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ABSTRACT OF THE DISSERTATION 

A METHODOLOGY TO ESTIMATE TIME VARYING USER RESPONSES TO 

TRAVEL TIME AND TRAVEL TIME RELIABILITY IN A ROAD PRICING 

ENVIRONMENT  

by 

Patricio Alvarez 

Florida International University, 2012 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

Road pricing has emerged as an effective means of managing road traffic demand 

while simultaneously raising additional revenues to transportation agencies. Research on 

the factors that govern travel decisions has shown that user preferences may be a function 

of the demographic characteristics of the individuals and the perceived trip attributes. 

However, it is not clear what are the actual trip attributes considered in the travel 

decision- making process, how these attributes are perceived by travelers, and how the set 

of trip attributes change as a function of the time of the day or from day to day.  

In this study, operational Intelligent Transportation Systems (ITS) archives are 

mined and the aggregated preferences for a priced system are extracted at a fine time 

aggregation level for an extended number of days. The resulting information is related to 

corresponding time-varying trip attributes such as travel time, travel time reliability, 

charged toll, and other parameters. The time-varying user preferences and trip attributes 

are linked together by means of a binary choice model (Logit) with a linear utility 

function on trip attributes. The trip attributes weights in the utility function are then 
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dynamically estimated for each time of day by means of an adaptive, limited-memory 

discrete Kalman filter (ALMF).    

The relationship between traveler choices and travel time is assessed using 

different rules to capture the logic that best represents the traveler perception and the 

effect of the real-time information on the observed preferences. The impact of travel time 

reliability on traveler choices is investigated considering its multiple definitions. 

It can be concluded based on the results that using the ALMF algorithm allows a 

robust estimation of time-varying weights in the utility function at fine time aggregation 

levels. The high correlations among the trip attributes severely constrain the simultaneous 

estimation of their weights in the utility function. Despite the data limitations, it is found 

that, the ALMF algorithm can provide stable estimates of the choice parameters for some 

periods of the day. Finally, it is found that the daily variation of the user sensitivities for 

different periods of the day resembles a well-defined normal distribution.     
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Quality of life is strongly related to the ability to travel in a timely manner. Every 

day, millions of travelers around the world make travel related decisions in order to meet 

their needs. Particularly, American commuters consistently rank mobility among the top 

three regional policy issues, together with the economy, education, and crime 

(Knickerbocker, 2000). Economic development and other advances in modern 

civilization are also accompanied by social and environmental problems. One of the most 

noticeable problems is traffic congestion, which has become part of daily life for 

commuters in many urban areas.  

Due to the growth in people’s mobility, demand for roadways currently exceeds 

the supply, particularly at the peak hours. This imbalance is causing reduced speeds, 

increased travel times, reduction in travel time reliability, higher fuel consumption, 

vehicle wear, safety problems, impacts on the environment, and inconvenience from 

rescheduling trips or relocating residences and jobs in the long term to avoid congestion.  

The enlarging gap between travel demand and infrastructure supply is an ongoing 

problem that has increased traffic congestion nationwide. In the United States, during the 

past 25 years, vehicle miles traveled (VMT) has increased by 80 percent while lane 

capacity has grown by only 2 percent; likewise, roadway congestion in the 75 most 

congested urban areas annually caused more than 3.5 billion hours of delay (Standard & 

Poor’s, 2005). 
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From the point of view of decision makers, the provision of future mobility must 

be framed by realistic consideration of available financial resources. Building new roads 

or increasing capacity of existing roads to alleviate congestion is generally expensive. 

Moreover, it has been reported that expansion of the transportation system capacity can 

allow latent demand to consume much of the expected travel time savings (Gullipalli P. 

2008). Thus, an attractive alternative to account for budget constraints and growing needs 

is to improve the efficiency of the transportation system through active traffic and 

demand management, so that the demand can be accommodated at a lower cost. 

Road pricing has emerged as an effective means of both managing road traffic 

demand and at the same time raising additional revenue. The  rationale behind road 

pricing comes from the observation that people tend to make socially efficient choices 

when they are faced with all the social benefits and costs of their actions. Road pricing is 

justified because motorists are unaware of certain costs their behavior imposes on others 

(Litman, 2011). Under a road pricing strategy, road users are charged a fee that better 

reflects a measure of the cost of their travel decisions than do existing fees and taxes. 

Pricing can therefore serve as a public policy tool to help manage demand for a limited 

resource (TRB, 2005). As in any other pricing system, road pricing allocates road space 

to those most willing to pay for it, provides guidance in the revenues collected as to 

where capacity extension is needed, and creates a funding source for repaying the 

investment. 
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A road pricing schema that has been particularly used often in the U.S., is the 

provision of a fee differentiated service at locations where spare capacity is still available. 

In the case of high occupancy tolled lanes (HOT), individual drivers can pay a variable 

price for the privilege of joining high occupancy vehicles (HOV) in the restricted lanes. 

In terms of user responses, road pricing has the potential to affect many 

dimensions of travel behavior. In the short term, the primary impacts of road pricing 

relate to route choice, departure time-of-day choice (peak spreading), and the mode of 

transportation choice. For global area pricing forms (typically, drivers paying a fee to 

cross a cordon and enter a congested central city area during business hours), the entire 

daily activity pattern of individuals can be changed with important implications for the 

number and chaining of trips over the entire course of the day (Vovsha et al., 2005). 

Traditionally, user behavior related to road pricing has been estimated using 

individual data collected by means of either stated preferences surveys (SP), reveled 

preferences surveys (RP), simulation, or by means of a mix of the approaches. However, 

the survey approach is expensive, particularly for large systems. In addition, the data 

collected using such methods are normally representative of one or a few days and may 

not capture fine temporal variations in user preferences and other features like user 

decisions under non-recurrent congestion conditions (incidents, weather, etc.). With 

respect to the alternative survey methods, SP surveys tend to have serious limitations, due 

to the fact that their answers to the surveys may not reflect the individual’s actual 

behavior, but just an intention. In case of using simulation techniques, the main criticism 

points to the fact that neither the transportation system is a real system nor the users are 

actually commuting. 
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Intelligent Transportation Systems (ITS) refers to transportation systems which 

apply emerging hard and soft information systems technologies to address and alleviate 

transportation congestion. The data gathered by such systems are processed and turned 

into valuable information that is used at the policy, strategic, and tactical levels of the 

decision process. As ITS data archives become more widely available, the utilization of 

such archives for estimation of road pricing user behavior can be an attractive option. 

This utilization can provide a significantly lower cost and a cost-efficient data collection 

method compared to traditional methods. The additional details provided by the ITS data, 

both in time and space resolutions, allow better representations of real-world 

environments in transportation models.  For example, the use of archived ITS data 

allows the consideration of drivers behavior for a number of traffic conditions; including, 

special events, accidents, work zones, weather events, and incident management 

strategies. (Alvarez et al., 2010) 

1.2. Problem Statement 

When considering the implementation of traffic and/or demand management strategies, 

estimating the benefits of implementing road pricing policies is of natural interest. 

Assessing road pricing strategies requires the use of models under a number of 

assumptions about the mechanisms used to decide the several dimensions of their travel 

behavior. In this regard, road pricing adds significant complexity to all choice dimensions 

since it requires a detailed consideration of the travelers’ willingness to pay, as well as 

detailed description of their sensitivities to the level of service provided by the system; 

such as, travel time, travel time reliability, safety, comfort, and others. 
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These user behavioral factors have been the subject of decades of substantial 

theoretical and empirical research. If we consider travel time alone, research has 

indicated that income, trip purpose, time of day, and method of payment highly determine 

how travel time is related to user behavior. However, because the use of surveys to 

estimate the impact of these behavioral factors, the estimated values of these impacts can 

only represent average conditions during a period of time, and thus can be used to assess 

road pricing strategies only for similar levels of aggregation in the analysis. However, 

more fine-grained analysis models using the parameters calibrated as described above 

may be not sufficiently sensitive to the variability of the traffic conditions in real time or 

between days. These deviations from the average conditions may be the result of 

variations in the system; such as, weather, surface conditions, incidents, etc. Such 

variations may cause traffic conditions to differ significantly from the average scenario 

evaluated by the surveys. In addition, factors such as the impact of provided travel 

information and the actual pricing strategy may not be sufficiently captured. Thus, the 

predictive power of the models used to assess the road pricing operation may be 

significantly reduced. 

In addition to travel time, there is a growing body of empirical evidence that 

travelers value reliability as an important factor in their trip making decisions. Travel time 

reliability becomes especially important in dynamic pricing applications, where tolls are 

adjusted based on traffic congestion level in order to maintain a specified level of service. 

In the case of the HOT lanes, users may experience only a small reduction in their 

average travel time over non-toll lanes, but enjoy a substantial reduction in their travel 

time day-to-day variability. This increased reliability can be critical for travelers with 
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rigid schedule requirements (e.g., day-care pickups, workers on time-clocks, or airline 

passengers) and is not necessarily correlated with the traveler’s perception of the travel 

time. Despite the potential importance of reliability to road pricing, there are few, if any, 

examples of travel time reliability assessment for HOT applications considering fine time 

resolution levels. 

Finally, regarding ITS data, prior to the widespread deployment of traffic detector 

equipment and the establishment of traffic management centers in major urban areas, 

there was limited data available to measure hourly and day-to-day changes in the 

transportation system. Recent expansion of ITS systems and the archiving of this data 

allow the exploration of pricing impacts and the effects of external factors such as 

weather and incidents on user choices. In this regard, ITS data can be used to study the 

variations of the user behavior and choices made in a priced system, under different 

traffic and environmental conditions at the level of temporal aggregation desired. ITS 

data can be processed using alternative procedures in order to reveal the traveler’s logic 

that best describe his decision making. 

1.3. Research Goal and Objectives 

The goal of this dissertation is to develop a methodology to estimate the user sensitivities 

to travel time and travel time reliability in a system managed using road pricing 

strategies. The methodology focus is on the estimation of the user sensitivities to travel 

time and travel time reliability with special attention on the effect of the time-of-the-day 

and day-to-day traffic variations. To achieve this goal, the following objectives must be 

fulfilled: 
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1) Review the existing road pricing schemas, models, and their considerations 

of user behaviors; the existing methodologies to estimate the user choice 

sensitivities to travel time and travel time reliability; and the available models 

to assess the user perception and learning of travel time. 

2) Develop an effective methodology to estimate dynamic aggregated models of 

user responses to road pricing utilizing ITS data archives as primary data 

source. 

3) Estimate the time varying distribution of sensitivities to travel time and travel 

time reliability in a priced corridor.   

1.4. Dissertation Organization 

This dissertation is organized into six chapters. Chapter 1 introduces the research 

background, states the problem to be solved, and sets the goal and objectives to be 

achieved. 

Chapter 2 presents an extensive literature review regarding road pricing 

application strategies and schemas, modeling approaches to road pricing, consideration of 

travelers behavior in road pricing applications, treatment of time in road pricing models, 

and road pricing models to assess the impact on the traffic patterns and the environment. 

Also in the chapter is a description of the relationship between the travel time and the 

travelers’ behavior and a review of existing approaches to account for traveler’s travel 

time perception and learning. Similarly, a description of the relationship between of the 

travel time reliability and travelers’ behavior, and a summary of the different travel time 

reliability metrics proposed are provided. In addition, a section describing the advances 
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and possibilities of ITS data warehousing for transportation models estimation closes the 

chapter. 

Chapter 3 discusses the basic components of the methodology to estimate 

traveler’s behavior parameters. First, travelers’ characteristics regarding perception and 

integration of travel time information are explored and a model to represent such 

processes is proposed. Also this chapter discusses in depth the variations of travel time by 

time of day at fine temporal aggregation levels, the sensitivity of various reliability 

metrics to these variations, the effect of the aggregation level choices on the calculated 

metrics, and the amount of data required to estimate stable values of the reliability 

metrics.  

Chapter 4 describes the development of an adaptive optimal estimation algorithm 

based on the discrete Kalman filter. The algorithm is developed in order to minimize the 

amount of a priori information required to perform an optimal estimation of the 

parameters of interest (ALMF). The robustness of the estimation algorithm is tested and 

discussed. Finally recommendations are proposed for further application of the ALMF to 

real world problems. 

Chapter 5 is devoted to the estimation of the behavioral parameters in a corridor 

managed using road pricing techniques using the ALMF algorithm developed as 

described in Chapter 3. The travelers’ responses are explored by mining ITS detector 

databases archived in traffic management centers (TMC) operational files. Those 

responses are associated with changes in transportation system performance measures 

(travel time, travel time reliability, toll) by utilizing a Logit model with unknown 

parameters that can be estimated using the ALMF algorithm. Optimal ALMF tuning and 
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setup are explored, and the suitability of different combinations of explanatory variables 

is addressed by means of correlation analysis. Finally, travelers’ time-of-the-day behavior 

and travelers’ day-to-day behavior are investigated based on the results of applying the 

ALMF algorithm to a corridor in South Florida.     

Chapter 6 summarizes the main contributions, draws conclusions, and 

recommends issues worth to consider for future research.   
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CHAPTER 2 

LITERATURE REVIEW 

This section provides a detailed review of the state-of-the-art of road pricing 

manifestations, models developed for selection of road pricing parameters, road pricing 

as affected by travelers heterogeneity, the time dimension consideration in road pricing 

models, models for road pricing impacts evaluation, travel time reliability impact on user 

behavior, and user behavior as affected by the travel time. Also, a description of the 

relationship between the travel time and the traveler’s behavior and a review of existing 

approaches to account for traveler’s travel time perception and learning are included. In 

addition, a review of previously investigated relationships between the travel time 

reliability and travelers’ behavior, and a summary of the different travel time reliability 

metrics are provided. Further, a section describing the advances and possibilities of 

utilizing ITS data warehousing for transportation models estimation closes the chapter. 

2.1. Road Pricing 

Road pricing has received significant consideration in the scientific literature and the 

results from several surveys of literature previously conducted (De Palma et al., 2006; 

Lindsey, 2005; Mcdonald, 2004; Morrison, 1986; Newbery, 1990; Parry et al., 2007; 

Sharp et al., 1986). This consideration is also demonstrated by the availability of books, 

collections of papers, and conference proceedings on the subject (Bekiaris et al., 2004; 

Button et al., 1998; Jensen-Butler et al., 2008, Lawphongpanich et al., 2006; Levinson, 

2002; Pickfor et al., 2006; Roth, 1996; Roth (Ed.), 2006; Small et al., 2007; Viegas (Ed.), 

2005; Yang et al., 2005).  
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A variety of road toll pricing schemes, including congestion charging, toll cordons, 

and toll lanes, have been applied in practice worldwide (De Palma et al., 2007; TRB, 

2005). In addition, the potential deployment of a number of road pricing schemes has 

been studied with regard to their feasibility, efficiency, revenue generation, and 

acceptability in various urban areas around the world (De Palma et al., 2006; Gibbons et 

al., 2002; Ison, 1998; Proost et al., 2002; Santos et al., 2001); Asian cities and countries, 

like Hong Kong (Dawson et al., 1986; Harrison et al., 1986; Hau, 1990; Hills, 1984; 

Pretty, 1988), Seoul (Kim et al., 2005) and Bangkok (Kunchornrat et al., 2008), Japan 

(Matsuda et al., 2005, Yamamoto et al., 2000, Ying et al., 2007); and developing 

countries in South East Asia, Africa and Central America (Anderson, 1989; 

Armstrong-Wright, 1986; Churchill et al., 1972; Gakenheimer,1999; Johansen,1989). 

Depending on the network management strategy, and the planning and policy 

objectives and constraints associated with the road provider(s), the road pricing design 

process can aim at: 

• Managing travel demand, congestion, and possibly other external (e.g. 

environmental) costs of road usage, 

• Raising revenues for funding transport investment, operations, and 

maintenance costs, and 

• Combining revenue generation with travel demand and congestion 

management. 
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Practical experience from the implementation of congestion pricing schemes to 

tackle road traffic congestion has already been gained in several European cities, 

including London (Goodwin, 2004; Leape, 2006; Richards, 2006; Santos et al., 2006), 

and Stockholm (Armelius et al., 2006; Eliasson, et al., 2006; Mattsson, 2008). 

Other applications of road pricing include the (statically or dynamically valued) 

high occupancy toll (HOT) lanes in the United States to allow users of low occupancy or 

single-occupancy vehicles to join the express lanes if they pay the corresponding toll 

(Lam, 2004; Weinstein et al., 2006). Another example of these applications is the toll 

rings in Norway (Larsen et al., 2001; Odeck et al., 2002). Other pricing schemes have 

also been considered in the United States, like truck-only toll lanes (Holguín-Veras et al. 

2003); and mechanisms to address equity issues, such as credit-based congestion pricing 

(Kockelman et al., 2005), where revenues are redistributed uniformly among users as a 

sort of driving “allowance”; Fast and Intertwined Regular (FAIR) lanes (De Corla-Souza, 

2004), where toll credits is provided to users of adjacent lanes in multi-lane facilities; and 

the integrated multimodal strategy of FAST Miles (DeCorla-Souza, 2006). Other 

proposed strategies include vehicle mileage-based pricing strategies (Oh et al., 2007) and 

combinations with pay-as-you-drive insurance or car-sharing, which aim at converting 

the fixed charges for driving to variable charges (DeCorla-Souza, 2002). 

2.1.1. Road Pricing Model for Analysis and Design 

The road pricing design problem can be modeled as a bi-level optimization problem or a 

mathematical program with equilibrium constraints. In general, the bi-level optimization 

structure of the road pricing can be expressed through the following relationships: 
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At upper-level problem, F denotes the objective function of the decision maker, so 

that some measure of user or social surplus is maximized or some other objective is 

achieved. The function G represents the constraint set of the decision vector, which may 

involve a range of different requirements or restrictions. At the lower level problem f 

represents the response function of users with respect to tolls and other system attributes 

like travel time and travel time reliability, towards achieving an equilibrium flow 

distribution q(p) subject to a set of constraints denoted by g. The equilibrium state is 

traditionally expressed by a flow pattern in which no traveler could decrease the actual 

travel cost by unilaterally changing the route (Wardrop, 1952). A more realistic extension 

of this principle refers to stochastic user equilibrium, based on which travelers can 

change their perceived travel cost by unilaterally changing the route (Daganzo et al., 

1977). Extensions of the later principle, allows accounting for variations in the perceived 

travel costs and uncertainty in the route choice (Smith et al., 1994; Yang, 1999). 

2.1.2. Road Pricing and Travelers Heterogeneity 

A number of modeling advances have been developed to allow considering the impacts of 

user attributes (income, household size, etc.) and vehicle attributes (type, occupancy) on 

the response to selected pricing schemas. The distinction of these sources of 

heterogeneity can offer a more realistic representation of travel responses due to varying 
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tradeoffs between toll rate, travel time, and other relevant attributes. The assumption of 

heterogeneous user groups and the associated multi-class assignment procedures have 

been considered for deterministic user equilibrium (Arnott, 1992; Bellei et al., 2002; 

Dafermos, 1973; Mayet et al.,1999; Yin et al., 2004; Zhang, 2008) and to a lesser degree 

with stochastic user equilibrium conditions (Ying, 2005; Zhao et al. 2006). 

With the exception of a few studies which dealt with the heterogeneity of the 

value of travel time (Dimitriou, 2009) and diversified travelers’ cost structures (Xin et al., 

2007), the current design of dynamic congestion pricing schemes generally does not 

adequately consider the effects of various attributes of vehicles and users for the 

imposition of discriminatory tolls. 

2.1.3. Time Dimension in Road Pricing Models 

Several studies have recognized the need for capturing the peaked nature of travel 

demand and the dynamic nature of traffic flow in the evaluation of different pricing 

schemes. From a user point of view, acceptance of congestion pricing may involve 

within-day traffic dynamics, day to day network traffic dynamics, or both together.  

Models that consider the impacts of within-day dynamics on user acceptance 

allow assessing the impacts of time varying charges on different travel choices (departure 

time, mode, route, and destination) of users. This consideration has been used as part of 

simplified models which estimate scheduled delay costs (generalized cost considers 

explicitly the cost of arriving early or late) and account for spatial queue impacts (Arnott, 

et al., 1993; Braid, 1989; De Palma et al., 2005; Kuwahara, 2007; Laih, 1994; Levinson, 

2004; Mun, 1999). More recently Peeta (2001) and Szeto et al. (2006) represented the 
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interaction between traffic pattern and congestion charges, using simulation-based 

dynamic traffic assignment (DTA) considering both the time and spatial dimensions of 

traffic flow, capturing the queue formation, dissipation, and spillback phenomena; hence, 

properly allowing the representation of the interaction between the traffic and dynamic 

congestion charges. 

