
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-23-2012

A Hardware and Software Integrated Approach for
Adaptive Thread Management in Multicore
Multithreaded Microprocessors
Lichen Weng
Florida International University, lichen.weng@fiu.edu

DOI: 10.25148/etd.FI12071106
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Weng, Lichen, "A Hardware and Software Integrated Approach for Adaptive Thread Management in Multicore Multithreaded
Microprocessors" (2012). FIU Electronic Theses and Dissertations. 653.
https://digitalcommons.fiu.edu/etd/653

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/653?utm_source=digitalcommons.fiu.edu%2Fetd%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A HARDWARE AND SOFTWARE INTEGRATED APPROACH FOR

ADAPTIVE THREAD MANAGEMENT IN MULTICORE MULTITHREADED

MICROPROCESSORS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Lichen Weng

2012

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Lichen Weng, and entitled A Hardware and Software
Integrated Approach for Adaptive Thread Management in Multicore Multithreaded
Microprocessors, having been approved in respect to style and intellectual content,
is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Malek Adjouadi

Gang Quan

Raju Rangaswami

Chen Liu, Major Professor

Date of Defense: April 23, 2012

The dissertation of Lichen Weng is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2012

ii

c© Copyright 2012 by Lichen Weng

All rights reserved.

iii

DEDICATION

To my parents.

iv

ACKNOWLEDGMENTS

First and foremost I offer my sincerest gratitude to my supervisor, Dr. Chen Liu,

who has supported me throughout my doctoral study with his patience and knowl-

edge. Dr. Liu has taught me in tremendous topics, which led me from a fresh

graduate to a qualified doctor. Meanwhile, I attribute the level of my doctoral de-

gree not only to my major professor, but also other committee members: Drs. Malek

Adjouadi, Gang Quan and Raju Rangaswami. Without the valuable and great guid-

ance from the committee, the dissertation would not have been completed.

Furthermore, honest appreciations are delivered to the faculty in the Department

of Electrical and Computer Engineering, the School of Computing and Information

Sciences and the Telecommunications and Information Technology Institute, for

their inspiring teaching and informative lectures. I do honor the fine and prompt

aid from the friendly staff in our department in various events.

Last but not least, I am absolutely grateful for the gorgeous help and constructive

suggestions from my colleagues and friends. Especially in the Computer Architecture

and Microprocessor Engineering Laboratory, we have had so much fun and so many

fruitful collaborations.

v

ABSTRACT OF THE DISSERTATION

A HARDWARE AND SOFTWARE INTEGRATED APPROACH FOR

ADAPTIVE THREAD MANAGEMENT IN MULTICORE MULTITHREADED

MICROPROCESSORS

by

Lichen Weng

Florida International University, 2012

Miami, Florida

Professor Chen Liu, Major Professor

The Multicore Multithreaded Microprocessor maximizes parallelism on a chip

for the optimal system performance, such that its popularity is growing rapidly in

high-performance computing. It increases the complexity in resource distribution

on a chip by leading it to two directions: isolation and unification. On one hand,

multiple cores are implemented to deliver the computation and memory accessing

resources to more than one thread at the same time. Nevertheless, it limits the

threads’ access to resources in different cores, even if extensively demanded. On

the other hand, simultaneous multithreaded architectures unify the domestic execu-

tion resources together for concurrently running threads. In such an environment,

threads are greatly affected by the inter-thread interference. Moreover, the impacts

of the complicated distribution are enlarged by variation in workload behaviors. As

a result, the microprocessor requires an adaptive management scheme to schedule

threads throughout different cores and coordinate them within cores.

In this study, an adaptive thread management scheme was proposed, integrat-

ing both hardware and software approaches. The instruction fetch policy at the

hardware level took the responsibility by prioritizing domestic threads, while the

Operating System scheduler at the software level was used to pair threads dynami-

vi

cally to multiple cores. The tie between them was the proposed online linear model,

which was dynamically constructed for every thread based on data misses by the

regression algorithm. Consequently, the hardware part of the proposed scheme

proactively granted higher priority to the threads with less predicted long-latency

loads, expecting they would better utilize the shared execution resources. Mean-

while, the software part was invoked by such a model upon significant changes in

the execution phases and paired threads with different demands to the same core to

minimize competition on the chip. The proposed scheme was compared to its peer

designs and overall 43% speedup was achieved by the integrated approach over the

combination of two baseline policies in hardware and software, respectively. The

overhead was examined carefully regarding power, area, storage and latency, as well

as the relationship between the overhead and the performance.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 The Motivation . 1
1.2 Scope of the Study . 2
1.3 Significance of the Study . 5
1.4 The Dissertation Organization . 6

2. THEORETICAL PERSPECTIVE AND LITERATURE REVIEW 8
2.1 Hardware Architecture of the MMMP 8
2.1.1 The SMT Architecture . 9
2.1.2 The Multicore Architecture . 11
2.2 Scheduling in the SMT Architecture . 12
2.2.1 The Long-Latency Load . 12
2.2.2 Instruction Fetch Policies for the LLC 13
2.2.3 Proactive Instruction Fetch Policies . 14
2.2.4 More SMT Scheduling Policies . 15
2.2.5 SMT Scheduling for Parallel Programmes 16
2.3 Multicore Scheduling in the OS . 18
2.3.1 Homogeneous Microprocessors . 19
2.3.2 Heterogenous Microprocessors . 20
2.3.3 Allocation of Memory Resources . 21
2.3.4 Scheduling Policies in Cluster . 21
2.3.5 Thread Replacement . 22
2.4 The Shared Resources and Workload Behaviors 23
2.4.1 The Shared Resources . 24
2.4.2 Demands along Execution . 24
2.4.3 Demands among Workloads . 25
2.5 Summary of the Related Work . 27

3. THE ONLINE LINEAR MODEL . 28
3.1 The OLS Regression . 29
3.2 Construction of the OLM . 30
3.2.1 The Sampling Module . 30
3.2.2 The Regression Module . 31
3.3 Hardware Implementation . 33
3.3.1 The Sampling Engine . 33
3.3.2 The Regression Engine . 33
3.3.3 The Hardware Overhead . 35
3.4 Summary of the OLM . 37

viii

4. THE REGRESSION-BASED ALGORITHM TO PRIORITIZE THREADS 39
4.1 The Three-Module Design . 40
4.1.1 The Inherited Engines . 41
4.1.2 The Prioritization Engine . 42
4.2 Summary of the Hardware Overhead . 42
4.3 Experimental Methodology . 43
4.3.1 The Architectural Simulators . 44
4.3.2 The Workload Organization . 45
4.3.3 The Performance Measurement . 46
4.4 Experimental Results . 47
4.5 Implementation Details . 48
4.5.1 Performance Achievement . 50
4.5.2 Prediction Expectation of RAPT . 55
4.6 Sensitivity Analysis . 57
4.6.1 The Comparison between the RAPT and the RAPTn 57
4.6.2 The Algorithmic Configurations . 58
4.6.3 The Cache Configurations . 60
4.7 Summary of the RAPT . 63

5. THE HARDWARE-ASSISTED SCHEDULING POLICY 65
5.1 Static Mix-Scheduling . 66
5.1.1 Experimental Methodology . 67
5.2 Dynamic Mix-Scheduling . 70
5.2.1 The sMIX and the dMIX . 70
5.2.2 Throughput of the dMIX . 72
5.3 The Phase Triggered Scheduling Policy 73
5.3.1 The Sample Module . 74
5.3.2 The Model Module . 75
5.3.3 The Phase Module . 76
5.3.4 The Pattern Module . 77
5.3.5 Performance Discussions . 80
5.4 Scalability in the HASP . 86
5.4.1 Increasing Capacity . 86
5.4.2 Compromise to Scalability . 87
5.4.3 More Designs in the HASP . 89
5.4.4 Scheduling in Larger Systems . 89
5.5 Summary of the HASP . 94

6. THE ADAPTIVE THREAD MANAGEMENT SCHEME 95
6.1 Assembly of the ATMS . 96
6.1.1 Synchronization of the RAPT and the HASP 96
6.1.2 Summary of the ATMS . 98
6.2 Performance Achievement . 100

ix

7. CONCLUSION AND FUTURE WORK 106
7.1 The Problems and Solutions . 106
7.2 The Proposed Policies . 107
7.2.1 Adaptability . 108
7.2.2 Integration . 109
7.2.3 Hardware Effectiveness . 110
7.2.4 Coordinated Hardware and Software 110
7.3 Future Work . 111

BIBLIOGRAPHY . 113

VITA . 125

x

LIST OF TABLES

TABLE PAGE

3.1 Architecture units in Regression engine 34

3.2 Storage for OLM . 35

3.3 Latency in Regression engine . 37

4.1 Total RAPT overhead . 43

4.2 The SPEC CPU2000 benchmarks employed 46

4.3 The baseline parameters . 49

4.4 The workloads in simulation . 49

4.5 The Average Variances of the IPCs . 54

4.6 The cache configurations . 61

5.1 Threads scheduling in the Mix-Scheduling 67

5.2 Thread scheduling in the Mono-Scheduling 68

5.3 The objective in the dMIX . 71

5.4 The workloads in the dMIX . 72

5.5 The storage for the HASP . 75

5.6 The adopted overheads in the HASP . 81

5.7 More workloads in the simulation . 88

5.8 Four derivatives of the HASP . 90

6.1 ATMS overhead . 99

xi

LIST OF FIGURES

FIGURE PAGE

2.1 An MMMP Example . 9

2.2 The Horizontal and Vertical waste . 10

3.1 The Online Linear Model of cache misses 31

4.1 The RAPT Model . 41

4.2 The overall RAPT performance . 50

4.3 The Two-threaded RAPT . 51

4.4 The Four-threaded RAPT . 53

4.5 The Six-threaded RAPT . 54

4.6 The Prediction Expectation . 56

4.7 The Difference between the RAPT and the RAPTn 59

4.8 Performance of the RAPT with varying parameters 61

4.9 Different performances in different configurations 62

5.1 Improvement in the sMIX over the Mono 69

5.2 Performance of the dMIX . 74

5.3 The model indicates phase changes . 77

5.4 The HASP Model . 80

5.5 Performance of the dynamic scheduling policies 83

5.6 Delta defines overhead . 85

5.7 Scalable evaluation in the HASP . 91

5.8 Performance of HASP in larger systems 92

6.1 The ATMS assignment . 99

6.2 The ATMS architecture . 100

6.3 Performance of the ATMS in a small system 104

6.4 Performance of the ATMS in a large system 105

xii

LIST OF ACRONYMS

The Average Baseline Weighted IPC abwIPC

The Adaptive Thread Management Scheme ATMS

The Normalized Average IPC avgIPC

Blended BD

Computation Intensive CI

Cycle Per Instruction CPI

The Data Gating policy DG

The Dynamic Scheduling Policy dMIX

The Data Cache Warn policy DWarn

The Scheduling Evaluation Overhead EO

First Come First Serve FCFS

Front Side Bus FSB

The Hardware Assisted Scheduling Policy HASP

Instruction Level Parallelism ILP

Instruction Per Cycle IPC

Instruction Set Architecture ISA

Job Level Parallelism JLP

Last Level Cache LLC

Long-Latency Load LLL

Memory Intensive MI

The Microprocessor without Interlocked Pipeline Stages MIPS

The Static Mix-Scheduling Policy sMIX

Multicore Multithreaded MicroProcessor MMMP

Memory Management Unit MMU

The Model construction Overhead MO

xiii

The Mono-Scheduling Policy Mono

Misses Per Kilo Instructions MPKI

Misses Per Million Instructions MPMI

Multicore Single-threaded MicroProcessor MSMP

The Online Linear Model OLM

The Ordinary Least Square Regression OLS

Operating System OS

The Phase detection Overhead PO

Prediction Expectation PE

Program Counter PC

The Regression-based Algorithm to Prioritize Threads RAPT

Reduced Instruction Set Computing RISC

Re-Order Buffer ROB

Single-core Multithreaded MicroProcessor SMMP

Simultaneous Multithreading SMT

The Sampling Overhead SO

The Sampling Period SP

Single-core Single-threaded MicroProcessor SSMP

Standard Deviation StDev

Thread Level Parallelism TLP

The Thread migration Overhead TO

Windows Size WS

xiv

CHAPTER 1

INTRODUCTION

High performance is greatly pursued in the microprocessor design and nowadays

parallelism plays an essential role. The Multicore Multithreaded MicroProcessor

(MMMP) employs different levels of parallelism to generate more throughput. Via

implementing multiple cores in a processor, the Thread-Level Parallelism (TLP) is

well utilized [1]. Further in the same core, the implementation of multiple threads

is able to maximize on-chip parallelism, which is especially true for the Simultane-

ous Multithreading (SMT) architectures [2]. The SMT is defined as fully shared

execution resources by several concurrently running threads in the same core, such

that both TLP and Instruction-Level Parallelism (ILP) are utilized [3]. However,

“Memory Wall” issues [4] still exit in such architectures, and may introduce great

impacts on thread performance and system throughput. Moreover, due to the com-

plexity of resource allocation and the variation in workload behaviors, it becomes

more difficult to manage the shared resources in the MMMP. Thus more efforts, even

innovative approaches, are required to manage the MMMP for better utilization of

the resources and thus higher performance.

1.1 The Motivation

The MMMP increases the complexity in resource distribution, and thus the diffi-

culty in resource management. In particular, there are two opposite scenarios in

distributing the on-chip resources in the MMMP: isolation and unification. On one

hand, since several physical cores are implemented on the chip, the resources are

isolated within different cores. Although it is used to explore the TLP, it makes a

thread unable to access the resource in other cores. This issue is especially undesired

1

when certain resources are idle in one core, but highly utilized in another core. It

reduces the probability to schedule in a nature or heuristic way, such that resources

are utilized comprehensively. On the other hand, threads in the same core live on

the domestic resources jointly. As a result, the thread behavior is not independent

any more, but rather has universal impacts on domestic threads and even threads

in other cores. Thread performance may be degraded because of severe competition

for the same resource, as well as inappropriate resource allocation, e.g., ignorance of

threads’ resource demands. Therefore, it requires well-defined management scheme

in the complex architecture to optimally utilize the hardware resources [2].

The complexity in hardware is not the only motivation, but workload variation

also prompts a novel design. The phase behavior has been studied by dozens of

researchers, which indicates workload behavior is somewhere between chaotic and

periodic [5]. Phases exist in most workloads with granularity from thousands of

instructions to millions of instructions. Within a phase, workload may exhibit sim-

ilar or stable behaviors, with respect to retired instructions, memory accesses and

resource demands. There are a few decent designs that explore phase behaviors for

better system performance, but most of them result from a fixed doctrine or a uni-

versal assumption. In order to better make use of certainty in the phase behaviors,

we advocate monitoring phase changes in a more active way, such that the system

resources are allocated adaptively in observance of the varying demands.

1.2 Scope of the Study

Among different levels of resource management schemes, this study is focused on

two: the hardware scheduling policy that is executed at the architectural level,

and the software scheduling policy that usually happens at the Operating System

(OS) level. Hardware scheduling policies take the responsibility to manage the

2

fully shared execution resource within a core, while their approaches may involve

prioritization at the fetch stage based on memory accesses and thread behaviors.

Hence the instruction fetch policy is a critical entry to allocate resources among

simultaneous threads, which exactly belongs to the spectrum of this study. On the

other hand, a fundamental objective of software scheduling policies is to increase

system throughput in high-performance computing, while load balancing and power

and thermal control might also be embedded. This study focuses on higher per-

formance by scheduling, and thus it expects that the proposed design to overcome

the boundary among different cores. In summary, both policies share the similar

objective to better utilize system resources and the effectiveness of their decisions

are highly dependent on workload behaviors. However, they may have the followed

dissimilarities:

• Target: A software scheduling policy mainly manages threads across multiple

cores while a hardware scheduling policy adjusts threads and their instructions

in the same core;

• Granularity: A software scheduling policy’s decisions are usually valid for

millions of CPU cycles while a hardware scheduling policy may evaluate every

clock cycle;

• Accessibility: A software scheduling policy is designed from a top-down view

over multiple cores while a hardware scheduling policy is often embedded in

computer architecture within every core.

Therefore, the two scheduling policies are not mutually exclusive, but rather have

the potential to form a symbiotic relationship. In such a relationship, they are

expected to work collaboratively to overcome the natural gap between hardware

and software for optimal resource allocation.

3

Consequently, this study proposes an Adaptive Thread Management Scheme

(ATMS) in the MMMP, and the merit lies in integration and adaptability. The

integration refers to the active collaboration between hardware (the architectural

level) and software (the OS level). It includes, first of all, the mutually beneficial

relationship between the OS and the computer architecture. The software scheduling

policy provides the architectural level with a proper working environment based on

universal hardware resources and thread demands. Meanwhile, the thread demands

are collected and partially analyzed at the architectural level and passed to the

OS level for even better scheduling. Secondly, it also refers to the cooperation to

reinforce management goals at different levels. The software scheduling policy is able

to utilize multiple cores to explore TLP for better performance, while it relies on the

hardware scheduling policy to further maximize TLP and ILP. The SMT scheduling

policy continues the management scheme to fully utilize the shared resource at the

pipeline level.

On the other hand, in account for the variation in thread behavior, adaptabil-

ity is explored through constructing the online model without a priori knowledge,

such that the ATMS is capable of accessing the critical demands for better resource

allocation, in spite of the varying thread behaviors. As they change, the proposed

scheme samples the new phases and the periodic information is extracted mathemat-

ically. Therefore, the varying behaviors along the execution of a certain workload

and various behaviors among different workloads are better summarized to guide

both hardware and software scheduling policies. As a result, adaptability is reached

in the proposed design.

4

1.3 Significance of the Study

The MMMP is widely adopted as a critical trend in the design of the next-generation

microprocessor. There have been some initial products in the commercial market

already, including the Intel R© CoreTMprocessor family [6, 7], the IBM R© Power7 [8]

and the Intel R© XeonTM[9]. Even though such designs are able to achieve higher

performance than previous generations, their resource efficiency might not be op-

timized until well-designed scheduling policy is implemented [3]. It means there

is more difficulty and thus larger potential for better utilization of the hardware

resources in the MMMP. Consequently, the proposed scheme makes the MMMP

fully utilize the existing hardware resources, and adaptively distribute the shared

resources according to the thread demands. Hence, the contributions of this research

fall into four aspects:

1. Constructed the online linear model to estimate threads’ resource demand for

the architectural level and the OS level with no a priori knowledge;

2. Prioritized the threads proactively in a core such that the shared resources in

the SMT core were utilized efficiently;

3. Scheduled threads adaptively according to their resource usage in a sustainable

approach;

4. Integrated the hardware and software scheduling policies to further fulfill the

responsibility of resource management.

As far as the overall system performance is concerned, the proposed scheme

will optimize the resource allocation in the MMMP. As mentioned above, both

isolation and unification exist in resource distribution in the MMMP. The ATMS

takes into consideration the overall hardware resources and thread demands, such

5

that the thread scheduling is optimized by dynamic manipulation. Though the

software scheduling policy is at the OS level, the resource demands are collected and

processed directly at the architectural level, which provides the software part with

better observation. Furthermore, scalability is a critical challenge as the number

of cores and threads increases, so the OS scheduling policy has to transmit partial

management goals to the architectural level. In such a case, the ATMS strives to use

multiple levels of efforts to achieve the management objective in a complex hardware

environment. As a result, the hardware and software scheduling policies work jointly

as the ATMS exploits both TLP and ILP for optimal system performance.

From the perspective of the threads, they are more likely to obtain the demanded

resources and to be less affected by neighbor threads in the complicated environ-

ment. In the MMMP, the resources are isolated in different cores, meaning there

are merely limited resources shared by domestic threads in a single core. When the

proposed design pairs threads that demand different resources in the core, the con-

tention for the same resource is minimized. Hence they are better satisfied by the

limited resource budget through the proposed scheme. Furthermore, the threads

sharing pipeline resources are less affected by Long-Latency Loads (LLL). When

some threads suffer from the LLL, other threads are able to send more instructions

to utilize the shared execution resources, which has minimal impact on the waiting

threads.

1.4 The Dissertation Organization

The background information has been introduced in this chapter to show the moti-

vation and contribution of this study in an intuitive tone. In Chapter 2, theoretical

perspective is taken to examine the related research. It first introduces the hard-

6

ware architecture that the ATMS will be implemented in, and then reviews existing

scheduling policies in the SMT environment and in the multicore environment.

The ATMS is introduced by addressing three technical topics in Chapters 3, 4

and 5, respectively:

1. Online Linear Model (OLM): It is constructed during execution and up-

dated continuously, such that it ensures adaptability of the proposed scheme.

2. Regression-based Algorithm to Prioritize Threads (RAPT): The hard-

ware scheduling policy utilizes the OLM at the architectural level to predict

future thread demands in prioritizing simultaneous threads.

3. Hardware-assisted Scheduling Policy (HASP): The software scheduling

policy explores adaptability in the OLM through pairing threads dynamically

across multiple cores at the OS level.

After the hardware and software scheduling policies, the aggregation of different

components is proposed in Chapter 6. Their performance, i.e., system throughput

and average thread performance, is presented with appropriate overheads integrated,

such that the proposed designs are validated comprehensively. Eventually, Chapter

7 concludes this dissertation and recommends some interesting future work.

7

CHAPTER 2

THEORETICAL PERSPECTIVE AND LITERATURE REVIEW

The related studies are reviewed comprehensively in this chapter. There are several

theoretical aspects that should be clarified before a new scheme is proposed:

1. Architectural development of the MMMP

2. Multithreaded scheduling policies

3. Multicore scheduling policies

4. The phase behavior

The first topic in Chapter 2.1 is the hardware architecture that this study is focused

on, while Chapter 2.2 and 2.3 belong to hardware and software levels respectively.

You will find they are usually designed separately by other researchers, but will be

collaborating closely in the proposed design, which is the major innovation of this

study. Chapter 2.4 is about the resource demands of the workloads.

2.1 Hardware Architecture of the MMMP

The MMMP is composed of two architectural designs: the multicore architecture

and the multithreaded architecture. The former one designs several physical cores

on the same chip, such that threads in different cores can explore TLP greatly.

The latter one employs the Thread Context (TC) to implement logical cores in

the same physical core. They share most execution resources in the same core to

maximize the parallelism on the chip. An example of studied two-core four-threaded

microprocessor is shown in Figure 2.1.

8

Figure 2.1: An example of two-core four-threaded microprocessor

2.1.1 The SMT Architecture

Furthermore, the SMT was first proposed as a multi-streamed superscalar processor

by Yamamoto et al. [10]. The authors validated the idea mainly via mathematical

analysis, though system performance was obtained from emulation. They did not

compare the proposed design with other similar architectures, but rather focused

on the difference between the simulated results and the predicted results. Tullsen

et al. [11] proposed the architecture named SMT, in which several threads compete

for each of the issue slots in each cycle. The difference was studied among the SMT,

fine-grain multithreaded, single-issue and dual-issue designs. In general, the multi-

threaded architecture is able to minimize the vertical waste, while the SMT further

reduces the horizontal waste in microprocessors [12]. Assuming two simultaneous

threads T0 and T1 are implemented in the core, the example of minimized horizon-

9

tal and vertical waste from the single-threaded architecture to the SMT architecture

is shown in Figure 2.2.

