its simplicity 

and ease of implementation, the SPWM is widely used in industrial applications [84]. 

The concept of PWM, applied to a three-phase H-bridge converter topology is shown in 

Figure 2.3.  

By changing the modulation index, 𝑚, the widths of pulses vary, which results in 

variations in the amplitude of the output voltage. Another advantage of the SPWM over 

six-step switching pattern is its higher quality voltage waveform. The harmonics in the 

output voltage appears as sidebands, centered around the switching frequency, 𝑓𝑠, and its 

multiples. If the ratio between the switching frequency and the desired output frequency, 

𝑓1, is defined as the modulation frequency ratio, i.e. 𝑚𝑓 = 𝑓𝑠 𝑓1⁄ , the frequency spectrum 

of the output voltage of a SWPM inverter contains harmonics orders around 𝑚𝑓, 2𝑚𝑓, 

3𝑚𝑓, and so forth [25]. It is also worth mentioning that for a frequency modulation ratio 

𝑚𝑓 ≥ 9 (which is always true except for very high-power applications), the harmonic 

amplitudes are almost independent of 𝑚𝑓. Moreover, odd integer modulation frequency 
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ratios are recommended for avoiding even-order harmonics, and in particular a small dc 

component, at the output voltage [85].  

 

Figure 2.3: Sinusoidal PWM: control and carrier wavefroms, gate signals, and line-to-line voltages  
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sufficiently large, i.e. 𝑚𝑓 ≥ 21 [25]. However, it should be kept in mind that, increasing 

𝑚𝑓 results in higher switching frequencies, which increase the switching losses and 

decrease the efficiency. 

 

Figure 2.4: Variations of  the fundamental component of the output voltage versus the modulation index 
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component of line-to-line output voltage of the SPWM inverter, 〈𝑉𝐿𝐿〉1, is shown in 

Figure 2.4.  

 

2.2.2 Third-Harmonic Injection 

As was mentioned in the previous section, the maximum value of high-quality 

output voltage can be achieved at the upper bound of the linear range of operation, 𝑚 =

1. This is one of the main limitations of SPWM. However, this limit can be increased by 

introducing a third harmonic to the control voltage. It has been shown in [28] that, with a 

proper choice of the fundamental and third-harmonic components for the control voltage, 

the inverter can output 15% more voltage without suffering from the consequences of 

over-modulation.  

 

2.2.3 Selective Harmonic Elimination 

Selective harmonic elimination is another PWM method that has low baseband 

distortion [87]. This method is particularly suitable for low switching frequency inverters, 

which are either high-power or have slow switching devices. This method is based on the 

idea of chopping the square-waveform of the six-step inverter at some certain angle-

intervals in order to eliminate some specific low-order harmonics from the output voltage 

waveform [86]. An example of selective harmonic elimination with two degrees of 

freedom, corresponding to one notch between 0 to 𝜋 2⁄ , is demonstrated in Figure 2.5. In 

order to avoid even harmonics, it is assumed that the output waveform has quarter-wave 

and half-wave symmetry. The periodic waveform of line-to-line voltage, 𝑣𝑎𝑏, can be 

written as follows: 
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𝑣𝑎𝑏(𝑡) = ∑ 𝑏ℎ𝑠𝑖𝑛(ℎ𝜔𝑡)∞
ℎ=1                                                                                            (2.2) 

where, the Fourier coefficient 𝑏ℎ is defined as: 

𝑏ℎ = 2
𝜋 ∫ 𝑣𝑎𝑏(𝑡)𝑠𝑖𝑛(ℎ𝜔𝑡)𝜋

0 𝑑(𝜔𝑡)                                                                                  (2.3) 

Because of the quarter-wave symmetry in Figure 2.5, 𝑏ℎ can be rewritten as: 

𝑏ℎ = 4
𝜋 ∫ 𝑣𝑎𝑏(𝑡)𝑠𝑖𝑛(ℎ𝜔𝑡)𝜋 2⁄

0 𝑑(𝜔𝑡)                                                                              (2.4) 

As a result: 

𝑏ℎ = 4
𝜋
�∫ 𝑣𝑎𝑏(𝑡)𝑠𝑖𝑛(ℎ𝜔𝑡)𝛼1
0 𝑑(𝜔𝑡) + ∫ 𝑣𝑎𝑏(𝑡)𝑠𝑖𝑛(ℎ𝜔𝑡)𝜋 2⁄

𝛼2
𝑑(𝜔𝑡)�,                          (2.5) 

which can be simplified to: 

𝑏ℎ = 4𝑉𝑑𝑐
𝜋ℎ

[1 − 𝑐𝑜𝑠(ℎ𝛼1) + 𝑐𝑜𝑠(ℎ𝛼2)]                                                                          (2.6) 

This equation can be solved for 𝛼1 and 𝛼2, to eliminate two selected harmonics. For 

instance, the following set of equation provides 𝛼1 and 𝛼2 for elimination of the 3th and 

5th order harmonics from the line voltage waveform. 

�1 − 𝑐𝑜𝑠(3𝛼1) + 𝑐𝑜𝑠(3𝛼2) = 0
1 − 𝑐𝑜𝑠(5𝛼1) + 𝑐𝑜𝑠(5𝛼2) = 0

� ⇒ �𝛼1 = 17.83°
𝛼2 = 37.97°

�                                                        (2.7) 

 

Figure 2.5: Waveform of a selective harmonic elimination with two degrees of freedom 
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Accordingly, the methodology can be extended to eliminate more harmonic 

orders by introducing more notches between 0 to 𝜋 2⁄  (to increase the degrees of freedom 

of the equations).  

 

2.2.4 Space-Vector Modulation 

Space-vector pulse-with-modulation (SVPWM) is another technique of driving a 

voltage source three-phase H-bridge inverter, for generating voltage waveforms that are 

devoid of low-frequency harmonic content [90]. The approach is based on the space-

vector representation of the output voltages, in which the three inverter voltages are 

represented by a voltage space-vector, 𝑈, defined as: 

𝑈 = 2
3
�𝑉𝑎𝑏 + 𝑒𝑗2𝜋 3⁄ 𝑉𝑏𝑐 + 𝑒𝑗4𝜋 3⁄ 𝑉𝑐𝑎�                                                                           (2.8) 

In total, the voltage source inverter (VSI) can operate in eight different states that 

are associated with eight switching positions. The switching table and the corresponding 

voltage space-vectors are presented in Table 2.1 and Figure 2.6, respectively. As can be 

seen in the figure, a reference voltage space-vector, 𝑈𝑟𝑒𝑓, can be developed by adding its 

two adjacent space-vectors. For instance, when the reference voltage space-vector is 

placed in Sector (I), it can be produced by operating the inverter is States 1 and 2, for 

duty ratios of 𝑑1 and 𝑑2, respectively. These duty ratios can be calculated by the well-

known law of sines, which is: 

𝑑1|𝑈1|
𝑠𝑖𝑛 (𝜋3−𝛾)

= 𝑑2|𝑈2|
𝑠𝑖𝑛 (𝛾)

= �𝑈𝑟𝑒𝑓�

𝑠𝑖𝑛 (2𝜋3 )
                                                                                               

(2.9) 

Substituting the voltage space-vectors of Table 2.1 provides 𝑑1 and 𝑑2 as the following: 
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�
𝑑1 = �𝑈𝑟𝑒𝑓�

𝑉𝑑𝑐
𝑠𝑖𝑛 �𝜋

3
− 𝛾�

𝑑2 = �𝑈𝑟𝑒𝑓�
𝑉𝑑𝑐

𝑠𝑖𝑛(𝛾)         
�                                                                                              (2.10) 

It should be noted that, these duty ratios are only valid if 𝑑1 + 𝑑2 ≤ 1, i.e. when 𝑈𝑟𝑒𝑓 lies 

within the largest circle that can be circumscribed within the boundaries of the hexagon 

connecting the voltage space-vectors in Figure 2.6. The conditions that the reference 

voltage space-vector exceed the boundaries of the incircle, which is �𝑈𝑟𝑒𝑓� > 𝑉𝑑𝑐, is 

called over-modulation, which results in an increase in the harmonic content of the output 

voltage. On the other hand, once 𝑑1 + 𝑑2 < 1, the inverter has to operate in the zero state 

(either State 0 or State 8, or a combination of the both) for the rest of the switching cycle. 

This interval corresponds to a duty ratio of 𝑑0 = 1 − 𝑑1 − 𝑑2.   

It is also worth mentioning that to obtain the minimum switching frequency of 

each inverter leg, it is necessary to arrange the switching sequence in such a way that the 

transition from one state to the next is performed by switching only one inverter leg. 

 

Table 2.1: Switching table and output voltages of a three-phase inverter 

 State Sectors 𝑆𝑎𝑝/𝑆𝑎𝑛����� 𝑆𝑏𝑝/𝑆𝑏𝑛���� 𝑆𝑐𝑝/𝑆𝑐𝑛���� 𝑉𝑎𝑏 𝑉𝑏𝑐 𝑉𝑐𝑎 Space-Vector, 𝑈  
 0 All 0 0 0 0 0 0 𝑈0 = 0  
 1 VI, I 1 0 0 𝑉𝑑𝑐 0 −𝑉𝑑𝑐 𝑈1 = 2 √3⁄ 𝑉𝑑𝑐𝑒𝑗𝜋 6⁄   
 2 I, II 1 1 0 0 𝑉𝑑𝑐 −𝑉𝑑𝑐 𝑈2 = 2 √3⁄ 𝑉𝑑𝑐𝑒𝑗𝜋 2⁄   
 3 II, III 0 1 0 −𝑉𝑑𝑐 𝑉𝑑𝑐 0 𝑈3 = 2 √3⁄ 𝑉𝑑𝑐𝑒𝑗5𝜋 6⁄   
 4 III, IV 0 1 1 −𝑉𝑑𝑐 0 𝑉𝑑𝑐 𝑈4 = 2 √3⁄ 𝑉𝑑𝑐𝑒𝑗7𝜋 6⁄   
 5 IV, V 0 0 1 0 −𝑉𝑑𝑐 𝑉𝑑𝑐 𝑈5 = 2 √3⁄ 𝑉𝑑𝑐𝑒𝑗3𝜋 2⁄   
 6 V, VI 0 0 1 𝑉𝑑𝑐 −𝑉𝑑𝑐 0 𝑈6 = 2 √3⁄ 𝑉𝑑𝑐𝑒𝑗11𝜋 6⁄   
 7 All 1 1 1 0 0 0 𝑈7 = 0  
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Figure 2.6: Inverter output voltage space-vectors 
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performance and cost in high-voltage and high-power systems [11].  

The output voltage waveform of the multilevel inverter is composed of a number 

of levels of voltage, typically obtained from capacitors or dc voltage sources. The so-

 

𝑈1  

𝑈2 

𝑈3  

𝑈4  

𝑈5 

𝑈6  

(I) 

𝑈0,𝑈7 

(II) 

(III) 

(IV) 
(V) 

(VI) 

𝑈∗  
𝑑1𝑈1  

𝑑2𝑈2  

 Fixed Axis 
  

𝜔𝑡  
𝛾  



19 
 

called multilevel inverter starts at three levels, and as the number of levels increases the 

output THD decreases, and once the number of levels reaches infinity, the THD reaches 

zero. Multilevel inverters are categorized into three general topologies; diode-clamped 

multilevel inverter (DCMI), flying-capacitor multilevel inverter (FCMI), and cascaded 

multilevel inverter with separate dc sources.  

 

2.3.1 Diode-Clamped Multilevel Inverter (DCMI) 

This multilevel inverter has series capacitors at the dc-bus in order to divide the 

voltage into a set of voltage levels. In general, M-1 capacitors are used in an M-level 

diode-clamped inverter. It should be noted that the level of multilevel inverters are 

defined as the number of phase voltage levels, while the number of line-to-line voltage 

levels of a M-level inverter is 2M-1. A three-phase three-level diode-clamped inverter is 

shown in Figure 2.7. Each of the three phases share a common dc-bus, which has been 

subdivided by two capacitors into three levels. The voltage across each capacitor is 

𝑉𝑑𝑐 2⁄ , and the voltage stress across each semiconductor switch is limited to 𝑉𝑑𝑐 2⁄  

through the clamping diodes. Table 2.2 lists the output phase voltage levels, with the 

negative dc rail voltage as a reference (point n), and the corresponding output line-to-line 

voltages are presented in Figure 2.8. 

 

Table 2.2: Switching table of a three-level diode-clamped inverter 

 𝑣𝑎𝑛  𝑆𝑎𝑝1  𝑆𝑎𝑝2  𝑆𝑎𝑛1  𝑆𝑎𝑛2  
 𝑉𝑑𝑐  1  1  0  0  
 𝑉𝑑𝑐 2⁄   0  1  1  0  
 0  0  0  1  1  
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As can be seen in Figure 2.8, the output voltage waveform of a multilevel inverter 

has half-wave and quarter-wave symmetry. Thus, its Fourier series can be written as (2.2) 

and the Fourier coefficients can be obtained according to (2.4). In general, the Fourier 

coefficients of the line-to-line output voltage of an M-level inverter are obtained as the 

following: 

𝑏ℎ = �
4𝑉𝑑𝑐
𝑀ℎ𝜋

∑ 𝑐𝑜𝑠(ℎ𝛼𝑚)𝑀−1
𝑚=1    ;    𝑓𝑜𝑟 𝑜𝑑𝑑 ℎ𝑠  

0                                      ;    𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 ℎ𝑠
�                                                            (2.11) 

 

 

 

Figure 2.7: Three-phase three-level diode-clamped inverter 
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Figure 2.8: Line-to-line voltage waveform for a three-level diode-clamped inverter 

 

 

Figure 2.9: Three-phase three-level flying-capacitor inverter 
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2.3.2 Flying-Capacitor Multilevel Inverter (FCMI) 

The flying-capacitor multilevel inverter has a similar structure to the diode-

clamped inverter except that is uses capacitors instead of clamping diodes. This inverter 

uses a ladder structure of dc-side capacitors, where each capacitor has a different voltage 

from the other capacitors [94-96]. The size of the voltage increment between two 

capacitors determines the size of the voltage levels in the output waveform. The circuit 

topology of three-level flying-capacitor inverter is shown in Figure 2.9. 

 

Figure 2.10: Three-phase three-level flying-capacitor inverter 

 

 In addition to the (M-1) dc-bus capacitor, an M-level flying-capacitor inverter 

requires (M-1)×(M-2)/2 inner-loop (auxiliary) capacitors. It can be seen in Figure 2.9 that 

all phase legs share the same dc-link capacitors, 𝐶1 and 𝐶2. Also, the inner-loop balancing 
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capacitors for each phase leg (𝐶𝑎, 𝐶𝑏 and 𝐶𝑐) are independent from those for the other 

legs. An advantage of the flying-capacitor multilevel inverter is that several switching 

combinations may be used to synthesize an output voltage. For instance, the switching 

table of Table 2.2 is one of the possible switching combinations for the three-level flying 

capacitor inverter of Figure 2.9.   

 

2.3.3 Cascaded-Inverters with Separate dc-Sources  

Cascaded-inverters with separate dc-sources are another prevalent structure for 

the multi-level inverter. Its functionality is similar to the other two types of multilevel 

inverters of the previous subsections, but it synthesizes a desired output voltage 

waveform from several independent dc-sources. Photovoltaic panels, fuel cells, and 

batteries, can be some of the possible choices. A three-phase, three-level configuration of 

the cascaded-inverter is illustrated in Figure 2.10. As can be seen, it is a combination of 

three Y-connected single-phase cascaded-inverters. Each inverter level can generate three 

different voltage outputs, e.g. +𝑉𝑎1, 0, and +𝑉𝑎1, by connecting the dc-source to the ac 

output by different combinations of the switches. 

 

2.3.4 A Comparison among the Multilevel Inverters  

A comparison between the three introduced types of multilevel inverters is 

presented in Table 2.3. It shows that all inverters need the same number of switches and 

main diodes in order to generate the same number of levels. The flying-capacitor and 

cascaded-inverters do not require clamping diodes, while the flying-capacitor inverter 

needs inner-loop balancing capacitors. Technically, the cascaded-inverter requires the 
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least number of components, apart from the voltage sources. It has a modular circuit 

layout and its packaging is simple. The reason is that all levels have the same structure 

and no clamping diodes or balancing capacitors are needed. Moreover, by adding or 

removing the H-bridge cells, the number of output voltage levels can be easily adjusted.  

 

Table 2.3: Comparison of power components, required per phase leg, among the multilevel inverters 

 Inverter Configuration  Diode-Clamped  Flying-Capacitors  Cascaded-Inverters  
 Switches  2(M-1)  2(M-1)  2(M-1)  
 Main Diodes  2(M-1)  2(M-1)  2(M-1)  
 Clamping Diodes  (M-1)× (M-2)  0  0  
 dc-Bus Capacitors  (M-1)  (M-1)  (M-1)/2  
 Balancing Capacitors  0  (M-1)× (M-2)/2  0  

 

2.4 DC-DC Converters for DG Applications 

Dc-ac power converters (inverters) play key roles in connecting sustainable 

energy (SE) sources, and energy storage (ES) devices, to local loads and the utility grid. 

The power electronic interface circuits of the DG units perform several important tasks in 

order to make the output power of the SE sources and ES devices adequate for electric 

appliances. Typically, the first task is to boost the dc input voltage to a desired (rated) 

voltage level and invert the dc voltage to an ac voltage with a fixed frequency and 

amplitude. In the case of photovoltaic (PV) systems, it is desirable to keep the number of 

PV panels as low as possible. This means that the amplitude of the generated dc voltage 

will be lower than the grid voltage (in grid-connected mode) or the desirable load voltage 

(in stand-alone mode). Meanwhile, due to the nature of the ES sources, their generated 

power is usually varying by time. For instance, the output voltage and power of a PV 

panel vary in a wide range based on the operating conditions. Some of the affecting 
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variables are incident solar radiation, ambient temperature, deposited dust and dirt on the 

panel surface, and the load current. The second task of the power electronic conversion 

system is to utilize the maximum available power of the SE sources. Besides the 

aforementioned functionalities, DG inverters have to meet some requirements like 

stability, efficiency, reliability, and power quality, which are common to all conversion 

systems. Several power electronic circuit topologies, along with the associated switching 

patterns and control algorithms, have been presented in literature, which perform the 

discussed tasks and address the aforementioned issues [1-22]. 

 

Figure 2.11: Basic single-stage power conversion system, consisting of series connected dc-sources 

 

2.4.1 Basic Single-Stage Conversion System 

A simple way to increase the output voltage of SE sources is to connect a number 

of them in series (to develop a high dc voltage without utilizing a boost circuit), and use a 

central pulsed width modulated (PWM) buck voltage source inverter (VSI) to produce an 

ac voltage [7] (see Figure 2.11). However, because of the high cost of PV panels, this 

series configuration seems as an expensive solution. In addition, putting a number of 

components in series usually lowers the reliability of the system. This is because the 

failure of one of the panels, or outage of the inverter, results in a complete loss of 
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generation [7]. Moreover, mismatch of the series PV panels results in a reduction in the 

utilized energy, which can be interpreted as low efficiency [1].   

 

2.4.2 Conventional Two-Stage Conversion System 

In Figure 2.12, a step-up transformer is utilized at line-frequency to boost the 

output voltage of the PWM buck inverter. This well-known topology is robust and 

relatively efficient and reliable. Additionally, it can be used in module-integrated (or 

module-oriented) applications, which provides a higher flexibility than the topology of 

Figure 2.11. Besides that, each module has its own maximum power point tracking 

(MPP) system that increases the overall energy utilization. Its plug-and-play feature is 

also attractive, in which a complete PV system is achieved at a low investment cost [7]. 

On the other hand, this solution has some disadvantages, such as huge size, loud acoustic 

noise, and relatively high cost. Furthermore, the transformer should be designed for a 

relatively wide range of power, which leads to a low system efficiency. Overall, this 

topology is regarded as a poor solution [1]. 

 

Figure 2.12: Transformer-based two-stage conversion system 
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Figure 2.13: Transformer-less two-stage conversion system, consisting of a dc-dc boost converter cascaded 

with a PWM buck VSI 

 

Transformer-less two-stage power conversion systems are one of the most 

commonly used interface circuits in SE-based DG applications. As can be seen in Figure 

2.13, in this two-stage conversion topology, a dc-dc converter and an inverter are 

cascaded. In the first stage, the dc-dc converter boosts and regulates the dc-bus voltage at 

a fixed level, and in the second stage, the PWM buck VSI converts the regulated dc 

voltage into an ac voltage. Since this topology does not contain a transformer, it has less 

magnetic components and higher efficiency. In comparison with the topology displayed 

in Figure 2.12, this topology requires two individual control systems and uses one more 

solid-state switch, as well as an electrolytic capacitor bank at the dc-bus. This will result 

in a lower reliability (and perhaps efficiency), and a more complicated control scheme 

[7].  

 

2.4.3 Multilevel Inverter 

Three-phase multilevel inverters can also be employed to interface the output of 

several SE sources with the grid [2, 8]. Figure 2.7 presents the circuit diagram for the 
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connection of a generic SE source to the output circuit by means of a diode-clamped 

three-level inverter. The SE source and additional components are represented as a 

voltage source, connected to the dc-side of the inverter. Like most inverters, multilevel 

inverters are connected to a grid through an inductive filter. A general model for the 

three-level inverter is presented in [9-10]. This model describes the dynamics of the dc- 

and ac-sides, including the dynamics of dc and ac neutral points. Although the multilevel 

inverters are effective for this application, the added complexity of the circuit and the 

additional components reduce both the overall efficiency, and reliability of the system, 

and may raise the overall cost of the power electronic interface [2].  

 

2.4.4 Z-Source Inverter 

The z-source inverter has the capability of boosting and inverting the dc voltage 

in a single stage, with fewer solid-state switches in comparison with the multilevel 

inverters and the above-mentioned two-stage topologies depicted in Figures 2.13 and 

2.14 [3].  

The z-source inverter is a combination of a voltage source inverter, and a current 

source inverter. The circuit diagram of this inverter topology is shown in Figure 2.14. 

This inverter topology transforms the dc input voltage into the grid voltage, while the dc 

voltage can be above or below the grid voltage. The z-source inverter contains relatively 

high input current ripples, which may cause high stresses on the dc-link inductors and 

capacitors [12]. The application of this topology was reported by [13-15] as a grid-

connected single-stage inverter for distributed generation systems, specialized for 

residential PV applications. 
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Figure 2.14: Single-stage Z-source inverter 

 

2.4.5 Single-Stage Boost Inverter 

In the last several decades, current source inverters have been replaced with 

voltage source inverters in many industrial applications. However, the CSI topology in 

conjunction with an appropriate control scheme can form a single-stage boost inverter 

that can be used for SE conversion systems. Several investigations have been recently 

reported on the application of CSIs as single-stage boost inverters for SE conversion 

systems [16-19]. As can be seen in Figure 2.15, the current source inverter utilizes a 

series inductor at the dc-link and a capacitor bank at the ac-side. In [4], a new switching 

pattern has been proposed for the CSIs in order to boost and invert the dc voltage to a 

fixed voltage magnitude and fixed frequency for both stand-alone and grid-connected 

conditions. Besides the simplicity of the control scheme, elimination of dc-bus 

electrolytic capacitors is one of the greatest advantages of the single-stage boost inverter 

over the conventional two-stage converter, the multilevel inverter, and the Z-source 

inverter. This will significantly improve the reliability of the overall system, particularly 

in photovoltaic (PV) energy conversion systems, in which the mean-time-to-the-first-
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failure of inverters is about 5 years and the average lifetime of PV panels is about 20 

years [6]. These attractive features have turned the attention of some of the latest research 

studies in the field of power electronics, to modeling and control of single-stage boost 

inverter [20-22]. This topology, along with a modified space-vector pulse-width-

modulation (SVPWM) technique, the so-called phasor pulse-width-modulation (PPWM), 

is the core of this dissertation, which will be elaborated upon in Chapter 4, and its state-

space-averaged model will be derived in Chapters 5 and 6.  

 

Figure 2.15: Single-stage current source boost inverter 

 

2.5 Summary 

 Extensive research has been carried out on the related work to dc-ac power 

conversion systems, used in distributed generation applications. The most common 

converter topologies for grid-connected and stand-alone operations of sustainable energy-

based distributed generation system have been reviewed and compared. It should be 

mentioned that, besides the converter topologies reviewed in this chapter, the resonant 

converters are another major type of power electronic converters, which can be used for 
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the same applications. However, since they are not related to the subject of this 

dissertation, they have not been discussed.  

The next chapter provides a review of the existing techniques for steady-state and 

dynamic modeling of PWM converters. It includes the state-space averaging method and 

Park’s transformation into rotating the frame of reference, which are necessary for 

accomplishing this dissertation. 
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CHAPTER 3 

MODELING OF POWER ELECTRONIC CONVERTERS 

 

This chapter presents a review of the existing techniques for steady-state and 

dynamic modeling of power electronic converters. Moreover, the fundamentals of the 

states-space averaging technique and reference-frame theory, which will be used in 

Chapters 5 and 6 for dynamic modeling of the single-stage boost inverters, are provided.   

This chapter contains seven sections. The steady-state modeling of dc-dc and dc-

ac converters are discussed in Sections 1 and 2, respectively. Section 3 presents the state-

space averaging technique. Dynamic modeling of dc-dc and dc-ac converters are 

elaborated upon in Sections 4 and 5, respectively. The reference-frame theory is reviewed 

in Section 6, and Section 7 is the summary of the chapter. 

 

3.1 Steady-State Modeling of DC-DC Converters 

Similar to the existing topologies, numerous studies have been reported on the 

modeling and analysis of power electronic circuits in steady-state and dynamic conditions 

[23-58]. Under steady-state conditions, the voltage and current waveforms of any element 

in switching circuits can be found by the use of two basic principles; (1) inductor volt-

second balance and (2) capacitor amp-second or charge balance [24]. These concepts 

are particularly useful for analyzing dc-dc converters. For example, the inductor volt-

second balance can be used for calculating the voltage and current conversion ratios in a 

dc-dc boost converter [25]. The schematic diagram as well as inductor’s current and 

voltage (over one switching cycle, 𝑇𝑠) of a boost converter are presented in Figure 3.1. 
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The inductor volt-second principle implies that the hatched areas 𝐴1 and 𝐴2 are equal. As 

a result: 

𝑉𝑑𝑐𝐷𝑇𝑠 = (𝑉𝑑𝑐 − 𝑉𝑜)(1− 𝐷)𝑇𝑠                                                                                     (3.1) 

where, 0 ≤ 𝐷 < 1 denotes the duty ratio of the converter. The other parameters are as 

indicated on the circuit diagram. Manipulating this equation provides the voltage 

conversion ratio and the input-to-output transfer function of the dc-dc boost converter as 

[25]: 

𝑉𝑜
𝑉𝑑𝑐

= 1
1−𝐷

⇒ 𝑉𝑜 = 𝑉𝑑𝑐
1−𝐷

 .                                                                                                  (3.2) 

Accordingly, one can calculate the current conversion ratio in the same way.  

 

Figure 3.1: Inductor volt-second balance in a dc-dc boost converter, a) Schematic diagram of the boost 

converter, b) voltage and current profiles of the inductor under steady-state conditions 

 

Although the system inputs, 𝑉𝑑𝑐 and 𝐷 are assumed constants (invariant by time), 

the transfer function of (3.2) can be perturbed around its operating point in order to 
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terms of small variations in the system inputs, i.e. ∆𝑉𝑑𝑐 and ∆𝐷. For this purpose, it is 

required to replace 𝑋 → 𝑋 + ∆𝑋, for 𝑋 = {𝑉𝑑𝑐,𝐷,𝑉𝑜}, and substitute them in the transfer 

function (3.2), which is: 

𝑉𝑜 + ∆𝑉𝑜 = 𝑉𝑑𝑐+∆𝑉𝑑𝑐
1−(𝐷+∆𝐷)                                                                                                       (3.3) 

Replacing (3.2) in (3.3) and rearranging it, with the assumption of 

|𝐷| ≫ |∆𝐷| ⇒ (1 − 𝐷 − ∆𝐷)(1 − 𝐷) ≈ (1 − 𝐷)2                                                       (3.4) 

provides a linear relation between the variation of the system output and variations of its 

input: 

 ∆𝑉𝑜 ≈
1

(1−𝐷)∆𝑉𝑑𝑐 + 𝑉𝑑𝑐
(1−𝐷)2 ∆𝐷                                                                                       (3.5) 

 It should be emphasized that (3.5) is not a dynamic equation. It is just showing 

how the steady-state operating point of the dc-dc boost inverter changes, if its inputs 

vary. 

 

3.2 Steady-State Modeling of DC-AC Converters 

Averaging-based methods have been widely used in literature for calculating the 

ac outputs of SPWM and SVPWM inverters under steady-state conditions [25-28]. These 

are discussed in the following subsections. 

