Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-30-2012

Scheduling Medical Application Workloads on
Virtualized Computing Systems

Javier Delgado
Florida International University, javier.delgado@fiu.edu

DOI: 10.25148/etd.F112050239
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

b Part of the Computer and Systems Architecture Commons, and the Numerical Analysis and
Scientific Computing Commons

Recommended Citation

Delgado, Javier, "Scheduling Medical Application Workloads on Virtualized Computing Systems" (2012). FIU Electronic Theses and
Dissertations. 633.
https://digitalcommons.fiu.edu/etd/633

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.fiu.edu%2Fetd%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.fiu.edu%2Fetd%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/633?utm_source=digitalcommons.fiu.edu%2Fetd%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SCHEDULING MEDICAL APPLICATION WORKLOADS ON VIRTUALIZED

COMPUTING SYSTEMS

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY

in
ELECTRICAL ENGINEERING
by

Javier Delgado

2012

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Javier Delgado, and entitled Scheduling Medical Application
Workloads on Virtualized Computing Systems, having been approved in respect to style

and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Armando Barreto

Jean Andrian

S. Masoud Sadjadi, Co-Major Professor

Malek Adjouadi, Major Professor

Date of Defense: March 30, 2012

The dissertation of Javier Delgado is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2012

il

DEDICATION

To my family

il

ACKNOWLEDGMENTS

I would like to start by thanking my family for their support, and for teaching me
many lessons along the way.

I would also like to thank my advisor, Malek Adjouadi, for supporting me through two
graduate degrees, for his patience, and for his guidance. I would also like to thank my
co-advisor, S. Masoud Sadjadi, for his guidance and for all the opportunities he afforded
me. My thanks also go to my committee members Dr. Armando Barreto and Dr. Jean
Andrian for their valuable input.

Several others have helped me throughout my graduate career, and there is not enough
space on one page to mention them all. My collaborators at IBM, Liana Fong, Norman
Bobroff, Yanbin Liu, and Setharami Seelam, without a doubt helped make me a better
researcher. My international collaborators in many places: Gabriel Gazolla, Esteban Clua,
Hector Duran, Rosa Badia, were very helpful to me both professionally and in helping me
get around during me visits. All my friends and collaborators at CATE also provided major
help along the way.

I appreciate greatly the support provided through the National Science Foundation
under grants CNS-0959985, HRD-0833093, CNS-1042341, and OISE-0730065. I am also
thankful for the clinical support provided by the Ware Foundation and the joint

Neuro-Engineering Program between FIU and Miami Children’s Hospital.

v

ABSTRACT OF THE DISSERTATION
SCHEDULING MEDICAL APPLICATION WORKLOADS ON VIRTUALIZED
COMPUTING SYSTEMS
by
Javier Delgado
Florida International University, 2012
Miami, Florida
Professor Malek Adjouadi, Major Professor
This dissertation presents and evaluates a methodology for scheduling medical application
workloads in virtualized computing environments. Such environments are being widely
adopted by providers of “cloud computing” services. In the context of provisioning
resources for medical applications, such environments allow users to deploy applications
on distributed computing resources while keeping their data secure. Furthermore, higher
level services that further abstract the infrastructure-related issues can be built on top of
such infrastructures. For example, a medical imaging service can allow medical
professionals to process their data in the cloud, easing them from the burden of having to
deploy and manage these resources themselves.
In this work, we focus on issues related to scheduling scientific workloads on
virtualized environments. We build upon the knowledge base of traditional parallel job

scheduling to address the specific case of medical applications while harnessing the

benefits afforded by virtualization technology. To this end, we provide the following
contributions:

e An in-depth analysis of the execution characteristics of the target applications
when run in virtualized environments.

e A performance prediction methodology applicable to the target environment.

e A scheduling algorithm that harnesses application knowledge and
virtualization-related benefits to provide strong scheduling performance and
quality of service guarantees.

In the process of addressing these pertinent issues for our target user base (i.e. medical
professionals and researchers), we provide insight that benefits a large community of
scientific application users in industry and academia.

Our execution time prediction and scheduling methodologies are implemented and
evaluated on a real system running popular scientific applications. We find that we are
able to predict the execution time of a number of these applications with an average error
of 15%. Our scheduling methodology, which is tested with medical image processing
workloads, is compared to that of two baseline scheduling solutions and we find that it
outperforms them in terms of both the number of jobs processed and resource utilization
by 20-30%, without violating any deadlines. We conclude that our solution is a viable
approach to supporting the computational needs of medical users, even if the cloud

computing paradigm is not widely adopted in its current form.

Vi

TABLE OF CONTENTS

CHAPTER PAGE
[. INTRODUCTIONccotiiiiiiiiiinieniteieetesieeie ettt sttt ettt 1
General Statement of the Problem Area...........cocccoeviiiiiiiniiiiiieeeee 1
OVETVIEW ..ttt ettt ettt et et e et et e st e et eeab e e bt e sabeenbeesateenbeenneas 1
State Of the ATt ..coeeeeeiee e 3
ParalleliZation...........coouieiiiiiieie e 4
The Role of Virtualization...........cccooueeiieriieiieiieeeeee e 6
Research Problemcoooiiiiiiiiiiiee e 8
Significance of the Studycocoviiiiiiiniii 9
Structure of the Research..........coocooiiiiiiiiii 10
II. LITERATURE REVIEW....cc.iiiiiiiiiiiiiiniitnteteeeeeee et 13
Performance of Scientific Applications on Virtualized Systems................ 13
Performance PrediCtion...........cooeeeiieiiiiiienieeeeeee e 15
General Performance Prediction Studiesc.ccoeceeviiiiiiniiciienieeee 15
Virtualization-Related Studiescoeouiiiiiiiiiniiiiie e, 17
Parallel Job Scheduling...........coceeviriiniiiiiiiiiiniceccecceceee 20
Medical Imaging as @ SEIVICEcoeruiriiriiiiieienecieetereee et 22
[II. PERFORMANCE ANALYSIS ...ttt 24
INfrastructure USEdooouiiiiiiiieii e e 24
Benefits and Drawbacks of Virtualizationccceeceevinieniniencenennens 26
Executing Scientific Jobs on Virtualized and Non-virtualized Systems.... 27
Characteristics of Parallel Applications...........cccceeveeeciienieeiieeneenieeneens 27
Application Execution on Virtualized Platforms.............ccoccovininnnncens 29
Modeling Application Execution on Shared CPU VMs.........ccccceuenneee 31
ApPPLications USEd........c.eecuieeiieiiieeiieiiecie ettt eve e e 32
Medical Image Processing..........cccverveeviierieenienieeiieeie e sveeseee e 32
Tightly Coupled Parallel Applicationscccceeeceeevieenieeiieenienieeneens 33
Virtualization Performance Impact in Dedicated-CPU Scenarios............. 36
TerMINOLOZY ..veeeiviieeiiiecee e et e e s 37
Performance Analysis of Image Processing with FSLccccc........ 37
Virtualization’s Impact on Tightly Coupled Applications...................... 41
Performance Analysis With Shared-CPU Executions...........c.cccecveveenennen. 48
Sharing CPU Among Loosely Coupled JObSccccocvveeiieriieciienieenen, 48
Sharing CPU Among Tightly Coupled JObS........ccceevvieviieiieieeiieien, 50

vii

IV. EXECUTION TIME PREDICTION METHODOLOGYcccccoceiiiiniieieenienne. 54

Overview of the Prediction Methodology..........ccccceriiniininiiniinenicnens 55
Prediction Model OVEIrVIEWcoceeviiriiniiiiinienieciecceeieee e 57

Applying the Model to Computation Time Predictionc..cccceeeeenueenenn 59

Image Segmentationccccecverieniiriieniineeie e 59

Image Re@IStration.......ccueeeiieiiieiiieiie ettt 60

LU Benchmark.........cccooiiniiiiniiiieiceecseeeece et 60

Scalability Predictioncoeeviiiiiniiiiniinieeeicecceeee e 61

Overview of Challengescoccveeviiriininiiniieeceeee e 63
Contribution Parameters Used in the Scalability Model 67

Model Creation and Profilingc.cccceevueniininiiniininicnecnceicnecee 68

Model Evaluation..........cocceveeiiriinieiiinienieeieeecseeeseeseee e 69

Extending the Prediction Methodology to Virtualized Platforms........... 72

Modeling the Effect of CPU Sharing on Execution Timeccccc.e...... 75
Description of the Model...........cocieiiiiiiiiiiiiieeeeeee e 79

Model Evaluation..........cccceveeiiniineniiinieieeieeecsieeeeteseee e 83

V. DEADLINE-DRIVEN DYNAMIC SCHEDULINGcccccocevvirianiiiienienienne 88
DESIZN OVEIVIEW ..ottt sttt sttt st 88
IMPIeMENtAtioNc..eeiiiiiiieiii et 89

TOOLS - 89
COMPONENLS ..ttt 90

Interaction Among COMPONENLEScoeerueeuerierierienieneeneeee e 94

Scheduling HEeuriSticsc..coouiriiriiiiriiieienieeecceee e 96
EValUAtION ..ooviiiiiiiiicec e 98

WOTKIOAA ... 99

Scheduling Alorithms.......cc.cooiiiiiiiiiiniie e 99

RESUILS ...t 101

VI. CONCLUSION AND FUTURE WORKc.ccccoiiimininiiieiciceceneseeeees 104
LIST OF REFERENCESooiiiiiiiieeee et 107
VITA ettt st 115

viii

LIST OF TABLES

TABLE PAGE
1. Sizes of the three classes of NPB inputs used..........cccceeviieiiieniieiienieeieeieeeeeee e 36
2. Percentage of CPU used for virtualization overhead running 1 process per VM 47
3. Percentage of CPU used for virtualization overhead running 2 processes per VM 48
4. Execution time and memory utilization for various FAST jJobS........cccceoveeveniieninniennne 61
5. Systems used to test our performance prediction methodology..........ccceevveeviiiiiennnnnne. 70
6. Model evaluation with 1 job, N0 CPU sharingccccceeviieiiieniennienieeeecie e 87
7. Model evaluation with 2 jobs sharing @ CPU...........cccceeiiiiiiiiiiiiniieiiee e 87
8. Model evaluation with 2 jobs sharing the CPU and using the adjusted model.............. 87
9. Parameters of jobs used for evaluating the scheduling algorithm...................cc..ec.... 103
10. Performance comparison of the 3 scheduling algorithmscccceevieviienieninnnen. 103

iX

LIST OF FIGURES

FIGURE PAGE
1. Algorithm for Compcomm benchmark. (a) pseudocode and (b) flowchart.................. 35
2. Execution times of the 7 most time consuming functions of FAST.........c..ccccceevenenn. 39
3. Execution time of MELODIC when run solo and when using 4 nodes....................... 40
4. Effect of increasing computation cycle duration on virtualization penalty.................. 42

5. Communication and computation times for LU-MZ (a) Class A and (b) Class C,
USING 2 PrOCESSES PET NOAE ..eoueiieiiieiiieiieiiieeieesite ettt ettt e et eebee st e e bt e s nteeseesnee e 44

6. Virtualization penalty for the original LU benchmark, running (a) 1- and (b) 2-

PIOCESSES PEI NOUE ...ouvieniieiieetieieeieetiesteete et e steeteesae st eteesaesseenseesaesseenseensesssenseensenneas 47
7. Eftfect of multiplexing up to 4 FAST jobs on one CPU on makespan.......................... 49
8. Overall I/O time, virtualization overhead, and makespan as a function of message

size, with (a) a single Compcomm job and (b) 2 multiplexed Compcomm jobs 52
9. Execution trace of Compcomm. (a) dedicated CPU, (b) shared CPU 53
10. Overview of the performance prediction methodologycccceeviievieniiienieciieiens 56
11. Execution time versus parallelism, keeping number-of-cores constant 72
12. Actual versus predicted execution times for Abe and Mindcccoeeveeveecuvennnnne. 72
13. Predicted and actual CPU and I/O times for LU AND LU-MZ........ccccccooeviiininniennnnne. 76
14. Predicted and actual CPU and I/O times for WRFccccoooiiiiiiiniiiineceee 76
15. CPU time of different workers and execution time when multiplexing each one......... 79
16. Component overview: (a) Scheduler, (b) Resource Manager, (¢) Job Monitor 95
17. Slot availability at different times for a physical machine.............c.ccoevvvevieniieiiennans 96
18. Timeline: interaction of scheduling components during a job's lifecycle...................... 96

19. Assumed execution time model for image segmentation jobs

xi

CHAPTER1

INTRODUCTION

1.1 General Statement Of The Problem Area

I.1.1 Overview

Medical imaging workloads can consist of hundreds of individual images of one or more
patients, requiring a large amount of computing resources to process. Professionals and
researchers who work with these workloads face a complex problem: they need expensive
computing infrastructure to process their data in a reasonable amount of time, but their
usage pattern, which consists of long periods of little or no CPU requirements followed by
occasional bursts of CPU demands, makes it difficult to justify the cost of purchasing and
maintaining these resources. This problem can be addressed by sharing resources among
many users, although this can create problems when multiple users need to access the
resources at the same time.

A contemporary solution to this problem is cloud computing, as described in [1-3], in
which massive cloud providers sell resources using a utility-based model. Users submit
jobs, consisting of input problem(s) to be processed by a given application, to these
providers and only pay for the computing resources required for the given job. Providers
typically use some cost model to bill users. The cost model may be monetary or based on

some other established means of controlling and/or rationing each user’s resource

consumption. For example, academic users may access nationally funded computing
infrastructure such as the Teragrid [4] by applying for credits (e.g. compute units).

Advances in virtualization technology [5-6] allow users to deploy custom application
environments in minutes and without the upfront and maintenance costs associated with
owning the machines. In this context, users can be end users paying to lease the resources
directly or providers of higher level services. The cloud usage model is often divided into
three main levels of abstraction: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). In laaS, users deploy arbitrary applications on
machines residing somewhere “in the cloud.”

As the lowest level offering, [aaS is most applicable to users who need to create their
own customized environment without worrying about the initial costs of purchasing
equipment or the ongoing costs of fixing hardware and cooling the systems. For example,
the Amazon Elastic Compute Cloud (EC2) allows users to lease their machines in
increments of an hour according to a pricing model. PaaS solutions provide a
programming environment on which users can deploy higher level applications. For
example, Google App Engine [7] provides a framework for users to deploy web
applications. Finally, SaaS providers offer specific services for a target demographic.
Going back to medical imaging, a medical image processing service would allow users to
upload data sets and apply different algorithms to them. With virtualization technology, a

medical image processing service can be deployed in a relatively small amount of time.

In order for the cloud paradigm to be adopted, certain criteria must be met. From a
user’s perspective, it is necessary to satisfy certain quality of service (QoS) objectives. For
example, medical specialists work on tight schedules, so it is necessary to have data
available for them by a given time. On the other hand, providers need to justify their
investment, which implies that they need to keep their resources highly utilized while
minimizing individual response times. Balancing utilization and response time, while
satisfying deadlines, necessitates the use of non-trivial job scheduling techniques. In order
to satisfy deadlines, the execution times of submitted jobs must be known either by the
provider or the user. Since the provider’s resources may be heterogeneous, dynamic,
and/or confidential, the burden of predicting performance generally lies on the provider.

Within this context, this dissertation addresses the issue of predicting performance
and scheduling jobs such that deadlines are met, which we consider a prerequisite for a
medical imaging as a service offering. We also explore scenarios in which multiple kinds
of scientific applications are provided as a service, while running on the same set of
hardware. In the process, we explore related issues such as the impact of virtualization on

application execution.

1.1.2 State of the Art

A shift towards the cloud paradigm, in which most of the computationally intensive
processing required by a large set of users is performed at specialized data centers, is

currently receiving much attention in industry and academia. This paradigm can be more

cost effective in terms of hardware and operational costs. According to Google Trends, the
term “cloud computing” has reached “disruptive” status [8]. This usage model is
particularly attractive for users who require demanding, but relatively infrequent access to
resources, such as medical professionals and meteorologists.

There are currently several commercial providers of cloud resources. While medical
professionals can use their services, the fact that resources are provisioned on a best-effort
basis implies that they are not guaranteed that their jobs will complete before a certain
deadline. The fact that their workloads must be processed in a certain amount of time can
deter them from using current cloud offerings, unless the provider can guarantee that their

jobs will finish before a given time.
1.1.3 Parallelization

Parallelization of computationally intensive software is becoming an unavoidable
requirement. For decades, the performance of individual CPUs increased at a steady rate;
this scaling up of compute power enabled soft scaling of compute-intensive software (i.e.
existing software would become faster over time by virtue of increased CPU clock
frequency). The “power wall” reached early on in the 21* century motivated the
development of multicore processors capable of running multiple application processes
simultaneously, in turn requiring software to scale out in order to achieve faster execution

time.

Different methods of parallelization are possible, depending on the computational
requirements and computational characteristics of the problem addressed. For problems
that process a large amount of data, the single-program, multiple-data (SPMD) approach is
the most popular. In this approach, multiple workers execute the same program on subsets
of the input data. Different approaches can be used to parallelize a given problem using
SPMD, each with its own benefits and drawbacks, and the choice to be made depends on
the problem’s coupling, size, and available development time and/or manpower.

Coupling, in this context, refers to how interrelated the processing of subsets of data is.
For example, in a medical image, a filtering algorithm in which neighboring pixels affect
the output value of a particular pixel would be considered tightly coupled. Performing the
same algorithm on separate images would be considered loosely coupled.

One parallelization approach is to implement a parallel algorithm for a given problem,;
this has several benefits: (1) it works well with tightly coupled programs; and (2) there is
greater potential to speed up the program’s execution as long as the algorithm itself scales
well on the hardware it runs on. There are also several drawbacks: (1) the code may not be
implementable in parallel, hence requiring extensive rewriting; and (2) some programs,
particularly tightly coupled ones, incur some overhead due to sharing of data during
execution, so resources may be wasted during execution. Recall that scalability is dictated
by Moore’s Law [9]. The alternative (i.e. loosely coupled) approach consists of sending

unrelated subsets of the data to different CPUs. This approach is easier, unless

parallelization of the algorithm is trivial. The main challenge with this approach is
ensuring that all CPUs remain busy. Even though having tasks finish at different times on
a loosely coupled program does not affect its results, the results of many loosely coupled
problems are only useful after all the data have been processed. For example, a medical
professional submitting a batch of medical images to be processed needs to obtain a

statistical summary of all results to make further prognosis.

1.1.4 The Role of Virtualization

Cloud computing relies heavily on resource virtualization technology, due to the following
key benefits:

Data Isolation: An issue with allowing multiple users to share physical machines is that
their data can be compromised. This problem is particularly undesirable when the
workloads being processed contain medical data. Operating system access controls can
address this issue, but simply deploying separate virtual machines (VMs) is easier and less
error prone. Also, by giving each user a VM they each get full control of what software
they can install on the system. In contrast, using regular operating system access control
mechanisms precludes users from most administrative powers, such as the ability to install
software.

Resource Isolation: Virtualization technology provides a finer grain of control of each
VM’s CPU and memory allocation. There are multiple cases in which this is useful in the

context of job scheduling. One is the ability to provide higher allocation to higher-priority

jobs. Another is to allow jobs that arrive when all physical machines are occupied running
long-duration jobs to execute immediately, possibly sharing the CPU with other jobs,
rather than waiting in a queue. For example, consider a scenario in which a large,
long-duration parallel job is using all available physical machines and a user wants to
submit a small, short-duration job. If only a single job is allowed per physical machine,
the short job has to wait for the large job to finish, resulting in poor response time.