In addition to the above, the impact of day-to-day dynamics on user acceptance of 

pricing is also important. The dynamics of the behavioral adjustments of tolled road users 

can be regarded as the combined result of their experience and the information 

acquisition, and learning processes taking place in both the day-to-day and within-day 

timescales. In this direction, (De Palma et al., 2005) studied the impact of time-varying 

congestion tolls on the performance of a road network using a dynamic equilibrium 

simulator, where a day-to-day adjustment process with exponential learning by drivers 

governs changes in mode choice, departure time and route choice, and guides the system 

towards a stationary state. 

2.1.4. Models for Road Pricing Impacts Evaluation 

Most of the modeled impacts of road network pricing schemes concern short term 

changes in the travel behavior of users (trip-making, departure time, route, and mode 

choice). The study of other implications of road pricing has focused on transport network 

performance measures, including improvements in travel speed or travel time and its 

reliability (Chan et al., 2005; Hensher et al., 2008; Supernak et al., 2003), fossil fuel 

energy consumption (Lim, 1997; Luo et al., 2007), safety, traffic noise, and air pollution 

and climate change (Beevers et al., 2005; Chin, 1996; Joumard et al., 1996; Khazzoom et 
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al., 1991; Luo et al., 2007; Mitchell, 2005; Noland et al., 2008; Otterström, 1995; Proost 

et al., 2001; Schuitema et al.,2007). 

The modeling frameworks used for the evaluation of road pricing schemes from 

the traveler’s perspective can be assessed based on revealed and/or stated preference 

surveys, and has included: 

• Linear, log-linear, and translog econometric models employing micro-data 

and, possibly, inequality (Gini, Theil’s index) measures (Franklin, 2006) and 

nonparametric methods (Franklin, 2008) to evaluate differential effects on 

different population segments; 

• Discrete choice models, like those based on count data (e.g., Poisson and 

negative binomial) regression techniques (Peeta et al., 2001), binomial and 

multinomial logit (Álvarez et al., 2007; Burris et al., 2002;  Hess et al., 

2008, Yamamoto et al., 2000), nested logit (Erhardt et al., 2003; Jovicic et 

al., 2003), conditional logit (Washbrook et al., 2006), rank-ordered Logit 

(Calfee et al., 1998), ordered-response Probit (Golob, 2001), mixed Logit 

(Brownstone et al., 2005; Nielsen, 2004; Small et al., 2001; Small et 

al.,2006) and Generalized Extreme Value (GEV) with correlated random 

utility error terms (Zhao et al., 2008); 

• Microscopic or mesoscopic network models for simulating traffic and user 

responses to road pricing and other management and control measures 

(Al-Deek et al., 2007; De Palma et al., 2005; Lee et al., 2007; Murray et al., 

2001), which may be integrated with discrete choice models; and 
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• Agent-based computational models of travelers’ behavior and interactions 

(Basso et al., 2008a, Holguín-Veras, 2008; Markose et al., 2007; Link, 2008). 

Consideration of the road-pricing-related choices in different steps of the trip 

decision process (such as trip generation, distribution, modal split, and assignment) 

should be based on the proper modeling of road pricing as related to these steps. To 

summarize the generalized modeling constructs that are used for road pricing assessment, 

the following three basic approaches stand out: 

• Application of traffic assignment model with generalized impedance 

functions that incorporates tolls by means of value of time (VOT) estimates, 

as well as additional delays associated with toll collection. This is the 

simplest approach that does not require the development, estimation, and 

application of choice models. Only VOT estimation is necessary. However, 

there are several strong limitations of this approach, such as ignoring the 

tolled-off (diverted) travelers who may change mode, destination, time of 

day, car occupancy, etc., as a result of imposing a toll. 

• Application of a binary choice model that considers a choice of toll road 

versus non-toll options in combination with network equilibrium assignment 

that uses correspondent networks (with and without toll facility) to ensure 

travel time saving for those who chose to pay a toll. Two versions of this 

approach can be identified: 1) treatment of the travelers not willing to pay as 

toll not users of the facility in the assignment, and 2) treatment of the 

travelers as a proportion diverted to the tolled facility. In the last case, a 

binary choice model essentially works as a diversion curve. 
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• Modeling toll-road options as an additional component in the travel demand 

hierarchy of choices fully accounting for travel behavior across all relevant 

dimensions. The relevant dimensions that are closely intertwined with 

toll-road choice include mode, car occupancy, and time-of-day. There can be 

a potential impact on destination and trip-frequency choice as well; however 

these dimensions are considered less obvious and of second-order importance 

in practical terms.  

2.2. User Behavior and Travel Time Reliability 

The important issue of travel time reliability may be separately introduced into the 

analysis of dynamic congestion pricing schemes from two different points of view: 

• That of travelers, in terms of a path reliability component in their utility 

function (Dimitriou, 2009; Sauri et al., 2008; Small et al., 2006), and  

• That of road providers, where the optimal charge or optimal links for 

charging are sought to optimize network travel time reliability, subject to the 

responses of users.  

In the latter case, the road providers may consider stochastic network characteristics (link 

capacities) and fluctuating elastic demand from day-to-day (Li et al., 2007). 

The behavioral response of travelers to travel time reliability has been 

investigated in a number of studies. In one study, (Abdel-Aty et al., 1997) two stated 

preference techniques were used (a computer aided telephone interview and a mail-back 

survey) in order to investigate the effect of travel time reliability and traffic information 

on commuters. The analysis of the survey data was performed utilizing binary Logit 
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models including variables such as the travel time standard deviation, travel time mean, 

and driver gender. They found that commuters consider reliability characteristics in their 

route choice preference, and pay attention to travel information enough to be influenced 

in some scenarios to deviate from their usual routes. Another finding was that male 

drivers tend to choose the uncertain route more than female drivers. 

In another study (Jackson et al., 1981), a survey was administered to Stanford 

University employees. The survey consisted of paired comparison questions of 

hypothetical route alternatives. They found that some commuters prefer the more reliable 

route, even if the expected travel time is higher in comparison to other routes with shorter 

expected travel time but higher uncertainty.  

Other more recent studies by Small (Small et al., 2005; Small et al., 2006) utilized 

data collected on California State Route 91 (CA-91) in the morning period. The first 

study (Small et al., 2005) focused solely on formulating a lane choice model (using 

mixed logit) by combining the RP and SP data. The results of the model indicated that the 

impacts of travel time and travel time reliability were significant, and that the 

heterogeneity in these factors is significant as well. In contrast, the second study (Small et 

al., 2006) models considered not only lane choice, but also vehicle occupancy and 

transponder acquisition. 

The limitations of the previous empirical studies are mostly related to their 

observational methodology. In the cases of Abdel-Aty et al. (1997) and Jackson and 

Jucker (1981), the observed route preferences of the subjects, as described earlier, are 

obtained by stated preference (SP) techniques; they consisted of hypothetical routes with 

distinct attributes (e.g. travel time). For this reason, the validity of the observed 



20 

preferences may be affected by the lack of realism, and the subject’s understanding of the 

abstract situations. On the other hand, Small et al. (2005 and 2006) collected both RP 

(actual preferences of subject’s lane choice) and SP (hypothetical scenarios to examine 

subject’s lane choice) observations, and consequently enriched their statistical model by 

pooling both types of data. However, the nature of the survey methods employed didn’t 

allow for some of the variables to be measured during each of the subject’s trips.  

Other data collection techniques such as equipping the subject’s vehicles with 

Global Positioning System (GPS) devices would have avoided the difficulties mentioned 

above, and possibly extend the lane choice model into a route choice model by 

considering arterials near the subjects. For example Li et al. (2004) presented an 

inspection of the travel time variability in commute trips, and its effects on departure time 

and route choice, including cases with trip chaining. Li et al. (2005) presented an analysis 

of the attributes determining whether to choose one or more routes in the morning 

commute. Zhang (Zhang et al., 2008) presented an estimation of the value of information 

for travelers, and a comparison of the impact of information with other variables such as 

travel time, distance, aesthetics, etc. 

To include reliability measures in the traveler’s utility function, there are basically 

two main approaches. The first, referred to as the mean–variance approach, assumes that 

individuals have preferences against the travel time uncertainty per se. The expected 

utility of an individual can be written (ignoring monetary cost terms) as follows. 

 ρσημ +=U (2.5)
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where μ is the expected travel time and σ is the standard deviation of travel time, while 

η and ρ are sensitivity parameters. Some authors have replaced the standard deviation 

with another measure of scale, such as an inter-percentile range (Small et al., 2005). 

In the second approach, the scheduling approach, the individual holds preferences 

for timing of activities. Utility is defined directly from outcomes; i.e., being early or late. 

Travel time variability affects an individual’s utility to the extent that the arrival time at 

an activity (destination) is affected. The individual holds preferences for being early or 

late, compared to a preferred arrival time (PAT), as discussed by Small et al. (1982) and 

Noland and Small (1995). Normalizing an individual’s PAT to be at time zero, let -D be 

the departure time. Hence, earlier departure corresponds to a larger D. Let T be the 

stochastic travel time. In addition, βα ,  and, γ  are the parameters of the model. Then, 

in the scheduling approach, the user utility is given by: 

 ( ) ( ) ( ) DTDTDTTTDU >
+− +−+−+= 1, θγβα (2.6)

where ( )−− DT is schedule delay early, ( )+− DT is schedule delay late. The term 0≠θ

allows for a discontinuous penalty for lateness.  

Ignoring the first term of the disutility (disutility due to travel time), the remaining 

contributions to utility are shown in Figure 2.1. At the earliest departure time considered, 

the traveler arrives too early, and suffers disutility as a result of non-zero values of

( )−− DT . As the arrival time increases, this disutility declines to a point where the 

traveler arrives exactly at his preferred arrival time. Immediately thereafter, the traveler 

will arrive late, and the disutility jumps up to the value ofθ . As the value of the arrival 

time increases, ( )+− DT contributes increasingly to disutility. 
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Figure 12.1: Schedule Utility Function 

2.2.1. Travel Time Reliability Metrics 

As discussed above, travel time reliability is considered an important component of the 

performance of transportation systems and of travelers’ perceptions of this performance.  

The increased recognition of the importance of travel time reliability is reflected by 

changes to traditional monitoring programs. For example, in a report published in July 

2005, the National Operations Coalition (NTOC) initiative selected the Buffer Index (BI), 

a travel time reliability measure, as one of few good measures for transportation 

operations agencies to use for internal management, external communications, and 

comparative assessments (NOTC, 2005). Public agencies from around the United States 

are now using travel time reliability metrics as key performance measures to monitor 

their system operations (GDOT, 2011; FDOT, 2008; SCAG, 2005; WSDOT, 2011). 

Recognizing the critical need for researching travel time reliability, the Second Strategic 
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Highway Research Program (SHRP2, 2011) has specified travel time reliability as one of 

the four main research areas of the program and has funded extensive research activities 

in this area. 

Travel time reliability measures the level of consistency of travel conditions over 

time. A unifying reliability definition can be found in final report of the SHRP2 LO3 

project (Cambridge Systematics, 2010) where reliability is defined as “the level of 

consistency in travel conditions over time and is measured by describing the distribution 

of travel times that occur over a substantial period of time…” The different approaches to 

defining reliability have led to recommending several metrics for use.   These metrics 

may not necessarily produce consistent assessments of reliability among themselves, 

since they define travel time consistency in different manners. Tu (Tu et al., 2007), classified reliability metrics into: statistical range methods, buffer time methods, tardy trip measures, probabilistic measures, and skew-width methods.  Lomax (Lomax et al., 2003), discussed the development of reliability measures and the factors to consider before selecting a measure. They concluded that the metrics that are most promising are the Percent of Variation, Misery Index and the BI. This conclusion was based on five factors including the compatibility with multimodal analyses, ability to measure urban and rural travel conditions, consideration of the effects of trip length and time, ability to serve several audiences, and applicability to different area sizes. In a later work, Van Lint and Zulen (Van Lint et al., 2005) noted that the BI and the Misery Index may not be appropriate because of the underlying skewed travel time distribution. They 

concluded that most of currently utilized reliability metrics should be used and 
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interpreted with some reservations. 

The common assumption about the normality in travel time distribution was 

investigated by Rakha (Rakha et al., 2007). The study concluded that the normality 

assumption is not supported by the observed data. Instead they proposed that a 

log-normal distribution can describe better the travel time during uncongested conditions. 

Similarly, during the congested hours a mixed or a bimodal distribution fits better the 

observed travel time distribution. Additionally, Rakha pointed out that the rate at which 

the mean changes during the congested hours can be faster than the rate of change of the 

standard deviation, thus the coefficient of variation may decrease when actually trips are 

becoming more unreliable.  

Pu (Pu, 2010), examined analytically a number of reliability metrics assuming a 

lognormal distribution of travel time with a constant median, while varying the variability 

and skewness of the travel time distribution. He concluded that the coefficient of 

variation is a good proxy for a range of reliability metrics and suggested that the use of 

the BI is not always appropriate unless BI is computed based on the median rather than 

the mean. The latter is because in heavily skewed travel time distributions the use of the 

mean may underestimate the travel time unreliability. The same author in a different 

study (Pu et al., 2010) pointed out that some reliability metrics may be inconsistent in 

their depictions of reliability, such as is the case of the BI that remains constant for 

different values of the coefficient of variation.  As discussed later in this paper, fixing 

the median while varying the standard deviation and skewness as is done in the Pu study 

may not reflect real-world conditions, in which the parameters of travel time distributions 

vary by time of day and may be correlated with each other. 
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The SHRP 2 LO3 project (Cambridge Systematics, 2010) examined a set of six 

reliability metrics to determine their sensitivities to different types of freeway 

improvements.  The utilized metrics were the BI, On-Time Performance, 95th Planning 

Time Index, 80th Percentile Planning Time Index, Skew Statistic and Misery Index. Based 

on empirical tests, it was found that all metrics were sensitive to the effects of 

improvements. However, it was noticed that the 95th percentile travel time or TTI may be 

too extreme a value to be influenced significantly by operations strategies and that the 

80th percentile was more sensitive to these improvements.  Another aspect, related to 

the amount of data required to assess systems reliability was tested, concluding that an 

absolute minimum of six months of data is required to establish reliability within a small 

error rate, in areas where winter weather is not a major factor. However, a full year of 

data is preferred.  

Even though reliability metrics have been explored and compared as discussed 

above, most of the work in the literature have focused on using these measures for 

relatively coarse levels of aggregation of travel time data, for example for the whole peak 

periods.  Such uses imply that the parameters of the travel time distributions are 

assumed to remain the same for the whole period of analysis. This may not be sufficient 

for advanced management strategies such as for setting managed lane pricing and for 

capturing traveler’s behaviors for use in dynamic traffic assignment (DTA)/simulation 

modeling.  These models are normally used to simulate traveler’s route selection 

behaviors at 15 to 30 minute intervals and are being extended to include reliability in 

their generalized cost functions. In addition, the analyses of the Highway Capacity 

Manual (HCM) (HCM, 2010) are also conducted at the 15 minute analysis level and 
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although the procedures of the current version of the manual do not consider reliability 

metrics, discussion has already started for the potential inclusion in future versions.  

This above discussion supports the argument that the reliability metrics need to be 

assessed at fine grained levels of aggregation for an increasing number of applications. 

2.3. User Behavior and the Value of Time 

While the value of time (VOT) is a very important notion in transportation planning and 

infrastructure management, it is a latent theoretical construct that cannot be easily 

quantified or measured. Different socioeconomic characteristics, trip purpose, and other 

attributes result in very heterogeneous traveler populations and therefore potentially in 

very different VOT values across individuals. For example, affluent travelers may be 

willing to pay a high toll to save trip time, while low income travelers may not have this 

option. One approach to quantify VOT is to develop discrete choice models based on data 

collected by surveys and then use the estimated coefficients for the cost and duration of 

travel to compute a VOT measure. 

The interpretation of value of time depends on how the time allocation problem is 

modeled. Johnson (1966) for example, views travel time only as a cost thus keeping it out 

of the utility function. DeSerpa (1971), allows time to be included in the utility function 

and thus has a commodity value. Different ways of modeling the consumers’ utility 

maximization problem has a profound effect on the way the value of time is measured. 

When time is only included in the constraint function, it is treated only as cost and acts as 

a budgetary constraint to consumption. In this case, time does not have a value per se and 

can’t directly affect the utility. When time is included in the utility function, time gains 
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commodity value and can directly influence consumer’s utility. As a result, aside from its 

time constraint aspect, travel time can also cause a direct utility or disutility to travelers. 

In Johnson’s formulation of the problem (Johnson, 1966), for example, commuting time 

does not yield any disutility, while in DeSerpa formulation (1971) it can. 

In another study, Reichman (1976) concludes that time savings are just as 

important to the travelers as other attributes of the trip, such as comfort, scenery, physical, 

and mental efforts. Accordingly, it is possible that traveling on tolled roads provides less 

disutility for the motorists, in the form of a more pleasurable, less stressful ride due to 

improved driving conditions. Thus, people sometimes choose slower but more pleasant 

travel options, reflecting their lower total time cost, or they can be willing to pay extra for 

more comfortable seats, air conditioning, reduced transfers, etc. (Litman, 2007). As a 

result, it often becomes difficult to separate the pure value of travel time from other trip 

attributes affecting travelers’ willingness to pay. Hensher (1976) argues that most 

empirical studies of travel mode choices fail to separate the pure value of time, which is 

mode‐abstract, from the comfort and convenience features of the trip that affect the 

composite value of travel time.  

Litman (2007) argues that while making their choices, travelers react to the 

perceived travel time, which can be different from actual travel time. Travelers often tend 

to overstate congestion‐related delays and understate the benefits from saving travel time. 

This can lead to the differences in travel time estimates obtained from empirical studies 

based on stated preferences and revealed preferences. Since trade‐off decisions are made 

at the margin, researchers argue that the value of time depends mostly on the marginal 

wage rate, while the average wage can provide only an approximation (Gronau, 1976).  
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Finally, some researchers also point to the phenomenon that people often place 

value exclusively on the ability to control their time, irrespective of its utility or 

opportunity cost (Reichman, 1976). Thus, the value consumers place on saving time has 

more dimensions than simply opportunity cost of time measured by the money wage rate. 

In the past decade, several VOT studies have been also conducted in Europe, 

including the Netherlands (Gunn et al., 1996), Norway (Ramjerdi et al. 1997), Sweden 

(Alger et al. 1996), the United Kingdom (Gunn et al., 1996), and Switzerland (Axhausen 

et al., 2004). Wardman (Wardman et al., 1998) presents a meta-analysis of VOT derived 

from 105 travel demand studies using revealed-preference and/or stated-preference 

methods. In conclusion, most of the studies aiming at the estimation of VOT for freight 

and passenger travel use discrete choice models. Due to practical reasons, most studies 

use logit models, while some recent studies (Bierlaire et al., 2005) use more advanced 

models such as mixed logit. 

In conclusion, the literature review of the theoretical models found that there is no 

unique definition of the value of time. Through the review of the literature, it is shown 

that the value of time hinges on the assumption of a minimum‐time constraint that 

requires individuals to travel more than they would choose to travel without the 

constraints. The literature is in continuous evolution with recent efforts aimed at 

presenting unified frameworks of analysis that explicitly account for this minimum‐time 

constraint, and allow for the trade‐off between discretionary and mandatory travel (Anas, 

2007, Anas et. al., 1999).  
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2.3.1. Travel Time Perception and Learning in Transportation Systems 

The interdependency between the time-dependent behavior of traffic flows and users’ 

choice behavior is central to the analysis and operation of intelligent transportation 

systems (ITS). Modeling and understanding the relationship between the transportation 

system performance perception, and the time-dependent behavior of traffic flows has 

received considerable attention from transportation researchers. 

When making travel choices, drivers constantly combine various sources of 

information to perform perceptions and expectations of traffic conditions. For example 

when deciding the use of a priced facility, the user may combine his personal experiences, 

what he has heard about the facility, and in general any relevant information that can be 

used to support user decisions. The used information can be summarized in three 

categories: 

(a) Historical information: information related to the state of the transportation 

system during previous time periods (previous time periods refer to 

experiences happened before the day when a decision is desired to be made). 

(b) Current information: the most up-to-date information about current 

conditions. 

(c) Predictive information: information concerning expected traffic conditions 

during subsequent time periods when travel can occur (subsequent time 

periods refer to the period immediately after a decision has been made) 

In broad terms, in order to analyze the relationship between the transportation 

system performance and the time-dependent behavior of traffic flows, a dynamic driver 

behavior framework is required in order to capture the ways drivers process and use 
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different sources of information in their decision making. The following section includes 

a deeper exploration of the components and relationships that need to be accounted for 

such dynamic driver behavior framework. 