 

3.2.1 Steady-State Model of SPWM Inverter 

The sinusoidal pulse-with-modulation (SPWM) technique has been elaborated 

upon in Chapter 2. The application of averaging in calculating the phase to neutral 

voltage of a three-phase SPWM voltage source inverter is presented in Figure 3.2, where 
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𝑣𝑡𝑟𝑖 and 𝑣𝑐,𝑎 are the triangular voltage and control voltage for phase a, respectively, and 

𝑉�𝑡𝑟𝑖 denote the peak value of the triangular waveform. The average value of 𝑣𝑎𝑛 over one 

switching cycle, 𝑇𝑠, can be can be written as follows: 

�̅�𝑎𝑛(𝑡, 𝑡 + 𝑇𝑠) = 1
𝑇𝑠
��1 − 𝑣𝑐,𝑎(𝑡)

𝑉�𝑡𝑟𝑖
� 𝑇𝑠
2
𝑉𝑑𝑐
2
− �1 + 𝑣𝑐,𝑎(𝑡)

𝑉�𝑡𝑟𝑖
� 𝑇𝑠
2
𝑉𝑑𝑐
2
� = 𝑣𝑐,𝑎(𝑡)

𝑉�𝑡𝑟𝑖

𝑉𝑑𝑐
2

                     (3.6) 

If the control voltage is defined as follows: 

𝑣𝑐,𝑎 = 𝑚𝑉�𝑡𝑟𝑖𝑠𝑖𝑛(2𝜋𝑓1𝑡)                                                                                                 (3.7) 

where 𝑚 ≥ 0 is the modulation index of the PWM signals, and 𝑓1 is the fundamental 

frequency of the desired output voltage, let us say 𝑓1 = 60 𝐻𝑧. Then, the fundamental 

component of 𝑣𝑎𝑛 will be obtained as: 

𝑣𝑎𝑛1 = 𝑚𝑉𝑑𝑐
2
𝑠𝑖𝑛(2𝜋𝑓1𝑡)                                                                                               (3.8) 

 

Figure 3.2: Steady-state modeling of a three-phase sinusoidal PWM inverter by averaging, a) schematic 

diagram of the inverter, b) PWM signals and the voltage between phase A and the neutral 
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The same concept can be applied to derive the steady-state model of the three-

phase space-vector PWM voltage source inverter. 

 

3.2.2 Steady-State Model of SVPWM Inverter 

The space-vector pulse-width-modulation (SVPWM) and its fundamental 

equations have been discussed in the previous chapter. The application of averaging in 

calculating line-to-line voltage (between phases a and b) of the three-phase SVPWM 

voltage source inverter in Sector (I) is presented. The methodology can be easily 

extended to other phases and sectors. Recalling from Chapter 2, the SVPWM inverter 

operates in three states in Sector (I), i.e. State 1 for the time-interval of 𝑡1 = 𝑑1𝑇𝑠, State 2 

for the time-interval of 𝑡2 = 𝑑2𝑇𝑠, and State 0/7 for the time-interval of 𝑡0 = 𝑑0𝑇𝑠, where  

𝑇𝑠 = 1 𝑓𝑠⁄  is the switching cycle and 𝑑0 + 𝑑1 + 𝑑2 = 1. The corresponding line-to-line 

voltages, during each state, have been presented in Table 2.1. Using this table, the 

average value of 𝑣𝑎𝑏 over one switching cycle can be can be calculated as follows: 

�̅�𝑎𝑏(𝑡, 𝑡 + 𝑇𝑠) = 1
𝑇𝑠

(𝑡1 × 𝑉𝑑𝑐 + 𝑡2 × 0 + 𝑡0 × 0) = 𝑑1𝑉𝑑𝑐                                            (3.9) 

Replacing 𝑑1 from (2.10), and considering 𝛾 = 𝜔𝑡 − 𝜋 6⁄  (see Figure 2.6), the 

fundamental component of 𝑣𝑎𝑏 can be obtained as: 

𝑣𝑎𝑏1 = �𝑈𝑟𝑒𝑓�𝑐𝑜𝑠(2𝜋𝑓1𝑡)                                                                                            (3.10) 

Similarly, the fundamental components of other line voltages can be calculated as 

follows: 

𝑣𝑏𝑐1 = �𝑈𝑟𝑒𝑓�𝑐𝑜𝑠 �2𝜋𝑓1𝑡 −
2𝜋
3
�

𝑣𝑐𝑎1 = �𝑈𝑟𝑒𝑓�𝑐𝑜𝑠 �2𝜋𝑓1𝑡 + 2𝜋
3
�
                                                                                   (3.11) 
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which correspond to a balanced voltage output for the three-phase SVPWM inverter.  

 

3.3 State-Space Averaging Technique 

The dynamic model of the power electronic converters is needed to study the 

overall system stability, and to design controllers for the converter-based systems. 

Furthermore, the developed model can be linearized around any operating point in order 

to derive the state-space representation of the system, as well as the transfer functions 

associated with different inputs and outputs of the system. The model, in general, and the 

transfer function, in particular, can be used for many studies like frequency response 

analysis, stability, voltage regulation, seamless transition between stand-alone and grid-

connected operational modes, filter design, and performing control studies of the system 

such as controllability and observability, nonlinear and intelligent control, and optimal 

and adaptive control. However, it should be noted that, because of their switching 

behavior and nonlinear elements, the analysis of power electronic converters is generally 

considered as a complicated task [23]. Averaging techniques are referred as the most 

common tools for dynamic modeling of the switching power converters [30-58]. The 

averaging methods have long been used for the analysis of nonlinear dynamical systems 

[29]. These techniques have been thoroughly discussed in the mathematical literature, 

and the relationship between the original and averaged equations have been investigated 

[30-31]. In 1976, Middlebrook and Cuk bridged the gap existing between the state-space 

technique and the averaging method for modeling dc-dc power converters by introducing 

the state-space averaging method [32], which is an almost ideal compromise between 

accuracy and simplicity.  
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The averaging technique is applied to the nonlinear dynamical systems, 

represented in the standard form [29] as given by: 

�̇� = 𝜖𝒇(𝑡,𝒙), 𝒙(𝑡0) = 𝒙0                                                                                              (3.12) 

where, 𝒇 is a continuous function of 𝑡 and 𝒙. The parameter 𝜖 plays the part of a small 

parameter, which characterizes the magnitude of certain perturbation. This parameter has a 

positive value; 0 < 𝜖 ≤ 𝜖0 with 𝜖0 > 0 a constant. Theorem of periodic averaging [29] 

states that the solution to the initial value problem of (1), 𝒙(𝑡), can be approximated by 

𝒙�(𝑡), if 𝒇 is periodic (or almost periodic [30]). Thus, one can write:  

𝒙�̇ = 𝜖𝑭(𝒙�), 𝒙�(𝑡0) = 𝒙0,                                                                                                (3.13) 

where 

𝑭(𝒙�) = 𝑙𝑖𝑚𝑇→∞
1
𝑇 ∫ 𝒇(𝒙, 𝑡)𝑑𝑡𝑇

0                                                                                       (3.14) 

It should be emphasized that (3.13) can be referred as a time-invariant system, while 

(3.12) could be a time-varying equation. The theorem of general averaging has been 

briefly explained in Appendix A.  

 Accordingly, one can apply the averaging technique to a linear time-varying 

system that, in general, can be represented by the following state-space equation:  

�̇� = 𝑨(𝑡)𝒙 + 𝑩(𝑡)𝒖
𝒚 = 𝑪(𝑡)𝒙 + 𝑫(𝑡)𝒖                                                                                                     (3.15) 

where, for a nth order dynamical system with r inputs and m outputs: 𝒙 is a n×1 vector 

(state vector), 𝒖 is a r×1 vector (input vector), 𝒚 is a m×1 vector (output vector), 𝑨 is a 

n×n matrix (system matrix), 𝑩 is a n×r matrix (control matrix), 𝑪 is a m×n matrix (output 

matrix) and 𝑫 is a m×r matrix [69].  
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 This averaging technique provides a time-invariant approximate state-space 

equation for the system (3.15), the so-called state-space-averaged model:  

𝒙�̇ = 𝑨�𝒙� + 𝑩�𝒖
𝒚�̇ = 𝑪�𝒙� + 𝑫�𝒖

                                                                                                                 (3.16) 

 

3.4 Dynamic Modeling of DC-DC Converters 

 Application of the so-called state-space averaging method for dynamic modeling 

of dc-dc converters can be best explained with an example. Figure 3.3 illustrates the 

application of the state-space averaging method to a dc-dc boost converter, operating in 

continuous conduction mode (CCM). Based on the state (ON and OFF) of the 

semiconductor switch (here an IGBT), the boost converter has two different linear 

circuits. Once, the switch is on, the converter operates in ON state for a time period of 

𝑑𝑇𝑠, where 𝑇𝑠 is the switching cycle and 𝑑 is the duty ratio of the converter. Accordingly, 

when the switch is off, the converter operates in OFF state for a time period of (1 − 𝑑)𝑇𝑠. 

According to the principles of electric circuits, each linear circuit can be represented by a 

state-space model, in which the independent inductor currents and capacitor voltages are 

usually selected as the state variables, and the voltage and current sources form the input 

vector to the model. Hence, the boost converter has two distinct state-space equations for 

the ON and OFF states. If the state vector is defined as 𝒙 = [𝑖𝐿 , 𝑣𝑐]𝑇, where the 

superscript 𝑇 denotes the matrix transpose, the associated system and input matrices can 

be written as:  
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Figure 3.3: Concept of the state-space averaging method, applied to a dc-dc boost converter, operating in 

continuous conduction mode (CCM) 

L 

   

C 
  

R 

+ 
- 

iL 
      

  
𝑣𝑐 + 

- 

iL 
      

  
𝑣𝑐 

ON OFF 

�̇� = 𝑨𝑶𝑵𝒙 + 𝑩𝑶𝑵𝒖
𝒚 = 𝑪𝑶𝑵𝒙 + 𝑫𝑶𝑵𝒖

 

 

d 1-d 

�̇� = 𝑨𝑶𝑭𝑭𝒙 + 𝑩𝑶𝑭𝑭𝒖
𝒚 = 𝑪𝑶𝑭𝑭𝒙 + 𝑫𝑶𝑭𝑭𝒖

 

  

𝒙�̇ = 𝑨�𝒙� + 𝑩�𝒖
𝒚� = 𝑪�𝒙� + 𝑫�𝒖 

  

 

 𝑨
� = 𝑑𝑨𝑶𝑵 + (1 − 𝑑)𝑨𝑶𝑭𝑭
𝑩� = 𝑑𝑩𝑶𝑵 + (1 − 𝑑)𝑩𝑶𝑭𝑭

  𝑪
� = 𝑑𝑪𝑶𝑵 + (1 − 𝑑)𝑪𝑶𝑭𝑭
𝑫� = 𝑑𝑫𝑶𝑵 + (1 − 𝑑)𝑫𝑶𝑭𝑭

 

  
�̇� = 𝑨(𝑡)𝒙 + 𝑩(𝑡)𝒖
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where, 𝒛(𝑡) = �𝒛𝑶𝑵   ;      𝑛𝑇𝑠 ≤ 𝑡 < (𝑛 + 𝑑)𝑇𝑠             
𝒛𝑶𝑭𝑭   ;      (𝑛 + 𝑑)𝑇𝑠 ≤ 𝑡 < (𝑛 + 1)𝑇𝑠

�   

for 𝒛 = {𝑨,𝑩,𝑪,𝑫} and 𝑛 = {0, 1, 2, … } 
  

State-space averaging says: 

() can be approximated by the following state-space-averaged model 

where, 

𝑣𝑑𝑐 



41 
 

𝑨𝑶𝑵 = �
0 0
0 −1

𝑅𝐶
� 𝑩𝑶𝑵 = �

1
𝐿
0
�

𝑨𝑶𝑭𝑭 = �
0 −1

𝐿
1
𝐶

−1
𝑅𝐶

� 𝑩𝑶𝑭𝑭 = �
1
𝐿
0
�
                                                                                    (3.17) 

This equation indicates that the overall state-space model is varying by time. In other 

words, a dc-dc boost converter, in CCM, is a time-varying system.  

The goal of the so-called, state-space averaging method is to approximate the 

time-varying state-pace model of the boost converter by a time-invariant state-space 

model, called state-space-averaged model. This can be achieved through averaging the 

state-space equations of the converter over one switching cycle 𝑇𝑠. Accordingly, the state-

space averaged model of the dc-dc boost converter, in CCM, is obtained as: 

𝑑
𝑑𝑡
�𝚤̇̃𝐿𝑣�𝑐

� = �
0 𝑑−1

𝐿
1−𝑑
𝐶

−1
𝑅𝐶

� �𝚤̇̃𝐿𝑣�𝑐
� + �

1
𝐿
0
� 𝑣𝑑𝑐                                                                            (3.18) 

Suppose now that the duty ratio changes by time, that is, 𝑑(𝑡) = 𝐷 + 𝛿𝑑, where 𝐷 

is the steady-state (dc) duty ratio and 𝛿𝑑 is a superimposed (ac) variation. The variation 

in the duty ratio corresponds to variations in the state variables of the system as 𝒙� = 𝑿� +

𝛿𝒙�, where 𝑿� = [𝐼𝐿 ,𝑉�𝑐]𝑇 and 𝛿𝒙 = �𝛿𝚤̇̃𝐿 ,𝛿𝑣�𝑐�
𝑇
. Assuming 𝑣𝑑𝑐 = 𝑣𝑑𝑐 + 𝛿𝑣𝑑𝑐  and 

�𝛿𝑑
𝐷
� ≪ 1   , �𝛿𝒙�

𝑿
� ≪ 1   𝑎𝑛𝑑 �𝛿𝑣𝑑𝑐

𝑣𝑑𝑐
� ≪ 1                                                                    (3.19) 

and 

𝑋�̇ = �
0 𝐷−1

𝐿
1−𝐷
𝐶

−1
𝑅𝐶

� �𝐼𝐿
𝑉�𝑐
� + �

1
𝐿
0
� 𝑉𝑑𝑐 = 0,                                                                            (3.20)  
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which is true in steady-state condition, and neglecting the higher-order nonlinear terms 

(that include products of ac variation 𝛿𝑑, 𝛿𝒙�, and 𝛿𝑣𝑑𝑐), (3.18) can be rearranged as: 

𝑑
𝑑𝑡
�𝛿𝚤̇̃𝐿𝛿𝑣�𝑐

� = �
0 𝐷−1

𝐿
1−𝐷
𝐶

−1
𝑅𝐶

� �𝛿𝚤̇̃𝐿𝛿𝑣�𝑐
� + �

1
𝐿

𝑉𝑐
𝐿

0 −𝐼𝐿
𝐶

� �𝛿𝑣𝑑𝑐
𝛿𝑑

�                                                         (3.21) 

The obtained linearized small-signal (ac) model considers the duty ratio as an input to the 

CCM dc-dc boost converter system.  

A broad application of the state-space averaging technique, and its derivatives, for 

dynamic modeling and analysis of dc-dc converters, has been reported in literature [33-

47]. Nevertheless, it is worth mentioning that state-space averaging is not the only 

available tool in dealing with these type of problems, for instance [37] has proposed a 

Lagrangian approach for average modeling of PWM controlled dc-dc converters.  

The theorem of general averaging [29] has been briefly explained in Appendix A. 

The mathematical background of the state-space averaging technique, applied for power 

electronic circuits, has been presented in [30]. It has been also shown that the averaging 

theory provides direct techniques for recovering oscillatory effects, such as ripples, from 

the averaged model.  

 

3.4.1. Linear Equivalent Circuits for Nonlinear PWM Converters 

The duty of power conversion systems is to convert electrical power from one 

voltage, current, or frequency level to another. This function is to be achieved with, 

ideally 100% efficiency together with adjustability of the conversion ratio. Switches, 

capacitors, and magnetic devices are the allowable elements, while the resistors, because 

of their adverse effect on the system efficiency, are usually avoided. However, this may 
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lead to undesirable reductions in the damping of such systems, with consequent increased 

difficulty in design of the feedback loop and dynamic control [38]. Knowledge of the 

transfer functions is essential for design, and since the switching power converters are 

nonlinear, an appropriate modeling approach is needed. This emphasizes the motivation 

of modeling the nonlinear power converters by equivalent linear circuits, based on the 

physical interpretation of the corresponding state-space-averaged models.  

In [38], a small-signal method has been used to derive equivalent linear circuits 

for nonlinear PWM switched-mode converters. These equivalent circuits can be used for 

the analysis of any electric system that includes these converters. The equivalent linear 

circuit of a dc-dc boost converter, in CCM, is shown in Figure 3.4.  

 

Figure 3.4: An equivalent linear circuit for the dc-dc boost converter in CCM 

 

3.4.2 Linear Equivalent Circuits for Switch-Diode Combinations 

 As an alternative to developing an equivalent linear circuit for each individual 

power electronic converter, it is possible to derive three-terminal equivalent circuits for 

different combinations of a switch and a diode [39-40]. This can significantly reduce the 

number of required equivalent circuits, because unlike the countless number of existing 

power electronic converter topologies, only a few switch-diode combinations are used in 

   
Cdc 

  Vdc 
RL 

 + - 

      
  
 

  
 
 

Leq eeq 

ieq 

1 : D 



44 
 

their circuitries. The linear equivalents are specifically useful for analyzing large electric 

networks with huge number of switching power electronic converters, in which solving 

the nonlinear equations of the network in time domain becomes a tedious task. In these 

situations, linear equivalents can extremely reduce the computational effort and time.  

The three-terminal linear equivalent circuit for the switch-diode combination of a dc-dc 

boost converter has been presented in Figure 3.5 [39]. 

 

Figure 3.5: Three-terminal equivalent circuit for a switch-diode combination used in dc-dc boost 

converters, a) switch-diode combination, b) the equivalent three-terminal circuit 

 

3.4.3 Modeling under Non-Small Ripple Conditions 

 The method of state-space averaging is successfully applied to PWM converters, 

but the conditions for the justification of state-space averaging are generally 

characterized by a small-ripple condition, and by a linear ripple approximation [32]. With 

the small-ripple approximation, the assumption is that a Fourier series expansion for a 

finite length segment of a circuit waveform should be dominated by its dc term. The 

linear ripple approximation requires that the circuit waveforms appear to be linear 

functions of time when examined over a time interval in between switch instances [41]. A 
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more general averaging procedure that encompasses state-space averaging and is 

potentially applicable to a much broader class of circuits and systems has been 

considered in [41]. The proposed averaging scheme can be applied, in principle, to any 

periodically (or nearly periodically) driven system. In particular, the technique is shown 

to be effective on a number of resonant type converters, e.g. series resonant converter 

with voltage source load and dc-dc series resonant converter with capacitor load. Besides 

the resonant type converters, it has been shown that the refined (or generalized) state-

space averaging method is able to consider the ripple component in PWM converters 

with large ripples, or relatively low switching frequency. However, it should be noted 

that adding each frequency component to the generalized state-space model, doubles the 

order of the model, which means that the refinement is achieved at the expense of 

complexity [42]. In another attempt to analyze dc-dc converters with a high ripple content 

(besides the generalized state-space averaging), new models have been derived in [43] to 

model the maximum and minimum envelopes (upper and lower bounds) of the output 

waveforms for dc-dc switching converters. 

 

3.4.4 Converter Analysis in Discontinuous Modes 

The most common operating mode of PWM converters is the continuous 

conduction mode (CCM), in which two networks are repeatedly switched by the action of 

power semiconductor switches. However, it is well known that CCM is not the only 

possible operating mode. As can be seen in Figure 3.3, there are two networks that are 

periodically switched in a dc-dc boost converter operating in the CCM, while there are 

three networks in the discontinuous conduction mode (DCM). The third possible 
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network, the inductor discontinuous current mode (DICM) has been shown in Figure 3.6, 

in which the inductor is completely discharged and becomes open circuit. The 

discontinuous operation mode of PWM converters has been a subject of several studies in 

the field of dynamic modeling of power electronic converters [44-48]. For example in 

[44] the dc (large-) and ac (small-signal) analyses are applied to the basic PWM converter 

topologies. The small signal model is at the same order as the state-space-averaged model 

for the CCM and offers improved predictions of the low-frequency dynamics of PWM 

converters in DCM. Similarly [45] addresses the large-signal modeling and [46] proposes 

a numerical state-space averaging method for dynamic analysis of dc-dc converters in 

discontinuous mode of operation. 

 

 

Figure 3.6: The third possible operating state, i.e. inductor discontinuous current mode (DICM), of a dc-dc 

boost converter under DCM. The other states have been already presented in Figure 3.3. 

 

3.5 Dynamic Modeling of DC-AC Converters 

The methods, described in the earlier sections, require thorough knowledge of all 

switched networks in all switching cycles. They are easier to use if there are only few 

switched networks to sketch out, and if these networks are the same for all switching 

cycles. In PWM ac converters (rectifiers, inverters, and cycloconverters) however, the 
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number of switched topologies is large and increases rapidly with the number of phases. 

For a given switching modulation strategy, the switched networks in any switching cycle 

can differ from those in any other cycle. Therefore, an effective method to characterize 

low frequency behavior of PWM converters should avoid getting into topological 

switching details. It should allow derivation of converter dynamic equations by 

inspection of the converter as a whole and by use of familiar electrical principles [49]. 

 

3.5.1 General Methodology for Modeling Inverters  

The applications of averaging methods have been also extended to modeling, 

analysis, and control of three-phase rectifiers and inverters [49-58]. A general 

methodology for deriving state-space equations for PWM dc-dc converters, inverters, 

rectifiers and cycloconverters has been developed in [49]. This methodology, which can 

characterize the low frequency components of the state variables and output waveforms 

of the switching circuits, are briefly described in this section. The concept has been 

explained for the phase 𝑎 of the current source inverter (CSI) in Figure 3.7.  

 

Figure 3.7: Current source inverter (CSI) 
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The currents 𝑖𝑎𝑝, 𝑖𝑎𝑛, and 𝑖𝑎 can be written in term of the source current, 𝑖𝑠, and 

the gate signals as follows: 

�
𝑖𝑎𝑠 = 𝑠𝑎𝑝𝑖𝑠
𝑖𝑎𝑛 = 𝑠𝑎𝑛𝑖𝑠

⇒ 𝑖𝑎 = �𝑠𝑎𝑝 − 𝑠𝑎𝑛�𝑖𝑠�                                                                             (3.22) 

where, 𝑠𝑎𝑝 and 𝑠𝑎𝑛 are binary gate signals to the switches 𝑆𝑎𝑝 and 𝑆𝑎𝑝, respectively. 

Accordingly, the dynamic equation of phase 𝑎 can be written as: 

𝐶 𝑑𝑣𝑎
𝑑𝑡

= �𝑠𝑎𝑝 − 𝑠𝑎𝑛�𝑖𝑠 −
𝑣𝑎
𝑅

                                                                                          (3.23) 

The averaging method (see Appendix A) states that the dynamic equations can be 

approximated by replacement of the exact inputs and outputs by the low-frequency 

components of these terms, i.e.  

𝐶 𝑑𝑣�𝑎
𝑑𝑡

= 𝑑𝑎𝚤̇�̅� −
𝑣�𝑎
𝑅

                                                                                                         (3.24) 

where, 𝑑𝑎 is the effective duty ratio, or just the duty ratio, of phase 𝑎 which is defined as: 

𝑑𝑎 ≜ ��̅�𝑎𝑝 − �̅�𝑎𝑛�                                                                                                         (3.25) 

Similarly, one can write the dynamic equations for the other phases and derive the state-

space-averaged model of the CSI. The derived model can be represented by the 

equivalent linear circuit of Figure 3.8.  

 

Figure 3.8: The equivalent linear circuit of the CSI of Figure 3.7 
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Besides the general methodology, described in this section, an enormous number 

of studies have been carried out in the field of dynamic modeling and control of rectifiers 

and inverters [50-58]. A systematic approach for the small-signal modeling and control 

design of three-phase PWM rectifiers has been presented in [50-51]. The well-established 

design procedures used in dc-dc converter control design, have been adapted for the 

three-phase rectifier control based on the similarity in the small-signal dynamics of the 

three-phase rectifiers and their dc-dc counterparts. The approach is especially beneficial 

in a three-phase rectifier control, which is reduced to a single-input single-output system 

after closing the current loops. Finally, a wide-bandwidth output voltage control loop has 

been designed based on the obtained small-signal transfer function. A practical 

significance of these works is accounting the effects of digital control implementation 

and time-discrete nature of PWM, by adding one sampling period delay at the control 

inputs, and zero-order hold (ZOH) at the inductor currents’ output. In a very recent work, 

a method for average-value modeling of the conventional three-phase (six-pulse) front-

end rectifiers has been proposed in [52]. The system operation and dynamic performance 

of the developed average models have been demonstrated in discontinuous and 

continuous modes, as well as under balanced and unbalanced operation.   

 

3.5.2 Transformer-Based Equivalent Circuits 

In case of a system with a high number of reactive elements, [53] proposes to 

transform the nonlinear switching devices into equivalent linear ac networks by the use of 

equivalent time-varying transformers, and then deal with the system like a linear ac 

power system. The method has been applied to an eight-order system (a current source 
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rectifier-inverter) and a buck-boost inverter, and promising results have been achieved. 

The time-varying-transformer-based equivalent circuit of the current source inverter of 

Figure 3.7 is presented in Figure 3.9; the parameters are defined in section 3.4.4. 

 

Figure 3.9: The time-varying-transformer-based equivalent circuit of the CSI of Figure 2.13 

 

3.5.3 Other Achievements 

 A reduced-order small-signal model for a three-phase PWM rectifier has been 

developed in [54], where the three-phase rectifier was approximated by two parallel dc-

dc converters, each one valid for a 60° line period interval. Consequently, it would be 

possible to use modeling and control techniques of dc-dc converters, which have been 

thoroughly studied and used in the field of power electronics. A three-phase boost 

rectifier has been modeled as two parallel dc-dc boost converters in Figure 3.10. This is 

over the 60° line period interval, in which phase 𝑎 has the highest negative voltage. For 

other time intervals, the active topology includes different switch combinations, but the 
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topological feature will be the same due to the symmetrical operation of three-phase 

converters. 

 

Figure 3.10: The concept of reduced order model, a) three-phase boost rectifier, b) active topology over the 

60° line period interval, in which phase 𝑎 has the highest negative voltage 

 

In another attempt to model inverters, it has been shown in [55] that it is possible 

to develop the dynamic model of inverters in the phasor domain, which is readily 

compatible with the steady-state modeling and control techniques that are used to study 

ac power system dynamics. The dynamic phasors have been elaborated upon in [56].   

It should be emphasized that the application of the state-space averaging method 

is not limited for the analysis of conventional VSI and CSI inverters, and it can be 

applied to other inverter topologies, such as multilevel [57] and Z-source [58] inverters. 

Moreover, once a converter is connected to a larger system, its model can be combined 

with the models of other subsystems of the larger system, in order to investigate the 

performance of the entire system. For instance, dynamic models of grid-connected 

inverters, as one of the major applications of the power electronic converters, have been 
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extensively used in literature for investigation of the dynamic performance of large power 

systems in the presence of the grid-connected inverters [59-63].  

 

3.6 Reference-Frame Theory 

 Transformation into rotating frames of reference is a common practice in the 

study and analysis of three-phase electric circuits. The direct-quadrature-zero (or dqo-) 

transformation, which was first introduced by Park in late 1920s [97], has been 

extensively used to reduce the complexities involved with analysis of three-phase electric 

machines, power systems, and power electronic inverters/rectifiers. This transformation 

refers the circuit variables to a frame of reference that rotates at an arbitrary angular 

velocity. In the case of balanced three-phase systems, the dqo-transformation into a 

synchronous frame of reference can reduce the three ac quantities to two dc quantities. 

This property can be particularly useful in dynamic and control studies of three-phase 

inverters. Accordingly, the Park’s transformation into the synchronous frame of reference 

has been used in this dissertation for dynamic modeling and analysis of a newly proposed 

dc-ac converter (called single-stage boost inverter), which can convert a low dc voltage to 

a high ac voltage in a single-stage. Thus, a review of the reference-frame theory, and 

particularly dqo-transformation into synchronous frame of reference, is necessary in 

order to proceed with the later chapters, which present the contributions of this 

dissertation. 

A change of variables that formulates a transformation of the three-phase 

variables of stationary circuit elements to arbitrary reference frame may be expressed as: 
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where, 𝑓 can represent either voltage or current (and flux linkage or electric charge in 

general), and 𝜃𝑓 denotes the angular displacement of the rotating frame of reference, 

which may rotate at any constant or varying angular velocity or it may remain stationary. 

The change of variables may be applied to variables of any waveform and time sequence; 

however, it has been found that the transformation given above is particularly appropriate 

for an abc sequence [28]. 

   

 

Figure 3.11: dq-transformation for three-phase circuit quantities portrayed by trigonometric relationships 
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Although the transformation to the arbitrary reference-frame is a change of variables and 

needs no physical connotation, it is often convenient to visualize the transformation 

equations as trigonometric relationships between variables as shown in Figure 3.11 [28].  

Like any linear transformation, the Park’s transformation also has an inverse 

transformation that is: 
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Also, one can calculate the time-derivatives of the transformation and its inverse 

as: 
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3.7 Summary 

 Extensive research has been carried out on the modeling of power electronic 

converters. Contributions of a variety of work, since 1976 to 2012, have been 

demonstrated and the prominent methodologies have been discussed in more detail. It has 

been shown that the averaging technique plays a key-role in the modeling of switch-mode 

power converters, and undoubtedly, the state-space averaging method is the most 

convenient tool for deriving the dynamic models of PWM power electronic converters. 

Finally, reference-frame theory, which is required for dynamic modeling of the recently 

proposed single-stage boost inverter, has been reviewed. The idea and fundamental 

equations of this inverter will be presented in the next chapter. 
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CHAPTER 4 

SINGLE-STAGE BOOST INVERTER 

 

The idea of the recently proposed single-stage boost inverter (SSBI) is presented 

and discussed in this chapter. The circuit topology, switching pattern, control strategy, 

and steady-state performance of the single- and three-phase SSBIs are explained in detail 

and the concept is proved through simulation and experiments. This chapter is the 

backbone of this dissertation, and lays the groundwork for the later chapters, which are 

the main outcomes and contributions of this dissertation.  

This chapter contains three sections. The three-phase SSBI is elaborated upon in 

Section 1. Section 2 is the extension of the work to the single-phase SSBI, and the 

summary is presented in Section 3.   

