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ABSTRACT OF THE DISSERTATION 

IMPROVED ANNUAL AVERAGE DAILY TRAFFIC (AADT) ESTIMATION FOR 

LOCAL ROADS USING PARCEL-LEVEL TRAVEL DEMAND MODELING 

by 

Tao Wang 

Florida International University, 2012 

Miami, Florida 

Professor Albert Gan, Major Professor 

Annual Average Daily Traffic (AADT) is a critical input to many transportation 

analyses.  By definition, AADT is the average 24-hour volume at a highway location 

over a full year.  Traditionally, AADT is estimated using a mix of permanent and 

temporary traffic counts.  Because field collection of traffic counts is expensive, it is 

usually done for only the major roads, thus leaving most of the local roads without any 

AADT information.  However, AADTs are needed for local roads for many applications.  

For example, AADTs are used by state Departments of Transportation (DOTs) to 

calculate the crash rates of all local roads in order to identify the top five percent of 

hazardous locations for annual reporting to the U.S. DOT.   

This dissertation develops a new method for estimating AADTs for local roads 

using travel demand modeling.  A major component of the new method involves a 

parcel-level trip generation model that estimates the trips generated by each parcel.  The 

model uses the tax parcel data together with the trip generation rates and equations 

provided by the ITE Trip Generation Report.  The generated trips are then distributed to 

existing traffic count sites using a parcel-level trip distribution gravity model.  The 
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all-or-nothing assignment method is then used to assign the trips onto the roadway 

network to estimate the final AADTs.  The entire process was implemented in the Cube 

demand modeling system with extensive spatial data processing using ArcGIS.   

To evaluate the performance of the new method, data from several study areas in 

Broward County in Florida were used.  The estimated AADTs were compared with 

those from two existing methods using actual traffic counts as the ground truths.  The 

results show that the new method performs better than both existing methods.  One 

limitation with the new method is that it relies on Cube which limits the number of zones 

to 32,000.  Accordingly, a study area exceeding this limit must be partitioned into 

smaller areas.  Because AADT estimates for roads near the boundary areas were found 

to be less accurate, further research could examine the best way to partition a study area 

to minimize the impact.  
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CHAPTER 1 

INTRODUCTION 

1.1. Research Background 

Annual Average Daily Traffic (AADT) is the average 24-hour volume of a 

roadway segment over a full year.  AADT is used in many transportation analyses 

including estimation of the economic feasibility of highway projects, estimation of 

highway user revenues, computation of other highway statistics such as vehicle miles 

traveled (VMT) and crash rates, development of improvement and maintenance programs, 

etc. 

The most accurate method for obtaining the AADT of a roadway segment is to 

install an Automatic Traffic Recorder (ATR) which can provide continuous traffic count 

coverage at selected locations with some sensor devices such as inductive loops and 

microwave radar sensors to count the total volumes continuously.  However, as the 

installation and maintenance of permanent counters are expensive, the number of 

permanent counters is limited.  For example, there are only a total of about 300 

permanent counters installed along the state roads in Florida.  Therefore, it is 

economically infeasible to apply this method of AADT estimation on a widespread basis. 

An alternative approach to estimating AADT is to use portable counts, also called 

short-term, seasonal, or coverage counts, with different types of portable devices such as 

pneumatic road tubes and microwave radar sensors.  The collected short-term volumes 

on the interested roads are then used to calculate Average Daily Traffic (ADT).  ADT is 

the average daily volume at a given location over a defined time period of more than one 
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day and less than one year.  It can be converted to AADT by using some adjustment 

factors, as follows: 

 GFSFAFADTAADT ×××=  (1-1) 

where AF is the axle correction factor, SF is the seasonal adjustment factor, and GF is the 

annual growth factor.  This factor approach with portable counters is more economically 

feasible than the permanent count method, but is still too costly to cover the large number 

of roads.  Given this shortcoming, other AADT estimation methods have been widely 

researched. 

1.2. Problem Statement 

As aforementioned, one application of AADT is to calculate crash rates.  As part 

of the new Highway Safety Improvement Program (HSIP) of the Federal Highway 

Administration (FHWA), states are required to submit an annual report describing no less 

than 5% of their highway locations on all public roads which exhibit the most severe 

safety needs.  To submit this 5% report annually, the Florida Department of 

Transportation (FDOT) requires that AADTs be available for all roads, including both 

state and local roads.  However, FDOT currently can estimate AADTs using both short- 

and long-term traffic counts for only state roads.  Research is needed to identify and 

develop methods to estimate AADTs for local roads in Florida.   

In addition to the 5% report, AADT is also required by a new safety analysis 

system developed by FHWA known as SafetyAnalyst (2011).  The system aims at 

providing state and local highway agencies with a comprehensive set of tools to enhance 

their programming of site-specific highway safety improvements.  FDOT plans to take 
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full advantage of the new capabilities of SafetyAnalyst to enhance the safety improvement 

programs for not only the state roads, but also the local roads that are critical to the 

overall performance of the state’s roadway system.  

In 2007, FDOT contracted with the University of South Florida (USF) to develop 

regression models to estimate AADTs for local roads (Lu et al., 2007).  A preliminary 

evaluation based on Miami-Dade and Broward County data showed that the 

corresponding errors of the USF method exceeded 100% and 200%, respectively. 

Other methods of AADT estimation have also been researched by other 

researchers.  They include image processing, travel demand modeling, and machine 

learning algorithms, such as Artificial Neural Network (ANN), K-Nearest neighbor, and 

support vector regression machines, and so on.  However, the existing methods have 

their limitations.  For example, the image-based method attempts to estimate AADT 

based on the traffic volume data extracted from satellite images, aerial photos, or LiDAR 

(Light Detection and Ranging) data, but it is difficult to retrieve and estimate volume for 

local roads accurately, because the traffic on local roads is usually sparse and infrequent 

compared to major roads.  Machine learning methods may appear sophisticated, but they 

usually try to improve the traditional factor approach and still need short-term traffic 

counts collected with portable count sites, which is unpractical for local roads.  In 

addition, none of these methods can provide satisfying estimation results for local roads.     

FDOT recently contracted with URS Corporation to improve the AADT 

estimation for local roads.  The URS method divides the street network in a Traffic 

Analysis Zone (TAZ) into multiple tiers according to the road levels, and accumulates the 

trips of each road estimated from parcel data and employee data by trickling down the 
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created tier structure to estimate the final AADTs for the local roads within a TAZ.  The 

novelty of the URS method is that it generates the trips at the parcel-level, and then 

assigns the trips by simulating the flow of the river system.  While the URS method 

improves upon the performance of the USF method, significant errors still remain in the 

estimation.  A preliminary evaluation based on Miami-Dade and Broward County data 

showed that this method still produced estimation errors of 78% and 71%, respectively. 

1.3. Research Objective  

The main objective of this research is to attempt to develop an improved method 

of estimating AADT for local roads by applying travel demand modeling techniques, 

including trip generation, trip distribution, and traffic assignment at the parcel level.  

1.4. Organization  

This dissertation is comprised of six chapters.  Chapter 1 introduces the research 

background, describes the problem to be solved, and sets the research objective to be 

achieved. 

Chapter 2 provides a comprehensive review of the existing AADT estimation 

methods.  The main purpose of this review is to research the state-of-the-art AADT 

estimation methods and determine if the existing AADT estimation methods are suitable 

for local roads. 

Chapter 3 describes the methodology of the proposed parcel-level travel demand 

analysis model to estimate AADT for local roads.  The traditional zone-level four-step 

travel demand forecasting model is first introduced, and the four model steps of the 

proposed parcel-level travel demand model, including network modeling, parcel-level 
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trip generation, parcel-level trip distribution, and parcel-level trip assignment, are then 

described in detail.   

Chapter 4 describes the implementation of the parcel-level travel demand analysis 

model.  The application of an ArcGIS tool called ModelBuilder to perform data 

preprocessing and post-processing for the model is introduced, and the development of 

each model step with Cube is described in detail. 

Chapter 5 evaluates the performance of the parcel-level travel demand analysis 

model for local road AADT estimation.  The AADTs estimated from traffic count data 

for local roads are used as the ground truth data.  Results from two existing methods are 

compared with those from the proposed method.   

Finally, Chapter 6 draws conclusions, summarizes the main contribution, and 

provides recommendations for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

Different approaches for AADT estimation can be found in the literature.  They 

include: 

• Traditional factor approach 

• Regression modeling 

• Travel demanding modeling 

• Image processing 

• Machine learning 

• URS method 

In this chapter, each of these approaches and the related literature in AADT 

estimation are reviewed in detail.  Their advantages and limitations are also 

summarized. 

2.2. Traditional Factor Approach 

To estimate AADT on road segments with short-term counts, the traditional factor 

approach uses adjustment factors, which are calibrated from continuous Automatic 

Traffic Recorder (ATR) data, to convert the short-duration volume data collected (usually 

over a period of 48 hours) from the short-term counts.  The effectiveness of this 

approach is based on the fact that it accounts for variations in traffic over different time 

scales such as time of day, day of week, and season (month of the year).  It has been 
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widely applied throughout the U.S., and is recommended by the guidelines of AASHTO 

(1992) and the Traffic Monitoring Guide (TMG) of FHWA (2001). 

The procedure for using the traditional factor approach to estimate AADT can be 

divided into two steps.  The first step is to calculate the adjustment factors using the 

continuous traffic data recorded on the ATR sites.  The second step is to apply the 

adjustment factors calibrated to estimate AADT values for road segments with short-term 

counts.  The commonly used adjustment factors include axle correction factors, seasonal 

adjustment factors, and annual growth factors.  To estimate AADT accurately, the 

appropriate calculations of these factors are critical. 

To obtain more accurate adjustment factors, factor groups can be created by 

grouping the short-term sites and associated ATR sites.  In this way, the average 

adjustment factors for each group can be determined.  Factor groups are usually divided 

according to the functional classification, geographical location, and the judgment of 

analysts.  A report prepared by Cambridge Systematics, Inc. (1994) recommended that 

the number of ATR sites in each group should be between five and eight.  Roess et al. 

(2004) pointed out that groups for daily factors and groups for seasonal factors do not 

have to be the same, although it is convenient if they match.  A detailed discussion 

about the methodologies to create factor groups can be found in TMG (FHWA, 2001). 

The axle correction factors are used to convert the number of axles to the number 

of vehicles.  This correction is necessary only when the short-term counts measure axle 

impulses with a single road tube.  To calculate axle correction factors, the data from the 

vehicle classification counters for the same days as the short-term traffic count are 

usually used.  At each permanent counter site of a factor group, vehicle classification 
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counters can detect the number of the vehicles in each classification.  The total number 

of axles for this site can be calculated by summing up the product of the number of axles 

and number of vehicles for each classification.  Dividing this figure by its total number 

of vehicles will get the average number of axles per vehicle for the site, which is summed 

up for all sites in the factor group and divided by the number of counters.  The result is 

the group mean axles per vehicle, and its inverse is the axle correction factor for the 

group.  The calculations can be performed using the following formula: 

 

1
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where 

AFg = the axle correction factor for factor group g, 

Ac = the number of axles for vehicle class c at a permanent count site, 

Vc = the number of vehicles for vehicle class c at a permanent count site, and  

Ng = the number of permanent sites in factor group g. 

The seasonal adjustment factors are used for the day-of-week and monthly 

adjustments.  An example to show how the seasonal factors are calculated is given as 

follows: 

 
ijk

k
ijk MADT

AADT
SF =  (2-2) 

where 
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SFijk  =  the seasonal factor for the day-of-week j in month i at ATR site k, 

AADTk =  the AADT of ATR site k, and  

MADTijk = the monthly average day of the week traffic for month i and 

day-of-week j at ATR site k. 

Two basic steps are involved in computing the seasonal adjustment factors: 

computing the numerator, which is AADT, and the denominator, which depends on the 

procedure used.  

The numerator AADT can be calculated with the continuous traffic data recorded 

by the ATR sites.  There are two basic methods to calculate AADT.  One is the simple 

average daily traffic of all days in a year, and the other is called the average of averages 

method, which was presented by AASHTO (1992).  This method first calculates the 

seven values of monthly average day-of-week (MADW) traffic for each month.  The 

results in 84 MADW values are then grouped by day-of-week and averaged across the 

twelve months to yield seven values of annual average days of the week (AADW) for the 

year.  The last step is to calculate the arithmetic mean of the seven AADW values, 

which can be used as the estimation of AADT.  Both Cambridge Systematics (1994) and 

TMG (FHWA, 2001) recommended this AASHTO method because it can provide a more 

accurate estimation than the simple average method for such cases as when some data are 

missing from a specified year at a given site. 

The denominator of calculating seasonal adjustment factors depends on the 

temporal grouping procedures used.  These procedures can be based on day-of-week, 

month, combined weekdays, or combination of day-of-week and month, etc.  

Cambridge Systematics, Inc. (1994) compared seven of these procedures and concluded 
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that a number of different factoring techniques can result in reasonably similar levels of 

AADT estimating accuracy as long as the procedure accounts for all types of variation 

present in the data.  TMG (FHWA, 2001) recommended a procedure named “combined 

month and day-of-week factors,” which is also called “eight-four factors,” if all seven 

days of the week (i.e., including Saturday and Sunday) are involved for each month.   

The annual growth factors are needed when the historical traffic data are used to 

estimate AADT, since agencies rarely conduct traffic counts every year.  The factors are 

usually the ratio of the AADT estimates of the current year to the preceding year.  The 

sites from which these AADT estimates can be obtained are either ATR sites or 

short-term sites.  While the ATR sites clearly provide better estimates of AADT, 

short-term sites provide a larger sample of sites, which means that more region-specific 

growth factors can be developed. Furthermore, the errors caused by short-term sites tend 

to be self-correcting over time (Cambridge Systematics, Inc., 1994). 

After the necessary adjustment factors are calculated for a factor group, they can 

be used to estimate the AADT values for the road segments with short-term sites in the 

same group by simply multiplying short-term counts by the factors.  In general, it can be 

represented with the following formula: 

 ggigigi GFSFAFADTAADT ×××=  (2-3) 

where 

AADTgi =  the annual average daily traffic at location i of factor group g, 

ADThi = the average daily (vehicle/axle) traffic at location i of factor group 

g, 

AFi =  the applicable axle correction factor for location i (if needed), 
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SFg =  the applicable seasonal adjustment factor for group g, and 

GFg =  the applicable annual growth factor for group g (if needed). 

The traditional factor approach to estimating AADT has been applied throughout 

the U.S.  Although AASHTO (1994) and TMG (FHWA, 2001) have provided 

guidelines for this approach, different states have adopted slightly different procedures 

according to their individual circumstances.  However, the basic principles of the 

approach are the same as those presented herein.  

2.3. Regression Modeling 

Regression analysis is a popular statistical tool to model and analyze the 

relationship between a dependent variable and one or more independent variables.  

Cook and Weisberg (1999) define regression analysis as a means to understand “as far as 

possible with the available data how the conditional distribution of the response y varies 

across subpopulations determined by the possible values of the predictor or predictors.”  

Hence, regression analysis is widely used for the purposes of description, 

prediction, and inference.  More specifically, it is used to describe the distribution of a 

variable under a number of different conditions, predict the distribution of a variable in 

the future, and make inferences from a sample to a population.  A number of techniques 

for carrying out regression analysis have been developed.  Familiar methods such 

as linear regression and ordinary least squares regression are parametric, in that the 

regression function is defined in terms of a finite number of unknown parameters that are 

estimated from the data.  Conversely, nonparametric regression refers to techniques that 

allow the regression function to lie in a specified set of functions, which may 
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be infinite-dimensional.  Berk (2004) provides more detailed descriptions regarding 

regression analysis. 

