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Abstract: Infectious diseases are one of the main causes of death all over the world, with antimi-
crobial resistance presenting a great challenge. New antibiotics need to be developed to provide
therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoi-
somerases control the topology of DNA via DNA cleavage–rejoining coupled to DNA strand passage.
The change in DNA topological features must be controlled in vital processes including DNA repli-
cation, transcription, and DNA repair. Type IIA topoisomerases are well established targets for
antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for
new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase
present, which makes it a valuable antibiotic target. This review will summarize recent attempts that
have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and
use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor–enzyme
complexes and more in-depth knowledge of their mechanisms of actions will help to establish the
structure–activity relationship of potential drug leads and develop potent and selective therapeutics
that can aid in combating the drug resistant bacterial infections that threaten public health.

Keywords: topoisomerase; antimicrobial resistance; drug targets

1. Introduction

Infectious diseases are diseases where certain microorganisms grow and replicate
inside a host, leading to damage or injury to body tissues of the host. Even normal flora
can cause diseases to the host if the host is immunocompromised, for instance in cancer
and acquired immunodeficiency syndrome (AIDS). Many effective antimicrobial agents
have been discovered and marketed so far. However, there has been a constant issue that
counteracts the effects of well-established antimicrobial agents, i.e., antimicrobial drug
resistance [1–3].

Antimicrobial resistance has been a major global health concern in recent years. Mech-
anisms of resistance vary [4,5], such as degrading or changing the drug molecule to an
inactive form inside the microorganism [6], modifying or protecting the target for the
antimicrobial agent by the microorganism [7,8], or pumping out the drug molecules from
the microorganism cell, known as efflux [9,10]. Resistance to antimicrobial agents is usually
genetically encoded by the microorganism, either on the bacterial chromosome, or on a
plasmid that can be spread among different strains of microorganisms, resulting in the
emergence of new resistant strains [11,12].

The number of deaths attributable to antimicrobial resistance is expected to continue
growing, hitting around 10 million cases in 2050 [13]. Worldwide, tuberculosis (TB) is
one of the top 10 causes of death. According to the WHO, TB is the leading cause of
death from a single infectious agent. TB caused an estimated 1.4 million deaths worldwide
in 2019, with an estimated 10.0 million new cases of TB, equivalent to 130 cases per
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100,000 population [14]. Globally, there were an estimated 558,000 new cases of rifampicin-
resistant TB (RR-TB). Among RR-TB cases, an estimated 82% were multidrug-resistant
TB (MDR-TB). Furthermore, 3.5% of new TB cases and 18% of previously treated cases
were MDR/RR-TB. Drug resistant TB is very difficult to treat [15]. Other examples of
drug resistant bacteria include the Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. (ESKAPE)
pathogens [16,17].

Following the discovery of daptomycin in late 1980s [18], the process of novel antibiotic
discovery stagnated and could not keep up with the emergence of antibiotic resistant
pathogens [19,20]. Hence, the discovery of novel antimicrobial agents is an urgent need.
DNA topoisomerases are well known targets for antibacterial drug discovery [7,21–25].
Topoisomerases are responsible for controlling the topology of the genome, including local
and global DNA supercoiling [26,27]. DNA topology and topoisomerase functions play
important roles in replication, transcription, and genome stability [21,27–32].

In general, all DNA topoisomerases work by binding to the target DNA molecule,
cleaving one or both strands of the double helix, passing another single or double strand
through the break, and resealing the DNA [21,30]. A covalent complex is transiently formed
between an active tyrosine residue of the topoisomerase enzyme and one end of the broken
strand during the cleavage process. [33]. The covalent complex with cleaved DNA is a
vulnerable intermediate that can lead to cell death if trapped.

The interests in studying the structures, functions, mechanisms of actions, and in-
hibitors of DNA topoisomerases are mainly due to two reasons: (1) the pivotal role of
DNA topoisomerases in the management and control of DNA topology [21,30,32] and (2)
development of topoisomerase inhibitors into widely used clinical therapies for cancer
and bacterial infections [21,24,25,34–36]. Many efforts have been exerted so far to either
synthesize new molecules, or discover new bioactive molecules, which could potentially
inhibit specific members of the DNA topoisomerase family, to provide new treatment for
cancer and infectious diseases.