Resource isolation can be harnessed to strategically collocate jobs with
complementary resource requirements, resulting in better resource utilization. For example,
some parallel applications spend a significant portion of their execution performing 1/0,
which is computationally inexpensive. By combining multiple parallel jobs with this
behavior, CPU utilization can be increased.

Historical workload data has shown that scientific workloads have a bursty behavior,
i.e. occasional periods in which a relatively large number of jobs arrive [10-11].
Collocating jobs can be beneficial for this as well. As a case in point, gang scheduling [12]
has demonstrated improved scheduling performance, although it can lead to resource
fragmentation if the total number of tasks is not a multiple of the number of available
processors. Similarly, in [13] and [14], the authors simulate a scheduling algorithm that
leverages CPU sharing, and average job response times improved by a factor of 8 or more,
depending on specific optimizations, compared to only running one job at a time per

machine using the popular EASY job scheduling algorithm [15].

On the other hand, providing resource isolation requires additional computational
processing that can significantly impact application performance. Scientific applications
that perform a lot of I/O are particularly susceptible to this overhead. It is important to
know the extent of this overhead to decide whether the computational cost is worth the
benefits afforded by virtualization for these particular applications.

Migration: Another key feature enabled by virtualization technology is the ability to
easily migrate virtual machines across physical machines. This allows applications to be
moved around or across data centers for improved load balancing. This feature can be
used to retroactively improve job placement when a job scheduling algorithm leaves the

system in a sub-optimal state.

1.2 Research Problem

The central goal of this dissertation is to develop a scheduling methodology that addresses
the time-sensitive nature of the jobs that are typically submitted by medical professionals,
while balancing resource utilization and job response time. To this end, multiple issues
need to be addressed. First, it is necessary to have a real-world understanding of the
behavior of the applications that these users use, including how the applications respond to
different run time conditions and the effect of running them in virtualized systems. In

order to satisfy deadlines, an execution time prediction methodology is required. Finally, a

scheduling methodology that uses this prediction model to complement theoretical

heuristics for optimized job scheduling must be implemented.

1.3 Significance of the Study

As mentioned earlier, the idea of running applications “in the cloud” has generated a lot of
interest for academics as well as end users. The scientific community in particular is
experiencing a period of expanding growth in the amount of data to be processed. For
example, in [16], the authors cite that “the number of genomes has increased
approximately 12 fold over the last 5 years.” The amount of data generated by medical
acquisition devices is also growing, in turn requiring more computational power to harness
the additional data for improved medical diagnosis. The authors of [16] find that using
clouds for certain genomics applications is cost effective. Another benefit the cloud may
achieve is the “democratization” of science [17], which refers to the fact that a relatively
small percentage of institutions have the means to perform large scale scientific
experiments due to the large entry costs associated with purchasing and maintaining
supercomputers. Cloud providers promise that “anyone with a credit card” can access
these huge data centers to run their experiments.

The findings presented in this dissertation benefit a large community that may not
necessarily be interested in cloud computing. For example, the benefits of virtualization

that were mentioned provide a practical way of improving job scheduling and resource

utilization. In terms of resource sharing, it is common for medical establishments to
collaborate with each other and even with universities. Sharing compute resources can
help reduce the costs of processing medical workloads, in turn reducing overall operating
costs and the cost of healthcare. Our studies on performance analysis and modeling

provide important insights about the behavior of popular scientific applications.

1.4 Structure of the Research

We separate the work presented in this dissertation into three interrelated contributions.
First is an in-depth analysis of the performance of several applications in virtualized and
non-virtualized environments. Second is the development of performance prediction
methodology. Third is the development of the job scheduling and resource management
methodology.

We start by discussing previous and related work in Chapter II. In Chapter III, we
summarize our observations from an in-depth look at the performance characteristics of
different scientific applications. These observations are based on actual application
executions on a compute cluster configured similar to the machines used in cloud data
centers. We focus on medical applications, but since in-depth performance analyses are
beneficial to a wide audience, we broaden the scope of our analysis by also studying some
popular CPU-intensive fluid-dynamics applications. This chapter describes the computing

infrastructure used for this study, how it was configured, and the implications and benefits

10

of virtualization. We then give an overview of the applications used, including their
purpose, and some general algorithm- and implementation-related details. This section
serves two purposes. First, it assists us in implementing the performance prediction
methodology described in the following section. Second, we measure the magnitude of the
performance impact of virtualization. Studies in the literature have given mixed results on
this and we attempt to fill this gap with more in-depth analysis and new insights.

Based on the observations made in Chapter III, we implement and describe our
performance prediction methodology in Chapter I'V. The prediction methodology is broken
down into prediction of computation time (i.e. how will different problem sizes affect
computation time?), prediction of scalability (i.e. how do different system configurations
affect execution time?) and prediction of execution prolongation due to resource sharing
(i.e. in multitenant virtualized environments when the CPU is shared by multiple VMs).
Both models rely on historical execution data, which allows us to use mathematical
predictors that provide fast predictions, such that scheduling decisions can be performed in
real time. The accuracy of the models is tested with different applications and the results
are presented.

The performance prediction methodology can then be applied to the scheduler, which
constitutes the scheduling methodology described in Chapter V. The scheduler assigns
jobs to machines. In addition to the scheduler, we implement a resource manager to track

the utilization of all resources in the cluster and a job monitor to ensure that jobs are

11

getting enough resources to satisfy the scheduling objectives. The scheduling
methodology is evaluated empirically by comparing to currently available schedulers.
Chapter VI concludes the dissertation with a summary of the results, some discussion,

and future work.

12

CHAPTER II

LITERATURE REVIEW

In this chapter, we discuss related work. We break this down into four sections, one for
each of our contributions presented in chapters III-V and one on work related to the main

goal of provisioning medical imaging services in cloud-like environments.

I1.1 Performance of Scientific Applications on Virtualized Systems

The use of virtualized data centers has proven successful for commercial cloud providers,
particularly for provisioning resources to web application providers, as evidenced by the
list of users [18] available from Amazon, who is currently the most well known public
cloud service provider. Noting that virtualization adds computational overhead, as we will
describe in Chapter III, others have studied the performance of virtualized applications [5],
[19-24]; some of them specifically studied scientific applications [20-25]. For example, in
[20], the authors evaluate the performance impact of Xen on different parallel application
benchmarks. Among their contributions, they analyze the performance penalty of Xen on a
few applications and observe a virtualization overhead of up to 20%. On the other hand,
the authors of [21] do not find significant overhead on similar applications.

We address discrepancies by adding more in-depth insight compared to existing work,
particularly on how communication characteristics and problem size impact application

performance when running on virtualized systems instead of “bare metal.” To this end, we

13

provide quantitative data about virtualization overhead for different execution scenarios,
including different applications, problem sizes, numbers of nodes, and processes per node.
Using the discord in the previous paragraph as a specific example of how our findings are
beneficial, the authors of [21] concluded that parallel applications whose tasks
communicate data frequently experience negligible virtualization overhead. We noticed
that the jobs they studied had computation rates below 50% and our studies demonstrate
that virtualization overhead is negated when the computation rate of a job is low since
virtualization-related overhead processing can be performed while the physical
communication of data is taking place. On the other hand, virtualization is significant with
moderate computation rates. The results provided in [25] re-enforce this conclusion, as
evidenced by the fact that using 8 nodes results in a large execution time penalty with Xen,
while using 32 nodes result in a minor penalty.

In [23], they use some popular parallel benchmarks to evaluate the overhead of Xen.
They use more low-level profiling details such as the number of cache misses. Their goal
was to be able to predict virtualized performance by application, but they find that this is
not possible with their approach. We will show that predicting virtualization impact is

possible using a model that is aware of system configuration and application input.

14

II.2 Performance Prediction

II.2.1 General Performance Prediction Studies

Performance prediction has a long history, but new uses have emerged, particularly for
HPC applications. Early work was done for the purpose of architecture design [26].
Current uses include resource allocation and capacity planning [27-28]. In [28], the
authors implement a performance prediction framework, but it relies on users knowing
how long they need the computing resources for. Most of the work on capacity planning
targets web application environments, which have different execution characteristics than
scientific applications. Queuing networks are often used for modeling these environments.
In contrast, for scheduling scientific applications, the problem is predicting how quickly a
given computational problem can be completed with a given amount of resources.

The approaches for predicting execution time of scientific applications include
methods that use popular analysis and optimization tools such as Dimemas and Vampir
[29], tasks scheduling [30], and statistics [31-32]. Other works focus on system specific
approaches [33]. In [34], the authors describe the use of the Dimemas tool to perform
prediction of the execution behavior of message passing applications. Their results are
good, but the tools used require intimate knowledge about the execution domain and
special trace files need to be generated for each application. It is possible to dynamically
link the trace-file-generation library with most applications, but in some cases a complete

recompilation of the application being profiled is necessary.

15

Like us, the authors of [32] use a prediction model based on linear regression. Their
approach relies on user input, while we attempt to provide a prediction without any user
input required, although is information could help increase prediction accuracy.

The effort described in [36] allows for cross-platform performance prediction of
parallel applications. The prediction is achieved by combining the application’s
performance in a reference system and the relative performance between the two systems
derived from a partial execution on the target platform. The source code of an application
is analyzed to identify the major time step loops and the source code is then modified to
include the API for the partial execution measurements. A key drawback of this effort in
the context of what our prediction methodology tries to achieve is that since run-time
profiling is not incorporated, dynamic changes in the system environment unavoidably
lead to inaccurate predictions.

The authors of [37] present a similar approach in trying to model the execution time
of an application on a particular set of resources for use in meta-scheduling decisions in a
grid environment as part of the lanos project. Their model includes several
application-specific parameters and characteristics, which can be done with our model, but
is not necessarily a prerequisite for good results. A large number of parameters may need
to be input by the user in regards to the application and target architecture, which can

result in longer times for deployment.

16

Reference [37] provides an approach similar to ours. The authors predict application
scalability on up to 1024 processors. They estimate communication and computation times
separately. Our approach models execution as a function of communication time and
computation time. Another fundamental difference with their work is that they use PMPI,
which works at the source code level, to instrument the communication. Our approach is
to profile externally using operating system facilities. Unlike our experiments, theirs keep
the parallelism level constant and they do not show their model’s cross-platform

prediction accuracy, since they test on a single system.

I1.2.2 Virtualization-Related Studies

The authors of [38] studied how accurately Xen enforces the CPU utilization constraints
and found that it does so effectively when VMs run CPU-bound applications. Our
experiments confirmed this, but we noticed that the share of CPU given to different jobs is
not distributed as expected when one of them creates virtualization overhead.

There has been work on predicting the execution time of applications run in
virtualized environments. Wood [19] provided a model for predicting the virtualization
penalty of web workload benchmarks, given historic run time information in a
non-virtualized environment. Our work is focused on analyzing virtualization overhead for
scientific applications in terms of their communication requirements. A comprehensive
virtualization overhead prediction model would complement our work, although we find

that for the jobs we experiment with, simply monitoring the execution host and measuring

17

overhead works well due to their iterative steady state execution behavior. We also look
into the effects of CPU sharing and its effect on execution time. We devise a model for
predicting the execution time of tightly-coupled jobs when they share the CPU with other
jobs, a topic that providers need to study in order to maximize CPU utilization while
satisfying service level agreement (SLA) requirements.

Resource requirements prediction for capacity planning for multi-tenant environments
that handle web workloads has also been addressed in [39-40]. Our work on multi-tenancy
is focused on the prediction of execution time for making on-the-fly job scheduling
decisions. This is related to parallel job multiprogramming, in which multiple parallel jobs
are executed on each node of a compute cluster, which was studied in the past [41-43]
(albeit without the fine-grained resource control allowed by VMs). In [41], the authors
compared different strategies for load balancing among multiprogrammed clusters and
found that gang scheduling provides the best CPU utilization compared to using blocking
I/O during non-working cycles. Gang scheduling involves using predefined time quanta
rather than voluntary blocking, which can be advantageous since it ensures threads of the
same job are active at the same time, but reduces the ability to mask I/O cycles. The VM
model of our work is similar to the voluntary blocking model, but we suspect that the
smaller cache sizes and larger context switch overhead of processors used for those earlier

studies favored the gang scheduling model. Another benefit of the VM model is that it

18

does not require any major modifications, whereas gang scheduling requires mechanisms
to ensure all tasks of a job enter the working state at the same time.

Our performance models complement simulation-based studies. For example,
Stillwell [13-14] evaluated the use of dynamic fractional scheduling via simulation using
real-world traces, while our work provides empirical results and a mathematical model to
align such simulations with real-world data.

Having realized the potential benefits of clouds for scientists, others have examined
the cost-effectiveness and performance of using commercial clouds for science [44]. One
of the issues they have found is inconsistency in both resource acquisition times and
application scalability. This could be due to different reasons, e.g. users may have to wait
in a queue during peak times or there may be over-commitment of resources (e.g. when
time sharing the CPU). This finding confirms the need for implementing mechanisms for
deadline satisfaction. Unlike our work, theirs looks at using the cloud from a user’s
perspective, while we look at it from a provider’s perspective.

There have been many efforts on other aspects of enhancing virtualization for
scientific computing. In [30] they enhance an MPI implementation for improved
intra-node (shared) memory performance. In [22], authors implemented a methodology
that achieves near-native performance on Xen using VMM-bypass, but it requires

Infiniband-based network infrastructure.

19

I1.2.3 Parallel Job Scheduling

Parallel job scheduling, which entails scheduling tasks requiring some amount of
computational processing on a fixed set of resources, has been studied for several years.
Feitelson published a survey of the state of the art in 2008 [45]. The problem is essentially
to minimize response times. Due to the high cost of computing systems, it is necessary to
compromise between response time and system utilization. A major problem is that job
arrivals are known to be “bursty” [10-11], i.e. there are periods of low utilization followed
by periods of high utilization. Overprovisioning data centers to accommodate occasional
bursts results in low return on investment, so it is preferable to focus on using job
scheduling algorithms and heuristics to ensure satisfactory job response times with the
available resources.

Recently, the interest in scheduling on virtual machines has surfaced. For example,
the authors of [13-14] explore dynamic fractional scheduling, in which fractions of
resources are given to jobs. Although they use simulations, VMs make this kind of
scheduling possible, as our results show. However, their work did not address the issue of
satisfying deadlines, which was central to our work.

Scheduling of bags-of-tasks workloads, which consist of large groups of independent
tasks, has seen particular interest. In [46], the authors present solutions for solving this

problem in the non-clairvoyant case and give insight into solving it in the clairvoyant case.

20

Their studies are not applicable to ours since they assume that all jobs arrive at the same
time.

In terms of cloud computing, the issue of SLA satisfaction has received a lot of
attention. In [47], they describe a monitoring framework for providing quality-of-service
(QoS) guarantees, but for multimedia applications whose QoS constraints are different
from scientific applications. Relatedly, in [48] they describe a framework for scheduling
jobs on VMs. They also discuss the issue of resource monitoring. However, no
performance studies are performed.

Gang scheduling [41-42] is closely related to VM-based scheduling in the sense that
the processor is over-provisioned. However, the resource allocation controls enabled by
virtualization add more flexibility (and complexity) to the scheduling algorithm. In our
work, we harness this flexibility in order to satisfy deadlines at the expense of additional
scheduling complexity.

Scheduling heuristics such as backfill [15] use execution time predictions to improve
scheduling performance. Traditionally, job submitters were required to provide this
information. Apart from being a burden on them, with cloud computing they may not even
know the compute power they are getting since the details of the infrastructure are
abstracted from them. Also, the predicted times have been shown to be inaccurate [49].
Hence, system generated predictions are necessary and are what we use in our work. In

[50], the authors demonstrate that system-generated predictions can improve scheduling

21

performance. In [10], the authors also find that, specifically when scheduling jobs in
compute grids, system generated predictions can help scheduling performance. Our work
also demonstrates the benefits of performance prediction, but unlike their approaches,
which rely solely on past execution data for job submitters, we extrapolate for execution
times with different types of resources and parallelism levels, in order to accommodate
deadlines and to account for the fact that CPU power might be shared by multiple virtual

machines.

I1.3 Medical Imaging as a Service

In [51], the authors describe the implementation of a service that uses the Aneka [52]
framework to processes electrocardiogram (ECG) data in real time. This work differs from
ours in that it is focused on using existing cloud frameworks and elasticity methods to
provide an ECG processing service. They do not address the issue of satisfying deadlines
nor provide analysis on scheduling objectives. Our work is focused on these scheduling
issues and our findings can be applied to different medical applications, even though we
test it with only one well-known set of such applications. As the authors of [10] found, the
resource acquisition times for EC2 are not dependable, which implies the need for
deadline satisfaction, which we address.

The work summarized in [53] is also closely related. The authors analyze the

performance of public and private cloud infrastructure for processing medical image

22

segmentation workloads. They harness the CometCloud [54] framework to manage the
executions based on cost and time constraints. Although their implementation optimizes
timeliness upon user request, they do not have mechanisms for deadline satisfaction.
Rather, it just allocates enough nodes to finish jobs as quickly as possible. They do not
compare the scheduling performance of different algorithms either.

We consider it necessary to support hard deadlines, rather than using best-effort
scheduling, to satisfy the needs of the medical community. Therefore, we focus on this
specific issue and at the same time analyze different scheduling algorithms in order to
maximize system utilization while also considering job response times. Both of the works
cited in this subsection can harness the scheduling methodology that we implemented to

provide a better experience to users of these technologies.

23

CHAPTER III

PERFORMANCE ANALYSIS
The purpose of this chapter is to provide a detailed analysis of the performance
characteristics of different scientific applications when run on virtualized and
non-virtualized computing resources. In-depth analysis is provided with emphasis on
medical applications. Some interesting findings were found with other applications, which
we describe in this chapter for the benefit of a wider audience. This analysis can be used
for evaluating the performance impact of the virtualization technology used, for capacity
planning, to observe the scalability characteristics of different parallel applications, and/or
to assist with job scheduling. In the next chapter, we apply the knowledge gained in this
section to a performance prediction methodology, which is later used in our scheduling
framework. Due to the important role of virtualization in the cloud paradigm, we provide
an in-depth analysis of the performance impact of virtualization on medical applications as
well as on some scientific benchmarks that have execution behavior representative of a

wide range of parallel applications.

111.1 Infrastructure Used

We use a 16-node compute cluster at the Center for Advanced Technology and Education
(CATE). We refer to this cluster as Mind. Each node in the cluster contains 2 single core

Intel Xeon processors with hyperthreading technology rated at 3.6GHz; they are based on

24

the Netburst CPU architecture. Each node has at least 2 GB of main memory. The nodes
are connected using a 1-gigabit Ethernet interconnection. The operating system is the
CentOS Linux distribution, version 5.3, included in version 5.2 of the Rocks cluster
distribution [24]. For comparing virtualized and non-virtualized experiments, half of the
physical nodes were configured as compute nodes and the other half were configured as
vm-container nodes using the Rocks Xen roll, which deploys selected worker nodes with
the Xen virtualization software, version 3.0.3 [5]. VM images used for the virtualized
experiments contain the same CentOS distribution, including the same kernel version.
VMs are deployed using OpenNebula [55].