Regression analysis has been applied in several studies to estimate AADTs.  At 

the state level, Deacon et al. (1987) produced a two-step modeling process to forecast 

highway volumes on the state highway systems in Kentucky. 

Shon (1989) produced multiple regression models to estimate AADT according to 

the functional classification of the highways in Alabama.  Different socio-economic 

characteristics were used as predictors for different functional classifications.  State 

vehicle registrations and gasoline prices were used as predictors for principal arterials and 

interstate highways, year and county vehicle registrations were used for minor arterials, 

and year and gasoline prices were used for major collector roadways. 

Cheng (1992) developed a regression model to estimate AADT on highway 

systems in Minnesota.  Initially, independent variables were chosen from the road-log 

(RLG) database to be used as potential predictors.  These included Route System (state 

roads or local roads), City Population, County Population, Location (urban or rural), 

Functional Classification (six functional classes for rural and eight for urban roads, 

respectively), Intersection Category, Special Road Section, Federal-aid System (if the 

road section receives federal aid), Access Control (uncontrolled, partially controlled, or 

fully controlled), Number of Through Lanes (in both directions), Type of Truck-route 

(eight truck-route classifications), Road Width (in feet, including sidewalks), and Surface 

Type (twenty-four categories).  After analyzing each variable, some were dropped 

because they were either not useful or added significant complexity to the model.   

Ultimately, the number of the predictors was reduced to four: Route System, County 
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Population, Number of Through Lanes, and Location.  It was found that Number of 

Through Lanes and AADT have a curvilinear relationship.  The formula of the 

regression function is given as follows: 

 
2

26453421322110 XXXXXXXAADT βββββββ ++++++=  (2-4)  

where 

X1 = county population size, 

X2 = total number of through lanes in both directions, 

X3 = route system (state/non-state code), and 

X4 = location (rural/urban code). 

Mohamad et al. (1998) conducted a study to develop a linear regression model to 

estimate AADT on roadways in Indiana.  Nine independent variables were considered 

initially: County Population, County Household, County Vehicle Registration, County 

Employment, County Per Capita Income, County Mileage, Location, Presence of 

Interstate Highway, and Accessibility (to the freeway for each road).  After using the 

stepwise regression method to determine the independent variables which should be 

included in the model, four of them were chosen: Location, Accessibility, County 

Population, and County Mileage. The formula for the final AADT prediction model is 

given as follows: 

 )(46.0)(24.084.082.082.4)( 4521 XLogXLogXXAADTLog −+++=  (2-5) 

where 

X1 = location (1 = urban; 0 = rural), 

X2 = accessibility (1 = easy access or close to the state highway; 0 = 

otherwise), 
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X3 = county population, and 

X4 = total arterial mileage of county. 

Xia et al. (1999) developed a regression model to estimate AADT for local roads 

in Broward County of Florida.  The predictors used include number of lanes, area type, 

auto ownership, function classification, presence of non-sate roads nearby, and service 

employment.  The adjusted R2 value was 0.5961, and prediction errors ranged from 1.31% 

to 57%.  This model was later modified by Shen et al. (1999) by removing the service 

employment variable.  The adjusted R2 value was improved to 0.6069, with prediction 

errors ranging between 0.57% and 61.99%.  Continuous efforts were made by Zhao and 

Chung (1999) based on the previous study.  In this study, a larger data set was used, the 

old state roadway function classification system was replaced with the new federal 

function classification system, and a more extensive analysis of land use and accessibility 

variables was performed.  Four models using different variables were developed, 

compared, and discussed.  The best model used five predictors: Number of Lanes, 

Function Classification, Accessibility to Regional Employment, Direct Access (from a 

count station to expressway access points), and Employment in a Variable-sized Buffer 

surrounding a Count Station.  This model has an adjustment R2 value of 0.8180, and its 

Mean Squared Error (MSE) was 50.00. 

The most relevant study regarding this topic was conducted by Lu et al. (2007).  

In the study, they developed a procedure to estimate AADT on all roads in Florida.  The 

road segments were divided into three different types based on the number of traffic 

counts available to each street.  The Type I streets include all freeways and major state 

highways where each road has at least one traffic count in each county.  Minor state and 
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county highways and local streets consist of the Type II streets.  The Type III streets 

include vehicle trails, freeway ramps, cul-de-sac, traffic circles, serve drivers, driveways, 

roads in parking area, and alleys.  The linear regression models were developed to 

estimate the AADT values on Type II roads, which account for about 80% to 85% of the 

total streets.  They also divided the counties in Florida into three groups based on the 

population in each county: rural area group (counties with population less than 100,000), 

small-medium urban area group (counties with population between 100,000 and 400,000), 

and large metropolitan area group (counties with population greater than 400,000).  To 

estimate the AADT values on Type II streets, two distinct regression models, the 

state/county highway model and local street model, were created and applied to each 

county group, for a total of six complete regression models.  Stepwise regression 

method was then used to select the variables for each model.  The adjusted R2 values 

and the Mean Absolute Percentage Error (MAPE) values were subsequently calculated.  

The final equations of the six prediction models with the adjusted R2 and MAPE values 

are given as follows: 

• Large Metropolitan Area, State/County Highway Model 

SEMIPUBLICLRESIDENTIA

MILEINCOME

NALINSTITUTIONENUMBEROFLA

AGRCULTRUELABORFORCE

LOCATIONCOMMERCIAL

DIVIDEDVEHICLEAADT

×−×
−×+×

+×+×
+×−×
−×+×

+×+×+−=

47.587648.782

5.0601.796069.129

231.1311252.421

185.2839845.8

677.6259442.2983

347.1273541.138.848

 

186.02 =adjR
  

 
%81.46=MAPE  

 
• Large Metropolitan Area, Local Street Model 
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VEHICLE

POPULATIONLABORFORCE

COMMERCIALSEMIPUBLIC

NENUMBEROFLALOCATION

MILELRESIDENTIA

DIVIDEDTIESMUNICIPALIAADT

×
−×+×

−×+×
+×+×

+×−×
−×+×+−=

345.4

369.17545.19

194.769226.1040

492.259195.2745

5.1182.567459.452

659.1349806.3443.2738

 

 

242.02 =adjR
 

 
%49.159=MAPE  

 
• Small-medium Urban Area, State/County Highway Model 

INDUSTRIALMILEAGESEMIPUBLIC

LRESIDENTIAMILE

TIESMUNICIPALISALES

POPULATIONVEHICLE

NENUMBEROFLACOMMERCIAL

LABORFORCELOCATIONAADT

×+×−×
+×−×

+×−×
+×−×

+×+×
+×+×+=

666.107243.0103.765

282.4315.1963.952

311.13994.0

869.70673.27

82.960767.2760

079.1225566.145770.374

 

 

259.02 =adjR
 

 
%01.65=MAPE  

 
• Small-medium Urban Area, Local Street Model 

RECREATIONNALINSTITUTIO

COMMERCIALINDUSTRIAL

TIESMUNICIPALIPOPULATION

VEHICLELOCATIONMILE

LRESIDENTIADIVIDEDAADT

×+
×+×+×

+×+×
−×+×+×
+×−×+=

814.2011

231.1464556.1491091.3320

9437.0468.14

468.18119.27075.1874.2107

405.67969.248294.1533

 

166.02 =adjR
 

 
%35.65=MAPE  

 
• Rural Area, State/County Highway Model 
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LRESIDENTIAPOPULATION

INDUSTRIALRECREATION

SALESLABORFORCE

EAGRICULTURTIESMUNICIPALI

VEHICLELOCATIONAADT

×−×
+×−×

−×−×
+×−×

+×+×+=

708.748239.33

493.2324919.3312

931.1293.22

733.1656072.57

722.17551.3878747.3015

 

 

378.02 =adjR
 

 
%31.99=MAPE  

 
• Rural Area, Local Street Model 

LRESIDENTIAEAGRICULTUR

LOCATIONPOPULATIONAADT

×−×
−×+×+=

873.1017085.1445

501.145862.1681225.505
 

 

184.02 =adjR %79.46=MAPE  

 
The definitions of the independent variables used in the equations above are listed 

as follows: 

• Socio-economic Variables 

 POPULATION: population in thousands; 

 MILEAGE: total mileage of highways in a county; 

 VEHICLE: total number of registered vehicles in thousands; 

 INCOME: the per capita income in thousands; 

 SALES: yearly retail sales in million; 

 MUNICIPALITIES: population within incorporated area in million; and 

 LABORFORCE: labor force within one county in thousands. 

• Road Characteristics Variables 

 DIVIDED: if the roadway is divided, is 1; otherwise, 0; 

 NUMBEROFLANE: number of lanes in both directions; 
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 LOCATION: if the location is urban, is 1; otherwise, 0; 

 0.5MILE: if a road is within 0.5 mile from freeway, is 1; otherwise, 0; 

 1.0MILE: if a road is within 1 mile from freeway, is 1; otherwise, 0; 

 1.5MILE: if a road is within 1.5 mile from freeway, is 1; otherwise, 0; 

 SEMIPUBLIC: if land use type is Public-Semipublic, is 1; otherwise, 0; 

 COMMERCIAL: if land use type is Commercial, is 1; otherwise, 0; 

 AGRICULTURE: if land use type is Agriculture, is 1; otherwise, 0; 

 INSTITUTIONAL: if land use type is Institutional, is 1; otherwise, 0; 

 RESIDENTIAL: if land use type is Residential, is 1; otherwise, 0; 

 RECREATION: if land use type is Recreation, is 1; otherwise, 0; and 

 INDUSTRIAL: if land use type is Industrial, is 1; otherwise, 0. 

While all the applications of regression analysis given above used the traditional 

Ordinary Least Squares Regression (OLS-regression), Park (2004) applied 

Geographically Weighted Regression (GWR) to estimate AADT for highways in 

Broward County of Florida.  Differing from OLS-regression, in which the model 

estimates the global parameters for the entire study area, GWR considers the influence of 

correlations among the variables over space, and estimates different parameters for 

different locations by weighting the observations inversely to their distance from the 

location where the AADT is estimated.  Six independent variables were selected from 

67 variables to develop the model: Number of Lanes, Speed, Regional Accessibility, 

Direct Access to Expressways, Density of Roadway Length, and Density of Seasonal 

Household.  A comparison with the OLS-regression model was also done, and it was 

concluded that the GWR approach exhibited better performance. 
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2.4. Travel Demand Modeling  

Travel demand modeling utilizes mathematical models to simulate “real world” 

transportation system and human travel behaviors.  Traditionally, the “four-step process” 

has been used for travel demand analysis and, as its name implies, is composed of four 

steps: trip generation, trip distribution, mode choice, and trip assignment.  The first step, 

trip generation, calculates the number of trips generated in each Traffic Analysis Zone 

(TAZ), which is the unit of geography commonly used in travel demand modeling.  In 

the second step, trip distribution, the distribution of trips among the origin and destination 

zones is determined.  The third step, Mode Choice, splits the trips between the origin 

and destination zones according to different modes of travel.  Finally, trip assignment 

allocates the trips to routes by each travel mode.       

Little research has been done in terms of applying the travel demand modeling 

approach to the estimation of AADT.  Zhong and Hanson (2009) utilized traffic demand 

models to estimate AADT on low-class roads for two regions in the province of New 

Brunswick, Canada.  Modifying the traditional four-step process, they omitted the third 

step of mode choice from their procedure.  The Quick Response Method (QRM) 

(Sosslau et al., 1978) was also adopted for the trip generation step, and the traditional 

gravity model used for the trip distribution step.  The final step, trip assignment, was 

implemented by using the STOCH method, which was first proposed by Sheffi (1985).  

The empirical results show that the average estimation errors can be limited to less than 

40%, which is comparable to the results of other AADT estimating approaches.  

While their research showed that this method has the potential to improve AADT 

estimation, due to the resolution limitations of the available census data, their method 
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was applied at the dissemination areas (DAs) level.  DA is the smallest census unit in 

Canada.  A DA is a small, relatively stable geographic unit composed of one or more 

neighboring dissemination blocks, with a population of 400 to 700 persons.  Further 

research is needed to estimate the performance of this method as applied to smaller areas 

such as parcels level researched in this dissertation. 

2.5. Image Processing 

Estimating AADT with image-based data has been possible due to the collection 

of high-resolution satellite images, aerial photos, and LiDAR (Light Detection and 

Ranging) data by transportation agencies for planning and analysis purposes.  McCord 

et al. (1995a) and McCord et al. (1995b) analyzed the feasibility of this approach and 

proved that 1-m resolution is necessary to count and classify cars and trucks with 

accuracy greater than 90%. 

McCord et al. (2003) proposed the methodology of image-based AADT 

estimation and also compared this with the traditional ground-based factor method.  To 

produce the AADT estimation on a road segment, the vehicle density is first obtained 

from the image and converted to a short-duration volume.  The short-duration volume is 

then expanded to an hourly volume, daily volume, and finally, AADT, by multiplying 

some expansion factors. A comparison with the traditional ground-based factor approach 

indicated a small difference between the results of the two methods, which might imply 

that image-based estimation can augment traditional ground-based estimation and, 

therefore, that the combination of the two could lead to more accurate estimation.  This 

combination of image-based and ground-based estimations was implemented in Jiang et 



  

21 

al. (2006).  For ground-based data, they estimated AADTs for the current year by using 

seasonal factors and growth factors on coverage counts data in earlier years.  For image 

data, they applied the method proposed in McCord et al. (2003) to estimate AADTs for 

road segments with a single, more recent image.  The two AADT estimation results 

were then integrated by using a linear weighted combination according to their variances.  

An empirical study was conducted to simulate weighted estimation of AADTs on 122 

Florida highway segments between 1994 and 2003, with the results showing that the 

accuracy of AADT estimation was markedly improved. 

Jiang et al. (2007) verified the numerical results of Jiang et al. (2006) with a study 

of 12 aerial photos taken by Ohio DOT in 2005 for Ohio road segments equipped with 

ATRs.  They compared both the combined estimation and traditional coverage count 

estimate to the “true” AADT determined by the ATRs data. The results showed that the 

combined estimation produced a lower average relative error, a higher proportion of 

estimates with relative error less than 0.10, and better estimates overall more than 50% of 

the time. 

Another approach using image-based data to estimate AADT was researched by 

Jiang (2005).  In this study, a Bayesian approach is used to combine the traditional 

ground-based data and the traffic data extracted from the images.  A three-stage model 

was then developed to simulate the prior distribution of AADT and the probability 

distribution of short-tem traffic counts conditional on AADT.  This numerical 

investigation shows the benefits of image-based data in terms of improving the accuracy 

of AADT estimation.  
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2.6. Machine Learning 

Mitchell (1997) defines machine learning as a computer program “to learn from 

experience E with respect to some class of tasks T and performance measure P, if its 

performance at tasks in T, as measured by P, improves with experience E.”  The 

learning system utilizes certain learning algorithms to derive a description of a given 

concept based on a set of concept examples and background knowledge (Michalski et al., 

1998).  A number of machine learning algorithms have been used to perform the task of 

AADT estimation or provide helpful assistance to certain aspects of the task.  This 

section reviews three typical approaches: the artificial neural network, k-nearest neighbor, 

and support vector regression machine. 

2.6.1. Artificial Neural Network Approach 

An Artificial Neural Network (ANN) is a computational model that is inspired by 

the structural/functional aspects of biological neural networks.  It is an emulation of 

biological neural networks, and consists of simple artificial neurons connected by 

directed weighted connections.  It may be thought of as simplified models of the 

networks of neurons that occur naturally in the animal brain (Gurney, 2009).  The 

structure of an ANN is changed based on external or internal information that goes 

through the network during the training phase.  Modern ANNs are non-linear statistical 

data modeling tools, and a well-trained ANN is usually used to model complex 

relationships between the inputs and the outputs of the network or to find patterns in the 

data. 
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Figure 2-1 Example of a Simple Feedforward Neural Network 

Figure 2-1 shows an example of a simple feedforward neural network from 

Wikibooks (2011).  In this common type of ANN, there are three layers of units: the 

input layer, the hidden layer, and the output layer.  The input layer is connected to the 

hidden layer directly, and the hidden layer is connected to the output layer directly.  