2. Type IA Topoisomerases

DNA topoisomerases are divided into two main categories: type I topoisomerases
and type II topoisomerases. Differences in DNA strand passage activity and catalysis are
the basis of this categorization, and each main category is subdivided into subcategories
according to the mode of DNA binding and relaxation. Type I topoisomerases break and
rejoin a single DNA strand during catalysis. On the other hand, type II topoisomerases
break and rejoin the two strands of a double helix in order to pass another intact double
helix through the break, promoting catenation/decatenation, unknotting/knotting, and
relaxation of positively and negatively supercoiled DNA [37]. Type II topoisomerases are
subcategorized into two subfamilies: topoisomerases IIA and topoisomerases IIB. All type
II topoisomerases covalently attach to the 5′ end of the DNA through a phosphotyrosine
bond, requiring divalent magnesium cation and ATP hydrolysis. Archaeal and bacterial
type IIA topoisomerases, such as Escherichia coli DNA gyrase, are A2B2 heterotetramers. In
contrast, eukaryotic type IIA topoisomerases are all homodimeric enzymes. The discovery
of topoisomerase VI, an A2B2 heterotetrameric type II topoisomerase found in all archaea,
added a new type IIB subfamily to the type II topoisomerases. The relative arrangement of
elements required for type II topoisomerase’s mechanism as well as the overall structural
organization are dissimilar between the type IIA and type IIB topoisomerases [30]. Type
IIA topoisomerases cleave the opposing strands of duplex DNA with a four-base stagger,
while two-base staggered cuts are made by type IIB topoisomerases [37].

Type I topoisomerases are subcategorized into three subfamilies: topoisomerases
IA, topoisomerases IB, and topoisomerases IC [38]. Members of the topoisomerase IA
subfamily share common mechanistic features, such as being monomeric proteins and
covalent attachment to the cleaved DNA end through a 5’ phosphotyrosine bond. Divalent
cation is needed as a cofactor to complete the catalytic process. Finally, the members of this
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subfamily can relax negative supercoils because they only require single stranded regions
of the target DNA molecule for binding [39]. In the protein-mediated DNA gate model
for strand passage by type IA topoisomerases [40,41], a segment of single-stranded DNA
(ssDNA) binds through domains I and IV, and the active tyrosine residue in domain III
performs the nucleophilic attack on this G-strand ssDNA to create a break. Movement of
domains I and III away from each other results in gate opening (Figure 1) to allow passage
of another ssDNA strand (T-strand). Gate-opening dynamics of E. coli topoisomerase I and
III were observed recently in single-molecule studies [42]. The presence of Mg2+ divalent
ions is necessary for the process of DNA rejoining by type IA topoisomerases [43–45].
The divalent ion is hypothesized to help position the 3′-hydroxyl group of the cleaved
DNA in proximity to the phosphotyrosine linkage, where the 3′-hydroxyl group performs
a nucleophilic attack on the phosphotyrosine linkage leading to rejoining of the DNA
backbone [46]. The requirement for divalent ions and formation of 5-phosphotyrosine bond
are mechanistic similarities between type IA and type IIA topoisomerase. In contrast, type
IB and type IC topoisomerases do not require divalent ions for catalysis and are linked to
the 3′-phosphate in the covalent intermediate. There is no sequence or structural homology
between type IA, type IB and type IC topoisomerases [47]. Type IA topoisomerases are
the only family of topoisomerases that can catalyze topological changes on both DNA and
RNA molecules [48]. The activity of type IA topoisomerases is needed for overcoming
DNA or RNA topological barriers that require strand passage through the break mediated
by the topoisomerase IA on a single strand of nucleic acid [32,49]. At least one type IA
topoisomerase is present in all free-living organisms [50] found in the three kingdoms of life.
Drugs targeting bacterial or parasitic type IA topoisomerases for treatment of infectious
diseases must be selective in not inhibiting the human type IA topoisomerases TOP3A
and TOP3B.