 

4.1 Three-Phase Single-Stage Boost Inverter 

In the past several decades, current source inverters have been replaced with 

voltage source inverters in many industrial applications. However, the CSI topology has 

the capability to be used as a SSBI. A single-stage CSI-based boost-inverter with a novel 

control strategy has been proposed in [4], which is suitable for sustainable energy (SE) 

systems (particularly PV and fuel-cell), and energy storage (ES) applications. The new 

method has been developed based on the concept of space-vector pulse-width-modulation 

(SVPWM). However, the developed switching pattern is formulated based upon phasor 

quantities, and not the space-vectors, so this modified SVPWM technique has been called 

phasor pulse-width-modulation (PPWM). Nevertheless, this strategy preserves all the 
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advantages of an SVPWM technique such as simplicity, robustness, and ease of 

programming in digital processors. 

 

4.1.1 Circuit Topology 

 Figure 4.1 shows the complete power circuit schematic of the three-phase boost 

inverter, where 𝑉𝑑𝑐 is a dc voltage source (representing an SE source), 𝐿𝑑𝑐 is the dc-link 

inductor, 𝐶𝑎𝑐 represents the ac-side film capacitors, and 𝐿𝑎𝑐 represents the line inductors.  

 

Figure 4.1: Complete power circuit schematic diagram of the CSI-based boost inverter 

 

In this circuit topology, at any given instant, one of the upper switches and one of 

the lower switches are kept on. During the charging times the switches in a same leg are 

simultaneously on, so that the magnetic energy in 𝐿𝑑𝑐 is increased to boost the output 

voltage and inject power to the output circuit. The switching pattern, which is utilized for 

the CSI-based boost inverter topology, will be elaborated upon with mathematical 

formulations later in this chapter. The PWM switching pattern and formulation developed 
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herein is very close to the conventional SVPWM. However, in this pattern, the space-

vectors of the currents and voltages are not applied in the development of the new 

formulations. It should also be emphasized that in the conventional space-vector 

formulation, the inverter switching time-intervals (or duty cycles) are in direct proportion 

to 𝑉𝑚 𝑉𝑑𝑐⁄ , where the time-intervals in the presented formulation for CSI-based boost 

inverters are in direct proportion to 𝑉𝑑𝑐 𝑉𝑚⁄ . Meanwhile, the six main switching states, 

and two zeros, with three switches conducting at any given instant in conventional 

SVPWM techniques, are adapted to six states with only two switches conducting at any 

given instant, as well as three charging states in the proposed/developed switching pattern 

for the CSI based boost inverter. These charging states are necessary in order to boost the 

dc input voltage. This control strategy is capable of being applied to both grid-connected 

and stand-alone modes of operation. The calculations for obtaining the control parameters 

will be presented in the following sections. During grid-connected operation of the SSBI, 

the output voltage is maintained by the grid, and the SSBI has to regulate the output 

current in a way that the delivery of power to the grid is controlled. In this situation, the 

SSBI operates in a current source, current regulated mode. In the second case, i.e. the 

stand-alone operation, the SSBI is connected to a local load (an RL load), and has to 

regulate the output voltage. While the SSBI is still a current-source, it operates in current-

source voltage-regulated mode.  

 

4.1.2 Switching Pattern 

The switching pattern, proposed in [4], for the three-phase single-stage current 

source boost inverter includes six sectors and nine states (three charging states and six 
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discharging states) with only two switches conducting at any given instant. In other 

words, the six main switching states, and two zeros, with three switches conducting at 

any given instant in conventional SVPWM techniques, are modified to six states with 

only two switches conducting at any given instant, as well as three charging states in 

PPWM for current source single-stage boost inverter. The charging states are necessary 

in order to boost the dc input voltage. Again, it should be emphasized that the PPWM has 

been formulated based on the phasor quantities, and not the space-vectors.  

 

Figure 4.2: Line-to-line voltage phasors and the associated sectors 

 

The six sectors, separated by six line-to-line voltage phasors, 𝑉𝑎𝑏, 𝑉𝑎𝑐, 𝑉𝑏𝑐, 𝑉𝑏𝑎, 

𝑉𝑐𝑎, and 𝑉𝑐𝑏, are presented in Figure 4.2. As can be seen in this figure, the dc-source 

voltage, 𝑉𝑑𝑐, is located in Sector (I) and the corresponding discharging and charging 

time-intervals can be calculated as shown in Figure 4.3. In each switching cycle, 𝑇𝑠 , 
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there are three time-intervals; one time-interval for charging the dc-link inductor, 

𝑡𝑐 = 𝑑𝑐𝑇𝑠, and two time-intervals for injecting current into two different phases, 𝑡𝑑1 =

𝑑1𝑇𝑠 and 𝑡𝑑2 = 𝑑2𝑇𝑠. For example, while Sector (I) is passing the x-axis in Figure 4.2, 𝑉𝑑𝑐 

falls in between 𝑉𝑎𝑏 and 𝑉𝑎𝑐, this is when the voltage of phase 𝑎 is in its positive extreme. 

Thus, the proposed method uses phase 𝑎 in the entire sector to close the path of the load 

current, i.e. 𝑆𝑎𝑝 stays on over this switching cycle. On the other hand, phase 𝑏 and phase 

𝑐 are intermittently used for the negative part of the load current, see Figure 4.4. Thus, 

there are three states and consequently three time-intervals in Sector (I):  

i) State C1: The charging time-interval, 𝑡𝑐 = 𝑑𝑐𝑇𝑠, in which two switches 

from leg 𝑎 are closed and the dc-link inductor is being charged, see I-C1 

(𝑡𝑐) of Figure 4.4. 

ii) State D1: The first discharging time-interval, 𝑡𝑑1 = 𝑑1𝑇𝑠, where the 

inductor current is directed into phases 𝑎 and 𝑏. During this period of 

time, the upper-switch of leg 𝑎, 𝑆𝑎𝑝, and the lower-switch of leg 𝑏, 𝑆𝑏𝑛, of 

the inverter are closed, see I-D2 (𝑡𝑑1) of Figure 4.4. 

iii) State D2: The second discharging time-interval, 𝑡𝑑2 = 𝑑2𝑇𝑠, where the 

inductor current is directed into phase 𝑎 and 𝑐. During this period of time, 

the upper-switch of leg 𝑎, 𝑆𝑎𝑝, and the lower-switch of leg 𝑐, 𝑆𝑐𝑛, of the 

inverter are closed, see I-D3 (𝑡𝑑2) of Figure 4.4.  

 

It should be noted that within a given sector, one of the switches does not have to 

be switched at all, as shown in Figure 4.4. The six sectors along with the proper 
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switching time-intervals are summarized in Table 4.1 for all six sectors. In this table, 𝑉1 

and 𝑉2 denote the associated first and second voltage vectors in each sector in Figure 4.2. 

𝑆𝑖𝑝 and 𝑆𝑖𝑛 represent the positive (upper) and negative (lower) switches in each leg 

𝑖 = {𝑎, 𝑏, 𝑐} of the inverter, see Figure 4.1, and 𝑡𝑐, 𝑡𝑑1, and 𝑡𝑑2 indicate the time-intervals 

of the charging states, as well as, the two consecutive discharging states corresponding to 

each sector.  

 

Figure 4.3: Sector (I), calculation of the discharging duty ratios, 𝑑1 and 𝑑2, as well as the charging duty 

ratio, 𝑑𝑐 

 

Table 4.1: Sectors and switching states 

 Sector  𝑉1  𝑉2  𝑆𝑎𝑝  𝑆𝑎𝑛  𝑆𝑏𝑝  𝑆𝑏𝑛  𝑆𝑐𝑝  𝑆𝑐𝑛  
 (I)  𝑉𝑎𝑏  𝑉𝑎𝑐   𝑇𝑠  𝑡𝑐  0  𝑡𝑑1  0  𝑡𝑑2  
 (II)  𝑉𝑎𝑐   𝑉𝑏𝑐  𝑡𝑑1  0  𝑡𝑑2  0  𝑡𝑐  𝑇𝑠  
 (III)  𝑉𝑏𝑐  𝑉𝑏𝑎  0  𝑡𝑑2  𝑇𝑠  𝑡𝑐  0  𝑡𝑑1  
 (IV)  𝑉𝑏𝑎  𝑉𝑐𝑎  𝑡𝑐  𝑇𝑠  𝑡𝑑1  0  𝑡𝑑2  0  
 (V)  𝑉𝑐𝑎  𝑉𝑐𝑏  0  𝑡𝑑1  0  𝑡𝑑2  𝑇𝑠  𝑡𝑐  
 (VI)  𝑉𝑐𝑏  𝑉𝑎𝑏  𝑡𝑑2  0  𝑡𝑐  𝑇𝑠  𝑡𝑑1  0  
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Figure 4.4: The charging (C1-C3) and discharging (D1-D6) states of operation for the SSBI 

VI-D1 (𝑡𝑑2) VI-D6 (𝑡𝑑1) VI-C2 (𝑡𝑐) 

V-D6 (𝑡𝑑2) V-D5 (𝑡𝑑1) V-C3 (𝑡𝑐) 

IV-D5 (𝑡𝑑2) IV-D4 (𝑡𝑑1) IV-C1 (𝑡𝑐) 

III-D4 (𝑡𝑑2) III-D3 (𝑡𝑑1) III-C2 (𝑡𝑐) 

II-D3 (𝑡𝑑2) II-D2 (𝑡𝑑1) II-C3 (𝑡𝑐) 

I-D2 (𝑡𝑑2) I-D1 (𝑡𝑑1) I-C1 (𝑡𝑐) 
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Let us assume that the dc-link inductance, 𝐿𝑑𝑐, and the dc input voltage, 𝑉𝑑𝑐, stay 

constant over a switching cycle, 𝑇𝑠. Figure 4.5 shows the voltage and current waveforms 

of the dc-link inductor under this assumption. Using Figure 4.5, and considering the 

applied voltage across the dc-link inductor as 𝑣𝐿 = 𝐿𝑑𝑐 ∆𝑖𝑑𝑐 ∆𝑡⁄ , one can write the 

following equations for Sector (I), i.e. 0 ≤ 𝜔𝑡 < 𝜋 3⁄  (while the results can be easily 

extended to the other sectors): 

 

Figure 4.5: The voltage and current waveform of the dc-link inductor over one switching cycle in Sector (I) 
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where, 𝐼𝐿0 and 𝐼𝐿𝑇𝑠 are the dc-link inductor currents at the beginning and the end of one 

switching cycle, respectively. Also, 𝑉𝑑𝑐 is the dc input voltage, 𝐿𝑑𝑐 is the value of the 

inductor, 𝑡𝑐 is the time elapsed for charging the dc-link inductor, 𝑡𝑑1 and 𝑡𝑑2 are the time-

interval of injecting power from phase 𝑎 to phase 𝑏 and phase 𝑐 respectively, and 𝑣𝑎𝑏 and 

𝑣𝑎𝑐 are the instantaneous line-to-line voltages. Adding up the above three equations 

yields: 

𝐼𝐿𝑇𝑠 − 𝐼𝐿0 = 𝑉𝑑𝑐
𝐿𝑑𝑐

. 𝑡𝑐 + 𝑉𝑑𝑐−𝑣𝑎𝑏
𝐿𝑑𝑐

. 𝑡𝑑1 + 𝑉𝑑𝑐−𝑣𝑎𝑐
𝐿𝑑𝑐

. 𝑡𝑑2                                                          (4.4) 

Thus, one can write as follows: 

𝐼𝐿𝑇𝑠 − 𝐼𝐿0 = 𝑉𝑑𝑐
𝐿𝑑𝑐

. (𝑡𝑐 + 𝑡𝑑1 + 𝑡𝑑2) − �𝑣𝑎𝑏
𝐿𝑑𝑐

. 𝑡𝑑1 + 𝑣𝑎𝑐
𝐿𝑑𝑐

. 𝑡𝑑2�                                             (4.5) 

For a fixed switching frequency, 𝑇𝑠 is constant and also 𝑡𝑐 + 𝑡𝑑1 + 𝑡𝑑2 = 𝑇𝑠. Thus, (4.5) 

can be simplified as: 

𝐼𝐿𝑇𝑠 − 𝐼𝐿0 = 𝑉𝑑𝑐
𝐿𝑑𝑐

.𝑇𝑠 − �𝑣𝑎𝑏
𝐿𝑑𝑐

. 𝑡𝑑1 + 𝑣𝑎𝑐
𝐿𝑑𝑐

. 𝑡𝑑2�                                                                    (4.6) 

Substituting, 𝐼𝐿𝑇𝑠 − 𝐼𝐿0, by ∆𝐼𝐿, one can write: 

 𝑉𝑑𝑐.𝑇𝑠 −  ∆𝐼𝐿 .𝐿𝑑𝑐 = 𝑣𝑎𝑏 . 𝑡𝑑1 + 𝑣𝑎𝑐 . 𝑡𝑑2                                                                 (4.7) 

Notice, one can write the line-to-line reference voltages as follows: 

𝑣𝑎𝑏 = √3𝑉𝑚. 𝑐𝑜𝑠(𝜔𝑡)                    
𝑣𝑏𝑐 = √3𝑉𝑚. 𝑐𝑜𝑠 �𝜔𝑡 − 2𝜋

3
�         

𝑣𝑐𝑎 = √3𝑉𝑚. 𝑐𝑜𝑠 �𝜔𝑡 − 4𝜋
3
�         

                                                                                   (4.8)  

Thus, 𝑣𝑎𝑐 is given by: 

𝑣𝑎𝑐 = √3𝑉𝑚. 𝑐𝑜𝑠 �𝜔𝑡 − 𝜋
3
�                                                                                             (4.9) 

Let us pick the discharging time-intervals, 𝑡𝑑1 > 0 and 𝑡𝑑2 > 0, as follows: 
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𝑡𝑑1 = 𝑚 𝑇𝑠 𝑐𝑜𝑠(𝛼)           
𝑡𝑑2 = 𝑚 𝑇𝑠 𝑐𝑜𝑠 �𝛼 −

2𝜋
3
�     ;    𝑓𝑜𝑟    𝑚 > 0 , 𝜋

6
< 𝛼 < 𝜋

2
                                            (4.10) 

where, the positive coefficient 𝑚 is called the modulation index. It will be seen later, that 

this coefficient can be used to regulate the amplitude of the output voltage of the SSBI. 

Accordingly, one can write the following expressions: 

𝑣𝑎𝑏 . 𝑡𝑑1 = �𝑚 𝑇𝑠√3𝑉𝑚
2

� (𝑐𝑜𝑠(𝜔𝑡 − 𝛼) + 𝑐𝑜𝑠(𝜔𝑡 + 𝛼))                                                (4.11) 

𝑣𝑎𝑐 . 𝑡𝑑2 = �𝑚 𝑇𝑠√3𝑉𝑚
2

� �𝑐𝑜𝑠 �𝜔𝑡 − 𝛼 + 𝜋
3
� − 𝑐𝑜𝑠(𝜔𝑡 + 𝛼)�                                        (4.12) 

Substituting 𝑣𝑎𝑏 . 𝑡𝑑1 by (3.11) and 𝑣𝑎𝑐 . 𝑡𝑑2  by (3.12) in (3.7) yields: 

𝑉𝑑𝑐.𝑇𝑠 − ∆𝐼𝐿 .𝐿𝑑𝑐 = (3/2)𝑚 𝑇𝑠𝑉𝑚 𝑐𝑜𝑠 �𝜔𝑡 − 𝛼 + 𝜋
6
�                                                  (4.13) 

In order to keep (4.13) always valid, the right side term of this equation should be a time-

independent expression. Accordingly, 𝛼 must follow 𝜔𝑡 at the same angular speed, i.e. 

𝛼 = 𝜔𝑡 − 𝛼0. Since the discharging time-intervals, 𝑡𝑑1 and 𝑡𝑑2, must be always positive 

values, then for Sector (I): 

𝜋
6

< 𝜔𝑡 − 𝛼0 < 𝜋
2

   0≤𝜔𝑡<𝜋3   
�������� 𝛼0 = −𝜋

6
                                                                           (4.14) 

Hence, (3.13) can be rewritten as: 

𝑉𝑑𝑐.𝑇𝑠 − ∆𝐼𝐿 .𝐿𝑑𝑐 = �3
2
�𝑚 𝑇𝑠𝑉𝑚.                                                                                  (4.15) 

As a result, 

𝑚 = 2 (𝑉𝑑𝑐.𝑇𝑠−∆𝐼𝐿.𝐿𝑑𝑐)
3 𝑉𝑚𝑇𝑠

= 2
3
�𝑉𝑑𝑐

 𝑉𝑚
− ∆𝐼𝐿.𝐿𝑑𝑐

 𝑉𝑚𝑇𝑠
�                                                                       (4.16) 

Therefore, if 𝑚 in (4.10) is substituted by (4.16), the discharging times, 𝑡𝑑1 and 𝑡𝑑2 , can 

be calculated, in steady-state and balanced conditions (i.e.  𝐼𝐿𝑇𝑠 ≈ 𝐼𝐿0), from the following 

equations; 
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𝑡𝑑1 ≈
2𝑉𝑑𝑐.𝑇𝑠
3𝑉𝑚

. 𝑐𝑜𝑠(𝜔𝑡 − 𝛼0)                                                                                         (4.17) 

𝑡𝑑2 ≈
2𝑉𝑑𝑐.𝑇𝑠
3𝑉𝑚

. 𝑐𝑜𝑠 �𝜔𝑡 − 𝛼0 −
2𝜋
3
�                                                                               (4.18) 

Alternatively, (4.17) and (4.18) can be also rewritten as: 

𝑡𝑑1 = 2𝑉𝑑𝑐.𝑇𝑠
3𝑉𝑚

. 𝑠𝑖𝑛 �𝜋
3
− 𝜔𝑡�                                                                                          (4.19) 

𝑡𝑑2 = 2𝑉𝑑𝑐.𝑇𝑠
3𝑉𝑚

. 𝑠𝑖𝑛(𝜔𝑡)                                                                                                  (4.20) 

which are exactly identical to what one can obtain from the trigonometric identity 

illustrated in Figure 4.3, if |𝑉𝑎𝑏| and |𝑉𝑎𝑐| are replaced by √3𝑉𝑚.  

 

4.1.3 Control Strategy 

 The control strategy of inverters depending on their mode of operation, either 

stand-alone or grid-connected, can be essentially different. The operation goal of a grid-

connected inverter is usually to inject some certain amounts of active and reactive power 

into the grid. However, on the other hand, a stand-alone inverter is intended to feed a 

local load with a certain (and usually fixed) voltage and frequency. Or more precisely, a 

three-phase stand-alone inverter has to produce balanced voltages at a given frequency. 

Looking at the previous section, one may observe that the proposed SSBI has two 

degrees of freedom, i.e. the angular displacement of the reference voltage phasor, 𝜔𝑡, and 

the modulation index, 𝑚. While changing the phase angle of the reference angular 

displacement with respect to the angular displacement of the grid voltage causes a phase 

shift between the SSBI’s output voltage and the grid voltage, changing the modulation 
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index affects the amplitude of the output voltage. As can be seen in (4.16), 𝑚 is 

reciprocally related to the 𝑉𝑚.  

Thus, it can be concluded that: 

i) In the grid-connected operation, the active power could be controlled 

through adjusting the phase angle of the reference voltage with respect to 

the grid, and the reactive power could be control through regulation of the 

modulation index. 

ii) For the stand-alone mode of operation, the amplitude of the load voltage 

can be controlled by regulating the modulation index, i.e. the higher 𝑚, 

the lower 𝑉𝑚.  

     

4.1.4 Simulation and Experimental Results 

In order to verify the proposed PWM switching pattern, a set of simulation and 

experimental results is presented here. The studies have been carried out for a laboratory-

scaled SSBI which was built for verification, see Figure 4.6, and tested for a resistive-

inductive (RL) and a rectifier load. The switching signals were generated by a CLP1104 

dSPACE system which was linked to MATLAB Simulink, and the switching frequency 

was chosen to be 2.88 kHz because of the limitations of dSPACE. The measurements in 

this experiment were performed using a LeCroy Waverunner 64XI oscilloscope with one 

CP031 current probe, one CP030 current probe, and one ADP305 differential voltage 

probe. The bandwidth of the oscilloscope is 600MHz, while the bandwidths of the 

CP031, CP030, and the ADP305 are 100MHz, 50MHz, and 100MHz, respectively. 
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Figure 4.6 shows a scene of the experimental setup and Table 4.2 gives some information 

on the SSBI circuit elements. 

 

 

Figure 4.6: The experimental prototype 

 

Table 4.2: Hardware specifications of the SSBI  

 Component  Specifications  

 dc-source  XR125-32 Magna-Power Electronics  
 MOSFETS  STx42N65M5 (TO-220)  
 Diodes  IXGH 30 N60BDI (TO-247 AD)  
 dc-Link Resistance, 𝑅𝑑𝑐  0.1 Ω   
 dc-Link Inductance, 𝐿𝑑𝑐  10 mH  
 ac-Side Capacitance, 𝐶𝑎𝑐  10µF  
 Line Frequency, 𝑓1  60 Hz  
 Switching Frequency, 𝑓𝑠  2.88 kHz  
 DSP Sampling Frequency, 𝑓𝑠𝑎𝑚𝑝  87 kHz  

 

The experiments were performed for two different loads, i.e. a linear Y-connected 

RL load and a nonlinear full-bridge rectifier load. Since the rated power of a typical 
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residential PV panel is less than a few hundred Watts [64], the operating point of the 

SSBI was selected for a terminal power about 150 W. This could be achieved through 

choosing proper load parameters and adjustment of the modulation index. The operating 

points of the SSBI for the performed experiments are summarized in Table 4.3.  

 

Table 4.3: Operating points of SSBI for nonlinear and linear loads  

 Operating Point  Linear Load (RL Load)  Nonlinear Load (Rectifier Load)  

 dc-Source Voltage 𝑉𝑑𝑐  (V)  30  30  

 Modulation Index, 𝑚  0.41  0.41  

 Load Resistance, 𝑅𝐿 (Ω)  300  600  

 Load Inductance, 𝐿𝐿 (𝑚𝐻)  26  0  

 

 (a) 𝑚 = 0.41  (b) 𝑚 = 0.40 

Figure 4.7: Waveforms of the SSBI for the linear RL load, a) simulation, b) experimental 
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These operating points correspond to the maximum power point of the 

commercially available PV panel, BP 175 [65], which outputs 175 W at a voltage of 35.5 

V. The output line voltage and current waveforms of simulation and experimental result, 

as well as the frequency spectrums of the experimental results are shown in Figures 4.7-

10. As can be seen in these figures, the CBI topology in conjunction with the proposed 

switching pattern and control strategy is capable of feeding both linear and nonlinear 

loads with a decent quality.  

 

Figure 4.8: FFT Spectrum of the load terminal voltage and current for the linear RL load 
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non-fundamental harmonic components of the voltage and current are 1.96% and 1.1%, 

respectively, which take place at the switching frequency, i.e. 2.88 kHz. The Standard 

IEEE-519 [66] recommends limiting the voltage THD to 5% and the magnitude of each 

individual harmonic to 3%. Comparing these limits with the obtained values indicates 

that the SSBI meets the required standards.     

 

(a) 𝑚 = 0.41 

 

(b) 𝑚 = 0.40 

Figure 4.9: Waveforms of the SSBI for the nonlinear rectifier load, a) simulation, b) experimental 
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fundamental harmonic components of the voltage is 2.06%, which takes place at the 

switching frequency, i.e. 2.88 kHz. However, in this case, the rectifier load draws large 

components of low-order harmonic currents from the inverter, i.e. 22.6%, 10.9%, 8.7%, 

and 6%, for 5th, 7th, 11th, and 13th order harmonics, respectively. 

 

Figure 4.10: FFT Spectrum of the load terminal voltage and current for the nonlinear rectifier load 
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conditions. At time, 𝑡𝑓𝑎𝑢𝑙𝑡 = 20 𝑚𝑠𝑒𝑐 a short circuit fault (with the fault resistance and 

inductance of 𝑅𝑓𝑎𝑢𝑙𝑡 = 0.1 Ω and 𝐿𝑓𝑎𝑢𝑙𝑡 = 0.1 𝑚𝐻, respectively) occurs, which sustains 

for three cycles, i.e. 50 𝑚𝑠𝑒𝑐, and clears at 𝑡𝑐𝑙𝑒𝑎𝑟 = 70 𝑚𝑠𝑒𝑐. It should be noted that the 

fault currents (at the point of short circuit) cannot be interrupted until they cross zero, 

therefore, the fault currents may disappear a short while (no more than a half cycle) after 

the clearance time. Moreover, it is assumed that the neutral point of the Y-connected RL 

load is connected to the ground and the dc side of the circuit is isolated from the ground. 

The schematic diagram of the power conversion system, the load, and the short circuit 

fault is depicted in Figure 4.11. Performances of the inverters are compared for three 

major faults, i.e. line-to-ground (LG), line-to-line (LL), and three-phase (LLL) short 

circuits. The comparisons are made based on the obtained waveforms of the dc-link 

current, line-to-line voltages, and line currents, during and after the faults. 

 

 

Figure 4.11: Short circuit fault on the dc-ac conversion systems 
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Fault 
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A. Line-to-Ground Short Circuit (LG Fault) 

 The waveforms of the SPWM-VSI and SSBI under a line-to-ground fault are 

shown in Figure 4.12. As can be seen, this fault causes large 120 Hz ripples on the dc-link 

current of the SSBI, while it does not change the dc-link current of the SPWM-VSI 

significantly. The voltage waveforms indicate that the LG short circuit does not affect the 

line voltages of the SPWM-VSI, although the line-to-ground voltage of the faulty phase 

(phase a) becomes (almost) zero during the fault. On the other hand, the LG short circuit 

has noticeable impacts, like a drop in the line voltage amplitudes as well as distortions in 

their waveforms, on the line voltages of the SSBI. This means that, in term of the voltage 

profiles, the SPWM-VSI has a better performance than the SSBI under an LG short 

circuit fault.  

 

(a) 

 

(b) 

Figure 4.12: Performance of the inverters under an LG short circuit fault, a) SSBI, b) SPWM-VSI  
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 Short circuit level (SCL), or the peak current amplitude under short circuit, is the 

most critical measure of the short circuit faults. The reason is that the short circuit faults 

usually cause large currents flow in the circuit, which can result in serious damage to the 

system components. The obtained waveforms show that the SSBI has a peak current of 

1.6 A (in fact -1.6 A), while this values is about 1.8 A for the SPWM-VSI. This means an 

11% lower SCL for the SSBI than the SPWM-VSI.  

 

B. Line-to-Line Short Circuit (LL Fault) 

 Figure 4.13 presents the waveforms of the SPWM-VSI and SSBI under a line-to-

line fault. It can be seen that the LL fault causes an up to 270 A current in the dc-link of 

the SPWM-VSI, which is significantly larger than that for the SSBI. It is also observed 

that while the voltage between the faulty phases (phases a and b) is very close to zero, 

𝑣𝑏𝑐 and 𝑣𝑐𝑎 have opposite angles (180° phase difference). Obviously, this voltage profile 

is not suitable for supplying three-phase loads. Furthermore, the voltage of SPWM-VSI 

has some fluctuations after the fault clearance, which may arise from a resonance 

between the LC filter and the load. 

 In terms of short circuit currents, the SSBI considerably outperforms the SPWM-

VSI, i.e. the peaks of the transient and sustaining short circuit currents of the SSBI are 55 

and 17 A, respectively, whereas the SPWM-VSI has a peak current of 280 A.  
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(a) 

 

(b) 

Figure 4.13: Performance of the inverters under an LL short circuit fault, a) SSBI, b) SPWM-VSI  
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current of the SPWM-VSI is about 350 A, the SSBI has a transient peak current of 75 A, 

and a sustaining peak of 34 A.  

  

 

(a) 

 

(b) 

Figure 4.14: Performance of the inverters under an LLL short circuit fault, a) SSBI, b) SPWM-VSI  
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also worth mentioning that, line-to-line-to-ground (LLG) is another major type of short 

circuit fault, which is usually investigated in short circuit studies. This fault has been also 

studied in this research work; however, since the obtained waveforms were quite similar 

to those for the LL fault, the results have not been presented here. 
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4.2 Single-Phase Single-Stage Boost Inverter 

The same concept of the three-phase SSBI can be applied to single-phase current 

source inverters in order to converter a low dc voltage to a high ac voltage in only one 

stage of conversion. This has been done in [5], where new switching pattern has been 

proposed for adapting the single-phase CSI to a single-phase SSBI. In the new switching 

pattern, only one switch operates at a high frequency rate, while two other switches 

conduct at any given instance. The high frequency switch is modulated with a variable 

rate proportional to a sinusoidal function, which should be in phase with the grid voltage 

to inject merely an active power.  

 

Figure 4.15: The complete power circuit schematic diagram of the CSI-based single-phase boost inverter  

 

4.2.1 Circuit Topology 

Figure 4.15 shows the complete power circuit schematic of the single-phase boost 

inverter, where 𝑉𝑑𝑐 is a dc voltage source (representing an SE source), 𝐿𝑑𝑐 is the dc-link 

inductor, 𝐶𝑎𝑐 represents the ac-side film capacitor, and 𝐿𝑎𝑐 represents the line inductor.  
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Figure 4.16: The switching pattern, one switch is modulated over each positive or negative half cycle in the 

single-phase SSBI 

 

  

Figure 4.17: Switch positions, positive (Mode I) and negative (Mode II) half cycles  

 

In this circuit topology, at any given instant, one of the upper switches and one of 

the lower switches conduct, while at any charging time-interval two switches of a leg are 

closed. During the charging times the magnetic energy in 𝐿𝑑𝑐 is increased to boost the 

output voltage and inject power to the output circuit. The proposed switching pattern and, 

the associated operation of the switches during the positive and negative half cycles are 

Mode (II) 

  

Sbn 

Sbp Sap 

San 

Mode (I) 

 

  

Sap 

Sbn San 

Sbp 

Sap 

t 
T1 0 

    

           

Sbp 

Sbn 

San 



81 
 

shown in Figures 4.16-17. As can be seen in Figure 4.17, the boost inverter acts like a 

regular dc-dc boost converter in each of the modes. 