There is a weight value assigned to a connection between each pair of connected units, 

and the weight value can be adjusted during the learning phase.  The activity of the 

input units represents the raw information that is fed into the neural network.  The 

behavior of each hidden unit is determined by the activities of the input units and the 

weight values of the connections between the input and the hidden units.  The activity of 

the output units depends on the activity of the hidden units and the weight values of the 

connections between the hidden units and the output units.  “Feedforward” means the 

signals are allowed to travel one way only: from the input layer to the output layer.  

Feedforward network is simple and straight forward, since there are no loops in the 

network.  On the contrary, more complex feedback networks can have signals travelling 
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in both directions, and they are more powerful and can be extremely complicated, 

because feedbacks (loops) are allowed in the network. 

ANN is a type of non-linear processing system that is ideally suited for a wide 

range of tasks, especially tasks in which there is no existing algorithm for task 

completion (Wikibooks, 2011).  When the system is set running, the activation levels of 

the input units are affixed to the desired values. After this, the activation is propagated, at 

each time step, along the directed weighted connections to other units.  The activations 

of non-input neurons are computed using each neuron's activation function.  The system 

might either settle into a stable state after a number of time steps, or in the case of 

a feedforward network, the activation might flow through to output units.   

ANN can be trained to solve certain problems using a teaching method and 

sample data.  In this way, identically constructed ANN can be used to perform various 

tasks depending on the training received.  With proper training, ANN is capable of 

generalization, or the ability to recognize similarities among different input patterns, 

especially patterns that have been corrupted by noise.  Detailed information about the 

theoretical foundations of ANN can be found in Anthony and Bartlett (1999). 

ANN has been extensively applied to transportation research since the 1990s.  

Dougherty (1995) summarized the findings of research papers regarding the application 

of ANN to transportation.  The subject areas with the most ANN application include 

driver behavior/autonomous vehicles, parameter estimation, pavement maintenance, 

vehicle detection/classification, traffic pattern analysis, traffic forecasting, etc.  More 

applications of ANN in transportation can also be found in Himanen et al. (1998).      
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As an important aspect of transportation research, an ANN approach to AADT 

estimation has also been explored.  Sharma et al. (1999) compared the ANN approach to 

the traditional factor approach with 48-hour short-term counts data for estimating AADT.  

A multilayered, feed-forward, and back-propagation neural network with supervised 

learning was designed to achieve this purpose.  It was found that for a single 48-hour 

count, if ATR sites are grouped appropriately and the coverage counts are assigned to the 

ATR groups correctly, then the estimation errors of the traditional factor approach can be 

lower than that of the ANN approach. However, this investigation also indicated that, 

there was unfortunately little guidance on how to achieve a high enough ATR site 

grouping and accuracy of sample counts assignment to obtain reliable AADT estimates.  

It was also found that the accuracy of the ANN approach is comparable to the traditional 

factor approach when it is applied to two or more 48-hour counts taken during different 

months.  Since the advantage of the ANN approach is that the groups of ATR sites and 

assignment of sample short-term counts are not required, the research recommends the 

ANN approach as a better choice. 

While Sharma et al. (1999) focused on interstate and other high-volume roads, 

Sharma et al. (2000, 20001) applied the ANN approach to low-volume rural roads.  In 

addition to some findings that verified those of Sharma et al. (1999), it also found that the 

48-hour count duration is likely to produce much better estimation than the 24-hour count 

duration.  Furthermore, 72-hour count duration may not necessarily offer an advantage. 

Lam and Xu (2000) implemented a multi-layer feed-forward neural network with 

back-propagation algorithm to estimate AADT and determine the most appropriate length 

of counts.  The case study was carried out by analyzing data on 13 trunk roads and 
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primary roads in Hong Kong, and the results showed that the neural network approach 

performed consistently better than the regression analysis approach in estimating AADT. 

2.6.2. K-Nearest Neighbor Approach 

The K-nearest neighbor algorithm (K-NN) is a data mining method 

for classification, although it can also be used for estimation and prediction.  K-NN is 

among the simplest of all machine learning algorithms and is a type of instance-based 

learning in which the training data set is stored, thereby allowing a new unclassified 

record to be classified by comparing it to the most similar records in the training set 

(Larose, 2005).  The similarity is measured by the distance between the records, with 

the new record assigned to the class most common among its K-nearest neighbors. 

There is no obvious best solution to choose the value of K.  As mentioned by 

Larose (2005), a K with a value that is too small may cause overfitting, while a K with a 

value that is too large tends to overlook locally interesting behavior.  Thus, it is typically 

a small (but not too small) positive integer.   If K = 1, then the object is simply assigned 

to the class of its nearest neighbor.  

Since the K-NN algorithm is used mostly for classification, it can be utilized to 

assign short-term count sites to different ATR factor groups.  Li and Fricker (2008) 

proposed a K-NN algorithm combined with GIS technology to carry out roadway 

classification.  The attributes of a roadway count that are helpful for the classification 

were chosen, which include geographic spatial location, roadway link characteristics 

(Functional Class, Number of Lanes, and Posted Speed), and land use characteristics in 

the area surrounding the ATR.  Various values of K from 5 to 9 were then tried and 
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compared, using data from 56 ATRs on the Indiana roadway network for 2004. They also 

compared the K-NN method with the traditional twenty-four and eighty-four factor 

approaches, which use each functional class as a factor group.  The results showed that 

K-NN can produce better AADT estimates. 

2.6.3. Support Vector Regression Machines Approach 

Support vector machines (SVM) are a set of supervised learning methods.  A 

support vector machine constructs a hyperplane or set of hyperplanes in a high or infinite 

dimensional space, which can be used for classification, regression, or other tasks.  

Support vector machines represent an extension to nonlinear models of the generalized 

portrait algorithm developed by Vladimir Vapnik. The SVM algorithm is based on the 

statistical learning theory and the Vapnik-Chervonenkis (VC) theory introduced 

by Vladimir Vapnik and Alexey Chervonenkis.  A detailed description of the SVM 

algorithm is given by Vapnik (1995).  

Based on SVM theory, Support Vector Regression Machines (SVR) were 

proposed by Drucker et al. (1996).  While SVR uses the same principles as the SVM for 

classification, it also sets a margin of tolerance, e, in approximation to SVM to predict the 

real number output, which has infinite possibilities and is very difficult to predict.  SVR 

is the most common application form of SVMs.  An overview of its basic ideas has been 

given in Smola and Schölkopf (1998). 

SVR has been widely applied due to its remarkable characteristics.  Castro-Neto 

et al. (2009) evaluated the performance of a modified version of SVR named SVR-DP 

(SVR with Data-dependent Parameters). This model was used in forecasting AADT one 
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year into the future based on the historical AADT values, which differs from the common 

type of current-year AADT estimation based on external predictor variables.  The 

technique was first introduced by Cherkassky and Ma (2004).  By computing the SVR 

parameters based on the distribution of the incoming training data, it can alleviate the 

problem of excessive data requirements and the time-consuming computation of adequate 

SVR parameters, which are crucial to the quality of SVR models.  Castro-Neto et al. 

(2009) used AADT values collected between 1985 and 2004 for both urban and rural 

roads in 25 counties in Tennessee.  The SVR-DP approach was compared with two 

other popular methods, Holt Exponential Smoothing (Holt-ES) and Ordinary 

OLS-regression.  The results show that SVR-DP outperformed both of these models, 

although the Holt-ES also presented good performance. 

2.7. URS Method 

FDOT contracted with URS Corporation to improve the AADT estimation.  The 

URS method divides the street network in a Traffic Analysis Zone (TAZ) into N + 1 

(from 0 to N) tiers according to the road levels.  Tier 0 segments represent roads that 

have an official FDOT AADT or segments in the Turnpike State model.  Tier 0 

segments are the boundary segments of the TAZ zones developed for the Turnpike State 

Model.  Tier 1-N segments are roads inside a TAZ zone, and each TAZ is analyzed 

separately as a unit.  The segments with the same Roadway ID are called a route.  The 

segments of a route that touches a tier 0 segment were assigned a tier value of 1.  The 

segments of a route that touches a tier 1 route were assigned a tier value of 2.  The 

process repeats until every route and segment within the TAZ is assigned a tier value. 
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The AADT of a tier 0 segment will be the official FDOT AADT, but if a segment 

did not receive an official FDOT AADT, the Turnpike State model volume is used as the 

AADT. 

To calculate the AADT for the non-state road segments in a TAZ, the routes are 

buffered and intersected with the parcel polygons and employment points to get the sum 

of housing units and employees associated with each route.  The total number of 

housing units and employees within the TAZ can be summed.  The total number of trips 

within the TAZ can be provided by the Turnpike State Model.  The total number of trips 

divided by the total number of housing units and employees will generate a trip factor.  

Using this trip factor multiplied by the number of housing units and employees for each 

route, each route within the TAZ is assigned a volume. 

Starting from the highest tier routes, each route’s volume is trickled down to the 

connected lower tier routes which are called the mother routes.  If there are multiple 

mother routes, the volume is split evenly and accumulated to each of the mother routes.  

The AADT of a route is the trips for that route plus the accumulation of the trips from the 

higher tiered routes that are connected to the route.  

2.8. Summary 

In this chapter, a comprehensive literature review has been conducted to 

investigate the current techniques and methods for AADT estimation.  The major 

findings of the literature review are summarized below. 

For AADT estimations, the traditional factor approach uses the permanent count 

sites to calibrate the adjustment factors, the short-term count sites to collect the 
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short-duration volume data, and coverts the short-duration volume to the estimated 

AADT with the adjustment factors.  This method may be the most accurate AADT 

estimation method and has been widely applied for state roads.  However, it is obvious 

that it is economically infeasible to maintain the permanent count sites on local roads and 

also infeasible to use the portable count sites to cover all the local roads. 

The regression modeling method uses the statistical methodology and tools to 

analyze the relationship between AADT and socio-economic variables such as population 

and the road characteristic variables such as number of lanes.  This method has been 

most widely researched, but the main problem with this method is that it cannot capture 

passer-by trips.  In addition, it does not perform well when the relationship between the 

independent and the dependent variable is nonlinear. 

Travel demand modeling technique has seldom been researched in terms of 

AADT estimation.  Zhong and Hanson (2009) was the only researched found and 

reviewed.  While their research showed that this method has the potential to improve 

AADT estimation for low-class roads, further research is needed to estimate the 

performance of this method as applied to smaller areas such as parcels level researched in 

this dissertation. 

The image processing method uses image-based data including the 

high-resolution satellite images, aerial photos, and LiDAR (Light Detection and Ranging) 

data to obtain vehicle density and then converts it to a short-duration volume which can 

be expanded to AADT by multiplying by expansion factors.  The limitation of this 

method is that it is difficult to retrieve and estimate volume for local roads accurately, 
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because the traffic on local roads is usually sparse and infrequent compared to major 

roads.    

The machine learning methods such as ANN, K-nearest neighbor algorithm, and 

SVR have also been reviewed, but it was found that these methods usually try to improve 

the traditional factor approach but still need to deploy portable count sites to collect 

short-term traffic count data, which has been proven to be unpractical for local roads.  In 

addition, none of these methods can provide satisfying estimation results for local roads. 

Lastly, the method recently proposed by the URS Corporation for FDOT was also 

reviewed.  The URS method divides the street network in a TAZ into multiple tiers 

according to the road levels, uses the parcels and employee data in the road segment 

buffers to estimate the initial trips, and assigns the trips to the created roadway tire 

structure by trickling down to the connected parent routes.  The idea of this method is 

based on the similarity between the roadway system and the river system, and its process 

is trying to simulate that of the river system.  Theoretically, this AADT estimation 

method should be suitable for local roads, because it uses the most detailed parcel and 

employee data, and collects trips from the lowest level roads.  However, the 

performance of this method needs further evaluation, so it is selected as one of the testing 

methods to compare with the method proposed in this dissertation.  
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CHAPTER 3 

METHODOLOGY 

3.1. Introduction 

From the literature review, it can be concluded that the existing AADT estimation 

methods have limitations on estimating AADT on local roads.  To estimate AADT more 

accurately for local roads, a parcel-level travel demand analysis model based on the 

traditional four-step travel demand forecasting model is proposed and implemented in 

this research.    

In this chapter, the traditional four-step travel demand forecasting model is briefly 

introduced, and the methodology of the parcel-level travel demand analysis model for 

AADT estimation on local roads is then described in detail.  Each step involved in the 

model is then explained at length.  The method to evaluate the estimation results is also 

discussed. 

3.2. Traditional Travel Demand Forecasting Model 

3.2.1. Introduction 

The primary objective of the traditional travel demand forecasting model is to 

predict the effects of various projects, policies, and programs on the highway and transit 

facilities.  The impacts are usually quantified by traffic volumes and transit ridership.  

The model involves a series of mathematical models that simulate human travel 

behaviors in response to a given system of highway and transit alternatives.  
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Traditionally, it is also referred to as four-step travel demand model, as it involves the 

following four steps: trip generation, trip distribution, mode split, and trip assignment. 

Before using the travel demand forecasting model for an urban area or a region, 

planners must clearly define the exact boundaries of the study area, i.e., the cordon lines.  

The study area generally includes all of the developed land and the undeveloped land that 

may be developed in the next 20 to 30 years.  The establishment of the cordon line 

usually take into account the political jurisdictions, census area boundaries, and natural 

boundaries.    

For modeling analysis, the study area is divided into Traffic Analysis Zones 

(TAZs).  A TAZ is the basic unit used to quantify the activities, travel, and transportation 

characteristics of a physical location in the study area.  Its size may vary, depending on 

the density or nature of the development area.  A TAZ can be as small as a single city 

block in an urban area, or it can be larger than several square miles in a rural area.  

Figure 3-1 shows the TAZs in Broward County of Florida. 

A study area may have multiple networks such as highway network and transit 

network, comprising of links and nodes.  The links have associated data attributes 

including travel times, average speeds, capacity, number of lanes, direction, etc.  The 

node attributes may include coordinates, type of intersection, etc.   

A centroid is a special type of node that represents the “center of activity” in a 

TAZ.  Centroids are connected to the surrounding roadways by a special type of links 

called centroid connectors.  Centroids and centroid connectors are used to load the trips 

generated within a TAZ onto the highway network.  The creation of centroids and 

centroid connectors are based on the zone boundaries and the street network.  An 



  

34 

example is given in Figure 3-2 to illustrate the process of creating centroid and centroid 

connectors based on the connections of the street network.   

 

Figure 3-1 TAZs in Broward County, FL 
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Figure 3-2 Creation of Centroid and Centroid Connectors 

Once the transportation network with the centroids and centroid connectors is 

established, the four major model steps, trip generation, trip distribution, mode choice, 

and trip assignment, can be performed for the study area.  Each of the steps is 

introduced separately in the following sections.    

3.2.2. Trip Generation 

The major objective of the trip generation step is to forecast the number of trips 

that each TAZ will produce or attract.  The trips are categorized in different purposes 
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such as work, school, shopping, and social-recreational, etc.  Trip purpose is a major 

factor affecting travel behaviors, so categorizing trips into different purposes can help 

build a more accurate travel demand forecasting model.   