2.3.2. Drivers Perception and Processing of Information 

There are several characteristics of the travelers that must be considered in the dynamics 

of information perception and learning. A framework to model individual perception and 

processing of information for decision making should account the fact that individuals 

have limited access to information (Hogarth, 1987; Newell et al.,1972), have limited 

capacity to process the information (Slovic, 1972), and attempts to find the best 

alternative within some time and effort constraints (Bettman, 1979; Heiner, 1983). In this 

sense, frameworks for driver behavior have been discussed by de Palma (de Palma et al., 

1989) and Ben-Akiva (Ben-Akiva et al., 1991) and in both cases the main components of 

the driver decision process can be summarized as shown in Figure 2.2. 

 

Figure 22.2: Driver Decision and Information Processing Components 
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With the present study, the traveler’s decisions are estimated based on ITS data 

archives. In this case, the decision rules (the parameters in a choice model) are estimated 

from the data by deriving a choice model that is a function of the historical time series of 

performance measures. Thus, the discussion in this section mainly focuses on “system 

performance perception and learning” in Figure 2.2, which reflects how the system 

performance is assessed by the transportation system users. 

In Figure 2.2, the performance perception and learning block depicts the steps in 

how information is processed by drivers in order to assess his or her expectations about 

the transportation system performance. In particular, the information acquisition 

component refers to the fact that drivers can acquire historical information either by 

retrieving it from their own memory or by retrieving it from some database or collective 

memory. On the other hand, the processing capacity component captures the fact that 

different drivers have different abilities to combine and process a variety of information 

concerning road conditions. Finally the computational ability component addresses the 

fact that different drivers have also different abilities to use the available information, 

perform travel forecast, and develop heuristic decision procedures. 

In the context of repetitive travel (such as commuting), the drivers dynamic 

behavior can be represented by a hierarchy of pre-trip and on route information 

perception and processing. In the pre-trip phase, an individual may integrate the previous 

day experience and information with his historic perceptions of travel time to form 

updated historic perceptions. Even before leaving the origin of a trip, a driver may 

acquire and process new day-specific traffic information based on media reports that may 

be used to update his expectations about the available choices. Once a trip begins, a 
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driver acquires new information (with or without actively searching for it) about the 

quality of his choices. The driver may then actively decide and process new information 

and then make a new choice decision based on this information. This process is depicted 

in Figure 2.3 and the on-trip feedback is performed until the destination has been reached. 

 

Figure 32.3: Drivers’ Dynamic Acquisition and Processing of Information 

2.3.3. Travel Choices and Network Performance 

The question about revealing the interdependence between travel choices and network 

performance has been predominantly approached by assuming equilibrium under various 

assumptions about the user behavior. Although widely used in planning practice, 

equilibrium approaches have two main shortcomings. First, they rely heavily on the 

assumption that an equilibrium state exists and this state is unique, stable, and converges 

quickly, although no empirical evidence is available to support these assumptions under 

all conditions. Second, the effect of factors such as heterogeneity in users’ behavior, 

learning and perception processes, are quite difficult to capture (Chen et al., 2003). 
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2.3.3.1. Learning Considering Equilibrium Approaches 

Extensions of the classical equilibrium framework to consider the day-to-day adjustment 

processes of traveler decisions were first explored by Beckman’s seminal contribution to 

network modeling (Beckman et al. 1956). Day to day adjustment models of departure 

time and route decisions of commuters in response to experience and other sources of 

information were proposed by Mahmasani (Mahmassani et al., 1986; Mahmassani, 1990). 

Consideration of day to day adjustment resulted in the development of disequilibrium 

approaches to investigate the transportation system’s dynamic evolution and properties. 

Cascetta (Cascetta, 1989) proposed a Markov chain formulation for analyzing day-to-day 

route choice dynamics. Cascetta and Cantarella (1991) further extended this formulation 

to include within-day dynamics, and more recently (Cantarella et al. (1996) have derived 

conditions for the existence and uniqueness of an equilibrium state in various dynamic 

process models for probabilistic assignment. A trial and error adjustment process model, 

based on optimal control theory, has also been proposed, but no user behavioral models 

were embedded in the equations describing the day-to-day dynamics (Friesz et al., 1994). 

2.3.3.2. Learning by means of simulated system 

Another approach to investigate the relationship between travel choices and network 

performance, which is recently gaining attention, consists of studies that either simulate 

the network conditions in response to decisions from real “actual” commuters 

(Mahmassani et al., 1986; Mahmassani H.S. 1990; Helbing et al., 2002), or simulate both 

the network and individual users decisions under various performance learning 

mechanisms and sources of information (Mahmassani et al., 1986; Peeta et al., 2001; Lu 
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et al., 2010. Avineri et al., 2006; Iida et al., 1992). These studies attempt to circumvent 

the difficulty faced by equilibrium and disequilibrium approaches in capturing user 

behavior at the desired level of richness, simultaneously with measurements of prevailing 

conditions. Additionally, these approaches provide the ability to investigate the dynamic 

system evolution, in particular convergence and stability, and the mechanisms underlying 

the day-to-day choice behavior of users. Although one shortcoming of the experimental 

approach is the difference between user behavior in a simulated environment and in a real 

network, for the daily commuting decision environment these experiments are quite 

amenable since all participants are working commuters themselves and the route choice 

decision is typically made daily. 

2.3.4. Perception and Integration of Travel Choices and System Performance 

Aside from the relationship between travel choices and system properties, the perception 

and integration of travel information have been studied, though to a much lesser extent 

than traveler choice processes. Since past experiences are likely to influence user 

perception of network performance, modeling the mechanisms by which individuals 

integrate past experiences and information from other sources is important. More 

generally, information processing, integration and learning, and their role in 

decision-making and judgment have been of interest to marketing professionals (Bagozzi 

et al., 1983) and behavioral decision theorists like Einhorn and Hogarth or Ariely and 

Zauberman who have extensively addressed the integration of experience and 

information, and its role in decision-making (Hogarth, 1987; Einhorn et al., 1981; Ariely 

et al., 2000). Recent research on how people summarize and evaluate extended 
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experiences indicates that they do not simply combine the intensity of their actual 

experiences (Ariely et al., 2000). Instead, the studies point out that individuals extract 

only a few defining features (Gestalt characteristics) of their experiences, which they 

combine into overall summary evaluations of the sequences (Kahneman et al., 1993; 

Carmon et al., 1996). Such features may include particularly salient characteristics such 

as the most intense state (peak) and the final state (end) of the experience.  

In transportation, this choice behavior issue has received limited attention. 

Particularly, in the context of route choice in a network assignment the problem has been 

addressed by Horowitz (1984). In his study, the author suggests a process, where past 

experienced costs are integrated according to a weighted average, and finds that even 

under this reasonable rule, the system may not converge to an equilibrium state. 

Mahmassani and Chang (1986) examine a myopic adjustment and experience-based 

model of perceived travel time for departure time choice. Under myopic adjustment rule, 

the perceived travel time is a function of the latest day’s outcome exclusively. The 

experience-based model is similar to the average rule suggested by Horowitz (1984). 

They find that convergence occurs only when all users are satisfied with their departure 

times within a tolerable limit, and interestingly that using the experience-based rules does 

not always lead to convergence as expected. Another contribution by Ben-Akiva et 

al.(1991) proposes a model where the updated perceived travel time is a weighted 

average of the historically perceived travel time and the time provided by advanced 

traveler information systems (ATIS), where the weights indicates the relative importance 

of historical and the real travel time information provided. Although all the models 

previously described address the individual travel time perception and updating 
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mechanisms, these models do not account for the uncertainty associated or variance 

associated with travel times. The variance and uncertainty associated with travel time 

estimates is important, since they may significantly affect an individual’s sense of a 

path’s reliability. Additionally the above studies assume that perception does not vary 

with time. 

2.3.5. Accounting for Integration and Uncertainty in System Performance 

To account for both the integration of travel times and the associated uncertainty, 

Bayesian updating models have been proposed (Chen et al., 2003; Kaysi, 1991; Jha et al., 

1998). A Bayesian statistical framework can account for updating both the estimate of the 

mean and variance in light of experience and information. 

2.3.6. A Model for Information Processing and Learning 

A model similar to the one proposed by Horowitz (Horowitz, 1984) is considered to 

assess the user learning processes and perception in their travel choice decisions. In this 

model, it is assumed that in each time period t , travel decisions are based on weighted 

averages of measured travel costs in previous day-to-day experiences. In other words: 
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Where itĈ is the cost of travel on link i as perceived by a randomly selected 

traveler at the time he/she decides which route to use in period t ; itC is the measured or 

estimated cost of travel on link i in time period k ; itε is a random variable whose 

probability distribution is independent of t ; and kw is a non-negative weight. For each t , 
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the weights kw  ( )1,...,1 −= tk satisfies: 
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For each i and t define itC by: 
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Then by referring to Equation 2.9 it can be seen that itC represents the composite effect 

of past measured link costs on current perceived link costs. The weights kw describe the 

relative influences of recent and distant past cost on current perceptions. For example, 

suppose that current perceptions are determined mainly by cost in the recent past and that 

costs in the more distant past are forgotten. Then it might be expected that for each t ,

121 ... −<<< twww . Conversely, suppose that travelers develop route choice habits early 

in their experience with a roadway network and that these habits are not easily altered by 

current events. Then it might be expected that for each t , 121 ... −>>> twww . Since the 

relative influences of recent and distant past costs on the perception of travelers in real 

roadway networks are not necessarily known at present, models based on a variety of 

different weighting schemes will be discussed shortly. If some sort of real time 

information system is available, the model presented before can be further expanded in 

order to accommodate the influence of such real time information in the user perception 

of current travel cost in the link. Thus the perceived link cost can be written as: 
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where ita is a sequence of constants that may be time and link specific satisfying

10 ≤≤ ita . This model is flexible enough to accommodate a wide variety of weighting 

schemes of possible practical interest, including: 

(a) Myopic approach in which actual link cost perception in time period t  

depends on link costs in time period 1−t  only in such case 0=kw , if 

1−≠ tk , 11 =−tw , and 0=ita for all t  

(b) Actual link cost perception in time period t depends only on the arithmetic 

mean on link cost in previous time periods. In this case ( )1
1

−= twk  , and 

0=ita  for all t  

(c) Actual link cost perception in time period t  depends only on exponentially 

decreasing weights from the present time into the past. The parameter b 

represents how fast memory decays in time. In this case 0=ika  for all t and  
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(d) Actual link cost perception in time period t  depends partially on 

exponentially decreasing weights from the present time into the past and 

partially on real time information broadcasted by ATIS systems, in this case
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2.4. Intelligent Transportation System (ITS) Data 

ITS agencies have used devices such as traffic detectors, closed circuit television cameras 

(CCTV), electronic toll readers, and license plate readers to collect traffic parameter 

measurements for operational purposes.  In recent years, these agencies have started 

archiving the data collected by these devices (FHWA, 2004).   Because ITS detectors 

and associated communication systems are already in place to collect data for operational 

purposes, the extra cost to archive and manage the data is relatively low.  As ITS data 

archives become more widely available, the utilization of such archives for the 

development and calibration of simulation applications is an attractive option. This 

utilization provides a significantly lower cost and a more efficient data collection method 

compared to traditional methods and increases safety by reducing the need for personnel 

to go out to the field for data collection purposes. The additional details provided by the 

ITS data, both in time and space resolutions, allow better representations of real-world 

environments in simulation applications.  For example, the use of archived ITS data 

allow the simulation of seasonal variations in traffic, special events, accidents, work 

zones, weather events, other types of incidents, and incident management strategies.  

The Statewide Transportation Engineering Warehouse for Archived Regional Data 

(STEWARD) has been developed as a proof of concept prototype for the collection and 

use of ITS data in Florida (Courage, 2008). The development of this prototype has 

demonstrated that data from traffic management centers around Florida can be centrally 

archived in a practical manner and that a variety of useful reports and other products can 

be produced. The STEWARD system archives data in a database that supports the 

generation of summary reports and queries. The current effort has concentrated on 
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archiving point traffic detector data and travel time estimates.  STEWARD contains 

summaries of traffic volumes, speeds, and occupancies collected from point traffic 

detectors.  These detectors are located every 0.3-0.5 miles along the equipped corridors. 

The stored data can be aggregated by 5, 15 and 60 minute periods, as requested by the 

user.  Reports are generated at the detector, detection station, and system levels.   The 

travel times in the archive are those estimated by the traffic management central software 

in Florida (the SunGuide software) based on data collected from the point traffic 

detectors. STEWARD includes a quality assessment procedure to identify bad or 

suspicious data. 

Alvarez (Alvarez et al., 2010) discussed a series of data manipulation procedures 

for the utilization of ITS data contained in the STEWARD system to support simulation 

modeling.  These procedures allow the extraction of collected volume data from ITS 

data archives, automatic identification of temporal patterns in the data, automatic 

segmentation of daily demands into dynamically captured sub-periods to best fit the 

variations in the demands, resolving possible spatial inconsistencies in the data, and 

estimating missing volumes. The archived data is shown to be useful for the estimation of 

a variety of input parameters required to adjust simulation models to particular 

environmental or traffic conditions. 

2.5. Summary of the State of the Art 

Road pricing is an important topic that has been extensively investigated.  

Various approaches have been applied to improve road pricing modeling. Generally 

speaking, the current state of the practice of road pricing analysis and design is not 



41 

adequate for satisfactory operational analysis or real time traffic management. 

Undoubtedly, the most promising directions for principal improvements in road pricing 

modeling are associated with advanced network modeling tools such as dynamic traffic 

assignment combined with mesoscopic simulation and micro-simulation modeling tools, 

and in some cases with advanced activity-based demand models. These advanced tools 

have a much higher flexibility in assessing various impacts of road pricing on travel 

behavior compared to conventional tools like the four step modeling tools and the 

associated static assignment models. More specifically, there is potential for building on 

recent research results related to the heterogeneity of road users with respect to their 

willingness to pay, for the impacts of the reliability of travel time associated with toll 

roads, the time-of-day choice, and the proper accounting for pricing in various steps of 

the travel choice modeling process. 

Finally, it should be highlighted that data collected by ITS devices are 

increasingly available.  However, the use of ITS data to support transportation modeling 

in general and congestion pricing in particular is still at its earlier stages. 
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CHAPTER 3 

PARAMETER ESTIMATION OF DYNAMIC SYSTEMS 

One of the main requirements of this study is to develop a model to estimate time-varying 

travel behavior as a function of time based on ITS data. However, most parameter 

estimation techniques process the data in a batch mode making it difficult to produce time 

varying parameters that incorporate information as received in real time from 

measurement devices. Filtering techniques have been developed to specifically address 

the estimation of state parameters of a system based on continuous measurement data.  

In this section, such filtering techniques are discussed and further extension of the 

well-known discrete Kalman filter is developed in order to process traffic performance 

measures and observed proportion of the priced system to produce time varying estimates 

of the aggregated traveler behavior.        

3.1. Parameter Estimation Basics 

Dynamic systems are common in the real-world; such as in the case of many biological, 

electrical, civil, chemical, aerospace, road traffic, and a variety of other systems. 

Parameter estimation is the process of using observations from a dynamic system to 

develop mathematical models that adequately represent the system characteristics. The 

assumed model consists of a finite set of parameters, the values of which are estimated 

using estimation techniques. 

Mathematical modeling for parameter estimation is one way to achieve a deeper 

understanding of the system characteristics. The problem of parameter estimation belongs 

to a class of “inverse problems” in which the knowledge of the dynamical system is 
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derived from the input-output data of the system (Raol et al., 2004). In general, the 

problem of parameter estimation is based on minimization of some criterion, and this 

criterion itself can serve as the means to establish the adequacy of the identified model. 

Figure 3.19 shows a simple approach to parameter estimation. In this approach, the 

parameters of the model are adjusted iteratively until such time the responses of the 

model match closely with the measured outputs of the system under investigation as 

specified by the minimization criterion. There are a number of different approaches used 

for parameter estimation: Least Squares, Maximum Likelihood, Bayesian estimation, 

discrete and continuous filters, Artificial Neural Networks (ANN), Genetic Algorithms 

(GA), and others. All of them differ in many ways; however, the key consideration to 

decide a particular approach has to do with the richness of available data and the desired 

characteristics of the parameters to be estimated.  

 

Figure 43.1: Simplified Block Diagram of the Estimation Procedure Approach 
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This study requires estimating the time-varying parameters in the utility function 

that models the logic behind the revealed preferences between two travel choices, when 

the attributes of each available choice also vary with time. In addition to proper 

consideration of the desired time characteristics of the estimates, the estimation 

methodology should take into account the following problem characteristics: 

• The model used to represent the user preferences may partially represent the 

actual logic on which to base decisions. 

• The available data about revealed traveler preferences is noise corrupted by 

the characteristics of the sensor’s technology, the characteristics of the 

methods used to smooth/inputted the data, and the randomness of the process. 

• In the face of uncertain system descriptions, incomplete and noise-corrupted 

data and other disturbances beyond the analyst control, the methodology 

should produce reliable time-varying parameter estimates. 

Parameter estimation methods considering the aforementioned characteristics of 

the problem are referred to in the literature as Optimal Estimation (OE). An optimal 

estimation algorithm processes measurements to deduce a minimum error (in accordance 

to some criterion) estimate of the state of a system by utilizing: knowledge of system and 

measurement dynamics, assumed statistics of the system noises and measurement errors, 

and initial condition information (Gelb, 1989). In particular when the optimal estimation 

coincides with the last measurement data point, the optimal estimation is referred as 

filtering. 

  



45 

Probably the most common optimal filtering technique is that developed by 

Kalman (1960) for estimating the state of a linear system from noise measurements. The 

Kalman filter (KF) is an optimal state estimator applied to a dynamic system that 

involves random noise and includes a limited amount of noisy real-time measurements. 

Although originally derived for linear systems, KF can also be extended for a number of 

interesting problems. The most straightforward extension is the Extended Kalman Filter 

(EKF) for non-linear systems (Kalman, 1960; Gelb, 1989). A special case of the EKF 

with very convenient computational properties is the Limiting Extended Kalman Filter 

(LimEKF) (Chui et al., 1999). The Unscented Kalman Filter (UKF) (Julier et al., 1995) is 

an alternative filter where the main difference with the EKF is in the representation of the 

random variables for propagation through the system dynamics. 

3.2. The Discrete Kalman Filter 

This section describes the filter in its original formulation (Kalman, 1960) where the 

measurements occur and the state is estimated at discrete points in time. 

3.2.1. The Process to be Estimated 

The Kalman filter addresses the general problem of trying to estimate the state nRx ∈ of 

a discrete-time controlled process that is governed by the linear stochastic difference 

equation: 

11 −− += kkk wAxx      (3.1) 

with a measurement m
k Rz ∈ that is 

kkk vHxz +=      (3.2) 
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The random variables 1−kw  and kv represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white, and with 

normal probability distributions: 

),0(~)( QNwp      (3.3) 

),0(~)( RNvp      (3.4) 

In practice, the process noise covariance Q and measurement noise covariance R

matrices might change with each time step or measurement, however here we assume 

they are constant. Later in this section, this assumption is released and the estimation is 

performed assuming a time varying covariance in Equations 3.3 and 3.4 

The nn× matrix A  in the difference Equation 3.1 relates the state at the previous 

time step 1−k  to the state at the current step k in the absence of either a driving function 

or process noise. Note that in practice, A might change with each time step, but here we 

assume it as constant. The matrix H in the measurement Equation 3.2 relates the state to 

the measurement kz . In practice, H  changes with each time step or measurement, 

reflecting the time varying character of the explanatory variables (travel time, reliability, 

toll) considered. 

3.2.2. The Computational Origin of the Filter  

We define n
k Rx ∈−  (note the “super minus”) to be our a priori state estimate at step k

given knowledge of the process prior to step k , and n
k Rx ∈ˆ to be our a posteriori state 

estimate at step k , given measurement kz . We can then define a priori and a posteriori 

estimate errors as: 
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−− −≡ kkk xxe ˆ

         (3.5) 

kkk xxe ˆ−≡     (3.6) 

the a priori estimate error covariance is then: 

[ ]T
kkk eeEP −−− ≡    (3.7) 

and the a posteriori estimate error covariance is: 

[ ]T
kkk eeEP ≡    (3.8) 

In deriving the equations for the Kalman filter, we begin with the goal of finding 

an equation that computes a posteriori state estimate kx̂ as a linear combination of an a 

priori estimate −
kx̂ and a weighted difference between an actual measurement kz and a 

measurement prediction −
kHx as shown below in Equation 3.9.  

( )−− −+= kkkk xHzKxx ˆˆˆ
  (3.9) 

The difference in Equation 3.9 is called the measurement innovation, or the 

residual. The residual reflects the discrepancy between the predicted measurement −
kxH ˆ

and the actual measurement kz . A residual of zero means that the two are in complete 

agreement. 