 

4.2.2 Switching Pattern 

In this section, the proposed switching pattern for the steady-state operation of the 

SSBI is presented. If the discharging time-interval, 0 < 𝑡𝑑 < 𝑇𝑠, sinusoidally varies as: 

𝑡𝑑(𝑛) = 𝑚 𝑇𝑠 |𝑠𝑖𝑛(𝜔1𝑡𝑛 − 𝛼0)|,                                                                                 (4.21) 

The charging time-interval can be obtained as follows: 

𝑡𝑐(𝑛) = 𝑇𝑠 − 𝑡𝑑(𝑛) = 𝑇𝑠(1 −𝑚|𝑠𝑖𝑛(𝜔𝑡𝑛 − 𝛼0)|)                                                     (4.22) 

where, 𝑇𝑠 is the switching cycle, 𝑡𝑛 = 𝑛𝑇𝑠 for 𝑛 = 1, 2, 3, … ,𝑁𝑝 and 𝑁𝑝 = 𝑇1/2𝑇𝑠 is 

equal to the number of pulses in half a cycle, 𝜔 is the frequency of the grid voltage which 

is assumed to be 𝑣𝑔 = √2𝑉𝑔𝑟𝑚𝑠 𝑠𝑖𝑛(𝜔𝑡), and 0 < 𝑚 ≤ 1 and 𝛼0 are the modulation index 

and angle, respectively. It should be noted that, 𝑚 and 𝛼0 have impacts on the output 

current THD and injected power to the grid. During each charging interval, depending on 

the polarity of the grid voltage, one leg is shorted to make a current path for the dc-source 

through the dc-link inductor. On the other hand, during any discharging time-interval one 

upper and one lower switch from the different legs are on, so the inductor current can be 

discharged into the grid. The on/off durations of the switches during each switching cycle 

are shown in Table 4.4.  

 

Table 4.4: On/off time-intervals of the switches during each switching cycle  

 𝑠𝑖𝑔𝑛�𝑣𝑔�  Sap  Sbp  San  Sbn  
 +  𝑇𝑠  0  𝑡𝑐  𝑡𝑑  
 -  0  𝑇𝑠  𝑡𝑑  𝑡𝑐  
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As can be seen in this table, the switching state of each upper switch changes at 

the frequency of the grid voltage, 𝑓1 = 𝜔 2𝜋⁄ , whereas the lower switches operate at the 

switching frequency, 𝑓𝑠 = 1 𝑇𝑠⁄ . In other words, in order to produce a single-stage boost 

dc-ac conversion, two upper switches must operate at the grid frequency and two lower 

switches must run at high frequency. However, by looking at the inverter topology, one 

may realize that it is not necessarily needed to turn both lower switches on and off on a 

complementary manner. Because of the fact that, during the charging intervals the lower 

series diodes, Dan and Dbn in Figure 4.15, block the reverse flow path for  𝑖𝑖𝑛𝑣 to circulate 

through San and Sbn and the output capacitor, see Figure 4.17. Hence, it is alternatively 

possible to keep one of the lower switches, which is associated with the discharge 

interval, 𝑡𝑑, on during the entire switching cycle. The proposed on/off time-intervals 

(versus the initially-proposed in Table 4.4), is shown in Table 4.5. 

 

Table 4.5: Proposed switching table during each switching cycle, 𝑇𝑠 

 sign(vg)  Sap  Sbp  San  Sbn  
 +  𝑇𝑠  0  𝑡𝑐  𝑇𝑠  
 -  0  𝑇𝑠  𝑇𝑠  𝑡𝑐  

 

 As can be seen, during each half cycle of the grid voltage, one switch operates at 

high frequency, 𝑓𝑠 , and the other switches operate at the grid frequency, 𝑓1. The proposed 

switching operation can best be demonstrated in Figure 4.16. As will be seen in the later 

sections, this modification leads to lower switching losses and, consequently, the higher 

inverter efficiency.  
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4.2.3 Control Strategy 

 The control strategy of single-phase SSBI is like its three-phase counterpart, i.e. 

in the grid-connected mode, the operation goal is usually to inject active and reactive 

powers to the grid, while a stand-alone inverter is intended to feed a local load with a 

fixed voltage and frequency. Similar to that for the three-phase SSBI, in the grid-

connected operation, the active power could be controlled through adjusting the phase 

angle of the reference voltage with respect to the grid, 𝛼0, and the reactive power could 

be control through regulation of the modulation index, 𝑚. On the other hand, for the 

stand-alone mode of operation, the amplitude of the load voltage can be controlled by 

regulating the modulation index. 

 

4.2.4 Simulation and Experimental Results  

In order to verify the proposed switching pattern, a set of simulation and 

experimental results is presented in this section. In this study, three different commercial 

PV panels, which are widely available in the market, are considered for the test purpose 

[65, 67-68]. The electrical specifications of these typical panels are summarized in Table 

4.6. 

 

Table 4.6: Electrical specifications of the PV panels 

 Panel Model  BP 3110  BP 4175B  BP 3230T  
 𝑃𝑀𝑃𝑃 (W)  110  175  230  
 𝑉𝑀𝑃𝑃 (V)  16.9  35.4  29.1  
 𝐼𝑀𝑃𝑃 (A)  6.50  4.94  7.90  
 𝑉𝑂𝐶  (V)  21.6  43.6  36.7  
 𝐼𝑆𝐶  (A)  7.40  5.45  8.40  
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(a) 𝑚 = 0.290, 𝛼0 = 0 (b) 𝑚 = 0.0308, 𝛼0 = −6° 

Figure 4.18: Performance of the single-stage boost inverter at the MPP of BP3230T, a) Simulation, b) 

Experimental  

 

The developed Simulink model has exactly the same topology as Figure 4.15. The 

circuit’s parameters of the model, which are summarized in Table 4.7, are based on the 

actual values of the experimental setup that has been developed for testing the prototype 

single-phase SSBI. Here, 𝐿𝑔 and 𝑅𝑔 represent the inductance and resistance of the ac grid 

and the laboratory’s autotransformer. The voltage at the point of common coupling is set 

to be 110 Vrms at 60 Hz. The MOSFET switches have a voltage drop of about 1 V and a 
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static drain-source resistance, 𝑅𝑜𝑛, of 0.067 Ω, at a drain current of 5 A. Also, the forward 

bias voltage of the diode is roughly 1 V for the same current. The inverter switching 

frequency is 𝑓𝑠 = 4096 𝐻𝑧. Moreover, it is worth it to mention that, in order to suppress 

the voltage spikes across switches and diodes, appropriate snubber circuits have to be 

incorporated into the inverter circuit. In this work, the switches and diodes were equipped 

with RDC (𝑅 = 35 𝛺 and 𝐶 = 10 𝑛𝐹) turn-off snubbers, and series RC (𝑅 = 20 Ω and 

𝐶 = 16 𝑛𝐹) snubbers, respectively.  

 

Table 4.7: The circuit parameters of the simulation and hardware setup 

𝐿𝑑𝑐 𝑅𝑑𝑐 𝐶𝑎𝑐 𝐿𝑓 𝑅𝑓 𝐿𝑔 𝑅𝑔 MOSFET DIODE 

23.9 mH 0.3 Ω 10 µF 2.55 mH 0.2 Ω 0.5 mH 1.4 Ω 
STx42N65M5 
(TO-220FP) 

APT40DQ120BG 

 

The steady-state waveforms of the single-phase SSBI for 𝑉𝑑𝑐 = 29.1 𝑉 and 

𝑚 = 0.29 are shown in Figure 4.18-(a). The average dc-link current under this condition 

is 𝐼𝑑𝑐 = 7.9 𝐴 that corresponds to the MPP of the 230 W PV panel, i.e. BP3230T. The 

120 Hz ripple can be seen in the dc-link current, 𝑖𝑑𝑐, as well as the inverter output current 

envelope. This will generate a set of low order harmonics in the injected current to the 

grid, 𝑖𝑔. This will be elaborated upon later in this chapter. 

In order to verify the simulation results of the proposed PWM switching pattern, a 

laboratory scaled SSBI was built and tested while it was connected to the grid through the 

laboratory’s transformer. The switching signals were generated by a CLP1104 dSPACE 

system, which was linked to MATLAB/Simulink, and the switching frequency was 

chosen to be 4096 Hz. The measurements in this experiment were performed using a 



86 
 

LeCroy Waverunner 64XI oscilloscope with two CP031 current probes, and two ADP305 

differential voltage probes. The bandwidth of the oscilloscope is 600 MHz, while the 

bandwidths of the CP031 and the ADP305 are 50 MHz, and 100 MHz, respectively. 

The steady-state waveforms of the single-phase SSBI, using the modified-

proposed switching pattern, for 𝑣𝑑𝑐 = 29.1 𝑉 and 𝑚 = 0.308, are shown in Figure 4.14-

(b). One can easily observe that the obtained graphs are in a remarkable agreement with 

those from the simulations. This can confirm the validity of the proposed methodology. 

Obviously, there are some minor differences between the simulation and the experimental 

results that are practically inevitable. These differences may arise from non-idealities of 

either the linear elements of the circuits like the inductors, transformer, and the capacitor, 

or the semiconductor devices such as the diodes and the MOSFETs. Furthermore, the 

inherent time delays of the measurement and control systems can also aggravate the 

differences. For instance, the voltage sensor and the control system have about 40 µsec 

and 1 𝑓𝑠⁄ = 244 𝜇𝑠𝑒𝑐 delays, respectively. In order to compensate these delays, the 

reference discharging time-interval, 𝑡𝑑, should lead the line voltage by about 284 µsec. 

This can be applied through a 6-degree shift, i.e. 𝛼0 = −6°. Moreover, as a consequence 

of the imperfect switching, resulting from the rise-time and fall-time delays of the 

semiconductor devises, as well as the delays associated with the isolation and drive 

circuits, the modulation indices can be slightly different in the simulations and 

experiments. It should be noted that ideal switches have been used in the simulation 

studies. 
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Figure 4.19: Harmonic contents of the injected current to the grid 

 

Harmonic analysis of the injected current to the grid shows that the second and 

third harmonics are the major components of the total harmonic distortion. For instance, 

the harmonic content of 𝑖𝑔 for Figure 4.18-(b) is shown in Figure 4.19. As can be seen, 

the second and the third harmonics are 2.06% and 10.21%, respectively (THD=13.47%). 

Obviously the third harmonic has a significant contribution in the total harmonic 

distortion of the injected current. The rest of the grid current THD arises from the high 

order harmonics which are mostly at the switching frequency and its multiples (4.096 and 

8.192 kHz in Figure 4.19). Furthermore, one may observe some harmonics within the 

range of 700 to 1000 Hz. These harmonics correspond to the natural frequencies of the 

circuit that will be discussed later in this section. In general, the ratio of the low order 

harmonics is proportional to the ratio between the ripple and the average of the dc-link 

current, i.e. the higher ripple to average, the more low harmonics.  
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Besides the harmonic analysis, the characteristics of the presented single-phase 

SSBI, using the proposed switching pattern, are investigated here. This consists of the 

overall efficiency (including the output filter) and the grid current THD of the boost 

inverter versus the modulation index, 𝑚. It should be mentioned that deviations of the 

modulation angle from zero (in theory 𝛼0 = 0 and in practice 𝛼0 = −6°) can distort the 

injected current that significantly increases the current THD. The distortions appear as 

fluctuations around the natural frequencies of the circuit, i.e. within the range of 700 to 

1000 kHz. Since the circuit shown in Figure 4.15 has three reactive elements, one may 

conclude that the single-phase SSBI has to have three natural frequencies. In order to 

reduce the complexities involved in calculating the natural frequencies of the actual 

inverter system, the circuit elements can be assumed ideal and the losses can be 

neglected. Then, for the charging interval:  

𝑓1 = 0  𝑎𝑛𝑑  𝑓2,3
𝑐 = ±1

2𝜋��𝐿𝑓+𝐿𝑔�𝐶𝑎𝑐
= ±911.32 𝐻𝑧                                                       (4.23) 

and for the discharging interval: 

𝑓1 = 0  𝑎𝑛𝑑  𝑓2,3
𝑑 = ±1

2𝜋 �
𝐿𝑓+𝐿𝑔+𝐿𝑑𝑐

�𝐿𝑓+𝐿𝑔�𝐿𝑑𝑐𝐶𝑎𝑐
= ±967.72 𝐻𝑧                                                (4.24) 

Obviously, 𝑓1 = 0   does not affect the injected current to the grid. However, considering 

the simplifying assumptions, the absolute values of 𝑓2,3
𝑐  and 𝑓2,3

𝑑  are within the range of 

the observed oscillations. As was mentioned earlier in this section, these harmonic 

components can also be observed when the inverter output current is in phase with the 

grid voltage (𝛼0 = 0 or 𝛼0 = −6° in practice). However, under this condition, they 

constitute a small portion of the grid current THD, see Figure 4.19. It should be also 
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noted that all resistances in the circuit have been neglected in (4.23) and (4.24), and all 

switches and diodes have been assumed ideal. In spite of the simplifying assumptions, 

(4.23) and (4.24) give good approximations of the natural frequencies of the system. 

Based on the above discussion, the modulation angle will be fixed at zero in the rest of 

this chapter. The studies have been carried out for three different dc-source voltages, 

16.9, 29.1, and 35.4 V, which correspond to the MPP voltages of the case study PV 

panels in Table 4.6.  

The inverter input power, 𝑃𝑑𝑐, and injected power to the grid, 𝑃𝑔, versus the 

modulation index, 𝑚, are plotted for three PV voltage levels in Figure 4.20. This figure 

demonstrates that increasing the modulation index, generally results in decreases in both 

powers, i.e. the larger modulation index the less dc-source power and injected power to 

the grid. As can be seen in the upper graph, for 𝑣𝑑𝑐 = 29.1 𝑉, the input power is 230 W 

while the modulation index is slightly above 0.30 (𝑚 = 0.308 in Figure 4.14-(b)). The 

injected power to the grid for this modulation index is about 180 W, which corresponds to 

an efficiency of 78%. Similarly, for the input voltages of 16.9 and 35.4 V, the power 

becomes 110 and 175 W at the modulation indices around 0.17 and 0.41, respectively. 

These operating points correspond to the injected powers of 78 and 146 W, i.e. 71% and 

83% efficiencies, respectively. 
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Figure 4.20: Variations of the dc-source power and the injected power to the grid versus the modulation 

index 

 

The overall efficiency and the grid current THD of the proposed single-phase 

SSBI versus the injected power to the grid are shown in Figure 4.21. As can be seen in 

this figure, a larger input voltage in general results in a higher efficiency and a lower 

THD. Also, the grid current THD decreases with increasing the inverter output power, 
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with a kind of exponential trend. However, unlike the THD, the efficiency does not 

monotonically change with the injected power. The upper graph indicates that the overall 

efficiency of the system, including the losses of the inverter and the snubbers, as well as 

the dc-link inductor and the ac filter, becomes maximum at some certain operating point. 

The maximum efficiency for the input voltages of 16.9, 29.1, and 35.4 V is achieved 

around the injected powers of 62, 100, and 160 W, which result in 73.4%, 81.7%, and 

83.7% efficiencies, respectively. Generally, in a photovoltaic energy conversion system, 

it is desired that the maximum efficiency of the conversion system (i.e. the inverter and 

the filter) coincides with the MMP of the PV panel. A comparison between the maximum 

achievable efficiencies (73.4%, 81.7%, 83.7%) and the efficiency of the system at MMP 

of the panels (71%, 78%, and 83%), indicates that the prototype single-phase SSBI 

operates adequately close to its maximum efficiency at the MPP of the panels. This fact 

supports the optimal design of the prototype system. 

In order to compare the performances of the two switching strategies mentioned 

in Table 4.4 and 4.5, (namely IPSP and MPSP, respectively) the experiments have been 

conducted for both cases. Also, in order to examine the impact of the switching frequency 

on the performance of the system, in addition to the original switching frequency 

(𝑓𝑠 = 4096 𝐻𝑧), the MPSP strategy has been also applied for the switching frequency of 

3072 Hz. The overall efficiency (including the, dc-link inductor, inverter, and ac filter) 

and the current THD of the boost inverter, for different values of the modulation index, 

are shown in Figure 4.22.  
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Figure 4.21: Variations of the efficiency and the THD of the single-stage boost inverter versus its injected 

power to the grid 

 

As could be anticipated, in the case of MPSP, the system losses are less than the 

IPSP case. The reason is that in the MPSP only one switch operates at high frequency, 

whereas in the IPSP two switches operate at the high frequency. This results in 1-3% 

improvement in the overall efficiency of the single-stage boost inverter. Furthermore, it is 
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evident that reducing the switching frequency outperforms the efficiency of the system. 

As can be seen in this graph, the overall efficiency of the system for the switching 

frequency of 3.072 kHz is about 1-2% more than that for the 4.096 kHz. Besides the 

efficiency considerations, the lower graph of Figure 4.22 indicates that the injected 

current to the grid in the MPSP case has a lower harmonic content than in the IPSP case. 

Quantitatively, employing the MPSP strategy enhances the grid current THD by 2-3%. 

Moreover, as could be expected, increasing the switching frequency results in a higher 

current THD. The performance of the MPSP-operated single-phase single-stage boost 

inverter at the maximum efficiency and minimum THD, for different PV panels are 

summarized in Table 4.8. 

 

Table 4.8: Performance of the single-phase SSBI for different PV panels at maximum efficiency and 

minimum THD  

Panel Model Operating Parameters Maximum Efficiency Minimum THD 

BP3110 

𝑚 0.18 0.13 
𝜂 (%) 73.4 54.1 

THD (%) 13.4 8.0 
𝑃𝑔 (W) 62.0 112.9 

𝑟 = 𝑉𝑔𝑟𝑚𝑠 𝑉𝑑𝑐⁄  110/16.9=6.51 110/16.9=6.51 

BP4175B 

𝑚 0.41 0.35 
𝜂 (%) 83.7 73.9 

THD (%) 19.8 8.4 
𝑃𝑔 (W) 159.2 353.4 

𝑟 = 𝑉𝑔𝑟𝑚𝑠 𝑉𝑑𝑐⁄  110/3.54=3.12 110/3.54=3.12 

BP3230T 

𝑚 0.34 0.28 
𝜂 (%) 81.7 70.9 

THD (%) 20.8 7.5 
𝑃𝑔 (W) 102.8 275.6 

𝑟 = 𝑉𝑔𝑟𝑚𝑠 𝑉𝑑𝑐⁄  110/29.1=3.78 110/29.1=3.78 
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Figure 4.22: Variations of the overall efficiency and the THD of the single-stage boost inverter versus the 

modulation index 
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circuit topologies, switching patterns, control strategies, and steady-state performance of 

the single- and three-phase SSBIs, have been explained in details and the concept has 

been proved through simulation and experiments.  

The proposed switching pattern for the three-phase SSBI is based on the SVPWM 

concept; however, it is different form SVPWM.  The presented switching pattern contains 

a total of nine switching states, including three charging states and six discharging states 

with only two switches conducting at any given instant. It has been demonstrated that the 

CSI topology in conjunction with the developed switching pattern is capable of providing 

the residential ac voltage from a low dc voltage of a single PV panel at its rated power for 

both linear and nonlinear loads. Besides that, the abnormal operation of the SSBI, under 

short circuit fault conditions, was studied. The obtained results indicated that the SSBI 

has a superior performance to its conventional counterpart, the SPWM-VSI.  

The presented switching pattern for the single-phase SSBI contains a charging 

state and a discharging state over each switching cycle where only one switch operates at 

high frequency, one does not conduct, and the other two switches conduct for the entire 

switching cycle. In this method the charging state is necessary in order to boost the output 

voltage of PV arrays or fuel-cells. 

In the next chapter the state-space averaging method will be applied to the stand-

alone three-phase SSBI and its large- and small-signal models will be derived. 
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CHAPTER 5 

STATE-SPACE-AVERAGED MODEL OF THE STAND-ALONE SINGLE-

STAGE BOOST INVERTER SYSTEM 

 

The state-space-averaged model of the stand-alone single-stage boost inverter is 

developed and used for stability analysis and control design of the system. This is 

achieved through several steps; in the first step, the possible switching states of the circuit 

operation are enumerated and the associated state-space equations are derived and 

averaged over one switching cycle. Then, the obtained time-varying averaged model will 

be transformed into a synchronous dq-frame of reference in order to derive the time-

invariant model of the system. The system stability is investigated by eigenvalue 

sensitivity analysis and the findings will be verified through simulation and experiment.  

This chapter contains five sections. The states of the system are enumerated in 

Section 1. The state-space-averaged model of the system is derived in Section 2. The 

eigenvalue sensitivity analysis of the system is performed in Section 3. The simulation 

and experimental results are presented in Section 4, and Section 5 is the summary of the 

chapter. 

 

5.1 State Enumeration of the System 

The circuit diagram of a stand-alone three-phase single-stage boost inverter 

(SSBI) is presented in Figure 5.1. As was already discussed in the previous chapter, a 

three-phase SSBI operates in six sectors (see Figure 4.2), where each sector includes 

three switching states, i.e. one charging, and two discharging time-intervals. As can be 
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seen in Figure 4.4, these switching states include a total of nine linear circuits, in which 

the three charging states have the same electrical equation, and the other six discharging 

circuits correspond to different circuit representations. Therefore, the operation of the 

SSBI is associated with seven distinct linear electric circuits, in which each circuit can be 

represented by a set of state-space equations. Therefore, the SSBI has seven state-space 

equations in total, and three state-space equations over each switching cycle. As a result, 

the SSBI is a linear time-varying system that, in general, can be represented in the 

following state-space form:  

�̇� = 𝑨(𝑡)𝒙 + 𝑩(𝑡)𝒖
𝒚 = 𝑪(𝑡)𝒙 + 𝑫(𝑡)𝒖                                                                                                       (5.1) 

where, for a nth order dynamical system with r inputs and m outputs: 𝒙 is a n×1 vector 

(state vector), 𝒖 is a r×1 vector (input vector), 𝒚 is a m×1 vector (output vector), 𝑨 is a 

n×n matrix (system matrix), 𝑩 is a n×r matrix (control matrix), 𝑪 is a m×n matrix (output 

matrix) and 𝑫 is a m×r matrix [69]. The seven circuit diagrams, along with the 

corresponding system matrices for the stand-alone three-phase SSBI feeding a resistive 

load, 𝑅𝐿, (3rd order dynamical system) are presented in Table 5.1, where, 𝑅𝑑𝑐 is the 

series resistance of the dc-link inductor. Just as an observation, it is interesting to mention 

that all discharging states, i.e. D1-D6, have the same eigenvalues, which means that they 

are all similar matrices [69].  
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Table 5.1: The possible states of the stand-alone SSBI system 

C={C1,C2,C3} 

 

𝑨𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

0 0

0
−1

3𝑅𝐿𝐶𝑎𝑐
0

0 0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D1 

 

𝑨𝑫𝟏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

0

2
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

−1
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D2 

 

𝑨𝑫𝟐 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

1
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

1
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D3 

 

𝑨𝑫𝟑 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

0
−1
𝐿𝑑𝑐

−1
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

2
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D4 

 

𝑨𝑫𝟒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

1
𝐿𝑑𝑐

0

−2
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

1
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D5 

 

𝑨𝑫𝟓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

1
𝐿𝑑𝑐

1
𝐿𝑑𝑐

−1
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

−1
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D6 

 

𝑨𝑫𝟔 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

0
1
𝐿𝑑𝑐

1
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

−2
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐴 

𝐵 

𝐶 

𝑣𝑎𝑏 
𝑅𝐿 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 

+ 
𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝑖𝑑𝑐 
⟶ 

𝑉𝑑𝑐 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑉𝑑𝑐 

𝑣𝑎𝑏 
𝑅𝐿 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 

+ 
𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑉𝑑𝑐 𝑣𝑎𝑏 
𝑅𝐿 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 

+ 
𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑉𝑑𝑐 

𝑣𝑎𝑏 
𝑅𝐿 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 

+ 
𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑉𝑑𝑐 

𝑣𝑎𝑏 
𝑅𝐿 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 

+ 
𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑉𝑑𝑐 𝑣𝑎𝑏 
𝑅𝐿 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 

+ 
𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑉𝑑𝑐 

𝑣𝑎𝑏 
𝑅𝐿 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 

+ 
𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 
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Figure 5.1: Stand-alone three-phase single-stage boost inverter system 

 

In these state-space representations, the state vector 𝒙 consists of state variables of 

the system, which are the inductor current and independent capacitor voltages, i.e. 

𝒙 = [𝑖𝑑𝑐, 𝑣𝑎𝑏 , 𝑣𝑏𝑐]𝑇, where the superscript 𝑇 denotes the matrix transpose. The dc-source 

voltage, 𝑣𝑑𝑐, is the only input to all circuits, i.e. 𝒖𝑪 = 𝒖𝑫𝟏 = 𝒖𝑫𝟐 = ⋯ = 𝒖𝑫𝟔 = 𝒖 =

𝑣𝑑𝑐, and all states have the same control matrix, 𝑩𝑪 = 𝑩𝑫𝟏 = 𝑩𝑫𝟐 = ⋯ = 𝑩𝑫𝟔 = 𝑩 =

[1 𝐿𝑑𝑐⁄ , 0, 0]𝑇.  

 

5.2 State-Space-Averaged Model of the SSBI 

 If one can put the time-varying differential equations of the SSBI in the standard 

form of (3.12) and show the periodicity and continuity of the associated vector function 

over a switching period, i.e. 𝑇𝑠, then it is possible to apply the theorem of periodic 

averaging (see Appendix A), and approximate the system model with a set of time-

invariant differential equations. In this study, ideal switches operating at a high switching 

frequency are assumed for the SSBI in order to apply the aforementioned theorem [49, 

57, 59].  

   
Ldc 

 

Cac 

 
  

vdc 

  Load 
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5.2.1 Large-Signal Model 

As the first step, averaging technique is applied to the state-space equations of the 

stand-alone SSBI system in Sector (I). As will be seen later, all sectors will eventually 

have the same state-space-averaged model. The circuit diagrams and the corresponding 

state-space equations, under continuous conduction mode (CCM) of operation and for a 

resistive load, 𝑅𝐿, are summarized in Table 5.2, where, 𝑅𝑑𝑐 is the series resistance of the 

dc-link inductor. It should be emphasized that in many real cases it may not be a valid 

assumption to neglect the series resistance. The reason is that the amount of the series 

resistance of the dc-link inductor may not be really negligible in comparison with the 

other parameters of the circuit. For instance, the dc-link inductor of our prototype circuit 

has a series resistance of 0.1 𝛺. Moreover, as will be seen n later sections, the series 

resistances of the circuit elements have significant impacts on the stability of the SSBI 

system.  

As can be seen in the table, the system matrix of the system in Sector (I), 𝑨𝑰(𝑡), is 

a function of time, however, by applying the theorem of periodic averaging [29], the 

system can be approximated by the following state-space equation: 

𝒙�̇ = 𝑨�𝑰𝒙� + 𝑩�𝒖                                                                                                                  (5.5) 

where, 𝒙� = �𝚤̇̃𝑑𝑐, 𝑣�𝑎𝑏 ,𝑣�𝑏𝑐�
𝑇
 is the approximate state vector, and the matrix 𝑨�𝑰 is the 

averaged system matrix for Sector (I), 

𝑨�𝑰 = [𝑑𝑐𝑨𝑪𝟏 + 𝑑1𝑨𝑫𝟏 + 𝑑2𝑨𝑫𝟐] =

⎣
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−(𝑑1+𝑑2)
𝐿𝑑𝑐

−𝑑2
𝐿𝑑𝑐

2𝑑1+𝑑2
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0
−𝑑1+𝑑2
3𝐶𝑎𝑐

0 −1
3𝑅𝐿𝐶𝑎𝑐⎦

⎥
⎥
⎥
⎤

                                  (5.6) 
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where, 𝑑𝑐 = 𝑡𝑐 𝑇𝑠⁄ , 𝑑1 = 𝑡𝑑1 𝑇𝑠⁄ , and 𝑑2 = 𝑡𝑑2 𝑇𝑠⁄ , are the corresponding duty ratios. It 

should be also noted that 𝑩� = 𝑩. The averaged system matrices for other sectors, 𝑨�𝑰𝑰, 

𝑨�𝑰𝑰𝑰, 𝑨�𝑰𝑽, 𝑨�𝑽, 𝑨�𝑽𝑰, are provided in Table 5.3. It might be interesting to know that all of the 

averaged system matrices are similar, because they all have the same eigenvalues [69].  

 

Table 5.2: Circuit diagrams and state-space equations of the SSBI under CCM, for Sector (I) 

C: 0 ≤ 𝑡 < 𝑡𝑐 D1: 𝑡𝑐 ≤ 𝑡 < 𝑡𝑐 + 𝑡𝑑1 D2: 𝑡𝑐 + 𝑡𝑑1 ≤ 𝑡 < 𝑇𝑆 

   

�̇� = 𝑨𝑪𝟏𝒙 + 𝑩𝑪𝟏𝒖 �̇� = 𝑨𝑫𝟏𝒙 + 𝑩𝑫𝟏𝒖 �̇� = 𝑨𝑫𝟐𝒙 + 𝑩𝑫𝟐𝒖 

𝑨𝑪𝟏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

0 0

0
−1

3𝑅𝐿𝐶𝑎𝑐
0

0 0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 𝑨𝑫𝟏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

0

2
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

−1
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 𝑨𝑫𝟐 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

1
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

1
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝒙 = [𝑖𝑑𝑐 𝑣𝑎𝑏 𝑣𝑏𝑐]𝑇 ,       𝒖 = 𝑣𝑑𝑐 ,  

𝑩𝑪𝟏 = 𝑩𝑫𝟏 = 𝑩𝑫𝟐 = 𝑩 = [1 𝐿𝑑𝑐⁄ 0 0]𝑇 ,      𝑎𝑛𝑑      𝑇𝑆 = 𝑡𝑐 + 𝑡𝑑1 + 𝑡𝑑2 

 

Although the obtained system matrix in (5.6) is not an explicit function of time, it 

is a function of discharging duty ratios, 𝑑1 and 𝑑2, which are varying with time. 