Oppenheim (1995) described trip generation in detail.  A trip is a one-direction 

movement, which means when a person went from home to work in the morning and then 

returned home from work in the afternoon, a total of two trips were made.  For modeling 

purposes, the trip origins and destinations are converted to trip productions and 

attractions.  A trip production is defined as the home end of a home-based trip or the 

origin of a non-home-based trip, and a trip attraction is defined as the non-home end of a 

home-based trip, or the destination of a non-home-based trip. 

Trip production is associated with households, so it is a function of household 

characteristics including house hold type, vehicle ownership, income, etc.  Trip 

attraction is associated with commercial or industrial sites, so it is a function of the 

variables such as number of employees, total floor area, etc.  Two common methods 

used to perform trip generation are multiple regression and cross-classification analysis. 

The multiple regression method expresses trips as a function of one or more 

independent variables.  Each variable is associated with a trip rate, which is estimated 

through a model calibration process using the trip survey data. 

The cross-classification method, also known as category analysis method, 

stratifies trip rates based on household characteristics such as household size and vehicle 

ownership.  Unlike the regression method which uses data aggregated to TAZ, the 

cross-classification method is a disaggregate method and uses input at the dwelling unit 

level.  To estimate the trips generated by a TAZ, the number of households belonging to 
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each of the different strata is multiplied by the corresponding trip rate, and the total trips 

generated by a TAZ is obtained by summing the trips from each stratum.   

3.2.3. Trips Distribution 

After the trips generated by each TAZ are estimated, the trip distribution model 

can be used to distribute trips among the zones.  The result is a set of trip interchanges 

for each pair of TAZs.   

Oppenheim (1995) described trip distribution in detail.  Trip distribution has 

traditionally been performed based on either the gravity model or the growth factor 

method.  The gravity model was derived from Newton's law of gravity.  It assumes the 

total number of trip interchanges between a pair of zones is directly proportional to the 

trip intensities of the two zones and inversely proportional to the separation between the 

two zones which is measured by travel impedance such as travel time.  The model can 

be expressed using the following formula: 

 

i

imimm

ijijj
ij T

n

m
KFA

KFA
T ×


=

=

1

)(
 

(3-1)  

where, 

Tij  = trips produced in zone i and attracted to zone j; 

Ti = total trip productions at zone i; 

Aj = total trip attractions at zone j;  

Fij = separation between zones i and j, commonly known as friction factor;  

Kij = a socioeconomic adjustment factor between zones i and j; and 

n = number of zones. 
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The growth factor method predicts the future number of trip interchanges between 

two zones based on the base-year trip interchanges.  This method is useful when 

information on travel impedance is not available or cannot be sufficiently estimated.     

3.2.4. Mode Choice 

After the trip interchanges between each pair of TAZs are estimated in the earlier 

step, the mode choice step, also known as mode split, is performed to determine what 

transportation mode each traveler will use.  The step estimates the percentage of people 

that use private automobiles, carpools, public transit, etc.   

Oppenheim (1995) described mode choice in detail.  The mode choice step can 

also be performed after the trip generation step and before the trip distribution step.  

This is called the pre-distribution mode choice model.  The common practice is to 

perform the model choice step following the trip distribution, called the post-distribution 

mode choice model. 

The most common form of the mode choice model is the logit model.  It assumes 

that the probability of the traveler choosing a particular mode is based on the relative 

values of number of factors including the characteristics of the traveler, trip 

characteristics, and the characteristics of the transportation mode.  The logit model is 

defined as follows: 
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where, 

Pi = probability of choosing mode i, 
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Ui = utility function of mode i, and 

n = number of zones. 

In addition to the mode choice, three additional sub-steps are usually performed 

as part of the mode choice step.  They include converting the person trips to vehicle 

trips, combining the vehicle trip tables of different trip purposes into a single trip table, 

and converting the trip table from non-directional production-attraction format to 

directional origin-destination format. 

3.2.5. Trip Assignment  

Once the transportation modes that the travelers will choose have been 

determined, the trip assignment step will be performed to predict the routes that they will 

use. 

Oppenheim (1995) provided detailed information regarding trip assignment step.  

A simple trip assignment method is called all-or-nothing assignment.  It assumes all the 

travelers will choose the route with the shortest free flow travel time for a trip.  This 

method will become unreliable during congestion, because congestion increases travel 

time.  Therefore, another method called all-or-nothing with capacity restraint, also 

known as the equilibrium assignment method, is commonly used for trip assignment.  In 

this method, the travel times are recomputed on basis of the loaded network and the trips 

are reassigned based on the new travel times.  It is necessary to implement an iterative 

procedure in order to apply this type of assignment.  In each iterative procedure, the 

travel times are recomputed at the end of each assignment and used as the input to the 

next assignment iteration.  The procedure continues until some sort of equilibrium is 
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established in the system.  The basis in this procedure is the utilization of some form of 

capacity-restraint function to adjust travel times.  A number of such functions have been 

researched.  The one developed by the Bureau of Public Roads (BPR) is defined as 

follows.   
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(3-3)  

where 

T = new travel time, 

T0 = free flow travel time, 

v = assigned volume, and 

c = practical capacity. 

3.3. Parcel-level Travel Demand Analysis Model 

3.3.1. Introduction 

Similar to the traditional travel demand forecasting model, the proposed 

parcel-level travel demand analysis model also involves a series of mathematical models 

to simulate human travel behaviors.  However, unlike the traditional travel demand 

forecasting model, which attempts to simulate the choices that the travelers may make 

during the entire trip from the origination to the destination, the parcel-level model 

attempts to simulate choices that travelers may make in response to the given local streets 

system to access the major roads which are just the initial parts of the entire trip.           

As shown in Figure 3-3, the process of the proposed parcel-level travel demand 

analysis model is straightforward.  Four steps named network modeling, parcel-level 
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trip generation, parcel-level trip distribution, and parcel-level assignment will be 

performed separately, in sequence. 

 

Figure 3-3 Flowchart of Parcel-level Travel Demand Analysis Model 

The functionalities of each step involved in the parcel-level travel demand 

analysis model are listed as follows:  

• Network Modeling defines the boundaries of the study area, prepare and 

preprocess the roadway network, parcel, and traffic counts data, and sets up the 

network representation of the roadway linked with parcels and traffic count sites.   

• Parcel-level Trip Generation estimates the number of vehicle trips generated by 

each parcel in the study area.  The estimation is calculated based on the land use 

type of each parcel and the respective ITE trip generation rate for that type.   
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• Parcel-level Trip Distribution determines where the trips generated by each parcel 

will go.  It determines the number of trips between a parcel and a traffic count 

site based on traffic count data (or AADT estimated from the count data) and the 

shortest travel time between them. 

• Parcel-level Trip Assignment predicts the routes the travelers will take to 

approach the traffic count sites, resulting in the estimated AADTs of local roads 

in the study area. 

From the above discussion, it can be seen that the principle of the proposed 

parcel-level travel demand analysis model is similar to that of the traditional four-step 

zone-level travel demand analysis approach as both methods attempt to simulate human 

travel behaviors.  However, there are also significant differences between them.  While 

the traditional model performs the travel demand analysis on an abridged roadway 

network with only major roads, the proposed model simulates the trips on an unabridged 

roadway network including the local roads.  Another major difference is that there is no 

mode choice step in the parcel-level model, since the parcel-level trip generation step will 

generate only vehicle trips and exclude the transit trips, which are usually represented by 

walk trips inside a zone traveling between public transit facilities such as bus stops 

located on major roads.  A third difference is that while the traditional four-step 

zone-level travel demand model distributes trips among TAZs, parcel-level model will 

distribute the trips between the parcels and their nearby traffic count locations.  The 

differences between these two approaches will be shown in greater detail in the sections 

below.    
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3.3.2. Network Modeling 

In network modeling step, the data preparation process is comprised of the 

following three sub-steps: 

• define the boundary of the study area; 

• prepare and preprocess the required data including roadway network, parcels, and 

count sites; and 

• link the parcels and the count sites to the unabridged roadway network. 

As mentioned above, the boundary of the study area is commonly called the 

cordon line.  When defining the cordon line, the same rules for the traditional zone-level 

travel demand analysis approach can be followed.  To establish the cordon line, political 

jurisdictions, census area boundaries, and natural boundaries may be taken into account, 

and it is generally defined such that it intersects with as fewer roads as possible. 

After the boundary of the study area is defined, the required data are prepared and 

preprocessed.  The data include the unabridged roadway network data, the detailed 

parcel data, and the traffic count sites data.  If necessary, some preliminary processing 

on the input data is performed in this step.  For example, the traffic count site data can 

be divided into two groups based on the location of count site (if a count site is located on 

the major roads or the local roads) so that the major roads group will be used for AADT 

estimation, and the local roads group will be used for results evaluation. 

Another important step in network modeling is to link parcels and traffic count 

sites to the unabridged network.  Similar to the method adopted by zone-level travel 

demand analysis, some special nodes and links named parcel centroids and parcel 
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centroid connectors, respectively, can be used to represent parcels and their points of 

access to the surrounding roadways. 

3.3.3. Parcel-level Trip Generation 

Parcel-level trip generation is the process used to estimate and quantify the 

number of trips each parcel will produce and attract.  In this research, this step will be 

implemented by using both the parcel data from the Department of Revenue (DOR) and 

the trip generation rates and regression equations from the Trip Generation Manual (8th 

edition, 2008), published by the Institute of Transportation Engineers (ITE). 

The DOR parcel data describe the rights, interests, and value of properties and it 

defines the legal boundaries of land parcels in the deed to properties.  Real estate tax 

parcels are typically graphic representations of the land ownership to support property 

taxing functions.  Parcel data forms the basis for all land use and zoning decisions, and 

represents the location of residences, businesses, and public lands.   

Parcels are the lowest geographical level land use.  There are typically hundreds 

of parcels within a TAZ.  The lowest level land use scale can provide more accurate and 

detailed geographical information to help conduct the microscopic transportation study 

such as AADT estimation for local roads in this research.  An example that compares 

the sizes between parcels and TAZs is illustrated in Figure 3-4.  In this figure, the 

thicker lines are the TAZ boundaries, and the thinner lines are the parcel boundaries.   
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Figure 3-4 Comparison of Parcels and TAZs 

The ITE Trip Generation Report (8th edition, 2008) is a multi-volume 

informational report which presents a summary of the trip generation data that have been 
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voluntarily collected and submitted to ITE.  The data used to compile this information 

report is based on more than 4,800 individual studies conducted in the United States and 

Canada since the 1960s.  These data were submitted voluntarily to ITE by various 

agencies.  In the 8th edition of the report, trip generation rates and/or equations are 

provided for 10 main land use categories and 162 sub-categories.  For a specific land 

use type, trip generation rates and regression equations (if available) are developed for 

daily traffic (average weekday, Saturday, and Sunday) and peak hour traffic (AM and PM 

peak hour for weekday, Saturday, and Sunday). 

Figure 3-5 is an example of the statistical and descriptive information available 

for the majority of the land uses contained in the ITE Trip Generation Report.  Data 

plots provide the most fundamental display of the variance within the database.  Other 

important information provided in the report include the land use name, land use code, 

average trip rate, range of rates, independent variable, number of studies, regression 

equation, R2, etc.  As shown in Figure 3-5, this report provides the weekday trip 

generation information for fast food restaurant with drive-through windows (with land 

use code 834) based on 1,000 square feet gross floor area, and its average trip rate is 

632.125 trips per day. 

It should be noted that great care should be taken when selecting the average trip 

rates and the regression equations to carry out the trip generation analysis.  As shown in 

Figure 3-5, the text above the data plot warns that the data for this land use type should 

be used carefully because of the low R2.  Therefore, the descriptions and statistical 

information provided for each land use should be carefully reviewed. 
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Figure 3-5 Example of ITE Trip Generation Report 
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Depending on the linear or logarithmic relationship between the independent 

variable and the dependent variable, there are two forms of regression equations used in 

the ITE Trip Generation Report, which are listed as follows: 

 baXTLinear +=:  (3-4) 

 bXaLnTLncLogarithmi += )()(:   (3-5)  

where 

T = number of vehicle trips generated by a parcel; 

X = independent variable such as dwelling units, or gross floor area, etc.; and 

a, b = parameters a and b. 

Guidelines are provided in the Trip Generation Handbook which provides 

suggestions on selecting among weighted average trip rates, regression equations, and 

data plots in estimating the trip generation characteristics of a specific land use.  Many 

professionals calculate trip generation characteristics with both the average rate and the 

regression equation, and then use the one that provides the highest estimate of the number 

of the trips in the analysis.  However, this is not suggested in the handbook.  ITE’s 

suggested guidelines on using the average rates or the regression equations and when 

local data should be collected are listed as follows:  

• Use the regression equations when: 

 regression equation is provided, 

 independent variable is within the range of data, 

 data plot has at least 20 points, 

 the R2 is greater than or equal to 0.75, 

 equation falls within data cluster in plot, and  
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 standard deviation > 110 percent of the average rate. 

• Use the average rate when: 

 at least three data points are available (ITE encourages local data be collected 

when three to five data points are provided), 

 independent variable is within the range of data, 

 standard deviation is less than or equal to 110 percent of the average rate, 

 the R2 is less than 0.75 or no regression equation provided, and 

 average rate fall within data cluster in plot. 

• Collect local data when: 

 study site is not compatible with the ITE land use code definition, 

 only one or two data points are provided, 

 independent variable does not fall within the range of data, and  

 neither average rate line nor fitted curve falls within data cluster at size of 

development. 

In this research, the guidelines listed above are followed to the extent possible.  

In the case that a regression equation is lacking or not suitable for trip generation 

calculation, the average trip generation rates provided by the ITE Trip Generation Report 

will be used to calculate the parcel-level trips. 

The ITE Trip Generation Report also includes the peak hour traffic information, 

but in this research, only daily traffic trip generation rates and regression equations will 

be needed.  Due to the different travel patterns among the weekday, Saturday, and 

Sunday, the number of trips for weekday, Saturday, and Sunday will be calculated 

separately through the use of either a regression equation or the average trip generation 
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rate. The final estimated number of trips for a parcel is their average value, which can be 

calculated as follows: 

 7
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(3-6)  

where, 

Taverage = the final estimated number of trips generated by a parcel; 

Tweekday = average weekday trips generated by a parcel; 

TSaturday =  Saturday trips generated by a parcel; and  

TSunday =  Sunday trips generated by a parcel. 

While parcel-level trip generation can be performed for most of the land use types 

defined in the parcel database through the steps introduced above, some special types 

may require further steps with the use of various other demographic or land use 

databases.   

The ITE Trip Generation Report has more detailed land use types, so some land 

use codes in the parcel database encompass several ITE land use types.  Table 3-1 lists 

two such examples. 

Table 3-1 Examples of Land Use Types Matching 

Parcel Land  
Use Code 

Parcel Land Use ITE Land Use Code ITE Land Use  

072 Private School 
534 Private School (K-8) 

536 Private School (K-12) 

023 Financial Institutions 
911 Walk-in Bank 

912 Drive-in Bank 

In these cases, the ITE rates in the constituent land use type are averaged and 

weighted by an estimate of the relative presence of each category in the study area, which 
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can be obtained from other demographic or land-use databases.  The calculation can be 

expressed as follows: 
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where 

T = number of vehicle trips generated by a parcel; 

Fi = the ITE trip generation function (either regression equation or average 

trip rate, which can be regarded as a special linear regression without 

parameter b) for ITE land use type i; 

X = independent variable such as dwelling units, or gross floor area, etc.; 

and 

Pi = the percentage of the presence of ITE land use type i in the study area. 

For most of the land use types, ITE trip generation rates are based on dwelling 

units or gross floor area, which are also the attributes of a parcel in the parcel database.  