Figure 2.2: Minimization of the horizontal and vertical waste by the SMT

Given an SMT core that is able to fetch instructions from multiple threads and

its critical ability to issue and execute instructions from multiple threads at ev-

ery clock cycle [13, 2], the computer architecture requires a policy that defines the

fetched sources. Practically, the policy is noted as an instruction fetch policy, which

concludes the priorities of domestic threads in the fetch stage for the fetch engine.

It is of great importance to the performance of the SMT core, because it defines

the instructions that utilize the shared resources in the pipeline. Therefore, it is

expected to allocate the shared resources in the SMT core to those instructions and

threads that have the ability to better utilize them, such that the system through-

put is maximized and so is the overall performance. As a result, instruction fetch

10

policies are widely studied as a convenient and effective scheduling policy in the

SMT environment, which will be the focus at the hardware level in this study.

2.1.2 The Multicore Architecture

The multicore architecture is mainly focused on Job-Level Parallelism (JLP) and

TLP via executing several threads in different cores on the same chip [14]. Its design

comes with two flavors: the heterogeneous architecture and the homogeneous archi-

tecture. There are several different cores on the chip in a heterogeneous design. For

example, in IBM R© Cell Broadband EngineTM[15], the threads are processed by one

Power Processing Element (PPE) and then distributed to several Synergistic Pro-

cessing Elements (SPE). The performance improvement may be achieved when the

parallel threads are executed by multiple SPEs, while sequential threads by the the

PPE running at a higher frequency [1]. On the other hand, a unique example of the

homogeneous multicore microprocessor is the Intel R© Single Chip Cloud Computer

[16], on which 48 identical cores are implemented. It does not employ a separate

core to manage the threads but may rely on the multicore scheduling policy in the

OS to fully utilize the shared resources in cores.

Considering multiple cores on a chip, the resources are isolated among different

cores. Without a thread management scheme, threads are able to access merely

resources within the same core. Meanwhile, the threads in a core jointly share the

local resources, such that the utilization of the resources are defined by the thread

scheduling. Some resources may be highly demanded in a core, while rarely used

in another core. From the perspective of threads, their resource demands could

not be met because of the resource isolation, even though there are in total enough

hardware resources on the chip. As a result, a multicore scheduling policy is needed

11

to manage the threads across different cores, and it ought to take into consideration

the resource unification by the SMT architecture as well.

2.2 Scheduling in the SMT Architecture

The instruction fetch policy was originally set as Round-Robin by Yamamoto et

al. [10], meaning all threads were fetched alternatively. In order to improve the

performance of the SMT architectures, Tullsen et al. [17] proposed the ICOUNT

to assign the priority according to the in-flight instructions. It assumed that the

threads with fewer instructions in front-end stages in the pipeline were able to retire

more instructions than other threads. As to the system throughput, those threads

were expected to committee more instructions in the future and thus were favored

in the fetch stage. However, it was argued that the ICOUNT might attach too much

importance to high throughput thread, and Tullsen et al. realized that the Long-

Latency Load (LLL) was the major obstacle to full utilization of the shared resources

[17]. As a result, the LLL will be explained in Chapter 2.2.1, and then the hardware

scheduling policies that were related to the LLL will be discussed. After that, the

policies based on machine learning will be reviewed as well. Moreover, some other

policies were proposed for parallel workloads, which have their own characteristics

compared to multiprogramming workloads.

2.2.1 The Long-Latency Load

The LLL refers to a miss in the last level cache (LLC), and is caused by the “Memory

Wall” [18]. LLC misses lead a thread to wait for the data from lower memory

hierarchy, which costs much more time than most operations in the pipeline and

data from caches. Empirically the latency is increased from several CPU cycles for

the L1 cache to hundreds of CPU cycles for main memory. Due to dependence among

12

instructions, the thread suffering from the LLL will eventually stall. Consequently,

it denies the instruction fetch policies that have biased favor on high-throughput

threads, because of the “Memory Wall” and limit ILP [19]. Moreover, the dependent

instructions are still floating in the pipeline, occupying the shared resources such

as ReOrder Buffer (ROB) and Instruction Queue (IQ). These resources are limited

in the SMT architecture and may be demanded by other threads for immediate

advancement. As a result, most SMT scheduling policies after the ICOUNT are

related to the LLL issue.

2.2.2 Instruction Fetch Policies for the LLC

Given the speed of the memory system develops slower than that of processors,

it is less likely that this issue can be solved before long [20]. Therefore, several

instruction fetch polices were proposed to deal with the LLL in the SMT.

The Stall and the Flush [21] were both based on the LLL, i.e., L2 cache misses,

which were recognized by the system some time after a load. The Stall policy

stopped the thread experiencing any L2 cache miss from further fetching, because

such a thread was less likely to use more resources efficiently. Nevertheless, the

resources being occupied by such a thread could not be released until the data come

back. More aggressively than the Stall, the Flush expelled the instructions from such

thread to release the occupied resources. Hence, those resources would be available

for other threads. It ensured the utilization of shared resources, but required extra

overhead for flushing and re-fetching. The essential difference between the Stall

and the Flush was whether to release the occupied resources or not. Actually they

might lead to different performance depending on the resource budget in the SMT.

Consequently, Cazorla et al. [22] proposed to improve the Stall and the Flush, such

that at least one thread was active in the pipeline. In particular, the oldest stalled

13

thread was resumed when the final active thread was suspended due to a new LLC

miss. They further proposed the Flush++ to enjoy the advantages of both the

Stall and the Flush. The Flush++ executed the improved Stall when the system

resource was relatively enough, i.e., there were up to four threads in the processor,

while followed the improved Flush when the resources were limited, i.e., more than

four threads.

2.2.3 Proactive Instruction Fetch Policies

Considering it may be late to act upon a LLC miss, some other instruction fetch

policies would rather depend on a L1 cache miss, such that they would respond to

the LLL in advance. They were expected to minimize the inefficient occupancy on

the shared resources. El-Moursy et al. [23] proposed the Data Miss Gating (DG)

to observe the L1 cache miss, and stopped a thread from fetching when it had n

outstanding L1 cache misses. Although they studied several values, n = 1 has been

widely discussed. It resulted in an instruction fetch policy that suspended a thread

when there was unsolved L1 cache miss associated with it, which was obviously

different from previous work.

Actually, the overhead here to stop a thread with any outstanding L1 cache miss

was still high, because the basic concept of the SMT was to utilize more instructions

from different threads. In the DG, it might happen that most threads were stopped,

such that a lot of resources were idle due to lack of instructions. Therefore, Cazorla

et al. [24] proposed the Data Cache Warn (DWarn) to adjust the priority without

stalling. The DWarn was also based on L1 cache misses, but it reduced the threads’

priority with unsolved L1 cache misses in the fetch stage. Consequently, such threads

were fetched when other threads without any unsolved L1 cache miss could not

satisfy the fetch width. The DWarn strived to keep the fetch width as full as

14

possible, such that the shared resources were utilized by more instructions. Overall,

it generated more system throughput than other instruction fetch polices according

to their study. In summary, the proactive instruction fetch policies relied on the

relationship between L1 and L2 data misses, but there is rarely a precise description

about it. Given the execution phases in workloads behaviors, a better observation on

the relationship between L1 and L2 data misses, and thus the workload behaviors,

would benefit the instruction fetch policies in the STM architectures.

2.2.4 More SMT Scheduling Policies

Furthermore, several studies explored more design spaces in the architectural level

as well as in the software level. They were not typical instruction fetch policies,

and usually involved the OS in algorithmic computation. Therefore, they might

face challenges: high overhead and low adaptability. The overhead is mainly intro-

duced by submitting information to the OS, interrupting the OS and calculating

algorithmic parameters; while the disadvantage in adaptability is due to the fail-

ure to consider execution phases. Consequently, this study ought to target at an

instruction fetch policy that is equipped with low overhead and high adaptability.

Cazorla et al. [24] proposed to collect the information of registers and classify

instructions with respect to integer, floating-point and load/store units, such that

the resource usage was summarized. They assumed the threads without any out-

standing L1 cache miss hardly needed any memory accessing resources, while those

experiencing L1 cache misses could not perform better even if they were provided

with extra computation resources. Therefore, threads fell into different groups with

pre-defined resource quotas and fetch throttling was employed to enforce such quo-

tas. On the other hand, Wang et al. [25] evaluated thread efficiency via monitoring

resource entries and committed instructions. They introduced the Committed In-

15

struction Per Resource Entry (CIPRE) to indicate the resource usage efficiency.

Consequently, the threads that were capable of retiring more instructions with less

resource entries were favored by the system, and it would fetch more instructions

from them to improve the overall resource efficiency and thus system throughput,

at the expense of hardware counters and the CIPRE computation by the OS.

Choi et al. [26] proposed to achieve the optimal performance via Hill-climbing.

The system estimated the impacts of different resource distributions via actually

executing them for one epoch. The best observation was employed for future epochs

and gradually the optimal resource distribution was realized in the SMT environ-

ment. Obviously this scheduling policy introduced considerable hardware overhead

in monitoring resource and evaluating performance in the OS.

Recently, as in-order execution is employed again by some modern processors,

e.g., the Single Chip Cloud Computer by Intel R© [16], research on the combination

of in-order and out-of-order execution was done by Wang et al. [27]. They selected

the dependent instructions of a cache miss and arranged them in an individual

queue, which was closely related to the instruction queue. When the data came

back and such instructions were ready, they were executed in-order in the pipeline.

This design reduced instruction window occupancy rate and could be implemented

together with other fetch policies.

2.2.5 SMT Scheduling for Parallel Programmes

Originally the multithreaded workloads used by Tullsen et al. were composed of

multiple independent threads, e.g., benchmarks from SPEC95, which we call multi-

programming. The communication among threads increases rapidly when parallel

programmes are employed e.g., Splash [28], SPECjbb [29] and RUBiS [30]. Some

scheduling efforts were finished at the granularity of instructions, and they are ad-

16

dressed here. Later contexts will discuss about the multicore scheduling policies for

parallel programmes.

Long et al. [31] proposed to detect the Single Program Multiple Data (SPMD)

portion in the benchmark, such that it requires only one instruction fetch for different

threads. If the identical instructions required the same input, the execution was

limited to one time while the results were duplicated to different threads. This design

utilized preliminary analysis for less work in fetching and execution. Meanwhile,

Cheng et al. [32] proposed to arrange memory accessing instructions according

to the system capability. They justified the thread resource demands via Misses

Per Kilo Instructions (MPKI). Assuming redundant memory accesses at the same

time were not efficient, the system tried to schedule threads such that memory

accesses were under a threshold. The threshold was called Memory Task Limit in

the system, which was managed to achieve better performance. Bhattacharjee et al.

[33] investigated thread criticality by the weighted summation of L1 and L2 misses,

such that future thread behaviors were predicted based on the history information.

The voltage and frequency were scaled in accordance with the thread criticality

predictor (TCP), such that the power consumption is reduced, instead of improved

system throughput.

Similarly in other designs about the parallel programmes in the multicore archi-

tecture, e.g., [34, 35, 36, 37, 38, 39, 40], there seemed to be more potential due to

more communications among threads than a single program. It easily overwhelms

the cost to migrate threads across different cores, such that improvement is virtu-

ally deterministic for parallel programmes [37]. However, to find out the critical

sections in parallel programmes, a priori knowledge is sometime required, e.g., [34],

which reduced the adaptability greatly. Some other designs, e.g., [36, 37, 38, 39],

were highly dependent on history information, and failed to adopt a statistical view

17

about workload behaviors. Moreover, Kokku et al. [35] and Cai et al. [40] mainly

targeted at less power consumption by network processors.

In summary, they all agreed that the critical sections ought to be recognized

and improved in the scheduling policy. Moreover, reducing the communication time

within parallel programmes was convenient for performance improvement, especially

when compilers were employed for a priori knowledge, e.g., [41, 31, 40]. However,

possible contribution from the instruction fetch policy was underestimated, and the

mutual impacts among different programmes, similar to the inter-thread interference

for multi-programming workloads, were not addressed well.

2.3 Multicore Scheduling in the OS

There are many OS scheduling policies proposed for parallel architectures, and the

majority of them reside in the OS at the software level. The underlying hard-

ware architecture may be either homogeneous or heterogeneous, but they are not

mutually exclusive, because homogenous cores exist partially in a heterogeneous ar-

chitecture. For example, IBM R© Cell Broadband EngineTM[15] has identical SPEs.

Consequently, the research on homogeneous architectures in this study is eligible for

both areas. Furthermore, parallel architectures are extensively employed in clusters

or cloud computing. They might not be exactly the same as a Chip MultiProcessor

(CMP), in terms of more traffic through I/O interfaces and network communica-

tions, but their results are valuable in designing a multicore scheduling policy in the

OS. In other words, the proposed schemes will be easily converted to a scheduling

policy for cloud computing.

18

2.3.1 Homogeneous Microprocessors

The multicore scheduling policies are widely studied to pursue various goals, and

high performance is a major one. Especially in the MMMP, the resources are dis-

tributed across different cores, so the way in which the threads are scheduled defines

how the resources are utilized [2].

In the environment of the Single-core Multithreaded Microprocessor (SMMP)

with the SMT, Snavely et al. [42] proposed the symbiotic scheduling policy to mix

jobs with different priorities together, such that the system throughput was increased

due to multithreading and co-scheduling. Furthermore, scheduling based on cache

usage in the Multicore Single-threaded Microprocessor (MSMP) was studied in [43,

44, 45]. They modified the scheduling policy in the Linux kernel, and the cache

usage was balanced among private caches of different cores. However, they did not

discuss the unique characteristic of the MMMP with the SMT, that potential for

better performance could be explored through fully utilizing the execution resources

by several concurrent threads.

Zhuravlev et al. [46] concluded that the dominant factor in the MMMP is the

contention for resource lower than LLCs, e.g., the DRAM controller, the Front Side

Bus (FSB) and prefetch requests. It was found that better performance could be

achieved by pairing threads with different demands for such resources [47], com-

pared to scheduling threads with similar demands to the same core. More system

throughput was generated by the proposed scheduling policy, but it did not con-

duct real-time migration, so the policy was a static dispatching policy with a priori

knowledge. Radojkovic et al. executed a large quantity of task assignments among

all possible combinations, such that the best observed one was statistically within

the top performance group [48]. Their design spent 2 hours on executing every 5000

assignments, and every new set of threads needed such a process. Other studies such

19

as [49, 50, 46] conducted online manipulation for better scheduling, but fixed epochs

with respect to CPU cycles, e.g., 100 million CPU cycles, were employed in their

designs. It could not adapt to the various workload behaviors during execution.

2.3.2 Heterogenous Microprocessors

Aside from scheduling within the homogeneous domain, the coordination throughout

multiple heterogenous cores also helps improve system performance. Fundamentally,

the Amdahl’s Law [51] pointed out two sources for performance improvement: the

serial part and the parallel part. Hence, a more powerful core, e.g., higher frequency

and voltage, can be used to execute the serial part, while exploring TLP by several

less power cores [1, 52, 53, 54] for the parallel part. This approach is able to speedup

both parts, such that the overall system throughput is increased. However, they did

not address the resource sharing in the heterogeneous cores, so they would further

need the scheduling policies for homogeneous cores to manage multiple identical

cores. Furthermore, the scenario to identify the serial part and parallel part is a

great challenge. Eyerman et al. [55, 56] proposed an off-line analysis tool to examine

the Cycle Per Instruction (CPI) breakdowns for the parallel applications, and then

use the results to estimate threads’ demands during execution. In order to work in

the multithreaded environment, a thread was sampled when it was running alone

and then comprehensively running with other threads, such that a better scheduling

was concluded [57]. Even though they specified hardware counters for their design,

the execution of a thread alone and with other threads should not be a prerequisite

for a design.

As a result, even though we see a convenient objective in the scheduling policy in

heterogeneous microprocessors, the necessary information is rarely available during

20

execution. In order to develop an adaptive scheduling policy, a better observation

on the various workloads behaviors remains an open question.

2.3.3 Allocation of Memory Resources

Some researchers proposed to manage the shared resources by coordinating accesses

to the memory hierarchy, especially the cache [58, 59, 60, 61]. They spent many ef-

forts on monitoring memory accesses by different threads, so the scalability of their

designs might not be promising in larger systems. Moreover, because real mem-

ory accesses happen when an instruction is ready to retire, such approaches could

not take the action proactively enough to prevent the inefficient occupancy on the

shared resource in the pipeline. Studies such as [62, 63] proposed complex algorithm

to allocate the cache resources to different threads, but their biased scheduling in the

cache system may affect user experience and thus reduce Quality of Service (QoS).

It was studied by Liu et al. [2] that to evenly divide the cache among correspond-

ing threads results in superior performance given its relatively low complexity and

overhead.

2.3.4 Scheduling Policies in Cluster

Even though they do not share exactly the same architecture with multicore mi-

croprocessors, scheduling policies in many-node clusters are meaningful and useful.

They shared the similar concept with our study that resource demands ought to be

considered in scheduling. Weinberg et al. [64] proposed the symbiotic space-sharing

in a many-node supercomputer. They argued that a single job on the node could

not fully utilize the resources, so it was better in terms of resource efficiency to

co-schedule some other jobs. As a result, they utilized the idle resources in nodes

via executing background jobs at a lower priority than the primary jobs in the same

21

node. Sodan et al. [65] proposed to schedule jobs according to their resource de-

mands, which are CPU-bound, disk-bound and network-bound. Even though they

mentioned the SMT architecture, in their cluster each node was equipped with in-

dependent hierarchical memory system. The difference between the MMMP and

their cluster is the resources lower than the LLC, such as the DRAM controller, the

FSB and prefecth requests. Moreover, Frachtenberg et al. [66] proposed to classify

processes into several categories with descending priorities for scheduling in a many-

node system. The categorization was in accordance with thread’s synchronization

requirement and CPU utilization. Although they provided some hints to classify

the processes dynamically, their criteria were mainly based on the CPU time and

communication time in the network, which was not applied to the shared resources

in the SMT.

2.3.5 Thread Replacement

Compared to a static dispatching policy, a dynamic multicore scheduling policy

that moves threads across different domains is better at ensuring the scheduling

objective [46]. Therefore, most multicore scheduling policies, such as [42, 43, 46,

64, 65], involved dynamic thread migration. Essentially, the total improvement

to the system is the difference between the suspending time during migration and

the reduced execution time by migrating, so the overhead introduced by migrating

threads plays a critical role in defining the final performance.

The overhead conceptually results from rescheduling the process to another hard-

ware thread on another core, manipulating the page table and warming up a new

cache in a homogeneous multicore architecture [67]. If there is a heterogeneous

architecture, binary translation and state transformation are further required to ex-

ecute the task in a new Instruction Set Architecture (ISA) [68]. There are many

22

researchers who conducted the studies on easier and more efficient migrations, such

as [68, 69, 70, 71], but they were focused on the heterogeneous architectures, and

were unable to reduce the overhead to completely zero.

Moreover, DeVuyst et al. [68] found that the unit overhead of migration is highly

dependent on the underlying architecture, the characteristic of the victim threads

and the difference between the source and the destined environment. Consequently,

we would like to emphasize the followed points in this study:

1. This study is focused on higher performance at a given overhead, while it does

not fall into our scope to reduce the unit overhead.

2. This study is based on the homogeneous architectures and thus the overhead

is due to rescheduling and warming up.

3. The performance of the proposed schemes will be discussed with the overhead

properly considered.

2.4 The Shared Resources and Workload Behaviors

In the followed context, we will first of all examine the shared resources. There

have been several approaches to monitor the resources, such that the utilization was

summarized. The second part is about the workload behaviors. The related studies

have spent great efforts on analyzing the demands in different phases along execu-

tion, and among different workloads. The results paly an essential role in scheduling

instructions and thread in the multithreaded architecture and the multicore archi-

tecture.

23

2.4.1 The Shared Resources

It provides better abstraction to divide the shared resources in the MMMP into

two categories: computation resources and memory accessing resources [66]. The

former one involves execution resources in the pipeline as well as the high-level

caches. State-of-the-art design of fast cache is at similar speed with the CPU clock,

meaning its latency is around 1 – 2 CPU cycles. Therefore, the accesses to high-

level cache belong to usage of computation resources. On the other hand, lower

memory hierarchical systems are memory accessing resources, which include low-

level memory hierarchy, the DRAM controller, the FSB and prefetch requests. In

quantity, Zhu et al. [72] provided the Cycle Per Instruction (CPI) portions to

express the usage. The overall CPI was decomposed into computing, L1, L2, L3

and main memory accessing. The sum of the first two parameters suggested the

usage of computation resources, while others were considered as memory accessing

resources. Sharing the same concept, the cache miss rate was used as the metric by

Cazorla et al. [73].

2.4.2 Demands along Execution

From the perspective of threads, their resource demands can be described in such a

categorization. Take cache miss rate as an example [73]: the threads with miss rate

no less than 1% are considered to mainly utilize memory accessing resources, such

that their performance is Memory Intensive (MI). On the contrary, the threads with

cache miss rate less than 1% belong to the Computation Intensive (CI) category.

This categorization is widely used in constructing multi-programming workloads.

Depending on the benchmark category, a multiprogramming workload may be pure,

i.e., CI or MI, or blended, i.e., BD. The similar result is available from summarizing

misses over retired instructions, e.g., Misses Per Kilo (1024) Instructions (MPKI)

24

in [32, 74, 45] and Misses Per Million (1024× 1024) Instructions (MPMI). It follows

the natural pace of the thread, rather than any specific execution environment.

Thus, the MPKI or the MPMI are better at telling the thread resource demands

in spite of the architectural specification. Considering execution phases [5], thread

demands in terms of the MPKI or the MPMI partially shows phase behaviors along

the execution of a single workload.

Duesterwald et al. studied the prediction along the execution of a single thread.

Their designs were focused on the correlation among different performance metrics,

e.g., IPC and cache misses, and had no consideration for inter-thread interference

[75]. Other categorizations were proposed as Colors [76] and Animals [77], which had

more categories for the threads and thus more information was represented by the

categorization. Furthermore, there were designs focused on the demands of threads

[43, 77, 78, 79, 80], but their designs required a priori knowledge, and thus were

not qualified for a real-time approach. For example, Chen et al. [80] involved deep

profiling in the source code, searching for instructional dependency, data locality,

instruction mixture and control flows.

2.4.3 Demands among Workloads

Pereira et al. [81] proposed to dynamically identify phase based on traces of the

workloads. It obviously required analysis before the workloads were actually exe-

cuted on the machine. Inspired by the Branch Predictor in the computer architec-

ture, other studies [82, 83, 84] employed history patterns at different levels, e.g.,

global or local, to predict the execution phases. The basic concept of their ap-

proaches was not adaptive enough for the execution phases, because the answer of

a basic predictor is simply True or False. In order to further understand the work-

load demands, their approaches were associated with more hardware resources, such

25

as phase information tables, though its consistency with the prediction remains an

open question.