According to Chapter 4, the discharging ratios in Sector (I) are determined as: 

𝑑1 = 𝑚 𝑐𝑜𝑠(𝜃 − 𝛼0)                                                                                                        (5.7) 

𝑑2 = 𝑚 𝑐𝑜𝑠 �𝜃 − 𝛼0 −
2𝜋
3
�                                                                                              (5.8) 

 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑣𝑑𝑐 

𝑣𝑎𝑏 

𝑣𝑏𝑐 

+ 
− 

+ 

− 

− 
+ 

𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝑅𝐿 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑣𝑑𝑐 𝑣𝑎𝑏 

𝑣𝑏𝑐 

+ 
− 

+ 

− 

− 
+ 

𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝑅𝐿 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑣𝑑𝑐 

𝑣𝑎𝑏 

𝑣𝑏𝑐 

+ 
− 

+ 

− 

− 
+ 

𝑣𝑐𝑎 

𝑅𝐿 

𝑅𝐿 

𝑅𝐿 
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Table 5.3: Averaged system matrices of the stand-alone SSBI system for all sectors 

Sector Average System Matrix 

I 𝑨�𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟏 + 𝑑2𝑨𝑫𝟐] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−(𝑑1 + 𝑑2)
𝐿𝑑𝑐

−𝑑2
𝐿𝑑𝑐

2𝑑1 + 𝑑2
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

−𝑑1 + 𝑑2
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

II 𝑨�𝑰𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟐 + 𝑑2𝑨𝑫𝟑] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−𝑑1
𝐿𝑑𝑐

−(𝑑1 + 𝑑2)
𝐿𝑑𝑐

𝑑1 − 𝑑2
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

𝑑1 + 2𝑑2
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

III 𝑨�𝑰𝑰𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟑 + 𝑑2𝑨𝑫𝟒] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

𝑑2
𝐿𝑑𝑐

−𝑑1
𝐿𝑑𝑐

−(𝑑1 + 2𝑑2)
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

2𝑑1 + 𝑑2
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

IV 𝑨�𝑰𝑽 = [𝑑𝑐𝑨𝑪 + 𝑑1𝐴𝐷4 + 𝑑2𝑨𝑫𝟓] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

𝑑1 + 𝑑2
𝐿𝑑𝑐

𝑑2
𝐿𝑑𝑐

−(2𝑑1 + 𝑑2)
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

𝑑1 − 𝑑2
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

V 𝑨�𝑽 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟓 + 𝑑2𝑨𝑫𝟔] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

𝑑1
𝐿𝑑𝑐

𝑑1 + 𝑑2
𝐿𝑑𝑐

−𝑑1 + 𝑑2
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

−(𝑑1 + 2𝑑2)
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

VI 𝑨�𝑽𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟔 + 𝑑2𝑨𝑫𝟏] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

−𝑑2
𝐿𝑑𝑐

𝑑1
𝐿𝑑𝑐

𝑑1 + 2𝑑2
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

0

−(2𝑡𝑑1 + 𝑡𝑑2)
3𝐶𝑎𝑐

0
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

where the modulation index 𝑚 > 0 is a coefficient which regulates the output voltage of 

the system and 𝜃 is the angular displacement of the reference line voltage, 𝑣𝑎𝑏
𝑟𝑒𝑓. Also, it is 
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worth the reminder that, since 𝑑1 and 𝑑2 must be always positive, 𝛼0 must be equal to 

−𝜋 6⁄ . 

It should be mentioned that, compared with the fast variations of the system 

equations during a switching cycle (e.g. 𝑇𝑠 = 0.1 𝑚𝑠𝑒𝑐 for 𝑓𝑠 = 10 𝑘𝐻𝑧), 𝑑1 and 𝑑2 (with 

a period of 1 60 ≅ 16.7 𝑚𝑠𝑒𝑐⁄ ) can be considered as relatively slow-varying quantities. 

In other words, in the SSBI, 𝑣𝑑𝑐, and the control functions, 𝑑1 and 𝑑2, are dc or sinusoidal 

functions with slow variations in comparison with the switching cycle. Moreover, it can be 

concluded from the experimental results in Chapter 4 that the energy content of the 

switching harmonics (ripple) of the SSBI output waveforms is negligible (THD=3.5%). 

Thus, the SSBI can be viewed as a system with slow-varying inputs and slow-varying 

outputs [49].    

As can be seen in Table 5.3, for the six sectors of the proposed phasor pulse-with-

modulation (PPWM) switching pattern, there are six different sets of equations, and 

consequently six distinct system matrices, namely 𝑨�𝑰, 𝑨�𝑰𝑰, 𝑨�𝑰𝑰𝑰, 𝑨�𝑰𝑽, 𝑨�𝑽, 𝑨�𝑽𝑰. In other 

words, the period of the SSBI equations is equal to the line voltage cycle, e.g. 60 Hz. 

Moreover, these matrices are time-variant, as 𝑑1 and 𝑑2 vary by time. However, if these 

six state-space equations are transferred into the synchronous 𝑑𝑞-frame of reference (see 

Chapter 3), all sectors will have the same matrix. This procedure is elaborated upon in the 

following. 

In general, 𝑣�𝑎𝑏 and 𝑣�𝑏𝑐 can be expressed in terms of their dq-components, 𝑣�𝑞 and 

𝑣�𝑑, as follows [28]: 

�𝑣�𝑎𝑏𝑣�𝑏𝑐
� = �

𝑐𝑜𝑠�𝜃𝑓� 𝑠𝑖𝑛�𝜃𝑓�

𝑐𝑜𝑠 �𝜃𝑓 −
2𝜋
3
� 𝑠𝑖𝑛 �𝜃𝑓 −

2𝜋
3
�
� �
𝑣�𝑞
𝑣�𝑑
�                                                               (5.9) 
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where 𝜃𝑓 is the angular displacement of the rotating reference frame. Consequently, time 

derivatives of the approximate state variables 𝑣�𝑎𝑏 and 𝑣�𝑏𝑐 are derived as: 

�𝑣�̇𝑎𝑏
𝑣�̇𝑏𝑐

� = �
𝑐𝑜𝑠�𝜃𝑓� 𝑠𝑖𝑛�𝜃𝑓�

𝑐𝑜𝑠 �𝜃𝑓 −
2𝜋
3
� 𝑠𝑖𝑛 �𝜃𝑓 −

2𝜋
3
�
� �
𝑣�̇𝑞
𝑣�̇𝑑
�              

          + �
−�̇�𝑓𝑠𝑖𝑛�𝜃𝑓� �̇�𝑓𝑐𝑜𝑠�𝜃𝑓�

−�̇�𝑓𝑠𝑖𝑛 �𝜃𝑓 −
2𝜋
3
� �̇�𝑓𝑐𝑜𝑠 �𝜃𝑓 −

2𝜋
3
�
� �
𝑣�𝑞
𝑣�𝑑
�

                                                (5.10) 

Substituting (5.9) and (5.10) in (5.6) and some mathematical manipulations yields: 

𝑨�𝒅𝒒𝑰 =

⎣
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

−�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐

−�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐
2�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−

𝜋
3��

3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�𝑓
2�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−

𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓

−1
3𝑅𝐿𝐶𝑎𝑐 ⎦

⎥
⎥
⎥
⎥
⎤

      (5.11) 

which is the average system matrix of Sector (I) in the rotating reference frame. 

The averaged system matrices for the other sectors, 𝑨�𝒅𝒒𝑰𝑰, 𝑨�𝒅𝒒𝑰𝑰𝑰, …, 𝑨�𝒅𝒒𝑽𝑰, can 

be obtain in the same way. These matrices are presented in Table 5.4. As an alternative 

approach, one could apply (5.9) and (5.10) to the state-space equations of Table 5.1, see 

Table 5.5, and then apply the averaging technique. Equation (5.11) is still a function of 𝑑1 

and 𝑑2. However, substituting (5.7) and (5.8) in (5.11), yields the following matrix in the 

rotating reference frame, where 𝜃𝑓 = 𝜃: 

𝑨�𝒅𝒒𝑰 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−√3𝑚
2𝐿𝑑𝑐

0
√3𝑚
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�

0 �̇� −1
3𝑅𝐿𝐶𝑎𝑐⎦

⎥
⎥
⎥
⎥
⎤

                                                                                      (5.12) 
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Table 5.4: Averaged system matrices of the stand-alone SSBI system in the dq-frame of reference 

𝑨�𝒅𝒒𝑰 =

⎣
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

−�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐

−�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐
2�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−

𝜋
3��

3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�𝑓
2�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−

𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓

−1
3𝑅𝐿𝐶𝑎𝑐 ⎦

⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑰𝑰 =

⎣
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

−𝑑1𝑐𝑜𝑠�𝜃𝑓−
𝜋
3�+𝑑2𝑐𝑜𝑠�𝜃𝑓+

𝜋
3�

𝐿𝑑𝑐

−𝑑1𝑠𝑖𝑛�𝜃𝑓−
𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓+

𝜋
3�

𝐿𝑑𝑐
2�𝑑1𝑐𝑜𝑠�𝜃𝑓−

𝜋
3�−𝑑2𝑐𝑜𝑠�𝜃𝑓+

𝜋
3��

3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�𝑓
2�𝑑1𝑠𝑖𝑛�𝜃𝑓−

𝜋
3�−𝑑2𝑠𝑖𝑛�𝜃𝑓+

𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓

−1
3𝑅𝐿𝐶𝑎𝑐 ⎦

⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑰𝑰𝑰 =

⎣
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

𝑑1𝑐𝑜𝑠�𝜃𝑓+
𝜋
3�+𝑑2𝑐𝑜𝑠�𝜃𝑓�

𝐿𝑑𝑐

𝑑1𝑠𝑖𝑛�𝜃𝑓+
𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓�

𝐿𝑑𝑐
−2�𝑑1𝑐𝑜𝑠�𝜃𝑓+

𝜋
3�+𝑑2𝑐𝑜𝑠�𝜃𝑓��

3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�𝑓
−2�𝑑1𝑠𝑖𝑛�𝜃𝑓+

𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓��

3𝐶𝑎𝑐
�̇�𝑓

−1
3𝑅𝐿𝐶𝑎𝑐 ⎦

⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑰𝑽 =

⎣
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3�

𝐿𝑑𝑐

𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3�

𝐿𝑑𝑐
−2�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−

𝜋
3��

3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�𝑓
−2�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−

𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓

−1
3𝑅𝐿𝐶𝑎𝑐 ⎦

⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑽 =

⎣
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

𝑑1𝑐𝑜𝑠�𝜃𝑓−
𝜋
3�−𝑑2𝑐𝑜𝑠�𝜃𝑓+

𝜋
3�

𝐿𝑑𝑐

𝑑1𝑠𝑖𝑛�𝜃𝑓−
𝜋
3�−𝑑2𝑠𝑖𝑛�𝜃𝑓+

𝜋
3�

𝐿𝑑𝑐
−2�𝑑1𝑐𝑜𝑠�𝜃𝑓−

𝜋
3�−𝑑2𝑐𝑜𝑠�𝜃𝑓+

𝜋
3��

3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�𝑓
−2�𝑑1𝑠𝑖𝑛�𝜃𝑓−

𝜋
3�−𝑑2𝑠𝑖𝑛�𝜃𝑓+

𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓

−1
3𝑅𝐿𝐶𝑎𝑐 ⎦

⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑽𝑰 =

⎣
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

−�𝑑1𝑐𝑜𝑠�𝜃𝑓+
𝜋
3�+𝑑2𝑐𝑜𝑠(𝜃)�

𝐿𝑑𝑐

−�𝑑1𝑠𝑖𝑛�𝜃𝑓+
𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓��

𝐿𝑑𝑐
2�𝑑1𝑐𝑜𝑠�𝜃𝑓+

𝜋
3�+𝑑2𝑐𝑜𝑠�𝜃𝑓��

3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�𝑓
2�𝑑1𝑠𝑖𝑛�𝜃𝑓+

𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓��

3𝐶𝑎𝑐
�̇�𝑓

−1
3𝑅𝐿𝐶𝑎𝑐 ⎦

⎥
⎥
⎥
⎥
⎤
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Table 5.5: System matrices for the switching states of the stand-alone SSBI in the dq-frame of reference 

C={C1,C2,C3} 𝑨𝒅𝒒𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

0 0

0
−1

3𝑅𝐿𝐶𝑎𝑐
−�̇�𝑓

0 �̇�𝑓
−1

3𝑅𝐿𝐶𝑎𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D1 𝑨𝒅𝒒𝑫𝟏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
−𝑐𝑜𝑠�𝜃𝑓�

𝐿𝑑𝑐
−𝑠𝑖𝑛�𝜃𝑓�

𝐿𝑑𝑐
2𝑐𝑜𝑠�𝜃𝑓�

3𝐶𝑎𝑐
−1

3𝑅𝐿𝐶𝑎𝑐
−�̇�𝑓

2𝑠𝑖𝑛�𝜃𝑓�
3𝐶𝑎𝑐

�̇�𝑓
−1

3𝑅𝐿𝐶𝑎𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D2 𝑨𝒅𝒒𝑫𝟐 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
−𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �

𝐿𝑑𝑐
−𝑠𝑖𝑛�𝜃𝑓 − 𝜋 3⁄ �

𝐿𝑑𝑐
2𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �

3𝐶𝑎𝑐
−1

3𝑅𝐿𝐶𝑎𝑐
−�̇�𝑓

2𝑠𝑖𝑛�𝜃𝑓 − 𝜋 3⁄ �
3𝐶𝑎𝑐

�̇�𝑓
−1

3𝑅𝐿𝐶𝑎𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D3 𝑨𝒅𝒒𝑫𝟑 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �

𝐿𝑑𝑐
𝑠𝑖𝑛�𝜃𝑓 + 𝜋 3⁄ �

𝐿𝑑𝑐
−2𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �

3𝐶𝑎𝑐
−1

3𝑅𝐿𝐶𝑎𝑐
−�̇�𝑓

−2𝑠𝑖𝑛�𝜃𝑓 + 𝜋 3⁄ �
3𝐶𝑎𝑐

�̇�𝑓
−1

3𝑅𝐿𝐶𝑎𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D4 𝑨𝒅𝒒𝑫𝟒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
𝑐𝑜𝑠�𝜃𝑓�
𝐿𝑑𝑐

𝑠𝑖𝑛�𝜃𝑓�
𝐿𝑑𝑐

−2𝑐𝑜𝑠�𝜃𝑓�
3𝐶𝑎𝑐

−1
3𝑅𝐿𝐶𝑎𝑐

−�̇�𝑓

−2𝑠𝑖𝑛�𝜃𝑓�
3𝐶𝑎𝑐

�̇�𝑓
−1

3𝑅𝐿𝐶𝑎𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

D5 𝑨𝒅𝒒𝑫𝟓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �

𝐿𝑑𝑐
𝑠𝑖𝑛�𝜃𝑓 − 𝜋 3⁄ �

𝐿𝑑𝑐
−2𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �

3𝐶𝑎𝑐
−1

3𝑅𝐿𝐶𝑎𝑐
−�̇�𝑓

−2𝑠𝑖𝑛�𝜃𝑓 − 𝜋 3⁄ �
3𝐶𝑎𝑐

�̇�𝑓
−1

3𝑅𝐿𝐶𝑎𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Table 5.5: Continued 

D6 𝑨𝒅𝒒𝑫𝟔 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
−𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �

𝐿𝑑𝑐
−𝑠𝑖𝑛�𝜃𝑓 + 𝜋 3⁄ �

𝐿𝑑𝑐
2𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �

3𝐶𝑎𝑐
−1

3𝑅𝐿𝐶𝑎𝑐
−�̇�𝑓

2𝑠𝑖𝑛�𝜃𝑓 + 𝜋 3⁄ �
3𝐶𝑎𝑐

�̇�𝑓
−1

3𝑅𝐿𝐶𝑎𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

As was expected, the resulting state-space-averaged model of the stand-alone 

three-phase SSBI system is independent of the averaging period, (or the switching cycle) 

𝑇𝑠. As can be seen in (5.12), �̇� is the only time-varying term in this matrix. However, 

assuming a constant line voltage frequency, which is valid for stand-alone systems, makes 

�̇� independent of time, i.e. �̇� = 𝜔. Thus, the obtained averaged system matrix is not a 

function of time. It can be proved that the same average matrix will be obtained for the 

other sectors. That is, 

𝑨�𝒅𝒒𝑰 = 𝑨�𝒅𝒒𝑰𝑰 = ⋯ = 𝑨�𝒅𝒒𝑽𝑰 = 𝑨�𝒅𝒒                                                                               (5.13) 

In the above, a resistive load was considered in the modeling of the SSBI. 

Similarly, the state-space-averaged model of an inductive-resistive load can also be 

derived. In this case, the independent phase, or inductor, currents must be also considered 

as state variables. Therefore, the system will be of the order of five. The state-space-

averaged representation of this system, in which 𝐿𝐿 and 𝑅𝐿 are the load inductance and 

resistance, respectively, can be represented in the rotating dq-frame of reference as 

follows: 
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𝑑
𝑑𝑡

⎣
⎢
⎢
⎢
⎢
⎡𝚤̇̃𝑑𝑐𝑣�𝑞
𝑣�𝑑
𝚤̇̃𝑞
𝚤̇̃𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−√3𝑚
2𝐿𝑑𝑐

0 0 0
√3𝑚
3𝐶𝑎𝑐

0 −𝜔 −1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

0 𝜔 0 √3
6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝐿

−√3
6𝐿𝐿

−𝑅𝐿
𝐿𝐿

−𝜔

0 √3
6𝐿𝐿

1
2𝐿𝐿

𝜔 −𝑅𝐿
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝚤̇̃𝑑𝑐𝑣�𝑞
𝑣�𝑑
𝚤̇̃𝑞
𝚤̇̃𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
1
𝐿𝑑𝑐
0
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎤

𝑣𝑑𝑐                                       (5.14) 

where 𝜔 is the angular frequency of the reference line voltage, and 𝚤̇̃𝑞 and 𝚤̇̃𝑑, are the 

approximate dq-components of phase currents. It should be noted that (5.14) represents a 

linear time-invariant system assuming that the modulation index, 𝑚 is constant. 

 

5.2.2 Small-Signal Model 

As one can see in (5.14), 𝑣𝑑𝑐 represents the system input, and the modulation 

index, 𝑚, is assumed constant. In practice, 𝑚 is used to regulate the output voltage in 

stand-alone conditions. In this case, (5.14) will not be any longer a linear equation, but it 

can be linearized around any steady state operating point (see Appendix B). Let us define: 

𝒙�𝒅𝒒 = 𝑿�𝒅𝒒 + 𝜹𝒙�𝒅𝒒,     𝑣𝑑𝑐 = 𝑉𝑑𝑐 + 𝛿𝑣𝑑𝑐 ,   𝑚 = 𝑀 + 𝛿𝑚                                            (5.15) 

where, 𝒙�𝒅𝒒 = [𝚤̇̃𝑑𝑐, 𝑣�𝑞 , 𝑣�𝑑 , 𝚤̇̃𝑞 , 𝚤̇̃𝑑]𝑇 is the approximate state vector in the rotating dq-frame 

of reference, the 𝛿 denotes small-signal perturbation, and capital letters indicate the 

steady-state (or dc) components. Thus, the linearized (small-signal) model can be 

represented as follows: 
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𝑑
𝑑𝑡

⎣
⎢
⎢
⎢
⎢
⎡𝛿𝚤̇̃𝑑𝑐
𝛿𝑣�𝑞
𝛿𝑣�𝑑
𝛿𝚤̇̃𝑞
𝛿𝚤̇̃𝑑 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−√3𝑀
2𝐿𝑑𝑐

0 0 0
√3𝑀
3𝐶𝑎𝑐

0 −𝜔 −1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

0 𝜔 0 √3
6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝐿

−√3
6𝐿𝐿

−𝑅𝐿
𝐿𝐿

−𝜔

0 √3
6𝐿𝐿

1
2𝐿𝐿

𝜔 −𝑅𝐿
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝛿𝚤̇̃𝑑𝑐
𝛿𝑣�𝑞
𝛿𝑣�𝑑
𝛿𝚤̇̃𝑞
𝛿𝚤̇̃𝑑 ⎦

⎥
⎥
⎥
⎥
⎤

+  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
𝐿𝑑𝑐

−√3𝑉�𝑞
2𝐿𝑑𝑐

0 √3𝐼𝑑𝑐
3𝐶𝑎𝑐

0 0
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

�𝛿𝑣𝑑𝑐
𝛿𝑚

�                (5.16) 

Equation (5.16) can be used for performing different linear control designs and 

small-signal stability studies of the stand-alone three-phase SSBI. For instance, one can 

derive the transfer functions of the system and study its frequency response through 

Nyquist and Bode diagrams [69].  

Stability is one of the most essential concerns in design and analysis of any 

system. There is a variety of methods for stability analysis of power electronic converters 

[70-78]. The Lyapunov method can be applied to any dynamic system, however, defining 

a proper Lyapunov function for power converters are usually complicated [70-73]. 

Impedance-based stability analysis is another approach that has been addressed in the 

literature [74-76]. Another approach is to study the eigenvalues, or poles, of the system, in 

order to investigate its stability [77-78]. This method has been used in this work for 

stability analysis of the stand-alone SSBI system. 

 

5.3 Eigenvalue Sensitivity Analysis 

In this section, the eigenvalue sensitivities with respect to the system parameters 

are studied using the developed small-signal model of the SSBI. Herein, the state-space-

averaged equation (5.16) is used for calculating the eigenvalues of the system. The study 

is based on the experimental set-up that is built in the laboratory for test and verification. 
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The parameters of the developed set-up are summarized in Table 5.6. Also, the line 

voltage frequency is assumed constant, i.e. 𝜔 = 120𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐. Substituting these values 

into (4.14) results in the equilibrium point state vector of 

𝑿�𝒅𝒒 = [4.875, 83.12, 281.8,−0.1340, 0.5493]𝑇, which corresponds to a line-to-line rms 

voltage of 208 V and a line rms current of 0.4 A. This operating point corresponds to about 

145 W, which is within the operational range of a typical PV panel. The eigenvalues of the 

system at this operating point are obtained as 𝜆1 = −96.548, 𝜆2,3 = −67.918 ± 𝑗990.01, 

and 𝜆4,5 = −148.40 × 103 ± 𝑗376.99. These five eigenvalues of this system are located 

in the left-half s-plane. Therefore, the system is stable for the values given in Table 5.6. 

However, it does not necessarily mean that the system will be stable if the system 

parameters change [79]. Hence, in order to investigate the stability of the system, it is 

required to perform the sensitivity analysis of the system’s eigenvalues to the variations of 

the parameters. The sensitivity of an eigenvalue 𝜆𝑖 with respect to a system parameter, 𝑝, 

is commonly defined as follows [80]: 

𝑆𝑝
𝜆𝑖 ≜ 𝜕𝜆𝑖

𝜕𝑝
𝑝
𝜆𝑖

                                                                                                                      (5.17) 

However, the real and imaginary parts of 𝜕𝜆𝑖 𝜕𝑝⁄  are used to study the rate of the 𝜆𝑖 

movement in the s-plane due to the variation in 𝑝. Thus, 𝑆𝑝
𝑅𝑒(𝜆𝑖) and 𝑆𝑝

𝐼𝑚(𝜆𝑖) are defined 

herein as follows: 

𝜕𝜆𝑖
𝜕𝑝

= 𝜕𝑅𝑒{𝜆𝑖}
𝜕𝑝

+ 𝑗 𝜕𝐼𝑚{𝜆𝑖}
𝜕𝑝

= 𝑆𝑝
𝑅𝑒(𝜆𝑖) + 𝑗𝑆𝑝

𝐼𝑚(𝜆𝑖)                                                                (5.18) 

Meanwhile, the real parts of 𝜆4 and 𝜆5 are far from the imaginary axis. Thus, they 

can be considered as non-dominant eigenvalues of the system. In other words, the 

dynamic behavior of the system is dominated by 𝜆1, 𝜆2, and 𝜆3.  
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Table 5.6: System parameters 

 Parameter     Nominal values  
 𝑣𝑑𝑐      30 V  
 𝐿𝑑𝑐     10 mH  
 𝑅𝑑𝑐     0.1 Ω  
 𝐶𝑎𝑐     10 µF  
 𝐿𝐿     2.02 mH  
 𝑅𝐿     300 Ω  
 𝑀     0.41  

 

A. Sensitivity to the DC-Source, 𝑣𝑑𝑐 

As can be seen in (5.16), the system matrix is independent of 𝑉𝑑𝑐, therefore, the 

eigenvalues of the system do not move with the variations of the dc-source voltage. Thus, 

the dc-source voltage does not affect the stability of the stand-alone three-phase SSBI. 

 

B. Sensitivity to the DC-Link Inductor, 𝑅𝑑𝑐 and 𝐿𝑑𝑐 

The impacts of 𝑅𝑑𝑐 and 𝐿𝑑𝑐 on the eigenvalues of the system are shown in Figures 

5.2 and 5.3, respectively. As there are large gaps between the real parts of the dominant 

and non-dominant eigenvalues, logarithmic scales are used for the real axes. The arrows 

point in the directions of displacements of the eigenvalues as the associated parameter 

increases. In these figures, the bold cross signs (+) indicate the location of the eigenvalues 

for the nominal values of the system’s parameters in Table 5.6. In addition to the locations 

of the eigenvalues, the sensitivities of the real and imaginary parts of the dominant 

eigenvalues are plotted in the lower part of each figure. It should be noted that, 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝑆𝑝

𝑅𝑒(𝜆3) = 𝑆𝑝
𝑅𝑒(𝜆2)             

𝑆𝑝
𝑅𝑒(𝜆5) = 𝑆𝑝

𝑅𝑒(𝜆4)             

𝑆𝑝
𝐼𝑚(𝜆1) = 0                       

𝑆𝑝
𝐼𝑚(𝜆3) = −𝑆𝑝

𝐼𝑚(𝜆2)         

𝑆𝑝
𝐼𝑚(𝜆5) = −𝑆𝑝

𝐼𝑚(𝜆4)         

�                                                                                             (5.19) 

 

 

Figure 5.2: Locations of the stand-alone SSBI eigenvalues and their sensitivities versus 𝑅𝑑𝑐 when it varies 

between 0.001 and 1 Ω 

 

As can be seen in Figure 5.2, an increase in the resistance of the dc-link inductor 

moves the dominant eigenvalues of the system to the left, which increases the damping 

and speed of the system. But, it should be kept in mind that any increase in the system’s 

resistance leads to an increase in the losses, which is not desired in power converters.  

 

-10
6

-10
5

-10
4

-10
3

-10
2

-10
1

-1500

-1000

-500

0

500

1000

1500
Rdc=[0.001, 1] Ω

Real

Im
ag

0 0.5 1
-50

-40

-30

-20

-10

Rdc (Ω)

S 
R

dc
 (Ω

-1
)

 

 

SRe(λ1)

SRe(λ2)

0 0.5 1
0

1

2

3

4

Rdc (Ω)

 

 
SIm(λ2)

λ1

λ3

λ2

λ
5

λ
4



113 
 

 

Figure 5.3: Locations of the stand-alone SSBI eigenvalues and their sensitivities versus 𝐿𝑑𝑐 when it varies 

between 5 and 20 mH 

 

Similarly, it can be seen in Figure 5.3 that as the inductance value of the dc-link 

inductor increases, 𝜆2 and 𝜆3 move toward the real axis. This results in decreases in the 

system natural frequencies. Consequently, the system response frequency and overshoot 

reduce. Additionally, it can be observed that 𝜆1 moves slightly to the right, which may 

slow down the system response. As one can observe from Figures 5.2 and 5.3, the impacts 

of the dc-link parameters, 𝑅𝑑𝑐 and 𝐿𝑑𝑐, on the non-dominant eigenvalues, 𝜆4 and 𝜆5, are 

negligible.  

Notice that a negative value for 𝑆𝑝 means that as 𝑝 increases, the magnitude of the 

real (or the imaginary) part of the eigenvalue decreases. Also, the higher value of �𝑆𝑝� 
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means the more sensitivity of the real (or the imaginary) part of the eigenvalue to the 

parameter variation.   

 

Figure 5.4: Locations of the stand-alone SSBI eigenvalues and their sensitivities versus 𝐶𝑎𝑐 when it varies 

between 5 and 20 µF 

 

C. Sensitivity to the AC Capacitors, 𝐶𝑎𝑐 

The location of the system eigenvalues and their sensitivities to the ac-side 

capacitance, 𝐶𝑎𝑐, are shown in Figure 5.4, where the dominant eigenvalues move toward 

the origin as the capacitance value increases. This reduces the system natural frequencies 

as well as the damping factor of the system. For instance, as 𝐶𝑎𝑐 varies from 5 to 20 µF, 

the magnitude of the real parts of 𝜆2 and 𝜆3 reduces from 100 to 40 while their imaginary 

part absolute values reduce from 1400 to 700 rad/sec.   
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D. Sensitivity to the Load Parameters, 𝑅𝐿 and 𝐿𝐿 

As can be seen in Figure 5.5, increasing the load resistance moves the dominant 

eigenvalues of the three-phase SSBI to the right-half s-plane and the non-dominant 

eigenvalues toward the left. In general, increasing the load resistance aggravates the 

stability of the stand-alone SSBI.  

