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ABSTRACT OF THE DISSERTATION
THE DISCRIMINATION AND ASSOCIATION OF FLOAT GLASS AND THE
QUANTITATIVE ANALYSIS OF LIQUIDS FROM AEROSOLS AND
MICRODROPS USING LASER INDUCED BREAKDOWN SPECTROSCOPY
by
Erica M. Cahoon
Florida International University, 2012
Miami, Florida
Professor José¢ Almirall, Major Professor
Glass is a common form of trace evidence found at many scenes of crimes in the form of
small fragments. These glass fragments can transfer to surrounding objects and/or
persons and may provide forensic investigators valuable information to link a suspect to
the scene of a crime. Since the elemental composition of different glass sources can be
very similar, a highly discriminating technique is required to distinguish between
fragments that have originated from different sources.

The research presented here demonstrates that Laser Induced Breakdown
Spectroscopy (LIBS) is a viable analytical technique for the association and
discrimination of glass fragments. The first part of this research describes the
optimization of the LIBS experiments including the use of different laser wavelengths to
investigate laser-material interaction. The use of a 266 nm excitation laser provided the
best analytical figures of merit with minimal damage to the sample. The resulting
analytical figures of merit are presented. The second part of this research evaluated the

sensitivity of LIBS to associate or discriminate float glass samples originating from the

vil



same manufacturing plants and produced at approximately the same time period. Two
different sample sets were analyzed ranging in manufacturing dates from days to years
apart. Eighteen (18) atomic emission lines corresponding to the elements Sr, K, Fe, Ca,
Al, Ba, Na, Mg and Ti, were chosen because of their detection above the method
detection limits and for presenting differences between the samples. Ten elemental ratios
producing the most discrimination were selected for each set. When all the ratios are
combined in a comparison, 99% of the possible pairs were discriminated using the
optimized LIBS method generating typical analytical precisions of ~5% RSD.

The final study consisted of the development of a new approach for the use of
LIBS as a quantitative analysis of ultra-low volume solution analysis using aerosols and
microdrops. Laser induced breakdown spectroscopy demonstrated to be an effective
technique for the analysis of as low as 90 pL for microdrop LIBS with 1 pg absolute

LOD and 20 pL for aerosol LIBS with an absolute LOD of ~100 fg.
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1 Introduction: Research Motivation

Glass is a commonly encountered type of trace evidence found at many crime scenes.
Glass fragments may provide the forensic investigator with valuable information. The
fragments are often produced by breaking a window during a forced entry or as a result of
the high forces to vehicle windows during a hit-and-run accident or other collisions.
These glass fragments may then be transferred to all surrounding objects and persons and
may provide forensic investigators valuable information of association to link a suspect to
the scene of a crime. If the glass was broken during a crime act, these glass fragments
could potentially be used as evidence, associating an individual to the event.

Since the elemental profile of glass can be very similar, a highly discriminating
technique is required to distinguish between fragments that have originated from different
sources. Historically, the forensic analyses of glass fragments have been based on the
comparison of color, density, thickness, transparency and refractive index. As a result of
the lack of discrimination power of these analytical techniques, a need developed for
more sensitive, complementary instrumentation for the forensic analysis of glass
fragments. For instance, refractive index was the method of choice for many forensic
laboratories, however, glass manufacturers now target specific optical properties in glass,
creating a narrow range of refractive indices '. As a result, elemental analysis has been
suggested as an additional technique *°. With use of more sensitive analytical techniques,
the forensic analyst may associate or discriminate, with a high degree of certainty,
between the glass fragments in question to those of known origin. These associations may

establish a connection between the suspect and scene of the crime.



Varying concentrations in float glass may allow glass to be chemically
characterized to its source. If the variation in elemental composition of float glass is
greater between sources than within sources, this variation allows for the forensic
discrimination of glass. Certain elements are controlled in the glass manufacturing
process to obtain specific properties for the end-use product. The major elements which
are controlled may provide discrimination *. However, it is predominantly the minor,
trace and the impurities that provide the forensic investigator the ability to discriminate or
associate glass samples °.