The mn× matrix K  in Equation 3.9 is chosen to be the gain or blending factor 

that minimizes the a posteriori error covariance Equation 3.8. This minimization can be 

accomplished by first substituting Equation 3.9 into the above definition for ke  , 

substituting that into Equation 3.8, performing the indicated expectations, taking the 

derivative of the trace of the result with respect to K , setting that result equal to zero, and 

then solving for K . One form of the resulting K  that minimizes Equation 3.8 is given 

by: 
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( ) 1−−− += RHHPHPK T
k

T
kk   (3.10) 

One way to think about the weight K  is that as the measurement error 

covariance R approaches zero, the actual measurement kz is “trusted” more and more, 

while the predicted measurement −
kxH ˆ is trusted less and less. On the other hand, as the a 

priori estimate error covariance −
kP approaches zero, the actual measurement kz is 

trusted less and less, while the predicted measurement −
kxH ˆ is trusted more and more. 

3.2.3. The Discrete Kalman Filter Algorithm  

The Kalman filter estimates a process by using a form of feedback control: the filter 

estimates the process state at some time and then obtains feedback in the form of noisy 

measurements. As such, the equations for the Kalman filter fall into two groups: time 

update equations and measurements update equations. The time update equations are 

used for projecting forward (in time) the current state and error covariance estimates to 

obtain the a priori estimates for the next time step. The measurements update equations 

are used for the feedback; this is, for incorporating a new measurement into the a priori 

estimate to obtain an improved a posteriori estimate. The specific equations for the time 

and measurement updates are presented below in Table 3.1 
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Table 13.1: Discrete Kalman Filter Equations 
Time update equations 

11 −− += kkk wAxx             (3.11) 
QAAPP T

kk += −
−

1            (3.12) 
Measurement update equations 

( ) 1−−− += RHHPHPK T
k

T
kk      (3.13) 

( )−− −+= kkkkk xHzKxx ˆˆˆ
        (3.14)

( ) −−= kkk PHKIP             (3.15) 

The first task during the measurement update is to compute the Kalman gain, kK

(Equation 3.13). The next step is to actually measure the process to obtain kz  , and then 

to generate an a posteriori state estimate by incorporating the measurement as in 

Equation 3.14. The final step is to obtain an a posteriori error covariance estimate via 

Equation 3.15. 

After each time and measurement update pair, the process is repeated with the 

previous a posteriori estimates used to project or predict the new a priori estimates. This 

recursive nature is one of the very appealing features of the Kalman filter. 

3.3. Adaptive Kalman Filter 

It is a well known limitation in applying Kalman filter techniques that errors of the 

process and measurement noise statistics are assumed to be known. The use of wrong a 

priori statistics can lead to large estimation errors or even to a divergence of errors. The 

purpose of an adaptive filter is to reduce or bound the errors by modifying or adapting the 

Kalman filter to real data. In the case of this study, there is no information a priori about 

the time varying characteristics of the process and measurement noise statistics. In 

general, we consider that the measurement error can change due to several reasons: 
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• Detector technology, power failures and, maintenance issues 

• Weather conditions 

• Traffic variability (low/high congestion). 

As an illustration of the previous discussion, Figure 3.2 shows the measurement 

variance as a function of the time of day for a typical instance of the dataset. The figure 

presents the variance estimates based on 30 and 60 minutes worth of data (5 minutes 

aggregation level). Based on the figure it is possible to find consecutive periods of time 

with significant differences in variability. Also the magnitude of the variability 

differences depend on the time window size time considered for collecting the samples of 

the measurement data. 

On the other hand, for the process noise statistics, the covariance may change due 

to: 

• Changes in user behavior because of time of the day and day of the week 

(trip purposes and possibly changes in recurrent congestion) 

• Changing in user behavior due to traffic incidents (accidents, work zones, 

special events) 

• Changing in user behavior due to weather events.  

 Unfortunately, there is no a priori information relative to the time-varying 

characteristics of the process noise variability illustrating the need to count with an 

algorithm able to cope with such variability. However, realizing the occurrence of the 

behavioral changes and their impacts described above lead to the decision to utilize an 

estimation procedure that automatically adapts to real data in order to minimize the 

estimation errors. What follows is a procedure that allows the sequential estimation of the 

process and measurement noise statistics in order to accomplish such goal. 
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Figure 53.2: Measurement Variance Variation along the Day  

3.3.1. Sequential Estimation with Unknown Noise Statistics   

For a linear conventional Kalman filter, its state covariance matrix is totally determined 

by given initial conditions and P  and Q  values without direct link to the actual 

measurements. In contrast, the covariance matrix of an adaptive Kalman filter may 

change during the filtering process because it is partially derived from actual 

measurements which correspond to different settings.  

A number of approaches can be taken to adaptive filtering. Since the basic source 

of uncertainty is due to unknown a priori statistics of noise, one can try to estimate them 

on-line from the observed data. Different approaches to adaptive filtering have being 

described to belonging to one of four methodological categories (Mehra, 1972): Bayesian, 

maximum likelihood, correlation, or covariance matching. Unfortunately, an optimal 

estimator for the state noise and observation noise does not exist, but many suboptimal 
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simultaneously with the state (Mehra, 1972; Jazwinski, 2007; Raol et al., 2004). Most of 

these developments, however, are too restrictive or computationally demanding, 

especially for nonlinear applications (Myers et al., 1976). For example, some approaches 

require that the unknown statistics be restricted to a set of constant parameters (Hilborn et 

al., 1969), that the noise covariance matrix be diagonal (Mehra, 1972), or that the state 

transition and geometry matrices be time invariant (Alspach, 1974). Other techniques 

(Jazwinski, 2007) require iteration or smoothing which can be computationally 

burdensome. In this work, a more intuitive approach is taken which is similar to those in 

the category of covariance matching. The particular method given here largely follows 

Myers & Tapley (1976). 

The system considered here is the linear discrete, stochastic sequence described 

by the following equations: 

11,1 −−− += kkkkk wxAx
    

(3.16) 

kkkk vxHz +=      (3.17) 

where kx is the n-dimensional state vector, kkA ,1− is the state transition matrix from time 

1−kt to kt , kz is the m-dimensional observation vector, and kH is the observation 

mapping matrix. The stochastic disturbance vectors 1−kw and kv are treated as independent, 

non-stationary, Gaussian, white noise sequences with the following properties: 

 
 

[ ] ii qwE =       (3.18) 

( )( )[ ] iji
T

jjii QqwqwE δ=−−
  

(3.19) 

[ ] ii rvE = ,      (3.20) 
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( )( )[ ] iji
T

jjii RrvrvE δ=−−   (3.21) 

where iq and ir are the true means and iQ and iR are true moments about the mean of the 

state and observation noises respectively. 

3.3.2. Empirical Estimation of Measurement Noise Statistics  

For the measurement noise statistics, consider the linear observation state relationship at 

a given observation time kt (Equation 3.17). The true state kx  is unknown, so kv cannot 

be determined; but an intuitive approximation for kv is given by the quantity: 

−−= kkkk xHzr      (3.22) 

where kr is defined as the observation noise sample and −
kx is the a priori state knowledge. 

 If the noise samples kr are considered to be representative of kv ~ ( )RrN ,  they 

may be considered independent and identically distributed, and a simple parameter 

estimation problem can be constructed. Define a random variableℜ on the sample space 

ℜΩ from which the data jr , nj →= 1  are obtained. Based on these empirical 

measurements, the unknown distribution of ℜ , characterized by a mean r and covariance 

rC is to be estimated. 

An unbiased estimator for r  is taken as the sample mean, 


=

=
N

j
jr

N
r

1

1

     
(3.23) 

An unbiased estimator for R  is obtained by first constructing an estimator for rC

the covariance of ℜ as follows, 
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( )( )Tj
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j
jr rrrr

N
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=11

1

 
(3.24) 

It can be shown that expected value of this quantity is 

[ ] RPHH
N

CE
N

j

T
jjr += 

=1

1

 
(3.25) 

An unbiased estimate of R , after substitution of Equation 3.29 is given by 

( )( )
= 













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jj HPH

N

N
rrrr

N
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1

1

1

1 
 (3.26) 

3.3.3. Empirical Estimation of State Noise Statistics  

For the state noise statistics, consider the linear dynamical state relation Eq. (3.17) at 

given time kt and 1−kw ~ ( )QqN , . The true states kx and 1−kx are unknown, so 1−kw cannot 

be determined, but an intuitive approximation for 1−kw is: 

11 −−−= kkkk xAxq
   (3.27) 

where kq is defined as the state noise sample at time kt . By hypothesis, the 1−kw for

nk →= 1  are independent, and the parameters q and Q  are constant. If the kq are 

assumed to be representative of the 1−kw , they may be considered independent and 

identically distributed. Again defining a parameter estimation problem, let ℑ be a 

random variable on the sample space ℑΩ from which the data kq is being obtained,

nj →= 1 . Based on these measurements, the unknown distribution of ℑ , characterized 

by q and Q is to be estimated. 
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An unbiased estimator for q is the sample mean  


=

=
N

j
jq

N
q

1

1
ˆ

    
(3.28) 

An unbiased estimator forQ is obtained by first constructing the estimator for qC

the covariance of ℑ  

( )( )Tj
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j
jq qqqq

N
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= 

=11

1

        
(3.29) 

Following the same steps than the measurement noise statistics, the unbiased 

estimator for Q is given by: 
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(3.30) 

3.3.4. The Kalman Adaptive Memory Limited Filter (AMLF) Algorithm 

This section describes the modifications to the KF algorithm and the unknown statistics 

sequential estimation techniques required for application to real problems. 

Empirical estimators of the unknown statistics are derived in a batch form, 

assuming that during a given period of time (LAP) such statistics remain constant. If we 

call that period of time LAP, the KF algorithm needs to be modified on order to allow the 

computation of such statistics during LAP period of time as new measurement data is 

processed. The AMLF algorithm is shown in Table 3.2 
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Table 23.2: ALMF Algorithm 
A priori 
data 1;ˆ,ˆ,ˆ,ˆ,ˆ,ˆ 000000 =kRrQqPx   

State 
Propagation 

11 ˆˆ −−
− += kkk qxx  

11
ˆˆ

−−
− += k

T
kk QAPAP  

(3.31)
(3.32)

Compute 
Observation 

Noise 

−−= kkkk xHzr̂  
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(3.33)
(3.34)

Compute 
Kalman Gain ( ) 1ˆ −−− += k

T
kkk

T
kkk RHPHHPK  (3.35)

State 
Estimation 

 
( )−− −+= kkkkkk xHzKxx ˆˆˆ  
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Compute 
State Noise 
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Reset and 
Repeat 1+= kk  (3.38)
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CHAPTER 4 

METHODOLOGY 

This research work aims at the development of methodology to assess the aggregated 

user behavior in a corridor managed using road pricing strategies. Generally speaking, the 

methodology makes use of historical ITS data to determine the relationship between the 

observed proportion of the HOT lanes users and the performance of the transportation 

system. Initially, the historical information on system performance in terms of travel 

time, travel time reliability, toll, and occupancy are processed in different manners to 

select the best method to capture their effects on the variation of the proportion of HOT 

users. These rules have the ability to incorporate historical and real time information into 

the final summary measure of interest. In addition, these rules allow the generation of 

travel time and travel time reliability series that describe the travelers’ perception of the 

system performance as a function of time. Finally the performance of the ALMF 

proposed in Chapter 3 is tested regarding its accuracy and robustness. Figure 4.1 illustrate 

the methodology and its relationship to the estimation of the various traveler sensitivities 

in a priced environment. 
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Figure 64.1: Estimation Framework 

4.1. Learning and Processing Information for a Facility 

Even though the initial motivation for the system performance perception and driver 

information processing described above was intended to be applied to individuals, still it 

is possible to use the same approach to approximate the characteristics of the user 

perception and user information processing when aggregated choices are observed on the 

facility. In particular it is possible to study the correlation between the observed 

proportion of users of the HOT lanes and the system performance measures considering 

different treatments of the performance measures. The hypothesis behind this is that 

different treatments of the system performance measures will correlate differently (better 

or worse) with the observed proportion of HOT lane users, and thus a better correlation 

would indicate that the information treatment better approximates the actual processes 

used on average by the system users. In order to proceed with the analysis, the following 

assumptions should be made clear: 
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(a) It is assumed that the time period when commuters pass through the decision 

point does not change significantly from day-to-day, and thus the 

performance measures archived from previous days are representative of the 

conditions expected by commuters at that period of time. This assumption is 

somewhat reasonable given the characteristics of daily commuting in this 

corridor where the time of the day traffic pattern does not change 

significantly from day to day. 

(b) Another assumption has to do with the fact that the archived performance 

measures correspond to the estimates provided by TMC software and thus 

they may or may not correspond to the actual system performance as 

experienced or perceived by the users.  

(c) The fact that what is being correlated is the observed proportion of users and 

a measure of the performance difference between the HOT and GP lanes, 

implies that the users have perfect knowledge about the system performance 

in both lanes. This assumption should be carefully considered because users 

who systematically repeat the same choice daily may actually have a biased 

perception of the traffic conditions on alternative routes, and consequently a 

biased decision.  
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Having these considerations in mind, this study focuses on the exploration of the 

following questions regarding driver information processing: 

(a) What period of time is considered by users when assessing the historical 

performance of the system? 

(b) Do the drivers have a fading memory? Or in other words, do drivers give 

more weight to more recent experiences or all experiences in their memory 

weight the same?  

(c) Is there any evidence indicating that real time information has any impact on 

the observed proportion of the lane system users? 

(d) And finally, is there any evidence indicating that travelers remember the 

most critical experiences only? 

In order to assess these questions, a set of days was selected randomly from the 

dataset. For each of these days, the correlation between the proportion of HOT lane users 

and the system performance was assessed by time of the day, considering different 

treatments for the system performance data. A summary of the parameters used in the 

data processing is shown in Table 4.1. 
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Table 34.1: Data Processing Specifications for Learning and Information Processing 
Information 
processing 
feature 

Dependent 
Variable 

Independent 
Variable Data processing parameters 

Memory 
length 

Proportion of HOT 
users 

Travel time 
difference between 
GP and HOT 

Travel time differences are estimated as the average 
travel time considering different dataset lengths. 
Myopic (day before), 5 days, 15 days, 30 days, 60 
days and 90 days datasets are used. 

Fading 
memory 

Proportion of HOT 
users 

Travel time 
difference between 
GP and HOT 

Travel time differences are estimated as the weighted 
average travel time considering a 60 day dataset 
length. Three exponentially decreasing weigh rules 
are used: b=1 (simple average), b=1.05 and b=1.15

Real time 
information 
impact 

Proportion of HOT 
users 

Travel time 
difference between 
GP and HOT 

Travel time differences are computed as the weighted 
travel time between the estimate considering a 60 day 
dataset simple average and the current estimate 
provided by the TMC software. Five weights are 
explored: a=1(no consideration of the real time 
information), a=0.75, a=0.50, a=0.25 and a=0 (only 
real time information is considered) 

Gestalt 
characteristics 
of the travel 
time 

Proportion of HOT 
users 

Travel time 
difference between 
GP and HOT 

Travel time differences are computed as the average 
of the worst 1, 5, 10 and 20 days out of 60days.  

4.1.1. Memory Length  

As described in section 4.1, the objective of this exploratory exercise is to determine the 

period of time that provides the best correlation between the proportion of HOT users and 

the differences in travel time between the HOT and the GP lanes. The HOT and GP travel 

time estimates have been computed considering different periods of time; namely, 1 day 

(myopic approach), 5, 10, 15, 30, 60, and 90 days. Figures 4.2 and 4.3 show the 

relationships between the proportion of HOT users and the difference in travel time for 

the AM and PM peaks respectively. The figures depict the results observed for a typical 

day randomly chosen from the database, although similar patterns are observed for most 

days in the database. From the figures, in both cases it is observed that using fewer days 

(5 days) to estimate the travel times barely depicts any relationship between the variables 

considered, especially in the AM peak where it is known that traffic patterns are more 

variable. Conversely, it is observed that using a longer period of time (60 days) shows in 

both cases (AM and PM) a stronger pattern, which at the same time is consistent with the 
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intuition that the bigger the difference in travel time, the higher the proportion of HOT 

users. In order to assess the degree of correlation between the proportion of HOT users 

and the difference in travel time, the coefficient of correlation (R2) was estimated for the 

dataset. The results are shown in Figure 4.4 for the AM and PM peak periods; in general, 

it is observed that the longer the period of time considered, the larger is the coefficient of 

correlation. However, no further increments are observed beyond 60 days where the 

coefficient of correlation remains constant. The latter may suggest a threshold for the 

maximum number of days that are sufficient for estimating travel time on this particular 

facility. 

 
Figure 74.2: AM Travel Time Adjustment Considering 5 and 60 Days Respectively 

 
Figure 84.3: PM Travel Time Adjustment Considering 5 and 60 Days Respectively 
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Figure 94.4: R2 considering different dataset lengths in AM and PM periods 

4.1.2. Fading Memory  

In addition to the size of the dataset that the users may consider when assessing the 

performance of the facility, the question about the weight of each record in the final 

assessment is addressed. For this purpose, different exponentially decreasing weights are 

considered to affect the historical differences in travel time between HOT and GP lanes. 

Figure 4.5 shows the exponentially decreasing weights used for 60 days of measured 

travel time data. As shown in the chart, using b=1.0 represents the case where all the 

records receive the same weight; this is the simple arithmetic mean of the sample. On the 

other hand, using b=1.05 corresponds to a case where the latest experiences are 

somewhat more important than the older ones in the final travel time assessment. Finally, 

using b=1.15 is conceptually similar to using b=1.05; but comparatively speaking, in the 

latter case, older experiences fade faster than the former case.  
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Figure 104.5: Exponentially Decreasing Values of wk for Different Values of b 

Figures 4.6 and 4.7 show the relationship between the proportion of HOT users 

and the difference in travel time for the AM and PM peaks respectively when different 

fading rules are used. In both cases, using fading rules do not help to better visualize the 

relationship between the proportion of HOT users and the travel time differences. This is 

consistent with the results found in the previous section where in order to obtain well 

defined patterns between the proportion of HOT users and differences in travel time, a 

period of 60 days was found to be the best time inreval. In this sense, using fading 

memory rules is equivalent to shorten the period of time considered to collect the travel 

time samples. Thus, considering fading rules do not help correlating better the observed 

proportion of HOT users and the system performance.  
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Figure 114.6: AM Travel Time Adjustment Considering b=1.0 and b=1.15 

Respectively 

 
Figure 124.7: PM Travel Time Adjustment Considering b=1.0 and b=1.15 

Respectively 

The exploration of the correlation coefficient between the proportion of HOT 

users and the differences in travel time further support the fact that the simple average 

better represents the process used by individuals to assess the travel time differences. 

Figure 4.8 shows the correlation coefficient between the proportion of HOT users and the 

travel time differences for various values of the parameter b. From the figure is clear that 

using fading memory rules tends to dilute the relationship between these quantities.  
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Figure 134.8: R2 Considering Different Fading Memory Rules 

4.1.3. Real Time Information Impact  

The impact of real time information on the observed traffic patterns is also explored. In 

South Florida, besides the information the driver can collect from his environment while 

he is driving, there are a number of real time sources of information that can eventually 

be taken into account in the traveler’s decision making process. These sources of 

information include Dynamic Message Signs (DMS) with actual travel time estimates, 

local radio broadcasts with general traffic information, a 511 system with facility- 

specific traffic information and other more informal sources of information, like friendly 

advice by telephone, and so on. In addition, the pricing of the HOT lanes may give 

motorists a hint of the levels of expected congestion; although in reality, these prices are 

not set based on the difference in travel time but on managed lanes Level of Service 

(LOS). In this study, several hypothetical cases are explored ranging from utilizing only 

real time information (a=0.0) to utilizing only historic information (a=1.0). In all of the 

cases explored, the historical information is based on the mean travel time computed over 

60 days of data. Figure 4.9 and Figure 4.10 show the relationship between the proportion 

of HOT users and the difference in travel time for the AM and PM periods respectively. 
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The figures show the two extreme values of the real time and historical information 

weights used. These results are quite interesting, particularly for the AM period where 

relying exclusively on real time information actually provides some negative numbers for 

the difference in travel time between HOT and GP lanes. This result indicates that if users 

were basing their decisions only on real time information, the observed behavior would 

be the in contradiction to the expected one. In other words, drivers would be paying for 

the use of the HOT lanes while actually the GP lanes have a lower travel time and 

consequently the proportion of HOT users should be zero. As the use of the real time 

information is reduced to zero, it is observed that the expected behavior emerges in both 

periods.  