For these experiments, we allot 2 CPU cores to each VM and execute up to 2 MPI
processes per node. Unless otherwise stated, each VM can use the full processing power
of each allotted processor. In the vm-container nodes, the dom0 (i.e. hypervisor) VM 1is
allowed to use the virtual processors (i.e. hyperthreads). We noticed performance
degradation when allowing Xen to dynamically change the virtual to physical CPU
mappings, so each virtual CPU in a VM is pinned to a specific physical CPU.

All software and guest VM images were installed on a shared file system, which is
hosted on the master node of the cluster. A virtual network was created using OpenNebula

to link the VMs. Xen’s standard network bridging configuration was used.

25

111.2 Benefits and Drawbacks of Virtualization

Virtualization is integral to cloud computing. Many benefits of virtualization were
highlighted in section 1.1.4. In regards to the resource utilization benefits of virtualization,
although scientific applications are computationally intensive, many transmit large
amounts of I/O during execution, resulting in unused CPU cycles. By sharing the CPU
among multiple such jobs, the I/O cycles of one job can be masked by another. Another
benefit virtualization solutions such as Xen and VMWare offer is the ability to precisely
control the CPU allocation of each VM. Our scheduling methodology harnesses this
functionality to ensure jobs are allotted enough CPU to meet their deadlines.

A drawback with virtualization is that it adds computational overhead [5,20-25]. For
scientific applications in particular, virtualization has been shown to result in a significant
performance penalty. The general consensus is that loosely coupled parallel applications
(i.e. those whose parallel tasks do not communicate throughout their execution) are not
significantly affected by this. Tightly coupled applications, whose workers must exchange
data throughout their execution, do suffer a performance penalty, although the magnitude
of the penalty reported in different studies has varied. Besides this drawback,
multi-tenancy complicates deadline satisfaction since it is harder to predict execution time
when only a portion of compute resources can be used. We address this with our

prediction model described in the next chapter.

26

III.3 Executing Scientific Jobs on Virtualized and Non-virtualized Systems

To aid in our analysis, and for later cross reference in the development of our performance
prediction model, we now describe the behavior of scientific applications, as observed by
running them on Mind. First, we describe their general execution characteristics that apply
in any environment. Then we describe details specific to their execution in virtualized
environments, particularly when time sharing the CPU. Some issues regarding the

modeling of application execution in these environments are also discussed.

IT1.3.1 Characteristics of Parallel Applications

The execution behavior of a parallel job naturally depends on its implementation and run
time configuration. For this work, we separate parallel applications into two classes. First,
there are loosely coupled parallel applications, in which all workers process unrelated data
sets or separate portions of a single data set; there is little or no inter-process
communication during execution of these applications (e.g. communication only occurs at
the beginning and/or end of the job’s execution.) The second type is the tightly coupled
parallel application, in which the workers of the application communicate frequently.
Tightly coupled applications can be further characterized as either fine grained or coarse
grained, depending on how often the workers communicate. Tightly coupled parallel
applications are iterative in nature. Each iteration consists of a computation phase, where a
subset of the problem is solved, followed by a communication phase, where data is

exchanged among workers. The point between the computation and communication

27

phases is called the synchronization point. Once a worker reaches the synchronization
point, it cannot proceed until it receives data for the next computation phase. As a result,
the worker with the highest computational load limits the execution rate of the entire job.
The size of the data transferred during the communication cycles depends on the
application, the problem size, and the number of workers. Using commodity network
infrastructure, a 60-80% duty cycle is common for tightly coupled jobs, depending on the
job’s problem size and on the granularity of communication. Some of the jobs we test in
our experiments are as low as 40%.

The fact that communications consume a significant portion of the execution time of
these jobs implies that CPU cycles are being wasted, unless other jobs time share the CPU
and hence mask the otherwise idle communication cycles. For example, we took a sample
of the first 800 jobs with CPU time requirements greater than 10 seconds from the Cornell
Theory Center workload trace from the Parallel Workloads Archive [56] and calculated the
mean ratio of CPU time to wall clock time for the jobs. We found that the mean CPU
utilization was 84%. We ran a similar test with the San Diego State University trace, this
time analyzing the first 2000 jobs requiring at least 100 seconds of CPU time and found
the mean CPU utilization to be 79%. By overcommitting the CPU, it is possible to
approach 100% utilization, resulting in a better return on investment. On the other hand, it

is necessary to account for context switching penalty, and if jobs have deadlines, they

28

must be taken into account. We analyze the context switching overhead of some

applications later in this chapter and we address the deadline issue in Chapter V.

I11.3.2 Application Execution on Virtualized Platforms

Our work focuses on Xen [5], although products like KVM [57] and VMWare [6] have
similar functionality. In the case of Xen, the hypervisor is a thin layer and the control of
VMs is accessed through a privileged virtual machine known as Domain (. Guest VMs are
referred to as user domains (or Domain U). I/O functions are handled by a driver domain,
which allows regular device drivers to be used and ensures 1/O is properly isolated. The
drawback is the additional CPU time required for virtualization overhead that occurs
during I/0O operations to process individual sets of data in order to route them to the
correct VM. This way, multi-tenant environments can be supported while ensuring that
VMs cannot access each other’s data.

Collocated virtual machines sharing a CPU are scheduled similar to processes in a
multiprogrammed operating system. That is, the hypervisor’s scheduler periodically
monitors VMs’ states and allocates a physical CPU to whichever VM is requesting it.
When more than one VM is requesting it, it is assigned to the one with the highest priority
for a given time quantum. In the version of Xen used for our experiments, a proportional
share scheduler known as the Credit Scheduler is used. The scheduler ticks every 10ms
and each tick is accounted to whichever VM is using the CPU. The default time quantum

for each VM is set at 30ms. Further details about this scheduler can be found in [58-59].

29

There are two states in which each VM can be: working and non-working. In the
working state, the VM is consuming CPU cycles. In the non-working state it is not, either
because it does not have work to do, is waiting for I/O, or because it has a negative credit
balance and a collocated VM is in need of the CPU. VMs build credits as long as they are
waiting for the CPU. The time a VM spends in each state depends on the resource
consumption characteristics of the processes it is running and its priority; the latter is
based on its scheduling parameters. In Xen, these parameters consist of a weight and a cap.
The weight parameter determines the share of processing power allotted to a VM when it
competes with others. For example, if a physical machine has 3 VMs with weights of 1, 1,
and 2, their shares are Y4, %, and ', respectively. The share value ranges from 0 to 1. The
cap 1s a hard limit on the percentage of the CPU capacity that a VM can use. Even if there
are free CPU cycles available, the VM cannot exceed its cap. On the other hand, a VM can
obtain more than its share if there is excess capacity available. In other words, imposing a
cap turns the Credit Scheduler into a non-work-conserving scheduler. The cap ranges in
value from 0 to 100. We refer to a VM’s allocation after accounting for the caps of all
VMs sharing the same CPU as the net share.

When two VMs running CPU-bound jobs share a CPU, each will proceed at a rate
proportional to its net share. Since VMs accumulate credits while they are not in the
working state, they each eventually get their fair share as long as they do not remain idle

for longer than the scheduler’s reset period [25-26], which is unlikely since small amounts

30

of CPU are required while performing message passing. I/O related virtualization

overhead is charged to the VM it pertains to.

I11.3.3 Modeling Application Execution on Shared CPU VMs

Since tightly coupled parallel applications tend to have iterative steady-state execution
behavior, their execution time under different CPU allocations can be estimated if their
computation and communication requirements are known. The scheduling behavior
outlined in the previous subsection dictates their execution rate. Since all tasks of a given
tightly coupled application proceed in lockstep, the one with the lowest CPU share limits
the execution rate of the others. Also, the computational load is not necessarily balanced
among all the workers of the job, so that of each worker must be known for optimal
prediction accuracy.

Our approach to modeling execution time relies on knowing the computation and
communication requirements of the application in question. We address how these can be
determined in the next chapter. If running in a VM, the virtualization overhead must be
measured separately since it is external to the VM itself. Xen provides user space tools to
obtain CPU accounting information. Using this information, the virtualization overhead
can be accurately determined, since it is added to the Domain-0 CPU consumption
statistics (as well as the user domain CPU consumption statistics). Subtracting the overall

execution time from the computation time in the dedicated CPU case yields the I/O time.

31

II1.4 Applications Used

1I1.4.1 Medical Image Processing

The medical image processing domain consists of applying complex, computationally
intensive algorithms to large sets of images. As we will confirm, these applications work
well in virtualized environments since there is little or no interprocess communication
when processing images from separate studies on different resources.

Our main focus will be on brain magnetic resonance image (MRI) processing. All of
the algorithms used are implemented in the FMRIB Software Library (FSL) [60]. MRI
studies can be dichotomized into structural and functional studies [61]. Structural studies
deal with the variability between adjacent brain tissues; we employ a segmentation tool
called FMRIB Automated Segmentation Tool (FAST) [62] for these experiments. The
algorithm it implements segments the basic tissues of the brain: gray matter, white matter,
and cerebral spinal fluid. FAST is an iterative algorithm that depends on the within tissue
variability while addressing problems arising from image noise, head motion artifacts and
inhomogeneity in the magnetic field, all of which affect the performance and speed of the
algorithm. On the other hand, functional studies deal with the temporal differences in the
activation of neurons. We test an exploratory algorithm called Multivariate Exploratory
Linear Optimized Decomposition into Independent Components (MELODIC), which

consists of a pipeline of algorithms that can be summarized to motion artifacts correction,

32

image registration [63] to high resolution MRI and to a standard brain image, and finally
probabilistic independent component analysis [64].

Data from 66 patients from Miami Children’s Hospital (MCH), the Children’s
Healthcare of Atlanta (CHOA), the Children’s Hospital of Philadelphia (CHOP), the
Children’s National Medical Center (CNMC), and BC Children’s Hospital (BCCH) were
used for these experiments. FAST and MELODIC jobs have similar computational
requirements for similarly-sized input data, so we only show results with a subset of the
input data. Specifically, we use fMRI datasets from 20 patients, where each dataset (which
consists of data from one medical study) consists of 14 slices of 64x64-pixel images and
150 time points in total. Each of the datasets also contains a 256x256 static MRI image.
The algorithms are applied to each patient separately, so the algorithms themselves do not
need to be implemented in parallel; instead, they are submitted as a bag of tasks, where
each task consists of applying the segmentation or registration algorithm to a single

dataset.

I11.4.2 Tightly Coupled Parallel Applications

While our main focus is on medical applications, we also measure the performance impact
of Xen on more general applications. The applications employed address a kind of parallel
application that was not covered with the other applications: the tightly coupled parallel

application. We later perform some experiments in which we schedule mixed parallel

workloads and observe the performance of our scheduling algorithm. This gives us deeper

33

insight on the performance of different kinds of tightly coupled parallel codes, which may
be useful for the development of new medical imaging algorithms.

The first benchmark used is a simple tightly coupled application we call Compcomm.
Its algorithm can be seen in Figure 1. It consists of iteratively performing a set number of
arithmetic operations followed by data exchange between 2 nodes. Barriers are used after
each iteration to measure performance fluctuations between iterations. The arithmetic
consists of multiplying three integers. The send and receive calls use MPI functions for
performing a blocking send and a blocking receive of an array of floating point variables
created when the benchmark is started. The algorithm is ideal in the sense that during each
iteration the CPU load is perfectly balanced and non-changing, and the size of the
communications is always the same. By varying the number of computations, we can
explore the effects of different computation to communication ratios on virtualization
overhead. We also vary the message size and analyze its effects on virtualization overhead.

We then employ NASA’s Numerical Aerodynamic Simulation Parallel Benchmarks
(NPB). The NPB suite contains several benchmarks. Three of them replicate the
computation and communications patterns of Computational Fluid Dynamics (CFD) and
computational aerodynamics applications [65]. Specifically, they provide different kernels
for solving Navier-Stokes parallel differential equations on a spatial grid or mesh of a
given size. These algorithms iteratively perform the same solving routine until converging

to a solution, or until a set number of time steps are reached.

34

data = populate float array()

for(i = 0 : NUM_ITERATIONS)
do_arithmetic() // multiplication
mpi barrier() // synchronization
mpi send() // blocking send
mpi recv() // blocking receive

mpi barrier() // synchronization

(@)

Create
Data Array

b

Do Basic
Arithmetic

N

Synchronize Data

[Need more iterations]

[Finished iterating]

(b)

Figure 1. Algorithm for Compcomm benchmark. (a) pseudocode and (b) flowchart.

There are two versions of the NPB, original and multi-zone (MZ). The computations
in the original benchmarks exhibit fine grain parallelism [66], i.e. they perform multiple
communications of data in each iteration of the solving stage. As a result, their
performance is more sensitive to communication latency. The MZ versions take a
parallelization approach that mimics different kinds of applications. They solve the same
discretization problem, but using multiple meshes (or zones). The MZ benchmarks are
designed to perform only coarse-grained parallelism at the message passing level. The MZ
version is more sensitive to load imbalance than latency, so their performance should be
less affected by virtualization. We employ both versions of the benchmarks to see how

their performance impacts compare. The benchmarks come with five input problems of

35

increasing size, which they refer to as classes. We use classes A, B, and C, whose
properties are shown in Table 1. The NPB are well studied and often used to test the
performance of HPC systems. The multi-zone versions have been shown to scale well on
up to at least 16 processors, and possibly over 1,000, depending on the benchmark and
runtime configuration [67]. To investigate even larger problem sizes, we use the weather
research and forecasting (WRF) software for a few experiments, which is another kind of
fluid dynamics application with tightly coupled execution behavior. We use a popular
benchmark input, jan00, and a large input, 75x4, which requires more computations than

Class C of the NPB.

Table 1. Sizes of the three classes of NPB inputs used

Class Dimensions Area
A 128 X 128 X 16 262K
B 304 X268 X 17 1.075M
C 480 X 320 X 28 4.3M

IIL.5S Virtualization Performance Impact in Dedicated-CPU Scenarios

We now discuss the observations made from the experiments. For the experiments carried
out in this section, each VM has one or two dedicated CPUs. The values presented
represent the average of at least three executions run under identical conditions. We
observe the performance penalty due to virtualization overhead in terms of the

computation and communication characteristics of each job when executed in virtualized

36

and non-virtualized environments. By doing so, we can provide improved insight on the
virtualization overhead of different scientific applications being applied to different input
problem sizes. For tightly coupled applications, we distinguish between computation and
I/O time. There is little disk I/O needed for the jobs we run, so we do not consider it

necessary to separate it from I/O due to inter-process communication via network.

II1.5.1 Terminology

We refer to the ratio of virtualized execution time to bare metal execution time as the
virtualization penalty. The extra CPU time that the hypervisor requires for I/O operations

1s referred to as virtualization overhead.

II1.5.2 Performance Analysis of Image Processing with FSL

One caveat with the image processing applications used is that their execution times vary
due to random components in the algorithms. MELODIC executions vary more because
the main algorithm is iterated until converging and the number of steps required to
converge depends on a random initial variable. For example, we performed 20 executions
of the same data set on the same physical machine and observed an 8% difference in
execution time between the fastest and slowest execution. FAST times varied less than 2%,
since the heuristics used are guaranteed to converge in only “a few iterations” [62]. The

data sets used are discussed in Section 111.4.1.

37

Image Segmentation

Since there is no communication of data involved when executing separate studies in
parallel, we expected the bare metal and virtualized performance of Xen to be roughly the
same. Surprisingly, the virtualized executions were 10-15% faster. We performed profiled
executions using Oprofile to understand why. The execution profiles were similar for all
data sets, so in describing this phenomenon, we focus on the first data set from MCH. In
Figure 2, we show the execution time of the 7 most time-consuming functions (labeled
A-E for brevity) in the VM (using circles) and BM (using squares) configurations. As can
be seen, function A4, which corresponds to the comvolution function, has a disparity
between the BM and VM executions. Furthermore, running the program through the GNU
debugger (gdb) revealed that the function is only slowed down in the BM when processing
about the ™ direction in the i,k space. This function is called 30 times and consists of
193 million additions and multiplications and 6.03 million assignments of a 3 dimensional
local variable per call when processing a 256x256x190 image and using a 40x40x32
convolution kernel. According to the profiler, memory operations consumed the bulk of
the time, suggesting that virtualization-related cache optimization is the reason for the
speedup. This coincides with a similar observation made in [36] when the authors ran
BLAST [37] jobs, in which they suggested that VM double caching caused the virtualized

execution to be faster.

38

A0

D00

Execution Timer (s)

0 8
] u
o
0 L L L L Q 5 5
A B [} D E F G

Figure 2. Execution times of the 7 most time-consuming functions of FAST.

Image Registration
Comparing the VM and BM performance of the MELODIC image registration
experiments was not straightforward due to the aforementioned randomness in the
algorithm. Specifically, The ICA algorithm does not terminate until it converges, and the
number of steps required until it converges depends on the random initial value. We
observed anywhere from 63 to 136 steps before converging for identical executions, hence
there was some variation in the resulting execution times.

While this variation makes it difficult to measure the effect of virtualization, the
results clearly showed that the VM executions were slightly slower when simultaneously
processing 2 data sets per node. When only one data set at a time was processed on each

node, the average overhead was negligible. When all data sets were submitted at once (but

39

only allowing one CPU per job), the overall VM slowdown was 13%, 10%, and 13% for

1-, 2-, and 4-node executions, respectively.

Figure 3 compares the completion times of each data set from the MCH repository for

the VM and BM experiments for single-node, single process (solo) and 4-node,

2-process-per-node (4n) executions. The relationship between the VM and BM executions

is always the same, with the BM finishing slightly faster in the latter scenario.

Figure 3.

LYY EEEEEERERCEERELELERS L A S

-e-4nBM |: . =

—s—4nVM |
14000 = © =s0lo BM | :--- -

—o—soloVM|:

T T e I

T N e

800D+ G T T L SRR

Execution Time (s

=)
=1
<]
S
7

T T s

20001+ A e

T N TR S
6 17 18 19 24 30

[|
2 3 4 5 6 7 8 9 10 11 12 13 14 15 1
Dataset ID

Execution time of MELODIC when run solo and when using 4 nodes.

40

IT1.5.3 Virtualization’s Impact on Tightly Coupled Applications

We now discuss the virtualization impact on tightly coupled applications. Since the impact
of virtualization on these applications varies so much depending on the characteristics of
the job, it is more complex to describe, and thus we dedicate a relatively large amount of

space to discussing it.

Compcomm

We begin the discussion on tightly coupled application performance with the compcomm
benchmark, whose algorithm was shown in Figure 1. To gain insight on the relationship
between computation ratio, message size, and virtualization overhead, we vary the number
of computations per iteration and the message sizes. Computations per iteration values
used are 25, 50, 100, and 200; Message size values used are 0.64, 1.28, 40, 8.75, 17.5, 35,
70 and 140 kB. In Figure 4, we plot the virtualization penalty (vertical axis) for different
MPI message sizes as the duration of the computation cycle (horizontal axis) is increased.
We observe an inverse relationship between computation cycle length and virtualization
penalty. The figure shows that the penalty tends towards unity as the length of compute
iterations is increased. For message sizes below 8.5kB, the virtualized executions are
actually slightly faster. We attribute this to reduced operating system noise in the VM
nodes as we observed that idle bare metal nodes experience more than 15 times as many

interrupts as idle vm-container nodes.