The term Critical Section is mostly applied to parallel programmes, which is

the serial part in the execution and defines the total execution time. Hollingworth

[85] was the first to insert segments to the source code and monitor the program

during execution to identify the critical sections. Recent studies such as Age-based

approach [86] and Bottleneck Identification and Scheduling (BIS) [87] were also

assisted by the source code, the library and/or the compiler in differentiating the

applications. Even though prediction is proposed by Fields et al. [88, 89], their

predictor was Program Counter(PC)-indexed and trace-based. Some other studies,

e.g., [90, 91], obtained the representative information of the underlying architecture,

and then estimated the performance of the applications. Their employment of the

a priori knowledge hardly helps apply their designs to various environments.

Ebrahimi et al. [41] identified the serial parts in the parallel applications, and

increased their priorities in the memory scheduler, such that the application moves

faster to the parallel parts that may be executed by multiple threads and/or cores.

Cai et al. [40] relied on the hint instructions inserted into the source code, and

thus the execution of a loop would trigger new scheduling decisions. However, they

attached little importance to inter-program interference, which is more universal in

both parallel workloads and multi-programmed workloads.

Therefore, inter-thread interference further increases the difficulty in utilizing

execution phases for scheduling policies. Most of current studies rely on analysis in

advance in order to predict during the actual execution. When a priori knowledge

is not available, the prediction is shrunk to PC-based, so that the detailed charac-

teristics of the execution phases cannot be easily unveiled. On the other hand, the

focus on the critical section in parallel programmes underestimates the importance

26

of inter-thread interference, such that an adaptive and practical approach to identify

execution phases is high desired.

2.5 Summary of the Related Work

In this chapter, we first of all examined the underling hardware in this study, which

was the multicore multithreaded architecture. It introduced two distinguished im-

pacts on the resources in an MMMP: unification and isolation. It meant the re-

sources were shared by domestic threads within a core, but isolated among different

cores. Meanwhile, the varying behavior of various workloads were spotted by a lot

of researchers, and most of them would like to better use the execution phases to

guide the scheduling in the MMMP. As a result, we recognized two major problems

in the studied area: complexity in resource allocation and variation in workload

behaviors.

In order to provide a solution to the problems, integration and adaptability will

be proposed in this study. In this chapter, we have reviewed many related studies,

and to our best knowledge, their designs were separated by the hardware and the

software, or there has been no collaborative design. On the other hand, the existing

scenarios to identify execution phases were either associated with off-line analysis,

or weak at detailed information of the coming phases. Therefore, the proposed

policies in this study will be an integrated approach, that employs both hardware

and software efforts to cope with the complicated resource allocation in the MMMP;

while they are also adaptive in identifying execution phases and telling more details

about the phases.

27

CHAPTER 3

THE ONLINE LINEAR MODEL

Let us start the design from observing workloads of the MMMP. In general, phase

behaviors are seen in most workloads at different granularity, but the repeated be-

havior is somewhere between ideally periodic and totally chaotic. Memory accesses

are major phase behaviors and they show the essential demands of thread in schedul-

ing policies [5, 46]. In practice, it is motivated by the observation in [47], in which a

correlation coefficient of −0.4492 was obtained between L1 and L2 cache miss rates.

Such coefficient hints an interesting relationship between L1 and L2 cache misses,

which is neither linear, e.g., coefficient = 1, nor unrelated, e.g., coefficient = 0. It

summons further investigation for better description, especially from a statistical

perspective.

As a result, the Online Linear Model (OLM) regression is proposed in this chap-

ter in an effort to better investigate into the relationship and the phase behavior.

The proposed design relies on the Ordinary Least Square (OLS) Regression to con-

struct the online model. Though there are a few mathematical approaches available

in constructing models, efficiency is not guaranteed empirically for a sophisticated

implementation. Hence, the estimation is started from the OLS regression in Chap-

ter 3.1. Furthermore, the OLM is designed in Chapter 3.2, and its hardware engines

are built to accommodate its features in Chapter 3.3. Optimization is conducted

to reduce latency and complexity, while other overheads, such as power, area and

storage, are considered as well. Summary of the OLM is written in Chapter 3.4.

28

3.1 The OLS Regression

Given that a random variable Y is a function depending only on another random

variable X and their relationship is linear, they can be expressed as:

Y = βX + α + ε (3.1)

where ε is Gaussian distribution with zero mean and variance σ2, while β and α

can be evaluated as β̂ and α̂ through the regression [92]. Therefore β̂ and α̂ are

evaluated:

β̂ = [
n∑

i=1

(xi − x̄)(yi − ȳ)][
n∑

i=1

(xi − x̄)2]−1 (3.2)

α̂ = ȳ − β̂x̄ (3.3)

where x̄ and ȳ are the mean values for X and Y respectively, xi is for misses in the

L1 DCache, yi refers to the data requests that miss in L2 cache and n stands for the

number of samples. The OLS regression is the best among all unbiased estimators

in the sense of having the smallest variance [92, 93].

Furthermore, X and Y are both one-dimension matrices, or vectors, so the simple

regression can be used to calculate the estimators:

β̂ =
Lxy

Lxx

= [
n∑

i=1

xiyi − nx̄ȳ][
n∑

i=1

x2
i − nx̄2]−1 (3.4)

And α̂ still uses Equation 3.3. ε is omitted from our model to achieve moderate

simplicity in computation. The beauty of simple regression is to update factors

accumulatively, rather than to re-calculate them completely, and thus it is feasible

to reduce the hardware overhead greatly.

In reality, perfect linear relationship hardly exists, especially between L1 and L2

cache misses along execution, so significance test on the linear relationship may be

used to determine the accuracy of the regression. The total sum of squares (ST)

29

is composed of the residual sum of squares (Se) and the regression sum of squares

(SR). As a result, the difference between the estimated values (Ŷ) and the original

values (Y) is decomposed into two parts: one resulting from the linear relationship,

i.e., SR, and one caused by other factors, i.e., Se.

F =
SR

Se/(n− 2)
=

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ŷi)2/(n− 2)
(3.5)

Given the hypothesis that there exists linear relationship, when the variation mainly

results from the linear relationship, rather than other factors, the linearity hypoth-

esis is true. Hence, the F value of the regression is used to test the significance

level of the model quantitatively [92]. With the required significance level ρ, the

above hypothesis holds when F ≫ Fρ(1, n− 2) is true, where Fρ(1, n− 2) is the F

distribution upon ρ, and n is the number of elements in Y .

3.2 Construction of the OLM

Two modules are needed to construct OLM:

1. Sampling: It collects cache misses information and interrupts other modules

upon newly completed samples.

2. Regression: It performs an iteration of regression as soon as new samples are

available. It also predicts according to the updated sample and the current

model.

3.2.1 The Sampling Module

L1 and L2 data misses are collected in this module, while samples are formed for

every Sampling Period (SP). The model is focused on the relationship between

L1 DCache misses and the consequential L2 cache misses. Even if the L2 cache is

30

Figure 3.1: The Online Linear Model of cache misses

unified, we track the data request misses only. Here the Misses Per Kilo Instructions

(MPKI) [32, 74] or the MPMI might be employed, where the SP is 1 kilo (1024) or

1 million (10242) instructions. We feel it is a better metric than miss rate in terms

of quantitatively describing the pressure on the cache system caused by the thread.

Two SPEC CPU2000 benchmarks [94]: bzip2 and art, are taken as an example.

Their MPKIs are collected in some arbitrary segments, which are shown in Figure

3.1.

3.2.2 The Regression Module

Given X as the L1 Data Cache (DCache) MPKI and Y as the data MPKI in L2

cache, the OLS regression is conducted using Equations 3.2 and 3.3 in this module.

The number of samples employed in regression is denoted as the Window Size (WS)

in this study, and {SP, WS} will be used to specify OLM’s configuration. Prediction

31

is fulfilled using newly updated L1 data misses and estimators:

ŷ = β̂x+ α̂ (3.6)

where β̂ and α̂ are estimators from the OLS regression, x is the current L1 MPKI,

while ŷ is the predicted value, i.e., the L2 MPKI. Let’s stick to the example in

Figure 3.1, in which 32 samples are recorded in a row, i.e., {1K, 32}. Consequently,

there are three groups of consecutive samples, which are shown as the dots in Figure

3.1.

First of all, it is valid to employ the OLS regression for linear model, because they

are proven by the significance test, i.e., F test based on Equation 3.5. In detail,

the art model has Fart = 405.31, while bzip2 models have Fbzip2[0−31] = 179.09

and Fbzip2[32−63] = 179.36, which are all greatly larger than the corresponding F

distribution, i.e., F0.01(1, 30) = 7.56.

Furthermore, the linear model should be able to cope with diverse behaviors

from different threads and respond to the phase changes within a single thread

along execution as well. In this example, bzip2 and art have different linear models,

which are extracted by the OLS regression with different scopes and offsets. This

shows one model does not fit all threads, and hence each thread needs to be evaluated

separately. Furthermore, because bzip2 changes its linear model in the second group

of samples, i.e., from the dotted to the dashed, its L2 MPKI would be different along

execution, even if the L1 MPKI remain the same. This varying relationship in a

single thread indicates that using a fixed model for a single thread along execution is

still not good enough, but an on-line model that could self-adapt in real-time would

be more favorable.

32

3.3 Hardware Implementation

In order to construct the OLM, two hardware engines are designed in computer

architecture for their corresponding modules: Sampling engine and Regression

engine. The engines are dedicated to the OLM and thus do not interfere with

regular thread execution, i.e., usually do not increase execution time of workloads.

Nevertheless, the native regression is computation intensive by nature and thus not

efficient, so better designs are explored through simple regression and some other

optimizing methods. They lead to two different designs: the OLMn based on the

native OLS regression and the optimized solution OLM. Such optimization will be

inherited by other components as the default policy, while those policies without

optimization, i.e., based on the native algorithm, are referred by the same postfix

“n”, e.g., the OLMn. Considering the overwhelming overhead in the OLMn, we

would focus on the optimized version, while details of native implementation are

omitted.

3.3.1 The Sampling Engine

The Sampling engine would be similar to that in the DWarn [24], which collects

the cache information constantly. There are thread-specific counters for each of the

two-level caches, which are increased by one as a new miss happens within an SP but

are reset at the beginning of a new SP. And updating or resetting is supposed to take

no more than one CPU cycle. Nevertheless, because the engine is an independent

hardware, its latency has no interference with downstream functions.

3.3.2 The Regression Engine

The Regression engine is responsible for some logic operations, so logic units are

designed for our proposed scheme in Table 3.1, where the initial “i” defines an integer

33

Table 3.1: Architecture units in Regression engine

Unit iALU iShftr. iMul. fALU fMul. fDiv.
OLM 1 1 1 N/A N/A N/A
OLMn 2 2 2 1 1 1
Purpose ± × & ÷ × ± × ÷

unit and “f” is for FP units. Control logic and data path are omitted here, because

they are highly dependent on the customized implementations, e.g., FPGA. The

updating of regression engine and the linear model is triggered by a new sample,

which is served on a First-Come First-Serve (FCFS) basis. Time to read samples

from counters and registers does not incur extra computation latency here because it

happens in parallel with the regression, so the Regression engine contributes most

latency of the OLM construction. Consequently, our efforts to OLM’s hardware will

be focused on the Regression engine.

An essential advantage of the OLM over the OLMn is to employ simple regres-

sion, i.e., Equations 3.3 and 3.4, so optimization in the Regression engine targets

at: cumulative updating and simpler computing.

Firstly in our optimization, updating in the OLM is cumulative to reduce overall

overhead. Given Equation 3.4, its numerator and denominator are both enlarged to

ensure precision in integer division:

β̂ =
n× Lxy

n× Lxx

= [n
n∑

i=1

xiyi − (nx̄)(nȳ)][n
n∑

i=1

x2
i − (nx̄)(nx̄)]−1 (3.7)

Assuming the current samples for X and Y are from 0 to 31, and now we have new

samples x32 and y32:

n(
∑

xiyi)
′ = n(

∑
xiyi − x0 × y0 + x32 × y32) (3.8)

(nx̄′)(nȳ′) = (
∑

x)′(
∑

y)′ = [
∑

x− x0 + x32]× [
∑

y − y0 + y32] (3.9)

n(
∑

x2
i)

′ = n(
∑

x2
i − x0 × x0 + x32 × x32) (3.10)

34

(nx̄)′(nx̄)′ = (
∑

x)′(
∑

x)′ = [
∑

x− x0 + x32]× [
∑

x− x0 + x32] (3.11)

where prime, e.g., (x̄)′, refers to the newly updated value and n is the WS in our

scheme. Because we choose a WS as multiple of 2, multiplication and division

involving n is actually shifting.

Secondly, the division in Equation 3.4 is replaced by shifting and rounding, such

that there is neither FP data nor division in OLM:

Lxy[i]← Lxy[i]× 1024 {Empirically magnify to keep details}

if 2m+1 > Lxx ≥ 2m {Round to the nearest multiple of 2} then

if (2m+1 − Lxx) ≥ (Lxx − 2m) then

Lxx ← 2m

else

Lxx ← 2m+1

end if

end if

β̂ ← Lxy

Lxx

{Shift right by m or m+ 1 to replace the division}

ȳ ← ȳ × 1024 {Align ȳ with magnified β̂}

α̂← ȳ − β̂ × x̄

3.3.3 The Hardware Overhead

Table 3.2: Storage for OLM

Unit Counter Register Register
OLM 16×TN 16×WS×TN 32×2×TN
OLMn 20×TN 20×WS×TN 32×2×TN

Purpose MPKI Samples β̂ and α̂

Since we are monitoring the MPKI in the Sampling engine, 10-bit counters

would be enough to store samples. However, as the MPKI for most benchmarks

35

studied are under 150 [74], we employ 8-bit saturating counters to reduce the hard-

ware overhead even further. Similarly when the MPMI is employed, 20 bits are

certainly enough, while 16-bit saturating counters are implemented as a balanced

design. The counters and registers in the Sampling engine are specified in Table

3.2, where TN means the number of threads. In the table, the capacity of counters

and registers is evaluated by the number of bits.

After the optimization, latency in Regression engine is 79 cycles. The latency

is not dependent on the WS any more due to cumulative updating, except for a

WS that is not power of 2. Those irregular WSs would raise the total time by

involving real multiplication instead of shifting, but it can easily be avoided at the

design stage, e.g., it will not hurt to choose 32 rather than 29 or 37 for the WS.

The detailed breakdown is shown in the left part of Table 3.3, with the latency for

architecture units from Hennessy et al. [18]. Although it is greatly improved to

26% of the OLMn, shown in the right part of Table 3.3, we ought to account for the

latency as realistically as possible. We assume that new model cannot be available

until one SP after the update of a new sample. Empirically, a single thread normally

has a sustained Instruction Per Cycle (IPC) around 1. In this case, with the SP set

to 1024, it actually sets aside more than 1024 cycles in order for the computation

associated with the regression to complete, which to our knowledge is adequate.

In addition to the storage and latency, power and area should be considered in

the hardware design. Therefore, this study need to further examine these two in

overhead evaluation, and it will follow the approach in similar hardware-based ma-

chine learning algorithm [95]: to scale existing units to our specific design. Hickmann

et al. [96] implemented a 64-bit fixed-point multiplier at 110nm CMOS technology,

which area was estimated as 0.65mm2. Linearly scaled down to 32-bit and 65nm, our

integer multiplier’s area is 0.113mm2. Given the integer multiplier in the Regres-

36

Table 3.3: Latency in Regression engine

OLM OLMn
Factor Cycles Factor Cycles
n
∑

xiyi 17 x̄ & ȳ 4
(nx̄)(nȳ) 11 (xi − x̄) & (yi − ȳ) 32
n
∑

x2
i 17 (xi − x̄)(yi − ȳ) –

(nx̄)(nx̄) 7 & (xi − x̄)(xi − x̄) 224

β̂ 9 β̂ 24
α̂ 10 α̂ 11

Prediction 10 Prediction 11
Total 79 Total 306

sion engine is the most complex unit, the OLM’s functional units are implemented

at most in an area of 0.339mm2, which is 0.17% of a 200 mm2 chip. On the other

hand, given the FPU in IBM Power6 spends 0.56W/mm2 at 1.1V and 4GHz [97].

The functional units in the Regression engine would consume up to 0.19W at full

utilization. Please note above estimation applies the data of the multiplier to the

integer ALU and the shifter and ignores our design of updating upon interruption.

Hence, compared with some similar hardware schemes and other software schemes,

the OLM is certainly promising in terms of hardware overhead even though it is

regression-based.

3.4 Summary of the OLM

In this chapter, we have traveled through the setup of the OLM, which is embedded

in the architecture level to analyze workload behaviors. Linearity is the target of the

model because of the natural of the regression algorithm, such that L1 and L2 data

misses of every workload are sampled and then used to compute the estimators, i.e.,

β̂ and α̂. They work together to describe the linear relationship between L1 and L2

data misses, and cope with the varying and various phase behaviors. In particular,

the model is able to provide two sets of information to other parts in the system:

37

the estimators and the predicted LLL, i.e., ŷ. The detailed role that OLM plays in

the whole design will be addressed clearly in later chapters.

38

CHAPTER 4

THE REGRESSION-BASED ALGORITHM TO PRIORITIZE THREADS

In the previous chapter, the OLS regression is employed to build the OLM, which

describes the relationship of misses within two-level caches adaptively. Via the linear

model, the system is able to observe and predict the thread behavior, which reflects

its resource demands as well. Resource management in both multicore and multi-

threaded environment will benefit from such a model. Considering the hardware

scheduling policies in the SMT architecture as discussed in Chapter 2, some of them

take the action at the occurrence of L1 data misses, expecting it should be better at

controlling the LLL in the pipeline, but they do not have an accurate observation on

the relationship between L1 data misses and the LLL. Other resource management

schemes employ OS in conducting their algorithms, such that they introduce great

overhead to the system by interrupting OS and transmitting data. The goal of this

chapter is to utilize the statistical model from the OLM to guide the instruction

fetch policy in the SMT architecture, while hardware overhead is minimized to its

best efforts.

As a result, the Regression-based Algorithm to Prioritize Threads (RAPT) is

proposed, in an effort to manage the shared execution resources for minimal con-

tention and optimal performance. In Chapter 4.1, three modules will be explained

for the RAPT, which take the responsibility including building up models and pri-

oritizing multiple threads. Hardware engines are implemented for the modules, and

two of them are exactly inherited from the OLM to explore its merits. Overview of

the RAPT’s overheads, including those introduced by the extra engine, are summa-

rized in Chapter 4.2. The basic experimental methodology is explained in Chapter

4.3. Performance is compared to other similar instruction fetch policy to validate

39

RAPT in Chapter 4.5.1, while the sensitivity analysis is done in Chapter 4.6. Brief

summary is drawn at the end of this chapter.

4.1 The Three-Module Design

To explore the critical and variant relationship between L1 and L2 data misses

for better resource management in SMT processors, RAPT is proposed with three

modules:

• Sampling: L1 and L2 data misses, e.g., MPKI, are collected for regression.

• Regression: The linear model is constructed by the OLS regression, such

that future L2 MPKI are predicted according to current L1 data misses.

• Prioritization: Higher priority is assigned to the thread(s) with smaller pre-

dicted L2 MPKI.

Then, the priority is submitted to fetch engine, which is responsible for really fetch-

ing instructions in the SMT architecture. The first two modules actually set up a

linear model for every thread, and they coincide the two modules in the OLM. In

another word, RAPT utilizes the adaptive models through embedding the OLM in

its design. Hence, the Sampling and Regression modules in RAPT will follow

the explanation in Chapter 3.3.1 and Chapter 3.3.2, respectively.

Regarding Prioritization module, it grants priority to the domestic threads in

accordance with their predicted L2 MPKI from the previous module. In particular,

threads with more L2 MPKI are assigned low priority in the engine, such that their

instructions have lower probability to enter the pipeline. The motivation here is to

reduce the occurrence of the LLL in the pipeline, which occupy the shared resources

inefficiently. This module only defines the priority among different threads for fetch-

ing, and is widely adopted by researchers, e.g., [17, 21, 22, 23], but it is emphasized

40

here that interpolation is employed instead of complete sorting. Upstream modules

will notify the changed values, which are then put into the priority queue after sev-

eral rounds of comparison. In such a case, the complexity of this module is up to

O(n), and number of threads is quite limited in most studies. Therefore, latency of

the Prioritization module is not the major concern in this design.

4.1.1 The Inherited Engines

According to the three modules, RAPT scheme physically is composed of three

engines: Sampling, Regression and Prioritization. RAPT is proposed closely

connected with the OLM, and thus the first two engines are actually inherited from

the OLM in Chapter 3, where revision is not required in RAPT. Similarly, the

RAPT and the RAPTn both exist in the study due to the OLM and the OLMn,

while RAPT is certainly the focus. Therefore, only the Prioritization engine need

be further designed here.

Figure 4.1: Designed hardware engines for RAPT. The Sampling (Sam.) engines are
duplicated to every thread while two others are associated to a core. The Regression
(Reg.) engine is shared by threads due to asynchronous updating, while the unique
Prioritization (Pri.) engine concludes priorities for all domestic threads.

41

4.1.2 The Prioritization Engine

The Prioritization engine is a new engine, which takes results from Regression

engine and then compares them for the priority at the fetch stage. The basic logic

unit needed for interpolation is a comparator, which is able to indicate the larger

input between two. It is an integer unit with width of 32 bits, such that the updated

predicted values are compared with an sorted queue for prioritization.

In summary, a two-core four-threaded microprocessor is amended to illustrate

the overview of the proposed architecture in Figure 4.1. Every thread is equipped

with a Sampling engine, while the Regression and Prioritization engines are

shared by all domestic threads. We do not claim fetch logic as the major contri-

bution of our research, which has already been studied in other fetch policies, e.g.,

[11, 22]. The scenario in the fetch engine is to fetch from higher priority to lower

priority. It increases expected instructions in the pipeline and ensures the utilization

of hardware resources. Regarding the fairness in the RAPT, as more instructions

are fetched from the threads with higher priority, their real-time L1 data misses may

increase. As a result, their predicted L2 MPKI may grow even if there is no change

in their estimators. Therefore, it is less likely for them to stick to higher priority in

future fetching, and thus the fairness among threads is ensured.