Although LIBS is more commonly used for analysis of solid matrices, solution
analysis is investigated in this research. Solutions provide the analyst a homogeneous
sample that can incorporate internal standards and are easily matrix-matched. Most
sampling volume requirements are approximately a milliliter or more for the well-
established techniques of inductively coupled plasma mass spectrometry (ICP-MS) or
ICP-optical emission spectrometry (ICP-OES) 7. Very small volumes, i.e., picoliters to
microliters, present a considerable challenge when measuring very low concentrations of
trace metals.

My research describes the development and validation of the use of Laser Induced
Breakdown Spectroscopy as an analytical technique for the association and
discrimination of forensic glass and for ultra-low volume analysis of aerosols and, for the

first time, microdrops delivered in an ambient atmosphere.



1.1 Significance of Study

Laser induced breakdown spectroscopy will be presented as an analytical tool for the
forensic association and discrimination of float glass by elemental profiling. Secondly,
LIBS will be presented as a tool for the quantitative analysis of small volumes from
aerosols and, for the first time, microdrops.

Float glass is a commonly encountered type of evidence for the forensic
investigator. The similar elemental composition of float glass requires techniques with
high analytical sensitivity and reproducibility so the forensic analyst may achieve
accuracy and discrimination. The use of elemental analysis for the forensic glass
comparisons is not a recent development. It dates back to as early as 1973 with the use of
neutron activation analysis (NAA) ® to distinguish glass from different sources.
Currently, forensic laboratories perform elemental profiling of glass predominantly using
micro x-ray fluorescence (uXRF), ICP-MS and laser ablation-ICP-MS (LA-ICP-MS).

The mature techniques of uXRF, ICP-MS and LA-ICP-MS are advantageous;
however each method has limitations. Minor and trace elements present in low
concentrations are problematic for uXRF as they lie below the analytical limits of
detection (LOD). Milligrams of sample are required for the necessary repeated analysis
with ICP-MS””"!| which may be unmanageable when only small fragments are
transferred during a crime. The invention of laser ablation for sample introduction into
the ICP-MS has simplified the analysis of solids, such as float glass, and is now regarded
as the “gold standard” for discrimination between similar elemental profiles of glass
samples originating from different sources, or to determine the association from the same

source™'*!*. Despite the excellent analytical performance of LA-ICP-MS, this



instrumentation is complex, expensive and is not available for many forensic laboratories.
Without forensic laboratories having access to sensitive analytical techniques, a need is
created to develop a less expensive and robust method that can be used for the chemical
characterization of trace evidence, such as float glass, that is commonly encountered in
the forensic laboratory.

The studies that are presented throughout this manuscript demonstrate the utility
of LIBS as an alternative analytical technique for the forensic analysis of glass. The
research in the chapters to follow describes method development and validation for LIBS
as an analytical technique for the forensic analysis of glass. The optimization of laser
energy, gate delay, integration times and laser irradiance to improve crater morphology,
all for improving reproducibility, limits of detection, precision and accuracy are
discussed. The discrimination capabilities of LIBS will be evaluated by two float glass
sample sets: 1) consisting of 49 colorless float glass samples manufactured in a single
plant from May 1997 to September 2001 and 2) consisting of 27 colorless float glass
samples collected from September 2008 to April 2010 from a different single
manufacturing plant, both sets range in manufacturing date from days to years apart. On
the basis of LIBS still being a forthcoming technique, the results produced are compared
to LA-ICP-MS. LA-ICP-MS is also evaluated on the percent discrimination achieved for
float glass sample set two.

The final study consists of developing an analytical method to demonstrate the
analytical capabilities of LIBS as a technique for the quantification of low volume
solution analysis with aerosols and microdrops. Employing LIBS as an analytical

technique for solutions, eliminates certain disadvantages observed with LIBS liquid



analyses, such as splashing, while also eliminating the greater volume requirements

needed for solution sampling by techniques such as ICP-MS or ICP-OES.

1.2 The Glass Matrix

The American Society of Testing and Materials (ASTM) defines glass “...as an inorganic
product of fusion which has been cooled to a rigid condition with crystallization...”"®.
Common raw materials for float glass manufacture consist of silica (Si0O;) that is
responsible for the high transition temperature of glass and sodium carbonate which
lowers the transition temperature. Other ingredients added are dolomite, calcium
carbonate, magnesium oxide, sodium oxide and aluminum oxide, as they adjust chemical
and physical properties in glass '’ .