 
Figure 144.9: AM Travel Time Adjustment Considering a=0.0 and a=1.0 

 
Figure 154.10: PM Travel Time Adjustment Considering a=0.0 and a=1.0 
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Figure 4.11 depicts R2 the between the observed proportion of HOT users and the 

travel time difference between GP and HOT lanes. It can be observed that there is a 

relationship between the coefficient of correlation and the weight considered for the real 

time information. In particular a better correlation between the quantities of interest is 

obtained when real time information is minimal or not considered at all. This possibly 

reflects the fact that, for the explored conditions, the actual difference in travel time 

between the GP and HOT lanes is not normally communicated to travelers. 

 
Figure 164.11: R2 Considering Different Real Time Information Parameter a 
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single worse day in 60 days. Figure 4.12 shows the results for each case respectively. It 

can be observed that considering the average of the worst days tend to increase the range 

for the differences in travel time while the range of the proportion of HOT users remain 

the same. In other words, considering Gestalt characteristics of the travel time makes the 

proportion of HOT users less sensitive to changes in the travel time differences and in 

consequence the travel time variable losses its explanatory power. Thus, it can be 

concluded that there is no evidence that considering Gestalt characteristics of the travel 

time can explain better the observed traveler choices.   

  

  
Figure 174.12: Relationship Between the Proportion of HOT Users and the Gestalt 

Characteristics of the Travel Time, (a)20/60, (b)10/60, (c)5/60 and (d)1/60  
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4.1.5. Model for Information Processing and Learning Summary 

This section has explored key aspects of the driver behavior with respect to the 

perceived system performance. These aspects are related to the length of memory to 

assess traffic conditions, fading rules to favor latest/oldest experiences, and the role of 

real time information that may be considered by the driver. The exploration has been 

carried out using only aggregate observations of driver choices in a system composed of a 

GP and HOT lanes, and consequently the validity of the conclusion is subject to the 

validity of the assumptions considered in the study. In general, it is possible to conclude 

that individuals using this facility tend to assess their choices based on the average travel 

time estimated from their own experiences; that is, they give the same weight to all 

experiences within the time window considered. In addition, it is noticed that this 

assessment of the travel time is performed with limited use of real-time information that 

may be broadcast in real time by different means. Finally, it was found that there is no 

evidence that considering Gestalt characteristics of the travel time can explain better the 

observed traveler choices.  

4.2. Travel Time Reliability Metrics 

It was mentioned that the traveler’s decision-making process may be influenced by the 

level of consistency of travel conditions over time. This section addresses the question of 

how to incorporate such travel time consistency by means of reviewing how travel time 

distributions change by time of day at fine temporal aggregation levels, the sensitivity of 

various travel time reliability metrics to these variations, the effect on the aggregation 

level choices of the calculated metrics, and the amount of data required to estimate stable 
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values of the reliability metrics. The investigation is made for a facility that has GP lanes 

and HOT lanes.  

In this section the variation of the parameters of travel time distributions by time 

of day, the sensitivity of various reliability metrics to these variations, the effect of time 

of day analysis interval on the calculated metrics, and the amount of data required to 

estimate stable values of the reliability metrics is investigated.   The investigation is 

made for a facility that has GP lanes and HOT lanes, allowing the comparison of how 

travel time reliability attributes between the two facilities by time-of-day can be depicted 

by different reliability metrics.  The study also explores the trends of the variations of 

various metrics as the congestion increases during the peak period, which is important 

when selecting reliability metrics for various applications such as the use of the metrics 

as part of the generalized cost functions of assignment models and in optimization of 

strategies such as congestion pricing. 

4.2.1. Utilized Travel Time Data  

Agencies have used Intelligent Transportation Systems (ITS) devices to collect traffic 

parameter measurements for operational purposes.  In recent years, these agencies have 

started archiving the collected information for future uses (FHWA, 2004). The 

availability of the archived information allows the analysis of travel time distributions 

and the associated reliability measures at a fine time scale compatible with the 

requirements of advanced strategies and analysis applications.    
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The data used in the analysis was obtained from a 6.5 mile segment of the 

northbound I-95 limited- access facility in Miami, Florida. This segment has a total of six 

lanes, two of which are HOT lanes and the remaining four lanes operating free of charge as 

GP lanes. The two HOT lanes have been in operation since December 2008, utilizing a 

dynamic congestion pricing scheme.  Registered vehicles with high occupancy can use the 

HOT lanes without paying tolls. The HOT lanes have a single entry point and a single exit 

point and are fully segregated from the GP lanes by plastic poles.   This section of I-95 is 

equipped with point traffic detectors located every 0.3-0.5 miles that collect volume, speed, 

and occupancy measurements every 20 seconds for both the HOT and GP lanes. The 

corridor operations and the data gathered by ITS devices are managed by the Florida 

Department of Transportation (FDOT) District 6 by means of traffic management software 

referred to as the SunGuide software (SWRI, 2010).  

This study utilizes travel time estimates for the HOT and GP lanes that are archived 

for every minute of the day by the SunGuide software. The travel time is estimated by the 

system based on the speed measurements collected by the microwave detectors installed on 

the corridor utilizing the mid-point speed estimation method. The mid-point method is a 

widely used travel time estimation algorithm in traffic management center software. The 

mid-point method assumes that each detector speed measurement represents the speeds of 

half distances to the next detector on both sides. The segment travel time is thus 

calculated as follows:  
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where T1-2 and L1-2 are the travel time and length of the link between detectors 1 and 2, 

respectively.  S1 and S2 are the speeds measured by detectors 1 and 2, respectively. 
 

One year’s worth of data was used in the analysis.  However, also using data 

collected for shorter periods of time is investigated, as described later in this section.  

Only weekday travel time data was used in the analysis.    

4.2.2. Time-Variant Travel Time Distributions 

Travel time reliability metrics are calculated to reflect the variability of travel time from 

day to day.  Thus, they are supposed to represent the attributes of travel time 

distributions that are most relevant to the perception of system reliability.    Since the 

purpose of this study is to examine the attributes of time-variant reliability metrics, it is 

useful to examine first the time variant parameters of travel time distributions of the HOT 

and GP lanes. In addition, as stated earlier, previous reliability studies have calculated 

reliability measures for the whole peak periods, implicitly assuming that the travel time 

distribution parameters remain constant during these periods of the analysis.   

Investigating the variations in travel time distribution parameters by time interval allows 

the examination of the validity of this implicit assumption.   

Comparing the parameters of travel time distributions for GP and HOT lanes 

under different conditions can also provide important information regarding the sources 

of the unreliability of these facilities. These sources can be classified as recurrent and 

non-recurrent events.  Recurrent events include demand fluctuations, variations in 
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traveler behaviors, and stochastic variations in flow breakdown and capacity.   

Non-recurrent events include incidents, work zones, special events, and weather events.  

It is logical to expect travel time variability mainly due to recurrent events to have 

distributions that are much flatter and more symmetrical compared to conditions with 

variability significantly influenced by non-recurrent events, which are expected to have 

skewed distributions.  However, the shapes of the distributions could also be influenced 

by facility types and their   operational characteristics.  Previous studies have 

produced limited information regarding the characteristics of travel time distributions 

during incident and no-incident conditions and their influences on travel time variability, 

as explained next. 

Li (Li et al., 2006) found that, under free flow conditions of a transportation 

system, travel time distribution has the shortest right tail whereas the afternoon peak has 

the most skewed distribution. They also found that the variation in demand in the 

morning peak explains most of the travel time variability while incidents play a major 

role explaining the variability during the PM peak. The authors warned that these results 

are likely to be site specific. Boyles (Boyles et al., 2010) examined four operational 

conditions on two corridors: no incident-good weather (NIGW), poor weather (PW) and 

incident present (IP). They found that the normal distribution is best suited for describing 

speed in NIGW conditions, while the beta distribution is best suited for fitting PW and IP 

conditions. The authors also warned analysts about the site specific character of the 

results. Tu (Tu et al., 2008) pointed out that the effect of traffic incidents on travel time 

distribution is a function of the volume using the facility. Below a certain threshold, 

(1400 vphl) incidents slightly increase the 10th percentile of travel time by 3% and the 
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median travel time by an average of 6%. Above this threshold, incidents result in 

significantly higher median travel time (38% increment) while the 90th percentile travel 

time is increased in average by 75%.    

This study compares the parameters of the travel time distributions, namely: the 

median, standard deviation, skewness, and kurtosis (NIST/SEMATECH, 2011). The 

median travel time is a measure of central tendency that is preferred to the mean in the 

case of skewed distributions (Cambridge Systematics, 2010; Rakha et al., 2007; Pu, 

2010). The standard deviation is a measure of the travel time variability and has been 

used as a reliability measure by itself. The coefficient of variation, which is the standard 

deviation divided by the mean, has also been used for this purpose (Rakha et al., 2007).   

Skewness is a measure of travel time distribution asymmetry and its value can be 

negative or positive with positive values indicating that a longer tail of the distribution is 

on the right hand side of the distribution and the bulk of the travel time values lie to the 

left of the mean and the median.  The fourth parameter, the kurtosis, is a measure of the 

"peakedness" of the travel time distribution.  Kurtosis combined with skewness can be 

used together to assess how far is the travel time distribution from the symmetrical 

normal distribution with the same median and standard deviation. 

Figure 4.13 summarize the results for the median, standard deviation, skewness 

and kurtosis. Travel times have been computed every 5 minutes, and it is observed that 

the HOT lanes had a lower median travel time than had the GP lanes.   Both facilities 

reached their maximum median travel time at 5:00 PM, which is 8 minutes for the HOT 

lanes and 12 minutes for GP lanes (the free flow travel time is about 6 minutes). Figure 

4.13 also shows that as the median travel time increases, so does the standard deviation.  
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However, the skewness and kurtosis are higher at lower congestion levels, indicating 

lower correspondences between the distributions of travel time and normal distributions 

at low congestion levels and possibly a higher contribution of non-recurrent events to 

travel time variability.    

Also, Figure 4.13 clearly indicates that the shape of travel time distributions is 

highly variable as a function of time.  This is even more certain in the case of managed 

lanes due to the shorter peak period that occurs only after the GP lanes start getting 

congested and motorists start diverting to HOT lanes due to this congestion.  During 

most of the investigated period, the travel time variability of the HOT lanes as measured 

by the standard deviation is lower than that of the GP lanes, except at the peak hour (5:00 

PM), when the variability of both facilities approaches each other.   This occurs in spite 

of the lower travel time median on the HOT lanes at this peak hour. 

The variability of travel time in the HOT lane and the higher skewness and 

kurtosis of the travel times distribution of the HOT lanes compared to GP lanes during 

the peak period could be attributed to a higher contribution of the non-recurrent events to 

the unreliability in the HOT lanes, higher demand variations on the HOT lanes from day 

to day compared to GP lanes, and/or higher sensitivity of the HOT lane travel time to 

demand variations. The contributions of these three factors to travel time variability were 

investigated in this study. First, to determine the contribution of non-recurrent congestion, 

the days with either incidents in the HOT or GP lanes were filtered out of the analysis 

dataset. It was observed that removing the days with incidents does not change 

significantly the travel time distribution (less than 5% per bin) leading to the conclusion 

that the non-recurrent events  are not the main factor that explain the increase of the 
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travel time distribution skewness. It was further determined that the standard deviations 

of demands of the HOT and GP lanes are close to each other indicating that this factor is 

also not the main reason for the high variability of the travel time of the HOT lanes 

around the peak period.   Further examination of the data indicates that the main reason 

for the high variability of the HOT lanes is the lower capacity of the HOT lanes 

compared to GP lanes, which causes a higher sensitivity of the travel time to the increase 

in demand.  Based on the collected data, the capacity of the managed lanes is about 

1,300 veh/hr/lane, and the capacity of GP lanes is about 1,900 veh/hr/lane.    

 
Figure 184.13: Travel Time Distribution Shape Parameters 

4.2.3. Time-Variant Reliability Metrics 

As described previously, it is also important to examine how the travel time reliability 

metrics vary by time-of-day and particularly how do they react to the increase in demand.  

These metrics necessarily have to be sensitive to the increase in congestion and they need 
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to show a consistent trend as the congestion increases in order to allow their use in 

highway capacity/traffic analysis applications, or when included as parameters in the 

objective functions of dynamic traffic assignment tools or of the optimization of the 

pricing of managed lanes and other strategies. 

There are a number of metrics that have been used to quantify reliability.   The 

variation in the parameters of the travel time distributions with the increase in congestion 

by time of the day as described in the previous section is expected to have significant 

impacts on the values of these metrics.  In this study, an investigation was made of the 

sensitivity of the reliability metrics to the changes in the congestion levels and the ability 

of these metrics to reflect the reliability differences between the HOT and GP lanes in a 

time-variant context. Table 4.2 shows the definitions of travel time reliability metrics 

used in this study.  These measures are mainly selected based on the recommendations 

given in SHRP2 L03 project (Cambridge Systematics, 2010) and constitute a common set 

of metrics used for reliability assessments.  

Table 44.2: Travel Time Reliability Operational Definitions 
Reliability Performance 
Metric 

Definition 

Buffer Index (BI) 
The difference between the 95th percentile travel time and 
the average travel time, normalized by the average travel 
time. 

Failure/On-Time 
Performance 

Percent of trips with travel times less than: 
• 1.1* median travel time 
• 1.25* median travel time 

95th Planning Time Index 95th percentile of the travel time index distribution 
80th Percentile Travel Time 
Index 

80th percentile of the travel time index distribution 

Skew Statistics 
The ratio of 90th percentile travel time minus the median 
travel time divided by the median travel time minus the 10th 
travel time percentile 

Misery Index 
The average of the highest five percent of travel times 
divided by the free-flow travel time. 
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In this study, the reliability metrics in Table 4.2 were estimated for the GP and 

HOT lanes, utilizing different time interval lengths in the analysis.  The results 

presented in Figures 4.14 and 4.15 are based on 15 minute intervals.   Figure 4.14 and 

Figure 4.15 show different trends of different reliability metrics with time of day for the 

GP and HOT lanes respectively, as explained below.    

The metrics that exhibit continuity and sensitivity in their variations in response to 

the increase in variability as the congestion in the peak hour is approached are the 95th 

Percentile Planning Time Index (PTI), 80th Percentile PTI, and the Misery Index.  

Figures 4.14 and 4.15 show that the use of the 95th Percentile PTI metric and even more 

the use of the 80th percentile PTI metric clearly indicate that the reliability decreases as 

the peak demand period, at 5:00 PM, approaches.   The reliability is lowest at this peak 

reflecting the highest variability observed when examining the parameters of the travel 

time distributions, as discussed in the previous section.    Figures 4.14 and 4.15 also 

show that the 95% PTI of the GP lanes is higher than that of the HOT lanes except at the 

peak hour, at which the PTI is equal for both facilities, reflecting the comparable travel 

time variability of the GP and HOT lanes at the peak hour.   It is interesting to note that 

the 80th percentile PTI is lower for the HOT lanes for all of the investigated hours, 

including the peak hour at 5:00 PM, and that the difference in reliability between the GP 

and HOT lanes is higher when the comparison is based on the 80th percentile PTI 

compared to when measured based on the 95th percentile PTI. 

A similar trend to those observed with the PTI measurements discussed above was 

observed with the Misery Index, as indicated in Figures 4.14 and 4.15 For the GP and 

HOT lanes, the Misery Index values are lower in the uncongested periods compared to 
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the congested periods, as expected.  The Misery Index of the HOT lane is lower than 

that of the GP lanes prior to the peak hour but exceeds it at the peak hour.   

The results of examining the other measures do not show the consistent trend of 

increase with the increase in congestion, observed when examining the PTI and the 

Misery Index in the discussion above. Figure 4.14 shows that the BI metric for the GP 

lane is not sensitive to the increase in congestion. BI is computed as the difference 

between the 95th percentile and the mean divided by the mean travel time.  The BI value 

of the GP lanes remains almost constant during the peak period because, although the 

variability of travel time increases significantly as the peak demand approaches the 

values of the numerator in the BI calculations, the travel time mean (or median) also 

increases as the congestion increases.  For the GP lanes, the rate of change of the travel 

time mean/median parameter is close to the rate of change of the difference between the 

95th percentile and the mean/median travel time resulting in BI values that remain almost 

constant.  In the case of the HOT lanes, the rate of increase in the variability of travel 

time with the increase in congestion is higher than the rate of the increase in the 

mean/median resulting in an increase in the BI.  The inconsistency and lack of 

sensitivity of the BI to the increase in congestion in some cases may limit its use, at least 

for some reliability assessment and analyses tasks. 

The Failure/On-Time metric (FOT) represents the number of occurrences of travel 

time that are lower than the median travel time times a factor (1.1 or 1.25).  The 

implication is that the higher this metric is, the more reliable the system is, because more 

of the travel time instances are close to the median.  The value of this metric is affected 

by both the median and standard deviation values. As discussed previously, as the 
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congestion increases, both the median and standard deviation increase.  The results 

shown in Figures 4.14 and 4.15 indicate that there is no clear trend of the time-variant 

trend of FOT metric with the increased congestion, since the change in the metric value 

from one step to the next depends on how the rate of change in the median value is 

compared with the rate of the change in the standard deviation for the facility under 

consideration. 

The trend of the Skew Statistic with the increase in congestion is also not very 

clear.  It appears to be a function of the relative contributions of different sources of 

unreliability to the total travel time variability.  For the GP lanes, it is clear that the value 

of this metric is lower at higher congestion levels indicating more symmetrical 

distributions due to the higher contribution of the recurrent congestion to the variability. 

The variations due to recurrent congestion have been characterized by a more 

symmetrical distributions (less skewed distributions), as described earlier.  For HOT 

lanes, the Skewness Statistic initially increase as the shoulders of the peak hour are 

reached.    As explained earlier in this paper, the travel time on the HOT lanes has a 

high sensitivity to the variations in demands due to the lower capacity of the managed 

lanes.  This causes the variation in demands at the shoulder of the peak results in a high 

increase in the variability and Skewness Statistic.  However, at the peak hour itself, the 

managed lanes operate consistently at capacity causing a lower variability between days 

and significantly lower Skewness Statistic. 
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Figure 194.14: Reliability Metrics Variation with Time-of-Day GP Lanes 

 
Figure 204.15: Reliability Metrics Variation with Time-of-Day HOT Lanes 
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4.2.4. Analysis Period Length 

The discussion presented in the previous sections indicates that there is a considerable 

variation in the travel time distribution parameters and travel time reliability metrics 

when these parameters and metrics are estimated for different time intervals of the peak 

periods.  This section addresses the effect of the choice of the time of day analysis 

interval (segmentation of the peak period into subintervals) on the calculated metrics.    

The available data allows estimating travel time for every minute of the day. 

However, it may not be useful to produce the reliability metrics for every minute.  At 

the same time, as can be concluded from the earlier discussion, it may not be appropriate 

to compute the metrics to represent long periods of time.   Existing analysis and 

modeling approaches utilize 15-30 minute intervals suggesting that segmenting the peak 

period into 15-30 minute intervals may be needed for estimating the reliability metrics for 

such applications. 

In this study, the 80th Percentile PTI metric was computed for analysis periods of 

15 minutes, 15 minutes, 1 hour, 2 hour, and 4 hour and the results are presented in Figure 

4.16. The results show that depending on the congestion levels, different aggregation 

periods may lead to significantly different assessments of the reliability. One effect of 

using more aggregated periods of time would be the dilution of the travel time variability 

during the period of interest, particularly during periods of varying congested levels. 

Another potentially undesirable effect of such aggregation is the dilution of the relative 

differences between the facilities being compared such as the comparison of the GP and 

HOT lanes, conducted in this study. 
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Figure 214.16: Impact of Aggregation Levels on the 80th Percentile PTI Metric 
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year’s data decreases.    However, Figure 4.17 shows that even when collecting data for 

40 weeks, the RMSE is still at least 10% and as high as 18% for the  investigated 

measures.   The SHRP2 LO3 project recommended using at least 6 months and 

preferably a year’s worth of data to estimate the reliability metrics.  The results in 

Figure 4.17 confirm that at least one year’s worth of data is needed to estimate stable 

values of the investigated reliability measures. 

Based on the results of the study, at least one year of data is recommended for use 

to obtain stable values of reliability metrics. 

 
Figure 224.17: Effect of Data Collection Period Length 
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contribution of non-recurrent factors such as incidents to the unreliability of travel time 

on the investigated facility.   Different trends of travel time variations are observed 

when using different reliability metrics to assess reliability as the congestion level 

changes during the peak period. 