4.2 Summary of the Hardware Overhead

The total overhead of the RAPT is specified here as an independent scheme. Al-

though it integrates some engines from the OLM, their overheads belong to the

RAPT and should be considered in evaluating RAPT’s performance. This action

will validate the RAPT as a completed and reusable scheme for SMT professors,

and the overheads are listed in Table 4.1, where TN is the number of threads. To

42

Table 4.1: Total RAPT overhead
Engine Item Specification

Sampling Counter 2× 16× TN bits
Register 2× 16×WS × TN bits

Regression ALU Integer
Shifter Integer

Multiplier Integer
Power 0.190w
Area 0.339mm2

Register 2× 32× TN bits
Latency 79 cycles/model

Prioritization Comparator Integer
Power 0.063w
Area 0.113mm2

Latency O(TN)

our knowledge, we believe such a table reflects RAPT’s theoretical overhead com-

prehensively, but data path is not reflected in the table. We acknowledge that data

path consumes power, occupies area and needs intermediate registers, but such eval-

uation has covered the dominant overheads so far. Nevertheless it requires further

implementation, e.g., on FPGA, to unveil more details, which might not fall into

the scope of this study.

4.3 Experimental Methodology

In order to examine the performance of the proposed schemes, an architectural

simulator Super ESCalar (SESC) [98] is employed to implement the design. It is

able to provide various information for our analysis, and we are mainly focused

on the system throughout. In this chapter, the simulator and the performance

measurement metrics are explained, which are valid for the rest of the manuscript,

unless specified.

43

4.3.1 The Architectural Simulators

The motivation of a simulator is to reduce the manufacturing cost and speed up the

related research. Fundamentally, architectural simulators are software executed on

a hardware platform. They emulate the functionality of the proposed architecture

through executing some representative workloads and provide various information

from the simulation. The major goal of a cycle-accurate simulator is to summarize

the execution time of the simulated workloads in terms of CPU cycles, while other

data, such as cache misses and branch prediction, might be available as well. In

particular, the SESC simulator is an open-source software in C++ and runs in a

Unix/Linux environment, which certainly belongs to such a category [99].

Overall, the SESC simulator has two parts: an emulator and a timing model:

the instructions from the workloads are executed by the emulator to generate the

necessary patterns of the program, and then the generated patterns are submitted to

the timing model for timing evaluation. The emulator in the SESC is MINT [100],

which is an emulator for the Microprocessor without Interlocked Pipeline Stages

(MIPS) Instruction Set Architecture (ISA)[4]. Hence, the basic architecture in the

SESC is essentially derived from the Reduced Instruction Set Computing (RISC)

[101, 102]. The SESC simulator follows a five-stage-design: Fetch, Decode, Issue,

Execution and Retirement. The timing model is composed of virtually a lot of

parameters in the architecture. For example, the latencies to different levels in the

memory hierarchy. As a result, the target architecture is implemented by modifying

the emulator and the parameters in the timing model, such that the impacts could

be shown in the final report.

Given there had been many architectural simulators, the motivation to develop

the SESC simulator was to implement an understandable environment for the paral-

lel architectures [103]. It attached much importance to fidelity, performance, modi-

44

fiability and feasibility. Together they address these topics: the difference between

simulation and real implementation, the speed of simulation, the difficulty to revise

the architecture and the capability to accommodate a proposed design. Hence it pro-

vides a good support for most stakeholders in architectural research. Furthermore,

the superscalar out-of-order pipeline is well implemented in the SESC simulator,

which is critical in recent development and might be less emphasized by some other

simulators. Such a capability matches our focus on the multicore multithreaded

architectures, so the SESC simulator is a good fit for the research in this study.

4.3.2 The Workload Organization

Given the simulator is considered virtually as the proposed microprocessor, the ba-

sic way to validate it is to run some workloads and to compare its performance

with reference architectures. It is not practical to run the full combinations work-

loads, and thus benchmarks are provided to represent the dominant situation in

the expected environment [4]. There are usually two ways to organize the multi-

threaded workloads: parallel workloads and multi-programming workloads. Parallel

workloads, such as Splash [28], SPECjbb [29] and RUBiS [30], are able to gener-

ate multiple threads with communications among the threads. Multi-programming

workloads are composed of independent threads from different benchmarks, so there

is no inter-thread synchronization in these workloads. The inter-thread communi-

cations may offer great potential for performance improvement, since the latency

could be greatly reduced by clustering those threads.

Our work, however, is focused on the multi-programming workloads, which face

more challenging issues in speeding up the whole system compared to the parallel

workloads. As a result, workloads employed in this work are of multiple SPEC

CPU2000 [94] benchmarks, e.g., 2, 4, 6 and 8, and they are listed in Table 4.2.

45

Their type may be either Floating Point (FP) or Integer (INT), and their category

are specified by Cazorla et al. in [22] based on their miss ratios in the LLC. In

particular, the benchmarks with a miss ratio less than 1% are considered as CI,

while other benchmarks are MI. Due to the “Memory Wall” issue, CI benchmarks

might have more throughput than MI, but there is limited ILP in the long run [19].

Given the utilization of multiple levels of parallelism in the MMMP, it is against

such a nature to have any biased preference solely defined by statistical throughput.

In other words, a natively biased approach will not lead to satisfactory performance

[17].

Table 4.2: The SPEC CPU2000 benchmarks employed

Benchmark Type Category Benchmark Type Category
301.apsi FP CI 164.gzip INT CI
179.art FP MI 181.mcf INT MI
256.bzip2 INT CI 197.parser INT MI
186.crafty INT CI 171.swim FP MI
183.equake FP MI 300.twolf INT MI
176.gcc INT CI 168.wupwise FP CI

4.3.3 The Performance Measurement

The average Instruction Per Cycle (avgIPC) used in [94] is one critical method

to measure the overall system throughput, which is defined as the total number of

instructions executed over the time elapsed. The formula for avgIPC is:

avgIPC =
1

N

N∑

i=1

IPCi (4.1)

where i is thread identity and N is the number of threads.

Nevertheless, in justifying the performance of the new architecture for a multipro-

gramming workload, Sazeides et al. [104] proposed the Average Baseline Weighted

46

IPC (abwIPC). It is calculated as the average thread improvement in the new ar-

chitecture over the old architecture, which is a good reference to observe the average

thread performance. The formula of abwIPC is:

abwIPC =
1

N

N∑

i=1

IPCnew,i

IPCbaseline,i

(4.2)

where i is thread identity and N is the number of threads as well. Moreover, due

to its consideration of the improvement in every thread, abwIPC is good at telling

a biased approach in the scheduling policy. Assuming there is a scheduling that

achieves better performance by favoring high-throughput threads, the performance

of other threads are harmed, so such a scheme cannot show promising result in terms

of abwIPC.

Therefore, fairness of the proposed scheme is well indicated by such two metrics.

Although it is a common practice in architectural studies to look at the variance

among the threads, the average variances of thread IPCs will be presented for further

reference. As a result, these metrics will be used to measure the performance of the

studied policies in the followed contexts.

4.4 Experimental Results

We would like to present readers the experimental results as soon as a design is

finished, i.e., RAPT and HASP. They will be compared with their peer policies to

show their achievement by performance results. It is a careful approach to examine

them separately, because it will be difficult to find any similar scheme for com-

parison with the ATMS. Hence, the aforementioned simulation methodology and

performance measurement is adopted for the followed analysis.

47

4.5 Implementation Details

RAPT employs the SP = 1024 instructions and the WS = 32 samples, which is

denoted as {1K, 32}. With the configuration in Table 4.3, the architecture now is

augmented with the SMT ability, i.e., two threads, four threads and six threads.

Overall the main memory latency is to model 100 nanoseconds in an experimental

processor running at 5GHz minus bus latency. The reason that we do not examine

more than six threads is that performance degradation due to severe cache conflicts

may prevent SMT processors from being equipped with a great quantity of threads.

Instead, the SMT may be combined with multicore architectures to achieve less

confliction and better parallelism. This opinion is also well studied in [22, 105, 106].

The multi-programming workloads are listed in Table 4.4. The workloads might

consist of only CI or MI threads, such that they are CI or MI workloads respectively,

while BD workloads have 50% CI threads and 50% MI threads.

The early simulation points are employed [107], and every thread is simulated

for 100 million instructions in the representative regions, which is enough for major

phase shifts at granularity of millions of instructions level [5]. The selected instruc-

tions are considered representative for the whole benchmark, such that the results

would tell the execution of the workloads, no matter the actual duration of the

execution in the future [107, 108]. Hence, it overcomes the limitation of simula-

tion speed in an architectural simulator. The similar simulation methodology, e.g.,

benchmarks, multi-programming workloads and/or representative regions, is also

adopted by other researchers, such as [17, 21, 22, 23, 24, 25, 50].

The ICOUNT [17] policy is used as the baseline scheme. Several other fetch poli-

cies that utilize the cache miss for prioritization and decision-making are employed

for comparison, which include the STALL [21], DG [23] and DWarn [24]. We try

48

Table 4.3: The baseline parameters

Parameter Value
IF/IR Width 8/9
ReOrder Buffer Size 320 entries
Inst. Window 160 INT, 64 FP
Function Unit 3 Ld/St , 5 FP Mul/Div

3 INT Mul/Div
L1 DCache 32KB, 4-way
L1 ICache 32KB, 4-way
L1 Cache Hit 2 cycles
L2 Cache Hit 9 cycles
L2 Cache 512KB, 8-way asso.
Main Memory Hit 469 cycles

Table 4.4: The workloads in simulation
Thread # Cty Benchmark List
two CI gcc, crafty

gzip, bzip2
BD gcc, parser

gzip, twolf
MI parser, twolf

mcf, twolf
Four CI wupwise, apsi, gzip, gcc

gzip, bzip2, crafty, gcc
BD gcc, bzip2, swim, art

gzip, twolf, bzip2, mcf
MI swim, art, equake, mcf

mcf, twolf, equake, parser
Six CI wupwise, apsi, gzip, gcc, crafty, bzip2

BD gzip, wupwise, crafty, mcf, twolf, parser
gcc, bzip2, apsi, swim, art, equake

MI swim, art, equake, mcf, parser, twolf

our best to construct these policies and we believe they provide similar results as

they were originally presented. For example, the STALL in our simulation generates

almost the same performance improvement over the ICOUNT in two-threaded and

four-threaded workloads.

49

4.5.1 Performance Achievement

(a)

(b)

Figure 4.2: Overall performance improvement (a) avgIPC, (b) abwIPC

The overall performance improvement is shown in Figure 4.2. The avgIPC of

other policies are normalized to that of the ICOUNT, such that there are only five

policies shown in the figures. In different configurations, the average results are

presented if there are more than one workload belonging to the same category, i.e.,

CI, BD and MI.

Overall, RAPT improves the performance over the ICOUNT by 28% with respect

to avgIPC and 32% with respect to abwIPC as shown in Figure 4.2(a) and 4.2(b),

which are obviously better than any other polices in the study. This is because

the RAPT takes the correct action with proper timing. It does not follow a fixed

doctrine, but rather extracts the real-time relationship between L1 and L2 MPKI

from a statistical point of view. It then makes decision adaptively. Whenever

50

the thread changes its execution phases, RAPT is able to catch any slight change

and update the model correspondingly. Thus the most suitable decision would be

made properly. As a result of the appropriate prioritization, the RAPT is able to

better reduce inefficient occupancy and contention for the shared resources, and thus

perform better than other policies.

(a)

(b)

Figure 4.3: The performance in two-threaded workloads (a) avgIPC, (b) abwIPC

With the RAPT, the SMT processor will fetch fewer instructions from the thread

with more expected L2 MPKI. Because when a load misses in the L2 cache, the

thread itself can rarely progress anyway. Hence, no noticeable performance reduc-

tion is introduced. Correspondingly, the RAPT assigns higher priority to threads

with less expected L2 MPKI, which are still able to move forward in the processor.

Consequently, the RAPT improves average thread performance greatly. That is why

we observe more improvement in abwIPC than in avgIPC.

51

The RAPT exceeds the STALL by 13.7% in avgIPC and 14.4% in abwIPC

on average. When L2 data miss happens, in the system a lot of shared resources

are occupied by the thread with little throughput. Even though STALL may work

well to prevent that thread from further introducing more LLLs into the system, it

rarely helps current situation. On the contrary, the RAPT acts before the L2 data

miss actually happens by reducing the priority of those threads with more expected

L2 MPKI. Therefore, it is able to minimize their influence in advance, rather than

patch up after it happens.

DG takes action more aggressively than STALL. It gates the thread with un-

solved L1 cache miss. Nevertheless, the models between L1 and L2 MPKI may be

different among threads and along the execution of a single thread, such that gating

in DG might be too aggressive in some cases. Hence, we do not take this approach

when we design RAPT. Instead RAPT adjusts its priority assignment according to

forecast L2 MPKI. As a result, the RAPT outperforms the DG by 14% in terms of

avgIPC, and 17% in terms of abwIPC.

Sharing the same concept that L1 data miss might lead to L2 data miss, the

DWarn and RAPT both take action as L1 data miss happens. the DWarn takes a

heuristic approach, which actually undermines a complicated relationship. RAPT

does not advocate a constant linear model, because applications vary and their

cache behaviors change too. Hence, RAPT sets up the real-time model between

L1 and L2 MPKI adaptively, and obtains the estimated L2 MPKI. Consequently,

the prioritization matches the execution phases better than those based on heuristic

assumption. As a result, the RAPT outperforms the DWarn by 8% in terms of

avgIPC and 11% in terms of abwIPC.

Regarding the performance with different numbers of threads, the RAPT keeps

similar improvement over the ICOUNT as shown in Figure 4.3 – 4.5 for the multi-

52

(a)

(b)

Figure 4.4: The performance in four-threaded workloads (a) avgIPC, (b) abwIPC

programming workloads. It is because the improvement is naturally from the cache

behavior of benchmarks. As long as there exists significant linearity in the cache

behavior, the RAPT is able to build the statistical model adaptively and prioritizes

the threads correspondingly. Moreover, we note that BD workloads provide best

overall results over CI and MI workloads. We assume it is because minimal resource

contention is achieved when there is diversity in terms of resource demands in the

processor [46, 47]. The RAPT is able to coordinate thread execution according to

their resource demands adaptively, such that the shared resources are better utilized

with less contention for them. Nevertheless, in CI and MI workloads, such potential

is relatively small because threads may show similar demands statistically, so RAPT

does not produce more throughput in CI and MI workloads than in BD workloads.

Fairness of the RAPT is validated by its superior abwIPC, which is the average

improvement of performance in the new architecture over the baseline architecture.

53

(a)

(b)

Figure 4.5: The performance in six-threaded workloads (a) avgIPC, (b) abwIPC

We advocate that it suggests a critical aspect of the fairness in performance, which

is the fairness of the improvement. However, regarding the variances of the IPCs, it

is naturally defined by the difference among different threads, i.e., threads may have

differently sustainable pace in the execution. Moreover, it is also closely associated

with avgIPC, meaning a large avgIPC is sometimes accompanied by a large vari-

ance. Even though they are not so indicative as the abwIPC, the average variances

of the IPCs are presented in Table 4.5, where TN is the number of threads.

Table 4.5: The Average Variances of the IPCs

TN ICOUNT Stall DG DWarn RAPT
2 0.00067 0.0070 0.00041 0.028 0.023
4 0.00015 0.00015 0.00019 0.00055 0.0037
6 0.000063 0.0079 0.00023 0.00012 0.0025

54

One interesting phenomenon we observe is that as the number of threads in

the workload increases, the performance of fetch policies based on L1 cache miss

such as the DG and the DWarn get worse even than the STALL for MI workloads.

This is because for the SMT architecture, associated with the high cache access

demand from the MI workload, the ratio of cache conflict increases significantly as

the number of threads increases, especially for the small-size L1 cache. That is why

those fetch policies based on L1 cache miss will not be able to indicate the LLLs as

effectively as in the two-thread workload scenario for MI workloads. On the other

hand, the STALL, which is solely based on L2 cache miss, outperforms them. The

performance of the RAPT is not interfered by the blurred L1 cache misses because

of its adaptive nature and still demonstrates its superiority.

4.5.2 Prediction Expectation of RAPT

In order to examine the linear model in our proposed policy, we collect the Prediction

Expectation (PE) of every thread in execution, which is calculated as predicted L2

MPKI over sampled L2 MPKI.

PE =
ŷ

y
=

β × x+ α

y
(4.3)

To have better observation on the overall situation, we calculate the PE if and

only if there is a new complete sample, instead of in every CPU cycle. Therefore,

given 100 million instructions are simulated, there are approximately 97656 PE

values in record for every thread in every workload. We gather the data specified to

benchmarks, in spite of different workloads, and the average value and the Standard

Deviation (StDev) are calculated. Furthermore, there is also the average PE over

all the benchmarks, shown in Figure 4.6, where the overall StDev is for the mean

values of different benchmarks, rather than the average of all deviations.

55

Figure 4.6: The prediction expectation of the studied benchmarks

On average, benchmarks have the PE = 0.83, while the StDev among the av-

erages of benchmarks is 0.258. Hence, the linearity does exist between L1 and L2

data misses, and is significant enough to support the prioritization in our proposed

policy. Considering the way to calculate PE, the predicted values are mostly smaller

than real sampled values. In our opinion, this trend is helpful in terms of the fair-

ness among multiple threads. This point also explains more improvement in average

thread performance over other studied policies. On the other hand, given the StDev

among benchmarks, different benchmarks may have various confidence levels in their

respective OLS regression models. The OLS regression is of higher confidence at

prediction for some benchmarks, but lower confidence for some others. Regarding

the reason for the observed PE and StDev, we assume they are defined by the mem-

ory accessing patterns in different benchmarks. Meanwhile, the concurrent threads

also affect the model of each other, because they totally share the memory resources

in the the SMT processor. For example, gcc has different PE when executed with

bzip2 and twolf in two-threaded workloads.

56

4.6 Sensitivity Analysis

We first of all compare the RAPT with the RAPTn to see to how much valuable

information we lost in simplifying the implementation. In addition, the sensitivity

analysis is conducted regarding the impacts on RAPT’s performance from different

algorithmic parameters and cache system configurations.

4.6.1 The Comparison between the RAPT and the RAPTn

Generally speaking, RAPT shares the same concept with the RAPTn, but its hard-

ware implementation is designed considering the tradeoff between hardware over-

head and performance. On average, the RAPTn achieves 0.6% more overall sys-

tem throughput, i.e., avgIPC, while 2.2% more average thread improvement, i.e.,

abwIPC, than RAPT. The detailed performance normalized over the ICOUNT

[17] is shown in Figure 4.7. Considering RAPT is able to reduce the architecture

complexity greatly, improve the computation latency to 26% and save power con-

sumption by updating when necessary, RAPT of course has better efficiency than

the RAPTn.

The accuracy of the RAPT is reduced mainly in the division in calculating β̂ and

α̂, which is substituted with rounding and shifting. It may result in less accurate

predicted L2 data misses, and thus the prioritization is not based on the perfect

observation. However, because of the carefully designed approximation process,

essential details are kept in the RAPT, such that the performance reduction is very

mild compared with the RAPTn, and it is still superior with respect to other studied

policies.

On the other hand, it is interesting to see that RAPT does not incur monotoni-

cally performance reduction. Actually it even achieves better results in some work-

loads, e.g., two-threaded MI, four-threaded BD, six-threaded CI and six-threaded

57

MI, in terms of either avgIPC or abwIPC. In this case it proves the assumption

that the relationship between L1 and L2 data misses is quite complicated for a linear

regression. The goal of our proposed policy is to design an indicator of this relation-

ship based on the limited information at hardware level, rather than to describe it

in its completeness, which would require a far more rigorous model with no practical

value in terms of hardware implementability. Our indicative model strives to im-

prove system throughput and efficiency, but might not be able to achieve the same

level of accuracy in every case. Given our approximation process, the significance of

linearity in threads and the variant execution phases [5], it does not surprise us that

sometimes RAPT even outperforms the RAPTn. However, the RAPTn is hardly

able to produce better improvement in both overall system throughput and aver-

age thread improvement, i.e., avgIPC and abwIPC respectively. In summary, the

overall performance achievement is already defined by the OLS regression and the

linearity between L1 and L2 MPKI, and our optimization in the RAPT has better

performance improvement to hardware overhead ratio.

4.6.2 The Algorithmic Configurations

We go through various combinations of the SP and WS using the four-threaded

BD workload composed of gcc, bzip2, swim and art. This workload introduces

mediocre pressure on the system resources, compared to other two-threaded and six-

threaded workloads. And its category of BD leads to a comprehensive test on both

computation resources and memory accessing resources. Meanwhile, it includes both

integer and FP benchmarks to utilize various resources in the processors. Finally, its

performance improvement is moderate among all workloads, suggesting it is a good

indicator to the average situation. We conduct the simulation over 16 configurations

of the SP and WS to observe the system performance. The SP is set as 256, 512,

58

(a)

(b)

Figure 4.7: The Different Performances between the RAPT and the RAPTn (a)
avgIPC, (b) abwIPC

1024 or 2048 instructions, while the WS as 16, 32, 64, 128 samples. The avgIPC

is normalized to the baseline configuration {SP, WS} = {256, 16}, and so for the

abwIPC, which are shown in Figure 4.8.

Regarding the SP, it defines how the history information is sampled along exe-

cution. The SP = 1024 instructions may be a critical threshold in the RAPT. When

the SP ≥ 1024, the performance is improved a little bit from the smaller-SP cases.

When the SP is small, there is limited information covered and linearity might not

be significant enough for a confident model. On the contrary, when samples are

collected over longer period (e.g., more than 1K), variability is minimized, which

leads to better model. Moreover, increasing the size of the SP does not introduce

overhead to our scheme, but rather makes β̂ and α̂ change less frequently. Overall,

we feel it is necessary to set the SP as at least 1024 instructions. Given a certain

59

SP, we would observe the cache behavior through a larger window, i.e., a larger

WS, but the WS does not play a role so important as the SP. The difference among

various WS configurations is around 1% on average, when they have the same SP.

Although there is rarely any monotonic relationship between performance and the

WS, the WS = 32 appears to be the optimal choice across all configurations, given

it generates performance stably better than the baseline configuration in Figure 4.8,

and the larger the WS is, the more overhead there is.

Overall, the product of the SP and the WS means how much history information

that RAPT takes into consideration in the OLS regression. The performance varies

in studied configurations, but the difference is not linearly increasing as the covered

instructions grow. It means the useful information in samples is not necessarily

accumulated and passed to prioritization in proportional to the SP and WS. For

example, when we compare {256, 128}, {512, 64}, {1024, 32}, and {2048, 16}, they

all utilize the information over past 32K instructions for the OLS regression, but

the performance of RAPT varies. Please note that the bottleneck here might not

be only the accuracy of RAPT, but the linearity existing between the L1 and L2

MPKI also plays an essential role. Even though there are phases for applications,

there is hardly any universal period for the phases, meaning a fixed SP and/or WS

might not be suitable for every phase in every application.

4.6.3 The Cache Configurations

In order to explore the sensitivity of our proposed scheme to different cache config-

urations, we studied three parameters, i.e., the L1 DCache size, the L2 cache size

and the L2 cache associativity, with algorithmic parameters set to {1024, 32}. They

are represented by three binary bits, where 0 represents the smaller value employed

in this study and 1 means the larger value as shown in Table 4.6. And the results

60

Table 4.6: The cache configurations

Configuration Number L1 cache L2 cache L2 association
000 16KB 256KB 4-way
001 16KB 256KB 8-way
010 16KB 512KB 4-way
011 16KB 512KB 8-way
100 32KB 256KB 4-way
101 32KB 256KB 8-way
110 32KB 512KB 4-way
111 32KB 512KB 8-way

(a)

(b)

Figure 4.8: Performance of the RAPT with varying {SP, WS} (a) avgIPC, (b)
abwIPC

in terms of avgIPC and abwIPC are shown in Figure 4.9, where the RAPT in 000

configuration are considered as the baseline for themselves respectively.