Glass is usually classified into three groups by its chemical composition: 1) soda
lime glass, 2) lead glass and 3) borosilicate glass. These three types account for 95% of
all glass, with soda lime glass being 72% silica, it constitutes for approximately 90% of
manufactured glass '*. Bottles, jars, architectural and automobile glass are examples of
soda-lime glass. The many applications of soda-lime glass is a result of its physical and
chemical properties, with light transmission being the most significant'’. The smooth,
non-porous surface allows for bottles to be easily cleaned, to be filled with beverages
with no affect to flavor and with no harmful substances. Lead glass, the second group, is
produced by replacing much of the lime with lead oxide. Lead glass exhibits high

refractive index, which are used most as decorative glass, i.e., vases or bowls.

Borosilicate, the third group, is resistant to chemical corrosion and temperature change as



a result of the high SiO, in the glass'". Borosilicate glass is commonly used in the
chemical laboratory.

The manufacturing of float glass consists of mixing the batch (raw material) with
crushed cullet (recycled glass). The melting furnace is made of refractory bricks and
heated to approximately 2900° F. The furnace has a capacity to contain as much as 2000
kg of raw materials, see Figure 1. The glass then leaves the furnace at a temperature of

approximately 1900° F and is fed into a bath of molten tin.

Figure 1. The float glass furnace at Pilkington North American Inc., Stockton, CA

Figure 2. Float glass being pulled onto rollers at Pilkington North American Inc., Stockton, CA



Tin is appropriate for the float glass process as a result of the high specific gravity
of tin and its immiscibility into the molten glass. The tin bath is kept in a controlled
atmosphere of hydrogen and nitrogen to prevent oxidation. The glass spreads out flat and
smooth on the molten tin. The thickness of the glass is controlled by the pull of a ribbon,
see Figure 2. The two photographs above, Figure 1 and 2 were provided by my mentor,
Dr. Almirall.

The temperature is gradually decreased to approximately 1000° F in the annealing
lehr, where the glass sheet can be placed on the rollers. The glass in then cut to a

18,20,21

predetermined sizes . Figure 3 illustrates the different processes for the manufacture

of float glass 2'. The standard specifications for float glass have been established in

method ASTM C 1036 Standard Specification for Flat Glass.
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Figure 3. Schematic of the float glass manufacturing process’'

There are approximately 40 float glass plants in the United States corresponding
to eight manufacturers: Cardinal Glass Industries, Guardian Industries Corporation, AFG
Industries, Inc., ACH Float Glass Operations, Pilkington North American, Inc., PPG
Industries, Inc., Saint-Gobain Glass, and Vitro America, Inc. These plants are designed to

operate seven days a week, 365 days a year for ten years or more, typically producing



between 300-600 tons of glass per day *'. The lifetime of the furnace is approximately 10
years as a result of the corrosion of the refractory bricks'®. It is the process of this
corrosion that causes differences in the trace elemental composition. It is these trace
elements that provide the greatest discrimination between different sources and dates of
manufacture between glasses.

Float glass manufacturing plants, Cardinal Glass Industries and Pilkington North

America, Inc., provided float glass samples for this research.



1.3 Elemental Analysis of Glass

Numerous elemental analysis techniques have been employed for the
discrimination and chemical characterization of glass. These techniques include spark
source mass spectrometryzz, atomic emission spectroscopy (AES)23, atomic absorption

2,23,24

spectroscopy (AAS)?, x-ray fluorescence (XRF) , heutron activation analysis

(NAA)®, scanning electron microscopy (SEM) coupled to both energy dispersive

226 particle induced

spectroscopy (EDS) and wavelength dispersive spectroscopy (WDS)
x-ray emission (PIXE)?, inductively coupled plasma atomic emission spectrometry (ICP-
AES)*#% inductively coupled plasma mass spectrometry (ICP-MS) 12327 aser
ablation inductively coupled plasma mass optical emission spectrometry (LA-ICP-
OES)?, laser ablation-ICP-MS (LA-ICP-MS)*!*"'* and LIBS*!32*3!,

The potential to discriminate glass was documented with NAA, as early as 1973°,
Samples analyzed by NAA are bombarded with neutrons, causing the elements to form
radioisotopes. Different radioisotopes have different half-lives and these radioactive
decay paths for each element are well known. The radioactive emissions are counted,
providing the analyst with the elemental composition. Coleman et al.® analyzed 25
elements from window glass originating from England and Wales using neutron
activation analysis. The authors demonstrated that the frequency distributions of the
elemental concentrations could be used for the forensic comparison of glass.