The results also show that examining combinations of time-variant static 

distribution parameters and reliability metrics of the GP and HOT lanes can provide 

valuable information that cannot be obtained when performing the analysis at higher 

aggregation levels.   The 95th Percentile PTI, 80thPercentile PTI, and Misery Index 

showed continuity and sensitivity in their variations in response to the increase in 

variability as the congestion in the peak hour.  The BI measure was insensitive to the 

increase in congestion on the GP lane but showed sensitivity to the congestion for the 

HOT lanes due to the difference in the rates of change of standard deviations and medians 

of travel time with the increase of congestion on these facilities, indicating that the 

interpretation of the results based on this metric should be done with caution.  The FOT 

and Skew Statistics showed inconsistent patterns of travel time variation with the increase 

in congestion on GP and HOT lanes reflecting the differences in the rates of the increase 

in the median and standard deviation rates of travel time with the increased congestion on 

the two facilities and the relative contributions of non-recurrent events to the 

unreliability. 

The results also show that examining combinations of time-variant static 

distribution parameters and reliability metrics of the GP and HOT lanes can provide 

information about the variations of the reliability of these facilities during the analysis 

periods and the contribution of nonrecurring events at different times of the day. 
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The results from the study also confirmed that the use of at least a 30 minute 

period of analysis is preferable to using longer periods for applications that require 

fine-grained analysis in order to reasonably represent the reliability pattern during 

congested periods.  In addition, the results from the study confirmed that at least one 

year’s worth of data should be collected to obtain a more stable value of reliability 

metrics. 

4.3. Adaptive Limited Memory Filter Performance 

The accuracy and robustness of the ALMF is assessed based on a case study that has 

similar characteristics in terms of performance measures to those found in a priced 

corridor. The accuracy of the ALMF is assessed by comparing the results from the ALMF 

algorithm with a model where all parameters are known. On the other hand robustness is 

assessed by exploring the range of the initial conditions under which the ALMF can 

produce consistent estimates. 

4.3.1. Case Study  

The case study consists of the estimation of the parameters of a linear model where the 

measurements have been corrupted by known noise levels kv . The linear model kz is 

defined by a constant 0β  and a time varying component 1β , similar to a utility function 

with one constant and one observable attribute kx . The model specification is shown in 

Equation 4.2  

( ) kkk vxz +







=

1

01
β
β

     (4.2) 
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In the experiment, the parameters 0β and 1β are kept fixed while the signal kz is 

corrupted by a normally distributed noise with zero mean and known standard deviation. 

The noise variance levels and the sampling frequency in the case study are chosen 

accordingly to the typical values observed for the daily time series of the proportion of 

the HOT users in I-95. As mentioned in previous sections, the standard deviation of the 

proportion of HOT users varies during the day in a range between 0.3 and 0.1 (the higher 

value correspond to low demand periods and vice versa); thus, we consider these values 

as the basis for the noise added. For the sampling frequency (readings per time unit, 

length of the measurement time series), considering 5 minutes aggregation level in the 

data, results in having 288 measurements in total per day. Thus, the measurement series 

used in this exercise will be consistent with this number. 

Three study cases are considered; two of them focus on the effect of different 

noise levels on the parameter estimation quality and one case focuses in the effect of time 

varying noise on the parameter estimation quality. The details of each case are as follows: 

• Case I: A normally distributed noise )1.0,0(~ Nvk applies to all 

measurements in the time series 

• Case II: A normally distributed noise )3.0,0(~ Nvk  applies to all 

measurements in the time series 

• Case III: A normally distributed noise )1.0,0(~ Nvk applies to half of the 

measurements while )3.0,0(~ Nvk  applies to the remaining half of the 

measurements. 
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The value of the parameters 0β and 1β in the model, are arbitrarily kept as -1. A 

summary of the used parameters for the different cases in study is given in Table 4.3 

Table 54.3: Parameter Values Used in ALMF Testing 

CASE 
kk xz 10 ββ +=  ),0(~ σNvk  

0β  1β  

I -1 -1 [ ]288,...,1)1.0,0(~ ∈∀kNvk  

II -1 -1 [ ]288,...,1)3.0,0(~ ∈∀kNvk  
III -1 -1 [ ]144,...,1)1.0,0(~ ∈∀kNvk [ ]288,...,145)3.0,0(~ ∈∀kNvk

Similarly, the variation pattern of the independent variable (observable attribute) 

is chosen such that the variables closely resemble the daily variation of traffic 

performance measures; such as, travel time, reliability, or fare in the section of interest in 

I-95. Figure 4.18 shows the daily variation pattern of some typical performance measures 

observed on the HOT lanes. Figure 4.19 shows the assumed variation pattern of the 

independent variable in the experiment.  

 
Figure 234.18: Typical Daily Performance Measures Variation in I-95 
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Figure 244.19: Pattern of Variation of xk as Used in the Experiment 

Once the measurement data is computed according to the values of 0β and 1β , a 

simulated noise signal is generated and added to the measurement time series. Figures 

4.20 to 4.22 show the resulting measurement time series for each case study. 

 
Figure 254.20: Measurement Time Series Case I 
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Figure 264.21: Measurement Time Series Case II 

 
Figure 274.22: Measurement Time Series Case III 
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The set of initial values used in this investigation is given in Table 4.4. 

Table 64.4: Parameter values used in ALMF testing 
Parameter Value Parameter Value

0β  -1.0 2q  0.0 

1β  -1.0 11Q  0.1 

11P  0.1 12Q  0.0 

12P  0.0 21Q  0.0 

21P  0.0 22Q  0.1 

22P  0.1 r  0.0 

1q  0.0 R  0.1 

 

Considering this, for each case study, different windows sizes ranging from 3 to 

12 time steps (15 to 1 hour if we consider that each time step accounts for 5 minutes) 

were used to estimate the model parameters 10
ˆ,ˆ ββ . Later these parameters are fed back to 

produce an estimated measurement signal )ˆ(ˆ βkz that can be compared to the original 

measurement signal kz . As a measure of model fit, the mean residual sum of squares 

(MRSS) was used to judge the error between the original and estimated measurement 

series. The MRSS is defined as follows: 

[ ]2
1

)ˆ(ˆ
1 

=

−=
N

k
kk zz

N
MRSS β

    
(4.3) 

Figure 4.23 shows the MRSS values obtained after using the ALMF algorithm and 

the conventional KF algorithm with Q and R fixed through all the estimation process. 

From the figure, several observations are possible: 

1. As expected, the higher the signal to noise ratio (SNR: ratio between the 

variance of the signal and the variance of the noise) the higher the RSS. The 

estimated SNR in the second period is 0.73 and 73.0 for period 6 in Case I 
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whilst for Case II the figures are 0.08 and 8.16 for the second and sixth 

periods respectively (Case III is simply 0.73 for period 2 and 8.16 for period 

6). This is shown in the chart where the MRSS is higher for all the cases with 

higher noise values for all the evaluated periods. In other words, as the 

information is hidden by higher levels of noise, the accuracy of the estimates 

is reduced and consequently the accuracy of the reproduced measurement 

signal is also reduced. 

2. When considering the results for Case III, we notice that the MRSS matches 

the RSS values observed in Case I for periods 2 to 5 and then matches the 

MRSS values observed in Case II for periods 6 to 9. In other words, the 

ALMF algorithm is able to adjust its parameters according to the noise 

changes on the measurement signal, and in this way provide the best 

estimation possible, regardless of the changes in the noise statistics. 

3. Finally, the results obtained from applying the KF filter to Case I show that 

the AMLF algorithm can always provide a better measurement series 

estimation likely due to the lack of flexibility of the KF to adaptively adjust 

the values of the time varying values of Q and R. 

In any case, for the levels of noise considered in this study, both the ALMF and 

the KF are able to provide a good approximation of the original measurement series as 

shown in Figure 4.24  
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Figure 284.23: RSS Between Observed Measurement kz and Estimated 

Measurement )ˆ(ˆ βkz  

 

Figure 294.24: Observed and modeled measurement signal using ALMF and KF 
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4.3.3. Optimal LAP Selection  

Because the ALMF algorithm is designed to compensate adaptively for time-varying 

noise statistics, the natural initial question is how to decide the memory size window 

(LAP) from where the state and observation samples will be taken. The question is 

investigated considering that the optimal window size is such that it produces 10
ˆ,ˆ ββ  

values closer to the actual parameters while at the same time their covariance is 

minimized. Figure 4.25 shows the mean relative percent error (MRPE) between the actual

0β , 1β  and the estimated 0β̂ , 1̂β for various LAP values in Case I. MRPE is defined as 

follows: 


=

−=
288

1

,ˆ
288

1

j

j
ii

i
iMRPE ββ

β
{ }1,0∈i   (4.4) 

From Figure 4.25 is possible to infer that there exists an optimal value of the LAP 

such that the RPE between 0β , 0β̂ and 1β , 1̂β  is minimized. However the optimal LAP is 

different depending on the estimate. This is due to the fact that a LAP too short is not 

enough to capture the measurement variance accurately whereas a LAP too long may 

include some samples that are not representative for the time step at which the ALMF is 

performing the estimation. 
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Figure 304.25: RPE for 0β̂  and 1̂β Respectively Case I 

Conversely, Figure 4.26 and Figure 4.27 show 0β̂ and 1̂β  covariance as a 

function of time for Case I and Case III respectively. In the figures, ALMF and KF 

filtering approaches are included. In terms of the time variation of the estimates 

covariance, it is observed that there are significant differences depending on the value of 

the LAP used. In both cases, using a value of LAP=6 together with the ALMF algorithm, 

ensures the optimality of the estimates for any time of the day while the use of the 

standard KF provides significantly higher variance estimates throughout the day.  

 
Figure 314.26: Case I variance for 0β̂  and 1̂β Respectively 
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Figure 324.27: Case III variance for 0β̂  and 1̂β Respectively 

Finally, Figure 4.28 and Figure 4.29 show the values of 0β̂ , 1̂β  as a function of 

time and filtering approach used for Case I. The figure highlights the superior 

performance of the ALMF algorithm by means of systematically providing more accurate 

estimates than the KF for any time of the day if the proper LAP value is used. 

 
Figure 334.28: Hourly 0β̂  estimates 
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Figure 344.29: Hourly 1̂β  estimates 
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Table 74.5: Parameter values used in ALMF testing 

Parameter
Range of 
variation

0β  [0.0,5.0] 

1β  [0.0,5.0] 

11P  [0.0,1.0] 

22P  [0.0,1.0] 

1q  [-1.0,5.0] 

2q  [-1.0,5.0] 

11Q  [0.0,5.0] 

22Q  [0.0,5.0] 

r [-0.3,0.3] 

R [0.1,0.5] 

 

The results of the sensitivity analysis are provided in Figures 4.30 to Figure 4.35 

and from them several general observations are possible: 

1. For the case study, the estimates 0β̂  and 1̂β are sensitive to the initial values 

of the parameters and a tuning process seems to be advisable prior to the 

implementation of the ALMF. In this case, where all the actual parameters of 

the signal are known, it is relatively easy to define a range where testing the 

response of the ALMF algorithm, however in practical applications where a 

priori information of the parameters is unknown In such case, the range of 

exploration must be defined by means of an exploratory effort in order to 

ensure the optimality of the obtained parameters. 

2. The initial values used in the estimation are particularly important in those 

processes where the relationship between the noise and the signal variances is 

low. That is to say, providing better initial values may help the ALMF 

algorithm to stay close the true estimates even though the information 
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contained in the original signal is poor and not enough to perform robust 

estimation. This can be observed in all the figures in the period of time 

referred as “low SNR period” where relatively small deviations from the true 

values of the parameters can lead to significant changes in the value of the 

estimates. On the other hand, it is observed that when the signal variance is 

higher than the noise variance, the so called “high SNR period,” the 

relevance of the initial values used is negligible due to the fact that in 

general, regardless the choice of these values, the ALMF algorithm can 

always manage to perform robust estimation by using the information 

contained on the measurement signal. This is particularly true for the 

time-varying component of the measurement signal.     

 

Figure 354.30: ALMF algorithm robustness to 0β̂  and 1̂β  initial values 
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Figure 364.31: Hourly 0β̂  and 1̂β for different initial values of P11 and P22 

 
Figure 374.32: Hourly 0β̂  and 1̂β for different initial values of q1 and q2 

 
Figure 384.33: Hourly 0β̂  and 1̂β for different initial values of Q11 and Q22 
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Figure 394.34: Hourly 0β̂  and 1̂β for different initial values of r 

 
Figure 404.35: Hourly 0β̂  and 1̂β for different initial values of R 
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CHAPTER 5 

SENSITIVITIES TRAVEL TIME AND TRAVEL TIME RELIABILITY IN A 

ROAD PRICING ENVIRONMENT  

In this chapter, the time of the day proportion of the HOT users by time of day on a 

freeway in South Florida is explained as a function of the observed attributes of the 

system; namely, travel time, travel time reliability, and toll. The choice between the HOT 

or the GP lanes is considered as a binary choice and it is modeled using the well know 

logit model where the utility functions explicitly consider the differences in the attributes 

of each alternative. Time of the day parameter estimation of the logit model is performed 

using the ALMF algorithm developed in Chapter 4. Finally, the time varying results are 

combined and parameter distributions are built for each time of the day, considering 

day-to-day variations. The significance of the explanatory variables is assessed by 

constructing time varying confidence intervals for each estimate. 

5.1. Estimation Framework 

As mentioned in Chapter 2, there is a lack of empirical data to estimate the necessary 

time varying parameters to assess the behavior of the users in a road pricing setup. That  

comes from the fact that traditionally, user behavior as related to the estimation of the 

user sensitiveness to travel time or travel time reliability has been mostly approached 

using individual data collected by means of either stated preferences surveys (SP), 

reveled preferences surveys (RP), or a mix of the two.  Notwithstanding the advantages 

of such surveys; such as, allowing the capture of accurate motorist socio-demographic 

characteristics, travel patterns, and travel purposes; the required efforts and costs prohibit 
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conducting surveys on a regular basis. In addition, data collected using such methods are 

normally representative of average conditions or  a few days that may not capture 

temporal variations in user values and other trip features, including user behavior under 

non- recurrent congestion conditions (incidents, weather, etc.).  

In this study, the base for the estimation of user sensitivities to travel time and 

travel time reliability, comes from the fact that the impacts of motorist’s preferences are 

continuously revealed and captured by traffic detection devices as they measure changes 

in transportation system conditions. These responses can be extracted by mining ITS 

detector data archived by traffic management centers (TMC) operational files and 

associating these responses with changes in transportation system variables such as travel 

time, travel time reliability, toll, and so on. The traveler responses and the transportation 

system variables can be linked together by means of a model with unknown parameters 

that can be estimated to minimize a measure of the error between observed and modeled 

motorists’ responses. 

A convenient setup to evaluate the feasibility of this approach is when HOT lanes 

with dynamic pricing policy are part of the transportation system. Traffic operation data 

when combined with travel time, travel time reliability, and toll data allow the 

investigation of the logic behind the observed aggregate driver’s behavior as related to 

the relative differences between the attributes of the HOT lanes versus the GP lanes. 
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5.2. Model Definition 

As a working hypothesis we state that when deciding whether to use HOT or GP, 

travelers select the alternative that minimizes some measure of their trip disutility. The 

aggregated choice made by drivers can be modeled as a binary Logit model where the 

probability of using the priced facility can be described as a function of the perceived trip 

disutility. Likewise, the trip disutility can be estimated as a function of the trip attributes 

for each travel alternative. Such approach is mathematically described in Equation 4.1, in 

which Pk is the proportion of motorists using the HOT facilities during a discrete period 

of time k and Uk
i represents the utility of each option as perceived by drivers during the 

same period of time k. For the cases, where the trip options are HOT and GP lanes, Pk can 

be written as: 

HOT
k

GP
k

HOT
k

UU

U

k
ee

e
P

+
=   (5.1) 

With regard to the utility function, a common approach has been the use of a 

linear combination of observable trip attributes where the weight on each attribute can be 

interpreted as the marginal contribution of each attribute to the total trip utility as 

perceived by the motorist. When the travel time TTk
i, the travel time reliability Rk

i and the 

toll Fk
i are used to represent travel attributes, the utility function for each alternative is 

given by Equation 4.2 where Bk
i is a time dependent constant (bias) and i={HOT, GP}. 

i
k

i
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i
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i
k

i
k FRVORTTVOTBU −×+×+=   (5.2) 

When the utility function in Equation 5.2 is measured in monetary units, the travel 

time weight in the utility function (VOTk) represents directly the willingness to pay per 

unit of time to increase driver’s utility. Similarly, the weight (VORk) in the reliability 
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component of the utility function represents the willingness to pay per unit of trip 

reliability to increase the trip utility. Furthermore, the toll does not need any weight 

because it is already expressed in the same units as the utility function. Finally, a constant 

value in the utility function is considered in order to capture other factors or biases not 

explicitly included in the utility function. 

Combining Equations (5.2) and (5.1) yields to the linear system shown in 

equation (5.3) with the unknown parameters Bk, VOTk, and VORk, measured proportions 

of HOT users Pk and trip attributes TTk
i, Rk

i and Fk
i. 
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The question now is how to estimate the parameters BHOT(k), VOT(k), and 

VOR(k)for each time interval k in such a way that a measure of the difference between 

observed and modeled Pk is minimized. 

5.3. The ALMF Algorithm Setup 

The Kalman filter and its adaptive extension ALMF algorithm, as explained in Chapter 4, 

are a set of mathematical equations that are used in this study to provide an efficient 

recursive way to estimate the parameters in Equation (5.3) for each time interval k in a 

way that the variance of the parameter estimates is minimized. 

The filter approach uses a system dynamics model (i.e., binary Logit in our case) 

and a set of time varying measurements (proportion of the HOT users) to form an 

estimate of the system varying state parameters that are better than the estimates obtained 

by using any one measurement alone. The filtering approach estimates the model 

parameters (VOT, VOR and BHOT) as the weighted average between the parameters 
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estimated at the previous time steps and the noisy measurements available at time k. This 

formulation is mathematically described in general as shown in Equation 5.4 and in 

particularin Equation 5.5for solving the problem stated in Equation 5.3. 

( )−− −+= kkkkk xHzKxx ˆˆˆ
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As shown in Chapter 4, the ALMF estimation algorithm requires initial estimates 

for the parameters K0, B0, VOT0, VOR0, P0, q0, Q0, r0 and R0  to recursively produce 

estimates of  Bk, VOTk and VORk for each time interval k. This is explained later in this 

chapter. As time evolves, the impact of the parameter initial values are expected to 

diminish,  producing accurate estimates of Bk, VOTk and VORk can be expected. 

5.4. Case Study 

A case study is presented in this section to demonstrate the use of the estimation process 

discussed above.  The case study objective consists of the estimation of the Bk, VOTk and 

VORk parameters using the ALMF algorithm and the available ITS data considering 

different proxies for travel time reliability. 

In particular, the analysis focuses on a 6.5 mile long corridor in the northbound 

section of I-95 in Miami, Florida. This section has implemented HOT lanes with variable 

pricing since December of 2008 and the population of motorists is expected to be to be 

familiar with the HOT operation. The corridor experiences recurrent congestion in the 

afternoon between 14:30 and 19:30 but such congestion never reaches the entrance of the 

HOT lanes. The corridor and the data gathered by ITS devices are managed by FDOT 
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District 6 by means of traffic management software referred to as the SunGuide software. 

The corridor has in total six lanes where two of them are HOT lanes and the remaining four 

are GP. The HOT lanes are fully segregated from the GP lanes by plastic poles, thus once 

motorists join the HOT lanes they cannot leave it until the end of the HOT lanes has been 

reached.  

Additionally, this section of I-95 has a number of point traffic detectors located 

every 0.3-0.5 miles that collect traffic basic parameters every 20 seconds. The collected 

data is archived in SunGuide operational files. The toll collection system and associated 

data is managed by the Turnpike Authority.  The general characteristics of the corridor are 

shown in Figure 5.1. 