41

Looking at the relationship between message size and overhead (keeping computation
duration constant), we see a significant increase in virtualization penalty as the message
size is increased, especially when the computation cycle duration is less than 0.2 seconds,
because the communication time is a significant portion of the execution time. Only the
executions with 140 kB remained at over 2% overhead when the computation duration
reaches 0.67 seconds. It is observed that 140kB is large compared to the message sizes
used by the applications we experimented with. Hence, we can deduce that the
virtualization overhead is minor for well balanced tightly coupled applications as long as

the problem size is not small.

A
i
z
= A
=
S 12 T3 017.5kB
=]
-§ o = ®35kB
8 il =
= N X 70kB
= . X '\
= é A 140kB
e é
+8.5kB
09 T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Duration of Computation Cycle (seconds)

Figure 4. Effect of increasing computation cycle duration on virtualization penalty.

42

NPB LU and LU-MZ Benchmarks

We now look at how the relationship between computation ratio, message size, and
virtualization overhead observed using Compcomm compares to that of actual applications
for which communication requirements vary for each worker. Figure 5 shows the overall
communication and computation times for 2-process-per-node LU-MZ executions with
Class A (Figure 5a) and Class C (Figure 5b) for 1, 2, 4, and 8 nodes. The BM and VM
times are shown in adjacent rectangles for each configuration. Since the performance
penalty was below 6% for the 1-process-per-node executions, we do not show them. The
times depicted in the figures were obtained from the timers built into the benchmarks. The
communication times include physical communication as well as virtualization overhead.
Comparing the figures, we can see that using a smaller input results in a larger
performance penalty on multi-node executions compared to the larger input.

Using Xen’s command line tools revealed that virtualization overhead was less than 2%
larger for Class A, which does not explain the larger difference in performance penalty.
We analyzed the communication pattern of the execution using the Paraver trace analysis
tool [70], which revealed that when running Class A, the average duration of the
computation cycles was only 72 milliseconds, which implies that there was high
communication frequency. For Class C (Figure 5b), the duration is 520 milliseconds,
resulting in a much smaller virtualization penalty. This coincides with the observations

from the compcomm experiments, where we found that the virtualization penalty increases

43

as computation rate decreases. However, the largest virtualization penalty with compcomm
was 35%, compared to 62% for LU-MZ. The other culprits are load imbalance and

contention between the processors when accessing the network interface.

T A i DAl B N ————sss
I Computation
[Communication

~
o

[}
=)

o
o

w
o

N
=]

(Computation , Communication) Time [s]
»
o

Number of Nodes

B0 -
I Computation
[ICommunication

(Computation , Communication) Time [s]

Number of Nodes

(b)
Figure 5. Communication and computation times for LU-MZ (a) Class A and (b) Class C,
using 2 processes per node.

44

Another observation is that the overall execution times with 8 node Class A
executions are roughly equal for the VM and BM. This is because the (non-virtualized)
computation ratio is only 53%. Since the CPU spends so much time idle, the virtualization
overhead has a negligible effect on overall execution time.

We repeated these experiments with the other coarse grained NPB CFD benchmarks
(SP-MZ and BT-MZ), with similar observations. With 1 process per node, the
virtualization penalty increased roughly linearly as a function of the parallelism and never
surpassed 10%. With 2 processes per node, the pattern of the virtualization penalty was
similar to LU-MZ.

Next, we repeated the experiments with the original (fine-grained) LU, SP, and BT
benchmarks. As expected, the virtualization penalty was greater since the fine-grained
implementation performs more frequent message passing (e.g. between 0.6 and 0.7
milliseconds between most messages for 8-node Class A runs, which is two orders of
magnitude more frequent than with the MZ benchmark). Also, a larger amount of data is
transferred during the execution; for example, a 4-processor execution of LU, Class A
transfers a total of 122 megabytes of data with the fine-grained implementation but only
34 megabytes with the coarse-grained implementation. Looking back at Figure 2, we see
that when the length of the computation cycles is below 100 milliseconds, quadrupling the
message sizes results in a large virtualization penalty. Unlike the MZ benchmarks, the

original benchmarks experienced significant overhead as can be seen in Figure 6 for both

45

the 1-process-per-node (6a) and the 2-process-per-node (6b) executions. Both figures
show the virtualization penalty (i.e. execution time on the VM divided by execution time
on bare metal) as the number of nodes is increased. Again, we observe that using the
smaller input data results in more overhead. Again, the penalty is attenuated when the
(bare metal) computation ratio drops below 60%, as can be seen in the 8-node, 1
process-per-node Class A execution in Figure 6a. With 2 processes-per-node (Figure 6b),
this occurs when the cluster is larger than 8 nodes, since the virtualization penalty stops
increasing from 4 to 8 nodes. With 2 processes-per-node, virtualization causes additional
latency multiplexing the network interface between the 2 processors, so the virtualization
penalty is not attenuated despite the low computation ratios. Since the computation ratio is
bigger with the larger problem sizes, the penalty monotonically increases with the number
of nodes.

Our results thus far have given an overview of the performance impact of
virtualization. To estimate a job’s execution time, and to anticipate the maskability of its
communication when it shares the CPU with other applications (assuming at least one is
tightly coupled), we need to know its virtualization overhead. In Tables 2 and 3, we
tabulate the virtualization overhead (in CPU percentage) for all the experiments carried

out using 1-process-per-node and 2-processes-per-node executions, respectively.

46

m m ClassA 2 a2 ClassB o o Class C
Sa3f e e
=) | | | |
= :
= ‘ ‘ B ‘ ‘
o
Bl e S S
o 1 1 ‘ 1 ‘
W : : :

e i i i

[: i L]
= LA S SRRt S ERRMERRRRIEERRNEEE

K= 3 3 :

S : : A R
g - ?
Tro B s e
1 > 4 8 ‘

Number of Nodes
(a)
m ®m ClassA 2 a2 ClassB © o Class C

3.5] o e e
=
D0 3 Qo T . W 5
= % % = % %
= | | | |
925 S — B
© : : : : :
> 5 5 5 A 5
£ 20 1 1 1 1 1
= | | | | |
B LB N
5 1 1 | i f
o 3 °
g 1.0p oo A e
ol I o S o

1 2 4 8

Number of Nodes

(b)
Figure 6. Virtualization penalty for the original LU benchmark, running (a) 1- and (b)
2- processes per node.
Table 2. Percentage of CPU used for virtualization overhead running 1 process per VM

47

App (Input) 1 node 2 node 4 node 8 node
LU-MZ (A) 0.7 3.2 6.6 6.1
LU-MZ (B) 0.7 2.4 4.8 5.2
LU-MZ (C) 0.8 2.0 3.0 2.9
LU (A) 0.7 5.5 10.4 10.0
LU (B) 0.7 4.5 10.7 8.2
LU (C) 0.9 3.2 53 5.8
WREF (jan00) 0.9 5.1 7.0 8.5
WREF (75x4) 0.7 5.0 7.5 8.5
Table 3. Percentage of CPU used for virtualization overhead running 2 processes per VM

App (Input) 1 node 2 node 4 node 8 node
LU-MZ (A) 0.7 4.8 43 4.0
LU-MZ (B) 0.7 6.0 4.8 5.2
LU-MZ (C) 0.7 3.0 3.0 2.9
LU (A) 0.7 7.4 8.4 9.4
LU (B) 0.8 9.5 11.4 7.3
LU (C) 0.7 9.2 11.7 8.7
WREF (jan00) 0.6 5.5 6.8 8.7
WREF (75x4) 0.7 5.6 7.9 7.4

III.6 Performance Analysis With Shared-CPU Executions

I11.6.1 Sharing CPU Among Loosely Coupled Jobs

We ran multiple simultaneous serial executions of WRF and FAST to measure the
execution time impact due to CPU sharing. We found no significant slowdown compared
to running the jobs sequentially. With WREF, we ran up to 8 multiplexed serial instances of
the jan00 domain, which takes 25 minutes to complete and uses 200 megabytes of RAM,
and running simultaneously took roughly the same amount of time to finish all 8 as
running sequentially. We ran a similar experiment with FAST to see if it would be affected

more than WREF, since its more memory intensive, but we found that the makespan of 4

48

simultaneously-executed jobs was within 1% of the time it would take to run them
sequentially, using the average FAST execution time as a basis. The relation for FAST can
be seen in Figure 7, where we plot the completion time of all jobs as a function of the
number of simultaneous jobs. A linear trend line is used to show that the relationship is
roughly linear. As a result, we conclude that execution time prolongation due to CPU
sharing for loosely coupled jobs can be accurately predicted as the product of the
computation time and the inverse of the CPU allocation of the job. This model will work
with a up to 8 jobs for WRF and up to 4 jobs for FAST. These are reasonable limits

considering the memory requirements of each application.

14000
12000 -
h
=
=]
=3
=3
£ 10000
£ /21/
2
E 8000
'.s /
£ 6000
= /
S
3 4000
=3
g s
=]
O

2000

0 ; : ; : : : . : \
0 0.5 1 1.5 2 2.5 3 3.5 4 45
Number of simultaeneous jobs

Figure 7. Effect of multiplexing up to 4 FAST jobs on one CPU on makespan.

49

I11.6.2 Sharing CPU Among Tightly Coupled Jobs

The execution time of shared-CPU tightly coupled jobs is harder to predict since a
significant portion of their execution is spent performing I/O. We now study the
shared-CPU behavior of the tightly coupled applications mentioned earlier, and compare
our findings to the expected behavior described in Sections I1I.3.1 and II1.3.2. We start
with an observation that confirms that by collocating 2 parallel jobs and multiplexing the
CPU, we reduce the makespan of the two jobs compared to running them sequentially, by
virtue of communication masking, despite the virtualization penalty.

We start by running two instances of the 2-task Compcomm parallel benchmark,
described in Section I11.4.2, on 2 physical machines. One physical machine hosts the 2
master VMs and the other the 2 slave VMs. Each VM runs one parallel task. In each
physical machine, both VMs multiplex the same processor. The non-multiplexed and
multiplexed execution times, for different message sizes, are shown in Figure 8(a) and (b),
respectively. Both figures show execution time (vertical axis) as a function of message
size (horizontal axis). Three relations are plotted in each figure. The dark solid line shows
the total communication time, including virtualization overhead. The lighter dashed line
only shows the CPU time pertaining to the virtualization overhead. The light dotted line
shows the wall clock time. In the multiplexed case, the latter is the makespan of the two
jobs. Note that the difference between the total communication and virtualization

overhead lines is the physical communication time. We find that the majority of the

50

physical communication time can be masked as long as the computation ratio is above 50%
or so. Also, comparing the wall clock execution times of the two figures we can infer that
the makespan when multiplexing the two jobs is faster than running them sequentially,
especially if message sizes are large. For the final data point, the execution time increased
significantly because the computation ratio dropped below 50%, hence less
communications could be masked.

Our initial expectation, under the assumption that messages can be transferred while
collocated jobs are in the working state, was that the makespan would be roughly twice
the application’s CPU time, plus the virtualization overhead, and a small penalty for
context switching. In the case of this benchmark, context switch overhead is minor since
the memory footprint is small. Looking at Figure 8, it can be seen that there is some
additional overhead beyond the virtualization overhead. For example, when using a
message size of 44 kB, the expected makespan under this assumption is 113.2 seconds,
whereas the measured makespan is 117.2 seconds. Using Paraver, we found the additional
overhead was due to jobs’ communication intervals occasionally overlapping, resulting in
wasted CPU cycles. In other words, not all communications were masked by computations.
This can be seen in Figure 9, where we plot a portion of the Paraver execution trace
visualization. In the figure, we show the temporal execution pattern for several iterations
of executions in the dedicated CPU (Figure 9a) and shared CPU (Figure 9b) cases. Each

bar in the figure represents a worker; e.g. J(N,W) is the W™ worker of Job N. Black

51

sections represent states where the worker is running (i.e. requesting or using CPU), dark
gray sections represent states where the worker is synchronizing (with another worker),
and light gray sections represent when a worker is sending data. There is overlap in the

second communication iteration shown in Figure 9b, resulting in idle CPU cycles.

160 .
—8— jotime
140 = <& - virtualization overhead
120 %= wall clock " -
100 5
80 ==

Time (seconds)

60-—1_3-:_;.;_3.; w w /
40 /

20 -
0+ i'l'-—."'ii"‘T'i"‘T'i".—"i';'%';-%'-.—-i-.—-i r 1
15.1 18.1 21.8 26.1 31.4 44 61.6 86.1 120 169
Message Size (kBytes)
(a)
160 -
140
120 T—————— . TCow Soaw SE S =

—
[
S

—&— Total comm.

=< = virtualization overhead

Time (seconds)
[o20]
(e

60 wall clock time
40 a
20 s L

o e 3 s ' e " e _—
S——g=—0--g--0--0--®
— b . -, . - T T T T 1

(=}

15.1 18.1 21.8 26.1 314 44 61.6 86.1 120 169
Message Size (kBytes)

(b)

Figure 8. Overall I/O time, virtualization overhead, and makespan as a function of
message size, with (a) a single Compcomm job and (b) 2 multiplexed Compcomm jobs.

52

The overlap of communications will affect the results of the performance model, since
it is not possible to analytically determine when they will occur. However, we expect them
to be rare, as they were for the experiment corresponding to Figure 9, with most tightly
coupled jobs. Also, note that this would not be a problem when multiplexing a CPU-bound
loosely coupled job with the tightly coupled job(s). Collocating these two kinds of jobs
will help yield optimal utilization of the CPU in virtualized environments. In addition,
since tightly coupled jobs execute at the rate of the worker with the least available CPU, it
is possible for many physical machines to have underutilized CPU due to fragmentation.
By collocating loosely coupled and tightly coupled tasks, this problem can be avoided as

well.

Il running Il synchronization sending

(a)

s I
o2 A

(®)

-

Time (s)

Figure 9. Execution trace of Compcomm. (a) dedicated CPU, (b) shared CPU.

53

CHAPTER 1V

EXECUTION TIME PREDICTION METHODOLOGY

In this chapter, we discuss the performance prediction methodology to address two related
problems: computation time prediction and scalability prediction. Computation time
prediction refers to predicting how much CPU time an application requires to execute,
given an input problem. Since we deal with shared-CPU environments, we also account
for different CPU allocations. Scalability prediction refers to predicting how the execution
time of an application will increase/decrease depending on the number and type of
machines being used to run it.

In both cases, we rely on statistical prediction models that use historical job execution
data as training data to extrapolate for future executions. This approach fits our scenario
best for two reasons. First, a provider of medical image processing services should know
basic execution-related characteristics about these applications. This information can be
obtained by carrying out experiments similar to those presented in the previous chapter.
Second, many statistical prediction methods are computationally simple, which is a
requirement for our job scheduling methodology described in the next chapter, since it will
be necessary to quickly perform one or more execution time predictions in order to make

real-time job scheduling decisions.

54

IV.1 Overview of the Prediction Methodology

The methodology used can be described as a hybrid approach to execution time
prediction, in the sense that the prediction model itself has no application- or
domain-specific knowledge, but users may add this knowledge after determining the
factors that affect performance. In other words, the model itself is oblivious to the
application, but human knowledge about the application improves the model’s accuracy.
Some existing approaches to performance prediction have general and/or specific
knowledge about application execution included in the prediction paradigm itself. A
possible problem with these approaches is that they can be difficult to deploy; for example,
some of these tools require the application used to be compiled with special tracing
libraries. Conversely, approaches that are entirely oblivious to the application generally
suffer worse prediction accuracy [72]. As we will show, we do not try to tailor our model
to any specific application. Instead, we use knowledge of the application and execution
platform to improve the model. We now summarize our performance prediction
methodology.

Figure 10 depicts our multi-step, iterative performance modeling approach. The
approach starts with Stage A (Application/Code/ Platform inspection), in which specific
details about the application and/or execution platform are studied. The purpose of this
step is to determine what parameters contribute to the execution time of the application.

An example of a question that this step can answer is how the CPU of the execution

55

platform affects the execution time. The depth of knowledge required for this step depends
on the application. For example, some applications are I/O-bound, and increasing the CPU

clock speed will not provide any performance improvement.

Mathematical
Modeling
Software and Application
Hardware Monitoring &
Analysis Profiling

Apply and

Evaluate

Model

Figure 10. Overview of the performance prediction methodology.

In Stage B, a mathematical model that relates execution time to other parameters,
based on intuition and specific findings from Stage 4, is devised. The main constraint in
choosing a model is that it must be able to provide real-time execution time predictions in
order to make fast scheduling decisions. The model is described in the next section.

In Stage C, we perform executions under different conditions and/or with different
runtime configurations. We define a runtime configuration as the number of nodes and

processes per node used for any single execution on a particular system. When we refer to

56

a data set or data series, we are referring to a collection of execution statistics for a single
instance of all possible runtime configurations (e.g. the execution times for all runs
performed at a particular time with 8, 16, 32, and 64 nodes).

Each execution is profiled, i.e. the resources used for the execution are recorded.
When all executions are finished, the acquired data is fed into the prediction model, which
estimates the contribution of each parameter (Stage D). Based on these individual
estimates, the total execution time is estimated for a target execution platform, and
compared to the actual execution time. The iterations of the 4-B-C-D cycle are repeated
until an average prediction error of 15% or less is achieved. The time it takes to iterate
through the cycle depends on the data being collected, but the tools were designed to
provide fast results and use regular text files so that data can be easily added or removed

using common text-processing tools.

IV.2 Prediction Model Overview

The model we use is implemented in a profiling tool, Aprof, described in [71], which
was developed as part of the Latin American Grid partnership. In this section, we
summarize the implementation of the model and how it was applied to our work. The
model assumes that the execution time of an application can be expressed as the product
of several contributors that affect a job’s execution time. It determines the magnitude of

their contributions with respect to execution time. Some contributors either vary too much

57

between executions (e.g. the state of CPU registers) or they contribute a negligible amount
to overall execution time, so the model relies on human intuition about the applications
being run and the systems they are being run on, obtained in Stage A, to aid in its
development. For example, the duration of an image processing job depends on the size of
the input image(s) being processed, so image size should be a strong contributor to
execution time. We find that using intuitive parameters, based on basic knowledge of the
algorithm of a given application and the system(s) it runs on, yields predictions that are
accurate enough for job scheduling.

The contribution parameters themselves may be polynomial equations of arbitrary
length, which results in Equation (1), in which m is the number of parameters, m; is the
maximum polynomial degree of the current parameter, a;; is the coefficient contribution of
the i parameter, and Zl-j is the /" parameter. Until now, we have had success with a
simplified model in which the maximum polynomial degree of all parameters is equal to

one (i.e. first-order polynomials).

m=1 mi

— I I J
Texec - ai/Zi

i=0 j=0 (1)

Based on this assumption, the model attempts to determine the contributions of each
of these parameters (i.e. the a;; values). The resource properties are all combined to form a
sum-of-products, plus an error term to account for model inaccuracies and absent

parameters. Regression analysis is used to determine the values of the coefficients.

58

IV.3 Applying the Model to Computation Time Prediction

In this section, we describe how we address the problem of predicting the computation
time of a given application and input, based on historical execution data with different
inputs. The main problem for this is determining the parameters that contribute most
significantly to execution time in order to create a model. A constraint on the parameters
chosen is that they must be programmatically obtainable (e.g. by reading header
information of the input files) so that job scheduling decisions can be made in real time.
Since this is application-dependent, we describe the approach for each application

separately.