Scanning electron microscopy uses a focused beam of high-energy electrons
causing the emission of X-rays. X-ray fluorescence spectrometry relies upon the

measurement of characteristic X-rays produced by an X-ray source. X-ray radiation is

produced by when an inner electron of the atom is displaced by either the high-energy



electron beam or X-ray beam. Electrons in higher energy states relax to fill the lower
energy states. The energy difference between the two electronic states is given off as X-
rays. The intensities of these X-rays are proportional to the elemental concentration,
providing qualitative and quantitative information. For the discrimination among
different glass sources, SEM and XRF report the use of elemental ratios for the intensities
in glass***®. Dudley et al. in 1980 used XRF and 10 elemental ratios with Ca for
determining the elemental concentrations in 50 pairs of window and non-window glasses
having indistinguishable refractive indices. The elemental ratios discriminated 95% of the
glass samples. Ryland correctly classified 93% of sheet and container glass using a uXRF
comparing the Ca/Fe ratio™. He reported that a high Ca/Fe ratio is indicative of container
glass or tableware while a low Ca/Fe ratio is representative of sheet glass. Advantages of
XRF are that it is a non-destructive technique with little interferences from spectral lines.
Disadvantages are high limits of detection (~100 ppm) and glass fragments are often
irregularly shaped, affecting take-off angles and causing poor precision and accuracy.
The inductively coupled plasma may either be coupled with an optical emission
spectrometer or a mass spectrometer. The inductively coupled plasma is a
radiofrequency-induced plasma from an induction coil to produce a magnetic field. When
coupled to an optical emission spectrometer, the light is separated according to its
wavelength and the intensities are characteristic of the elemental concentration. The
mass spectrometer separates ions according to their mass-to-charge ratio. These detectors
are very sensitive while also quantitative. Both these methods require the samples to be in
solution. The dissolution of glass requires an elaborate method. The ASTM provides a

protocol for the dissolution and analysis of glass by ICP-OES**. ICP-OES is a
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destructive technique where the glass fragments need to be crushed and digested in a
combination of HF, HNO; and HCI. The glass and acid mixture are then heated till
dissolution of the glass.

Hickman was the first to propose a classification procedure for container, sheet,
tableware or headlamp glass using ICP-OES™**. He analyzed manganese (Mn), iron
(Fe), magnesium (Mg), aluminum (Al) and barium (Ba) with refractive index and was
able to discriminate 91% of 349 glass samples. Hickman later expanded the elemental
menu to include; strontium (Sr), Fe, arsenic (As), cerium (Ce), cobalt (Co), cesium (Cs),
lithium (L1), rubidium (Rb), antimony (Sb) and lead (Pb), to provide higher

3436 Koons et al. compared 182 sheet and container glasses by ICP-OES’

discrimination
using Al, Ba, Mg, Fe, Sr, Mn, Ca, Na and Ti. He classified all samples correctly except
for two container glasses from the same manufacturing plant classified as sheet glass and
two sheet glasses classified as container glass. Koons et al. classified 180 of the 184
samples using principal component analysis (PCA) and cluster analysis’. This study
concluded that elemental composition can classify glass samples from the same
manufacturer, thereby suggesting that the elemental profile can provide good evidence of
an association between the manufacturer and the glass fragment. Parouchais ez al.’’” used
ICP-MS to analyze 62 elements within glass. To decrease physical, spectral and chemical
interferences that may arise from the dissolution of glass, the authors reported using
elemental ratios to discriminate between samples found indistinguishable by refractive
index. Suzuki et al.'® used pairwise comparison of the elements Co, Rb, Sr, Zr, Ba, La

and Ce to discriminate 22 windshield float glass samples. The authors reported 100%

discrimination using elemental composition and 94% discrimination with refractive
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index. With a change in the elemental menu, Zr, Ba, Sb, Sr, Hf, As, Mo and Pb, Suzuki et
al*® were able to distinguish between all 17 samples (138 pairs) of headlight glass with
ICP-MS and only 19 pairs with refractive index.