Hence, for a majority of parcels, the trip generation can be calculated directly by using 

the parcel data.  However, for some land use types, if the ITE rates use, as an 

independent variable, a size attribute that differs from the parcel data, these types need to 

be adjusted by the ratio between their mean values, and the calculation can be expressed 

as follows: 

 )( RXFT ×=  (3-8) 

where, 

T = number of vehicle trips generated by a parcel; 
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F = the ITE trip generation function (either regression equation or average 

trip rate, which can be regarded as a special linear regression without 

parameter b); 

X = independent variable such as dwelling units, or gross floor area, etc.; 

and 

R = the ratio of mean values between the ITE independent variable and the 

parcel size attribute.  

3.3.4. Parcel-level Trip Distribution 

Once the number of trips for each parcel has been generated, the next step is to 

distribute the trips to the nearby count sites; this is performed in the parcel-level trip 

distribution step.   

While the traditional model distributes the trips generated by each TAZ to all the 

TAZs in the study area, the proposed model distributes the trips generated by each parcel 

only to the count sites on the major roads within a certain distribution range.    

Similar to the zone-level trip distribution model, parcel-level trip distribution is 

also derived from Newton's law of gravity.  It can be expressed as follows: 
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where, 

Tij  = daily vehicle trips between parcel i and traffic count site j, 

Ti = total vehicle trips generated at parcel i, 
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Aj = AADT estimated from traffic count volume at traffic count site j, 

Dik = the shortest free flow travel time between parcel i and traffic count site 

k, and 

n = number of the nearby traffic count sites within a distribution range. 

From the formula, it can be seen that parcel-level trip distribution is to distribute 

the trips between the parcels and the nearby traffic count sites within a distribution range 

in a manner that differs from zone-level trip distribution which distributes trips among all 

the zones.  It assumes that the total number of vehicle trips between a parcel and a 

traffic count site is directly proportional to the trips generated by the parcel and the 

AADT value estimated from the traffic volume measured at the traffic count site, and is 

inversely proportional to the shortest free flow travel time between them. 

In Figure 3-6 and Table 3-2, an example is given to illustrate the trip distribution 

calculation procedure.  In Figure 3-6, it is assumed that there is a parcel which generates 

200 trips per day, and the distribution range is the nearby major roads that surround the 

area.  Within the distribution range, there are eight traffic count sites on the surrounding 

major roads, and their traffic count data (or AADTs estimated from the traffic count data) 

are shown in the figure.  Table 3-2 lists the assumed free flow travel times from the 

parcel to the traffic count sites, the calculation procedure, and the calculated trips 

distributed to each traffic count site.  

It should be noted that the process of parcel-level trip distribution introduced 

above only takes into consideration the case that there is only one centroid connector for 

each parcel.  Theoretically, if a parcel has multiple centroid connectors, the parcel trips 

are suggested to be split, and the trip distribution for each connector will be the same as 
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the process described above.  However, the parcels with multiple accesses to the roads 

are usually the large scale land use for business or education, and this type of parcels is 

typically located adjacent to major roads.  Therefore, it should not affect the 

performance of the model if only one centroid connector is created for each parcel, since 

this research is to estimate AADTs for local roads alone.   

 

Figure 3-6: Example of Parcel-level Trip Distribution 
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Table 3-2: Example of Parcel-level Trip Distribution Calculations 

i j Ti 
Aj 

(Trips/Day) 
Dij 

(Seconds) 
Aj / Dij Tij 

1 1 200 24,000 101 237.62 15200
63.3081

62.237
=×  

1 2 200 40,000 49 816.33 53200
63.3081

33.816
=×  

1 3 200 45,000 74 608.11 39200
63.3081

11.608
=×  

1 4 200 34,000 123 276.42 18200
63.3081

42.276
=×  

1 5 200 25,000 101 247.52 16200
63.3081

52.247
=×  

1 6 200 50,000 153 326.80 21200
63.3081

80.326
=×  

1 7 200 40,000 151 264.90 17200
63.3081

90.264
=×  

1 8 200 31,000 102 303.92 20200
63.3081

92.303
=×  

63.3081

1

=
=

n

j ij

j

D

A
Total Trips = 200

  Since the parcel-level trip distribution is to distribute trips between the parcels 

and the traffic count sites, there are some requirements for the count sites data.  Firstly, 

there should be enough traffic count sites to evenly cover the major roads in the study 

area.  In addition, enough traffic count data on local roads are also suggested to be 

collected, so that they can be used to evaluate the model.  Secondly, if there are no 

estimated AADT values available, daily traffic count data can also be used.  In either 

case, it is required that all the traffic count sites adopt the same kind of daily volume 

measurement to maintain consistency.    
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While a traditional zone-level trip distribution model usually includes the effects 

of multiple travel impedance factors, such as travel time, cost, etc., parcel-level trip 

distribution will only consider the shortest free flow travel time. This is expedient 

because travel time is the major factor that determines the trips on the local roads, and 

travelers will choose the fastest path to access major roads in order to arrive at their 

destinations as soon as possible.   

The free flow travel time will also be used to determine the distribution range.  

The trips generated by a parcel will be distributed to only the traffic count sites that can 

be reached within certain travel time, and the traffic count sites that are too far away from 

the parcel will not attract any trips, based on the fact that the trips on the local roads are 

mainly influenced by the nearby surrounding major roads.  The distribution range is 

used to make sure that the trips of a parcel are distributed locally, and as a result, the trips 

will also be assigned locally in the following parcel-level trip assignment step.  

3.3.5. Parcel-level Trip Assignment 

Once the number of vehicle trips between the parcels and the nearby traffic count 

sites has been calculated by the parcel-level trip distribution step, the next step is to 

predict the routes that the travelers will take to approach these count sites.  This step is 

referred to as the parcel-level trip assignment. 

Zone-level trip assignment commonly uses an all-or-nothing with capacity 

restraint method, also known as the equilibrium assignment method.  It is implemented 

through an iterative procedure in which travel time for each link on the network is 

calculated at the end of each assignment and used as the input to the next computation of 
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the minimum impedance routes.  The iterative procedure continues until the model 

reaches equilibrium when further route changes will increase the travel time.  This 

method is suitable for zone-level trip assignment because the trips among zones are 

usually assigned to the major roads where avoiding congestion to save travel time is the 

primary concern of travelers.  In the case of parcel-level trip assignment, congestion 

seldom happens on local roads; as such, the simple all-or-nothing assignment method is 

adopted to assign trips, and only travel time is considered to affect the travelers’ route 

selection.  

After the trips for all of the parcels have been assigned, the sum of the trips 

assigned to each road segment is its estimated AADT. 

3.6. Evaluation Method 

Finding a good method to evaluate the accuracy for the estimation results of the 

proposed model is not easy.  This is mainly because there are no permanent counters 

installed on local roads, thus no full year volume data available to calculate the true 

AADTs. Therefore, the methods introduced in this research will provide an approximate 

evaluation.   

One way to evaluate the proposed method is to compare its results with those 

from the traditional factor method.  This assumes that the traditional factor method with 

short-term traffic count data is more reliable and can be used as the ground truth data.  

Some local roads also have portable traffic counters, and the AADT values estimated 

with the traditional factor method are already available.  Hence, those roads can be 

chosen from the study area as the evaluation locations. 
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To quantify the difference between the proposed method and the traditional factor 

method, the following three commonly used measures of accuracy will be used: Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute 

Percentage Error (MAPE).  Their calculations are expressed as follows: 
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where, 

G(i) = the ground truth AADT at location i;  

F(i) = the estimated AADT at location i; and  

n = the total number of locations. 

Results from the other AADT estimation methods are evaluated using the same 

ground truth data.  The results from the USF regression method and the URS method 

will be chosen and compared with those of the proposed method.   

Depending on the availability of enough traffic count data, the study areas will be 

selected from Broward County in Florida, which was found to have the most complete 

traffic count data for its local roads.  Hundreds of traffic counters are deployed each 

year in this county to collect traffic volume.  For all the evaluation locations on the local 

roads, the results of the three methods, the USF method, the URS method, and the 
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proposed method, will be compared with the ground truth AADT, separately, and the 

difference of each method from the ground truth AADT will be measured and compared.  

To check the performance of the proposed method for the lowest level roads 

without any traffic count data available, the results of the three evaluation methods for 

this type of roads will also be checked and compared based on reasonableness. 

3.4. Summary 

In this chapter, the procedure of the traditional four-step travel demand 

forecasting model was first introduced as the background information.  The 

methodology of the proposed parcel-level travel demand analysis model was then 

described in detail.  Lastly, the method to be used to evaluate the proposed method was 

also presented. 

Compared to the traditional travel demand forecasting model, the parcel-level 

travel demand model was simplified and optimized for estimating AADT on local roads, 

which is one of the major contributions of this study.  The major differences between 

these two models are summarized as follows: 

• The objectives of the two models are different.  The major objective of the 

traditional travel demand model is to predict the changing traffic volume or transit 

ridership in the future caused by various projects, policies, and programs on the 

highway and transit facilities.  The objective of the proposed parcel-level travel 

demand model is to estimate AADT for local roads in a study area based on the 

highway facilities and the traffic count data already collected on major roads.   
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• While the traditional model performs the travel demand analysis on an abridged 

roadway network with only major roads, the proposed model simulates the trips 

on an unabridged roadway network including the local roads.   

• The trip generation methods of the two models are different.  The traditional 

travel demand forecasting model separates the calculation of trip productions and 

attractions with the aggregated socioeconomic data at the zone level, but the 

parcel-level travel demand model uses the detailed DOR parcel data and ITE trip 

generation rates and equations to perform the parcel level trip generation without 

distinguishing between trip production and attraction.  In addition, unlike the 

traditional model which has to convert the calculated person trips to vehicle trips, 

the parcel-level model calculates the vehicle trips directly.  Further, the 

parcel-level model does not take into account the different trip purposes.    

• The trip distribution procedures of the two models are different.  While both 

models use the similar gravity model to perform trip distribution, the traditional 

travel demand model calculates the trip interchanges between each pair of zones, 

and the parcel-level model distributes the trips generated by a parcel to the traffic 

count sites. 

• The parcel-level travel demand model does not have the mode choice step, a 

standard step for the traditional four-step travel demand forecasting model.  

Transit services are commonly provided on the major roads, so travelers usually 

access the nearby public transit facility such as bus stops by walking.  Even if 

they access via automobile, the trips will be included by the parcel-level trip 
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generation step.  Therefore, it is not necessary for the parcel-level travel demand 

model to include the mode choice step. 

• The trip assignment methods of the two models are different.  While the 

traditional travel demand model uses the equilibrium assignment method which 

involves multiple assignment iterations, the parcel-level model uses the simpler 

all-or-nothing assignment method. 

• Unlike the traditional travel demand forecasting model, the result of which is a 

loaded network with bidirectional volume, the parcel-level travel demand model 

needs to perform additional post-processing on the loaded network to obtain the 

final AADT estimations on local roads.   
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CHAPTER 4 

MODEL DEVELOPMENT 

4.1. Introduction 

As mentioned in Chapter 1, the goal of this research is to develop an improved 

method of estimating AADT for local roads by applying travel demand modeling 

techniques.  In Chapter 3, the methodology of the proposed parcel-level travel demand 

analysis model has been described. This chapter describes the implementation of the 

proposed model in detail.  An overview of the model implementation is first introduced, 

and the implementation of each step involved in the model is then explained. 

4.2. Model Development Overview 

A parcel-level travel demand analysis model was implemented to estimate AADT 

for local roads.  The following two development tools have been adopted to implement 

this model: ArcGIS from Esri and Cube from Citilabs. 

ArcGIS is a software suite consisting of a set of Geographic Information System 

(GIS) software products produced by Esri.  ArcGIS has been widely used for creating, 

analyzing, and managing geographic information in many applications.  In this research, 

ArcGIS 10.0 was used to perform both data pre and post-processing.   

Cube is a travel demand modeling software product marketed by Citilabs.  It has 

been widely used for transportation planning to analyze and estimate the impacts of a 

wide range of infrastructure improvements and operating policies.  In this research, 

Cube 5.1.3 was used to develop the four model steps.  Cube Voyager is a module of the 

Cube software suite.  It provides a script-base structure allowing the implementation of 
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multiple model methodology including standard four-step model, discrete choice model, 

and activity-based model.  It also provides a comprehensive library of functions for the 

modeling and analysis of passenger transportation systems.  To implement the 

parcel-level travel demand model proposed in this research, Cube Voyager scripts were 

developed to customize the standard four-step model templates provided by Cube 

Voyager.  Because the standard templates are designed for traditional zone-level travel 

demand modeling, it was necessary to customize them to simulate the parcel-level travel 

patterns with the zone-level implementation.  A parcel defined in the proposed model 

can be treated as a small size Traffic Analysis Zone (TAZ) used in the traditional travel 

demand modeling. 

Figure 4-1 shows the system components and the procedure used to estimate 

AADT.  The procedure can be divided into the following sub-steps: 

• ArcGIS is used to preprocess the input data for the model including the DOR 

parcel data, unabridged highway network data, and traffic count sites data.   

• The preprocessed input data are imported into Cube, and the highway network is 

built from the unabridged roadway shape file.   

• The built highway network is used by the network modeling step to calculate the 

free flow travel time skim matrix.   

• The parcel-level trip generation step is performed by using the merged DOR 

parcel data and traffic count sites data as well as the trip generation rates and 

regression equations provided by the ITE Trip Generation Report.   

• A parcel-level trip distribution gravity model is used to distribute the generated 

trips between the parcels and the nearby traffic count sites.   
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• The distributed trips are assigned to the network by using all-or-nothing 

assignment method in the parcel-level trip assignment step.   

• The traffic volume data of the loaded network are exported, and ArcGIS is used 

again to calculate the final AADTs, which are then joined with the original 

roadway network to get the roadway network with AADTs. 

 

Figure 4-1 System Components and Procedure 

The ArcGIS component was implemented with an ArcGIS application called 

ArcGIS ModelBuilder, which provides a visual programming environment allowing users 

to graphically link geoprocessing tools into models.  While the models built with 

ModelBuilder can be executed directly in ArcGIS, they can also be exported to scripting 

language such as Python.  The Python scripts can be called with the Cube Voyager Pilot 

program, so theoretically all the steps of the ArcGIS part can be integrated into Cube to 

simplify the running of the entire model.  However, because this part has called some 
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geoprocessing tools that are supported only by ArcGIS 10.0, which is not compatible 

with the current version of Cube (5.1.3), integration of ArcGIS into Cube has not be 

implemented.  Nevertheless, this incompatibility would not affect the results of the 

entire model. 

Figure 4-2 shows the model steps and the input and output files for each steps 

implemented in Cube.  It can be noted that the four model steps are integrated.  When 

the model is run, the four steps are executed in sequence, and the output files of a 

previous step becomes the input files of a later step.  If there were no compatibility 

problems as mentioned above, the ArcGIS part should have been combined with the 

Cube, and the steps shown in this Figure 4-2 would be all the steps involved in the entire 

model. 

 

Figure 4-2 Model Steps in Cube 
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Table 4-1 summarizes the input and output files for each step.  There are two 

input files for the Cube.  One is the network file preprocessed by the ArcGIS, and the 

other is the DBF file for the merged parcels and traffic count sites shape file which is also 

generated by the ArcGIS.  There is one output file generated by the Cube part, and it is 

the DBF link file with the traffic volume information exported from the loaded network 

assigned in the parcel-level trip assignment step.  Among the steps, the output files of a 

preceding step may become the input files of a later step. 