IV.3.1 Image Segmentation

We analyzed the execution time of FAST using data sets with different sizes and from
different hospitals. We provide pertinent information in Table 4. We did not find a strong
correlation between the 3 dimensions (X, Y, Z) of the data sets and their execution time
requirements. Using the 2 dimensions (i.e. X and Y dimensions only) was actually better,
but still would result in high error. Instead, we employed aprof, using the size of each
dimension of the image as explanatory values and the execution time as the exploratory
value. We obtained a mean execution time prediction error of 2.94%, max of 7.2% and
min below 0.1%. These parameters can be read from the DICOM or NIFTI header of the

image files, so they are suitable for our modeling approach. We repeated the test by

59

predicting the execution time of all data sets, but using only two input data of different

sizes, and the error remained below 10%.

IV.3.2 Image Registration

As mentioned earlier, MELODIC is subject to significant execution time variation since
the duration of the algorithm performed before registering the images depends on the
number of time steps required to converge, which in turn depends on a randomly-selected
value. Using the same explanatory variables used for FAST in addition to the size of the
temporal dimension and applying the model to the MCH data, we obtained a mean
prediction error of 12.2%, a max of 29%, and a min of 0%. As a result, an extra “safety net”
must be used when predicting execution times of MELODIC jobs in order to avoid

deadline violations.

1V.3.1 LU Benchmark

The observations made in Section III.5.3 showed that the computational requirements of
the NPB LU benchmark increase roughly proportionally to the input problem size. The
relationship is not quite linear due to duplicate computations that occur with tightly
coupled problems, which is a known problem. Since no new or interesting observations

were made, we do not comment further on the computation time prediction for LU.

60

Table 4. Execution time and memory utilization for various FAST jobs

Dataset dimX | dimY | dimZ | Exec. Time | Memory Utilization (Bytes)
CHOA 1 176 240 256 632.0 1.27E+09
CHOA 2 176 240 256 702.0 1.30E+09
CHOA 3 176 240 256 699.7 1.24E+09
CHOA 4 176 240 256 682.7 1.30E+09
CHOA 5 176 240 256 662.3 1.28E+09
CHOA 6 176 240 256 663.7 1.30E+09
CHOA 7 176 240 256 701.7 1.28E+09
CHOA 8 176 240 256 671.3 1.28E+09
CHOA 9 176 240 256 644.3 1.26E+09
CHOA 10 176 240 256 645.0 9.86E+08
CHOA 11 176 240 256 663.3 1.12E+09
CHOA 12 176 240 256 654.3 9.57E+08
CHOP 10 256 256 192 1464.0 1.50E+09
CHOP 11 256 256 192 1464.0 1.50E+09
CHOP 12 256 256 192 1466.0 1.50E+09
CHOP 13 256 256 192 1371.0 1.48E+09

CHOP 3 256 208 160 534.3 9.94E+08

CHOP 4 256 208 160 569.7 9.48E+08

CHOP 5 256 208 160 572.3 1.15E+09
CHOP 6 256 208 160 608.3 1.03E+09
CHOP 8 256 208 160 579.3 9.59E+08
CHOP 9 256 256 192 1549.7 1.48E+09
BCCH_30 211 288 288 1182.0 1.64E+09
BCCH_44 211 288 288 1081.7 1.94E+09

IV.4 Scalability Prediction

Since the historical execution data of a job may not have execution time requirements with
currently-available resources, it is necessary to predict how the job will scale under
different runtime scenarios. Hence, a scalability prediction model is needed to extrapolate

this information.

61

For loosely coupled applications, scalability prediction is tractable. Multiple studies
on loosely coupled applications have shown that the relationship between execution time
and parallelism is roughly linear (e.g. for BLAST [73] and NAS EP [74]), so accurate
predictions are obtainable. Figure 7 confirms this is the case with FAST as well. With
bags-of-tasks, the computational requirement of the bag is simply the sum of that of each
task. The challenge, therefore, is minimizing the makespan of all the jobs by optimally
packing them among the available resources. Our algorithm for doing this is explained in
the next chapter.

The scalability prediction of tightly coupled applications is complicated by their
tendency to lose efficiency as the parallelism level increases due to redundant
computations, load imbalance, and/or communication overhead. We mitigate this by using
several prediction parameters and a large amount of training data.

We now discuss the scalability prediction approach taken. To limit the initial number
of variables, we start with the dedicated-CPU case. The main challenges we address in this
case are extrapolating for different combinations of CPU architectures and parallelism
levels. For CPU architecture, we include such things as memory and network bandwidth,
which can be affected by the bus and the number of CPU cores per machine. We ensure
jobs are not placed on machines that cannot fit the problem into memory, since swapping

to disk would result in a large execution time penalty that would be difficult to predict.

62

The remainder of this subsection details the work carried out in publications [71,75],

which addressed scalability prediction for tightly coupled jobs.

IV.4.1 Overview of Challenges

We note three barriers to obtaining accurate predictions: the uncertainty of the CPU
architecture’s impact on the performance of the application, the distribution of nodes
across machines and within the same machine, and the size of the data center. We now

summarize these challenges and how we addressed them.

Extrapolating to Different CPU Architectures

Whereas CPU clock speed can be used to extrapolate performance among similar CPUs,
as was shown in [75], different CPUs have much different characteristics, so another
approach is necessary. A good example of this is the transition to more efficient CPUs
after hitting the power wall with the Pentium-4 processor. Subsequent processors have
achieved much better performance with lower clock speeds. To understand why a given
processor is faster than another requires in-depth knowledge about its design. Such factors
as pipelining, instructions/cycle, efficiency of internal components, etc. play an important
role in this. A cycle-accurate simulator similar to the one implemented in [26] would yield
accurate predictions, but the complexity of modern processors makes this difficult. Also,
such an approach is not suitable for job scheduling, where real time execution predictions

are needed.

63

An alternative to low-level modeling of the CPU is to find metrics that correlate well
with execution time. For example, in [31] the authors ranked several metrics and found
that for some applications, execution time correlated best with strided access to main
memory, while for most other applications random access to L1 cache had better
correlation. In [76], the authors found node bandwidth and latency to be the most
significant parameters for the scalability of WRF. To properly evaluate the metrics with
the highest contribution, it is necessary to measure several of them.

Benchmarking is an alternative that can give a good indication of CPU performance
for different applications. The caveat with benchmarking is that, for best results, the
benchmark needs to be representative of the application being modeled, which requires
some knowledge of the application. Since CPU instruction patterns vary by application,
the best benchmark for a particular application is the application itself. However,
benchmarking the scalability of every application that is to run on a given system may not
be ideal. A good tradeoff is to run a few benchmarks with resource consumption
characteristics representative of a broad range of applications. Each application that is to
be run on the system can be mapped to a particular benchmark. For example, WRF
simulations involve solving differential equations and finite difference approximations, so
the performance measured using a generic benchmark that ranks a CPU based on its
performance executing these kinds of calculations should provide a good measure of the

CPU’s performance when running WRF jobs.

64

We use the product of the CPU clock speed and a constant, the platform contribution,
to model the CPU parameter. The platform contribution is determined by benchmarking. It
only needs to be calculated when performing predictions among systems with very
different CPU architectures. Our results in [71] showed that clock speed is a good
indicator of the performance of systems with the same or similar CPU architectures, so it
is not necessary to measure separate platform contribution parameters for systems with

similar CPUs but different clock speeds.

Challenges With Multicore Architectures

Multicore architectures have become commonplace for all types of computing systems, so
we considered it necessary to accurately predict execution time on multicore systems. To
determine the optimal parameters to introduce to the model in order to model execution on
multicore systems, a closer look into multicore architectures is necessary. For parallel jobs
in which only one core of each node is used and the system specifications are kept
constant, speedup is affected by interconnection network performance and the
application's parallelization ability. The Ilatter is a combination of computational
redundancy, synchronization requirements, etc. When multiple cores are used, several
complications arise. For one, intra-node communication may take place. Since the
bandwidth and latency of messages passed inside a processor/bus between processing
cores is different from that of different nodes communicating through Ethernet, multiple

communication factors need to be modeled. Furthermore, the cores need to share certain

65

components, such as cache, main memory, network cards, etc. This introduces the
possibility of contention occurring when accessing different hardware components,
leaving less effective capacity for each core. For example, if a physical machine has a
dedicated L2 cache of 1MB, but the arbitration logic is shared, memory bandwidth to each
core is limited.

Here, again, knowledge about the application is helpful to determine what parameters
to model. For example, it has been shown that WRF is memory-bandwidth and latency
bound [76], so the model needs to account for memory bandwidth in order to provide
accurate predictions. As a result, we added a memory bandwidth parameter to the model.
The measured memory bandwidth value is divided by the number of CPU cores used in
the execution, since it is shared by each of them.

The behavior of a multicore node itself is generally consistent as long as whatever
instructions it is executing are constant, so an approach that relies on previous execution
data is able to cope with the fact that sharing components amongst cores leads to
non-trivial execution patterns. However, when combining several multicore nodes,
prediction is complicated by the fact that communication speeds and latencies are much
different for processors on the same physical machine compared to processors on separate
physical machines connected via Ethernet. As a result, it is necessary to give the model
separate parameters for number-of-nodes and cores-per-node. This is in addition to the

memory bandwidth parameter described in the previous paragraph.

66

IV.4.2 Contribution Parameters Used in the Scalability Model

Accounting for all the challenges above, a set of contribution parameters were measured
and added to the prediction model as explanatory variables. Memory bandwidth was
measured using a tool that performs sequential reads and writes of different amounts of
data. The read bandwidth for 16MB of sequential data is used as the
memory-read-bandwidth (MBWrgp). The write bandwidth for 16MB of sequential data is
used as the memory-write-bandwidth (MBWyy). Since the network bandwidth is also
shared by separate CPU cores, we also use a network bandwidth (NBW) parameter, which
is the theoretical bandwidth of the underlying network switch.

Multiple steps of refinement were required to obtain acceptable accuracy with
multicore experiments. The combination of parameters that best modeled the application
was MBWpgp, MBWyg, number-of-nodes, total processors, network bandwidth, and
cores-per-node. When predicting across different systems, a platform contribution
parameter was measured using a benchmark. Inserting these parameters into Equation (1)
results in Equation (2). In the equation, I'y refers to the contribution of parameter x to the
overall execution time.

Texec = T mBwro X TvBwwr X Tnn X Tne X T'p X TnBw X T pe)
Using first-order polynomial equations for each parameter, the equations of the

contribution parameters are as follows:

67

A1x MBWRrD

c

BixX MBWwr

c

TmBwro = Ao+

T'mBwwr = Bo+

Tnn ZCVO-FQ

n

Fnc=DO+&
Er
Ne X Nn
F1x NBW

c

Ip=FEo+

Thet=Fo+

I'pe = G0+Q

pc

N, is the number of cores-per-node, N, is the number-of-nodes, NBW is the network
bandwidth, and pc is the platform contribution. Note that for each parameter, there is a
constant contribution, i.e. the X, factor, and a contribution due to the magnitude of the
resource parameter, i.e. the X; factor. The memory and network bandwidth parameters are
divided by the amount of cores used per node since each processing core in the node needs

to share the memory bus and network card. Parameters that have an inverse relationship

with execution time (e.g. number-of-nodes) are inversed in the formula.

IV.4.3 Model Creation and Profiling

The model is built using data obtained from historical executions of an application. In
order to automatically generate this data, a system and application monitoring tool was
developed. We call this tool Amon, which is short for a monitoring tool. The tool was also
originally developed as part of the LA-Grid partnership and is described in [41]. It was
rewritten for additional functionality needed by our scheduling methodology described in

the next chapter, although for the purpose of performance modeling the functionality

68

described in [41] is adequate. Amon performs two main functions, monitoring and
reporting. In terms of monitoring, it collects resource consumption data for running
applications by probing the Linux /proc interface at discrete intervals. The resource
consumption data collected include CPU time, memory, and network bandwidth. Amon's
other function, reporting, is performed at two levels. When a job completes, a report of its
overall resource consumption data is generated and recorded (e.g. to a text file). Reporting
of instantaneous resource consumption data of a job in progress is also performed on a
per-request basis. This is used by our job monitoring component to determine the progress
and execution rate of a job, as described in the next chapter.

To automate the data collection stage, several shell scripts were created to run jobs
with different configurations. Additional scripts were created for the evaluation of the

model in order to test with several different input parameters and data set sizes.

I1V.4.4 Model Evaluation

In addition to our infrastructure at CATE described in Section III.1, we used three
additional systems, two of which were from large research data centers, which allowed us
to test our scalability prediction at a much larger scale and to perform predictions across
different CPU architectures. One is Marenostrum, from the Barcelona Supercomputing
Center and the other is Abe, a Teragrid [4] cluster from the University of Illinois at Urbana
Champaign. The specifications of all the systems used are tabulated in Table 5. The table

shows the CPU used in each physical machine of each cluster, the number of such

69

CPUs/cores per machine, the maximum number of nodes used, and the interconnection

technology.

Table 5. Systems used to test our performance prediction methodology

Host Name CPU pcg'O;z:Ie 1\11\:3:5 Interconnect
Mind Xeo; 612}?1t;ur5t 2 16 1 gigabit Ethernet
Abe Xeo;.(;;(gﬁrztown 8 64 10 gigabit ethernet
Marenostrum Povs;; CQ}ZI(;MP 4 128 Myrinet

In the benchmarking process, four sets of execution data were obtained for each
configuration and the average execution time of each run was measured. In cases where an
outlier was detected, it was discarded. To test our hypothesis that using a platform
contribution parameter based on a relatively generic benchmark can model the CPU
performance of similar applications, we use the NPB BT-MZ, Class A benchmark’s
reported operations-per-second value as the platform contribution parameter and use WRF
as the test application. On 4Abe and Marenostrum, 8-, 16-, 32-, and 64-node execution data
were used. On Mind, 4-, 8-, 12-, and 16-node execution data were used. For all systems, 1-,
2-, and 4-processes per node were used. On the large systems (i.e. Abe and Marenostrum)
execution time can vary from run to run due to differences in node interconnection, so we

worked around this as described in [75] to obtain consistent results.

70

Since CPU cores on separate nodes affect execution time differently than CPU cores
on the same node, there is a non-linear relationship between execution time and the total
number of CPU cores. Since we use a linear model, it is necessary to distinguish between
processes running on separate nodes and processes running on separate processors/cores
within a node. Figure 11 shows that when the number of cores-per-node is kept constant,
the execution pattern is linear or semi-linear and predictable. A similar relation holds when
keeping number of nodes constant while varying the number of cores. In the figures, we
use the inverse of number-of-nodes, since the execution time is inversely proportional to
the number of nodes (i.e. more nodes should result in lower execution time).

We summarize the results with an evaluation of prediction accuracy when using
different architectures, numbers of nodes, and numbers of cores. Additional results when
only varying a subset of these are shown in [75]. For this study, we used input data from
Abe and Mind to predict first for Abe and then for Mind. Out of all the experiments
performed, the maximum error observed was 10.12% and the mean was 6.74%. Figure 12
shows the actual versus predicted execution times. The error was obtained using Equation
(3), where #,cuq 15 the actual execution time and #,ediciea 1S the predicted time.

|tacual — tpredicred|

error =100 % (3)

tactual

71

3500 7

e

3000 A .
=1 core g

2 cores 7

383
W
(=3
(=]
1

—h—4 cores

1383
S
(=3
(=}
1

Execution Time (s)
o
(=3
(=}

1000 1

500 A

0 1/16 1/8 3/16 1/4 5/16 3/8 7/16 12
Inverse Number of Nodes

Figure 11. Execution time versus parallelism, keeping number-of-cores constant.

18000
16000 A *
14000 ~ & X Actual
12000 A —+
+Predicted
X
10000 - ¥

8000 - qg

6000 - j(

4000 - %4* X

2000 A >|< >|<
R

Execution Time (s)

Figure 12. Actual versus predicted execution times for Abe and Mind.

IV.4.5 Extending the Prediction Methodology to Virtualized Platforms

We now show how the scalability prediction model was modified to account for

virtualization, as presented in [77].

72

As we saw via the example in Figure 5, when run in a VM, a job’s CPU time remains
roughly the same, but its I/O time increases due to virtualization overhead. To address this,
we modify the prediction methodology. Instead of modeling the overall wall clock
execution time, we predict communication and computation times separately. For the
computation time, the user time (i.e. CPU time spent in user space) collected by Amon was
used. Communication time is not as simple to obtain using a lightweight monitor such as
Amon. We use a simple estimator, ti, or simply iotime, which is the difference between

wall clock time and user time, as shown in Equation (4).

iotime = tj, = tyqu — tepu)

Before evaluating the revised model’s ability to predict execution time, we test the
efficacy of the values chosen to separate the CPU and I/O times by comparing them to the
values of communication and computation time reported by the timers included with the
NPB benchmarks. The computed correlation coefficients for all configurations of the VM
executions of LU-MZ were 0.99 (computation) and 0.95 (communication). We consider
this a good starting point for the model, hence, we use CPU time as the computation time

estimate and iotime for the communication.

73

We measured the synchronous MPI bandwidth of the BM and VM configurations
using a simple ping-pong test' that measures the bandwidth for transfers of different
message sizes ranging from 8 Bytes to 1 MByte. The test was run 20 times and the
average bandwidth of all runs was taken. The BM node was consistently about 40% faster
throughout the range of message sizes evaluated. According to [78], the message sizes for
the LU-MZ benchmarks range from approximately 220-350 kB for Class B to 600-950 kB
for Class C, for systems with 2-16 processors. Since there is not much variation in the
measured bandwidth for this range, the average of the 128, 256, 512, and 1024 kB
measurements are used as the network bandwidth metric.

It was only necessary to evaluate the modified model with tightly coupled
applications, since the other applications do not have significant I/O times. The resource
consumption parameters used to estimate the computation times were: inverse number of
nodes, inverse number of processes per node, and inverse memory bandwidth. To predict
I/O time, the number of nodes, number of processes per node, and inverse of network
bandwidth were used. The network bandwidth was adjusted according to the number of
processes per node. Runtime configurations consisted of using 1, 2, 4, and 8 nodes and 1
and 2 processes per node, for a total of 16 data points per experiment. The overall error

was calculated using Equation (5), in which io is the iotime and u is the CPU time.

Thttp://www.scl.ameslab.gov/Projects/mpi_introduction/para_pingpong.html

74

The actual and predicted computation and communication times for the LU and
LU-MZ benchmarks with up to 8 nodes are shown in Figure 13. The predictions were
performed separately for each class and for each implementation (i.e. original and MZ),
for a total of 6 sets of experiments. The mean and median prediction errors were 13% and

4%, respectively.

|(io +u)—(i0psti +Upsti |
error = actual actual)—({0estimated estimated) 100 (5)

(ioactual+Uactual)

The same experiments were repeated for WRF, using the same run time
configurations and the jan00 and 75x4 domains. The actual and predicted execution times
are shown in Figure 14. The mean and median errors in this case were 9% and 6%,
respectively. The mean error was more tolerable for WRF since using larger problem sizes
results in less sporadic virtualization penalty. The NPB results were skewed due to the

higher error of the Class A predictions.