 

 

Figure 415.1: Study Area and HOT Layout 

5.4.1. Proportion of HOT Users 

HOT lanes can be used by single occupant vehicles paying the HOT lanes toll and by 

registered vehicles that are exempt of payment. The volumes of the HOT and GP users are 

acquired from a detector station located right after the gantry of the HOT of the system. 
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This detector station normally never gets congested. The HOT and GP volumes are 

available at 20 seconds aggregation level, however a different aggregation level may be 

used for consistency with other system performance measures. The proportion of the HOT 

users is obtained by computing the ratio between the counts taken at the entrance of the 

HOT lanes versus the counts taken at the GP plus the HOT lanes. The counts at the GP 

lanes are adjusted by subtracting the counts of the vehicles exiting the freeway system on 

the ramps downstream of the HOT entrance (assumed 10% of the total GP lanes 

throughput); however as will be shown later, the vehicles exiting the corridor can only 

affect the estimation of the HOT lanes bias, and subtracting the 10% from the GP volumes 

is not necessary. Thus, in terms of the user sensitivity to time, varying measures such travel 

time, reliability, toll, and occupancy, the percentage of drivers leaving the system is 

irrelevant. Strictly speaking, the paying proportion of motorists cannot be directly 

extracted from the point traffic detectors. Instead, the actual number of motorists paying 

for joining the HOT lanes must be extracted from the system that manages the toll 

payments. Due to data availability issues, it was not possible to mine such a database, so a 

simplified approach was adopted. Based on the toll system manager, it is reasonable to 

assume that 95% of the total numbers of the HOT users actually pay, and the remaining 

percent corresponds to HOV vehicles. Figure 5.2 depicts a typical measured signal from 

the HOT proportion of users. In Figure 5.2, ln(1/Pk-1) instead of the actual proportion is 

used because the Logit model needs to be linearized in order to use the ALMF. This is 

achieved by applying a logarithmic transformation to the Logit model such the difference 

between the GP and HOT utilities can be isolated in their linear form.  
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Figure 425.2: Typical HOT Proportion of Users Signal ln((1/Pk)-1)  

In terms of day to day variations of the HOT proportion of users, the average 

value, the standard deviation (STDV), and the coefficient of variation (CV) were 

computed as functions of time of the day; the result is depicted in Figure 5.3. As expected, 

the average proportion of HOT users significantly varies during the peak periods 

(07:00-10:00 and 16:00-20:00), while the day to day standard deviation of this 

measurement remains approximately the same throughout the day. This fact implies that 

the coefficient of variation also varies significantly during the peak demand periods, 

reflecting mainly time of day changes than day to day changes in the proportion of HOT 

users. The time of the day being the main source of variation of the proportion of HOT 

users, one may anticipate that the pricing policy in place may be responsible for the 

regularity observed in the HOT operation across the days. Despite this anticipation of 

linking the demand for the HOT lanes and the pricing policy, it is yet not clear the 

mechanism by which the pricing policy influences the throughput in the HOT lanes.         
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Figure 435.3: Daily Variation of HOT Proportion of Users Signal ln((1/Pk)-1)  

5.4.2. Travel Time  

Travel time estimates for the HOT and GP lanes are available for every minute of the day 

from the SunGuide system. The travel time is indirectly estimated based on the speed 

reported by point traffic detectors at different locations of the system. The mid-point 

method is used to estimate the travel time between the starting and ending points of the 

section as it is done by the SunGuide software. Travel times are disseminated only for the 

GP lanes by means of dynamic message boards (DMS) located before the HOT lanes single 

gantry point and along the corridor. However, both HOT and GP travel time estimates are 

archived and available in the operational SunGuide archives. In terms of the travel time 

values used in this study, the conclusions from Chapter 3 were taken into account for 

estimating representative values. In particular, travel time was computed as the weighted 

average between the mean travel times during 60 days and the estimated travel time for the 

current day. The used weights were 0.75 for the historical information and 0.25 for the real 

time data.  
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The typical average travel time difference between the GP and HOT lanes is shown 

in Figure 5.4 for as a function of time of day. 

 

Figure 445.4: Typical GP and HOT Travel Time Difference 

In terms of day to day variation of the travel time differences between the HOT 

and GP lanes, the average value, the standard deviation (STDV), and the coefficient of 

variation (CV) were computed as function of the time of day; the results are depicted in 

Figure 5.5. Again, as expected, the mean travel time difference increases during the peak 

periods (07:00-10:00 and 16:00-20:00), however this increment tends to be significantly 

higher during the afternoon period which is also the peak period for the investigated 

direction. In the other hand, it can be noticed that the standard deviation of the mean 

tends to increase by the afternoon peak; nonetheless this increment is moderate compared 

to the travel time increment during this period. In the case of the coefficient of variation, 

it is observed that the travel time difference tends to be less variable in the afternoon than 

the morning period; this is explained by the fact that the variation in the mean travel time 
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time samples. This regularity in the travel time pattern across the days is consistent with 

the pattern observed for proportion of the HOT users described before. Thus, it is logical 

to also link the travel time regularity with the pricing policy in place. 

 

Figure 45 5.5: Travel Time Difference Day to Day Statistics 

5.4.3. Tolls  

Tolls in the HOT lanes are manually updated every 15 minutes with the objective of 

maintaining operational speeds in the HOT lanes that never go below a certain threshold 

and therefore maintain specific levels of service on the HOT lanes. The updated toll is 

obtained from a lookup table where the operator can select the toll that increases the speed 

in the HOT lanes given the actual conditions on the HOT and GP lanes. The toll for 

different times of the day and different days is archived in an Oracle database. Figure 5.6 

shows an example of the typical tolls charged in a weekday along the day. 
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Figure 465.6: Typical Toll Values During Weekdays  

In terms of the day to day variation of the toll; the average value, the standard 

deviation (STDV) and the coefficient of variation (CV) were computed for the available 

dataset as a function of the time of day; the results are shown in Figure 5.7. Again, 
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changes significantly from day to day due to the attempt to control the demand for the 

HOT lanes on each particular day. This is somewhat contradictory because so far the 

characteristics of the priced facility (travel time and throughput, for instance) do not 

change significantly from day to day while toll values do. This may be indicative of the 

type of control that is being exercised by the pricing policy in place, which in this case 

seems to be better explained by the existence of thresholds in the toll that have the power 

to discourage users from joining the HOT. Those thresholds also seem to become active 

at certain times of day depending of the environment or driver expectations.       

 
Figure 475.7: Toll Day to Day Statistics 
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wide range of operational definitions, as long as they describe the travel time temporal 

variation. In practice, travel time reliability can be computed for any time period based on 

the observed distribution of the travel times in the same period of time along several 

days.  

As discussed in Chapter 3, there are several different operational definitions of 

travel time reliability and they are not necessarily consistent among themselves. Here, the 

different reliability definitions considered in Chapter 3 are used. However it was noticed 

that from all the travel time reliability metrics proposed in Chapter 3, only two of them, 

PTI 95th and PTI 80th showed consistent patterns with the observed proportion of HOT 

users. Figures 5.8 to 5.12 show the typical relationship between different reliability 

metrics and the observed proportion of the HOT users. It is observed that the variations of 

the Misery Index, the Buffer Index, and the Skew Statistic basically happen in a relatively 

flattened fashion, indicating that none of the proportion of the HOT users variability can 

be actually explained by these variables. In the case of the FOT 1.1 and FOT 1.25, as 

mentioned in Chapter 3, there are not consistent trend of variation with the observed 

proportion of HOT users, a thus a rather fuzzy relationship is observed between FOT and 

HOT proportion. These variables will be set aside of the analysis due to their poor 

explanatory power.  
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Figure 485.8: Relationship between HOT Users and the Misery Index Difference 

 
Figure 495.9: Relationship between HOT Users and the Buffer Index Difference 

 
Figure 505.10: Relationship between Observed HOT Users and the Skew Statistic 
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Figure 515.11: Relationship between Observed HOT Users and the Failure on Time 
1.1 Difference 

 

Figure 525.12: Relationship between Observed HOT Users and the Failure on Time 

1.25 Difference 
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lanes. Figure 5.13 shows an example of the typical occupancy difference between the 

HOT and GP lanes observed in a weekday as function of time of day.  

 

Figure 535.13: Typical Occupancy Difference Values During Weekdays 
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the highest occupancies during the morning and afternoon are observed, however those 

points are significantly different from the trend observed for the rest of the day as shown 

in the figure. 

 
Figure 545.14: Occupancy Day to Day Statistics 

5.4.5. Data Selection 

The main objective of this study is to assess different sensitivities in the user behavior to 

changes in the freeway performance and their variability under different conditions. To 

capture the effects of the  traffic conditions and traffic management strategies, a dataset 

was created by randomly selecting 45 days from the original dataset. A list of the specific 

day used is shown in the Appendix B.  
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5.4.6. Data Collinearity 

Filtering estimation techniques like the Kalman filter and its extension the AMLF 

algorithm are seriously affected by collinearity in the data. Collinearity arises as the 

explanatory variables used in the model move further and further away from 

orthogonality, which as in regression analysis, causes the estimates to become less 

reliable (high variance). In the limit, if the explanatory variables are linearly dependent, 

then the parameter estimates become indeterminate. 

The presence of the collinearity can be ascertained by computing the correlation 

matrix of the regressors. It has been recommended in the literature that correlation 

coefficients greater than 0.5, indicates the presence of data collinearity. Here, collinearity 

is checked among travel time, travel time reliability toll and occupancy. Figures 5.15 to 

5.18 show the relationship between the travel time and toll, travel time and PTI 95th, 

travel time and PTI 80th, travel time and occupancy for a typical instance of the dataset.    

 
Figure 555.15: Typical Relationship between Travel Time and Toll
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Figure 565.16: Typical Relationship between Travel Time and PTI 95th  

 

Figure 575.17: Typical Relationship between Travel Time and PTI 80th 

 
Figure 585.18: Typical Relationship between Travel Time and Occupancy 
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It is observed that travel time, toll, PTI 95th, PTI 80th and occupancy are strongly 

correlated during the AM and PM periods. This is an undesirable characteristic of the data 

used in this study because it constrains us from estimating joint models with more than one 

explanatory variable at the time. Table 5.1 shows the typical correlation factors between 

candidate explanatory variables. The observed magnitude of the correlation factors 

indicate that considering simultaneously two or more of these variables at the same time 

may result in the AMLF producing highly unreliable and, in the limit, indeterminate 

estimates of the parameters of interest. This possibility was further explored for several 

combinations of variables. The results were consistent with the recommendations in the 

sense that considering any combination of two or more of these variables result in the 

AMLF producing high variance estimates with no practical interpretation or application.    

Table 85.1: Typical Correlation Factors 
  Average R2 Values Observed 

During AM Period 
Average R2 Values Observed 

During PM Period 

Fare PTI 95th PTI 80th Fare PTI 95th PTI 80th 

Dataset 1 
Travel 
time 0.81 0.81 0.82 0.82 0.87 0.83 

5.4.7. Parameter Estimation 

The parameter estimation is performed using the ALMF algorithm together utilizing the 

selected ITS data described in the previous sections. For estimation purposes, from the 

point of view of the aggregation level, the most restrictive dataset is the proportion of 

HOT users because this information is available only at 5 minute aggregation level. Thus, 

all attributes (travel time, travel time reliability, and toll) are consistently aggregated at 5 

minutes level. 
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As shown before, there are high levels of correlation among the explanatory 

variables, this is an undesirable characteristic because it prevents the consideration 

simultaneously of more than one explanatory variable at a time. Further use of the ALMF 

demonstrated that including more than explanatory variable at a time produce estimates 

with unreasonable, unbounded variances that do not convey any information about the 

actual traveler’s sensitivity at all. Given the former constraint, the estimation process is 

performed utilizing one explanatory variable at the time, so at least it would be possible 

to identify the performance measures that best explain the observed proportion of HOT 

users. Eventually, it will also be possible to estimate the ratios between the estimated 

parameters given that more than one parameter may be significant. The estimated models 

will in general have the form shown in Equation 5.6: 

( ) kkk vxz +







=

1

01
β
β

    
(5.6) 

Where 0β is a time varying constant, 1β  is a time varying parameter for the explanatory 

variable kx and 







−= 1

1
ln

k
k P

z is the measured signal at the entrance of the HOT lanes.  

5.4.7.1. Tuning the ALMF algorithm 

The use of the ALMF requires fine tuning of a number of parameters in order to produce 

reliable estimates.  Among the parameters required to be fine-tuned, the most important 

ones are the LAP (explained below) and the initial values of the parameters

)0(),0( 10 == kk ββ . 
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The LAP corresponds to the number of time periods that serve as a basis for 

collecting samples for estimating the unknown process and measurement noise statistics. 

That is the value of LAP determines how many prior periods are used to compute the 

covariance matrices utilized in the ALMF for the current period. The selection of the LAP 

value is performed iteratively until the variance of the estimates is minimized during the 

period of time of interest. Figure 5.19 shows the typical variance of the estimates 0β and

1β as function of the day for various LAP values. From this figure it is possible to 

recognize that because of the time-varying variance of the measurement signal, the 

variance of the estimates also vary accordingly. Particularly, when the measurement 

signal variance is high (typically for the AM period, with low SNR, and little information 

contained in the signal), the ALMF provides low reliable estimates regardless of the LAP 

value used. On the other hand, when the measurement signal variance is low (typically 

for the PM period, with high SNR, and information contained in the signal), it is possible 

to select a LAP value such that the ALMF algorithm can minimize the estimate variance 

providing an optimal solution. This characteristic of the measurement signal affects the 

variance of both estimates, 0β and 1β , however is more significant in the case of 1β  

because as shown later in this section, 1β  values are much smaller than their variance. 



126 

 

Figure 595.19: Estimate Variance along the Day Different LAP values 

Figure 5.20 further shows the variance of the estimates 0β and 1β for selected hours. 

The figure emphasizes the effect of the LAP value on the estimates variance. A summary 

of the LAP values used on each model are given in Table 5.2. 

 

 

Figure 605.20: Estimate Variance Selected Hours for Different LAP values 
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Table 95.2: LAP Values Used on Each Estimation Problem 

 Explanatory Variable 
LAP 
Value 

Model 1 Travel Time 8 

Model 2 
Planning Time Index (95th 

percentile) 
8 

Model 3 
Planning Time Index (80th 

Percentile) 
8 

Model 4 Toll 6 

Model 5 Occupancy 6 

Model 6 Travel Time and Toll 8 

Model 7 
Planning Time Index (95th 

percentile) and Toll 
8 

Model 8 
Planning Time Index (80th 

Percentile) and Toll 
8 

In Chapter 4 it was found that the initial values of the model parameters are also 

of utmost importance to accurately estimate the parameters in the model. In order to 

provide a good approximation to the initial values, a regression analysis (described below) 

was performed considering the entire period of interest (AM and PM), and the resulting 

estimates were used to feed to the ALMF algorithm with initial estimates and for 

comparison purposes as well. Figure 5.21 shows the typical regression analysis between 

ln[(1/Pk)-1] and the travel time difference between GP and HOT lanes, for a typical day 

in the AM and PM periods. It can be seen that during the AM period, the users exhibit a 

higher sensitivity to the travel time than during the PM period (5.44 and 0.22 

respectively). As described above, the values from the AM period regression are used as 

initial estimates ( == )0(0 kβ -5.44 and == )0(1 kβ 2.49) in the ALMF algorithm while 

the values from the PM period regression are used as a reference to compare the 

estimates from the ALMF for the same period.  
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Figure 615.21: AM and PM Regression Analysis between the Observed signal and 

Selected Explanatory Variables 

5.4.7.2. Time Varying Estimates 

The application of the ALMF algorithm together with the values of LAP and the initial 

values for the estimates allow the generation of time-varying estimates for 0β and 1β . 
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5.32 for occupancy respectively. 
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• The time varying values of -β0 follow a pattern similar to the observed pattern 

of the observed proportion of HOT users along the day. This is in contrast to 

the observed pattern of β1 which tend to stay mostly around two values (one 

value for the AM period and one value for the PM period) 

• While the values of -β0 during normal business hours (06:00 to 20:00) tend to 

vary moderately during the day, the values of β1 vary dramatically between the 

AM and PM periods. In the first case (with β0), the results indicate that the bias 

towards the use of the HOT lanes is relatively constant throughout the day and 

changes to this bias are only observed late during the night to justify the use of 

the HOT lanes even though no differences in travel time between HOT and GP 

lanes can be observed. Similar observation can be made for Model 2 to Model 

5 respectively. In the second case (for β1), the dramatic changes in the 

sensitivities to the travel time can be explained by the fact that in terms of 

proportion of HOT users, the AM variation and the PM variation are relatively 

similar while the difference in travel time is quite different (PM travel time 

difference is higher than AM travel time difference). Thus, the sensitivity 

during the AM period has to be higher than the sensitivity in the PM period. 

• In the non-congested periods, where no differences in travel time are observed, 

the variability of β1 increases significantly due to the lack of difference in 

travel time between GP and HOT lanes. Thus, obviously in the non-congested 

periods, β1 poorly explains the variation of the proportion of HOT users. 

Similar observation can be made for Model 2 to Model 5 respectively.    
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Figure 625.22: Time Varying Values of -β0 Travel Time 

 
Figure 635.23: Time Varying Values of β1 Travel Time 
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In the case of Model 2 that uses the PTI 95th to explain the variations of the 

proportion of HOT users, in addition to what was mentioned above, the following 

observations are possible: 

• The estimation of β1 is only possible in those periods where actual differences 

between PTI 95th in the GP and HOT lanes do exist. The fact that the AMLF 

provides a constant value during early hours is because no information can be 

extracted from the data (due to high variance in the measurement data), the 

ALMF keeps the initial value provided as the best parameter estimate 

(estimate cannot be updated using updated measurements) 

• Similar comment made for Model 1 is repeated here to justify the increase in 

the variance of the estimate in those periods of time where small differences 

between the PTI 95th in the GP and HOT exists (06:00-12:00). However, 

significant reductions in the estimate day to day variability are observed with 

more significant PTI 95 differences between GP and HOT lanes. In the case 

of Model 3 that uses the PTI 80th to explain the variations of the proportion 

of HOT users, similar comments to those provided for Models 1 and 2 apply. 

Nevertheless, it is worth noticing that using the PTI 80th as explanatory 

variable produces a β0 pattern that actually exhibits the lowest variability 

among the three models tested (See Figure 5.26). The value of β1 also seems to 

be better defined from Figure 5.27, possibly indicating that the PTI 80th 

percentile can explain more by itself compared to other investigated variables. 
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Figure 645.24: Time Varying Values of -β0 PTI 95th 

 

Figure 655.25: Time Varying Values of β1 PTI 95th 
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Figure 665.26: Time Varying Values of -β0 PTI 80th
 

 

Figure 675.27: Time Varying Values of β1 PTI 80th 
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In the case of Model 4 that uses the toll to explain the variations of the proportion 

of HOT users, the following observations are possible: 

• First, the estimates of -β0 show the highest variability among all the used 

models. Second, the estimates of β1 indicate that there is no functional 

relationship between HOT demand and the toll charged during the congested 

periods. 

• In the case of the bias parameter, the result is consistent with what was 

noticed in previous sections where the high day to day variability of the toll 

was highlighted. In fact, if systematically day by day, no functional 

relationship is observed between the toll and the HOT demand, the only way 

to fit the linear model is by means of adjusting the values of the parameter β0. 

Thus, the observed variability of the estimated bias is a consequence of the 

high toll day to day variability and the lack of this parameter to serve as 

explanatory variable of the observed proportion of HOT users. 

• In the case of the parameter for the toll, Figure 5.30 shows the relationship 

existing between the proportion of HOT users and the tolls charged for a 

typical day in the dataset. In this figure, the tolls have been divided 

depending on the period of the day when they were charged. A detailed 

examination of the toll data indicates that despite the apparent correlation 

between the demand for the HOT lanes and the toll, when the data is 

examined by period of the day, such correlation diminishes significantly (see 

the correlation factors).  
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Figure 685.28: Time Varying Values of –β0 Toll 

 

Figure 695.29: Time Varying Values of β1 Toll 
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Figure 705.30: Proportion of HOT Users as Function of Toll and Time 
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period of day indicates exactly the opposite. This is consistent with the results obtained 

using the ALMF, that explicitly considers the sequential temporal aspect of the estimation 

problem.  

 

Figure 715.31: Time Varying Values o
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Figure 735.33: Time Varying Values of β1 Occupancy 
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congested conditions. In the case of models 7 and 8 (Figures 5.40 and 5.41 respectively) 

jointly considering toll and reliability measures produce estimates of β0 and β1 that are 

highly variable during the congested period and thus not suitable to model travelers’ 

behavior in the corridor.  

 

Figure 745.34: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 
Deviation with Travel Time as Explanatory Variable 

 

Figure 755.35: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 
Deviation with Planning Time Index 95th as Explanatory Variable 
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Figure 765.36: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 
Deviation with Planning Time Index 80th as Explanatory Variable 

 
 

 
Figure 775.37: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 
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Figure 78 5.38: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 

Deviation with Occupancy as Explanatory Variable 

 
Figure 795.39: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 

Deviation with Travel Time and Toll as Explanatory Variables 
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Figure 805.40: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 

Deviation with PTI 95 and Toll as Explanatory Variables 

 
Figure 815.41: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 

Deviation with PTI 80 and Toll as Explanatory Variables 
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Histograms for the explanatory variables in the models were also plotted for the 

parameters observed in the PM period from 13:00 to 20:00. The histograms are shown in 

Figure 5.42 for the travel time, Figure 5.43 for the PTI 95th and Figure 5.44 for the PTI 80th 

respectively. In all cases, the resulting histograms resemble normal distributions with no 

biases or over frequent values other than the mean. The latter highlights the random, 

bounded, and well defined nature of the day-to-day traffic pattern variation. 