Table 4-1 Input and Output Files 

Model Step Input File Output File 

Network Modeling Preprocessed Network File 
Free Flow Time SKIM Matrix File

Modified Network File 

Parcel-level Trip 
Generation 

Merged Parcels and Counts 
DBF File 

Vehicle Trips DBF File 

Parcel-level Trip 
Distribution 

Free Flow Time SKIM Matrix 
File Distributed Trips Matrix File 
Vehicle Trips DBF File 

Parcel-level Trip 
Assignment 

Distributed Trips Matrix File Link DBF File with Volume 
Exported from Loaded Network Modified Network File 

The following sections describe the steps in implementing the parcel-level travel 

demand model.  Preprocessing of the input data with ArcGIS will be introduced in the 

Network Modeling step, and the calculation of the AADT values from the loaded 

network and the implementation of the evaluation with ArcGIS will be described under 

the Parcel-level Trip Assignment step.  
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4.3. Network Modeling 

The implementation of the Network Modeling step includes the following four 

sub-steps: 

1) Preprocess the input data in ArcGIS. 

2) Build the Cube network file from the roadway shape file. 

3) Create the centroid connectors in Cube. 

4) Calculate the free flow time skims matrix in Cube. 

The implementation of each of these steps is described in detail below. 

4.3.1. Data Preprocessing 

The preprocessing of the input data involved: 

• Dividing the traffic count site point data into two groups, one for estimating 

AADT, and the other for evaluating the results. 

• Buffering traffic count site points for AADT estimation and merging them with 

the DOR parcel polygon data. 

• Splitting roadway polylines at the parcels’ access points.  

Division of traffic count sites was based on the level of the road at which a traffic 

count site is located.  Count sites on the major roads were used for AADT estimation, 

and those on the minor local roads were used for results evaluation.  This step is not 

required, but it is highly recommended if there are many traffic count sites located on the 

minor roads.  This will not only help provide the required data for the results evaluation 

but also improve the accuracy of AADT estimation.  
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TAZ boundaries were used to locate traffic count sites on the major roads.  

Figure 4-3 shows the model used in ArcGIS to divide count sites into estimation and 

evaluation groups.  As shown in Figure 4-3, the input data used were the TAZ polygon 

data and the traffic count site point data.  The TAZ polygons were converted to the 

polylines, the TAZ boundaries, so that they can be processed by ArcGIS to create buffers 

on both sides of the TAZ boundaries.  The traffic count sites located within the TAZ 

boundary buffers were erased first to retrieve those located on the local roads.  The 

results were compared with the original traffic count sites, and differences were saved as 

the traffic count sites located within the TAZ boundary buffer and on the major roads.  

All the traffic count site points located on the major roads were used for AADT 

estimation, and the count sites located on local roads were used for result evaluation. 

The traffic count sites for AADT estimation had to be merged with the parcels, 

because the trips were to be distributed between them, and they were treated like the 

TAZs in the traditional zone-level travel demand model.  The traffic count site points 

were buffered first so that they have the same feature types with the parcel data.  Not all 

the parcels were used.  Depending on their land use types, very few or no trips could be 

generated by some parcels such as vacant residential, rights-of-way streets, roads, canals, 

camps, rivers, lakes, etc.  A total of 42 parcel land use types are listed with "N/A" in the 

ITE land use column in Table A-1 of Appendix A and were not used.  After the merging 

procedure was completed, a new field named “TAZ” was added, and its values range 

from one to the total number of merged parcels and count sites.  This field is required 

because it ensures that the centroid connectors would be created successfully with Cube 

in the next step.  Figure 4-4 shows this procedure.  
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Figure 4-3 Dividing the Count Sites into Estimation and Evaluation Groups 

It is also necessary to split the roadway polylines at the access points of the 

parcels so that the centroid connectors can be created correctly with Cube in the next 

step.  Cube provides a functionality to automatically add centroid centers and centroid 

connectors, but the connectors can only be created between two nodes.  This means that 

a centroid connector will always connect a centroid center node to its nearest intersection 

node.  An example of a subarea with the centroid connectors created incorrectly is 

shown in Figure 4-5, in which the gray lines represent the added centroid connectors 

connecting the parcels to the closest intersections. 
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Figure 4-4 Merging the Parcels and the Traffic Count Sites 

Connecting the parcels to the closest intersections will seriously reduce the 

accuracy of the AADT estimation.  To prevent this from happening, the access points of 

the parcels on the roads can be estimated and inserted as nodes into the road segments, 

and the centroid connecters will then connect the centroid centers to the closest roads 

instead of the closest intersections.  After the roadway polylines are split, three fields 

named “A”, “B”, and “FF_TIME” were added.  The fields “A” and “B” were required 

for Cube to create the centroid connectors automatically and the field “FF_TIME” wase 
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used to store the Free Flow Time calculated in the next step.  The procedure is shown in 

Figure 4-6. 

  

Figure 4-5 Centroid Connectors Incorrectly Connecting Parcels to Intersections  

Preprocessing of the input data generated two shape files: the split roadway file 

and the merged parcels and count sites file.  These generated files were later used to 

build the Cube network file and create the centroid connectors automatically on the 

network in the sub-steps to follow.  The DBF file associated with the merged parcels 

and count sites shape file were later used as an input file to the parcel-level trip 

generation step.  This file is similar to the TAZ file in the traditional zone-level travel 

demand model. 
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Figure 4-6 Splitting the Roadway Polylines at the Parcel Access Points 

4.3.2. Build Cube Network File 

In this research, the unabridged roadway network data are in the shape file format, 

but Cube models are based on the highway network file format which was defined by 

Citilabs, so the preprocessed roadway shape file has to be converted to the highway 

network file of Cube.  Cube Base provides the functionality and interface to build a 

highway network file from either a shape file or a geodatabase’s feature class.  The 

dialog to build the Cube highway network from the line shape file or the line feature class 

is shown in Figure 4-7.   
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Figure 4-7 Build Highway Network from Line Shape File Dialog 

In this dialog, the output binary network file and the input line shape file can be 

defined.  The node fields A and B have been added to the input line shape file in the last 

sub-step and can be chosen in this dialog.  If the input line shape file has a field to 

indicate one-way or two-way, it can be chosen; otherwise, always two-way is chosen 

since AADT is non-directional.  If the input line shape file does not have an attribute for 

the road segment distance, the Add Distance Filed option should be chosen so that the 

free flow time can be calculated in a later step.  The highest zone number is the number 
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of the merged parcels and traffic count sites in the study area, and the “Starting New 

Node Number” should always be greater than the highest zone number and can be the 

highest zone number plus one.  All other items can be based on the default values.  

After the highway network is built, it was compared with the original shape file to 

check if the build network was the same as the original roadway layout, this was needed 

because Cube might simplify some curved road segments and convert them to straight 

lines.  An example of this mismatching is shown in Figure 4-8.  Fortunately, Cube 

provides a functionality to fix this problem.  It is implemented by overriding the original 

shape file and the built highway network as two layers and correcting the difference 

between the two layers on the built highway network layer.  The Display True Link 

Shape dialog is shown in Figure 4-9.  By using the interface provided by Cube, the built 

network can be fixed by taking the actual shape of the roadway in the shape file. 

 
 

Figure 4-8 Mismatching of the Built Network with Original Shape File 
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Figure 4-9 Display True Link Shape Dialog 

The shape source data have now been converted to a highway network for use in 

modeling, and the next sub-step was to create the centroid centers and connectors for the 

highway network.  

4.3.3. Create Centroid Centers and Connectors  

Cube provides a functionality to add centroid centers and centroid connectors 

automatically.  To use this function, the highway network must be loaded into the 

highway network layer with the correct number of zones specified, and the nodes inserted 

into the road segments in the data preprocessing step are also necessary for this function.  

The Automatic Centroid Connectors Generation dialog for the user to specify the 
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parameters of the generation is shown in Figure 4-10.  In this dialog, some important 

parameters to generate the centroid centers and centroid connectors can be defined.  The 

Maximum Number of Connectors to Generate option was set as one, and default values 

were used for other parameters.  An example of a subarea with the added centroid 

connectors connecting the parcels and the closest roads is shown in Figure 4-11.  The 

green polygons represent the parcel boundaries; the blue lines represent the roadway; and 

the gray lines are the added centroid connectors. 

 

Figure 4-10 Automatic Centroid Connectors Generation Dialog 
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Figure 4-11 Example of Centroid Centers and Connectors Added 

4.3.4. Calculate Free Flow Travel Time Skim Matrix 

After building the Cube network file and correctly adding the centroid centers and 

connectors, the next step was to calculate the free flow time skim matrix, which contains 

the free flow travel times between each pair of parcels/count sites, although only the free 
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flow travel times between the parcels and the count sites were used by the model.  The 

components of this sub-step are shown in Figure 4-12.  It shows that the Cube Voyager 

Network program was called to calculate the free flow time on each roadway segment 

with its distance and speed values, and the Cube Voyager Highway program was called 

to generate the skim matrix file.  This was implemented by using Cube Voyager script 

programming. 

 

Figure 4-12 Components of FFT Skim Matrix Calculation 

4.4. Parcel-level Trip Generation 

The parcel-level trip generation step is to estimate the trips generated by each 

parcel in the study area.  To implement this step, the DBF file associated with the 

merged parcels and count sites shape file generated by data preprocessing with ArcGIS 

was used as the input file, and Cube Voyager Matrix program was called and customized 

to calculate the trips based on each parcel’s land use type.  The output file was also a 

DBF file containing fields such as “TAZ”, “Production”, and “Attraction”.  The 

calculated parcel trips were saved in the “Production” field, and the attraction values of 

the parcels were zero.  The count sites have zero production values, and their attraction 

values were the AADTs estimated from count data.  The components of the parcel-level 

trip generation step are shown in Figure 4-13. 

To calculate the trips of a parcel based on its land use type, it is necessary to 

match the two kinds of land use type classification from the DOR parcel data and the ITE 
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Trip Generation Report.  For tax assessment purpose, DOR parcel data assign each 

parcel with a land use type by using a land use code.  There are a total of 100 land use 

types that were classified.  The ITE Trip Generation Report is based on even more 

detailed land use types with more than 162 specific land use types classified.  Therefore, 

to implement the parcel-level trip generation step, it is important to match the two 

sources of land use type well. 

 

Figure 4-13 Components of Parcel-level Trip Generation Step 

For each land use type, the ITE Trip Generation Report provides trip rates 

information based on several independent variables such as Gross Floor Area (GFA), 

employees, and dwelling units.  The DOR parcel data have many attributes, three of 

which can be used to match the ITE Trip Generation independent variables.  Table 4-2 

lists the matching of parcel attributes and the independent variables in the ITE Trip 

Generation Report.  

Table 4-2 Parcel Attributes and ITE Trip Generation Independent Variable 
Matching 

Parcel Attributes ITE Trip Generation Independent Variable 

NORESUNTS Dwelling Units 

TOTLVGAREA  1000 Sq. Feet Gross Floor Area 

ACRES Acres 
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The ITE Trip Generation Report provides three methods of estimating trips.  The 

data plots can only be used to graphically obtain a rough estimation of trips, so it is not 

practical to use for this model.  The problem with the regression equations is that there 

are many instances when it will result in illogical estimation of trips if the independent 

variable is significantly less than the average-sized value.  The parcel-level trip 

generation is based on each parcel, so the independent variables are usually much lower 

than the average-sized value.  Therefore, the weighted average trip rates were used for 

most of the land use types. 

Appendix A summarizes the matching of land use types of parcel data and the ITE 

Trip Generation Report, the selected independent variables, and the selection of the 

estimation method (average rate or regression equation) for each land use types.  From 

Table A-1 in Appendix A, it can be noted that 42 parcel land use types can be dismissed 

as they generate either zero or an insignificant number of trips.  All the dismissed land 

use types are listed as "N/A" in the "ITE Land Use" column, and their estimated parcel 

trips were zero.   

4.5. Parcel-level Trip Distribution 

The parcel-level trip distribution step distributes trips between the parcels and the 

traffic count sites.  The input files of this step are the results of the two previous steps: 

the free flow skim matrix file generated by the network modeling step and the production 

and attraction DBF file generated by the parcel-level trip generation step.  The Cube 

Voyager Distribution program was called to calculate the trips.  The output file was a 
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Cube Matrix file containing the trips between each pair of parcels/count sites.  The 

components of the parcel-level trip distribution step are shown in Figure 4-14. 

Vehicle Trips DBF File

FFT Skim Matrix File

Customized Cube 
Voyager Distribution 

Program

Distributed Trips 
Matrix File

 

Figure 4-14 Components of Parcel-level Trip Distribution Step 

It should be noted that it is not necessary that the trips generated by a parcel to be 

distributed to all the traffic count sites in the study area.  The distribution range can be 

adjustable, and Cube provides a keyword, LOSRANGE, to specify the range of LOS 

values that are valid for use in the distribution process.  For example, if the 

LOSRANGE is set as 0-10, the trips from a parcel will be distributed to the count sites 

which can be reached within 10 minutes, and there will be no trips to those count sites 

farther than 10 minutes.  Theoretically, the travelers are most likely to access the closest 

higher level state-roads as soon as possible to reduce travel time, so the traffic counts 

close to a parcel tend to attract more trips, and the distribution range should be very 

small.  To verify that, different distribution ranges were chosen and tested, and the final 

distribution range used was 5 minutes.    

4.6. Parcel-level Trip Assignment 

The parcel-level trip assignment step assigns trips between the parcels and the 

count sites onto the routes.  The trips matrix file generated by the trip distribution step 

and the highway network file were used as the input files.  The Cube Voyager Highway 
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program was called to perform the all-or-nothing assignment.  In addition, the Cube 

Voyager Network program was called to extract traffic volume data for each road 

segment from the loaded network file and save them into a DBF file, which was later 

joined with the original roadway shape file to calculate the final AADT values in 

ArcGIS.  The components of the parcel-level trip assignment step are shown in Figure 

4-15. 

 

Figure 4-15 Components of Parcel-level Trip Assignment Step 

Trip assignment is usually the most time consuming step for the traditional 

zone-level travel demand step.  This is because the implementation of the equilibrium 

assignment method involves running several iterations of the assignment procedure with 

an adjustment for the travel time.  However, because the all-or-nothing assignment 

involves only one iteration, the parcel-level trip assignment does not take a long time to 

execute even with a high number of parcels.  
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After exporting the loaded network to the DBF file containing traffic volume data, 

ArcGIS was used to calculate the final AADTs and link the results to the original shape 

file of the road network.  Figure 4-16 shows the procedure for calculating the final 

AADT values.   

 

Figure 4-16 Calculating the Final AADTs 

The volume data exported from Cube have two values, one for each direction.  

However, AADT is bidirectional traffic volume.  As such, the two directional volume 

values were summed up for each road segment.  In addition, because the roadway 

polylines were split at the access points of the parcels in the network modeling step, the 

calculated AADTs provide results that are too detailed.  This means that there could be 

multiple AADTs each road segment depending on the number of access points.  To 

address this issue, the maximum AADT value of the multiple road segments was used as 
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the final AADT for the original segment.  After calculating the AADT values for the 

road network, the results were joined with the original roadway shape file. 

4.7. Summary 

This chapter has described the implementation of all the steps of the parcel-level 

travel demand model.  ArcGIS and Cube were used as the development tools to 

implement the model.  First, ArcGIS was used to preprocess the data.  In the network 

modeling step, the data preprocessing was performed to classify traffic count data for 

AADT estimation and results evaluation, merge the parcels and the traffic count sites 

feature classes, and split the roadway segments by locating and inserting parcel access 

points.  Second, Cube was used to build the network file from the highway shape file 

preprocessed with ArcGIS and create the centroids and centroid connectors on the 

network automatically.  Cube Voyager scripts were written to calculate the free flow 

time skim matrix and develop trip generation, trip distribution, and trip assignment.  The 

loaded network was exported from Cube, and ArcGIS was used to calculate the final 

estimated AADTs, and combine the results to the original roadway network file. 
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CHAPTER 5 

MODEL OUTPUT AND EVALUATION 

5.1. Introduction 

In this chapter, the evaluation of the implemented parcel-level travel demand 

analysis model is described.  An overview of the evaluation procedure is first 

introduced, and then each step of the evaluation procedure and the relevant results are 

analyzed. 