IV.S Modeling the Effect of CPU Sharing on Execution Time

In Section II1.2 we described some of the reasons for using CPU sharing in multi-tenant,
shared-CPU scenarios. In Section III.6.2, we demonstrated that multiplexing tightly
coupled jobs with other jobs, such that during the communication cycles of one job the
computation cycles of another can be performed, the makespan of the two jobs is reduced
compared to running them sequentially. Hence, we deemed it necessary to implement a

mathematical model for predicting execution time expansion due to CPU multiplexing.

75

We do this for both loosely coupled and tightly coupled jobs and assess the accuracy of the

model empirically.

5

o

1
35X 10 510
X Actual Time s .
3l T Estimated Time * 125
% Actual IO Time bk
n . .
25l Estimated 10 Time . y 1
X
o
g 2r 11.5
.= + +
< e
S 15f * o
= * x¥
= X < X
8 X x X +
X 1k + + —10.5
a X) +i+ %Jxr ><>< *er x X X+ *
Xk gk Kt X ¥ x ¥ x
0.5 xR T T T R e ** 0
* Ty ***aﬁ 1 T *
oL F kg x Fokx Fhokgpkx ﬁ‘?& 1205
-0.5 -1

Figure 13. Predicted and actual CPU and I/O times for LU and LU-MZ.

LE+07 S E+06
=
X Actual CPU Time - 4.E+06
1LE+07
B Estimated CPU Time
_ - 4.E+06
1.E+07 O Actual 10 Time
O O Estimated 10 Time - 3.E+06
£ p—
Chae D - 3.E+06 O
= — o °
D = 5
& 6.E+06 - 2EH06 &
G e - 2.E+06
4.E+06 - D
0 o - 1LE+06
2.E+06 - _
N | = o 5.E+05
(¥] =9 o ;
1@ D @] O @ —|
0.E+00 = © .- - 0.E+00

Figure 14. Predicted and actual computation and I/O times for WRF.

Before discussing the model itself, we discuss consistency and reproducibility issues

that could hinder the accuracy of the model. In [79], the authors found that the Xen Credit

76

Scheduler can suffer from CPU allocation error, resulting in unfair load balancing when
VMs are multiplexing the CPU. We did not encounter this particular problem when
running identical parallel jobs, although we did note that the virtualization overhead
caused by them was not included in the processor allocation decisions. For example, if a
tightly coupled job requires 4% CPU for virtualization overhead and its multiplexing the
CPU with a serial job, each job will only get roughly 48% of the CPU; the exact amount it
gets is unpredictable. This needs to be accounted for in the model, as we discuss later.

A related issue is consistency. To determine if significant variation in execution time
can be expected from multiplexed Xen executions, we ran 15 consecutive executions of
compcomm and measured the durations of the computation and communication iterations.
The number of iterations was set to 200. For the first set of tests, only one instance was
run (i.e. no multiplexing). We then repeated it with a pair of 2-worker instances of
compcomm running on 2 physical machines, so that in each physical machine, the 2
workers were multiplexing the CPU. Using analysis of variance (ANOVA), we found that
communication cycles did not experience significant variation across runs or across
iterations for both tests. The durations of the computation iterations were not normally
distributed and we were unable to transform the data such that they would be, so ANOVA
was not performed. Instead, we calculated the mean durations for the multiplexed and
non-multiplexed executions. The mean remained at a consistent 67 milliseconds for

non-multiplexed executions. When multiplexed, the mean varied between 86 and 93

77

milliseconds, since the amount of computation required before synchronizing can be
different each time a job enters the working state. Considering the default 30 millisecond
time slice used by Xen, the numbers seem reasonable.

An issue faced when predicting the multiplexed execution time of WRF and NPB is
the fact that workers communicate at different frequencies and have different overall
computation requirements. For example, the CPU time used by each worker of an 8-node
WREF execution of the jan00 domain varied between 150 and 220 seconds. To address this,
we need to use the computational requirement of the worker(s) that are multiplexing the
CPU, since the worker with the slowest execution rate will limit that of the others. This is
depicted in Figure 15, where we show the CPU time required by each worker (using black
circles) and the time required to execute the workload when one node is multiplexed
(using gray asterisks). The figure shows the execution time for each of the eight possible
multiplexed nodes. We see that the more CPU time the multiplexed worker needs, the
more the overall execution time is prolonged, since the workers with less computational
requirements must synchronize with them. Another issue is that the lengths of computation
and communication iterations vary, but the variation was not significant enough to require
the use of temporal requirements, i.e. the steady state execution pattern of all applications

used was roughly constant with a small period of time (under a second).

78

® CPU Time Required X Job Execution Time

500 -
450 -
400
350 1 X

X X X

Time (sec)
RO W
S th ©
S & S

. :
[

150 - e

—
th ©
o o
L

=]

0 1 2 3 4 5 6 7 8
Multiplexed Node

Figure 15. CPU time of different workers and execution time when multiplexing each one.
IV.5.1 Description of the Model

The model estimates the execution time of a job based on its computation and I/O
requirements, the scheduling parameters of the VM it is executed on, its virtualization
overhead, and the parameters of other VMs sharing the CPU. It assumes that the
computation and I/O requirements are known from a previous execution and/or using a
performance prediction model. We further assume that only coarse-grained computation
and I/O requirements are known, since this data can be easily obtained using a lightweight
resource monitor. An example of coarse-grained knowledge would be the total
computation time of the job on a given system. Although it is possible to obtain relatively
fine-grained resource consumption data with a lightweight performance monitor, the
applications we studied have consistent steady state resource consumption behavior, so

pursuing this task was deemed unnecessary.

79

The high level equation used to model execution time is shown in (6). We refer to the
overall execution time as 7. and separate it into non-collocated, non-multiplexed (solo)
and collocated, multiplexed (coll) portions; the solo time is further separated into active
and I/O portions. The active time is the portion of time in which the application can
consume CPU cycles. The I/O portion is the time that it can only perform physical I/O
because it is constrained by a cap. The computation portions include the time the
application itself spends performing computation as well as the virtualization overhead.
The I/O time includes the time spent physically transferring data. Note that the model
assumes that while multiplexing, all I/O will take place while a job is in the non-working
state. This is a safe assumption for the workloads used in the sense that their computation
ratios are above 50% and their shares are never lower than 50%. One caveat is that there
could be overlap of I/O cycles, as was shown in Figure 9b. This is not an issue when

multiplexing with at least one serial job, since it can always use the CPU.

Texec = Lconl + Tsolo,active + Tsolo,IO (6)

We now describe the individual components of (6). For clarity, we describe the model
for the case in which there are up to 2 multiplexed VMs per physical machine. In the
formulas, we refer to the job being modeled as Job 1 (J;) and the collocated job as Job 2
(J2). In describing the equations, we assume that both jobs arrive at the same time, so they
first execute collocated and when one of them completes, the other can then use the full

CPU. This simplifies the explanation of the equations. In practice, jobs begin and end

80

arbitrarily, so the formulas would use the remaining times instead of the overall times. The
model assumes that communications can be performed during the non-working states and
ignores the context switch overhead since we found it to be negligible in the experiments
carried out in Section II1.5.2.

First, we define the collocated computation rate (7..;) in (7). Its value is the smaller of
the cap of the VM the job is executed on and its net share relative to the collocated job. Its
net share is the larger of its cap and its share, which in turn is based on its weight and that
of the collocated job, as well as the collocated job’s cap. For example, assuming both jobs
have equal weight, if the collocated job is capped at "4, the net share of the job is Y.

j1 weight

Tou = Min [capj;, max (100 X

1
t—capp)l x g5 (D

weight j; +weightj,’

T.on 1s the wall clock time spent collocated; it is shown in (8), where tgﬁ,vmp is the
CPU time required for job N, including virtualization overhead. The equation assumes that
a job will always have computations to perform when it is given the CPU, which implies
that neither job has an 7.y larger than its solo computation rate. For example, if all jobs
have equal weight, this implies that neither job has a computation rate below 50% for two
jobs, 33% for 3 jobs, etc. This is a reasonable assumption given the computation rates of
the jobs we tested in our experiments, as well as the data available in the CTC and SDSC
workload traces of the parallel workloads archive [56]. Another caveat is that the formula
assumes that communication overlap between the two jobs will not delay the execution.

We observed only minor overlap, and did not expect this to affect accuracy significantly.

81

With these assumptions, the collocated time can be expressed as a function of the
collocated computation rates (7) of the jobs and their computational requirements. The
formula takes the lesser of the two jobs’ computation times multiplied by their collocated

execution rates.

N 100 ; 100
Tcoll = mln[tcj’;mp X T’ tiozmp X 7] (8)

coll coll

Tsoi0,active 18 the time spent processing computations and communications while no
other job is sharing the CPU. The equation is shown in (9) for job 1, where f.., 1s the
computation time of the job (excluding virtualization overhead), ¢, is the virtualization

overhead, 7.,y 1s the real (wall clock) time spent collocated, capj; is the cap of job 1, and

1

rcou 18 the computation rate (7) while collocated. For the virtualization overhead, tiirt is

Jji+j2

the overhead observed executing job 1 and t,;,;

is the overhead observed executing
jobs 1 and 2 with the same CPU. Basically, we subtract the computation portion of the job
that was performed while collocated from the total known computation time, then account

for additional virtualization overhead and additional execution time prolongation due to

the cap.

Jl
&i\}u,active :|: 100 X (1 + tv/"ilrt):|X|:t<'ump - M} (9)
cap;,

Ts010,10, shown in (10), is the additional time spent processing I/O while the job has a

dedicated CPU. It accounts for cases where cap<100, in which some I/O can take place

82

while the VM is forcibly put into the non-working state. The equation subtracts this time
from the remaining wall clock time to determine the additional communication time
required, if any. The remaining time is the difference between the (historical)
communication time (tjo) and the amount completed while collocated. The latter is the
product of the job’s communication ratio (t’?o) and the collocated time (7). This value is
then reduced by the idle time due to cap.

The CPU time required for virtualization overhead is small relative to the physical
communication time of the parallel applications we experimented with (refer back to
Tables 2 and 3), so we do not expect the cap to limit any communication from being
performed during the non-working states since the VM will build credits while the

physical transfer of the data is occurring.

t, 100—capj
7;0 o = tio - T;a - Tso 0,active X 10
lo,10 (T llj (lo, 100 ()

IV.5.2 Model Evaluation

Table 6 shows the required CPU and I/O times for a number of empirical tests using WRF
with the jan00 input domain with different cap values, for 1 and 2 node executions. The
prediction error, obtained using (11), is also shown. As observed in [19-20] for web
workloads, virtualization overhead is predictable if the communication pattern is constant.
We measured the mean virtualization overhead and applied it to (9) and (10) to determine

the overall computation times.

83

PredictedRunTime — ActualRunTime
error = - (11)
ActualRunTime

Executions with 1 and 2 nodes and with cap settings of 100 and 50 were performed.
The execution times at 100% were used for the #0 and #.., values. The non-zero
prediction error is due to sporadic virtualization overhead due to operating system noise.
The results indicate that the model provides good estimates for the effect of different cap
settings on execution time.

In Table 7, we show the times for multiplexed executions in which a node of a parallel
job multiplexes the CPU with a serial job. Columns 1 and 4 indicate the physical nodes on
which workers of the job executed. We vary the cap of each job, using values of 25, 50, 75,
and 100. For the first 6 rows, the parallel job has 2 workers and the serial job is
multiplexing the CPU with the first worker of the parallel job. The modeled execution
time for all but five of these is within 4% of the actual time. These four outliers are due to
the way Xen's Credit Scheduler distributes the CPU cycles. We found that it is biased
towards the parallel job: it consumed 51% of the CPU before virtualization overhead (56%
after the 5% consumed by the hypervisor for virtualization overhead) instead of the 50% it
would be allotted if the scheduler distributed the capacity fairly. A similar problem was
identified and a solution was given in [79], using Xen’s EDF scheduler. Since the model
assumes each VM gets an equal share but the parallel job gets a larger share, its execution

time is overestimated while that of the serial job is underestimated. Note that the most

84

inaccurate estimates occur when there is no constraint on the capacity of the parallel job
(i.e. cap=100). This is because when it does have a cap, the scheduler enforces the
constraint for the job and virtualization overhead combined (i.e. the application itself gets
less than its cap), which more accurately fits the model.

In each of the next 4 rows, the parallel job has 4 workers and each of these rows show
the times for the case in which a different worker was multiplexing the CPU, starting with
node 1 in row 7 and ending with node 4 in row 10. The estimated 7,,; for all of these
suffers due to the scheduler’s allocation bias for the parallel job. The modeled 7.,
accuracy for these executions varies significantly; when multiplexed on the first or third
node, the modeled time is over predicted by 7 to 10% whereas when the second or fourth
nodes are multiplexed, the predicted time is within 3%. This is because the second and
fourth nodes have smaller computational loads than the others, so the bias for the parallel
job is propagated less.

The last two rows show the results when job 2 has 8 workers. For the semi-last row,
the first worker was multiplexed with the serial job and for the last row, the eighth worker
was multiplexed. The results are similar to those of the 4-node experiment. When node 1
is multiplexing the two jobs, the estimate of the collocated execution time is accurate since
the CPU allocation to the parallel job was 50% before virtualization overhead. However,
the CPU allocation for the serial job was just 42% since 8% of the CPU was used for

virtualization overhead, so the makespan of the serial job was underestimated by 11%.

85

To test the model while accounting for the bias towards parallel jobs, we modified the
equation for the execution rate (7) to reflect our observation that the Credit Scheduler
distributes the net capacity available after virtualization overhead, and accounting for the
fact that the cap will be enforced including the virtualization overhead. The new
(estimated) execution rate equation is shown in (12). Table 8 shows the results when using
the updated formula. Note that the estimates for executions in which the cap is less than
100 are the same, so we indicate this by putting them in parenthesis. Now, when the
parallel job has 2 workers we observe that the estimated times are almost all within 3%.
The only exception is when the parallel job is capped at 75%, for which the overhead is
off by 6%. With 4 workers, the estimates improve, although 7, is still off by 6-7% when
the second or fourth workers are multiplexed. With 8 workers, most times are
underestimated significantly. This is because (12) is just a rough estimate of Xen’s
allocation. For example, we found that when there is significant virtualization overhead,

the CPU capacity is not evenly distributed among the VMs.

= max| 100 - cap, .., — (/"7 x100) (12)

virt

T eoll,adj

Table 6. Model evaluation with 1 Job, no CPU sharing

#Nodes Cap CPU Time I/0 Time Error(%)
1 100 1495 0 -0.18
1 50 1495 1559 -0.12
2 100 747 89 2.56
2 50 747 816 -1.55

86

Table 7. Model evaluation with 2 jobs sharing a CPU

Job 1 (Serial) Job 2 (Parallel)

Nodes Cap Error(%) | Node(s) Cap Error(%)
1 100 1.47 1,2 100 9.16
1 50 2.59 1,2 50 -2.69
1 50 -4.49 1,2 100 9.61
1 100 0.66 1,2 50 -2.97
1 25 -5.43 1,2 75 -5.94
1 75 3.50 1,2 25 -2.31
1 100 2.26 1-4 100 7.17
2 100 4.53 1-4 100 4.08
3 100 1.46 1-4 100 10.19
4 100 0.46 1-4 100 3.44
1 100 -9.22 1-8 100 3.40
8 100 1.31 1-8 100 -2.73

Table 8. Model evaluation with 2 jobs sharing the CPU and using the adjusted model

Job 1 (Serial) Job 2 (Parallel)

Nodes Cap Error(%) | Node(s) Cap Error(%)
1 100 1.40 1,2 100 2.02
1 50 (2.59) 1,2 50 (-2.69)
1 50 -1.35 1,2 100 2.44
1 100 (0.66) 1,2 50 (-2.97)
1 25 (-5.43) 1,2 75 (-5.94)
1 75 (3.50) 1,2 25 (-2.31)
1 100 1.24 1-4 100 -2.57
2 100 3.61 1-4 100 -4.29
3 100 0.45 1-4 100 0.17
4 100 -0.39 1-4 100 -4.82
1 100 -9.78 1-8 100 -9.30
8 100 0.94 1-8 100 -15.36

87

CHAPTER V

DEADLINE-DRIVEN DYNAMIC SCHEDULING

We now describe the job scheduling methodology used. As discussed in Chapter I,
medical jobs often have deadlines. To know if a computing system can meet a job’s
deadline, it must be able to estimate whether the job can be scheduled such that it
completes in time. In this chapter, we describe our job scheduling methodology, including
our multi-objective scheduling algorithm that addresses the deadline satisfaction problem

by harnessing the performance prediction methodology outlined in the previous chapter.

V.1 Design Overview

Our results in the previous chapter demonstrated that execution time predictions within 15%
are possible when applying our prediction methodology to FAST and WRF. While more
sophisticated models can be developed to reduce this error, a certain amount of error is
unavoidable on modern systems due to their complex CPU architectures, distributed
nature, etc. This creates a challenge for deadline satisfaction, so we went with a pragmatic
approach when designing our scheduling methodology. Our system actively monitors a
job’s progress and when a deadline violation seems imminent under the current system
state, additional resources are apportioned to the affected job(s) or it is migrated to a host

with more free resources available.

88

We used a multi-objective scheduling approach. After deadline satisfaction, the next
objective the scheduler satisfies is the maximization of resource utilization. The intent, in
this case, is to allow as many jobs as possible so that the system is constantly loaded. The
third objective is minimizing jobs’ response times. Response time can be reduced by
prioritizing short-duration jobs and by migrating tasks to maintain synchronized execution.
However, maximizing throughput (in order to maximize utilization) tends to leave jobs
running at just enough CPU allocation to finish before their deadline, negatively affecting

response time.

V.2 Implementation

In order to satisfy all objectives and ensure that the system functions autonomously,
several components were created to automatically determine if new jobs are schedulable,
their optimal placement, availability of resources, and job status. We now discuss the

implementation of these components and their interactions.

V.2.1 Tools

Amon and Aprof are used to monitor job status and predict resource requirements for new
jobs. In addition, it is necessary to separately monitor the resource allocation of each VM,
since virtualization overhead can result in a job receiving less net CPU capacity than it
requires to complete and we observed non-intuitive CPU allocation with certain parallel

applications. For this purpose, we developed another monitor, which we call xAmon, short

89

for Xen Hypervisor Monitor. It is implemented as a Linux daemon that periodically
monitors the resource utilization of VMs and listens for requests for specific utilization
data. The information that can be requested from ximon includes a VM’s mean, median,

minimum, or maximum CPU utilization, all of which are recalculated at discrete intervals.

V.2.2 Components

In this section, we discuss the steady state functionality of the four components of the
scheduling methodology. Their names are Predictor, Scheduler, Resource Manager, and
Job Monitor. All components are implemented as Linux daemons. The Resource Manager
and Job Monitor update resource and job status parameters at discrete intervals. Since
most jobs take several minutes to run, we use an interval of 60 seconds to maintain a
reasonable monitoring overhead. The Scheduler is constantly listening for new job events,
upon which it calls the Predictor to determine the job’s computation requirements and
subsequently whether or not it can be scheduled in time for its deadline. Now, we describe

the individual components.

Predictor

The Predictor determines the resource requirements of new jobs. It can use either generic
prediction parameters or application-specific parameters for improved accuracy. For the
latter case, additional programming can be performed to extract pertinent information

from the input data. The decision to use the application-specific parameters is made

90

automatically when the name of the application pertaining to the job matches an
application for which the Predictor has a specific prediction method. Based on our
findings in Chapters III and IV, we bind the parameters dimX, dimY, dimZ for image
processing applications to the Predictor. We use a third-party NIFTI library for reading
these parameters from the input data programmatically. The Predictor distinguishes
among the different parallel job types, such that for bags-of-tasks jobs each task’s
computation requirement is evaluated separately, whereas for tightly coupled jobs the

overall job requirements with different levels of parallelism is predicted.