 

 

Figure 5.5: Locations of the stand-alone SSBI eigenvalues and their sensitivities versus 𝑅𝐿 when it varies 

between 100 and 500 Ω 

 

The impact of the load inductance, 𝐿𝐿, on the location of the systems's eigenvalues 

is demonstrated in Figure 5.6.  It is interesting that the inductive component of the load 

does not affect the dominant eigenvalues of the system, whereas it makes the non-

dominant eigenvalues to move toward the right-half s-plane. However, the magnitudes of 
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their real parts are significantly larger than the dominant eigenvalues. Thus, one can 

conclude that the impact of the load inductance value on the three-phase SSBI dynamic is 

negligible. 

 

Figure 5.6: Locations of the stand-alone SSBI eigenvalues and their sensitivities versus 𝐿𝐿 when it varies 

between 0.5 and 5 mH 

 

E. Sensitivity to the Modulation Index, 𝑀 

The location of system's eigenvalues as the modulation index varies between 0.25 

and 0.50 is shown in Figure 5.7. As can be seen, the absolute values of the imaginary parts 

of 𝜆2 and 𝜆3 increase whereas the real part absolute values decrease as 𝑀 increases. 

Unlike 𝜆2 and 𝜆3, 𝜆1 moves away from the imaginary axis as 𝑀 increases. However, since 

the pair eigenvalues, 𝜆2 and 𝜆3, have higher weights than the single one, it can be 

expected that the overall system response becomes more oscillatory as 𝑀 increases.  
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Figure 5.7: Locations of the stand-alone SSBI eigenvalues and their sensitivities versus 𝑀 when it varies 

between 0.2 and 0.5 

 

5.4 Simulation and Experimental Results 

In order to verify the validity of the developed state-space-averaged model, a 

laboratory-scaled three-phase SSBI, feeding an RL load, has been modeled and simulated 

in MATLAB/Simulink. The parameters of the developed set-up are summarized in Table 

5.6. The inverter is switched at a frequency of 𝑓𝑠 = 2880 𝐻𝑧. These switching signals are 

calculated and produced using a dSPACE 1104, which operates at a sampling frequency 
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key roles in both quality of the produced waveforms and accuracy of the developed state-
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frequency ripples of the input and output waveforms decrease. As a result, for the same 

operating point, the peak of the input dc current, 𝑖𝑑𝑐, and the total harmonic distortion 

(THD) of the load voltage and current decreases.  

Similarly, as the ratio of the sampling frequency to the switching frequency, 

𝑓𝑠𝑎𝑚 𝑓𝑠⁄ , increases, the accuracy of the modulation increases. The reason is that the 

duration of each switching (high or low) signal must be an integer multiple of the 

sampling frequency. For example when this ratio is equal to 20%, 𝑑1 can only be 

modulated as multiples of 5%, i.e. 5% resolution. In other words, if 𝑑1 is desired to be 

22% from (5.7), the output signal can be modulated at either 20% or 25% of duty ratio. 

Our studies show that the discrepancy between the desired (ideal) and the produced 

(actual) duty ratios causes some distortions, e.g. low order harmonics and oscillation in the 

inverter input/output waveforms. The effects of switching and sampling frequencies on the 

quality of the produced waveforms and accuracy of the averaged model are illustrated in 

Figures 5.8 and 5.9.  

 

A. Simulation Results 

The dynamic behavior of the three-phase SSBI during start-up and its response to 

step changes of the dc-source voltage, 𝑣𝑑𝑐, and the modulation index, 𝑚, are shown in 

Figure 5.8. First, the system starts with the nominal parameters of Table 5.6. Second, at 

𝑡 = 60 𝑚𝑠𝑒𝑐, a 5 V step is applied to the dc-source voltage, i.e. 𝑣𝑑𝑐 increases from 30 to 

35 V. Third, at 𝑡 = 100 𝑚𝑠𝑒𝑐, a 3% step change is applied to the modulation index, i.e. 𝑚 

increases from 0.41 to 0.44.  
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Figure 5.8: State variables of the simulation and state-space-averaged model for 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 

𝑓𝑠𝑎𝑚 = 86 𝑘𝐻𝑧 

 

It can be seen that the state-space-averaged model can adequately represent the 

dynamic and steady-state behavior of the stand-alone three-phase SSBI. It should be noted 

that the small-signal model can satisfactorily represent the dynamics of the system during 

its start-up operation, which is a large-signal disturbance in the dc-source voltage. The 
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reason is that the system and input matrices of the system (5.14), are independent of 𝑣𝑑𝑐. 

In other words, the system is linear with respect to 𝑣𝑑𝑐. Therefore, as long as the other 

parameters of the system, including 𝑚, do not change, the large- and small-signal transfer 

functions of the system are the same. Accordingly, the small-signal model of (5.16) can 

also be used for dynamic analysis of the system under large-signal disturbances in the dc-

source voltage. 

In order to investigate the impact of the switching and sampling frequencies on the 

agreement between the state-space averaged model and the circuit simulation, the same 

simulation has been repeated for two other cases, Case (i): 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 =

288 𝑘𝐻𝑧, and Case (ii): 𝑓𝑠 = 10 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 1000 𝑘𝐻𝑧. 

The state variables of the system for Case (ii) are shown in Figure 5.9. A 

comparison between Figure 5.8 and 5.9. indicates that the increase in the sampling rate 

significantly improves the agreement between the state-space-averaged model and 

simulated data. The reader should note that the outputs of the averaged model are 

independent of both of the switching and sampling frequencies. In fact, as has been 

mentioned earlier, the averaging method is valid when the switching frequency is 

sufficiently high, so that the small-ripple condition is satisfied and the inverter operates in 

a continuous conduction mode. Herein, it is observed that the sampling frequency can also 

affect the validity of the state-space averaging method, i.e. the higher sampling frequency, 

the less difference between the averaged model and real data. The mean absolute errors of 

the state variables of the stand-alone three-phase SSBI during the 150 msec of the 

simulation are presented in Table 5.7. The error of each state variable 𝑥 has been defined 

as the difference between the simulated and approximated values: 
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Figure 5.9: State variables of the simulation and state-space-averaged model for 𝑓𝑠 = 2.8 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 =

280 𝑘𝐻𝑧 

 

𝑀𝐴𝐸(𝑥) = 1
𝑁
∑ |𝑥𝑛 − 𝑥�𝑛|𝑁
𝑛=1                                                                                          (5.20) 

where 𝑁 denotes the total number of samples over the case study period, i.e. 150 msec. It 

can be observed that at 𝑓𝑠 = 10 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 1000 𝑘𝐻𝑧, the state-space-averaged 

model follows the simulation results with a relatively high precision. 

0 50 100 150
0

2

4

6

8

I dc
 (A

)

0 50 100 150
0

50

100

150

V
q (V

)

0 50 100 150
0

100

200

300

V
d (V

)

 

 

Simulation
Averaged Model

0 50 100 150

-0.2

0

0.2

I q (A
)

0 50 100 150
0

0.2

0.4

0.6

I d (A
)

Time (msec)



122 
 

 

Table 5.7: Mean Absolute error of the state-space-averaged model for different switching and sampling 

frequencies 

 State Variable  
𝑓𝑠 = 2.88 𝑘𝐻𝑧 
𝑓𝑠𝑎𝑚 = 86 𝑘𝐻𝑧 

 
𝑓𝑠 = 2.88 𝑘𝐻𝑧 
𝑓𝑠𝑎𝑚 = 288 𝑘𝐻𝑧 

 
𝑓𝑠 = 10 𝑘𝐻𝑧 

𝑓𝑠𝑎𝑚 = 1000 𝑘𝐻𝑧 
 

 𝑀𝐴𝐸(𝑖𝑑𝑐)  0.308 A  0.335 A  0.099 A  
 𝑀𝐴𝐸�𝑣𝑞�  11.8 V  7.35 V  3.83 V  
 𝑀𝐴𝐸(𝑣𝑑)  3.13 V  7.38 V  1.11 V  
 𝑀𝐴𝐸�𝑖𝑞�  0.020 A  0.0162 A  0.0063 A  
 𝑀𝐴𝐸(𝑖𝑑)  0.0121 A  0.0099 A  0.0042 A  

 

B. Experimental Results 

The state-space-averaged models of (5.14) and (5.16) have been derived for an 

ideal three-phase SSBI, in which all voltage drops and delays of the semiconductor 

devices (switches and diodes) have been neglected. However, in practice, these devices do 

not behave perfectly. For example, there are conduction losses and voltage drops across 

the semiconductor switches and diodes during conductions. Also, turn-on and turn-off 

transitions have some delays, and the diodes have reverse-recovery currents. Additionally, 

in order to protect the semiconductor switches and diodes against voltage spikes, they 

must be equipped with some turn-off snubbers (herein, RDC snubbers). Although, the 

snubbers suppress the voltage spikes, they may increase the losses and change the 

switching behavior of the semiconductor devices. All these non-idealities affect the 

accuracy of the derived state-space-averaged model. Hence, it would be great if the 

averaged model could be modified in a way that the effects of the aforementioned non-

idealities could be included. Our extensive studies showed that the voltage drops and 

losses of the semiconductor devices could be represented by a change at the dc-source 
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voltage, 𝑣𝑑𝑐. Similarly, it was observed that the effects of the snubbers and imperfect 

switching would be incorporated into the averaged model through a slight change in the 

modulation index, 𝑚.  

The dynamics of the start-up operation (large-signal disturbance in the dc-source 

voltage) of the laboratory-scaled three-phase SSBI, along with the response of the 

modified state-space-averaged model, have been depicted in Figures 5.10 through 5.12, 

and the hardware data is presented in Table 5.8. 

 

Table 5.8: Hardware specifications 

 Component    Specifications  
 dc-source    XR125-32 Magna-Power Electronics  
 MOSFETS    STx42N65M5 (TO-220)  
 Diodes    DSEP30-06A (TO-247 AD)  
 Simulink-Hardware Interface    dSPACE 1104  
 𝐶𝑠𝑛𝑢𝑏𝑏𝑒𝑟     40 nF  
 𝐷𝑠𝑛𝑢𝑏𝑏𝑒𝑟     1N4004-G  
 𝑅𝑠𝑛𝑢𝑏𝑏𝑒𝑟    240 Ω  

 

The aforementioned modifications can be applied as follows:  

i) The dc-source voltage of the model must be 5 V lower than the real dc-

source voltage in order to take into account the voltage drops and losses 

across the semiconductor devices as well as the snubber effects.  

ii)  The modulation index must increase by 1% in the model to include the 

delay and imperfect switching effects.  

In other words, the experimental waveforms of the stand-alone three-phase SSBI 

system with a dc-source voltage of 𝑣𝑑𝑐 = 35 𝑉 and a modulation index of 
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𝑚 = 0.40 correspond to the waveforms of the state-space-averaged model for 

𝑣𝑑𝑐 = 30 𝑉 and 𝑚 = 0.41.  

 

Figure 5.10:  Start-up operation of the lab-scaled circuit and the response of the state-space-averaged model 

for 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 86 𝑘𝐻𝑧 

 

The experimentally obtained data from the prototype circuit and the state-space-

averaged model are plotted in Figure 5.10 and 5.11. From these figures, one can observe 

that the outputs of the modified state-space-averaged model are in an acceptable 

agreement with the experimentally obtained data. The minor differences between the 
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model and real data might be due to the inherent limitations of the state-space averaging 

modeling, as well as unconsidered non-idealities such as the imperfect switching of the dc-

source, low sampling frequency, and the parasitic and unbalanced elements of the circuit. 

The differences may become more noticeable in the small-signal response of the system, 

in which the variations of the state-variables are comparable with the ripples and 

distortions. This can be realized in Figure 5.12, where the response of the prototyped 

three-phase SSBI to a small-signal disturbance (a 3% step change) in the modulation 

index, 𝑚, has been presented. However, the model response is still reasonably acceptable 

for many applications. 

 

Figure 5.11: dq state variables of the lab-scaled circuit and the state-space-averaged model during the start-

up for 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 86 𝑘𝐻𝑧 
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Figure 5.12: Step responses of the hardware and the state-space-averaged model, to a 3% increase in 𝑚, for 

𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 86 𝑘𝐻𝑧 

 

5.5 Summary 

The state-space averaging method has been applied in order to develop the 

dynamic model of the stand-alone three-phase single-stage boost inverter. The large- and 

small-signal models have been derived in the synchronous dq-frame of reference, and 

used for sensitivity and stability analysis of the system. It was observed that the stand-

alone three-phase single-stage inverter system has three dominant and two non-dominant 

eigenvalues, in which the location of the non-dominant eigenvalues are only affected by 
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the load parameters. A modification approach for taking into account the losses and non-

idealities of the semiconductor devices, has been proposed and has been validated 

through simulated and experimentally obtained data. The large- and small-signal models 

of the grid-connected three-phase SSBI will be derived and analyzed in the next chapter.  
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CHAPTER 6 

STATE-SPACE-AVERAGED MODEL OF THE GRID-CONNECTED SINGLE-

STAGE BOOST INVERTER SYSTEM 

 

In this chapter, the state-space averaging technique is applied to derive the large- 

and small-signal models of the grid-connected single-stage boost inverter. These models 

are useful for stability analysis and control design of the system. The possible switching 

states of the circuit operation are enumerated and the associated state-space equations are 

derived, averaged, and transformed into the synchronous dq-frame of reference in order 

to obtain a time-invariant model for the system. The system stability is investigated 

through eigenvalue sensitivity analysis and simulation and experimental results verify the 

obtained models.  

This chapter contains five sections. The states of the system are enumerated in 

Section 1. The state-space-averaged model of the system is derived in Section 2. The 

eigenvalue sensitivity analysis of the system is performed in Section 3. The simulation 

and experimental results are presented in Section 4, and Section 5 is the summary of the 

chapter. 

 

6.1 State Enumeration of the System 

The circuit diagram of a grid-connected three-phase single-stage boost inverter 

(SSBI) is presented in Figure 6.1. As can be seen in this figure, the SSBI is connected to 

the grid through a grid interconnecting inductor, 𝐿𝑔, which is required for power flow 

control as well as filtering the injected current to the grid. Like the stand-alone SSBI, this 
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system also operates in six sectors. Each sector has three switching states, one for 

charging and the other two for discharging. These switching states include a total of nine 

linear circuits, in which the three charging states are electrically the same, and the other 

six discharging circuits correspond to different circuitries. Therefore, seven distinct linear 

electric circuits are associated with the operation of the SSBI. Since every linear circuit 

can be represented by a set of state-space equations, the SSBI will have seven state-space 

equations in total, and three state-space equations over each switching cycle. Therefore, 

the SSBI is a linear time-varying system, which can be represented by (5.1). 

The seven circuit diagrams, along with the corresponding system matrices for the 

grid-connected three-phase SSBI, are presented in Table 6.1, where, 𝑅𝑑𝑐 and 𝑅𝑔 are the 

series resistance of the dc-link and grid interconnecting inductor, respectively.  

It is observed that all discharging states, i.e. D1-D6, have the same eigenvalues, which 

means that they are all similar matrices [69].  

 

Figure 6.1: Grid-connected three-phase single-stage boost inverter system 
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Table 6.1: The possible states of the grid-connected SSBI system 

C={C1,C2,C3} 
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Table 6.1: Continued 
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𝐿𝑑𝑐

1
𝐿𝑑𝑐

1
𝐿𝑑𝑐

0 0

−1
3𝐶𝑎𝑐

0 0
−1

3𝐶𝑎𝑐
1

3𝐶𝑎𝑐
−1

3𝐶𝑎𝑐
0 0

−1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0
2

3𝐿𝑔
1

3𝐿𝑔
−𝑅𝑔
𝐿𝑔

0

0
−1
3𝐿𝑔

1
3𝐿𝑔

0
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

D6 

 

𝑨𝑫𝟔 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

0
1
𝐿𝑑𝑐

0 0

1
3𝐶𝑎𝑐

0 0
−1

3𝐶𝑎𝑐
1

3𝐶𝑎𝑐
−2

3𝐶𝑎𝑐
0 0

−1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0
2

3𝐿𝑔
1

3𝐿𝑔
−𝑅𝑔
𝐿𝑔

0

0
−1
3𝐿𝑔

1
3𝐿𝑔

0
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

In these state-space representations, the state vector 𝒙 consists of the state 

variables of the system which are the independent inductor current and capacitor 

voltages, i.e. 𝒙 = [𝑖𝑑𝑐, 𝑣𝑎𝑏 , 𝑣𝑏𝑐, 𝑖𝑎, 𝑖𝑏]𝑇, where the superscript 𝑇 denotes the matrix 

transpose. 

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑣𝑑𝑐 
𝑣𝑐𝑎 

𝑣𝑎𝑏 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 
+ 

𝑖𝑎 

⟶ 

𝑖𝑏 

⟶ 

𝑖𝑐 
⟶ 

+ 

− 
𝑣𝑏𝑐
𝑔  

 

+ 

− 
𝑣𝑎𝑏
𝑔  

𝐴 

𝐵 

𝐶 
𝑖𝑑𝑐 
⟶ 

𝑣𝑑𝑐 
𝑣𝑐𝑎 

𝑣𝑎𝑏 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 
+ 

𝑖𝑎 

⟶ 

𝑖𝑏 

⟶ 

𝑖𝑐 

⟶ 

+ 

− 
𝑣𝑏𝑐
𝑔  

 

+ 

− 
𝑣𝑎𝑏
𝑔  

𝐴 

𝐵 

𝐶 

𝑖𝑑𝑐 
⟶ 

𝑣𝑑𝑐 

𝑣𝑐𝑎 

𝑣𝑎𝑏 

𝑣𝑏𝑐 

+ 

− 

+ 

− 

− 
+ 

𝑖𝑎 

⟶ 

𝑖𝑏 

⟶ 

𝑖𝑐 

⟶ 

+ 

− 
𝑣𝑏𝑐
𝑔  

 

+ 

− 
𝑣𝑎𝑏
𝑔  



132 
 

The dc-source voltage, 𝑣𝑑𝑐, and the grid voltages, 𝑣𝑎𝑏
𝑔  and 𝑣𝑏𝑐

𝑔 , are the only inputs 

to all circuits, i.e. 

𝒖𝑪 = 𝒖𝑫𝟏 = 𝒖𝑫𝟐 = ⋯ = 𝒖𝑫𝟔 = 𝒖 = �𝑣𝑑𝑐, 𝑣𝑎𝑏
𝑔 , 𝑣𝑏𝑐

𝑔 �
𝑇
,                                                 (6.1) 

and all states have the same control matrix, 

𝑩𝑪 = 𝑩𝑫𝟏 = 𝑩𝑫𝟐 = ⋯ = 𝑩𝑫𝟔 = 𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
𝐿𝑑𝑐

0 0
0 0 0
0 0 0
0 −2

3𝐿𝑔

−1
3𝐿𝑔

0 1
3𝐿𝑔

−1
3𝐿𝑔⎦
⎥
⎥
⎥
⎥
⎥
⎤

.                                               (6.2) 

 

6.2 State-Space-Averaged Model of the SSBI 

In this chapter, the state-space averaging method, is applied to the grid-connected 

three-phase SSBI in order to approximate its time-varying state-pace model by a time-

invariant one.  If one can put the time-varying differential equations of the single-stage 

boost inverter in the standard form of (3.12) and show the periodicity and continuity of 

the associated vector function over a switching period, i.e. 𝑇𝑠, then it is possible to apply 

the theorem of periodic averaging (see Appendix A), and approximate the system model 

with a set of time-invariant differential equations. Throughout the following, it is 

assumed that the switching operation is ideal and the switches are lossless and operated at 

sufficiently high frequency so that the switching action itself does not affect the evolution 

of the states. As a result, the SSBI operates in continuous mode and the state-space 

averaging can be applied [49, 57, 59].  
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6.2.1 Large-Signal Model 

As the first step, the averaging technique is applied to the state-space equations of 

the grid-connected SSBI system in Sector (I). According to Table 6.1, and the proposed 

switching pattern in Chapter 4, the state space equation of the grid-connected SSBI in 

Sector (I) can be written as follows: 

�̇� = 𝑨𝑰(𝑡)𝒙 + 𝑩𝒖
𝒚 = 𝑪𝒙 + 𝑫𝒖                                                                                                                  (6.3) 

where, the input vector, 𝒖, and control matrix, 𝑩, have been defined in (6.1) and (6.2). 

(The output matrices 𝑪 and 𝑫 can be arbitrarily defined based on the desired outputs of 

the system, which are discussed here) The system matrix for Sector (I), 𝑨𝑰(𝑡), varies with 

time as: 

𝑨𝑰(𝑡) = �
𝑨𝑪    ;    𝑛𝑇𝑠 ≤ 𝑡 < 𝑛𝑇𝑠 + 𝑡𝑐                       
𝑨𝑫𝟏  ;    𝑛𝑇𝑠 + 𝑡𝑐 ≤ 𝑡 < 𝑛𝑇𝑠 + 𝑡𝑐 + 𝑡𝑑1   
𝑨𝑫𝟐  ;    𝑛𝑇𝑠 + 𝑡𝑐 + 𝑡𝑑1 ≤ 𝑡 < (𝑛 + 1)𝑇𝑠

         𝑓𝑜𝑟    𝑛 = {1, 2, 3, … } �            (6.4) 

where, 𝑇𝑠 is the switching cycle, 𝑡𝑐 is the charging time-interval, and 𝑡𝑑1, and 𝑡𝑑2, are the 

discharging time-intervals. The system matrices in charging and discharging states C, D1, 

and D2, have been provided in Table 6.1, where: 

𝑨𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

0 0 0 0

0 0 0 −1
3𝐶𝑎𝑐

1
3𝐶𝑎𝑐

0 0 0 −1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0 2
3𝐿𝑔

1
3𝐿𝑔

−𝑅𝑔
𝐿𝑔

0

0 −1
3𝐿𝑔

1
3𝐿𝑔

0 −𝑅𝑔
𝐿𝑔 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                              (6.5) 
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𝑨𝑫𝟏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

0 0 0
2

3𝐶𝑎𝑐
0 0 −1

3𝐶𝑎𝑐

1
3𝐶𝑎𝑐

−1
3𝐶𝑎𝑐

0 0 −1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0 2
3𝐿𝑔

1
3𝐿𝑔

−𝑅𝑔
𝐿𝑔

0

0 −1
3𝐿𝑔

1
3𝐿𝑔

0 −𝑅𝑔
𝐿𝑔 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                            (6.6) 

𝑨𝑫𝟐 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

−1
𝐿𝑑𝑐

0 0
1

3𝐶𝑎𝑐
0 0 −1

3𝐶𝑎𝑐

1
3𝐶𝑎𝑐

1
3𝐶𝑎𝑐

0 0 −1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0 2
3𝐿𝑔

1
3𝐿𝑔

−𝑅𝑔
𝐿𝑔

0

0 −1
3𝐿𝑔

1
3𝐿𝑔

0 −𝑅𝑔
𝐿𝑔 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                            (6.7) 

As can be seen in (6.4), the system matrix of the system in Sector (I), 𝑨𝑰(𝑡), is a 

function of time, however, by applying the theorem of periodic averaging [29], the system 

can be approximated by the following state-space equation: 

𝒙�̇ = 𝑨�𝑰𝒙� + 𝑩�𝒖                                                                                                                  (6.8) 

where, 𝒙� = �𝚤̇̃𝑑𝑐, 𝑣�𝑎𝑏 ,𝑣�𝑏𝑐, 𝚤̇̃𝑎, 𝚤̇̃𝑏�
𝑇
 is the approximate state vector, and the matrix 𝑨�𝑰 is the 

averaged system matrix for Sector (I), 

𝑨�𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟏 + 𝑑2𝑨𝑫𝟐] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−(𝑑1+𝑑2)
𝐿𝑑𝑐

−𝑑2
𝐿𝑑𝑐

0 0
2𝑑1+𝑑2
3𝐶𝑎𝑐

0 0 −1
3𝐶𝑎𝑐

1
3𝐶𝑎𝑐

−𝑑1+𝑑2
3𝐶𝑎𝑐

0 0 −1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0 2
3𝐿𝑔

1
3𝐿𝑔

−𝑅𝑔
𝐿𝑔

0

0 −1
3𝐿𝑔

1
3𝐿𝑔

0 −𝑅𝑔
𝐿𝑔 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                   (6.9) 

where, 𝑑𝑐 = 𝑡𝑐 𝑇𝑠⁄ , 𝑑1 = 𝑡𝑑1 𝑇𝑠⁄ , and 𝑑2 = 𝑡𝑑2 𝑇𝑠⁄ , are the corresponding duty ratios. It 

should be also noted that 𝑩� = 𝑩.  
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Table 6.2: Averaged system matrices of the grid-connected SSBI system for all sectors 

Sector Average System Matrix 

I 𝑨�𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟏 + 𝑑2𝑨𝑫𝟐] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−(𝑑1 + 𝑑2)
𝐿𝑑𝑐

−𝑑2
𝐿𝑑𝑐

0 0

2𝑑1 + 𝑑2
3𝐶𝑎𝑐

0 0
−1

3𝐶𝑎𝑐
1

3𝐶𝑎𝑐
−𝑑1 + 𝑑2

3𝐶𝑎𝑐
0 0

−1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0
2

3𝐿𝑔
1

3𝐿𝑔
−𝑅𝑔
𝐿𝑔

0

0
−1
3𝐿𝑔

1
3𝐿𝑔

0
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

II 𝑨�𝑰𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟐 + 𝑑2𝑨𝑫𝟑] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

−𝑑1
𝐿𝑑𝑐

−(𝑑1 + 𝑑2)
𝐿𝑑𝑐

0 0

𝑑1 − 𝑑2
3𝐶𝑎𝑐

0 0
−1

3𝐶𝑎𝑐
1

3𝐶𝑎𝑐
𝑑1 + 2𝑑2

3𝐶𝑎𝑐
0 0

−1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0
2

3𝐿𝑔
1

3𝐿𝑔
−𝑅𝑔
𝐿𝑔

0

0
−1
3𝐿𝑔

1
3𝐿𝑔

0
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

III 𝑨�𝑰𝑰𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟑 + 𝑑2𝑨𝑫𝟒] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

𝑑2
𝐿𝑑𝑐

−𝑑1
𝐿𝑑𝑐

0 0

−(𝑑1 + 2𝑑2)
3𝐶𝑎𝑐

0 0
−1

3𝐶𝑎𝑐
1

3𝐶𝑎𝑐
2𝑑1 + 𝑑2

3𝐶𝑎𝑐
0 0

−1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0
2

3𝐿𝑔
1

3𝐿𝑔
−𝑅𝑔
𝐿𝑔

0

0
−1
3𝐿𝑔

1
3𝐿𝑔

0
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Table 6.2: Continued 

IV 𝑨�𝑰𝑽 = [𝑑𝑐𝑨𝑪 + 𝑑1𝐴𝐷4 + 𝑑2𝑨𝑫𝟓] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

(𝑑1 + 𝑑2)
𝐿𝑑𝑐

𝑑2
𝐿𝑑𝑐

0 0

−(2𝑑1 + 𝑑2)
3𝐶𝑎𝑐

0 0
−1

3𝐶𝑎𝑐
1

3𝐶𝑎𝑐
𝑑1 − 𝑑2

3𝐶𝑎𝑐
0 0

−1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0
2

3𝐿𝑔
1

3𝐿𝑔
−𝑅𝑔
𝐿𝑔

0

0
−1
3𝐿𝑔

1
3𝐿𝑔

0
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

V 𝑨�𝑽 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟓 + 𝑑2𝑨𝑫𝟔] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

𝑑1
𝐿𝑑𝑐

(𝑑1 + 𝑑2)
𝐿𝑑𝑐

0 0

−𝑑1 + 𝑑2
3𝐶𝑎𝑐

0 0
−1

3𝐶𝑎𝑐
1

3𝐶𝑎𝑐
−(𝑑1 + 2𝑑2)

3𝐶𝑎𝑐
0 0

−1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0
2

3𝐿𝑔
1

3𝐿𝑔
−𝑅𝑔
𝐿𝑔

0

0
−1
3𝐿𝑔

1
3𝐿𝑔

0
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

VI 𝑨�𝑽𝑰 = [𝑑𝑐𝑨𝑪 + 𝑑1𝑨𝑫𝟔 + 𝑑2𝑨𝑫𝟏] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

−𝑑2
𝐿𝑑𝑐

𝑑1
𝐿𝑑𝑐

0 0

𝑑1 + 2𝑑2
3𝐶𝑎𝑐

0 0
−1

3𝐶𝑎𝑐
1

3𝐶𝑎𝑐
−(2𝑑1 + 𝑑2)

3𝐶𝑎𝑐
0 0

−1
3𝐶𝑎𝑐

−2
3𝐶𝑎𝑐

0
2

3𝐿𝑔
1

3𝐿𝑔
−𝑅𝑔
𝐿𝑔

0

0
−1
3𝐿𝑔

1
3𝐿𝑔

0
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

The obtained system matrix in (6.9) is time-varying, because it is a function of 

discharging duty ratios, 𝑑1 and 𝑑2, which are varying with time (see (5.7) and (5.8)). 

However, in comparison with the fast variations of the system during a switching cycle, 

they can be considered as relatively slowly-varying terms.  
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The averaged system matrices for other sectors, 𝑨�𝑰𝑰, 𝑨�𝑰𝑰𝑰, 𝑨�𝑰𝑽, 𝑨�𝑽, 𝑨�𝑽𝑰, are provided in 

Table 6.2. It might be interesting to know that all of the averaged system matrices are 

similar, because they all have the same eigenvalues [69].  

As can be seen in Table 6.2, for the six sectors of the proposed phaseor pulse-with-

modulation (PPWM) switching pattern, there are six different sets of equations, and 

consequently six distinct system matrices, namely 𝑨�𝑰, 𝑨�𝑰𝑰, 𝑨�𝑰𝑰𝑰, 𝑨�𝑰𝑽, 𝑨�𝑽, 𝑨�𝑽𝑰. This means 

that, the period of the SSBI equations is equal to the line voltage cycle, e.g. 60 Hz. 