5.2. Evaluation Method  

Depending on the availability of traffic count data, the study areas were chosen 

from Broward County in Florida.  Because Cube can only process a maximum of 32,000 

zones at a time, the size of the study areas was limited to a maximum of 32,000 parcels 

and traffic count sites. 

To evaluate the performance of the proposed method, results of the USF 

regression method and the URS method were compared with those of the proposed 

method.  The comparison was performed at different levels.  Firstly, the three methods 

were compared based on a selected study area.  The traffic count sites located on the 

local roads in this area were selected as the evaluation count sites.  The results of the 

three methods were compared with the AADT values estimated from traffic count data 

which were used as the ground truth AADTs.  The overall estimation errors for this 

study area were also calculated and compared. 

To measure the change of the three methods’ performance with the change of the 

locations and the area types, the comparison was conducted for 10 selected study areas to 
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cover more locations in Broward County, and the standard deviations of the estimation 

errors for these study areas were calculated and compared.    

To further compare the performance of the three methods, the overall estimation 

errors for the 10 study areas were also calculated and compared. 

Lastly, one of the scenarios was chosen to show the performance of the three 

methods for the lowest level local roads without any traffic count sites.  Subjective 

judgment was used to compare the results of the three methods.  This type of 

comparison may not be very accurate as it is based on intuition and reasoning.  

5.3. Single Study Area Comparison 

The chosen study area was an area about 4.7 × 4.7 miles located at the center of 

the Broward County.  As shown in Figure 5-1, the study area has a total of 19 evaluation 

count sites. 

Table 5-1 lists the AADTs for all the estimation count sites estimated by the three 

methods, the ground truth AADTs, and their corresponding estimation errors.  The 

results indicate that the URS method and the proposed method had similar performance 

for this study area, and they have much lower estimation errors than those of the USF 

method. 

By further checking the AADTs estimated by the proposed method for the 

evaluation locations, it was found that three locations (sites 2, 6, and 19) have very high 

estimation errors exceeding 90%.  From the locations shown in Figure 5-1, it can be 

seen that they are located near the boundary of the study area.  It is very possible that 

the results were underestimated for these sites, because they were too close to the 
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boundaries causing the trips which should have passed them to be excluded.  To verify 

that, those three evaluation count sites were removed.  Table 5-2 shows the results, and 

it indicates that the performance of the proposed method was improved.  Therefore, one 

of the limitations of the proposed method is that it provides less accurate AADT 

estimation for roads near the boundary areas.   

 

Figure 5-1 Evaluation Traffic Count Sites in the Study Area 
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Table 5-1 Performance of the Three Methods for the Study Area  

Site 
No. 

AADT 
by 
Count 
Data 

AADT 
by USF 
Method 

USF 
Method 
MAPE 
(%) 

AADT 
by URS 
Method 

URS 
Method 
MAPE 
(%) 

AADT by 
Proposed  
Method 

Proposed  
Method 
MAPE 
(%) 

1 5,900 20,967 255.37 7,074 19.90 1,385 76.53

2 11,000 18,067 64.25 2,225 79.77 1,001 90.90

3 4,400 2,400 45.45 823 81.30 4,112 6.55

4 3,300 20,967 535.36 1,004 69.58 2,010 39.10

5 7,900 0 100.00 1,936 75.49 7,246 8.28

6 21,500 10,750 50.00 35,014 62.86 0 100.00

7 17,500 9,450 46.00 17,100 2.29 27,165 55.23

8 15,700 8,700 44.59 2,209 85.93 11,014 29.85

9 4,800 17,932 273.58 7,354 53.21 1,011 78.93

10 13,000 6,200 52.31 2,209 83.01 1,375 89.42

11 5,000 18,384 267.68 2,665 46.70 7,080 41.60

12 6,000 3,600 40.00 2,076 65.40 5,689 5.18

13 5,900 17,365 194.32 3,614 38.75 10,338 75.21

14 13,000 2,350 81.92 2,209 83.01 9,451 27.30

15 2,800 0 100.00 328 88.29 2,455 12.32

16 4,000 17,932 348.30 2,955 26.13 1,348 66.29

17 6,100 15,496 154.03 1,540 74.75 1,800 70.49

18 4,800 19,154 299.04 220 95.42 601 87.48

19 17,600 17,500 0.57 18,640 5.91 5 99.97

MAPE (%) 155.41 59.88 55.82
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Table 5-2 Performance of the Methods without Invalid Evaluation Count Sites 

Site 
No. 

AADT 
by 
Count 
Data 

AADT 
by USF 
Method 

USF 
Method 
MAPE 
(%) 

AADT 
by URS 
Method 

URS 
Method 
MAPE 
(%) 

AADT by 
Proposed  
Method 

Proposed  
Method 
MAPE 
(%) 

1 5,900 20,967 255.37 7,074 19.90 1,385 76.53

3 4,400 2,400 45.45 823 81.30 4,112 6.55

4 3,300 20,967 535.36 1,004 69.58 2,010 39.10

5 7,900 0 100.00 1,936 75.49 7,246 8.28

7 17,500 9,450 46.00 17,100 2.29 27,165 55.23

8 15,700 8,700 44.59 2,209 85.93 11,014 29.85

9 4,800 17,932 273.58 7,354 53.21 1,011 78.93

10 13,000 6,200 52.31 2,209 83.01 1,375 89.42

11 5,000 18,384 267.68 2,665 46.70 7,080 41.60

12 6,000 3,600 40.00 2,076 65.40 5,689 5.18

13 5,900 17,365 194.32 3,614 38.75 10,338 75.21

14 13,000 2,350 81.92 2,209 83.01 9,451 27.30

15 2,800 0 100.00 328 88.29 2,455 12.32

16 4,000 17,932 348.30 2,955 26.13 1,348 66.29

17 6,100 15,496 154.03 1,540 74.75 1,800 70.49

18 4,800 19,154 299.04 220 95.42 601 87.48

MAPE (%) 177.37 61.82 48.11

5.4. Multiple Study Areas Comparison 

To measure the change of the three methods’ performance with different locations, 

a total of 10 study areas were selected from Broward County.  These locations cover 

diverse areas and as many evaluation count sites as possible.  The roadway layout and 

the locations of the traffic count sites for evaluation and estimation are illustrated in 10 

maps as shown from Figure 5-2 to Figure 5-11 in sequence. 
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Table 5-3 lists the MAPEs of the three methods for the 10 study areas, and the 

standard deviation of the MAPEs.  From the results, it can be noted that the proposed 

method has much lower MAPEs than the USF method for all 10 study areas, and it has 

fairly lower MAPEs than the URS method for 9 study areas.  It can also be noted that 

the proposed method has lower standard deviation for the MAPEs of the 10 study areas 

than the other two methods, which means that its performance is least affected by the 

locations and the area types of the study areas. 

Table 5-3 Variance Measure of the Performance 

Area 
USF Method 
MAPE (%) 

URS Method 
MAPE (%) 

Proposed Method 
MAPE (%) 

1 216.67 57.16 48.02 

2 314.14 68.72 52.16 

3 177.37 61.82 48.11 

4 345.49 87.90 66.09 

5 175.80 35.82 49.08 

6 405.20 77.79 60.08 

7 114.43 66.12 62.27 

8 186.21 63.32 49.10 

9 181.39 65.30 55.67 

10 157.22 42.18 39.15 

Standard 
Deviation 

94 15 8 
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Figure 5-2 Study Area No. 1 
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Figure 5-3 Study Area No. 2 
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Figure 5-4 Study Area No. 3 
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Figure 5-5 Study Area No. 4 



  

95 

 

Figure 5-6 Study Area No. 5 
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Figure 5-7 Study Area No. 6 

 

Figure 5-8 Study Area No. 7 
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Figure 5-9 Study Area No. 8 
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Figure 5-10 Study Area No. 9 
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Figure 5-11 Study Area No. 10 
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5.5. Overall Performance Comparison 

The AADT values estimated using the three methods were compared.  Figures 

5-12, 5-13, and 5-14 compare the ground truth AADTs with the results of the USF 

method, URS method, and the proposed method, respectively.  As expected, the AADT 

values estimated from the three methods are within a reasonable range (i.e., lower than 

30,000 vehicles/day) since all the testing locations were on local roads.  Figure 5-12 

shows that the USF method overestimates AADT for a greater percentage of evaluation 

count sites.  On the contrary, as shown in Figure 5-13, the URS method underestimates 

AADT for a greater percentage of evaluation count sites.  Figure 5-14 shows that the 

traffic estimations of the proposed method are more representative of the ground truth 

data.  From the figures, it can be stated that the USF method tend to overestimate while 

the URS method tend to underestimate the AADT values for local roads.  

 
Figure 5-12 Comparison of USF Estimated AADT with Ground Truth AADT 
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Figure 5-13 Comparison of URS Estimated AADT with Ground Truth AADT 

 

Figure 5-14 Comparison of Proposed Method Estimated with Ground Truth AADT 
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Table 5-4 compares the accuracy of the three estimation methods using the 

following three error estimates: Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and Mean Absolute Percentage Error (MAPE).  Compared to the USF method, 

both the proposed method and the URS method have consistently lower estimation errors; 

the proposed method has an 8% lower MAPE estimation error than the URS method.   

The results indicate that the proposed method has a better overall performance among the 

three methods. 

Table 5-4 Comparison of Estimation Errors  

Errors USF Method URS Method Proposed Method 

MAE 10,047 4,124 3,642 

RMSE 10,891 5,338 4,484 

MAPE 211% 60% 52% 

However, it is worth noting that there could be errors in the AADT values 

adjusted from the raw traffic counts and, hence, the ground truth AADT might not be the 

“actual” AADT value.  Therefore, the results might not accurately reflect the actual 

difference among the three methods.  Nevertheless, to some extent, this evaluation will 

reflect the advantages of the proposed parcel-level travel demand analysis method since 

the results are compared to the same ground truth data and the random errors have 

unbiased influence on the three methods.  

5.6. Reasonableness Check 

Depending on the availability of traffic count data, most of the traffic count sites 

used for this evaluation are located on local roads that are directly connected to the state 

roads.  The lower-level local roads such as the community roads were not used in this 
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evaluation because of the lack of traffic count data.  However, the proposed method is 

expected to perform better even for lower-level local roads as the proposed method’s trip 

generation is based on detailed parcel level data.  To verify this assumption, the AADT 

values estimated using the three methods for the available lower-level local roads were 

checked and compared.  Figure 5-15 gives an example of the comparison.  The figure 

shows the estimation results for the roads in a community of approximately 160 houses.  

 

Figure 5-15 Example of AADT Estimation for Roads in a Community 
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In Figure 5-15, the AADTs estimated by the proposed method, the USF method, 

and the URS method are displayed in red, green, and blue, respectively.  Since there are 

no traffic count data available for lower-level community roads, the estimated AADT 

values are compared based on the number of houses and their layout.  The AADT values 

estimated by the USF method were obviously very high and the estimations from the 

URS method tend to be low for higher-level community roads.  In addition, the USF 

method unrealistically estimated similar AADT values for all the road segments in this 

community, and to an extent, the URS method performed better with estimating different 

AADT values.  The proposed method provided most accurate and reasonable 

estimations that are consistent with the layout of the houses.  

5.7. Summary 

In this chapter, the proposed method was evaluated by comparing it with the USF 

method and the URS method at different levels.  First, the performance of the three 

estimation methods was compared for a single study area, and the results indicated that 

the proposed method performs best.  The proposed model was found to give more 

accurate AADT estimations for the central region of the study area compared to the 

boundaries.  Second, ten study areas were selected from Broward County in Florida to 

compare the sensitivity of the three methods to the change in the study locations and the 

area types.  The ten study areas were chosen based on the availability of sufficient 

traffic count data.  The standard deviations of the estimation errors for these study areas 

were compared.  Compared to the USF and the URS methods, the results showed that 

the proposed method provides more reliable and stable results when the location of the 
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study areas and area types are changed. The combined results from the ten study areas 

also proved that the parcel-level travel demand model method has the best overall 

performance.  Third, the AADT values for lower-level local roads were estimated and it 

was found that the proposed method performs better for lower-level local roads with no 

traffic count data.  In summary, the evaluation results showed that the parcel-level travel 

demand method is an accurate AADT estimation method for local roads. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1. Summary of Research Approach and Results 

A comprehensive literature review was conducted to investigate and assess the 

existing AADT estimation methods.  While all the researched AADT estimation 

methods have their advantages, it was also found that the methods have limitations in 

estimating traffic on local roads.  The traditional factor approach is reliable, but is not 

practical to cover all local roads with portable count sites.  The most widely researched 

regression modeling method cannot provide accurate estimations due to the limitation 

that it cannot capture passer-by trips.  The image processing method cannot retrieve and 

estimate volume accurately because of the sparse and infrequent travel pattern on local 

roads.  Most of the machine learning methods usually improve the traditional factor 

approach, but they still need to deploy portable count stations to collect short-term traffic 

count data.                

The parcel-level travel demand model method, a new approach to accurately and 

efficiently estimate AADT for local roads, was researched.  The model consists of the 

following four steps: network modeling, parcel-level trip generation, parcel-level trip 

distribution, and parcel-level trip assignment.  Unlike the traditional travel demand 

forecasting model, the parcel-level travel demand model was simplified and optimized to 

estimate AADT values on local roads.  In the parcel-level trip generation step, the DOR 

parcel data and the ITE trip generation rates and equations were used to estimate the trips 

generated by the parcels.  The parcel trips were then distributed to the traffic count sites 
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on the major roads based on the fact that most travelers choose to access the major roads 

as soon as possible to minimize travel time.  Since traffic congestion rarely occurs on 

local roads, the simple all-or-nothing trip assignment method was used to assign trips to 

the local roads.  This assignment method has minimized the model running time without 

compromising with the model’s performance.    

Cube and ArcGIS were used as the development tools to implement the proposed 

model.  ModelBuilder, a tool provided by ArcGIS, was used to preprocess the data and 

to calculate the final estimated AADT values.  Cube was used to build the network from 

the highway shape file and automatically add the centroids and centroid connectors to the 

roadway network.  Cube Voyager scripts were developed to implement the four major 

model steps. 

The proposed parcel-level travel demand model method was applied to Broward 

County in Florida, and the results were compared with the USF method that uses the 

regression approach, and the AADT estimation method proposed by the URS 

Corporation.  The results of the three methods were compared to the ground truth 

AADTs estimated from the traffic count data.  Among the three methods, the proposed 

method had the lowest estimation error.  The evaluation results showed that the 

parcel-level travel demand method is a more accurate AADT estimation method with 

lower estimation errors. 

6.2. Conclusions 

The major objective of this research was to develop an improved method of 

estimating AADT for local roads by applying travel demand modeling techniques.  A 
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parcel-level travel demand analysis model was proposed, implemented, and evaluated.  

Compared to the USF method and the URS method, the proposed method had more 

accurate AADT estimations for local roads.  It can be concluded that the proposed 

method is a new and practical approach that can provide better AADT estimations for 

local roads.  A summary of the important findings are discussed below:   

The DOR parcel data and the ITE Trip Generation Report are a valuable data 

resource to perform the parcel-level trip generation, a critical step for the entire model.   

Several issues were encountered while matching the DOR parcel data with the land use 

categories available in the ITE Trip Generation Report.  This is because the ITE Trip 

Generation Report has more detailed land use types than the DOR parcel data.   

Additional data may therefore be required to take full advantage of the relation between 

the two sets of data.  As a result of these differences, care should be taken while using 

the ITE trip generation rates or equations from the ITE Trip Generation Report. 