Overall, more cache resources ensure better performance. Naturally, the cache

system is designed to reduce the average access delay via utilizing the temporal

locality and spatial locality. By implementing more cache resources, the probability

of the LLL is reduced. Consequently, the average load latency is decreased, and

61

(a)

(b)

Figure 4.9: Different performances in different configurations (a) avgIPC, (b)
abwIPC

thus the system resources are utilized more efficiently in the configurations with

more cache resources.

However, RAPT is not highly sensitive to the cache configurations. Even though

the performance changes as above analysis in theory, the difference is relatively

small. Comparing the case 111 with 000, nearly 1% of improvement in both avgIPC

and abwIPC is observed for the RAPT. Other performance improvement over the

baseline configuration is smaller than such data. It could result from three factors:

first of all, our proposed scheme relies on the adaptively built model, which is able to

cope with changes in execution. The linear model strives to handle most variation

actively, so the scheme is robust with respect to the cache configuration. Secondly,

the configuration does not change greatly in such simulation. Although they double

in different cases, the capacity is still around similar level, e.g., a couple of dozen

KB or half MB. Thirdly, the approximation of division and elimination of FP is

more effective than cache configurations in defining the prediction accuracy.

62

4.7 Summary of the RAPT

As the system resources, i.e., computation resources and memory resources are

totally shared by the concurrently running threads in the same core in the SMT

architecture, both parallelism and efficiency are improved significantly. Nevertheless,

resource contention imposes great impacts on system performance and ought to

be managed by hardware scheduling policies well. Most instruction fetch policies

consider long-latency load as a major obstacle towards better performance, and thus

they spend great efforts on alleviating its negative impact on the system. However,

they either are too late to effectively prevent the influence of cache miss, or fail to

precisely describe the relationship between L1 and L2 cache misses, especially as it

changes along the execution.

To explore the critical and variant relationship between L1 and L2 data misses

for better resource management in the SMT processors, we proposed RAPT as a

three-module decision-making scheme:

• Sampling: L1 and L2 data misses, i.e., the MPKI, are collected for regression.

• Regression: The linear model is constructed by the OLS regression, such

that the future L2 MPKI are predicted according to current L1 data misses.

• Prioritization: Higher priority is assigned to the thread(s) with a smaller

predicted L2 MPKI.

Then, the fetch engine fetches according to the priorities from RAPT. Consider-

ing the RAPTn based on the native regression algorithm, i.e., the OLMn, intro-

duces great hardware overhead, we focused our study on optimized implementation

RAPT, and the optimization includes simple regression, cumulative computation,

elimination of FP, approximation of division and updating when necessary. Eventu-

63

ally RAPT introduces overhead, i.e., computation latency, storage space, area and

power, no more than similar hardware-based machine learning schemes.

Because RAPT minimizes the negative effect of LLLs, not only the overall system

throughput but also the average thread improvement were optimized. Especially as

a result of improved resource efficiency, RAPT is able to generate more system

throughput in terms of increased avgIPC. It was better than all other policies in

our study: it outperformed the ICOUNT by 28%, exceeded the STALL by 14%,

the DG by 14%, and the DWarn by 8%. Because the thread with the LLL can

barely move forward while other threads that are able to better utilize the shared

resources can progress, RAPT improved the average thread performance in terms of

abwIPC over the ICOUNT by 32%, over the STALL by 14%, over the DG by 17%

and over the DWarn by 11%. About 1.5% better performance could be achieved by

the RAPTn based on the OLMn, but its overhead is obviously more than RAPT we

were focused on. The sensitivity analysis confirms the configuration {1024, 32} of

RAPT as a balanced one among all 16 configurations considering the performance

difference, hardware overhead and confidence factors. Nevertheless, the RAPT is not

highly sensitive to neither algorithmic configuration nor cache parameters, because

the optimization shadows their impacts partially. Overall, RAPT has an adaptive

nature as phase behaviors vary widely in applications.

64

CHAPTER 5

THE HARDWARE-ASSISTED SCHEDULING POLICY

Along with the argumentation in parallelism on the chip, comes an increase

in the complexity and thus difficulty of hardware resource management. On one

hand, since several physical cores are implemented on the chip, the resources are

isolated between different cores. It makes a thread on one core not able to access

the resources in other cores. This issue is especially undesired when the resource

is idle in one core, but highly demanded in another core. On the other hand,

threads in the same core share the local resources jointly when employing the SMT

architectures [17]. As a result, the thread behavior is not independent any more,

but rather has mutual impact on each other, which we refer to as “inter-thread

interference”. Thread performance will be degraded due to severe competition for

the same resource, as well as inappropriate resource allocation that despises thread’s

demand [47]. Even though we have proposed the hardware scheduling policy RAPT

in previous chapter, the ability to coordinate threads throughout multiple cores to

reduce competition remains blank so far. Therefore, it requires well defined software

scheduling policy in such a complicated architecture in order to optimally utilize the

hardware resources [2].

As discussed in Chapter 2, OS scheduling policies try to pair threads according to

their demands, and the dominant factor impairing the performance of MMMP is the

resources lower than the LLC. Most of the previous studies, however, either do not

consider phase changes at all, or even when they do, they commonly fall into passive

and static approaches. Such approaches may be challenged by the execution phases

[5], where workload demands are strongly correlated with execution phases, rather

than constant or CPU cycles. Such characteristic implies that the thread scheduling

based on resource demands should be synchronized with thread execution phases.

65

As a result, the Hardware Assisted Scheduling Policy (HASP) is proposed in this

chapter, which is supported by the computer architecture, i.e., the OLM, to monitor

phase changes in workloads, and then to schedule threads for a collaborative pattern.

The rest of this chapter is organized as follows: The proposed design is improved

from a static dispatching policy in Chapter 5.1 to a dynamic scheduling policy in

Chapter 5.2. Then it is equipped with the ability to detect phase changes through

the OLM in Chapter 5.3. Scalability is addressed in Chapter 5.4. We will examine

the performance improvement and discuss the evaluated overhead within the relative

chapters. Eventually summary of the HASP is finished in Chapter 5.5.

5.1 Static Mix-Scheduling

We start optimizing thread mapping pattern from introducing a static Mix-Scheduling

policy (sMIX), which defines the scheduling at dispatching stage, and conducts no

manipulation during execution [47]. It is assumed in the MMMP architecture there

are multiple LLC domains and several threads share the same LLC. The basic con-

cept of the sMIX is to distribute LLC misses evenly across different LLC domains,

but it relies on off-line analysis to divide threads to different groups. LLC miss

ratios are obtained ahead of execution, such that benchmarks may be Memory-

Intensive (MI) or Computation-Intensive (CI) as shown in Table 4.2. According

to their categories, benchmarks are sent to a two-core four-threaded MMMP as in

Table 5.1. However, instead of the proposed sMIX, threads with similar demands,

i.e., the same category, may be scheduled to the same core, which forms the Mono-

Scheduling (Mono) policy as shown in Table 5.2.

66

Table 5.1: Threads scheduling in the Mix-Scheduling

Core C0 C1
Thread MI, CI MI, CI
WL1 equake, gzip mcf, gcc
WL2 equake, gzip twolf, gcc
WL3 parser, gzip twolf, gcc
WL4 mcf, gcc parser, gzip
WL5 mcf, gcc twolf, gzip
WL6 equake, bzip2 twolf, gcc
WL7 equake, bzip2 parser, gcc
WL8 equake, gzip mcf, bzip2
WL9 equake, gcc mcf, bzip2
WL10 parser, gzip twolf, bzip2
WL11 mcf, bzip2 twolf, gcc
WL12 mcf, bzip2 parser, gcc
WL13 mcf, bzip2 parser, gzip
WL14 mcf, bzip2 twolf, gzip
WL15 equake, gzip mcf, crafty
WL16 equake, gzip twolf, crafty
WL17 mcf, crafty twolf, gcc
WL18 mcf, crafty parser, gzip
WL19 mcf, crafty twolf, gzip
WL20 parser, gzip twolf, crafty
WL21 equake, gcc mcf, crafty
WL22 mcf, crafty twolf, bzip2
WL23 parser, bzip2 twolf, crafty

5.1.1 Experimental Methodology

The proposed scheduling policies are implemented in the SESC with the similar

configuration in Chapter 4.3. The MMMP now is equipped with two identical cores

on the chip with the two-way SMT for each core. Workloads in Tables 5.1 and

5.2 are simulated for our analysis. The first two benchmarks will be sent to core 0

while the other two to core 1, and every thread will be simulated for 100 million

instructions in the early simulation points [107], The ICOUNT [17] policy is used

as the instruction fetch policy in the SMT environment.

67

Table 5.2: Thread scheduling in the Mono-Scheduling

Core C0 C1
Thread MI, MI CI, CI
WL1 equake, mcf gzip, gcc
WL2 equake, twolf gzip, gcc
WL3 parser, twolf gzip, gcc
WL4 mcf, parser gzip, gcc
WL5 mcf, twolf gzip, gcc
WL6 equake, twolf gcc, bzip2
WL7 equake, parser gcc, bzip2
WL8 equake, mcf gzip, bzip2
WL9 equake, mcf gcc, bzip2
WL10 parser, twolf gzip, bzip2
WL11 mcf, twolf gcc, bzip2
WL12 mcf, parser gcc, bzip2
WL13 mcf, parser gzip, bzip2
WL14 mcf, twolf gzip, bzip2
WL15 equake, mcf gzip, crafty
WL16 equake, twolf gzip, crafty
WL17 mcf, twolf gcc, crafty
WL18 mcf, parser gzip, crafty
WL19 mcf, twolf gzip, crafty
WL20 parser, twolf gzip, crafty
WL21 equake, mcf gcc, crafty
WL22 mcf, twolf crafty, bzip2
WL23 parser, twolf crafty, bzip2

Because the Mono tries to mimic an arbitrary scheduling pattern that is supposed

to lead to the worst performance, it shows the necessity to schedule threads based

on their demands to compare the sMIX with the Mono. The performance is shown

in Figure 5.1, where the baseline is the Mono. As a result, avgIPC increases in the

sMIX by 63% from the Mono, indicating the improved overall system throughput;

and the sMIX further shows 27% growth in terms of abwIPC over the baseline,

expressing the better average thread improvement.

The dominant factor here causing such improvement is the diversity in different

cores, i.e., less inter-thread interference. By paring threads according their cate-

68

(a)

(b)

Figure 5.1: Improvement in the sMIX over the Mono (a) avgIPC, (b) abwIPC

gorization, threads in the same core mostly request different shared resources in

the sMIX. From the perspective of the MMMP, more computation resources and

memory accessing resources are utilized by different threads in the sMIX than in the

Mono. In other words, idle resources are reduced by the sMIX, such that the overall

system throughput is increased. On the other hand, threads experience less con-

tention for the shared resources in the sMIX than in the Mono. Due to the diversity

among domestic threads, it is less likely for them to compete for the same resource,

69

e.g., the MMU, the FSB and prefecth requests. Consequently, inter-thread inter-

ference is minimized by the static dispatching scheduling policy. On the contrary,

the Mono scheduling policy increases the severity of contention among domestic re-

sources by sending threads requesting similar resources to the same core. It explains

the average thread improvement by the sMIX.

The sMIX is a static scheme because once the threads are dispatched, the

scheduling is fixed till completion, so there are two issues unsolved for the sMIX:

accessibility of off-line analysis and phase behaviors. The sMIX is highly dependent

on beforehand analysis, so it cannot be applied to unknown workloads. Meanwhile,

the sMIX is not addressing phase behaviors during execution. The categorization is

only an indicator on average for a thread, while the thread may change its demands

greatly during execution across different phases. It results in the probability that

actual scheduling violates the objective for some time. To address such two issues,

we feel it is necessary to implement a dynamic scheduling policy above the sMIX.

5.2 Dynamic Mix-Scheduling

Based on the sMIX, we convert it to a dynamic scheduling policy, referred as the

dMIX. Since the Mono is discussed conceptually and defeated by the sMIX in the

simulation, the followed context will be focused on the sMIX and later policies

merely.

5.2.1 The sMIX and the dMIX

Clearly the sMIX does not adapt to the phase behavior of the threads and requires

a priori knowledge about the threads. In an effort to improve upon it, we propose

the followed changes:

70

1. Modify the objective to minimize the deviation of LLC misses among different

LLC domains, instead of pairing threads according to pre-defined category.

2. Employ misses over certain amount of instructions instead of miss ratio.

3. Use epochs to conduct online evaluation instead of off-line.

4. Perform runtime migration of threads instead of static mapping pattern.

As a result, the sMIX is converted to the dMIX, a dynamic scheduling policy

driven by CPU epochs. At the end of every epoch, the OS scheduler processes the

sampled misses for every thread, and thus every LLC would have a summation of

MPMI or MPKI of all domestic threads. The dMIX conducts the search to find

out the optimal scheduling, in the sense of having the smallest difference in terms

of total misses across all LLC domains. In other word, the difference, or Standard

Deviation (StDev), of cache misses across LLC domains should be minimized.

For example, assuming there are four threads on two LLC domains, with each

LLC supports two threads. At the end of an epoch, MPMI of all threads are obtained

and evaluated by the OS scheduler. Here arbitrary numbers of MPMI are used for

illustration purpose only, which are shown in Table 5.3. As we can see, there are

three possible scheduling patterns. However, Pattern 2 has the least StDev and thus

it will be the new scheduling decision and the dMIX will perform thread migration

if necessary. If migration is necessary to achieve Pattern 2, threads with less MPKI

or MPMI will be chosen to move. It saves the efforts to warm new caches, and thus

it introduces less disruption to normal thread execution.

Table 5.3: The objective in the dMIX

Core 0 Core 1 StDev
Pattern 0 1, 2 3, 4 2
Pattern 1 1, 3 2, 4 1
Pattern 2 1, 4 2, 3 0

71

5.2.2 Throughput of the dMIX

Here multi-programming workloads in Table 5.4 are following the concept in the

sMIX, i.e., pairing per category. The workloads in Table 5.4 is the dispatching

pattern of the sMIX, and they are simulated here in accordance with the description

in Chapter 5.1.1. In order to obtain experimental results to advance the multicore

scheduling policy, the workloads WL24, WL25 and WL26 are employed to study

the dMIX.

Table 5.4: The workloads in the dMIX
Core C0 C1
Thread MI, CI MI, CI
WL24 twolf, apsi art, bzip2
WL25 parser, crafty equake, gcc
WL26 swim, gzip mcf, wupwise
WL27 twolf, bzip2 apsi, art
WL28 parser, gcc equake, crafty
WL29 swim, wupwise mcf, gzip

On the contrary, the workloads WL24, WL25 and WL26 will be the initial al-

location in the dMIX. The difference is that the dMIX will reevaluate the thread

scheduling at every epoch and make dynamic migration if necessary. Here we vary

the epoch ranges among 10, 50, 100 and 200 million CPU cycles, which are ade-

quate to observe major phase changes at millions of instructions [5]. Performance

improvement by the dMIX in terms of avgIPC and abwIPC is shown in Figure

5.2, where the results are normalized to those of the sMIX. On average, the dMIX

achieves 19% better performance than the sMIX. Given that the sMIX even requires

knowledge about the threads beforehand and the dMIX does not, the dMIX justifies

a promising direction for thread scheduling. Moreover, by comparing the dMIX-K

(the dMIX based on MPKI) with the dMIX-M (the dMIX based on MPMI), it

is found that the dMIX-M is able to improve system performance more than the

72

dMIX-K. It means MPMI is better at expressing thread behaviors in the long run.

Therefore, our schemes will be focused on MPMI from now on.

Although dynamic scheduling policy is able to generate better throughput than

the sMIX, we feel the size of the epoch is still a predefined fixed value that will not

fit the different needs from various workloads. For example, for the WL24 the best

performance is achieved when the epoch is 10 million CPU cycles, while the WL25

has the best performance when the epoch is 100 million CPU cycles. It results

from the nature of phase behaviors that phase duration varies greatly across differ-

ent benchmarks. Therefore, a better scheduling option would be based on phases,

rather than fixed CPU cycles, such that the thread management is synchronized to

execution phases.

5.3 The Phase Triggered Scheduling Policy

In an effort to better conduct the dynamic scheduling policy, we propose the Hard-

ware Assisted Scheduling Policy (HASP) here to employ hardware components to

observe phase behaviors, and then evaluate the scheduling in the OS upon recog-

nized phase changes. This is a novel approach in the sense of having both hardware

and software parts in the design, and in total there are five modules:

1. Sample: Sample L1 and L2 data misses for every thread

2. Model: Construct thread models by the OLS regression

3. Phase: Monitor the models to identify phase changes

4. Pattern: Evaluate the scheduling after the changes

5. Thread: Migrate threads if necessary

Three modules Sample, Model and Phase are implemented by the OLM to assist

the HASP in observing phase changes, while the rest are finished in the OS scheduler

73

(a)

(b)

Figure 5.2: Performance of the dMIX (a) avgIPC, (b) abwIPC

at the software level. The motivation to embed three of them in architecture is to

save the efforts to interrupt the OS and normal execution and transmit data between

the OS and the architecture. The Pattern module and the Thread module remain

in the OS, while the latter one is considered default in most OS kernels.

5.3.1 The Sample Module

The Sample module is inherited from the OLM and supported by its correspond-

ing hardware engine: the Sampling engine. The inheritance refers to not only the

74

conceptual design, but also the optimization in the OLM and RAPT. Hence the

duplicate explanation is omitted here, but only modification is listed here. Fur-

thermore, due to the comparison between the RAPT and the RAPTn, we are now

confident about our optimization in the OLM, so there is no need to carry the

HASPn with us any more.

There is hardly any essential change in the modules or engines, but we employ

{1M, 32} as the regression parameter. It leads to the same WS, but the SP is

enlarged to 1 million (1024 × 1024) instructions. Given a metric as MPMI, 20 bits

are enough for the counters and registers storing the samples, while 16-bit designs

are employed in our optimized design to reduce the overhead, considering most

MPKI are under 150 (28 = 256) [74]. The counters and registers are listed in Table

5.5, where TN stands for Thread Number. The rightmost column lists registers for

β̂ and α̂, which are not available until the end of the Model module.

Table 5.5: The storage for the HASP

Counter Register Register
HASP 32×TN 32×WS×TN 32×2×TN

Purpose MPMI Samples β̂ and α̂

5.3.2 The Model Module

The Model module is inherited from the OLM and supported by its corresponding

hardware engine: the Regression engine. Strictly speaking, this module takes over

the optimized design of the Regression engine, i.e., the OLM. The Model module

provides the design with two fundamental indicators: the model of thread behavior,

i.e., β̂ and α̂, and evaluated LLLs, i.e., ŷ. The former one comes from the regression

algorithm and plays an important role in triggering pattern evaluation, while the

75

latter one may be used to define the scheduling. Mathematically it is calculated in

Equation 3.6 in Chapter 4.

5.3.3 The Phase Module

This module monitors new models from previous module and identifies changes, and

is supported by the Prioritization engine, which is designed naturally to compare

values. In particular, the HASP recognizes phase changes by comparing new model

parameters with the old. We calculate “first order derivative” for both estimators:

∆β̂ = |
β̂new − β̂old

β̂old

| (5.1)

∆α̂ = |
α̂new − α̂old

α̂old

| (5.2)

A phase change is identified when ∆β̂ and ∆α̂ both exceed the threshold (δ).

newPhaseF lag = ∆β̂ > δ AND ∆α̂ > δ (5.3)

To illustrate how the Phase model works, we collected MPMI of two bench-

marks: equake and gcc from their 1-billion representative regions [108]. Every 32

consecutive samples of L1 and L2 MPMI , i.e., {1M, 32}, are processed to form

a linear model, i.e., β̂ and α̂. The newPhaseF lag is raised when Equation 5.3 is

true, where δ is set to 1. The results are shown in Figure 5.3. We can see that our

linear model closely captures the phase behavior of equake, where flags are able to

indicate major phase changes. Nevertheless, the flags are not raised sharply at the

beginning of a new phase but lag a little bit. This is because it takes more than

one sample to accumulate the changes in β̂ and α̂ in order to raise the flag. On the

other hand, gcc is more challenging that its flags are raised irregularly. Around the

300th samples, flags are raised so often that it loses the purpose of phase detection.

The options to cope with such irregularities will be discussed in the next section.

76

(a)

(b)

Figure 5.3: The model indicates Phase changes (a) 183.equake, (b) 176.gcc

5.3.4 The Pattern Module

The Patternmodule is the one who evaluates thread scheduling as much as possible

and choose to take action according to the objective. The objective, however, is kept

the same as to evenly distribute LLC misses throughout LLC domains, as shown in

Table 5.3. Nevertheless, there are now two factors that ought be discussed in this

module, which are the evaluating timing and the migration skipping. Let’s examine

them separately.

77

Evaluating Timing

As a straightforward solution from flags raised in the Model module, every flag

may trigger a round of evaluation, which is marked as “Immediate” approach. This

approach is a good choice when flags perfectly indicate phase changes in execution,

e.g., equake; but it may not work for some other cases, e.g., gcc. To compensate for

this disadvantage, we propose a hybrid approach that employs the concept of both

epoch and flag, which is marked as “Advanced”. In this section, we are focused on

the Advanced approach that is explained in the followed context.

Given we set an epoch as 200 million CPU cycles, it means the system will

evaluate the thread scheduling at the end of every 200-million-cycle epoch, under

the condition there is no flag raised in this epoch. If there is a flag raised from

one thread, no immediate evaluation will be triggered; instead, next evaluation is

advanced, i.e., the rest of the current epoch is cut to 50%. For example, if the

current epoch starts at t and at t + 100 million cycles there is a flag raised from

thread 0, then the next evaluation timing will be advanced to t+150 million cycles,

instead of the original t + 200 million cycles. If there is another flag raised from

thread 1 at t + 110 million cycles, the time to next evaluation will be reduced by

another 50% to t+130 million cycles, so on and so forth. Please note in each epoch,

only the first flag from each thread is allowed to advance the evaluation time, other

subsequent flags from the same thread will be ignored. The rationale behind is

if flags from multiple threads are raised during one epoch, it indicates there is a

growing demand to evaluate the scheduling. Consequently, the next evaluation is

advanced by those flags. If all flags are from one thread, it might be its transient

behavior. So more changes from more threads will lead to a much earlier evaluation

in this design.