Moreover, these matrices are time-variant, as 𝑑1 and 𝑑2 vary by time. Applying the Park’s 

transformation (see (5.9) and (5.10)) to the state-space-averaged of (6.8), considering the 

system matrix of (6.9) results in: 

𝒙�̇𝑑𝑞 = 𝑨�𝒅𝒒𝑰𝒙�𝒅𝒒 + 𝑩𝒅𝒒𝒖𝒅𝒒                                                                                             (6.10) 

where, 

𝒙�𝒅𝒒 = �𝚤̇̃𝑑𝑐, 𝑣�𝑞 , 𝑣�𝑑 , 𝚤̇̃𝑞 , 𝚤̇̃𝑑�
𝑇
                                                                                              (6.11) 

𝒖𝒅𝒒 = �𝑣𝑑𝑐 , 𝑣𝑞
𝑔, 𝑣𝑑

𝑔�
𝑇
                                                                                                     (6.12) 

𝑨�𝒅𝒒𝑰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

−�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐

−�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐
0 0

2�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3��

3𝐶𝑎𝑐
0 −�̇�𝑓

−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

2�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓 0 √3

6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0 √3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (6.13) 
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𝑩𝒅𝒒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝐿𝑑𝑐

0 0
0 0 0
0 0 0
0 −1

2𝐿𝑔

√3
6𝐿𝑔

0 −√3
6𝐿𝑔

−1
2𝐿𝑔⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                                                  (6.14) 

which is the state-space-averaged model of the grid-connected SSBI for Sector (I) in the 

rotating reference frame (𝜃𝑓 is the angular displacement of the rotating reference frame). 

The averaged system matrices for the other sectors, 𝑨�𝒅𝒒𝑰𝑰, 𝑨�𝒅𝒒𝑰𝑰𝑰, …, 𝑨�𝒅𝒒𝑽𝑰 (see Table 

6.3), can be obtained in the same way, while the input vector, 𝒖𝒅𝒒, and the control matrix, 

𝑩𝒅𝒒, are the same as (6.12) and (6.14) for all sectors. The averaged system matrices are 

presented in Table 6.3. 

Alternatively, Table 6.3, could be obtained by applying (5.9) and (5.10) to the 

state-space equations of Table 6.1 (see Table 6.4), and then averaging them over a 

switching cycle. Anyhow, (6.13) is still a function of 𝑑1 and 𝑑2. Substituting (5.7) and 

(5.8) in (6.13), yields the following matrix in the rotating reference frame: 

𝑨�𝒅𝒒𝑰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

−√3𝑚𝑐𝑜𝑠�𝜃𝑓−𝜃�
2𝐿𝑑𝑐

−√3𝑚𝑠𝑖𝑛�𝜃𝑓−𝜃�
2𝐿𝑑𝑐

0 0

√3𝑚𝑐𝑜𝑠�𝜃𝑓−𝜃�
3𝐶𝑎𝑐

0 −�̇�𝑓
−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

√3𝑚𝑠𝑖𝑛�𝜃𝑓−𝜃�
3𝐶𝑎𝑐

�̇�𝑓 0 √3
6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0 √3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                        (6.15) 
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Table 6.3: Averaged system matrices of the grid-connected SSBI system in the dq-frame of reference 

𝑨�𝒅𝒒𝑰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

−�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐

−�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐
0 0

2�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3��

3𝐶𝑎𝑐
0 −�̇�𝑓

−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

2�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓 0 √3

6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0 √3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑰𝑰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

−�𝑑1𝑐𝑜𝑠�𝜃𝑓−
𝜋
3�−𝑑2𝑐𝑜𝑠�𝜃𝑓+

𝜋
3��

𝐿𝑑𝑐

−�𝑑1𝑠𝑖𝑛�𝜃𝑓−
𝜋
3�−𝑑2𝑠𝑖𝑛�𝜃𝑓+

𝜋
3��

𝐿𝑑𝑐
0 0

2�𝑑1𝑐𝑜𝑠�𝜃𝑓−
𝜋
3�−𝑑2𝑐𝑜𝑠�𝜃𝑓+

𝜋
3��

3𝐶𝑎𝑐
0 −�̇�𝑓

−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

2�𝑑1𝑠𝑖𝑛�𝜃𝑓−
𝜋
3�−𝑑2𝑠𝑖𝑛�𝜃𝑓+

𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓 0 √3

6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0 √3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑰𝑰𝑰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

�𝑑1𝑐𝑜𝑠�𝜃𝑓+
𝜋
3�+𝑑2𝑐𝑜𝑠�𝜃𝑓��

𝐿𝑑𝑐

�𝑑1𝑠𝑖𝑛�𝜃𝑓+
𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓��

𝐿𝑑𝑐
0 0

−2�𝑑1𝑐𝑜𝑠�𝜃𝑓+
𝜋
3�+𝑑2𝑐𝑜𝑠�𝜃𝑓��

3𝐶𝑎𝑐
0 −�̇�𝑓

−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

−2�𝑑1𝑠𝑖𝑛�𝜃𝑓+
𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓��

3𝐶𝑎𝑐
�̇�𝑓 0 √3

6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0 √3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑰𝑽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐

�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3��

𝐿𝑑𝑐
0 0

−2�𝑑1𝑐𝑜𝑠�𝜃𝑓�+𝑑2𝑐𝑜𝑠�𝜃𝑓−
𝜋
3��

3𝐶𝑎𝑐
0 −�̇�𝑓

−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

−2�𝑑1𝑠𝑖𝑛�𝜃𝑓�+𝑑2𝑠𝑖𝑛�𝜃𝑓−
𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓 0 √3

6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0 √3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Table 6.3: Continued 

𝑨�𝒅𝒒𝑽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

�𝑑1𝑐𝑜𝑠�𝜃𝑓−
𝜋
3�−𝑑2𝑐𝑜𝑠�𝜃𝑓+

𝜋
3��

𝐿𝑑𝑐

�𝑑1𝑠𝑖𝑛�𝜃𝑓−
𝜋
3�−𝑑2𝑠𝑖𝑛�𝜃𝑓+

𝜋
3��

𝐿𝑑𝑐
0 0

−2�𝑑1𝑐𝑜𝑠�𝜃𝑓−
𝜋
3�−𝑑2𝑐𝑜𝑠�𝜃𝑓+

𝜋
3��

3𝐶𝑎𝑐
0 −�̇�𝑓

−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

−2�𝑑1𝑠𝑖𝑛�𝜃𝑓−
𝜋
3�−𝑑2𝑠𝑖𝑛�𝜃𝑓+

𝜋
3��

3𝐶𝑎𝑐
�̇�𝑓 0 √3

6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0 √3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

𝑨�𝒅𝒒𝑽𝑰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐

−�𝑑1𝑐𝑜𝑠�𝜃𝑓+
𝜋
3�+𝑑2𝑐𝑜𝑠�𝜃𝑓��

𝐿𝑑𝑐

−�𝑑1𝑠𝑖𝑛�𝜃𝑓+
𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓��

𝐿𝑑𝑐
0 0

2�𝑑1𝑐𝑜𝑠�𝜃𝑓+
𝜋
3�+𝑑2𝑐𝑜𝑠�𝜃𝑓��

3𝐶𝑎𝑐
0 −�̇�𝑓

−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

2�𝑑1𝑠𝑖𝑛�𝜃𝑓+
𝜋
3�+𝑑2𝑠𝑖𝑛�𝜃𝑓��

3𝐶𝑎𝑐
�̇�𝑓 0 √3

6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0 √3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 

As can be seen, the obtained averaged system matrix, 𝑨�𝒅𝒒𝑰, contains three time-

dependent parameters, i.e. the angular displacement of the reference line voltage, 𝜃, (see 

(5.7) and (5.8)), as well as the angular displacement and velocity of the rotating frame of 

reference, 𝜃𝑓 and �̇�𝑓, respectively. In order to get rid of these time-dependent terms, it is 

sufficient to assume �̇�𝑓 and 𝜃𝑓 − 𝜃 as constants. This can be achieved through:  

i) Fixing the rotating frame on the synchronous frame of the grid,  

𝜃𝑓(𝑡) = 𝜔𝑔𝑡 + 𝜃𝑔(0)                                                                                                     (6.16) 

ii) And,  

𝜃(𝑡) = 𝜃𝑓(𝑡) − 𝜙 = 𝜔𝑔𝑡 + 𝜃𝑔(0) − 𝜙                                                                         (6.17) 
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Table 6.4: System matrices for the switching states of the grid-connected SSBI in the dq-frame of reference 

C={C1,C2,C3} 𝑨𝒅𝒒𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑅𝑑𝑐
𝐿𝑑𝑐

0 0 0 0

0 0 −�̇�𝑓
−1

2𝐶𝑎𝑐
−√3
6𝐶𝑎𝑐

0 �̇�𝑓 0
√3

6𝐶𝑎𝑐
−1

2𝐶𝑎𝑐

0
1

2𝐿𝑔
−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0
√3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

D1 𝑨𝒅𝒒𝑫𝟏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
−𝑐𝑜𝑠�𝜃𝑓�

𝐿𝑑𝑐
−𝑠𝑖𝑛�𝜃𝑓�

𝐿𝑑𝑐
0 0

2𝑐𝑜𝑠�𝜃𝑓�
3𝐶𝑎𝑐

0 −�̇�𝑓
−1

2𝐶𝑎𝑐
−√3
6𝐶𝑎𝑐

2𝑐𝑜𝑠�𝜃𝑓�
3𝐶𝑎𝑐

�̇�𝑓 0
√3

6𝐶𝑎𝑐
−1

2𝐶𝑎𝑐

0
1

2𝐿𝑔
−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0
√3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

D2 𝑨𝒅𝒒𝑫𝟐 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
−𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �

𝐿𝑑𝑐
−𝑠𝑖𝑛�𝜃𝑓 − 𝜋 3⁄ �

𝐿𝑑𝑐
0 0

2𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �
3𝐶𝑎𝑐

0 −�̇�𝑓
−1

2𝐶𝑎𝑐
−√3
6𝐶𝑎𝑐

2𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �
3𝐶𝑎𝑐

�̇�𝑓 0
√3

6𝐶𝑎𝑐
−1

2𝐶𝑎𝑐

0
1

2𝐿𝑔
−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0
√3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Table 6.4: Continued 

D3 𝑨𝒅𝒒𝑫𝟑 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �

𝐿𝑑𝑐
𝑠𝑖𝑛�𝜃𝑓 + 𝜋 3⁄ �

𝐿𝑑𝑐
0 0

−2𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �
3𝐶𝑎𝑐

0 −�̇�𝑓
−1

2𝐶𝑎𝑐
−√3
6𝐶𝑎𝑐

−2𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �
3𝐶𝑎𝑐

�̇�𝑓 0
√3

6𝐶𝑎𝑐
−1

2𝐶𝑎𝑐

0
1

2𝐿𝑔
−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0
√3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

D4 𝑨𝒅𝒒𝑫𝟒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
𝑐𝑜𝑠�𝜃𝑓�
𝐿𝑑𝑐

𝑠𝑖𝑛�𝜃𝑓�
𝐿𝑑𝑐

0 0

−2𝑐𝑜𝑠�𝜃𝑓�
3𝐶𝑎𝑐

0 −�̇�𝑓
−1

2𝐶𝑎𝑐
−√3
6𝐶𝑎𝑐

−2𝑐𝑜𝑠�𝜃𝑓�
3𝐶𝑎𝑐

�̇�𝑓 0
√3

6𝐶𝑎𝑐
−1

2𝐶𝑎𝑐

0
1

2𝐿𝑔
−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0
√3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

D5 𝑨𝒅𝒒𝑫𝟓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �

𝐿𝑑𝑐
𝑠𝑖𝑛�𝜃𝑓 − 𝜋 3⁄ �

𝐿𝑑𝑐
0 0

−2𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �
3𝐶𝑎𝑐

0 −�̇�𝑓
−1

2𝐶𝑎𝑐
−√3
6𝐶𝑎𝑐

−2𝑐𝑜𝑠�𝜃𝑓 − 𝜋 3⁄ �
3𝐶𝑎𝑐

�̇�𝑓 0
√3

6𝐶𝑎𝑐
−1

2𝐶𝑎𝑐

0
1

2𝐿𝑔
−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0
√3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Table 6.4: Continued 

D6 𝑨𝒅𝒒𝑫𝟔 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅𝑑𝑐

𝐿𝑑𝑐
−𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �

𝐿𝑑𝑐
−𝑠𝑖𝑛�𝜃𝑓 + 𝜋 3⁄ �

𝐿𝑑𝑐
0 0

2𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �
3𝐶𝑎𝑐

0 −�̇�𝑓
−1

2𝐶𝑎𝑐
−√3
6𝐶𝑎𝑐

2𝑐𝑜𝑠�𝜃𝑓 + 𝜋 3⁄ �
3𝐶𝑎𝑐

�̇�𝑓 0
√3

6𝐶𝑎𝑐
−1

2𝐶𝑎𝑐

0
1

2𝐿𝑔
−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−�̇�𝑓

0
√3
6𝐿𝑔

1
2𝐿𝑔

�̇�𝑓
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

where, 𝜔𝑔 = 2𝜋𝑓𝑔 is the angular frequency of the grid (usually 𝑓𝑔 = 60 𝐻𝑧), and 𝜙 is a 

constant angle, from now on called modulation angle, which can be used for adjusting the 

phase angle between the output voltage of the SSBI, 𝑣𝑎𝑏, and the grid voltage, 𝑣𝑎𝑏
𝑔 . This 

implies that, 𝜙 may be used as a control parameter for regulating the injected active power 

to the grid. Substituting (6.16) and (6.17) in (6.13) provides a time-invariant averaged 

system matrix: 

𝑨�𝒅𝒒𝑰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

−√3𝑚𝑐𝑜𝑠(𝜙)
2𝐿𝑑𝑐

−√3𝑚𝑠𝑖𝑛(𝜙)
2𝐿𝑑𝑐

0 0

√3𝑚𝑐𝑜𝑠(𝜙)
3𝐶𝑎𝑐

0 −𝜔𝑔
−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

√3𝑚𝑠𝑖𝑛(𝜙)
3𝐶𝑎𝑐

𝜔𝑔 0 √3
6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−𝜔𝑔

0 √3
6𝐿𝑔

1
2𝐿𝑔

𝜔𝑔
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                        (6.18) 

As was expected, the resulting state-space-averaged model of the grid-connected 

three-phase SSBI system is independent of the averaging period (or the switching cycle), 

𝑇𝑠. It can also be proved that the same average matrix will be obtained for the other 

sectors. That is, 
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𝑨�𝒅𝒒𝑰 = 𝑨�𝒅𝒒𝑰𝑰 = ⋯ = 𝑨�𝒅𝒒𝑽𝑰 = 𝑨�𝒅𝒒                                                                               (6.19) 

The large-signal state-space-averaged model of the grid-connected SSBI system, can be 

represented in the synchronous dq-frame of reference as follows: 

𝑑
𝑑𝑡

⎣
⎢
⎢
⎢
⎢
⎡𝚤̇̃𝑑𝑐𝑣�𝑞
𝑣�𝑑
𝚤̇̃𝑞
𝚤̇̃𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

−√3𝑚𝑐𝑜𝑠(𝜙)
2𝐿𝑑𝑐

−√3𝑚𝑠𝑖𝑛(𝜙)
2𝐿𝑑𝑐

0 0

√3𝑚𝑐𝑜𝑠(𝜙)
3𝐶𝑎𝑐

0 −𝜔𝑔
−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

√3𝑚𝑠𝑖𝑛(𝜙)
3𝐶𝑎𝑐

𝜔𝑔 0 √3
6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−𝜔𝑔

0 √3
6𝐿𝑔

1
2𝐿𝑔

𝜔𝑔
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝚤̇̃𝑑𝑐𝑣�𝑞
𝑣�𝑑
𝚤̇̃𝑞
𝚤̇̃𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

                                                                             +

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝐿𝑑𝑐

0 0
0 0 0
0 0 0
0 −1

2𝐿𝑔

√3
6𝐿𝑔

0 −√3
6𝐿𝑔

−1
2𝐿𝑔⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑣𝑑𝑐
 𝑣𝑞
𝑔

𝑣𝑑
𝑔
�

                           (6.20) 

It should be noted that (6.20) represents a linear time-invariant system assuming that the 

modulation index and angle, 𝑚 and 𝜙, are constant. 

 

6.2.2 Small-Signal Model 

As one can see in (6.20), �𝑣𝑑𝑐, 𝑣𝑞
𝑔, 𝑣𝑑

𝑔�
𝑇
represents the system inputs, and the 

modulation index, 𝑚, and the modulation angle, 𝜙, are assumed constant. In practice, 𝑚 

and 𝜙 can be used to regulate the injected active and reactive powers to the grid, in grid-

connected conditions. In this case, (6.20) will not be any longer a linear model, but it can 

be linearized around any steady state operating point (see Appendix B). Let us define: 

𝒙�𝒅𝒒 = 𝑿�𝒅𝒒 + 𝜹𝒙�𝒅𝒒,    𝑣𝑑𝑐 = 𝑉𝑑𝑐 + 𝛿𝑣𝑑𝑐 ,    𝑚 = 𝑀 + 𝛿𝑚,    𝜙 = Φ + 𝛿𝜙                  (6.21) 
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where, 𝒙�𝒅𝒒 = [𝚤̇̃𝑑𝑐, 𝑣�𝑞 , 𝑣�𝑑 , 𝚤̇̃𝑞 , 𝚤̇̃𝑑]𝑇 is the approximate state vector in the rotating dq-frame 

of reference, the 𝛿 denotes small-signal perturbation, and capital letters indicate the 

steady-state components. Thus, the linearized (small-signal) model can be represented as 

follows: 

𝑑
𝑑𝑡

⎣
⎢
⎢
⎢
⎢
⎡𝛿𝚤̇̃𝑑𝑐
𝛿𝑣�𝑞
𝛿𝑣�𝑑
𝛿𝚤̇̃𝑞
𝛿𝚤̇̃𝑑 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑑𝑐
𝐿𝑑𝑐

−√3𝑀𝑐𝑜𝑠(Φ)
2𝐿𝑑𝑐

−√3𝑀𝑠𝑖𝑛(Φ)
2𝐿𝑑𝑐

0 0

√3𝑀𝑐𝑜𝑠(Φ)
3𝐶𝑎𝑐

0 −𝜔𝑔
−1
2𝐶𝑎𝑐

−√3
6𝐶𝑎𝑐

√3𝑀𝑠𝑖𝑛(Φ)
3𝐶𝑎𝑐

𝜔𝑔 0 √3
6𝐶𝑎𝑐

−1
2𝐶𝑎𝑐

0 1
2𝐿𝑔

−√3
6𝐿𝑔

−𝑅𝑔
𝐿𝑔

−𝜔𝑔

0 √3
6𝐿𝑔

1
2𝐿𝑔

𝜔𝑔
−𝑅𝑔
𝐿𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝛿𝚤̇̃𝑑𝑐
𝛿𝑣�𝑞
𝛿𝑣�𝑑
𝛿𝚤̇̃𝑞
𝛿𝚤̇̃𝑑 ⎦

⎥
⎥
⎥
⎥
⎤

                                          

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝐿𝑑𝑐

0 0 √3
2𝐿𝑑𝑐

�−𝑐𝑜𝑠(Φ)𝑉�𝑞 + 𝑠𝑖𝑛(Φ)𝑉�𝑑�
√3𝑀

2𝐿𝑑𝑐𝑇𝑆
�𝑠𝑖𝑛(Φ)𝑉�𝑞 + 𝑐𝑜𝑠(Φ)𝑉�𝑑�

0 0 0 √3𝑐𝑜𝑠(Φ)𝐼𝑑𝑐
3𝐶𝑎𝑐

−√3𝑀𝑠𝑖𝑛(Φ)𝐼𝑑𝑐
3𝐶𝑎𝑐

0 0 0 −√3𝑠𝑖𝑛(Φ)𝐼𝑑𝑐
3𝐶𝑎𝑐

−√3𝑀𝑐𝑜𝑠(Φ)𝐼𝑑𝑐
3𝐶𝑎𝑐

0 −1
2𝐿𝑔

√3
6𝐿𝑔

0 0

0 −√3
6𝐿𝑔

−1
2𝐿𝑔

0 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝛿𝑣𝑑𝑐
𝛿𝑣𝑞

𝑔

𝛿𝑣𝑑
𝑔

𝛿𝑚
𝛿𝜙 ⎦

⎥
⎥
⎥
⎥
⎤

           (6.22) 

As will be seen in the next section, equation (6.22) can be used for investigation of 

the stability of the grid-connect SSBI system.  

 

6.3 Eigenvalue Sensitivity Analysis 

In this section, the eigenvalue sensitivities with respect to the system parameters 

are studied using the developed small-signal model of the SSBI. Herein, the state-space-

averaged equation (6.22) is used for calculating the eigenvalues of the system. The study 

is based on the experimental set-up that is built in the laboratory for test and verification. 

The parameters of the developed set-up are summarized in Table 6.5. It should be noted 

that the dc-link resistance includes the series resistance of the dc-link inductor and the 
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forward bias resistances of the switches and diodes, which will be discussed in simulation 

and experimental results. Also, the grid voltage frequency is assumed constant, i.e. 

𝜔𝑔 = 120𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐. Substituting these values into (6.20) results in the equilibrium point 

state vector of 𝑿�𝒅𝒒 = [5.21,167.2,−7.932,0.2818,0.7446]𝑇, which corresponds to a 

line-to-line rms voltage of 120 V and a line rms current of 0.56 A. This operating point 

corresponds to about 100 W, which is within the operational range of a typical PV panel. 

The eigenvalues of the system at this operating point are obtained as 𝜆1 = −74.248, 

𝜆2,3 = −54.272 ± 𝑗1389.1, and 𝜆4,5 = −54.142 ± 𝑗664.99. Unlike for the stand-alone 

case, it can be observed that the grid-connected SSBI system does not have any non-

dominant eigenvalues, and real parts of all the eigenvalues are within the same range. 

Thus, the dynamic behavior of the system is dominated by all five eigenvalues, which are 

located in the left-half s-plane. Therefore, the system is stable for the parameter values 

given in Table 6.5. However, it does not necessarily mean that the system will be stable if 

the system parameters change [79]. Hence, in order to investigate the stability of the 

system, it is required to perform the sensitivity analysis of the system’s eigenvalues to the 

variations of the parameters. The definition of the sensitivity has been given in Chapter 5 

with (5.17) and (5.18). 

 

A. Sensitivity to the DC-Source, 𝑣𝑑𝑐 

As can be seen in (6.22), the state matrix is independent of 𝑉𝑑𝑐, therefore, the 

eigenvalues of the system do not move with the variations of the dc-source voltage. Thus, 

the dc-source voltage does not affect the stability of the grid-connected three-phase SSBI. 

This is same as that was observed in Chapter 5, for the stand-alone SSBI system. 
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Table 6.5: System parameters 

 Parameter     Nominal values  
 𝑣𝑑𝑐      20 V  
 𝑣𝑔     120 Vrms  
 𝐿𝑑𝑐     10 mH  
 𝑅𝑑𝑐     0.68 Ω  
 𝐶𝑎𝑐     13.3 µF  
 𝐿𝑔     26 mH  
 𝑅𝑔     2.9 Ω  
 𝑀     0.21  
 Φ     60°  

 

B. Sensitivity to the DC-Link Inductor, 𝑅𝑑𝑐 and 𝐿𝑑𝑐 

The impacts of 𝑅𝑑𝑐 and 𝐿𝑑𝑐 on the eigenvalues of the system are shown in Figures 

6.2 and 6.3, respectively. The arrows point in the directions of displacements of the 

eigenvalues as the associated parameter increases.  In these figures, the bold cross signs 

(+) indicate the location of the eigenvalues for the nominal values of the system’s 

parameters in Table 6.5. In addition to the locations of the eigenvalues, the real part 

sensitivities of 𝜆1, 𝜆2, and 𝜆4 and the imaginary part sensitivities of 𝜆2, and 𝜆4 are plotted 

in the lower part of each figure (see also (5.19)).       

As can be seen in Figure 6.2, an increase in the resistance of the dc-link moves the 

eigenvalues of the system to the left, which increases the damping and speed of the 

system. But, it should be mentioned that any increase in the system’s resistance results in 

increase in the losses, which is not desirable in power applications.  
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Figure 6.2: Locations of the grid-connected SSBI eigenvalues and their sensitivities versus 𝑅𝑑𝑐 when it 

varies between 0.01 and 1 Ω 

 

Similarly, it can be seen in Figure 6.3 that as the inductance value of the dc-link 

inductor increases, 𝜆1, 𝜆4 and 𝜆5 move toward the imaginary axis, which can slow down 

the system response. As one can observe from Figures 6.2 and 6.3, the impacts of the dc-

link parameters, 𝑅𝑑𝑐 and 𝐿𝑑𝑐, on the eigenvalue, 𝜆2 and 𝜆3, are almost negligible.  
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Figure 6.3: Locations of the grid-connected SSBI eigenvalues and their sensitivities versus 𝐿𝑑𝑐 when it 

varies between 10 and 20 mH 
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Figure 6.4: Locations of the grid-connected SSBI eigenvalues and their sensitivities versus 𝐶𝑎𝑐 when it 

varies between 5 and 30 µF 
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Figure 6.5: Locations of the grid-connected SSBI eigenvalues and their sensitivities versus 𝑅𝑔 when it 

varies between 0.01 and 5 Ω 
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Figure 6.6: Locations of the stand-alone SSBI eigenvalues and their sensitivities versus 𝐿𝑔 when it varies 

between 15 and 50 mH 
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Figure 6.7: Locations of the grid-connected SSBI eigenvalues and their sensitivities versus 𝑀 when it 

varies between 0.2 and 0.5 

 

F. Sensitivity to the Modulation Angle, 𝛷 
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MATLAB/Simulink. The parameters of the developed set-up are summarized in Table 

6.5. The inverter is switched at a frequency of 𝑓𝑠 = 2880 𝐻𝑧. These switching signals are 

calculated and produced using a dSPACE 1104, which operates at a sampling frequency 

of 𝑓𝑠𝑎𝑚 = 81 𝑘𝐻𝑧.  

 

A. Simulation Results 

The dynamic behavior of the grid-connected SSBI during start-up and its response 

to step changes in the modulation index, 𝑚, and the modulation angle, 𝜙, are shown in 

Figure 6.8. First, the system starts with the nominal parameters of Table 6.5. Second, at 

𝑡 = 100 𝑚𝑠𝑒𝑐, a 3% step is applied to the modulation index, i.e. 𝑚 increases from 0.21 to 

0.24. Third, at 𝑡 = 200 𝑚𝑠𝑒𝑐, a -3° step change is applied to the modulation angle, i.e. 𝜙 

decreases from 60° to 57°.   

It can be seen that the state-space-averaged model can adequately represent the 

dynamic and steady state behavior of the grid-connected three-phase SSBI. It should be 

noted that the small-signal model can satisfactorily represent the dynamics of the system 

during its start-up operation, which is a large-signal disturbance in the dc-source voltage. 

The reason is that the system and input matrices of the system (6.20), are independent of 

𝑣𝑑𝑐. In other words, the system is linear with respect to 𝑣𝑑𝑐. Therefore, as long as the 

other parameters of the system, including 𝑚 and 𝜙, do not change, the large- and small-

signal transfer functions of the system are the same. Accordingly, the small-signal model 

of (6.22) can also be used for dynamic analysis of the system under large-signal 

disturbances in the dc-source voltage. 
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Figure 6.8: State variables of the simulation and state-space-averaged model for 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 

𝑓𝑠𝑎𝑚 = 2000 𝑘𝐻𝑧 
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connected three-phase SSBI during the 300 msec of the simulation are presented in Table 

6.6. The results indicate that increasing the ratio of sampling frequency to switching 

frequency significantly increases the agreement between the state-space-averaged model 

and simulation data.  

 

Table 6.6: Mean Absolute error of the state-space-averaged model for different sampling frequencies 

 State Variable  𝑓𝑠𝑎𝑚 = 500 𝑘𝐻𝑧  𝑓𝑠𝑎𝑚 = 1000 𝑘𝐻𝑧  𝑓𝑠𝑎𝑚 = 2000 𝑘𝐻𝑧  
 𝑀𝐴𝐸(𝑖𝑑𝑐)  0.759 A  0.486 A  0.367 A  
 𝑀𝐴𝐸�𝑣𝑞�  2.61 V  1.952 V  1.726 V  
 𝑀𝐴𝐸(𝑣𝑑)  2.42 V  1.815 V  1.821 V  
 𝑀𝐴𝐸�𝑖𝑞�  0.139 A  0.0788 A  0.0530 A  
 𝑀𝐴𝐸(𝑖𝑑)  0.094 A  0.0625 A  0.0479 A  

 

B. Experimental Results 

The state-space-averaged models of (6.20) and (6.22) have been derived for an 

ideal grid-connected three-phase SSBI, in which all voltage drops and delays of the 

semiconductor devices (switches and diodes) have been neglected. However, these 

assumptions may not be true in practice. In other words, there are conduction losses and 

voltage drops across the semiconductor switches and diodes during conductions. The 

existing non-idealities, like conduction losses and voltage drops of the semiconductors, 

turn-on and turn-off delays, diode reverse-recovery currents, snubber circuits, and 

imperfect switching, affect the accuracy of the derived state-space-averaged model. Our 

studies have shown that the voltage drops and losses of the semiconductor devices could 

be represented by considering their forward bias resistances in the model and the effects of 

the snubbers and imperfect switching would be incorporated into the averaged model 

through a slight change in the modulation index, 𝑚. The dynamics of the start-up 
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operation (large-signal disturbance in the dc-source voltage) of the laboratory-scaled 

three-phase SSBI, along with the response of the modified state-space-averaged model, 

have been depicted in Figures 6.9 through 6.13, and the hardware data is presented in 

Table 6.7. 