Traffic count data for major roads are important to accurately estimate AADT 

values on the local roads.  Traditionally, traffic count data are often collected only for 

the roads with count sites.  In this research, the parcel-level trip distribution model used 

the traffic count data (or more specifically, AADT estimated from the traffic count data) 

as the basis to distribute trips generated by the parcels.  Traffic volume through the 

traffic count sites was assumed to be from or to the parcels, and the traffic count sites 

with high traffic volume was assumed to attract more trips from the parcels.  For trip 

distribution step, several distribution ranges were researched.  Smaller distribution 

ranges that distribute trips from a parcel to the traffic count sites close to and surrounding 

that parcel were found to generate better results.  Further, enough traffic count data 



  

109 

should be available to evenly cover the entire study area.  Uneven coverage of the traffic 

count sites may introduce bias into the trip distribution.    

The traditional travel demand forecasting model and the parcel-level travel 

demand model are quite similar, yet, they have a few major differences.  While the 

traditional model performs the travel demand analysis on an abridged roadway network 

with only major roads, the proposed model simulates the trips on an unabridged roadway 

network including the local roads.  The traditional mode choice step was omitted in the 

parcel-level model, since transit trips were not considered on local roads.  While the 

traditional zone-level travel demand forecasting model can be pushed to the limits and 

applied to the most detailed parcel level, challenges do exist.  One of the challenges is 

the huge number of parcels which have to be preprocessed to improve the model 

efficiency.  The proposed model might not be capable of handling the parcels in a broad 

study area.  One of the solutions could be to divide the study area into multiple subareas 

to run the model separately.  While dividing a study area, care should be taken such that 

the boundaries intersect as fewer roads as possible.  When the boundaries intersect more 

roads, the model will be less accurate for the boundary area compared to the central 

region. 

Besides the challenge of the huge number of parcels, the proposed model also 

needs enough traffic count data to evenly cover the major roads in a study area.   

Insufficient or unevenly covered traffic count data will affect distribution and assignment 

of trips, which in turn will affect the accuracy of the estimations.  Further, to evaluate 

the model, traffic count data for as many local roads as possible are required. 
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In spite of the above discussed challenges, it can be concluded that adopting the 

parcel-level travel demand modeling method to explore the detailed DOR parcel data and 

the traffic count data is a practical approach to estimate AADTs on local roads. 

6.3. Recommendations for Future Research 

Even though this dissertation has achieved the proposed research objective, the 

following areas require further research: 

• More demographic and land use data are required to improve the accuracy of the 

parcel-level trip generation step.  In the current parcel-level trip generation, if a 

parcel land use type encompasses multiple ITE land use types, the model used the 

average value of the estimated parcel trips based on each ITE land use type.  

However, this assumption might not represent the actual land use proportions.  

Even though this type of parcel land use takes a very small portion, the results of 

the parcel-level trip generation can be improved using more detailed demographic 

and land use data and estimating parcel trips based on the actual existence of each 

ITE land use category. 

• In the parcel-level trip distribution step, the trips generated by a parcel were 

distributed to the traffic count sites which can be reached within a specific free 

flow travel time range.  The trip distribution results might be more accurate if 

the trips can be distributed to the traffic count sites on the boundary roads of the 

TAZ within which the parcel is located.  This approach was attempted, but it was 

found to be difficult to define the distribution range based on space.  Further 

research is needed to implement this approach.          
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• As the maximum number of zones supported by Cube is 32,000, the proposed 

model cannot cover an area with more than 32,000 parcels.  One solution for this 

limitation is to divide the study area into subareas and run the model for each 

subarea separately.  As the accuracy of the estimated trips for the parcels close to 

the boundaries is affected by the division, cordon lines have to be established by 

following the higher-level roadways such as freeways and the natural barriers 

such as canals.  This approach will result in intersecting fewer local roads.  The 

procedure and methodology to appropriately divide a broad area and to 

automatically implement the model for an area with more than 32,000 parcels 

need further research.   

• Cube was used to build the network file from roadway shape file and create 

centroid connectors.  If Cube can provide the programming interface to automate 

this process, the entire model would be more efficient.  Further inquiry and 

research are required to implement this functionality. 
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APPENDIX A 

MATCHING RESULTS FOR DOR PARCEL DATA AND ITE TRIP 

GENERATION REPORT 

 
This appendix presents the matching of land use types of DOR parcel data and ITE Trip 

Generation Report, the selected independent variables, and the selection of the estimation 

method (average rate or regression equation) for each land use types.   

 
Table A-1 Land Use Type Matching, Independent Variables, and Rate/Equation 

Parcel 
Code 

Parcel Land Use 
ITE 
Code 

ITE Land Use 
Independent 
Variable Used 

Average 
Rate /  
Equation 

000 Vacant Residential  N/A   

001 Single Family 210 
Single-Family 
Detached Housing 

Dwelling Unit 
Average 
Rate 

002 Mobile Homes 240 
Mobile Home 
Park 

Dwelling Unit 
Average 
Rate 

003 Multi-family 220 Apartment Dwelling Unit 
Average 
Rate 

004 Condominiums 230 
Residential 
Condominium/ 
Townhouse 

Dwelling Unit 
Average 
Rate 

005 Cooperatives 265 Timeshare 
Dwelling 
Units 

Average 
Rate 

006 Retirement Homes 255 
Continuing Care 
Retirement 
Community 

Occupied 
Units 

Average 
Rate 

007 
Boarding Homes 
(Institutional) 

254 Assisted Living Occupied Beds 
Average 
Rate 

008 
Multi-family less than 
10 units 

220 Apartment 
Dwelling 
Units 

Average 
Rate 

009 
Undefined reserved 
for DOR 

 N/A   

010 Vacant Commercial  N/A   

011 Stores One-Story 850 Supermarket 
Gross Floor 
Area 

Average 
Rate 

012 
Mixed Use, i.e., Store 
and Office 

710 
General Office 
Building 

Gross Floor 
Area 

Average 
Rate 
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Parcel 
Code 

Parcel Land Use 
ITE 
Code 

ITE Land Use 
Independent 
Variable Used 

Average 
Rate /  
Equation 

013 Department Stores 875 Department Store 
Gross Floor 
Area 

Average 
Rate 

014 Department Stores 875 Department Store 
Gross Floor 
Area 

Average 
Rate 

015 
Regional Shopping 
Malls 

820 Shopping Center 
Gross 
Leasable Area 

Average 
Rate 

016 
Community Shopping 
Centers 

820 Shopping Center 
Gross 
Leasable Area 

Average 
Rate 

017 
One-Story 
Non-Professional 
Offices 

710 
General Office 
Building 

Gross Floor 
Area 

Average 
Rate 

018 
Multi-Story 
Non-Professional 
Offices 

710 
General Office 
Building 

Gross Floor 
Area 

Average 
Rate 

019 
Professional Service 
Buildings 

710 
General Office 
Building 

Gross Floor 
Area 

Average 
Rate 

020  
Airports, Marinas, Bus 
Terminals, and Piers 

010 
Waterport/Marine 
Terminal 

Acres 
Average 
Rate 

090 
Park-and-ride Lot 
with Bus Service 

Acres 
Average 
Rate 

420 Marina Acres 
Average 
Rate 

021 Restaurants, Cafeterias 

931 Quality Restaurant 
Gross Floor 
Area 

Average 
Rate 

932 
High-Turnover(Sit
-Down) 
Restaurant 

Gross Floor 
Area 

Average 
Rate 

933 

Fast-Food 
Restaurant without 
Drive-Through 
Window 

Gross Floor 
Area 

Average 
Rate 

934 

Fast-Food 
Restaurant with 
Drive-Through 
Window 

Gross Floor 
Area 

Average 
Rate 

937 

Coffee/Donut 
Shop with 
Drive-Through 
Window 

Gross Floor 
Area 

Average 
Rate 

022 Drive-in Restaurants 932 
High-Turnover(Sit
-Down) 
Restaurant 

Gross Floor 
Area 

Average 
Rate 

023 Financial Institutions 912 Drive-in Bank 
Gross Floor 
Area 

Average 
Rate 

024 
Insurance Company 
Offices 

710 
General Office 
Building 

Gross Floor 
Area 

Average 
Rate 
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Parcel 
Code 

Parcel Land Use 
ITE 
Code 

ITE Land Use 
Independent 
Variable Used 

Average 
Rate /  
Equation 

025 Repair Service Shops 814 
Specialty Retail 
Center 

Gross 
Leasable Area 

Average 
Rate 

026 Service Stations 853 
Convenience 
Market with 
Gasoline Pumps 

Gross Floor 
Area 

Average 
Rate 

027 
Automotive Repair, 
Service, and Sales 

843 
Automobile Parts 
Sale 

Gross Floor 
Area 

Average 
Rate 

028 
Parking Lots, Mobile 
Home Sales 

814 
Specialty Retail 
Center 

Gross 
Leasable Area 

Average 
Rate 

029 
Wholesale, 
Manufacturing, and 
Produce Outlets 

823 
Factory Outlet 
Center 

Gross Floor 
Area 

Average 
Rate 

030 Florist, Greenhouses 814 
Specialty Retail 
Center 

Gross 
Leasable Area 

Average 
Rate 

031 
Drive-in Theaters, 
Open Stadiums 

443 
Movie Theater 
without Matinee 

Gross Floor 
Area 

Average 
Rate 

032 
Enclosed Theaters, 
Auditoriums 

443 
Movie Theater 
without Matinee 

Gross Floor 
Area 

Average 
Rate 

033 
Night Clubs, Bars, and 
Cocktail Lounges 

435 
Multipurpose 
Recreational 
Facility 

Acres 
Average 
Rate 

034 
Bowling Alleys, 
Skating Rings, 
Enclosed Arenas 

435 
Multipurpose 
Recreational 
Facility 

Acres 
Average 
Rate 

035 Tourist Attractions 415 Beach Park Acres 
Average 
Rate 

036 Camps  N/A   

037 
Race Horse, Auto, and 
Dog Tracks 

435 
Multipurpose 
Recreational 
Facility 

Acres 
Average 
Rate 

038 Golf Courses 430 Golf Course Acres 
Average 
Rate 

039 Hotels, Motels 
310 Hotel Rooms 

Average 
Rate 

320 Motel Rooms 
Average 
Rate 

040 Vacant Industrial  N/A   

041 Light Manufacturing 110 
General Light 
Industrial 

Acres 
Average 
Rate 

042 Heavy Manufacturing 120 
General Heavy 
Industrial 

Acres 
Average 
Rate 

043 
Lumber Yards, 
Sawmills, Planning 
Mills, 

812 
Building Materials 
and Lumber Store 

Gross Floor 
Area 

Average 
Rate 
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Parcel 
Code 

Parcel Land Use 
ITE 
Code 

ITE Land Use 
Independent 
Variable Used 

Average 
Rate /  
Equation 

044 
Fruit, Vegetables, and 
Meat Packing 

110 
General Light 
Industrial 

Acres 
Average 
Rate 

045 
Canneries, Distilleries, 
and Wineries 

110 
General Light 
Industrial 

Acres 
Average 
Rate 

046 Other Food Processing 110 
General Light 
Industrial 

Acres 
Average 
Rate 

047 Mineral Processing 120 
General Heavy 
Industrial 

Acres 
Average 
Rate 

048 
Warehouses, and 
Distribution Centers 

150 Warehousing Acres 
Average 
Rate 

049 
Industrial Storage 
(Fuel, Equip, and 
Material) 

110 
General Light 
Industrial 

Acres 
Average 
Rate 

050 Improved Agriculture  N/A   

051 Cropland Soil Class 1  N/A   

052 Cropland Soil Class 2  N/A   

053 Cropland Soil Class 3  N/A   

054 Timberland  N/A   

055 Timberland  N/A   

056 Timberland  N/A   

057 Timberland  N/A   

058 Timberland  N/A   

059 Timberland  N/A   

060 
Grazing Land Soil 
Class 1 

 N/A   

061 
Grazing Land Soil 
Class 2 

 N/A   

062 
Grazing Land Soil 
Class 3 

 N/A   

063 
Grazing Land Soil 
Class 4 

 N/A   

064 
Grazing Land Soil 
Class 5 

 N/A   

065 
Grazing Land Soil 
Class 6 

 N/A   

066 
Orchard, Groves, 
Citrus 

 N/A   
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Parcel 
Code 

Parcel Land Use 
ITE 
Code 

ITE Land Use 
Independent 
Variable Used 

Average 
Rate /  
Equation 

067 
Poultry, Bees, 
Tropical Fish, Rabbits, 
etc. 

 N/A   

068 Dairies, Feed Lots  N/A   

069 
Ornamentals, Misc. 
Agriculture 

 N/A   

070 Vacant Institutional  N/A   

071 Churches 560 Church 
Gross Floor 
Area 

Average 
Rate 

072 Private Schools 

520 
Elementary 
School 

Gross Floor 
Area 

Equation 

522 
Middle 
School/Junior 
High School 

Gross Floor 
Area 

Average 
Rate 

530 High School 
Gross Floor 
Area 

Average 
Rate 

073 Private Hospitals 610 Hospital 
Gross Floor 
Area 

Equation 

074 Homes for Aged 

251 
Senior Adult 
Housing - 
Detached 

Dwelling 
Units 

Average 
Rate 

252 
Senior Adult 
Housing - 
Attached 

Occupied 
Dwelling 
Units 

Average 
Rate 

075 Orphanages  N/A   

076 
Mortuaries, 
Cemeteries 

566 Cemetery Acres 
Average 
Rate 

077 
Clubs, Lodges, and 
Union Halls 

435 
Multipurpose 
Recreational 
Facility 

Acres 
Average 
Rate 

078 
Sanitariums, 
Convalescent, and 
Best Homes 

253 
Congregate Care 
Facility 

Dwelling 
Units 

Average 
Rate 

079 Cultural Organizations 590 Library 
Gross Floor 
Area 

Average 
Rate and 
Equation 

080 Undefined  N/A   

081 Military  N/A   

082 
Forest, Park, and 
Recreational Areas 

411 City Park Acres 
Average 
Rate 

412 County Park Acres 
Average 
Rate 
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Parcel 
Code 

Parcel Land Use 
ITE 
Code 

ITE Land Use 
Independent 
Variable Used 

Average 
Rate /  
Equation 

413 State Park Acres 
Average 
Rate 

415 Beach Park Acres 
Average 
Rate 

417 Regional Park Acres 
Average 
Rate 

083 Public Schools 

520 
Elementary 
School 

Gross Floor 
Area 

Equation 

522 
Middle 
School/Junior 
High School 

Gross Floor 
Area 

Average 
Rate 

530 High School 
Gross Floor 
Area 

Average 
Rate 

084  Colleges 540 
Junior/Community 
College 

Gross Floor 
Area 

Average 
Rate 

085 Public Hospitals 610 Hospital 
Gross Floor 
Area 

Average 
Rate 

086 Other Counties  N/A   

087 Other State  N/A   

088 Other Federal  N/A   

089 Other Municipal  N/A   

090 
Gov. Owned Leased 
by Non-Gov. Lessee 

 N/A   

091 Utilities 170 Utilities 
Gross Floor 
Area 

Average 
Rate 

092 
Mining, Petroleum, 
and Gas Lands 

 N/A   

093 Subsurface Rights  N/A   

094 
Rights-of-Way Streets, 
Roads, and Canals 

 N/A   

095 
Rivers, Lakes, and 
Submerged Lands 

 N/A   

096 
Sewage Disposal, 
Borrow Pits, and 
Wetlands 

 N/A   

097 Outdoor Recreational  N/A   

098 Centrally Assessed  N/A   

099 
Acreage not Zoned for 
Agricultural 

 N/A   
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