In 1985, Gray39 developed laser ablation (LA) as a new sample introduction
system for ICP-MS. This introduction generates particles when the laser interacts with
the solid sample. These particles are then swept into the ICP-MS with a carrier gas.
Laser ablation eliminated the laborious and time consuming solid sample preparation,
while providing the same sensitive technique. Laser ablation brought about several
advantages; practically no sample preparation, no contamination from chemicals, less
interferences as a result of no solvents and spatial resolution. A more in-depth
explanation of LA-ICP-MS will be provided in the next section.

To validate LA-ICP-MS, it was compared to the mature technique of ICP-MS.
Individual studies were done demonstrating that LA-ICP-MS provided equally as good

12,40,41 - 41
" Trejos et al.™ conducted

figure of merits (precision, bias, and limit of detection)
micro-homogeneity study to evaluate the elemental composition of glass samples found
at crime scenes. The results demonstrated that float glass is homogeneous at the
microanalysis level, allowing LA-ICP-MS to be viable technique for the forensic analysis
of float glass. Inherent heterogeneity was observed with headlamps and container glass.
The authors recommended sampling at many different locations to correctly characterize
the elemental profile. An inter-laboratory cross validation study was conducted to verify

different laser ablation systems with different ICP-MS instrumentation. The objective

was to compare inter-laboratory results for similarity in efforts to improve analytical
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protocol'®. It was determined that many different laboratories were able to produce
standard deviation of less than 10% for most all elements.

Laser induced breakdown spectroscopy is an emerging atomic emission technique
for the forensic analysis of glass. The current history of LIBS for the elemental analysis
of glass is limited, as no standard protocols currently exist. The LIBS research conducted

3,13,28,42 3
2257 Naes ef al.

to date has been successful in the forensic analysis of glass
demonstrated that LIBS produces the same 99% discrimination, with no false exclusions,
as nXRF and LA-ICP-MS with a different element menu of automobile float glass °.
Naes et al. found the 10 most discriminating elemental ratios to be Al/Na, K/Ca, Al/Fe,
Fe/K, Ca/K, Fe/Al, K/Ca, Al/Sr, St/K and Na/K. Bridge et al. achieved an 83% and 74%
discrimination of automobile float glass with LIBS, however when combined with
refractive index measurements, the discrimination increased to 99% discrimination for
both sample sets, but these authors did not conduct type I and type II error studies '**%.
The precision obtained from both authors were in agreement, Naes et al. state the
precision is less than 10% RSD and Bridge ef al. state an average precision of 7% RSD.

LIBS offers a sensitive and fast approach to elemental analysis and permits small
sample size with good precision, similar to LA-ICP-MS. LIBS is fairly inexpensive when
compared to the more established techniques of LA-ICP-MS, LA-ICP-OES and uXRF.
LIBS is less complex, generates data virtually instantaneously, has the capability to be
portable, while providing high sample throughput.

The present section summarizes the advancements that have been made for the

elemental analysis of glass by many different techniques. The recent developments in

LIBS, has shown it to be a promising technique for the forensic analysis of glass. The
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research studies to follow will demonstrate that LIBS is indeed a viable alternative to the
expensive instrumentation of LA-ICP-MS for the forensic analysis of glass and should be

given consideration in the forensic laboratory.
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1.4  Sample Preparation of Solutions and Solid Samples for Chemical Analysis
Laser Induced Breakdown Spectroscopy is predominantly a solid sampling technique that
has been demonstrated to compete favorably with uXRF-EDS and LA-ICP-MS** for
the elemental analysis of some solid matrices. Because of its multi-elemental detection,
non-destructive nature, minimal sample preparation and in-situ analysis, LIBS has
become a very popular analytical technique offering simplicity of operation and data
analysis as attractive features.

Analytical chemists use atomic spectroscopy tools for both solution and solid
analysis, and laser-based solid sampling tools have been coupled to ICP plasmas.
Techniques based on atomic spectroscopy are important in trace analysis of solutions but
many solution techniques suffer from labor intensive and time-consuming sample
preparation. Solutions provide homogeneous samples that can incorporate internal
standards and external calibration methods can be easily developed but require sample
preparation (sample dissolution) when the sample is in solid form. Direct solid sampling
may also require sample preparation, primarily to homogenize the sample prior to
analysis by pelletizing a powder sample, for example. The sample is milled into a
homogeneous powder and then pressed into a pellet ideally producing a flat,
homogeneous surface. In an effort to improve precision and decrease elemental
fractionatio