Scheduler
The Scheduler is responsible for matching jobs to resources in order to satisfy scheduling
objectives. Resource requirements are queried from the Predictor and resource availability
is queried from the Resource Manager. When there are multiple resources to choose from,
different heuristics can be used to optimize scheduling performance. It also collects
scheduling performance data, which include system utilization, deadline violation rates,
and response times.

Figure 16a shows pseudocode for the two main functions carried out by the Scheduler,
i.e. processing job arrivals and job completions. We defer describing the details of these
functions until after describing the Resource Manager and Job Monitor, since they are

involved in this functionality.

91

Resource Manager

The Resource Manager tracks the CPU and memory utilization of virtual machines and
physical machines. It is also responsible for keeping a pool of VMs available on physical
machines that can allocate new jobs without violating the deadlines of existing jobs, such
that response times of new jobs can be decreased as described in Section I11.2.

Figure 16b outlines the steady state functionality of the Resource Manager. This
consists of 2 functions, VM probing and VM deployment. In the probing stage, the CPU
consumption rates of VMs are probed using xhmon. Since virtualization overhead can
impede a job’s progress, each job’s current and minimum execution rates are probed using
the Job Monitor’s socket interface. Using this information, VM slots, which indicate
points in time that VMs can be deployed and the amount of CPU capacity they can receive
at these times, are created for each physical machine.

The concept of VM slots is depicted in Figure 17, where we show how the state of a
physical machine initially running 3 jobs (J;3) on 3 VMs changes over time. The CPU
allocation of each job is depicted using the height of the box it is enclosed in. The
completion times of J; and J, at their current CPU allocation are T; and T,, respectively.
Initially, the full CPU capacity of the machine is required to ensure all remaining jobs
finish before their deadlines. When J; completes, its share (of roughly 25%) becomes
available, hence a VM slot of 25% CPU is created. Now, the slot can be used to run a new

job or the other two VMs can use the excess capacity. Similarly, when J, completes at T,

92

its slot of roughly 25% additional CPU capacity opens up. When J; completes at T, a slot
with the full CPU capacity becomes available.

The current heuristic employed by the Resource Manager is as follows. If a job is
receiving less CPU capacity than its minimum, it gets the available capacity in existing
slots, up to its newly calculated minimum capacity. Theoretically, this should not happen,
but in practice scheduling error can result in tasks getting less than their minimum. If there
is still available capacity after accounting for this, a VM is created or migrated to the
available slot so that later job arrivals can use it. This is what we refer to as the VM
deployment functionality of the Resource Manager. If a job has exceeded its predicted
computation time and is still running, all excess capacity is allocated to it, as this implies
its execution time was underestimated and the possibility of a deadline violation is

increased. The excess capacity is distributed among the running VMs.

Job Monitor
As its name implies, the Job Monitor keeps track of jobs’ progress, particularly their CPU
consumption progress and execution rates. It works with the Resource Manager to ensure
jobs are getting enough resources to complete before their deadlines. The Job Monitor
also attempts to minimize a job’s response time. For example, for bags-of-tasks workloads,
it attempts to balance jobs such that they finish at equal times.

An overview of the Job Monitor’s functionality is shown using pseudocode in Figure

16¢. At discrete intervals, each job’s rate and CPU consumption progress is probed using

93

Amon's reporting interface. If a deadline violation is possible with the job’s current min
CPU allocation, the min value is increased. The Job Monitor merely updates this
information; the Resource Manager is responsible for updating allocations based on the
job’s parameters. The job status can be queried by probing the Job Monitor’s socket

interface, which returns the current and minimum execution rates for a given job.

V.2.3 Interaction Among Components

To better understand the scheduling methodology, we now discuss some additional details
about the implementation in terms of how the components interact with each other. In
Figure 18, we show a time line and the activities of each component from a job’s arrival
until its completion. The Resource Manager reallocates CPU to different VMs
continuously at discreet intervals, based on updates from the Job Monitor, and updates slot
availability accordingly. This is indicated in blue text in the figure. The first component to
respond to a job arrival is the Scheduler. It obtains a prediction of a job’s execution time
from the Predictor (not shown). This requirement is sent to the Resource Manager, who
updates its available slots and returns the list to the Scheduler. Assuming the job can
complete before its deadline, it is assigned to a set of slots according to some scheduling

heuristics. The Resource Manager is also responsible for allocating a VM on the physical

94

machine, if necessary. This can be a new VM or a free VM can be migrated from another

physical machine.

function job_arrival():
predict_job resource requirements()
determine_schedulability from available resources()
assign_resources_to_job()

function job_completion():
unmap_resources()
allocate reserved jobs()

(a)

function update_vm_slots():
for each physical machine:
for each job_on_this physical machine:
get_job_rate_and min()
if imminent deadline violation:
reallocate_extra capacity to job in danger
update slots_times _and capacities()
deploy vms for available slots
function probe vms():
for each VM:
update resource utilization()

(b)

function monitor():
probe job rate and progress()
update vm_min_cpu()

(©)

Figure 16. Component overview: (a) Scheduler, (b) Resource manager, (c) Job Monitor

95

N T H
J Slot
________ L ma ' Slot,
o]
|1 R <P ORI b Slot,
5 H
&
J 3 J 3 J 3
‘F
1 T,
Time
Figure 17. Slot availability at different times for a physical machine.
Resource Manager Scheduler Job Monitor
Parse job file

Calculate available
CPU slots

P

Return available slots
for this job

Create (or migrate)
VM on target PM (if
necessary)

Predict computation
requirements

Assign tasks to nodes

Wait for VM to be

available on PM (for
each task)

—_—

Redistribute load as
necessary

Stage Files and start
tasks

. >

Monitor job rate (as
long as job runs)

Figure 18. Timeline: interaction of scheduling components during a job's lifecycle.

V.3 Scheduling Heuristics
The heuristics presented in this section are optimized for medical jobs, which resemble the

bags of tasks model, where multiple tasks with different computation requirements are

96

submitted together. Unlike tightly coupled jobs, the execution rates of each task are
independent of each other. On the other hand, the results may not be useful until all tasks
have finished so they benefit from synchronized execution.

Optimal job scheduling becomes computationally intractable as the number of tasks
and machines increases, so heuristics must be employed to best meet the scheduling
objectives. We use a best-fit based heuristic in making the job placement decisions, which
places jobs on the resources that best fit its requirements. This can be visualized by
thinking of tasks as moldable rectangles that need to be fit into different-sized bins. In
Figure 19, we show how the execution time of an image segmentation task varies based on
its CPU allocation/share. The dashed rectangles indicate three of the different shapes that
the task can assume. Its height is equal to its CPU share and its width is equal to the time it
takes to complete at a given CPU share. Since the task is CPU-constrained, the area of the
rectangles is constant. The maximum width is the job’s deadline. Looking back at Figure
17, we see a similar concept with slots. Hence, the objective of the best-fit algorithm is to
match each task rectangle to the slot rectangle that provides the tightest fit.

By ensuring that the width of each task’s rectangle does not exceed the job’s deadline,
we satisfy the first scheduling objective. Since we focus on CPU-bound medical
applications, utilization is maximized by virtue of accepting as many jobs as possible,

which implies strong execution time prediction accuracy. The third objective, minimizing

97

response times, requires periodic monitoring of job execution rates, since even perfect

initial job schedules can be disrupted by new job arrivals.

100

|

CPU share

23

3
<

>
>

M)

T, 52

X
I

v

Time
Figure 19. Assumed execution time model for image segmentation jobs.

V.4 Evaluation

The motivation for our scheduling methodology was to optimize scheduling behavior for
incoming FSL jobs. While FSL provides the ability to automatically spread the workload
using the Oracle GridEngine batch processing system, it does not provide any mechanisms
for deadline satisfaction nor does it perform active load balancing as our approach does.
Additionally, it does not automatically account for memory constraints, which resulted in
out-of-memory errors when multiple image processing tasks execute on a single physical
machine. Our baseline scheduler, therefore, is using GridEngine to process the workload.
Doing so will compare how our overall scheduling methodology (i.e. virtualization and
performance prediction) can improve scheduling performance. To compare our scheduling

algorithm to another performance-aware scheduling algorithm, we use the popular

98

first-come-first-serve-plus-backfill scheduling algorithm [15]. We use our Predictor to

determine if jobs can be backfilled.

V.4.1 Workload

We use a workload consisting of 66 functional MRI data sets requiring image
segmentation using FAST. Each of the 66 images is grouped into a separate job with a
different arrival time and deadline. Jobs require between 4 and 10 tasks each. The times
between arrivals of jobs also vary. We create random job arrival patterns and deadlines to
mimic real world workloads. By using a relatively small workload, we can clearly explain

the results obtained.

V.4.2 Scheduling Algorithms

e GridEngine: Uses FSL’s built-in functionality to submit jobs via GridEngine. We
do not use any of our scheduling components for this. Instead, we deployed
GridEngine on Mind. We designate one VM as the GridEngine master and the rest
as GridEngine execution hosts. Note that GridEngine is unaware of the underlying

physical machine on which the VM runs.

e FCFS: Despite many advances in the scheduling literature, first-come-first-serve
with backfill remains a popular choice for its simplicity and its balance of fairness
and resource utilization. It works as follows. Jobs are processed in order of arrival.

When a job requiring more nodes than are currently available arrives, it reserves a

99

set of nodes able to run the job at a later time (provided that it can finish before its
deadline). If smaller jobs arrive before this reservation time and can be scheduled
such that the reservation of the large job is not violated, they are backfilled, i.e. they
are scheduled before the large job. This algorithm does not consider partial CPU
allocations, i.e. each task gets a full CPU to run on and physical machines running a
job cannot be scheduled on until they complete the job. In order to determine if
smaller jobs can be backfilled, FCFS traditionally depends on user-generated
execution time estimates. For this test, we use our prediction methodology to predict

the execution time. If a deadline cannot be satisfied, the job is skipped.

ElaDUR: This is the scheduling algorithm we implement. Its name is short for
Elastic-Deadline-Utilization-Response. It is based on the principles already
discussed in this chapter: the resource allocation is elastic, such that multiple jobs
can share a CPU as long as the deadlines of existing jobs are not jeopardized.
Deadline-Utilization-Response is the list of scheduling objectives in order of

priority.

Intuitively, using GridEngine would result in more deadline violations because it does

not have any mechanisms for determining whether incoming jobs can complete before

their deadlines. Also, it is absent of mechanisms to determine the physical CPU allocation

that VMs have, so it may select VMs with less than a full CPU’s capacity even if there are

free CPUs available. This causes higher expansion factor and in turn a greater propensity

100

to fail deadlines. On the other hand, FCFS does not allocate multiple VMs per physical
machine, so if there are not enough idle physical machines available to schedule a job
(either immediately or in the future) in time for its deadline to be met, it does not schedule
it. ElaDUR affords more flexible allocations, which should result in more jobs being
allowed into the system. Neither FCFS nor ElaDUR are expected to violate deadlines
unless the execution time of a task is underestimated. To prevent deadline violations, we
conservatively add 10% to the predicted execution time of each task, which is 3% more
than maximum error observed in the experiment in Section IV.3.1, where we used our

predictor to predict the computation time of FAST.

V.4.3 Results

The arrival time, deadline, and number of tasks of each job is shown in Table 9. The
scheduling performance of each algorithm is shown in Table 10. The table shows the
average utilization and expansion factors, as well as the number of deadline violations, the
number of jobs processed, and the time elapsed between the first job arrival and the last
job completion. The expansion factor is the ratio of the job’s response time (completion
time minus arrival time) to its computation time, i.e. it measures the job’s response time
relative to its computation time. We consider this a better measure of responsiveness than
using only the response time, since longer jobs are less sensitive to response time delays.
The results align with the expectations summarized in the previous subsection.

GridEngine processed all job, but in doing so violated the deadlines of 70% of them. The

101

VMs were initially deployed such that 6 physical machines were running one VM, 1
physical machine was running 2 VMs, and 1 physical machine was running 4 VMs.
During the workload processing, for 2 jobs all 4 VMs on the latter physical machine was
active, resulting in the tasks’ execution times quadrupling while other physical machines
remained idle. This was the culprit for the high average expansion factor and for some of
the deadline violations.

FCFS had the lowest expansion factor because all tasks received a dedicated CPU, so
only queuing delay contributes to the expansion factor and due to the mixture of job
arrivals and deadlines, only one job could be queued with enough time left over to
complete before its deadline.

ElaDUR only had to turn down 1 job, so it enjoyed a higher average utilization and
job processing rate. Note that its performance corresponded with its scheduling objectives:
there were no deadline violations, utilization was kept high, but expansion factor was
higher than FCFS because certain jobs received a small amount of CPU in order to
accommodate the deadlines of other jobs on the same physical machine.

Due to the relatively long gap in job arrivals between the 9™ and 10™ jobs, ElaDUR
and FCFS finished the last job at roughly the same time. However, the cluster was idle for
longer periods of time during the workload processing when using FCFS since ElaDUR

processed more jobs.

102

Table 9. Parameters of jobs used for evaluating the scheduling algorithm

No. Arrival time (min.) #Tasks Deadline (min.)
1 0 8 15
2 20 10 15
3 50 8 40
4 55 4 20
5 67 4 100
6 68 4 10
7 70 4 10
8 80 8 10
9 81 8 20
10 121 8 10

Table 10. Performance comparison of the 3 scheduling algorithms

Scheduler | Utilization | Exp. Violations Jobs Completion of
Factor processed |(last job (minutes)
GridEngine 53% 24 7 10 186
FCFS 55% 1.1 0 7 131
ElaDUR 72% 1.5 0 9 130

103

CHAPTER VI

CONCLUSION AND FUTURE WORK

The work discussed in this dissertation harnesses modern advances in virtualization
technology to address the issue of deadline-driven job scheduling. Since the performance
of a given job scheduling algorithm is dependent on the arrival patterns and applications
of the workload being processed, we focused our work on a specific application that
would benefit our medical collaborators as well as researchers in the lab. Throughout the
dissertation, however, we provided additional insight into how the findings made
throughout this work could be extended to other scientific applications (e.g. fluid
dynamics). This insight was provided in the form of extensive performance analyses and
performance models for these applications.

To this end, we looked into three pertinent issues. First, recognizing the need for
performance modeling in order to satisfy scheduling deadlines, we started with an in-depth
analysis of the performance of different scientific applications via empirical evaluation on
a compute cluster. Since virtualization provides key benefits for resource provisioning, we
went on to explore the effects of virtualization on scientific workloads. This included
studying the overhead caused by the virtualization software itself as well as the impact of
CPU sharing on application performance, since it is common to pack multiple virtual

machines on the available physical machines.

104

Among our findings, we confirmed that the performance of typical medical image
processing workloads consisting of a large amount of independent tasks is not affected
significantly by virtualization. In terms of CPU sharing, the tasks scaled proportionally to
the share of CPU they were given. By virtue of this, a linear scalability model could be
used, which is ideal for making real time scheduling decisions, since this kind of model
can be implemented using computationally simple algorithms. Using a performance
prediction model based on regression analysis, we were able to predict the scalability of
tightly coupled parallel applications with an average error of 15% and the computation
time of individual image segmentation tasks to within 7% for different-sized images.

We then applied the performance prediction model to a deadline-driven job
scheduling methodology. We developed several components to enable job scheduling on
virtual machines combined with autonomous resource management to ensure deadlines
are satisfied while maximizing utilization and minimizing response time. Through our
collaboration with a consortium of hospitals, we obtained 66 sets of fMRI image data of
different sizes to process in order to evaluate our scheduling algorithm. The scheduling
algorithm was compared to a current solution for batch scheduling image processing jobs
and to a traditional, but virtual machine aware first-come-first-serve scheduling algorithm.
We found that our scheduling algorithm processed more jobs without jeopardizing any
deadlines. It also utilized the available resources significantly better than the other two

algorithms.

105

The fact that our algorithm performed better confirms the benefits of virtualization in
terms of job scheduling discussed early on in this dissertation. We observed no
performance impact from virtualization on the workloads used for the scheduling
evaluation, in fact we found that virtualized executions can outperform regular executions,
which suggests that further work should go into developing production environments for
virtualization-aware scientific job scheduling. Our observations and models provide
additional insight for doing this, which we consider an interesting direction for future
work.

Additional future work could consist of further refinements to the prediction model
itself and more optimizations to the scheduling algorithm. Specifically, migration can be
harnessed to further improve resource utilization and/or other goals such as energy
efficiency. Another direction would be to look into resource federation. Currently, our
scheduler rejects jobs for which there are not enough resources to satisfy deadlines. An
alternative is to allow federation of resources from other administrative domains to lease
external resources when local resources are not adequate, as long as they can provide a

performance guarantee.

106

LIST OF REFERENCES

[1] L. M. Vaquero, L. R. Merino, J. Caceres, and M. Lindner, “A break in the clouds:
towards a cloud definition,” In proc. SIGCOMM Comput. Commun. Rev. 39, 1,
pp.50-55, Seattle, WA, USA, Aug. 2008.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, 1. Stoica, and M. Zaharia, "Above the Clouds: A Berkeley
View of Cloud Computing". Technical Report EECS-2009-28, EECS Department,
University of California, Berkeley, 2009.

[3] I. Foster, Y. Zhao, I. Raicu, S. Lu, “Cloud Computing and Grid Computing
360-Degree Compared,” In proc. Grid Computing Environments Workshop (GCE
'08), pp. 1-10, Austin, Texas, USA, Nov. 2008.

[4] C. Catlett, “TeraGrid: Analysis of Organization, System Architecture, and Middleware
Enabling New Types of Applications,” HPC and Grids in Action, Ed. Lucio
Grandinetti, IOS Press 'Advances in Parallel Computing' series, Amsterdam, 2007.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield, “Xen and the art of virtualization.” In proc. 19" ACM symposium
on Operating Systems Principles (SOSP '03), pp. 164-17, Bolton Landing, New
York, USA, Oct. 2003.

[6] VMware Inc. 2006. VMware ESX server: Platform for virtualizing servers, storage
and networking;

[7] Google Inc. 2012, Google App Engine [URL], http://code.google.com/appengine/

[8] W. Gentzsch, “HPC in the Cloud: use cases from research and industry,” Presentation
given at 4™ annual Utility and Cloud Computing Conference, Dec. 2012.

[91G. E. Moore (1965)."Cramming more components onto integrated
circuits" (PDF). Electronics Magazine. p. 4.

[10] O. Sonmez, N. Yigitbasi, A. losup, and D. Epema, “Trace-based evaluation of job
runtime and queue wait time predictions in grids,” In proc. 18th ACM International
Symposium on High Performance Distributed Computing (HPDC '09), pp. 111-120,
Munich, Germany, Jun. 2009.

107

[11] D. Tsafrir and D.G. Feitelson, “Instability in parallel job scheduling simulation: the
role of workload flurries,” In proc. 20™ International Parallel and Distributed
Processing Symposium (IPDPS'06), pp. 73-73, Rhodes Island, Greece, Apr. 2006.