 

Figure 825.42: β1 Distribution Between 13:00 and 20:00 when Travel Time is the 
Explanatory Variable 

 

Figure 835.43: β1 Distribution Between 13:00 and 20:00 when PTI 95th is the 
Explanatory Variable 
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Figure 845.44: β1 Distribution Between 13:00 and 20:00 when PTI 80th is the 
Explanatory Variable 
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different diversion levels can only affect the estimation of the bias parameter but not 

those sensitivities related to the time varying variables of the problem. This conclusion is 

further supported by Figure 5.46 where the estimation of the parameters β0 and β1 has 

been performed considering 50% diversion level on the GP counts. In the figure there are 

two elements that should be highlighted; first the estimated pattern for β0 is shifted down, 

reflecting the impact of the assumed diversion in the GP lanes and second, the estimated 

values of the parameter β1 closely follow the trend observed for the case where minimal 

diversion is considered. The latter implies that the effect of different diversion levels do not 

affect the estimation of the explanatory variable values (β1 values), while the bias exhibit a 

constant shift.       

 
Figure 855.45: ln[(1/Pk)-1] as Function of Time for Different Levels of Diversion in the 

GP lanes    
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Figure 865.46: β0 and β1 Time Varying Mean, 95th Confidence Interval and Standard 

Deviation with Planning Time Index 95th as Explanatory Variable 
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CHAPTER 6 

RESEARCH SUMMARY 

This study has developed a methodology to estimate the user sensitivities to travel time 

and travel time reliability in a system managed using road pricing strategies. The 

methodology has focused on the estimation of the user sensitivities to travel time and 

travel time reliability with special attention to the effect of the time-of the-day and 

day-to-day traffic variability. The aggregated sensitivities to the travel time and travel 

time reliability were obtained considering alternative definitions for travel time and travel 

time reliability. The alternative definitions of the performance measures allowed 

exploring the mechanisms that best explained the observed the aggregated preferences in 

the priced system. In the case of travel time, the length of the memory, fading memory 

rules, and the impact of real time information were explored. Similarly, alternative 

reliability measures considering different characteristics of the time varying travel time 

distribution were analyzed. The time varying estimates of the aggregated behavior were 

obtained by means of applying an adaptive version of the discrete Kalman filter. This 

chapter summarizes the original contributions of the proposed methodology and 

conclusions of the study, and discusses the direction of future work.  

6.1. Study Contribution 

Compared to existing traveler behavior estimation methods, the main contributions of this 

study are the following:  
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• The use of detailed ITS data archives allows capturing a detailed description 

of the aggregated behavior of the priced system users as a function of the time 

of the day. This allows the identification of the time periods where traveler 

behavior is more sensitive to travel time, travel time reliability, or none of 

these measures.  

• The use of detailed ITS data archives also allows capturing the typical day to 

day pattern of variations of the users of the priced system behaviors 

considering the daily variability of the traffic and environmental conditions, as 

recorded in the ITS data archives . 

• The development of an adaptive discrete filter allows the automatic estimation 

of the time varying noise statistics of the system, releasing any a priori noise 

statistic assumption from the estimation process.  

• The explicit representation of different learning and processing of travel time 

information allows capturing specific travel time definitions that best explain 

the variations of the HOT users for different periods of the day. Such logic for 

processing travel time information is investigated based on actual aggregated 

responses to time varying traffic and environmental conditions contained on 

the ITS data archives. 

• The study of different travel time reliability metrics allows identifying a set of 

metrics, able to capture changes in the travel time distribution as a response to 

changes in the traffic conditions. The identified metrics were tested in order to 

ensure that they can consistently represent the changes in the travel time 

distribution at fine aggregation levels. 
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6.2. Study Conclusions 

In this study, the travel time estimates and traffic counts were obtained from ITS 

data warehouses. Travel time data is processed using different rules in order to unveil the 

logic that best fits the observed proportion of the priced facility users and it is also used 

to estimate various travel time reliability metrics.  

Rules regarding the length of the period of time that travelers consider when 

assessing their experienced travel time are explored. Additionally, the weights that 

travelers give to old events relative to more recent experiences are investigated. Finally, 

the impact on system performance assessment of the real time predictive information 

given to travelers is examined. The results indicate that travelers use their experience in a 

maximum number of days in their choice processes, and within that period of time, is 

likely that all the experiences (from all days) receive the same weight. The impact of the 

real time information revealed to be a function of the time of the day with the PM period 

the time when this information may be more relevant.  

Also, this study investigated the variation of travel time distributions by time of 

day at fine temporal aggregation levels, the sensitivity of various reliability metrics to 

these variations, the effect of the aggregation level choices on the calculated reliability 

metrics, and the amount of data required to estimate stable values of the reliability 

metrics. The results show that the parameters of travel time distributions vary during the 

peak period reflecting the effects of the traffic congestion, traffic flow dynamics, and the 

proportion of the contribution of non-recurrent factors such as incidents to the 

unreliability of travel time on the investigated facility.   
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The results also show that examining combinations of time-variant static 

distribution parameters and reliability metrics of the GP and HOT lanes can provide 

valuable information that cannot be obtained when performing the analysis at higher 

aggregation levels.   The 95th Percentile PTI, 80thPercentile PTI, and Misery Index 

showed continuity and sensitivity in their variations in response to the increase in 

variability as the congestion in the peak hour.  The BI measure was insensitive to the 

increase in congestion on the GP lane but showed sensitivity to the congestion for the 

HOT lanes due to the difference in the rates of changes of standard deviations and 

medians of travel time with the increase of congestion on these facilities, indicating that 

the interpretation of the results based on this metric should be done with caution.  The 

FOT and Skew Statistics showed inconsistent patterns of travel time variation with the 

increase in congestion on GP and HOT lanes reflecting the differences in the rates of the 

increase in the median and standard deviation rates of travel time with the increased 

congestion on the two facilities and the relative contributions of non-recurrent events to 

the unreliability. 

The results from the study also confirmed that the use of at least 30 minute 

periods of analysis is preferable to using longer periods for applications that require 

fine-grained analysis in order to reasonably represent the reliability pattern during 

congested periods.  In addition, the results from the study confirmed that at least one 

year’s worth of data should be collected to obtain a more stable value of reliability 

metrics. 
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Finally, an Adaptive Limited Memory Discrete Kalman Filter (ALMF) algorithm 

is developed to estimate time varying parameters of the linear system representing the 

operation of the priced system. The use of the ALMF algorithm allows the estimation of 

time varying traveler sensitivities to travel time and several travel time reliability metrics 

at relatively fine aggregation levels. Equally important, the use of the ALMF algorithm 

allows coping with the problem of estimating the unknown-time varying process noise 

and measurement noise statistics in a linear system that models the road pricing facility 

dynamics. The application of the ALMF to a priced corridor in South Florida indicates 

that there are significant variations in the traveler behavior as a function of the time of the 

day. However, the results also indicate that the travel time and travel time reliability 

contributes only marginally to explain the proportion of users of the priced facility. Also 

the processing of the wealth of data contained in the ITS databases revealed that the day 

to day variability of the traveler behavior is best represented by means of Gaussian-like 

probability distributions of the linear system parameters. 

6.3. Future Work 

The following is recommended future work based on this study: 

• Even though the developed methodology was developed adapting the discrete 

Kalman filter to estimate the parameters of a dynamic linear model, it still can be 

extended to estimate non-linear relationships between the observed preferences 

for the HOT lanes versus the GP lanes by means of using an extended Kalman 

filter (EKF) instead. By considering the EKF, the collinear variables in the system 

can be combined in order to release the constraints imposed by the collinearity. 
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• Because the lack of data relative to the off ramps in the system, only an 

approximation and a sensitivity analysis of the parameter estimates were possible. 

However FDOT has plans to install detectors in the off ramps in the near future. 

By incorporating such information, the estimation of the population that is 

actually deciding choices can be estimated accurately and thus the parameter of 

the model considered as well. 

• Extending the time coverage of the utilized database can eventually provide more 

details in the long term about the evolution of the system parameters and the 

travelers’ learning of the system performance. In particular, the interest is to 

capture the period of time required to achieve stable flows on the facility. 

• It was assumed during the whole study that travelers can assess the intensity of 

several performance measures and based on them smoothly trigger decisions. 

However, there is some evidence that travelers actually leave a small margin for 

assessing experiences and information; and instead, they tend to repeat their 

choices as long as the environment remains somewhat familiar to previous 

successful trials. An alternative decision choice approach framed in a different 

decision paradigm should be considered to weight the possibility that traffic 

management actually responds to a different measure of the experiences or to a 

different decision choice mechanism. 

  



153 

APPENDICES 

APPENDIX: ALMF MATLAB CODE  
FUNCTION MY_KALMAN(); 
% KALMAN FILTER IMPLEMENTATION 
 
CLEAR ALL 
% LOAD DATA FROM CSV FILES 
%INDEX=CSVREAD('SELECTED_DAYS.CSV');                     %CONTAINS THE INDEX OF THE SELECTED DAYS FOR ANALYSIS 
Z_HOT=CSVREAD('HOT_PROP.CSV');                            %CONTAINS THE OBSERVED PROPORTION OF HOT USERS A A 
FUNCTION OF TIME 
%TT_HOT=CSVREAD('TRAV_TIME_HOT.CSV');                    %CONTAINS THE OBSERVED HOT TRAVEL TIME AS FUNCTION 
OF TIME 
%TT_GP=CSVREAD('TRAV_TIME_GP.CSV');                      %CONTAINS THE OBSERVED GP TRAVEL TIME AS FUNCTION OF 
TIME 
%FARE=CSVREAD('FARE.CSV');                                 %CONTAINS THE FARE AS FUNCTION OF TIME 
%REL_HOT=CSVREAD('RELIAB_HOT.CSV');                      %CONTAINS THE OBSERVED HOT RELIABILITY AS FUNCTION 
OF TIME 
%REL_GP=CSVREAD('RELIAB_GP.CSV');                         %CONTAINS THE OBSERVED GP RELIABILITY AS FUNCTION OF 
TIME 
%OCC_HOT=CSVREAD('OCCUPANCY_HOT.CSV');                   %CONTAINS THE OBSERVED HOT OCCUPANCY AS FUNCTION OF 
TIME 
%OCC_GP=CSVREAD('OCCUPANCY_GP.CSV');                     %CONTAINS THE OBSERVED HOT OCCUPANCY TIME AS FUNCTION 
OF TIME 
%[RECORDS,NUM_DAYS]=SIZE(INDEX');                         %NUM_DAYS CONTAINS THE NUMBER OF DAYS CONSIDERED IN 
THE ANALYSIS 
TT_HOT=CSVREAD('OCC_HOT.CSV'); 
TT_GP=CSVREAD('OCC_GP.CSV'); 
 
LAP=8;                                                         %PERIOD OF TIME CONSIDERED FOR THE NOISE STATISTICS 
 
A=[1 0;0 1];                                                  %STATE TRANSTITION MATRIX (B0;B1)                                        
*** 
%A=[1 0 0;0 1 0;0 0 1];                                     %STATE TRANSTITION MATRIX (B0;B1;B2)                                    
*** 
 
FOR J=1:31%NUM_DAYS                                         %FOR EACH DAY IN THE DATASET 
DO.................................(1)     
 
FOR Z=1:288 
        H(Z,:)=[1 (TT_GP(Z,J)-TT_HOT(Z,J))];            %OBSERVATION MAPPING MATRIX B0+B1X1                                      
*** 
        %H(Z,:)=[1 (TT_GP(Z,J)-TT_HOT(Z,J)) -FARE(Z,J)];       %OBSERVATION MAPPING MATRIX B0+B1X1+B2X2                       
*** 
        Y(Z)=Z_HOT(Z,J);                                             %OBSERVATION VECTOR 
END 
FOR Z=1:LAP+1                                                         %THIS IS BECAUSE ESTIMATION STARTSAT LAP+2                     
*** 
        X(:,Z)=[3;-0.35];                                            %INITIALIZE THE STATE VECTOR  (B0;B1)                           
***            
        %X(:,Z)=[-1.0;-0.5;-1.0];                                   %INITIALIZE THE STATE VECTOR  (B0;B1;B2)                       
***            
        P(:,:,Z)=[0.1 0.0;0.0 0.1];                                 %INITIALIZE THE STATE COVARIANCE (B0;B1)                      
*** 
        %P(:,:,Z)=[0.1 0 0;0 0.1 0;0 0 0.1];                       %INITIALIZE THE STATE COVARIANCE (B0;B1;B2)                    
*** 
        Q(:,Z)=[0.0;0.0];                                              %INITIALIZE STATE NOISE SAMPLE (B0;B1)                        
*** 
        %Q(:,Z)=[0.0;0.0;0.0];                                        %INITIALIZE STATE NOISE SAMPLE (B0;B1;B2)                    
*** 
        Q(:,:,Z)=[0.1 0;0 0.1];                                       %INITIALIZE TRUE MOMENTS ABOUT THE MEAN OF 
THE STATE NOISE SEQUENCE          
        %Q(:,:,Z)=[0.1 0 0;0 0.1 0;0 0 0.1];                        %INITIALIZE TRUE MOMENTS ABOUT THE MEAN OF 
THE STATE NOISE SEQUENCE          
        R(Z)=0.0;                                                        %INITIALIZE THE OBSERVATION NOISE SAMPLE 
        R(Z)=0.0;                                           %INITIALIZE TRUE MOMENTS ABOUT THE MEAN OF THE 
OBSERVATION NOISE SEQUENCE 
END 
 
           FOR I=(LAP+2):288                                                %EVERY 5 MINUTES 
DO.............................(2) 
                 
                X(:,I)=X(:,I-1);                                            % (1)A PRIORI ESTIMATE OF THE STATE 
VECTOR 
                 
                P(:,:,I)=P(:,:,I-1)+Q(:,:,I-1);                             % (2)A PRIORI ESTIMATE OF THE STATE 
COVARIANCE 
                 
                R(I)=Y(I)-H(I,:)*X(:,I);                                    % (3) UPDATE OBSERVATION NOISE SAMPLE 
                                 
                AUX1=0;                                    % (4) UPDATE TRUE MOMENTS ABOUT THE MEAN OF THE 
OBSERVATION NOISE SEQUENCE 
                AUX2=0;                                                            % (4) 
                    FOR Z=(I-LAP+1):I%(I-1)                                     % (4) 
                            AUX1=AUX1+(R(Z)-MEAN(R(I-LAP+1:I)))^2;           % (4) 
                    END                                                             % (4) 
                    FOR Z=(I-LAP+1):I%(I-1)                                     % (4) 
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                        AUX2=AUX2+H(Z,:)*P(:,:,Z)*H(Z,:)';                    % (4) 
                    END                                                             % (4) 
                                      
 
                R(I)=ABS(1/(LAP-1)*(AUX1-(LAP-1)/LAP*AUX2));                % (4) UPDATE TRUE MOMENTS ABOUT THE 
MEAN  
                 
                K(:,I) = P(:,:,I)*H(I,:)'*INV(H(I,:)*P(:,:,I)*H(I,:)'+R(I));% (5) UPDATE KALMAN GAIN                           
     
                X(:,I)= X(:,I) + K(:,I)*(Y(I)-H(I,:)*X(:,I));               % (6) UPDATE STATE VECTOR 
                                 
                Q(:,I)=X(:,I)-X(:,I-1);                                          % (7) UPDATE STATE NOISE SAMPLE 
                 
                P(:,:,I)= P(:,:,I)- K(:,I)*H(I,:)*P(:,:,I);                 % (8) UPDATE STATE COVARIANCE 
                 

AUX1=0;                                                              % (9) UPDATE TRUE MOMENTS ABOUT THE 
MEAN                                                  AUX2=0;                                                     
   % (9) UPDATE TRUE 

                    FOR Z=(I-LAP+1):I%(I-1)                                     % (9) UPDATE TRUE 
                        AUX1=AUX1+(Q(:,Z)-MEAN(Q(:,I-LAP+1:I),2))*(Q(:,Z)-MEAN(Q(:,I-LAP+1:I),2))'; % (9) 
UPDATE TRUE 
                    END                                                             % (9) UPDATE TRUE 
                    FOR Z=(I-LAP+1):I%(I-1)                                     % (9) UPDATE TRUE 
                        AUX2=AUX2+P(:,:,I-1)-P(:,:,I);                         % (9) UPDATE TRUE 
                    END                                                             % (9) UPDATE TRUE 
                 
 
                Q(:,:,I)=1/(LAP-1)*(AUX1-(LAP-1)/LAP*AUX2);                 % (9) UPDATE TRUE 
                 
                %Q(1,2,I)=0; 
                %Q(1,3,I)=0; 
                %Q(2,1,I)=0; 
                %Q(2,3,I)=0; 
                %Q(3,1,I)=0; 
                %Q(3,2,I)=0; 
                 
                FOR Z=1:2                                                   % (9) UPDATE TRUE                                             
*** 
                  Q(Z,Z,I)=ABS(Q(Z,Z,I));                                   % (9) UPDATE TRUE 
                END                                                         % (9) UPDATE TRUE 
                 
                Z_MOD(I,J)=H(I,:)*X(:,I);                                   % COMPUTES THE MODELED PROPORTION OF 
HOT USERS AS A FUNCTION OF TIME                 
                 
                Q11(I,J)=Q(1,1,I);                                          % TRACKS Q11 AS A FUNCTION OF TIME FOR 
EACH DAY 
                Q12(I,J)=Q(1,2,I);                                          % TRACKS Q12 AS A FUNCTION OF TIME FOR 
EACH DAY 
                Q22(I,J)=Q(2,2,I);                                          % TRACKS Q22 AS A FUNCTION OF TIME FOR 
EACH DAY 
                Q21(I,J)=Q(2,1,I);                                          % TRACKS Q21 AS A FUNCTION OF TIME FOR 
EACH DAY 
                 
                P11(I,J)=P(1,1,I);                                          % TRACKS P11 AS A FUNCTION OF TIME FOR 
EACH DAY 
                P12(I,J)=P(1,2,I);                                          % TRACKS P12 AS A FUNCTION OF TIME FOR 
EACH DAY 
                P22(I,J)=P(2,2,I);                                          % TRACKS P22 AS A FUNCTION OF TIME FOR 
EACH DAY 
                P21(I,J)=P(2,1,I);                                          % TRACKS P21 AS A FUNCTION OF TIME FOR 
EACH DAY 
                 
                Q1(I,J)=Q(1,I);                                             % TRACKS Q1 AS A FUNCTION OF TIME FOR EACH 
DAY 
                Q2(I,J)=Q(2,I);                                             % TRACKS Q2 AS A FUNCTION OF TIME FOR EACH 
DAY 
                 
                R11(I,J)=R(I);                                                % TRACKS R AS A FUNCTION OF TIME FOR 
EACH DAY 
                 
                R11(I,J)=R(I);                                                % TRACKS R AS A FUNCTION OF TIME FOR 
EACH DAY 
                 
            END                                                             %END 5 
MINUTES......................................................(2) 
             
CTE(J,:)=X(1,:);     
VOT(J,:)=X(2,:); 
P_11(:,J)=P11(:,J); 
P_22(:,J)=P22(:,J); 
%VOF(J,:)=X(3,:); 
%QQ(:,:,:,J)=Q(:,:,:); 
%VOF(I+1,J)=X(2,1);                                                      
%VOR(I+1,J)=X(3,1);                                                       
%VOC(I+1,J)=X(5,1); 
 
END                                                                         %END EACH 
DAY.......................................................(1) 
 
%CSVWRITE('Q.CSV',Q); 
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CSVWRITE('CTE_OUTPUT.CSV',CTE'); 
CSVWRITE('VOT_OUTPUT.CSV',VOT'); 
 
%CSVWRITE('VOF_OUTPUT.CSV',VOF'); 
CSVWRITE('HOT_MODEL.CSV',Z_MOD); 
%CSVWRITE('VOT_OUTPUT.CSV',VOT); 
%CSVWRITE('VOF_OUTPUT.CSV',VOF); 
%CSVWRITE('VOR_OUTPUT.CSV',VOR); 
%CSVWRITE('OCC_OUTPUT.CSV',VOC); 
%END                                                                         %END PROGRAM 
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APPENDIX B: DATASET I SELECTED DAYS 

5/5/2010 
5/31/2010 
6/1/2010 
6/2/2010 
6/4/2010 

6/28/2010 
7/8/2010 

7/12/2010 
7/15/2010 
7/19/2010 
7/20/2010 
7/21/2010 
8/2/2010 
8/3/2010 

8/16/2010 
8/18/2010 
8/30/2010 
9/13/2010 
9/17/2010 
9/23/2010 
10/7/2010 

10/28/2010 
10/29/2010 
11/4/2010 
11/8/2010 

11/10/2010 
11/15/2010 
11/22/2010 
11/23/2010 
11/25/2010 
11/26/2010 
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