 

Table 6.7: Hardware specifications 

 Component    Specifications  
 dc-source    XR125-32 Magna-Power Electronics  
 MOSFETS    STx42N65M5 (TO-220)  
 Diodes    DSEP30-06A (TO-247 AD)  
 Simulink-Hardware Interface    dSPACE 1104  
 𝐶𝑠𝑛𝑢𝑏𝑏𝑒𝑟     100 nF  
 𝐷𝑠𝑛𝑢𝑏𝑏𝑒𝑟     1N4004-G  
 𝑅𝑠𝑛𝑢𝑏𝑏𝑒𝑟    240 Ω  

 

The aforementioned modifications can be applied as follows:  

i. According to the datasheets [81-82], the forward bias resistances of the 

MOSFETs and diodes, for a 5 A current, are 0.065 Ω and 0.225 Ω, 

respectively. Since, at each instant two diodes and two switches are in 

series between the dc-source and the ac-side of the circuit, the total 

resistance of the semiconductor devices will be 0.58 Ω. Thus, considering 

0.1 Ω resistance for the dc-link inductor, the total/equivalent series 

resistance of the dc-link will be 0.68 Ω. 

ii. The modulation index must increase by 1% in the model to include the 

delay and imperfect switching effects. In other words, the experimental 

waveforms of the three-phase SSBI system with a modulation index of 
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𝑚 = 0.20 correspond to the waveforms of the state-space-averaged model 

for and 𝑚 = 0.21.  

  

 

Figure 6.9:  Start-up operation of the lab-scaled circuit and the response of the state-space-averaged model 

(with an ideal dc-source) for 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 81 𝑘𝐻𝑧 
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Figure 6.10: dq state variables of the lab-scaled circuit and the state-space-averaged model (with an ideal 

dc-source) during the start-up for 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 81 𝑘𝐻𝑧 
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connected SSBI system. The minor differences between the model and real data arise from 

the inherent limitations of the state-space averaging method (in determining the high 

frequency characteristics of the system), unconsidered non-idealities of the system, such 

as the imperfect switching of the dc-source and its transients during the start-up, low 

sampling frequency, the parasitic and unbalanced elements of the circuit, as well as 

harmonic content and unbalance in the grid that cause distortions and low frequency 

ripples in the dc-link current and dq variables. In fact, the harmonic content was the source 

of major problems in performing the grid-connected experiments. The available three-

phase grid in the laboratory had some low order voltage harmonics that excited the 

resonance frequency (156 Hz) of the LC circuit, consisting of the grid interconnecting 

inductor and the ac-side capacitor. This resonance produced large harmonic currents 

between the LC circuit and the grid, even when the SSBI was off. As can be seen in 

Figure 6.10, these harmonics caused considerable ripples on the grid current. However, 

the state-space-averaged model can successfully follow the dc component of 𝐼𝑞 and 𝐼𝑑. 

The differences between the model and the actual circuit may become more noticeable in 

the small-signal response of the system, in which the variations of the state-variables are 

comparable with the ripples and distortions. This can be realized in Figures 6.11 and 6.12, 

where the response of the prototyped grid-connected three-phase SSBI to small-signal 

disturbances in the modulation index, 𝑚 (3% increase), and the modulation angle, 𝜙 (3° 

decrease), has been illustrated. However, the model response is still reasonably acceptable 

for many applications. 
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Figure 6.11: Step responses of the hardware and the state-space-averaged model, to a 3% increase in 𝑚, for 

𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 81 𝑘𝐻𝑧 
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Figure 6.12: Step responses of the hardware and the state-space-averaged model, to a -3° decrease in 𝜙, for 

𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 81 𝑘𝐻𝑧 
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Figure 6.13:  Start-up operation of the lab-scaled circuit and the response of the state-space-averaged 

model, considering the dc-source abnormality, for 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 81 𝑘𝐻𝑧 
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of the dc-source, besides the semiconductor and snubber effects, is another non-ideality 

that can be incorporated into the developed state-space-averaged model. 

 

 

Figure 6.14: dq state variables of the lab-scaled circuit and the state-space-averaged model, considering the 

dc-source abnormality, during the start-up for 𝑓𝑠 = 2.88 𝑘𝐻𝑧 and 𝑓𝑠𝑎𝑚 = 81 𝑘𝐻𝑧 
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Looking at Figure 6.9 indicates that the dc-source voltage does not behave 

perfectly once it is switched to the circuit, and it takes about 50 msec until the start-up 

transients disappear and the voltage settles on 20 V. The state-space-averaged models of 

(6.20) and (6.22) are capable of considering this abnormal operation, by means of 

inputting the emulated waveform of the actual dc-source into the model. This has been 

shown in Figures 6.13 and 5.14. As can be seen, and in comparison with Figures 6.9 and 

6.10, considering the dc-source transients results in a noticeable improvement in the model 

performance.  

 

6.5 Summary 

The state-space averaging method has been applied in order to develop the 

dynamic model of the grid-connected three-phase SSBI. The large- and small-signal 

models have been derived in the synchronous dq-frame of reference, and used for 

sensitivity and stability analysis of the system. It has been observed that, unlike the stand-

alone system, the grid-connected single-stage boost inverter does not have non-dominant 

eigenvalues. A modification approach for taking into account the losses and non-

idealities of the semiconductor devices, has been proposed and has been validated 

through simulated and experimentally obtained data. Finally, it has been shown that the 

obtained models can take into account the abnormal operation of the dc-source. 

Following chapter will be a conclusion to this research and some issues and ideas are 

addressed as potential subjects for future work.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

The conclusion of this PhD dissertation is presented in this chapter. The 

achievements and contributions of the work are revisited and some suggestions are made 

for future work. 

 

7.1 Conclusion 

The single-stage boost inverter (SSBI) is an appropriate solution for sustainable 

energy-based generation systems in which a low dc voltage has to be converted to higher 

ac voltage. This technology is particularly suitable for residential photovoltaic- and fuel 

cell-based SE systems. In order to investigate the stability and dynamic performance of 

the SSBI, and design a proper control system, it is essential to develop a dynamic model 

for it. This dissertation presented the results of a comprehensive study on dynamic 

modeling and analysis of the SSBI systems. The following are the major contribution of 

this study:  

i. Development of large- and small-signal state-space-averaged models for 

the stand-alone and grid-connected single-stage boost inverters. 

ii. Analysis of the stability and dynamic behavior of the stand-alone and grid-

connected SSBI by performing eigenvalue sensitivity analysis. 

These were achieved through exploring different aspects of the problem and 

adopting suitable means of solving it. At the first step, a comprehensive review of the 

existing PWM-based power conversion systems was performed. The focus of the survey 
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was on the converter topologies, which are used in sustainable energy systems with a low 

dc voltage, e.g. solar photovoltaic and fuel cell systems. 

Besides the existing topologies, extensive research was carried out on the history 

and contributions of the available methodologies for steady-state and dynamic modeling 

of the power electronic converters. It was concluded that the state-space averaging, and 

its variations, are by far the most used techniques for dynamic modeling of the switch-

mode power converters. This is due to (1) the strength of the state-space averaging 

method in solving a broad spectrum of modeling problems, and (2) its convenience of 

implementation. 

The idea of the SSBI and the recently proposed PPWM-based switching pattern, 

which has three charging and six discharging states, were elaborated upon, and the 

fundamental equations of the system were derived and verified through simulations and 

experiments. It was shown that this topology, along with the given switching pattern, is 

capable of providing the residential ac voltage from a single photovoltaic panel at its 

rated power.  

The idea of the SSBI was extended to the single-phase SSBI and the switching 

pattern is adapted for the single-phase application. In this case, there is one charging and 

one discharging states during each switching cycle, where only one switch operates at 

high frequency, one does not conduct, and two switches conduct for the entire switching 

cycle. This system was simulated, tested, and verified for grid-connected application. 

The possible switching states of the stand-alone three-phase SSBI were 

enumerated, and the associated state-space equations were derived and averaged over a 

switching cycle. The obtained time-varying averaged model was transformed into the 
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synchronous dq-frame of reference in order to derive the time-invariant large-signal state-

space-averaged model of the system. The small-signal state-space-averaged model of the 

SSBI is developed by means of perturbation and linearization of the large-signal model. 

This model was used for eigenvalue sensitivity analysis in order to investigate the 

stability and dynamic behavior of the stand-alone three-phase SSBI system. It was 

observed that, the stand-alone system has three dominant and two non-dominant 

eigenvalues, in which the location of the non-dominant eigenvalues are only affected by 

the load parameters. A modification approach for taking into account the losses and non-

idealities of the semiconductor devices, was proposed and validated through simulation 

and experiments.  

The methodology was applied to the grid-connected three-phase single-stage 

boost inverter, which is more complicated than its stand-alone counterpart, and the results 

were successfully tested on the laboratory-scaled hardware setup. Unlike the stand-alone 

system, the grid-connected SSBI does not have non-dominant eigenvalues. Finally, the 

abnormal operation of the dc-source during the start-up was studied and it was observed 

that the developed state-space-averaged models are capable of taking into account this 

type of abnormality. 

 

7.1 Future Work 

 Many problems were identified over more than one year of working on 

this research work. Of course, some of them were solved during the course of the 

study, however the rest of the problems can be the subjects of future studies.   



169 
 

• Voltage spikes, across the semiconductor switches and diodes, are one of 

the major problems in design and implementation of the SSBI. Turn-off 

RDC snubber circuits have been employed in order to reduce the problem. 

Although, they significantly reduced the voltages spikes and failures of the 

circuit, there is still room for further studies and the design of more 

elaborate snubbers for the SSBI.  

• A variety of optimization objectives can be defined and the circuit can be 

accordingly optimized. Tentative objectives can be maximizing efficiency 

or minimizing cost and size. This subject can be combined with the 

snubber design, because snubbers affect the efficiency, size, and cost of 

the circuit. Alternatively, finding a proper switch-diode combination can 

reduce the need for snubber and can improve the efficiency, size, cost, and 

reliability of the circuit. Thus, the switching/speed characteristics of the 

semiconductor devices should be considered in the optimization problems. 

• Improving the switching pattern is another viable option for enhancing the 

system performance. It may make the SSBI more efficient or increase the 

quality of the output waveforms, which will result in a simpler filter 

design. In addition, an improved switching pattern can reduce the voltage 

spikes and the snubber size. 

• The developed state-space-averaged models can be further elaborated by 

considering more details, like parasitic elements of the circuit, or 

discontinuous mode of operation (however, the discontinuous operation 

has been never observed during this research).   



170 
 

• Different control studies (such as closed loop control, optimal and 

adaptive controls, and observability and controllability) can be performed 

by use of the obtained state-space-averaged models. For instance, a 

nonlinear control algorithm like sliding-mode control can be applied in 

order to control the active and reactive powers in the grid-connected 

mode, or to control the voltage in the stand-alone operation.  

• Different faults of the system should be studied, and a proper protection 

system should be designed for the SSBI. For example, an open circuit fault 

can cause overvoltage across the ac-side capacitors. Thus, this fault must 

be detected by the protection system, and a proper action (like by turning 

the switches off) must be taken.    

• Fault-ride-through and transient stability analyses as well as the seamless 

transition between the grid-connected and stand-alone operations could be 

some other interesting subjects for future work.  
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APPENDICES 

 

The Appendices provided a review of the averaging theory [29] and the 

perturbation and linearization method [83].  

 

A Averaging Theory 

Equation (A.1) is the general form of the equations, describing a nonlinear 

dynamical system. 

�̇� = 𝒇(𝑡,𝒙; 𝜖)                                                                                                                 (A.1) 

where, 𝒙 (𝒙 ∈ 𝐷 ⊂ ℝ𝑛, with 𝐷 an open, bounded set) and 𝒇 are vectors, elements of ℝ𝑛. 

The variable 𝑡 ∈ ℝ is usually identified with time; it is assumed 𝑡 ≥ 0 or 𝑡 ≥ 𝑡0 with 𝑡0 a 

constant. The parameter 𝜖 plays the part of a small parameter which characterizes the 

magnitude of certain perturbations ϵ. should be taken to be a positive; 0 < 𝜖 ≤ 𝜖0 with 𝜖0 

a constant, however, during the approximation process, the limiting value 𝜖 → 0 may be 

included. All quantities used will be real except if explicitly stated otherwise.  

 

A.1 Definition of Lipschitz Condition  

Consider the vector function 𝒇(𝑡,𝒙; 𝜖), 𝒇𝜖ℝ𝑛, 𝑡0 < 𝑡 ≤ 𝑡0 + 𝑇, 𝒙 ∈ 𝐷 ⊂ ℝ𝑛, 

0 < 𝜖 ≤ 𝜖0; 𝒇 satisfies a Lipschitz condition in 𝒙 with Lipschitz constant 𝐿 if in [𝑡0, 𝑡0 +

𝑇] × 𝐷 × (0, ��𝜖0] 

‖𝒇(𝑡,𝒙𝟏; 𝜖) − 𝒇(𝑡,𝒙𝟐; 𝜖)‖ ≤ 𝐿‖𝒙𝟏 − 𝒙𝟐‖                                                                    (A.2) 

where 𝒙𝟏, 𝒙𝟐 ∈ 𝐷, 𝐿 a constant. Also for a vector 𝒖𝜖ℝ𝑛 with components 𝑢𝑖, ‖. ‖ 

indicates the norm  
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‖𝒖‖ = ∑ |𝑢𝑖|𝑛
𝑖=1                                                                                                              (A.3) 

 

A.2 Theorem of Existence and Uniqueness 

Consider the initial value problem  

�̇� = 𝒇(𝑡,𝒙; 𝜖), 𝒙(𝑡0) = 𝒙𝟎                                                                                            (A.4) 

where 𝒙 ∈ 𝐷 ⊂ ℝ𝑛, 𝑡0 < 𝑡 ≤ 𝑡0 + 𝑇, 0 < 𝜖 ≤ 𝜖0; 𝐷 = { �𝒙|‖𝒙 − 𝒙𝟎‖ ≤ 𝑑}. If it is 

assumed that: 

𝒇(𝑡,𝒙; 𝜖) is continuous with respect to 𝑡,𝒙; 𝜖 in 𝐺 = [𝑡0, 𝑡0 + 𝑇] × 𝐷 × (0, ��𝜖0]. 

𝒇(𝑡,𝒙; 𝜖) satisfies a Lipschitz condition in 𝒙 

Then the initial value problem has a unique solution which exits for 𝑡0 < 𝑡 ≤ 𝑡0 +

𝑖𝑛𝑓 �𝑇, 𝑑
𝑀
�, where 𝑀 = 𝑠𝑢𝑝𝐺‖𝒇‖.  

 

A.3 Standard Form Equation 

The equations are often met in the so called standard form 

 �̇� = 𝜖𝒇(𝑡,𝒙), 𝒙(𝑡0) = 𝒙𝟎                                                                                             (A.5) 

Here, if the conditions of the existence and uniqueness theorem have been satisfied, the 

solution exists for 𝑡0 < 𝑡 ≤ 𝑡0 + 𝑖𝑛𝑓 �𝑇, 𝑑
𝑀
� with 

𝑀 = 𝜖 𝑠𝑢𝑝𝒙∈𝐷,𝑡∈[ �𝑡0,𝑡0+𝑇)�‖𝒇‖                                                                                         (A.6) 

Allowing 𝑇 to be as large as possible, this means that the size of the interval of existence 

of the solution is of the order of 𝐿 𝜖⁄  with 𝐿 a constant.  
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A.4. Definition of Order Function 

A function 𝛿(𝜖) is called an order function if 𝛿(𝜖) is continuous and positive (or 

negative) in ( �0, 𝜖]� and if 𝑙𝑖𝑚𝜖→0 𝛿(𝜖) exists. Following symbols are used to compare 

order functions: 

𝛿1(𝜖) = 𝑂�𝛿2(𝜖)� for 𝜖 → 0 if there exist a constant 𝑘 such that |𝛿1(𝜖)| ≤

𝑘|𝛿2(𝜖)| for 𝜖 → 0. 

𝛿1(𝜖) = 𝑜�𝛿2(𝜖)� for 𝜖 → 0 if 𝑙𝑖𝑚𝜖→0
𝛿1(𝜖)
𝛿2(𝜖) = 0. Note that, 𝛿1(𝜖) = 𝑜�𝛿2(𝜖)� 

implies that 𝛿1(𝜖) = 𝑂�𝛿2(𝜖)�. 

𝛿1(𝜖) = 𝑂𝑆�𝛿2(𝜖)� for 𝜖 → 0 if 𝛿1(𝜖) = 𝑂�𝛿2(𝜖)� and 𝛿1(𝜖) ≠ 𝑜�𝛿2(𝜖)�. 

 

A.5 Definition of Order of Magnitude of 𝜙𝜖 in 𝐼 

𝜙𝜖 = 𝑂�𝛿(𝜖)� in 𝐼 if there exists a constant 𝑘 such that ‖𝜙𝜖‖ = 𝑂�𝛿(𝜖)� for 

𝜖 → 0, 𝛿(𝜖) an order function on ( �0, 𝜖]� and ‖. ‖ a norm for 𝜙 as a function of 𝑡. 

𝜙𝜖 = 𝑜�𝛿(𝜖)� in 𝐼 if  𝑙𝑖𝑚𝜖→0
‖𝜙𝜖‖
𝛿(𝜖) = 0. 

𝜙𝜖 = 𝑂𝑆�𝛿(𝜖)� in 𝐼 if 𝜙𝜖 = 𝑂�𝛿(𝜖)� and 𝜙𝜖 ≠ 𝑜�𝛿(𝜖)�. 

Note that this definition implies that the norm of a function is allowed to be ϵ–dependent. 

One should realize that ‖𝜙𝜖‖ = 𝑠𝑢𝑝𝑡∈𝐼‖𝜙𝜖(𝑡)‖. 
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A.6 Definition of Time-Scale 

𝜙𝜖 = 𝑂�𝛿0(𝜖)� as 𝜖 → 0 on the time-scale 𝛿−1(𝜖) if the estimate holds for 

0 ≤ 𝛿(𝜖)𝑡 ≤ 𝐿 with 𝐿 a constant independent of 𝜖. An analogous definition can be given 

for 𝑜�𝛿0(𝜖)�-estimates. 

 

A.7 Theorem of First Order Averaging 

Consider the initial value problems 

�̇� = 𝜖𝒇(𝑡,𝒙) + 𝜖2𝒈(𝑡,𝒙, 𝜖), 𝒙(𝑡0) = 𝒙𝟎                                                                       (A.7) 

and 

�̇� = 𝜖𝑭(𝒚), 𝒚(𝑡0) = 𝒙𝟎                                                                                                 (A.8) 

where 

𝑭(𝒙) = 1
𝑇 ∫ 𝒇(𝑡,𝒙)𝑇

0 𝑑𝑡                                                                                                   (A.9) 

with 𝒙,𝒚,𝒙𝟎 ∈ 𝐷 ⊂ ℝ𝑛, 𝑡 ∈ [�𝑡0,∞) �, 𝜖 ∈ ( �0, 𝜖0]�. Suppose: 

𝒇, 𝒈 and 𝜵𝒇 (where 𝜵𝒇 indicates the derivative of 𝒇 with respect to the spatial 

variable 𝒙) are defined, continuous and bounded by a constant 𝑀 independent of 

𝜖, in [ �𝑡0,∞) �× 𝐷; 

𝒈 is Lipschitz-continuous with respect to 𝑥 ∈ 𝐷; 

𝒇 is 𝑇-periodic in 𝑡 with 𝑇 a constant, independent of 𝜖; 

𝒚(𝑡) belongs to an (𝜖-independent) interior subset of 𝐷 on the time-scale 1 𝜖⁄ ; 

then 𝒙(𝑡) − 𝒚(𝑡) = 𝑶(𝜖) on the time-scale 1
𝜖
. 
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A.8 Definition of Local Average 

Consider the continuous vectorfield 𝒇:ℝ × ℝ𝑝 → ℝ𝑛. We define the local 

average 𝒇𝑻 of 𝒇 by 

𝒇𝑻(𝑡,𝒙) = 1
𝑇 ∫ 𝒇(𝑡 + 𝜏,𝒙)𝑑𝜏𝑇

0                                                                                      (A.10) 

in which 𝜏 is a dummy variable; 𝑝 is zero or a natural number, e.g. 𝑛. Also, if 𝒇 is T-

periodic in 𝑡. Then 

𝒇𝑻(𝑡,𝒙) = 𝑭(𝒙) = 1
𝑇 ∫ 𝒇(𝑡,𝒙)𝑑𝑡𝑇

0                                                                                (A.11) 

 

A.9 Lemma (Local Average Approximation) 

Consider the initial value problem (A.5) 

�̇� = 𝜖𝒇(𝑡,𝒙), 𝒙(𝑡0) = 𝒙𝟎                                                                                                

with 𝒇:ℝ × ℝ𝑛 → ℝ𝑛, Lipschitz-continuous in 𝒙 on 𝐷 ⊂ ℝ𝑛, 𝑡 on the time-scale 1
𝜖
; 𝒇 

continuous in 𝑡 and 𝒙. If 𝒚 is the solution of (A.12) 

�̇� = 𝜖𝒇𝑻(𝑡,𝒚), 𝒚(𝑡0) = 𝒙𝟎                                                                                            

then, 𝒙(𝑡) − 𝒚(𝑡) = 𝑶(𝜖) as 𝜖 → 0 on the time-scale 1
𝜖
. 

 

A.10 Theorem of Periodic Averaging 

Consider the initial value problem (A.5) 

�̇� = 𝜖𝒇(𝑡,𝒙), 𝒙(𝑡0) = 𝒙𝟎                                                                                                

with 𝒇:ℝ𝑛+1 → ℝ𝑛 and (A.8) 

�̇� = 𝜖𝑭(𝒚), 𝒚(𝑡0) = 𝒙𝟎                                                                                                  

𝒙,𝒚,𝒙𝟎 ∈ 𝐷 ⊂ ℝ𝑛, 𝑡 ∈ [�𝑡,∞) �, 𝜖 ∈ (0, ��𝜖0]. Suppose 
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𝒇  has period 𝑇; 

𝒇 is Lipschitz-continuous in 𝒙 on 𝐷 ⊂ ℝ𝑛, 𝑡 ≥ 0, continuous in 𝑡 and 𝒙 on 

ℝ+ × 𝐷 and with average 𝑭; 

𝒚(𝑡) belongs to an interior subset of 𝐷 on the time-scale 1
𝜖
; 

then 

𝒙(𝑡) − 𝒚(𝑡) = 𝑶(𝜖) as 𝜖 → 0 on the time-scale 1
𝜖
. 

 

A.11 Definition of KBM-Vectorfield 

Consider the vectorfield 𝑓(𝑡, 𝑥) with 𝒇:ℝ × ℝ𝑛 → ℝ𝑛, Lipschitz-continuous in 𝒙 

on 𝐷 ⊂ ℝ𝑛, 𝑡 ≥ 0; 𝒇 continuous in 𝑡 and 𝒙 on ℝ+ × 𝐷. If the average  

𝑭(𝒙) = 𝑙𝑖𝑚𝑇→∞
1
𝑇 ∫ 𝒇(𝑡,𝒙)𝑑𝑡𝑇

0                                                                                     (A.13) 

exists, 𝒇 is called a KBM-vectorfield (KBM stands for Krylov, Bogoliubov and 

Mitropolsky).  

 

A.12 Lemma (Approximating Local Average with the Usual Average) 

Let 𝑦 be the solution of the initial value problem (A.12) 

�̇� = 𝜖𝒇𝑻(𝑡,𝒚), 𝒚(𝑡0) = 𝒙𝟎                                                                                            

We suppose 𝒇 is a KBM-vectorfield; 𝒛 is the solution of the initial value problem 

�̇� = 𝜖𝑭(𝒛), 𝒛(𝑡0) = 𝒙𝟎                                                                                                (A.14) 

then 

𝒙(𝑡) − 𝒚(𝑡) = 𝑶�𝛿(𝜖)
𝑇𝜖
�  
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with 𝑡 on the time-scale 1
𝜖
. 

 

A.13 Theorem of General Averaging  

Consider the initial value problem (A.5) 

�̇� = 𝜖𝒇(𝑡,𝒙), 𝒙(𝑡0) = 𝒙𝟎                                                                                              

with 𝒇:ℝ𝑛+1 → ℝ𝑛 and (A.8) 

�̇� = 𝜖𝑭(𝒚), 𝒚(𝑡0) = 𝒙𝟎                                                                                                   

𝒙,𝒚,𝒙𝟎 ∈ 𝐷 ⊂ ℝ𝑛, 𝑡 ∈ [�𝑡,∞) �, 𝜖 ∈ (0, ��𝜖0]. Suppose 

𝒇 is a KBM-vectorfield with average 𝑭; 

𝒚(𝑡) belongs to an interior subset of 𝐷 on the time-scale 1
𝜖
; 

then 

𝒙(𝑡) − 𝒚(𝑡) = 𝑶�𝛿1 2⁄ (𝜖)� as 𝜖 → 0 on the time-scale 1
𝜖
, 

where, 

𝛿(𝜖) = 𝑠𝑢𝑝𝒙∈𝐷𝑠𝑢𝑝𝑡∈��0,𝐿𝜖�
�𝜖 �∫ [𝒇(𝜏,𝒙) − 𝑭(𝒙)]𝑑𝜏𝑡

0 �                                                    (A.15) 

 

B Perturbation and Linearization Method 

Let represent a nonlinear system by 

�̇�(𝑡) = 𝒇�𝒙(𝑡),𝒖(𝑡)�
𝒚(𝑡) = 𝒉�𝒙(𝑡),𝒖(𝑡)�

                                                                                                      (B.1) 

If 𝒙(𝑡), 𝒚(𝑡), and 𝒖(𝑡) are perturbed about their steady-state values, 𝑿(𝑡), 𝒀(𝑡), and 

𝑼(𝑡), as: 



187 
 

𝒙(𝑡) = 𝑿(𝑡) + 𝜹𝒙(𝑡)
𝒖(𝑡) = 𝑼(𝑡) + 𝜹𝒖(𝑡)
𝒚(𝑡) = 𝒀(𝑡) + 𝜹𝒚(𝑡)

                                                                                                      (B.2) 

where, 

�̇�(𝑡) = 𝒇�𝑿(𝑡),𝑼(𝑡)�
𝒀(𝑡) = 𝒉�𝑿(𝑡),𝑼(𝑡)�

                                                                                                     (B.3) 

Substituting the perturbation into the nonlinear system equations provides 

�̇�(𝑡) + 𝜹�̇�(𝑡) = 𝒇�𝑿(𝑡) + 𝜹𝒙(𝑡),𝑼(𝑡) + 𝜹𝒖(𝑡)�
𝒀(𝑡) + 𝜹𝒚(𝑡) = 𝒉�𝑿(𝑡) + 𝜹𝒙(𝑡),𝑼(𝑡) + 𝜹𝒖(𝑡)�

                                                         (B.4) 

Expanding the components of 𝑓 and 𝒉 by Taylor series yields 

�̇�(𝑡) + 𝜹�̇�(𝑡) = 𝒇�𝑿(𝑡),𝑼(𝑡)� + �𝜕𝒇
𝜕𝒙
�
𝑿
𝜹𝒙 + �𝜕𝒇

𝜕𝒖
�
𝑼
𝜹𝒖 + ℎ. 𝑜. 𝑡                           

                         
𝒀(𝑡) + 𝜹𝒚(𝑡) = 𝒉�𝑿(𝑡),𝑼(𝑡)� + �𝜕𝒉

𝜕𝒙
�
𝑿
𝜹𝒙 + �𝜕𝒉

𝜕𝒖
�
𝑼
𝜹𝒖 + ℎ. 𝑜. 𝑡                           

                          

          (B.5) 

which, neglecting the higher order terms (ℎ. 𝑜. 𝑡), gives 

  
𝜹�̇�(𝑡) ≅ �𝜕𝒇

𝜕𝒙
�
𝑿
𝜹𝒙 + �𝜕𝒇

𝜕𝒖
�
𝑼
𝜹𝒖

𝜹𝒚(𝑡) ≅ �𝜕𝒉
𝜕𝒙
�
𝑿
𝜹𝒙 + �𝜕𝒉

𝜕𝒖
�
𝑼
𝜹𝒖

                                                                                       (B.6) 

Let define 

𝑨 = �𝜕𝒇
𝜕𝒙
�
𝑿

, 𝑎𝑛𝑑       𝑩 = �𝜕𝒇
𝜕𝒖
�
𝑼

𝑪 = �𝜕𝒉
𝜕𝒙
�
𝑿

, 𝑎𝑛𝑑       𝑫 = �𝜕𝒉
𝜕𝒖
�
𝑼

                                                                                       (B.7) 

then, the linearized system model can described by 

𝜹�̇�(𝑡) = 𝑨𝜹𝒙 + 𝑩𝜹𝒖
𝜹𝒚(𝑡) = 𝑪𝜹𝒙 + 𝑫𝜹𝒖                                                                                                      (B.8) 

where, 
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𝑎𝑖𝑗 = �𝜕𝑓𝑖
𝜕𝑥𝑗
�
𝑋𝑗

, 𝑎𝑛𝑑      𝑏𝑖𝑗 = �𝜕𝑓𝑖
𝜕𝑢𝑗
�
𝑈𝑗

𝑐𝑖𝑗 = �𝜕ℎ𝑖
𝜕𝑥𝑗
�
𝑋𝑗

, 𝑎𝑛𝑑      𝑑𝑖𝑗 = �𝜕ℎ𝑖
𝜕𝑢𝑗
�
𝑈𝑗

                                                                              (B.9) 
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