78

The pseudo-code to express such an idea to advance next evaluation by flags is

shown here:

while evaTiming 6= clockTicks do

if newPhaseFlag[i] && firstChange[i] then

evaTiming ← (evaTiming - clockTicks >> 1) + clockTicks

firstChange[i] ← FALSE

end if

end while

Evaluate(Scheduling)

evaTiming ← Epoch + clockTicks

where evaTiming is the next evaluating timing, clockTicks is the CPU clock, i is the

thread identity, firstChange is to indicate the first change of a unique thread and

Epoch is 200 million CPU cycles in the Advanced approach.

Migration Skipping

Another approach to minimize thread migration overhead is to deny unnecessary

migrations, where the necessity is estimated as the changes in terms of StDev.

It means if the OS scheduler sees too little change in LLC miss re-distribution,

the corresponding migration is denied, even though it matches the objective of

minimizing the StDev across all LLC domains. In this way, the OS scheduler can

ensure that the conducted migration would lead to significant improvement, that

deserves the effort and overhead. In one word, the migration is skipped because of

ignorable change in re-distributing LLC misses, when Equation 5.4 is true.

|StDevnew − StDevold|

StDevold
≤ θ (5.4)

79

where StDev is the standard deviation of LLC misses among different LLC domains,

new means the anticipated value after migration, while old is the current value.

The Thread module is considered default in most OS kernels, so its implemen-

tation is omitted here. As a result, the example MMMP is amended to implement

the proposed OS scheduling policy in Figure 5.4

Figure 5.4: Model of the HASP in a two-core four-threaded MMMP

5.3.5 Performance Discussions

In total there are five overheads caused by five modules:

• The Sample reading overhead: SO

• The Model construction overhead: MO

• The Phase detection overhead: PO

• The Scheduling evaluation overhead: EO

80

• The Thread migration overhead: TO

The EO and the TO are applied to all dynamic scheduling policies, i.e., dMIX and

HASP, and thus the sMIX is excluded. The MO and the PO are exclusively for

HASP, but they are finished by dedicated hardware components. Therefore, they

have no interference with normal execution and do not increase the execution time

of the threads. The SO is also for dynamic policies, but with different meanings:

the dMIX reads all historic samples to get an overview in the past, while the HASP

only reads a single average or predicted value.

Table 5.6: The adopted overheads in the HASP

Overhead dMIX HASP Purpose
SO 6400/evaluation 100/evaluation Sample reading

MO + PO N/A Hardware Supported Model processing
EO 10K/evaluation 10K/evaluation Pattern evaluation
TO 0:60M/pair/migration 0:60M/pair/migration Thread migration

Upon a new evaluation, WS, e.g., 32, samples are read from the architectural

registers by the dMIX to conclude the past information. We assume on average a

single sample costs 100 CPU cycles to interrupt the OS and transmit data, such

that the total SO added to a thread in the dMIX is 100 × 2× WS per evaluation.

Given the default configuration WS = 32, this number is around 6400 cycles per

evaluation. However the HASP only reads a single value, so it spends 100 CPU

cycles on the SO per evaluation. According to our design about the Model and

Phase modules, we find that 100 CPU cycles are enough to finish the computation,

so the MO and the PO are considered as 100 per model. And since we also need to

generate the model 100 times (100M/1M) during the thread’s lifetime, ten thousand

cycles would be added to HASP if it were NOT supported by hardware.

The evaluation in a system with four threads to generate the scheduling pattern

is not that time consuming, and this overhead can be partially covered by dedicating

81

idle resources on the chip to perform the computation. Consequently 10000 cycles

per evaluation for the EO is a solid estimation here. As far as the TO is concerned,

it involves the time to swap threads between ready queues of different cores. Please

note the effect to warm up new caches as a result of thread migration is well simu-

lated by the simulator and has been taken into consideration already. Nevertheless,

due to its inevitable impacts on the overall thread execution time by suspending

and moving threads around, the TO is the major impact factor in our overhead

analysis. We vary it from 0 to 60 million CPU cycles to examine its influence on

the performance of our scheduling policies, and also provide a large safety margin

to any unknown overhead.

All evaluation metrics are normalized to the sMIX, our baseline scheduling policy.

The raw thread performance numbers are generated by the simulator, and then we

manually add the overheads from Table 5.6 to each thread in order to calculate

its performance. In this way, we feel such analysis overcomes the limitation of

the simulator, and provides a comprehensive overview on performance considering

various overheads.

Coordinated Performance

Considering the dMIX-M is better than dMIX-K and the HASP has an SP of 1

million instructions, the six workloads in Table 5.4 are simulated to compare the

studied policies: dMIX-M and HASP. Figure 5.5 presents the performance compar-

ison of the HASP scheme defined in this section and the dMIX scheme from the

previous section. θ is kept as 0.1 and δ as 1.0 for all workloads. Other simulation

methodology remains the same as in Chapter 4.5.

Overall, the HASP approaches are able to achieve 19% improvement in avgIPC

and 22% in abwIPC in raw performance when no overhead of any kinds is considered

82

0 1 2 3 4 5 6

x 107

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Unit migration overhead in CPU cycles

N
or

m
al

iz
ed

 A
ve

ra
ge

 IP
C

dMIX−M
HASP

(a)

0 1 2 3 4 5 6

x 107

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Unit migration overhead in CPU cycles

A
ve

ra
ge

 B
as

el
in

e
W

ei
gh

te
d

IP
C

dMIX−M
HASP

(b)

Figure 5.5: Performance of the dynamic scheduling policies considering overheads
(a) avgIPC, (b) abwIPC

83

at all, while dMIX scenarios improve over the baseline by 12% in avgIPC and 15%

in abwIPC. Figure 5.5 also shows the performance trend as migration overhead

increases in the system, when all other overheads such as the SO, the MO, the PO

and the EO are considered. On average all dynamic policies have shown better

performance than the static approach sMIX when migration overhead is small. We

can increase the migration overhead to as high as 60 million cycles, the HASP still

outperforms the sMIX in terms of avgIPC when the dMIX-M fails. The fairness

of the HASP is justified by its superior abwIPC, as well as the average variance

of IPCs: 0.0617 in the sMIX, 0.040 in the dMIX and 0.022 in the HASP. The

above experimental results validate our dynamic scheduling policies in most tough

environment in terms of performance and overhead.

Furthermore, the HASP has better sustainability than the dMIX policy. Its mi-

grations are only 86.7% on average of the dMIX. It thus introduces less overhead to

the final results, which is shown as the smaller slope in the Figure 5.5. Furthermore,

because the HASP is based on the execution phases, the evaluations and migrations

are closely associated with the committed instructions. Hence, the reported migra-

tions show the frequency of such events with respect to the execution of the thread.

The frequency ought to remain at a similar level, even if more instructions are exe-

cuted. Moreover, the HASP has the ability to identify execution phases adaptively,

and maintain a low level of overhead, which is much better than the dMIX policy.

In summary, the HASP has superior scalability than the other studied policies, in

spite of the limitation in the architectural simulator.

Sensitivity to the Threshold

In above simulations of the representative workloads, δ is available from 1.0, 0.5 to

0.1, such that the average performance is obtained across different workloads with

84

Figure 5.6: Delta defines overhead

respect to different δ. δ may lead phase detection to opposite directions: when a

small number is adopted, frequent changes would trigger too many pattern evalu-

ations, which might not be necessary since the phase is not categorically different

yet. On the contrary, a large δ may fail to identify major phase changes, such that

thread paring is not following threads well. Therefore in Figure 5.6, we present the

times of migrations, the times of evaluations, avgIPC and abwIPC. As expected,

times of evaluation and migration are reduced by large δ. It means some changes

in linear models are not recognized by the HASP, such that they do not trigger

evaluation or migration. Meanwhile, the performance is not greatly harmed by less

evaluation and migration. It means to evaluate and migrate only when significant

changes happen in the system is necessary and adequate. In summary, we advocate

δ ≥ 1.0, while larger number may be validated by specific workloads and overheads.

Another variable is θ that we used to reject some migrations when they do

not lead to considerable change in the system. We change it among 0.0, 0.1, 0.2,

0.3, 0.4 and 0.5, where δ is kept 1 in the simulation. Overall what we see from

85

the simulation results is that migration is affected in several extreme cases. For

example, when θ = 0.0, a migration that did not happen in previous simulations

now is conducted for workload WL25; while one migration is rejected when θ = 0.5

for WL26. Such changes do not introduce consistent performance impacts on the

system, and other simulations, e.g., θ = 0.1, 0.2, 0.3 or 0.4 have the similar behavior.

The reason for so few change caused by θ is because it is a variable evaluated after

δ. As δ is able to deny most little phase changes when it is appropriately designed,

this leads to any changes that are submitted to θ to evaluate is probably significant

enough, such that it is less likely for θ to deny a lot of migrations.

5.4 Scalability in the HASP

So far we have introduced two improvements in optimizing thread scheduling in

the MMMP: the first one converted the scheduling policy from a static dispatching

scenario to a dynamic paring policy; while the second one implemented the ability

to identify phase changes in execution. The study now is focused on scalability:

is our proposed policy able to scale to larger system capacity, i.e., more cores and

more threads?

5.4.1 Increasing Capacity

We anticipate the popularity of the MMMP as well as its increasing system capability

in the foreseeable future. However, it does not necessarily mean we can arbitrarily

increase both core and thread counts. Especially the multithreaded architecture

itself may come to a saturation point in terms of performance when there are more

than six threads [22, 105, 106]. In those extreme cases that dozens of threads are

employed, there is rarely any performance benefits because of severe cache conflic-

tion. Therefore we believe there will be only a moderate number of threads on one

86

core for the future MMMP. On the other hand, more rapid increment in core counts

in the MMMP are considered feasible, e.g., doubling the number of cores with each

technology generation. Time complexity in searching for the optimal scheduling will

increase exponentially if we want to evaluate all the threads across all cores, irrele-

vant to the kind of metric we employ. Ultimately, it merges to an NP-hard problem

[48], and the time complexity is O(nu), where n is the total number of tasks and u

is the number that an MMMP supports simultaneously [109, 110].

Luckily, Zhuravlev et al. [111] found it practically enough to concentrate upon

merely two pairs of threads in a swapping-based policy, which are from four different

LLC domains. Although it is feasible to do more, the performance improvement

approaches saturation very quickly after more than two pairs. As a result, it is not

necessary to perform exhaustive search in order for our proposed scheduling policy

to scale up. All we need is to focus only on a limited number of threads across a

limited number of cores.

5.4.2 Compromise to Scalability

The performance of the HASP was examined previously, and it showed the frequency

of evaluations and migrations is sustainable along the execution in the HASP. Now

the question here is about the HASP in a larger system, such as cluster or cloud

computing. We will take out more designs for the HASP, so that the scalability is

optimized in the most tough environment.

Based on the previous study, we will limit the migration to only two pairs of

threads, so the evaluation overhead may be the only scalability issue in the HASP.

This overhead will be increased with system capacity due to the scheduling policy

has to access more counters and perform more computations. To adjust towards

scalability, we propose to locate up to four cores on different LLCs in the pMIX:

87

two of which have most LLC misses, i.e., heavy cores, while two others have the least

LLC misses, i.e., light cores. Then two pairs of threads are selected for replacement:

the heaviest threads from heavy cores against the lightest threads from light cores.

The proposed policy locates all candidate threads first and then swaps them

to evenly distribute LLC misses as shown in Figure 5.7. In Figure 5.7(a), four

extreme cores are chosen based on their total LLC misses, which are summarized

from all domestic threads. These four cores are significantly unbalanced and they

generate different demands on resources at lower memory hierarchy (below the LLC).

On the contrary, we assume that the unselected cores impose relatively moderate

demands on the resources, such that their potential performance improvement might

not deserve the thread migration. In an effort to reduce StDev of LLC misses

across different LLC domains without introducing excessive evaluation overhead,

four extreme threads are located on such four cores: two heaviest threads, i.e., most

LLC misses, on Core 0 and 1 in Figure 5.7(b), and similarly the two lightest threads

on Core n and n− 1. Then they are swapped among four cores to better distribute

LLC misses. As a result in Figure 5.7(c), the four extreme cores now have similar

LLC misses, such that StDev is reduced to its best efforts. In summary, assuming

system has c cores and every core has t threads, complexity of evaluation in the

HASP is in the order of O(c× t) + 4× O(c) + 4× O(t) ≈ O(c2) when c >> t.

Table 5.7: More workloads in the simulation
Workload Benchmark List
WL30 apsi, art, bzip2, twolf, crafty, equake, gcc, parser
WL31 apsi, twolf, bzip2, equake, gzip, wupwise, swim, art
WL32 crafty, mcf, gcc, wupwise, gcc, art, swim, twolf
WL33 apsi, parser, bzip2, mcf, crafty, wupwise, gcc, art
WL34 apsi, mcf, bzip2, wupwise, gzip, equake, swim, parser
WL35 crafty, twolf, gcc, equake, gzip, parser, swim, mcf

88

5.4.3 More Designs in the HASP

Please recall that we have two approaches for the evaluating timing: Immediate

and Advanced. The advanced approached was employed in the earlier simulations,

because we assume that it is associated with more efficient operations and thus less

overhead. Now the Immediate approach will be examined in this section.

Aside from the evaluating timing, the evaluated variable is another factor that

might affect the performance of the HASP. The target of the OS scheduler here is

to achieve minimal difference of LLC misses across different LLC domains. In our

scheme, we deem LLC misses can be obtained from two sources: the past LLC miss

value or the predicted future LLC miss value. The past LLC miss value is calculated

based on regression algorithm, which is the average of sampled data mathematically

represented as ȳ in Equation 3.4. We know that such an average value is concluded

from history information, and it covers past WS × SP instructions, e.g., 32 million

for the {1M, 32} configuration. On the other hand, the predicted LLC misses are

calculated based on the newly constructed linear model as ŷ in Equation 3.6, where

x is newly sampled L1 data misses and β̂ and α̂ are estimators. The predicted LLC

misses can be employed because we assume current migration will lead to a pattern

that is valid for some time in the future. Therefore, prediction may help anticipate

workload behaviors.

As a result, there are four different implementations of the HASP, which are

shown in Table 5.8. The listed derivatives here are all equipped with the ability to

manipulate up to two pairs of threads in a larger system.

5.4.4 Scheduling in Larger Systems

More simulations are conducted using eight-threaded workloads in four-core con-

figurations. The workloads are listed in Table 5.7. The overheads from Table 5.6

89

Table 5.8: Four derivatives of the HASP
Name Evaluated variable Evaluating timing
HASP-I Average L2 Immediate
HASP-II Predicted L2 Advanced
HASP-III Average L2 Advanced
HASP-IV Predicted L2 Immediate

are adopted again. Hence the overall performance comparison of different HASP

schemes in a larger system (with 8 threads) is shown in Figure 5.8, where the base-

line is still the sMIX.

Once again, all HASP schemes are able to achieve better performance than the

static approach of the sMIX when migration overhead is small. Please note even

when the migration overhead is zero on the leftmost in the figure, we still take the

other overheads (SO, MO, PO, EO) into account for the evaluation. The average

raw improvement (with no scheme overhead at all) across all four different HASP

schemes is 8% in terms of avgIPC and 13% in terms of abwIPC over the sMIX.

However, performance reduction is spotted here when compared with Figure 5.5.

This is because in our adjustment towards scalability, we no longer perform exhaus-

tive evaluation of all possible thread swapping anymore, in order to get reduced

computation complexity. The price we pay is we cannot guarantee the optimal

scheduling anymore, but a sub-optimal decision.

Secondly, the HASP-III is able to maintain the evaluations and the migrations

at the similar level as in the smaller system. As the system becomes larger, the

evaluations and migrations are kept roughly stable, so we will rarely see any dra-

matic increment in the scheme overhead. It validates the HASP for larger systems.

Nevertheless, the major reason for the scalable overhead is because we delay the

evaluation process in the Advanced approach, and limit the quantity of migrations

when the system is large. Overall, the HASP-III tries to search for a balanced point

90

(a)

(b)

(c)

Figure 5.7: Scalable evaluation in the HASP. Numbers illustrate threads’ LLC misses
and line width corresponds to the heaviness: (a) Four extreme cores are chosen, (b)
Four threads are selected for replacement, (c) The target environment is of evenly
distributed LLLs across LLC domains

91

0 0.5 1 1.5 2 2.5 3

x 107

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Unit migration overhead in CPU cycles

N
or

m
al

iz
ed

 A
ve

ra
ge

 IP
C

HASP−I
HASP−II
HASP−III
HASP−IV

(a)

0 0.5 1 1.5 2 2.5 3

x 107

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Unit migration overhead in CPU cycles

A
ve

ra
ge

 B
as

el
in

e
W

ei
gh

te
d

IP
C

HASP−I
HASP−II
HASP−III
HASP−IV

(b)

Figure 5.8: Performance of the HASP in larger systems (a) avgIPC, (b) abwIPC

92

between exhaustively following the phase changes and exponentially increasing the

overhead. Hence, HASP-III shows a good rating for scalability with respect to longer

execution and more threads.

Thirdly, the HASP-II and the HASP-III show strong resilience towards migra-

tion overhead, while the performance of HASP-I and HASP-IV drops sharply when

the migration overhead increases. This is because the HASP-I and the HASP-IV

evaluate upon every recognized phase change, which is associated with considerable

system overhead. On average their evaluations are 25X over those of the HASP-

II and the HASP-III, and hence the HASP-I and the HASP-IV suffers from more

negative offset on Y-axis in Figure 5.8. Meanwhile, they also conduct 12X more

migrations than the Advanced approaches, and thus show quick performance reduc-

tion as the migration overhead increases in the figure. As a result, the Advanced

approaches only explore a small number of migrations in the execution, showing

acceptable overheads in managing threads, but still are able to improve system per-

formance. Among them, the HASP-III exhibits superior and sturdy performance

even with increasing system capacity.

In summary, the Advanced approach and average L2 misses improve the HASP

greatly in terms of the performance and the overhead. And the HASP provides

satisfactory scalability in longer execution and larger systems. It stabilizes the

evaluation and migration frequency such that longer execution will not increase the

overhead exponentially. Meanwhile, it ensures the optimal scheduling when the

system is small, and adopts a heuristic approach for the sake of scalability in larger

systems.

93

5.5 Summary of the HASP

The emergence of MMMP introduces great challenges on how to efficiently and effec-

tively manage resources for better throughput. On one hand, resources on different

cores are used unevenly; on the other hand, multiple threads on each core introduce

inter-thread interference, which impacts the performance of all. The dynamic phase

behavior of each thread complicates the issue even more. In order to overcome these

difficulties, MMMP requires a thread management scheme to fully utilize resources

across different cores and to minimize competition among threads.

We believe an intelligent OS scheduling policy is capable of taking this respon-

sibility at the system level, through pairing threads in accordance with the resource

allocation and thread demands. In this chapter, we first proposed a static dis-

patching policy with no runtime manipulation. Then we demonstrated a dynamic

scheduling policy driven by CPU epochs with runtime migration capability. Finally

we introduced our regression-driven scheduling policy which is capable of capturing

the phase changes of threads and scheduling them correspondingly. Our experi-

mental results showed that the regression-driven policy clearly outperforms other

policies due to its ability to capture the thread demands adaptively and then pair

threads dynamically. The HASP exhibits superior performance and outstanding

scalability in both small and large systems, and will be employed in designing the

integrated approach. From now on, the HASP is used to refer the proposed software

scheduling policy, which is a combination of HASP is Chapter 5.3 and HASP-III in

Chapter 5.4.

94

CHAPTER 6

THE ADAPTIVE THREAD MANAGEMENT SCHEME

As stated previously, the MMMP faces two major challenges in resource manage-

ment: complexity in resource allocation and variation in workload behaviors. The

Multicore and multithreaded architectures introduce both unification and isolation

to on-chip resources. In such an environment, the behavior of a single thread may

have impacts on other threads and vice versa. The way in which threads are paired

to different cores plays an essential role in utilizing hardware resources with mini-

mal competition. On the other hand, varying workload behaviors make such paring

not necessarily sustainable as time flows. Workloads may request various resources

during different execution phases, such that thread scheduling should be updated

correspondingly. As a solution in the MMMP, integration and adaptability are pro-

posed to deal with such problems. We mainly explore adaptability through the

OLM in previous chapters, while integration will be addressed here by aggregating

both hardware and software scheduling policies together.

We have proposed the hardware scheduling policy RAPT, which works inside

of cores to prioritize domestic threads; and the software scheduling policy HASP,

which embeds in both the architecture and the OS to coordinate threads throughout

multiple cores. In order to construct the hardware and software integrated approach,

the restriction and modification will be explained in Chapter 6.1, such that all

components are able to work in a harmonious environment. Finally in Chapter

6.2, performance will be presented to show the functionality and effectiveness of the

ATMS.

95

6.1 Assembly of the ATMS

The OLM is the tie to connect the RAPT and the HASP tightly both theoretically

and physically. It provides both scheduling policies with critical information for

their evaluation. In particular, it predicts future LLC misses for the RAPT, such

that thread priorities are decided based on the LLL. It makes the shared resources

utilized more efficiently in spite of “Memory Wall”. It also feeds the HASP with

thread model estimators, which will indicate major phase shifts during execution.

As soon as the shifts are recognized, the proposed OS scheduler evaluates mapping

pattern in accordance with model information and replaces threads if necessary.

6.1.1 Synchronization of the RAPT and the HASP

Assuming the OLM is the base for both the RAPT and the HASP, they ought to

utilize the OLM efficiently to their best efforts, but modifications in the OLM are

mandatory to support them concurrently.

The MPMI

First of all, the MPMI is now the universal SP for both the RAPT and the HASP.

The RAPT used to employ the MPKI in constructing the OLM while it now converts

to MPMI. In another word, the SP is 1 million (1024 × 1024) instructions for

both policies. It prevents the OLM from processing for two SP versions, ensures

a synchronized design and saves hardware efforts. It further standardizes the data

width for the most variables in the ATMS, which are now solely dependent on the

WS. The reasons that the MPMI wins in the competition is:

1. The MPMI introduces slightly better performance to the HASP.

2. The MPMI reduces system overhead greatly in the ATMS.

96

3. The RAPT is still aware of thread behavior changes at a fine-grained level by

updated L1 misses.

Consequently, the MPMI is adequate for the ATMS.

Hardware Support for the HASP

Secondly, the hardware engines support the HASP to their best. In particular, the

Sample module is supported by the Sampling engine, and the Model module

is executed by the Regression engine. Although some OS scheduling policies are

designed in a pure software approach, we embed the HASP’s ability in the hardware

level to reduce its interference with normal thread execution. Therefore, more CPU

resources are dedicated to normal execution, such that system performance is better

ensured. Moreover, support for the HASP does not increase engines’ workload, as

the HASP acquires the same data as the RAPT, or the natural outcome of the

engines. Therefore, it is an efficient way to support the HASP by hardware engines.

However, software efforts are still critical components in our design, because they

are better at overcoming core-boundaries for more comprehensive information. As

a result, the HASP receives supports from both sides with justified efficiency and

necessity.