[12] J. K. Ousterhout, “Scheduling Techniques for Concurrent Systems,” In proc. 3rd
International Conference on Distributed Computing Systems (ICDCS), pp. 22-30,
Fort Lauderdale, Florida, USA, Oct. 1982.

[13] M. Stillwell, F. Vivien, H. Casanova. “Dynamic Fractional Resource Scheduling for
HPC Workloads.” In proc. 2010 International Parallel and Distributed Processing
Symposium (IPDPS '10), Atlanta, Georgia, USA, Apr. 2010.

[14] M. Stillwell, F. Vivien, H. Casanova, "Dynamic Fractional Resource Scheduling
versus Batch Scheduling," IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 3, pp. 521-529, Mar. 2012.

[15] J. Skovira, W. Chan, H. Zhou, D. Lifka, “The EASY - LoadLeveler API Project,”
Proc. Job Scheduling Strategies for Parallel Processing Systems (JSSPP ’96), pp.
41-47, 1996.

[16] D. Wall, P. Kudtarkar, V. Fusaro, R. Pivovarov, P. Patil, and P. Tonellato. “Cloud
computing for comparative genomics.” BMC Bioinformatics, vol. 11, no. 259, May
2010.

[17] R. Barga, D. Gannon, D. Reed, “The Client and the Cloud: Democratizing Research
Computing,” IEEE Internet Computing, vol. 15, no. 1, pp. 72-75, Feb. 2011.

[18] Amazon Elastic Compute Cloud [URL]. Amazon (2012),
http://aws.amazon.com/solutions/case-studies.

[19] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and modeling
resource usage of virtualized applications,” In proc. 9th ACM/IFIP/USENIX
International Conference on Middleware (Middleware '08), pp. 366-387, Leuven,
Belgium, Dec. 2008.

[20] L. Cherkasova and R. Gardner, “Measuring CPU overhead for I/O processing in the
Xen virtual machine monitor,” In proc. USENIX Annual Technical
Conference (ATEC '05), Anaheim, California, USA, Apr. 2005.

[21] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Paravirtualization for HPC
Systems,” Workshop on XEN in HPC Cluster and Grid Computing Environments

108

(XHPC), held in conjunction with The International Symposium on Parallel and
Distributed Processing and Application (ISPA °06), Sorrento, Italy, Dec. 2006.

[22] W. Huang, J. Liu, B. Abali, and D. K. Panda. “A case for high performance
computing with virtual machines.” In proc. 20th annual international conference on
Supercomputing (ICS '06), pp. 125-134, Queensland, Australia, Jun. 2006.

[23] A. Tikotekar, G. Valle, T. Naughton, H. Ong, C. Engelmann, and S. L. Scott, “An
Analysis of HPC Benchmarks in Virtual Machine Environments,” In proc. Euro-Par
2008 Workshops - Parallel Processing, Gran Canaria, Spain, Aug. 2008.

[24] P. M. Papadopoulos, M. J. Katz, and G. Bruno. 2001. “NPACI Rocks Clusters: Tools
for Easily Deploying and Maintaining Manageable High-Performance Linux
Clusters.” In proc. 8th European PVM/MPI Users' Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
Springer-Verlag, London, UK, 10-11.

[25] N. Regola and J. C. Ducom, “Recommendations for Virtualization Technologies in
High Performance Computing,” In proc. 2" International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 409-416, Athens, Greece, Dec.
2011.

[26] D. E. Lang , T. K. Agerwala , K. M. Chandy, “A modeling approach and design tool
for pipelined central processors,” In proc. 6th annual symposium on Computer
architecture, pp. 122-129, 1979.

[27] S. Kounev, “Performance Prediction, Sizing and Capacity Planning for Distributed
E-Commerce Applications,” Technical report, Technische Universitdit Darmstadt,
Germany, Jan. 2001.

[28] Q. Zhang, L. Cherkasova, N. Mi, and E. Smirni, “A regression-based analytic model
for capacity planning of multi-tier applications. In proc. 11 " Cluster Computing, pp.
197-211, Tsukuba, Japan, Sep. 2008.

[29] D. Wall, P. Kudtarkar, V. Fusaro, R. Pivovarov, P. Patil, and P. Tonellato. “Cloud
computing for comparative genomics.” BMC Bioinformatics, vol. 11, no. 259, May
2010.

[30] W. Huang, M. Koop and D.K. Panda, “Efficient One-Copy MPI Shared Memory
Communication in Virtual Machines,” In proc. 11 " IEEE Cluster, Tsukuba, Japan,
Sep. 2008.

109

[31] T. Chen, M. Gunn, B. Simon, L. Carrington, and A. Snavely, “Metrics for ranking
the performance of supercomputers,” Cyberinfrastructure Technology Watch
Journal: Special Issue on High Productivity Computer Systems, vol. 2. Feb. 2007.

[32] W. Smith, I. T. Foster, and V. E. Taylor, “Predicting application run times using
historical information,” Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, pp. 122-142, 1998.

[33] Jesus Labarta, Sergi Girona, Vincent Pillet, Toni Cortes, and Luis Gregoris, “DiP: A
parallel program development environment,” In proc. 2" International EuroPar
Conference on Parallel Processing, pp. 665-674, Lyon, France, Aug. 1996.

[34] R. M. Badia, F. Escal¢, E. Gabriel, J. Gimenez, R. Keller, J. Labarta, and M. S.
Muller, “Performance prediction in a grid environment,” In proc. Ist European
Across Grids Conference, pp. 257-264, 2003.

[35] D. Katramatos and S.J. Chapin, "A Cost/Benefit Estimating Service for Mapping
Parallel Applications on Heterogencous Clusters,” In proc. 7" IEEE International
Conference on Cluster Computing, pp. 1-12, Osaka, Japan, Sep. 2005.

[36] H. Rasheed, R. Gruber, and V. Keller, “IANOS: An intelligent application oriented
scheduling middleware for a HPC grid”. CoreGRID Tech. Rep. TR-0110, 2007.

[37] L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance prediction of
parallel applications using partial execution,” In proc. 18™ Supercomputing
Conference, pp. 40—49, Seattle, Washington, Nov 2005.

[38] D. Schanzenbach and H. Casanova, “Accuracy and responsiveness of CPU sharing
using Xen's cap values,” Technical Report ICS2008-05-01, Computer and
Information Sciences Dept., University of Hawai'i at Manoa, 2008.

[39] B. Urgaonkar , P. Shenoy , T. Roscoe, “Resource overbooking and application
profiling in a shared Internet hosting platform,” ACM Transactions on Internet
Technology (TOIT), vol. 9, no. 1, pp. 1-45, Feb. 2009.

[40] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Capacity Management and
Demand Prediction for Next Generation Data Centers,” In proc. International
Conference on Web Services (ICWS), pp. 43-50, Salt Lake City, Utah, USA, Jul.
2007.

110

[41] D.G. Feitelson and L. Rudolph, “Gang Scheduling Performance Benefits for
Fine-Grain Synchronization,” Journal of Parallel and Distributed Computing, vol.
16, pp. 306-318, 1992.

[42] A. Gupta, A. Tucker, and S. Urushibara, “The impact of operating system scheduling
policies and synchronization methods of performance of parallel applications,” In
proc. 1991 ACM SIGMETRICS conference on Measurement and modeling of
computer systems (SIGMETRICS '91), pp. 120-132, 1991.

[43] S. T. Leutenegger and M. K. Vernon, “The performance of multiprogrammed
multiprocessor scheduling algorithms,” SIGMETRICS Perform. Eval., Rev. 18, 1, pp.
226-236, 1990.

[44] A. Tosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,
“Performance Analysis of Cloud Computing Services for Many-Tasks Scientific
Computing,” IEEE Trans. on Parallel and Distributed Systems, vol. 22, no. 6, pp.
931-945, Feb/Apr 2011.

[45] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job scheduling — a
status report,” In proc. 10th international conference on Job Scheduling Strategies
for Parallel Processing (JSSPP'04), Springer-Verlag, Berlin, Heidelberg, pp. 1-16.
2004.

[46] D. Gupta, L. Cherkasova, R. Gardner, A. Vahdat, “Enforcing Performance Isolation
Across Virtual Machines in Xen,” HP Laboratories Report No. HPL-2006-77, 2006.

[47] H. Casanova, M. Gallet, and F. Vivien, “Non-clairvoyant scheduling of multiple
bag-of-tasks applications,” In proc. 16th international Euro-Par conference on
Parallel processing, pp. 168-179, Caparica, Portugal, Sep. 2005.

[48] G. Katsaros, R. Kiibert, G. Georgina, T. Wang, “Monitoring: A Fundamental Process
to Provide QoS Guarantees in Cloud-based Platforms,” In Cloud Computing:
Methodology, System, and Applications, CRC Press, Aug. 2011.

[49] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user runtime estimates
inherently inaccurate?,” In 10th Workshop on Job Scheduling Strategies for Parallel
Processing, 2004.

[50] D. Tsafrir, Y. Etsion, and D. G. Feitelson. “Backfilling using system-generated
predictions rather than user runtime estimates,” [EEE Trans. Par. Distr. Sys.,
18:789-803, 2007.

111

[51] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, R. Buyya, “An autonomic cloud
environment for hosting ECG data analysis services,” Future Generation Computer
Systems, Volume 28, Issue 1, pp. 147-154, ISSN 0167-739X, Jan. 2012.

[52] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: A Software Platform for .NET-based
Cloud Computing, High Speed and Large Scale Scientific Computing,” pp. 267-295,
ISBN: 978-1-60750-073-5, I0S Press, Amsterdam, Netherlands, 2009.

[53] H. Kim; M. Parashar, D.J. Foran, L. Yang, "Investigating the use of autonomic
cloudbursts for high-throughput medical image registration," In proc. 10™ IEEE/ACM
Conference on Grid Computing, pp.34-41, Banff, AB, Canada, Oct. 2009.

[54] H. Kim, S. Chaudhari, M. Parashar, and C. Marty, “Online risk analytics on the
cloud,” In proc. 9" [EEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID °09), pp. 484-489, Shanghai, China, May 2009.

[55] Distributed Systems Architecture Research Group: OpenNEbula Project [URL].
Universidad Complutense de Madrid (2009), http://www.opennebula.org.

[56] The parallel workloads archive, http://www.cs.huji.ac.il/labs/parallel/workload. 2012.

[57] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. “KVM: the Linux virtual
machine monitor,” In The 2007 Ottawa Linux Symposium, pp. 225-230, Jul. 2007.

[58] D. Chisnall, “The Definitive Guide to the Xen Hypervisor,” (Prentice Hall Open
Source Software Development Series), Prentice Hall PTR, Upper Saddle River, NJ,
2007.

[59] G. Dunlap, “Xen Scheduler Update,” unpublished whitepaper, presented at Xen
Summit Asia, Nov. 2009.

[60] S. M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E.J. Behrens,
H. Johansen-Berg, P.R. Bannister, M. De Luca, 1. Drobnjak, D.E. Flitney, R. Niazy,
J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J.M. Brady, and P.M. Matthews.
“Advances in functional and structural MR image analysis and implementation as
FSL.” Neurolmage. 23(S1), 2004, 208-219.

[61] P. Jezzard, P. M. Matthews, and S. M. Smith. ”Functional MRI: An introduction to
methods.” England: Oxford University Press.

112

[62] Y. Zhang, M. Brady, and S. Smith. “Segmentation of brain MR images through a
hidden Markov random field model and the expectation maximization algorithm.”
IEEE Trans. Med. Imag., January 2001, 20 (1), 45-57.

[63] M. Jenkinson, P. R. Bannister, J. M. Brady, and S. M. Smith, “Improved optimization
for the robust and accurate linear registration and motion correction of brain images.”
Neurolmage, 2002, 17 (2), 825-841.

[64] C. F. Beckmann and S. M. Smith. “Probabilistic independent component analysis for
functional magnetic resonance imaging.” [EEE Trans. on Med. Imag., 23(2):
137-152, 2004.

[65] D. Bailey, E. Barscz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.
Fineberg, P. Frederickson, T. Lasinkski, R. Schreiber, H. Simon, V.
Venkatakrishnan, and S. Weeratunga, “The NAS Parallel Benchmarks,” (March
1994) NAS Technical Report RNR-94-007, NASA Ames Research Center, Moffett
Field, CA.

[66] R. van der Wijngaart and H. Jin, "NAS Parallel Benchmarks, Multi-Zone Versions,”
(July 2003) NAS Technical Report NAS-03-010, NASA Ames Research Center,
Moffett Field, CA.

[67] H. Jin, R. Van der Wijngaart, "Performance Characteristics of the Multi-Zone NAS
Parallel Benchmarks," In proc. 18th International Parallel and Distributed
Processing Symposium (IPDPS 04), Santa Fe, New Mexico, USA, Apr. 2004.

[68] A. Matsunaga, M. Tsugawa, and J. Fortes. “CloudBLAST: Combining MapReduce
and Virtualization on Distributed Resources for Bioinformatics Applications,” In
proc. Fourth IEEE International Conference on eScience (ESCIENCE '08), pp.
222-229, Indianapolis, Indiana, USA, Dec. 2008.

[69] S. F. Altschul, W. Miller, E.-W. Myers, and D.J. Lipman, "Basic local alignment
search tool," J Mol Biol, vol. 215, no. 3, pp. 403—410.

[70] T. Cortes V. Pillet, J. Labarta, and S. Girona, “Paraver: A tool to visualize and
analyze parallel code,” In WoTUG-18, pp. 17-31, Manchester, U.K., Apr. 1995.

[71] S. M. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado, H. Duran, and X.
Collazo, “A modeling approach for estimating execution time of long-running
scientific applications.” In Proc. 22nd IEEE International Parallel & Distributed
Processing Symposium, the Fifth High-Performance Grid Computing Workshop,
Miami, FL, USA, 2008.

113

[72] Coregrid Network of Excellence Deliverable Number D.RMS.06, “Review of
performance prediction models and solutions,” 2006.

[73] A. Darling, L. Carey, and W. Feng, “The Design, Implementation, and Evaluation of
mpiBLAST,” In proc. 4th International Conference on Linux Clusters: The HPC
Revolution, June 2003.

[74] C. Clémengon, K. M. Decker, V. R. Deshpande, A. Endo, J. Fritscher, P. R. Lorenzo,
N. Masuda, A. Miiller, R. Riihl, W. Sawyer, B. J. N. Wylie, F. Zimmermann, “HPF
and MPI Implementation of the NAS Parallel Benchmarks Supported by Integrated
Program Engineering Tools,” In proc. Parallel and Distributed Computing Systems
(PDCS), Chicago, Illinois, USA, Oct. 1-4, 1996.

[75]J. Delgado, S. M. Sadjadi, H. A. Duran-Limon, M. Bright, and M.
Adjouadi, “Performance prediction of weather forecasting software on multicore
systems,” In proc. 24th IEEE International Parallel & Distributed Processing
Symposium (IPDPS-2010), 11th Parallel and Distributed Scientific and Engineering
Computing (PDSEC) workshop, Atlanta, Georgia, USA, April 2010.

[76] J. Michalakes, J. Hacker, R. Loft, M. O. McCracken, A. Snavely, N. J. Wright, T.
Spelce, B. Gorda, R. Walkup, "WRF nature run," In. proc. 20™ ACM/IEEE
conference on Supercomputing, pp. 1-6, Reno, Nevada, USA, Nov. 2007.

[77] J. Delgado, A. S. Eddin, M. Adjouadi, and S. Masoud Sadjadi. “Paravirtualiztion for
Scientific Computing: Performance Analysis and Prediction,” In proc. 2011 IEEE
International Conference on High Performance Computing and Communications
(HPCC ’11), pp. 536-543, Banft, AB, Canada, September 2011.

[78] M. Ben-Yehuda. “The Xen Hypervisor and its IO Subsystem,” Presentation given at
the 2005 IBM Systems and Storage Seminar, Haifa, Israel, Dec. 2005. Available at:
http://'www.research.ibm.com/haifa/Workshops/systems-and-storage2005/papers/xen

-io.pdyf.

[79] L. Cherkasova, D. Gupta, and A. Vahdat, “When Virtual is Harder than Real:
Resource Allocation Challenges in Virtual Machine Based IT Environments,” HP
Laboratories Report No. HPL-2007-25, 2007.

114

VITA

JAVIER DELGADO

2004 B.S., Computer Engineering

Florida International University

Miami, FL

2007 M.S., Computer Engineering

Florida International University

Miami, FL

2011 Ph.D. Candidate, Electrical Engineering

Florida International University

Miami, FL

PUBLICATIONS

I.

J. Delgado, L. Fong, Y. Liu, N. Bobroff, S. Seelam, and M. Sadjadi, “Efficiency
Assessment of Parallel Workloads on Virtualized Resources,” In proc. 2011 Fourth
IEEE International Conference on Utility and Cloud Computing, pp.89-96,
Melbourne, Australia, December 2011.

J. Delgado, A. S. Eddin, M. Adjouadi, and S. Masoud Sadjadi. “Paravirtualiztion for
Scientific Computing: Performance Analysis and Prediction,” In proc. 2011 IEEE

International Conference on High Performance Computing and Communications
(HPCC ’11), pp. 536-543, Banff, AB, Canada, September 2011.

J. Delgado, S. M. Sadjadi, H. Duran, M. Bright, and Malek Adjouadi, “Performance
prediction of weather forecasting software on multicore systems,” In Proc. 24th
IEEE International Parallel & Distributed Processing Symposium (IPDPS-2010),
11th Parallel and Distributed Scientific and Engineering Computing (PDSEC)
workshop, Atlanta, Georgia, USA, April 2010.

115

>

J. Delgado and M. Adjouadi. “On the Efficacy of Present Grid Computing Software
for Deploying a Medical Grid,” In proc. 2009 Richard Tapia Celebration of
Diversity in Computing, pp. 81-86, Portland, Oregon, USA, April 2009.

5. J.Delgado and M. Adjouadi, “Towards an Efficient and Extensible Grid-Based Data
Storage Solution,” In proc. 22nd IEEE International Conference on Advanced
Information Networking and Applications, pp. 659-666, Okinawa, Japan, March
2008.

6. J. Delgado, M. R. Guillen, M. Lahlou, and M. Adjouadi, “MIND: A Tiled Display
Visualization System at CATE/FIU,” In proc. IASTED International Conference on
Graphics and Visualization in Engineering (GVE 2007), Clearwater, Florida, USA,
January 2007.

7. S. M. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado, H. Duran, and
X. Collazo, “A Modeling Approach for Estimating Execution Time of
Long-Running Scientific Applications,” In proc. Fifth High-Performance Grid
Computing Workshop, pp. 1-8, Miami, Florida, USA, April 14, 2008.

8. D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, L. Fong, S.
M. Sadjadi, and M. Parashar, “Cloud federation in a layered service model,” Journal
of Computer and System Sciences, Available online, ISSN 0022-0000,
10.1016/j.jcss.2011.12.017, January 2012.

SUBMITTED
1. J. Delgado, A. S. Eddin, S. M. Sadjadi, and M. Adjouadi, “Issues Faced Running

Scientific Applications on Multi-user Virtualized Systems,” Submitted to IEEE
Transactions on Parallel and Distributed Systems.

116

	Florida International University
	FIU Digital Commons
	3-30-2012

	Scheduling Medical Application Workloads on Virtualized Computing Systems
	Javier Delgado
	Recommended Citation

	Scheduling Medical Application Workloads on Virtualized Computing Systems