The Upgraded Prioritization Engine

Thirdly, the Prioritization engine is upgraded to support the Phase module in the

HASP. The engine originally was designed to compare the predicted L2 misses from

the previous engine, so its capability is mostly composed of comparing integers. By

increasing its capacity, the engine is expected to invoke the Pattern module if any

change is recognized for any thread. Considering the instruction fetch policy has a

tighter schedule than the OS scheduling policy, in the upgraded engine, higher pri-

97

ority, yet non-preemptive, is granted to the RAPT, i.e., prioritization upon changes

in the estimators or the predicted LLLs. It means if requests come from the RAPT

and the HASP simultaneously, Prioritization engine will work for the RAPT first

and then the HASP, otherwise FCFS. Please be advised, priority does not neces-

sarily change every cycle, but rather the updating is triggered by a new L1 MPMI

and/or new estimators.

6.1.2 Summary of the ATMS

There are in total three engines designed in the MMMP: Sampling, Regression

and Prioritization. The Sampling engines are duplicated for every thread, while

every core has one Regression engine and one Prioritization engine. Meanwhile,

there are three modules with the same names as above engines in the RAPT, while

the HASP has five modules: Sample, Model, Phase, Pattern and Thread.

The RAPT stays in the computer architecture and its destiny is finished up to

fetch engine, which is assumed as a default hardware component in SMT cores.

Nevertheless, the HASP continues two extra modules in the OS and the OS has to

monitor interruptions from different cores. It is obvious that modules in the OS are

software efforts. In summary, we list the hardware engines and their corresponding

tasks in Figure 6.1.

Furthermore, the total overhead is also provided here, which is specified to soft-

ware or hardware. The software overhead refers to the time that interferes normal

execution, and is measured by the complexity of the algorithm. The hardware over-

head may include one or more aspects: area, storage capacity, architectural unit

and/or latency. For example, storage usually is measured by the number of bits

while area and power is omitted. The complete overheads are shown in Table 6.1,

where TN is the number of threads, CN is the number of cores. Moreover, the

98

Figure 6.1: Three designed engines are in the dashed rectangles. Double-lined boxes
indicate logic flow of the RAPT and the HASP. The OS scheduler and the fetch
engine are considered default in the MMMP.

area, power and latency are specified to the logic units only, and the latency has

no interference with CPU’s normal execution. Anyway, the table tries its best to

disclose the major information of the ATMS, while some details can be available

after further hardware implementation and verification.

Table 6.1: Summary of overhead in the ATMS

Item Specification
Counter 16× 2× TN bits
Register 16× 2×WS × TN

+32× 2× TN bits
ALU Integer
Shifter Integer

Multiplier Integer
Comparator Integer

Area 0.452mm2

Power 0.253w
Latency 100

Complexity O(CN2)

99

An example of the two-core four-threaded microprocessor is shown in Figure 6.2

to illustrate the ATMS’s architecture.

Figure 6.2: The ATMS in a tow-core four-threaded MMMP. The OLM employs
Sampling (Sam.) and Regression (Reg.) engines to generate desired information.
The RAPT uses an extra Prioritization (Pri.) engine to define priority for the SMT
scheduler that fetches instructions. The OS scheduler is notified by Prioritization
engine for phase changes and conducts evaluation and migration.

6.2 Performance Achievement

Experimental results are obtained via simulating workloads in Tables 5.4 and 5.7 in

two-core and four-core configurations, respectively. Other methodologies maintain

the same with that in Chapter 4.3. Configuration of the OLM in all policies are

set to {1M, 32}, such that both the RAPT and the HASP are able to share its

outputs in the ATMS. The epoch in the software scheduling policy is 200 million

CPU cycles, and thus the HASP-III is employed in the ATMS when the system is

100

larger. Hence, δ = 1.0 and θ = 0.1 are still kept here. As the constant methodology

in this study, both avgIPC and abwIPC are presented in Figure 6.3 for the two-

core configuration and Figure 6.4 for the four-core configuration. The RAPT is

not affected by the migration overhead, such that its performance is constant in

all figures. The HASP is simulated here by enabling all hardware engines, but its

associated instruction fetch policy for the SMT is the ICOUNT. The ATMS is the

combination of the RAPT for the hardware part and the HASP for the software

part, while the baseline here is the ICOUNT and the sMIX for the hardware and

software scheduling, respectively.

On average, the ATMS is able to improve by 25% in avgIPC and 43% in abwIPC

in the two-core configuration, and 21% in avgIPC and 32% in abwIPC in the four-

core configuration; but the ability to maintain the scalability is well inherited from

the HASP. This achievement is better than either independent policy. The major

reason for such achievement is because of the collaboration between hardware and

software. The software scheduling policy HASP tries to minimize competition in

different cores, by pairing threads according to their demands, and migrating upon

the changes in their behaviors. Consequently, it produces a collaborative environ-

ment in different cores by its best efforts. However, the HASP’s efforts are limited

by scalable evaluation designed in Chapter 5.4. It results in a scheduling that is not

optimal under the condition of minimizing StDev, such that the hardware schedul-

ing policy has to strive to improve system performance in an unideal environment.

The RAPT coordinates threads in the same cores, such that the shared resources

are more offered to efficient threads, in terms of number of possible LLLs.

In quantity, the improvement in the ATMS is not exactly equivalent to the

summation of that in the RAPT and in the HASP, even though the difference is not

significant. It is because that the HASP changes the thread scheduling in execution,

101

such that threads have different domestic neighbors in the HASP and in the ATMS.

On the other hand, the RAPT changes the priority of threads within a core, such

that accesses to caches and the main memory are changed. When LLLs are reduced

by the RAPT, evaluation of thread mapping pattern is based on different memory

accessing patterns, such that the HASP is not performing exactly the same in two

cases. Considering the slight difference , we feel the trend is consistent enough to

validate the ATMS.

An issue we notice here is the performance of RAPT is partially affected by

the integration. There are two factors here: SP and system configuration. In

Chapter 4, the MPKI was employed for the experiment, but here in ATMS it is

the MPMI. From the perspective of OS, one million instructions are adequate to

sample workload behaviors, but hardware scheduling policy may feel slow about such

an SP, since it happens at cycle level. The simulated systems also have different

configurations. The number of cores on the chip are increasing, but the resources

lower than the LLC remain almost the same. It limits the improvement that the

scheduling policies are able to make, by worsening the competition for the lower

resources. They together affect the performance of the RAPT a little bit in a larger

system.

Furthermore, the improvement in the smaller system by the ATMS is more than

that in the larger system. It is mostly due to two factors: first of all, the opti-

mal mapping pattern is not guaranteed in the larger system, because the software

scheduling policy searches for the sub-optimal one to increase scalability. In a system

that redundant resources are available for pattern evaluating, the optimal solution

is still available in observance to the objective of minimizing the StDev. Secondly,

contention for the resources lower than the LLC is more severer in the larger system

than in the smaller system. As in the configuration, the lower resources are not

102

augmented with increasing cores on the chip, and thus it means more threads com-

pete for the similar amount of resources. As a result, the potential for performance

improvement is limited by such resources.

Similarly to the previous chapters, the fairness of the ATMS is estimated by its

outstanding abwIPC results. Meanwhile, its average variance of IPCs is 0.036 in

the two-core simulation and 0.039 in the four-core simulation. The average variance

of IPCs for the sMIX is 0.062 and 0.035 in the two configurations, respectively.

103

0 2 4 6 8 10

x 106

1.14

1.16

1.18

1.2

1.22

1.24

1.26

Unit migration overhead in CPU cycles

N
or

m
al

iz
ed

 A
ve

ra
ge

 IP
C

RAPT
HASP
ATMS

(a)

0 2 4 6 8 10

x 106

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Unit migration overhead in CPU cycles

A
ve

ra
ge

 B
as

el
in

e
W

ei
gh

te
d

IP
C

RAPT
HASP
ATMS

(b)

Figure 6.3: Performance of the proposed policies in a two-core four-threaded
MMMP: (a) avgIPC, (b) abwIPC

104

0 0.5 1 1.5 2 2.5 3 3.5 4

x 106

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

Unit migration overhead in CPU cycles

N
or

m
al

iz
ed

 A
ve

ra
ge

 IP
C

RAPT
HASP
ATMS

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 106

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

Unit migration overhead in CPU cycles

A
ve

ra
ge

 B
as

el
in

e
W

ei
gh

te
d

IP
C

RAPT
HASP
ATMS

(b)

Figure 6.4: Performance of the proposed policies in a four-core eight-threaded
MMMP: (a) avgIPC, (b) abwIPC

105

CHAPTER 7

CONCLUSION AND FUTURE WORK

The complexity in resource allocation in the MMMP and the variation in work-

load behaviors are considered two major challenges in the architectural design. The

resources are not only shared among domestic threads within a core, but also isolated

by different cores. In order to manage the complicated resources in the MMMP, nei-

ther hardware nor software scheduling policies is able to take the full responsibility

solely, but rather they need to collaborate to achieve the optimal results. Further-

more, the varying behaviors have great impacts on the inter-thread interference and

thus the effectiveness of the scheduling policies. Hence the variation in workload

behaviors further increases the difficulty in scheduling policies to respond effectively.

The Adaptive Thread Management Scheme in the MMMP was proposed in this

study, which integrated both hardware and software approaches. In particular,

the RAPT was the hardware scheduling policy that prioritized domestic threads

in accordance with their predicted LLLs, which was provided by the OLM. Mean-

while, the HASP as the software scheduling policy evaluated the thread scheduling

throughout multiple cores, and the objective was to minimize the standard devia-

tion of LLLs among different LLCs. As an integrated design, the ATMS was a novel

approach to manage threads in the MMMP.

7.1 The Problems and Solutions

Two distinguished approaches are adopted to maximize parallelism on a chip in the

MMMP: the multicore architecture and the multithreaded architecture. Neverthe-

less, they together increase the complexity in resource distribution in the MMMP.

Multiple cores are able to supply several threads, but cooperation is reduced through

limiting threads’ accesses to remote resources. Hence not all idle resources are helpful

106

to a thread, even if heavily demanded. On the other hand, the multithreaded archi-

tectures, especially the SMT, share execution resources among all domestic threads.

It makes thread performance not sustainable anymore, because of the inter-thread

interference, i.e., threads may have impacts on each other via the shared resources.

In summary, isolation and unification both exist in the MMMP.

Another motivation comes from execution phases in most workloads. It refers to

virtually repeating behaviors at the granularity of millions of instructions to thou-

sands of instructions. The phase behaviors, however, are not ideally periodic, but

rather vary more or less in terms of memory accessing, phase duration and through-

put. It greatly increases the difficulty in managing threads in the MMMP, since

decisions ought to follow thread behaviors for better resource allocation. According

to the experiments, a heuristic approach or fixed assumption could not adapt to the

phase behaviors, and could not optimize the scheduling either.

As a result, complexity in resource distribution and variation in workload be-

haviors are spotted in the MMMP. In an effort to manage resources for optimal

performance, the proposed design was equipped with integration and adaptability.

The former characteristic was introduced by the collaboration between hardware

and software scheduling policies, while the latter one relied on the model built by

the OLS regression.

7.2 The Proposed Policies

We started this design from observing workload behaviors by the OLM, then utilizing

the OLM in the hardware scheduling policy RAPT, and in the software scheduling

policy HASP as well. Some modifications were implemented in an effort to embed

the RAPT and the HASP in the MMMP with appropriate collaboration, which

formed the main framework of the proposed design of the ATMS. Such revisions

107

mostly involved the synchronization of both policies, hardware assignment, and

upgraded capability. Consequently, assembly of the ATMS had been accomplished,

which constituted both hardware and software approaches. The ATMS ensured

compatibility of the schedulers at different levels, such that system performance

was optimized at different granularity.

It was examined separately that the overall system throughput and average

thread improvement, i.e., avgIPC and abwIPC, respectively, while system over-

head was also discussed comprehensively. In particular, the hardware scheduling

policy RAPT was able to improve the system performance over the ICOUNT policy

by 32%, while the software scheduling policy HASP achieved 22% more than the

static scheduling policy sMIX. By implementing the ATMS in the system, it was

better than the combination of the sMIX and ICOUNT by 43%, which resulted from

the efforts of both the RAPT and the HASP. The fairness of the proposed scheme

was justified by their outstanding abwIPC, as well as the average variances of thread

IPCs. As a result, the proposed scheme was superior among its corresponding peers,

and could be used to manage system resources very well.

7.2.1 Adaptability

As the execution phases were spotted in most workload behaviors, they provided

great potential for the scheduling policies. The execution phases were of some pe-

riodic characteristics, but could not be observed easily. Some related studies might

involve a priori knowledge to examine the execution phases, while in the proposed

scheme, the phases are observed by the OLM adaptively via a machine-learning

approach. The OLM was able to summarize the phase behaviors for the hardware

and software scheduling policies in accordance with their granularity. Furthermore,

the OLM was also capable of estimating future resource demands that are speci-

108

fied to every thread in terms of the cache misses in the LLC, so as to guide the

scheduling policies in a proactive way. Furthermore, the proposed approach was

fully supported by the optimized hardware components, and hence, its overheads

were greatly minimized compared to some other designs.

7.2.2 Integration

Furthermore, components in the ATMS had a mutually beneficial relationship. It

was never the case that several independent entities were forced together, but rather

they required each other for a better performance.

The RAPT expected moderate competition and diverse demands within a core.

The competition referred to the contention for resources lower than the LLC, which

was proved to be the dominant factor affecting performance in the MMMP. Com-

petition could be evened by the RAPT, but it was hardly able to greatly reduce it,

since threads had their stable demands for off-chip resources that were inevitable

in the long run. Given the demands by all threads, the best approach for high per-

formance was to utilize everything that the MMMP had. Once such an approach

was accomplished by the HASP, the RAPT was less likely to deal with severe com-

petition. Furthermore, the demand diversity was more likely to exist by such an

approach, such that the RAPT had more space to coordinate thread priorities. For

example, threads waiting for the data from lower memory levels might issue less

instructions to the pipeline due to pending dependency, while other threads enjoyed

higher priority to utilize the pipeline resource since they were ready to proceed.

The ATMS minimized blind spots in management even if the system was large.

The HASP replaced two pairs of threads from four extreme cores, while others were

left for the RAPT for the sake of controllable overhead, when the system is large.

Threads in those cores probably did not place extraordinary pressure on any shared

109

resources, so migration was not conducted on them. When the OS scheduler chose

to ignore the problem, the ATMS was still able to employ the RAPT to manage

the shared resources. Thread behaviors would give themselves different priorities

at the instruction fetch stage, so the shared resources were still managed under the

overall objective: efficient usage. Because of the integrated approach in the ATMS,

scalability did not result in naive resource allocation in the MMMP.

7.2.3 Hardware Effectiveness

The ATMS improved hardware effectiveness in the sense of more achievement by the

same hardware. It was common to see in architectural designs to increase hardware

complexity, and even to involve OS computation [25, 26, 95], and OS scheduler

designs were usually associated with few architectural efforts. What they employed

was solely for either scheduling policy, while the ATMS used the OLM for both

scheduling policies. Now that the ATMS made the engines eligible for both sides, it

improved their efficiency significantly. Furthermore, the overhead for both policies

were evaluated separately, i.e., either enumerated clearly or included in performance

results, which in conclusion was no more than the peer designs. Given power was

analyzed at full utilization, the ATMS might be able to lead to a power-efficient

system, i.e., more throughput per unit power.

7.2.4 Coordinated Hardware and Software

We had reviewed a large quantity of related designs in the second chapter, which

were limited in either part of the hardware of the software. Most OS schedulers

were designed at the software level, while the available hardware performance coun-

ters were highly dependent on the target platform. Meanwhile, most hardware

scheduling polices were weak at managing threads across cores. The demand for a

110

system-wide management scheme increases especially rapidly in the many-core era.

The ATMS fulfilled the demand by overcoming the gap between hardware and soft-

ware and between the policies at both levels. It validated a vertical communication

and cooperation in the computer architecture, which would better validate some

other management goals. For instance, it offered the feasibility to enforce Quality of

Service (QoS). By some minor revisions, the ATMS would be able to grant a specific

thread higher priority at both levels, such that it might move fast in the queue in

the OS and its instructions would enter the pipeline more than others. Hence QoS

of the thread could be strictly guaranteed. In summary, the ATMS provided a novel

platform that coordinated both hardware and software for the thread management

in the MMMP.

7.3 Future Work

There are three topics recommended for future work: other relationships in the

workload model, more objectives in thread management, and hierarchical thread

management in a very large-scale system.

First of all, linearity might not be the only relationship in workload behaviors,

but rather some other models, e.g., logarithmic or polynomial, are also interesting

and promising. The employment of a new model will be motivated by research on

representative workload suites, which may be typical in certain disciplines. The

validation ought to be based on preliminary results, significance test and perfor-

mance results. Moreover, models with no hypothesis for any specific relationship,

but processing for the best available option by machine learning are very attractive

too.

Secondly, about objectives in management, higher performance is not sustain-

able if the overhead, especially power consumption, is not considered. Therefore,

111

power should be taken into consideration in resource management schemes. It is not

necessarily the case that power is always minimized with maximized performance,

but a practical initiative is to maintain power under a threshold, while further re-

duce it when high performance is guaranteed. Other possible objectives may include

hot spot avoidance and load balancing.

Thirdly, the management scheme can be implemented in multiple levels, such

that it can be applied to a very large system, e.g.,cloud computing and super com-

puters. Lower levels may be responsible for load balancing and thread paring, since

the overhead is small associated with local manipulations. Higher levels will address

some other topics, such as power and thermal. This would enable the scheme to

manage the very large system with diverse objectives, such that it pushes the system

toward an autonomic one.

112

BIBLIOGRAPHY

[1] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J. E.
Smith, “Multicore resource management,” IEEE Micro, vol. 28, no. 3, pp.
6–16, 1999.

[2] C. Liu and J.-L. Gaudiot, “The impact of resource sharing control on the
design of multicore processors,” in Procs. of Algorithms and Architectures for
Parallel Processing, vol. 5574, Taipei, Taiwan, jun. 2009, pp. 315–326.

[3] D. Kang, C. Liu, and J.-L. Gaudiot, “The impact of speculative execution on
SMT processors,” The International Journal of Parallel Programming, vol. 36,
pp. 361 – 385, 2008.

[4] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, 4th ed. San Francisco, CA: Morgan Kaufmann
Publishers, 2011.

[5] D. H. Albonesi, R. Balasubramonian, S. G. Dropsbo, S. Dwarkadas, F. G.
Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semer-
aro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Schuster, “Dynami-
cally tuning processor resources with adaptive processing,” Computer, vol. 36,
no. 12, pp. 49–58, dec. 2003.

[6] The 3rd Generation Intel Core vPro Pro-
cessor Family, Intel, 2012. [Online]. Available:
www.intel.com/content/dam/www/public/us/en/documents/white-papers/

[7] Intel, “The 2nd generation intel core processor family desktop,” Intel
Datasheet, vol. 1, p. 38, 2011.

[8] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s next-
generation server processor,” IEEE Micro, vol. 30, pp. 7 – 15, 2010.

[9] Transforming Mission-Critical Computing, Intel, 2011. [Online]. Available:
www.intel.com/content/dam/doc/product-brief/

[10] W. Yamamoto, M. J. Serrano, A. R. Talcott, R. C. Wood, and M. Nemirosky,
“Performance estimation of multistreamed, superscalar processors,” in Pro-
ceedings of the 27th Hawaii International Conference on System Sciences,
vol. 1, jan. 1994, pp. 195 – 204.

113

www.intel.com/content/dam/www/public/us/en/documents/white-papers/
www.intel.com/content/dam/doc/product-brief/

[11] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading:
maximizing on-chip parallelism,” in Proc. of 22nd Annual International Sym-
posium on Computer Architecture, Santa Margherita Ligure, Italy, jun. 1995,
pp. 392–403.

[12] S. J. Eggers, J. S. Emer, H. M. Leby, J. L. Lo, R. L. Stamm, and D. M. Tullsen,
“Simultaneous multithreading: a platform for next-generation processors,”
Micro, IEEE, vol. 17, no. 5, pp. 12 –19, sep/oct 1997.

[13] S. E. Raasch and S. K. Reinhardt, “The impact of resource partitioning on
SMT processors,” in Proceedings of 12th International Conference on Parallel
Architectures and Compilation Techniques, New Orleans, LA, sep. 2003, pp.
15–25.

[14] L. Hammond, B. A. Nayfeh, and K. Olukotun, “A single-chip multiprocessor,”
IEEE Transactions On Computer, pp. 79 – 85, 1997.

[15] H. P. Hosftee, “Introduction to the cell broadband engine,” IBM White Paper,
2005.

[16] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, and et al.,
“A 48-core IA-32 processor with on-die message-passing and DVFS in 45nm
CMOS,” in 2010 IEEE Asian Solid State Circuits Conference, nov. 2010, pp.
1 –4.

[17] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. Stamm,
“Exploiting choice: instruction fetch and issue on an implementable simulta-
neous multithreading processor,” in Proc. of 23rd Annual International Sym-
posium on Computer Architecture, Philadelphia, PA, may 1996, pp. 191–202.

[18] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach, 4th ed. San Francisco, CA: Morgan Kaufmann Publishers, 2007.

[19] D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings of the
fourth international conference on Architectural support for programming lan-
guages and operating systems, Santa Clara, CA, 1991, pp. 176–188.

[20] D. Patterson, “Latency lags bandwidth,” in Proceedings of IEEE International
Conference on Computer Design: VLSI in Computers and Processors, San
Jose, CA, oct. 2005, pp. 71–75.

114

[21] D. Tullsen and J. Brown, “Handling long-latency loads in a simultaneous mul-
tithreading processor,” in Proc. of 34th ACM/IEEE International Symposium
on Microarchitecture, Austin, TX, dec. 2001, pp. 318–327.

[22] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernández, “Dynamicall con-
trolled resource allocation in SMT processor,” in Proceedings of 37th Interna-
tional Symposium on Microarchitecture, Portland, OR, dec. 2005, pp. 171–182.

[23] A. El-Moursy and D. H. Albonesi, “Front-end policies for improved issue ef-
ficiency in SMT processors,” in Proceedings of 9th International Symposium
on High-Performance Computer Architecture, Anaheim, CA, feb. 2003, pp.
31–40.

[24] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernádez, “Dcache warn: an
i-fetch policy to increase SMT efficienty,” in Proceedings of 18th International
Parallel and Distributed Processing Symposium, Santa Fe, NM, apr. 2004, pp.
74–83.

[25] H. Wang, I. Koren, and C. M. Krishna, “Utilization-based resource partition-
ing for power-performance efficiency in SMT processors,” IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no. 7, pp. 1150–1163, jul. 2011.

[26] S. Choi and D. Yeung, “Learning-based SMT processor resource distribu-
tion via hill-climbing,” in Proceedings of The 33rd Interntional Symposium on
Computer Architecture, Boston, MA, jul. 2006, pp. 239–251.

[27] H. Wang, R. Sangireddy, and S. Baldawa, “Optimizing instruction schedul-
ing through combined in-order and o-o-o execution in smt processors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 20, no. 3, pp. 389–403,
mar. 2009.

[28] S. C. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
programs: characterization and methodological considerations,” in Computer
Architecture, 1995. Proceedings., 22nd Annual International Symposium on,
jun. 1995, pp. 24 –36.

[29] S. P. E. Corporation. (2005) SPECjbb 2005 java server benchmark. [Online].
Available: http://www.spec.org/jbb2005/

[30] E. Sarhan, A. Ghalwash, and M. Khafagy, “Specification and implementation
of dynamic web site benchmark in telecommunication area,” in Proceedings of

115

http://www.spec.org/jbb2005/

the 12th WSEAS international conference on Computers, Heraklion, Greece,
2008, pp. 863–867.

[31] G. Long, D. Franklin, S. Biswas, P. Ortiz, J. Oberg, D. Fan, and F. T. Chong,
“Minimal multi-threading: Finding and removing redundant instructions in
multi-threaded processors,” in Microarchitecture (MICRO), 2010 43rd Annual
IEEE/ACM International Symposium on, dec. 2010, pp. 337 –348.

[32] H. Cheng, C. Lin, J. Li, and C. Yang, “Memory latency reduction via thread
throttling,” in Proceedings of the 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, Atlanta, GA, dec. 2010, pp. 53–64.

[33] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors for dynamic
performance, power, and resource management in chip multiprocessors,” in
Proceedings of the 36th annual international symposium on Computer archi-
tecture, Austin, TX, june 2009, pp. 290–301.

[34] P. Radojković, V. Čakarević, J. Verdú, A. Pajuelo, F. J. Cazorla, M. Ne-
mirovsky, and M. Valero, “Thread to strand binding of parallel network appli-
cations in massive multi-threaded systems,” in Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Bangalore, India, january 2010, pp. 191–202.

[35] R. Kokku, T. L. Riché, A. Kunze, J. Mudigonda, J. Jason, and H. M. Vin,
“A case for run-time adaptation in packet processing systems,” SIGCOMM
Computer Communnication Review, vol. 34, no. 1, pp. 107–112, January 2004.

[36] T. Wolf, N. Weng, and C.-H. Tai, “Design considerations for network pro-
cessor operating systems,” in Proceedings of the 2005 ACM symposium on
Architecture for networking and communications systems, Princeton, NJ, oc-
tober 2005, pp. 71–80.

[37] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware schedul-
ing on SMP-CMP-SMT multiprocessors,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems, Lisbon, Por-
tugal, march 2007, pp. 47–58.

[38] R. McGregor, C. Antonopoulos, and D. Nikolopoulos, “Scheduling algorithms
for effective thread pairing on hybrid multiprocessors,” in Proceedings of The
19th IEEE International Parallel and Distributed Processing Symposium, april
2005, pp. 28 – 37.

116

[39] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The impact of
memory subsystem resource sharing on datacenter applications,” in Proceed-
ings of the 38th annual international symposium on Computer architecture,
San Jose, CA, 2011, pp. 283–294.

[40] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and A. González,
“Meeting points: using thread criticality to adapt multicore hardware to par-
allel regions,” in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, Toronto, Ontario, Canada, october
2008, pp. 240–249.

[41] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu,
and Y. N. Patt, “Parallel application memory scheduling,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
Porto Alegre, Brazil, december 2011, pp. 362–373.

[42] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic jobscheduling with pri-
orities for a simultaneous multithreading processor,” ACM Sig-Metrics Per-
formance Evaluation Review, vol. 30, pp. 66 – 76, 2002.

[43] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using os observations
to improve performance in multicore systems,” Micro, IEEE, vol. 28, no. 3,
pp. 54 –66, may-june 2008.

[44] A. Fedorova and M. Seltzer, “Improving performance isolation on chip multi-
processors via an operating system scheduler,” in the 16th International Con-
ference on Parallel Architecture and Compilation Techniques, Brasov, Roma-
nia, september 2007, pp. 25 –38.

[45] C. Luque, M. Moreto, F. Cazorla, R. Gioiosa, A. Buyuktosunoglu, and
M. Valero, “Itca: Inter-task conflict-aware cpu accounting for cmps,” in Par-
allel Architectures and Compilation Techniques, 2009. PACT ’09. 18th Inter-
national Conference on, Raleigh, NC, september 2009, pp. 203 –213.

[46] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared resource
contention in multicore processors via scheduling,” in Proceedings of the fif-
teenth International Conference on Architectural support for programming lan-
guages and operating systems, Pittsburgh, PA, march 2010, pp. 129 –141.

[47] L. Weng and C. Liu, “On better performance from scheduling threads accord-
ing to resource demands in MMMP,” in Proc. of 16th International Workshop

117

on Scheduling and Resource Management for Parallel and Distributed Systems,
in con. with ICPP’10, San Diego, CA, sep. 2010, pp. 339–345.

[48] P. Radojković, V. Čakarević, M. Moretó, J. Verdú, A. Pajuelo, F. J. Cazorla,
M. Nemirovsky, and M. Valero, “Optimal task assignment in multithreaded
processors: a statistical approach,” in Proceedings of the seventeenth inter-
national conference on Architectural Support for Programming Languages and
Operating Systems, London, England, UK, march 2012, pp. 235–248.

[49] C. Acosta, F. Cazorla, A. Ramirez, and M. Valero, “Thread to core assignment
in SMT on-chip multiprocessors,” in The 21st International Symposium on
Computer Architecture and High Performance Computing, Sao Paulo, Brazil,
oct. 2009, pp. 67 – 74.

[50] A. El-Moursy, R. Garg, D. Albonesi, and S. Dwarkadas, “Compatible phase co-
scheduling on a CMP of multi-threaded processors,” in The 20th International
Parallel and Distributed Processing Symposium, Rhodes, Greece, apr. 2006,
pp. 1–10.

[51] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, spring
joint computer conference, ser. AFIPS ’67 (Spring), Atlantic City, NJ, 1967,
pp. 483–485.

[52] T. Morad, U. Weiser, A. Kolodnyt, M. Valero, and E. Ayguade, “Performance,
power efficiency and scalability of asymmetric cluster chip multiprocessors,”
Computer Architecture Letters, vol. 5, no. 1, pp. 14 –17, jan.-june 2006.

[53] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous multi-
core architectures,” in Proceedings of the 5th European conference on Com-
puter systems, Paris, France, april 2010, pp. 125–138.

[54] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating
critical section execution with asymmetric multi-core architectures,” in Pro-
ceedings of the 14th international conference on Architectural support for pro-
gramming languages and operating systems, march 2009, pp. 253–264.

[55] S. Eyerman and L. Eeckhout, “Per-thread cycle accounting in smt processors,”
ACM SIGPLAN Notice, vol. 44, no. 3, pp. 133–144, march 2009.

[56] S. Eyerman, K. Du Bois, and L. Eeckhout, “Speedup stacks: Identifying scal-
ing bottlenecks in multi-threaded applications,” in 2012 IEEE International

118

Symposium on Performance Analysis of Systems and Software, april 2012, pp.
145 –155.

[57] S. Eyerman and L. Eeckhout, “Probabilistic job symbiosis modeling for smt
processor scheduling,” ACM Transactions on Architecture and Code Optimiza-
tion, vol. 38, no. 1, pp. 91–102, march 2010.

[58] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches,”
in The 39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, Orlando, FL, december 2006, pp. 423 –432.

[59] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer,
“Adaptive insertion policies for managing shared caches,” in Proceedings of
the 17th international conference on Parallel architectures and compilation
techniques, Toronto, Ontario, Canada, october 2008, pp. 208–219.

[60] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP),” in Proceed-
ings of the 37th annual international symposium on Computer architecture,
Saint-Malo, France, june 2010, pp. 60–71.

[61] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and J. Emer,
“CRUISE: cache replacement and utility-aware scheduling,” in Proceedings of
the 17th international conference on Architectural Support for Programming
Languages and Operating Systems, London, England, UK, march 2012, pp.
249–260.

[62] S. Cho and L. Jin, “Managing distributed, shared l2 caches through OS-level
page allocation,” in The 39th Annual IEEE/ACM International Symposium
on Microarchitecture, Orlando, FL, december 2006, pp. 455 – 468.

[63] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-
based multicore cache management,” in Proceedings of the 4th ACM European
conference on Computer systems, Nuremberg, Germany, 2009, pp. 89–102.

[64] J. Weinberg and A. Snavely, “Symbiotic space-sharing on SDSC’s datastar
system,” in The 12th Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, 2006, pp. 192 – 209.

119

[65] A. C. Sodan and L. Lan, “LOMARC: Lookahead matchmaking for multire-
source coscheduling on hyperthreaded CPUs,” Parallel and Distributed Sys-
tems, IEEE Transactions on, vol. 17, no. 11, pp. 1360 –1375, nov. 2006.

[66] E. Frachtenberg, G. Feitelson, F. Petrini, and J. Fernandez, “Adaptive parallel
job scheduling with flexible coscheduling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 11, pp. 1066 – 1077, nov. 2005.

[67] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
8th ed. San Francisco, CA: John Wiley & Sons, Inc., 2008.

[68] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution migration in a
heterogeneous-isa chip multiprocessor,” in Proceedings of the seventeenth in-
ternational conference on Architectural Support for Programming Languages
and Operating Systems, London, UK, 2012, pp. 261–272.

[69] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Automated
application-level checkpointing of mpi programs,” in Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel program-
ming, San Diego, CA, jun 2003, pp. 84–94.

[70] F. Karablieh, R. Bazzi, and M. Hicks, “Compiler-assisted heterogeneous check-
pointing,” in Proceedings of the 20th IEEE Symposium on Reliable Distributed
Systems, 2001.

[71] D. G. von Bank, C. M. Shub, and R. W. Sebesta, “A unified model of pointwise
equivalence of procedural computations,” ACM Transactions on Programming
Languages and Systems, vol. 16, no. 6, pp. 1842–1874, nov 1994.

[72] Z. Zhu and Z. Zhang, “A performance comparison of dram memory system
optimizations for smt processors,” in The 11th International Symposium on
High-Performance Computer Architecture, feb. 2005, pp. 213 – 224.

[73] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez,
A. Ramirez, and M. Valero, “Predictable performance in smt processors: syn-
ergy between the os and smts,” Computers, IEEE Transactions on, vol. 55,
no. 7, pp. 785 – 799, july 2006.

[74] S. Sair and M. Charney, “Memory behavior of the SPEC2000 benchmark
suite,” IBM, Research Report, oct. 1999.

120

[75] E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Characterizing and predict-
ing program behavior and its variability,” in Proceedings of the 12th Interna-
tional Conference on Parallel Architectures and Compilation Techniques, New
Orleans, LA, september 2003, pp. 220–231.

[76] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining in-
sights into multicore cache partitioning: Bridging the gap between simulation
and real systems,” in The IEEE 14th International Symposium on High Per-
formance Computer Architecture, New Orleans, LA, february 2008, pp. 367
–378.

[77] Y. Xie and G. H. Loh, “Dynamic classificaion of program memory behaviors
in cmps,” in The 2nd Workshop on Chip Multiprocessor Memory Systems and
Interconnects, Beijing, China, june 2008, pp. 340–351.

[78] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache
contention on a chip multi-processor architecture,” in Proceedings of the 11th
International Symposium on High-Performance Computer Architecture, San
Francisco, CA, feburary 2005, pp. 340–351.

[79] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” in Proceedings of the 34th
annual international symposium on Computer architecture, San Diego, CA,
june 2007, pp. 381–391.

[80] J. Chen, L. K. John, and D. Kaseridis, “Modeling program resource demand
using inherent program characteristics,” SIGMETRICS Perform. Eval. Rev.,
vol. 39, no. 1, pp. 1–12, june 2011.

[81] C. Pereira, J. Lau, B. Calder, and R. Gupta, “Dynamic phase analysis for
cycle-close trace generation,” in Proceedings of the 3rd IEEE/ACM/IFIP in-
ternational conference on Hardware/software codesign and system synthesis,
Jersey City, NJ, September 2005, pp. 321–326.

[82] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring and
prediction on real systems with application to dynamic power management,”
in Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, Orlando, FL, december 2006, pp. 359–370.

[83] J. Lau, S. Schoenmackers, and B. Calder, “Transition phase classification and
prediction,” in The 11th International Symposium on High-Performance Com-
puter Architecture, San Antonio, TX, february 2005.

121

[84] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in
Proceedings of the 30th annual international symposium on Computer archi-
tecture, San Diego, CA, june 2003, pp. 336–349.

[85] J. K. Hollingsworth, “An online computation of critical path profiling,” in
Proceedings of the SIGMETRICS symposium on Parallel and distributed tools,
Philadelphia, PA, may 1996, pp. 11–20.

[86] N. B. Lakshminarayana, J. Lee, and H. Kim, “Age based scheduling for asym-
metric multiprocessors,” in Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, Portland, OR, november
2009, pp. 1–12.

[87] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck identifica-
tion and scheduling in multithreaded applications,” in Proceedings of the sev-
enteenth international conference on Architectural Support for Programming
Languages and Operating Systems, London, UK, march 2012, pp. 223–234.

[88] B. Fields, R. Bodik, and M. Hill, “Slack: maximizing performance under
technological constraints,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture, may 2002, pp. 47 –58.

[89] B. Fields, S. Rubin, and R. Bodik, “Focusing processor policies via critical-
path prediction,” in Proceedings of 28th Annual International Symposium on
Computer Architecture, June 2001, pp. 74 –85.

[90] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, “A comprehensive
scheduler for asymmetric multicore systems,” in Proceedings of the 5th Euro-
pean conference on Computer systems, Paris, France, april 2010, pp. 139–152.

[91] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang,
S. Blagodurov, and V. Kumar, “HASS: a scheduler for heterogeneous multicore
systems,” SIGOPS Operating System Review, vol. 43, no. 2, pp. 66–75, april
2009.

[92] T. T. Soong, Fundamentals of probability and statistics for engineers. Hobo-
ken, NJ: John Wiley & Sons, Incorporated, 2004.

[93] R. D. Yates and D. J. Goodman, Probalility and stochastic processes: a friendly
introduction for electrical and computer engeineers, 2nd ed. San Francisco,
CA: Wiley, John & Sons, Incorporated, 2004.

122

[94] J. L. Henning, “SPEC CPU2000: measuring CPU performance in the new
millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

[95] R. Bitirgen, E. Ipek, and J. Martinez, “Coordinated management of multiple
interacting resources in chip multiprocessors: A machine learning approach,”
in The 41st IEEE/ACM International Symposium on Microarchitecture, nov.
2008, pp. 318–329.

[96] B. Hickmann, A. Krioukov, M. Schulte, and M. Erle, “A parallel ieee p754
decimal floating-point multiplier,” in The 25th International Conference on
Computer Design, oct. 2007, pp. 296–303.

[97] B. Curran, B. McCredie, L. Sigal, E. Schwarz, B. Fleischer, Y.-H. Chan,
D. Webber, M. Vaden, and A. Goyal, “4GHz+ low-latency fixed-point and
binary floating-point execution units for the POWER6 processor,” in IEEE
International Solid-State Circuits Conference, feb. 2006, pp. 1728–1734.

[98] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,” January 2005,
http://sesc.sourceforge.net.

[99] P. M. Ortego and P. Sack. (2004) SESC: Super ESCalar simulator. [Online].
Available: http://sesc.sourceforge.net/sescdoc.pdf

[100] J. Veenstra and R. Fowler, “MINT: a front end for efficient simulation of
shared-memory multiprocessors,” in Proceedings of the Second International
Workshop on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems, Durham, NC, feb. 1994, pp. 201 –207.

[101] D. A. Patterson and C. H. Sequin, “RISC I: A reduced instruction set VLSI
computer,” in Proceedings of the 8th annual symposium on Computer Archi-
tecture, Minneapolis, MN, 1981, pp. 443–457.

[102] D. A. Patterson and D. R. Ditzel, “The case for the reduced instruction set
computer,” SIGARCH Comput. Archit. News, vol. 8, no. 6, pp. 25–33, oct.
1980.

[103] J. Renau, B. Fraguela, and L. Wei. (2002) SESC: Super ESCalar simulator.
[Online]. Available: http://sesc.sourceforge.net/slide1.pdf

123

http://sesc.sourceforge.net/sescdoc.pdf
http://sesc.sourceforge.net/slide1.pdf

[104] Y. Sazeides and T. Juan, “How to compare the performance of two SMT mi-
croarchitectures,” in Proceedings of IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, Tucson, AZ, aug. 2001, pp. 180–183.

[105] M. Gulati and N. Bagherzadeh, “Performance study of a multithreaded su-
perscalar microprocessor,” in Proceedings of 2nd International Symposium on
High-Performance Computer Architecture, San Jose, CA, feb. 1996, pp. 291–
301.

[106] S. Hily and A. Seznec, “Contention on 2nd level cache may limit the effective-
ness of simultaneous multithreading,” IRISA, Tech. Rep., feb. 1997.

[107] E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid and early
simulation points,” in Proc. of 12th International Conference on Parallel Ar-
chitectures and Compilation Techniques, New Orleans, LA, oct. 2003, pp. 244–
255.

[108] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster and
more flexible program analysis,” in Journal of Instruction Level Parallelism,
no. 7, 2005, pp. 1 – 28.

[109] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, “Analysis and approximation
of optimal co-scheduling on chip multiprocessors,” in Proceedings of the 17th
international conference on Parallel architectures and compilation techniques,
Toronto, Canada, october 2008, pp. 220–229.

[110] Y. Jiang, K. Tian, X. Shen, J. Zhang, J. Chen, and R. Tripathi, “The complex-
ity of optimal job co-scheduling on chip multiprocessors and heuristics-based
solutions,” IEEE Transactions on Parallel and Distributed Systems, vol. 22,
no. 7, pp. 1192 –1205, july 2011.

[111] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “AKULA: a toolset for exper-
imenting and developing thread placement algorithms on multicore systems,”
in Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques, Vienna, Austria, sep. 2010, pp. 249–260.

124

VITA

LICHEN WENG

February 13, 1986 Born, Nanjing, Jiangsu, China

2008 B.E., Electrical Engineering and Automation
Nanjing Normal University
Nanjing, Jiangsu, China

2008–2011 Doctoral Student
Florida International University
Miami, Florida

2008–2009 Teaching Assistant
Florida International University
Miami, Florida

2008–2012 Research Assistant
Florida International University
Miami, Florida

2011–2012 PhD Candidate
Florida International University
Miami, Florida

2012 M.S., Computer Engineering
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

D. Arteaga, M. Zhao, C. Liu, P. Thanarungroj, and L. Weng, “Cooperative Virtual
Machine Scheduling on Multi-core Multi-threading Systems - A Feasibility Study”.
In Workshop on Micro Architectural Support for Virtualization, Data Center Com-
puting and Clouds, in conjunction with MICRO–43, Atlanta, GA, December 5, 2010.

L. Weng, Quan, G. and C. Liu, “PCOUNT: A Power Aware Fetch Policy in Simul-
taneous Multithreading Processors”. In The 1st International IEEE Workshop on
Thermal Modeling and Management: Chips to Data Centers, in conjunction with
IGCC 2011, Orlando, FL, July 25, 2011.

L. Weng, and C. Liu, “On Better Performance from Scheduling Threads according
to Resource Demands in MMMP”. In The 6th International Workshop on Schedul-
ing and Resource Management for Parallel and Distributed Systems, in conjunction

125

with ICPP’10, San Diego, CA, September 13, 2010.

L. Weng, X. Niu and C. Liu, “Intelligent Controller with Cache for Critical Infras-
tructures”. In The IET International Conference on Frontier Computing -Theory,
Technologies and Applications, Taichung, Taiwan, August 4–6, 2010.

L. Weng, and C. Liu, “Fetching According to the Evaluated L2 Cache Misses By
OLS Regression in SMT Architecture”. In Poster Session in the 16th Conference on
Architecture Support for Programming Languages and Operating Systems, Newport
Beach, CA, March 6, 2011.

L. Weng, and C. Liu, “Hardware-aided Monitoring of L1 and L2 D-Cache Misses in
SMT”. In Poster Session in the 3rd Workshop on Functionality of Hardware Perfor-
mance Monitoring, in conjunction with MICRO-43, Atlanta, GA, December 4, 2010.

126

	Florida International University
	FIU Digital Commons
	4-23-2012

	A Hardware and Software Integrated Approach for Adaptive Thread Management in Multicore Multithreaded Microprocessors
	Lichen Weng
	Recommended Citation

	INTRODUCTION
	The Motivation
	Scope of the Study
	Significance of the Study
	The Dissertation Organization

	THEORETICAL PERSPECTIVE AND LITERATURE REVIEW
	Hardware Architecture of the MMMP
	The SMT Architecture
	The Multicore Architecture

	Scheduling in the SMT Architecture
	The Long-Latency Load
	Instruction Fetch Policies for the LLC
	Proactive Instruction Fetch Policies
	More SMT Scheduling Policies
	SMT Scheduling for Parallel Programmes

	Multicore Scheduling in the OS
	Homogeneous Microprocessors
	Heterogenous Microprocessors
	Allocation of Memory Resources
	Scheduling Policies in Cluster
	Thread Replacement

	The Shared Resources and Workload Behaviors
	The Shared Resources
	Demands along Execution
	Demands among Workloads

	Summary of the Related Work

	THE ONLINE LINEAR MODEL
	The OLS Regression
	Construction of the OLM
	The Sampling Module
	The Regression Module

	Hardware Implementation
	The Sampling Engine
	The Regression Engine
	The Hardware Overhead

	Summary of the OLM

	THE REGRESSION-BASED ALGORITHM TO PRIORITIZE THREADS
	The Three-Module Design
	The Inherited Engines
	The Prioritization Engine

	Summary of the Hardware Overhead
	Experimental Methodology
	The Architectural Simulators
	The Workload Organization
	The Performance Measurement

	Experimental Results
	Implementation Details
	Performance Achievement
	Prediction Expectation of RAPT

	Sensitivity Analysis
	The Comparison between the RAPT and the RAPTn
	The Algorithmic Configurations
	The Cache Configurations

	Summary of the RAPT

	THE HARDWARE-ASSISTED SCHEDULING POLICY
	Static Mix-Scheduling
	Experimental Methodology

	Dynamic Mix-Scheduling
	The sMIX and the dMIX
	Throughput of the dMIX

	The Phase Triggered Scheduling Policy
	The Sample Module
	The Model Module
	The Phase Module
	The Pattern Module
	Performance Discussions

	Scalability in the HASP
	Increasing Capacity
	Compromise to Scalability
	More Designs in the HASP
	Scheduling in Larger Systems

	Summary of the HASP

	THE ADAPTIVE THREAD MANAGEMENT SCHEME
	Assembly of the ATMS
	Synchronization of the RAPT and the HASP
	Summary of the ATMS

	Performance Achievement

	CONCLUSION AND FUTURE WORK
	The Problems and Solutions
	The Proposed Policies
	Adaptability
	Integration
	Hardware Effectiveness
	Coordinated Hardware and Software

	Future Work

	BIBLIOGRAPHY
	VITA