Figure 1. DNA-gate formed by cleavage of G-strand DNA by type IA topoisomerase (A) Crystal structure of covalent
complex between single-stranded DNA (ssDNA) and E. coli topoisomerase I N-terminal domains I to IV (Protein Data Bank
(PDB) 3PX7). The active tyrosine residue Y319 is illustrated with the red color, and ssDNA is represented by the blue color.
(B) Gate opening and closing dynamics of bacterial topoisomerase IA. The enzyme is represented by the green shape and
the ssDNA is represented by the blue wavy line. The letter Y stands for the active site tyrosine residue Y319.



Microorganisms 2021, 9, 86 4 of 21

2.1. Rationale for Type IA Topoisomerases as Drug Targets

Since topoisomerases play key roles in managing the topology of DNA, which, in
turn, is a major factor impacting cell viability, they have been widely targeted for clinical
treatment of cancer and infectious diseases [24,25,51]. Topoisomerase inhibitors can be clas-
sified based on the mechanism of action as poison inhibitors or catalytic inhibitors [52,53].
Poison inhibitors are agents that work by stabilizing the topoisomerase covalent complex
that is formed as an intermediate during catalysis, while catalytic inhibitors are agents
that work by interfering with the catalytic cycle of the enzyme in any other step, such
as inhibitors that prevent initial substrate binding or formation of the cleavage complex.
Topoisomerase targeting drugs in current clinical use are poison inhibitors against type IB
and type IIA topoisomerase [52–54]. Topoisomerase poison inhibitors cause loss of cellular
viability through accumulation of breaks in the chromosome, triggering apoptosis in cancer
cells [55] and oxidative damage cell death pathway in bacteria [56]. This mechanism of
cell death is highly efficient since it does not require the activity of most of the target
topoisomerase molecules to be blocked and the topoisomerase activity does not need
to be essential. Even though there are currently no approved drugs that utilize type IA
topoisomerases as cellular targets, it can be argued that since all topoisomerases utilize
an active site tyrosine to form the covalent intermediate, it should also be possible for a
poison inhibitor to trap the covalent complex formed by type IA topoisomerases.

2.2. Validation for Bacterial Topoisomerase IA as a Novel Antibiotics Target

Topoisomerase I and topoisomerase III are type IA topoisomerases that are present in
bacteria, with reverse gyrase being found in thermophilic bacteria. E. coli has both topoiso-
merase I and topoisomerase III present. Bacterial topoisomerase I is much more efficient
for relaxation of negatively supercoiled DNA during transcription while topoisomerase
III has a stronger decatenation activity for resolution of replication and recombination
intermediates [57–60]. Null mutation of topA in E. coli can be compensated by mutations
that reduce the activity of gyrase that has the opposite effect on DNA supercoiling [61–63].
Nevertheless, endogenous inhibitors of topoisomerase I activity including overexpressed
Tn5 transposase [64,65], T4 gp55.2 [66] and toxin YjhX [67] can inhibit cell growth and
result in a loss of viability. Furthermore, even though the essentiality of topoisomerase I in
some bacteria is uncertain, poison inhibitors against the type IA topoisomerase present in
every bacterium should generate bactericidal DNA lesions. The bactericidal consequence
of topoisomerase I covalent complex accumulation in E. coli was demonstrated through
identification of bacterial topoisomerase I mutants deficient in DNA rejoining [44,45,68–70].
The mutations involved include mutations in the conserved D111, D113 and E115 (DDE)
triad that bind Mg2+ required for DNA religation [69]. These dominant lethal topoiso-
merase I mutations mimic the expected action of type IA topoisomerase poison inhibitors.
It should also be noted that YjhX overexpression resulted in E. coli cell death, even though
YjhX has been shown not to be a poison inhibitor of E. coli topoisomerase I [67]. Therefore,
inhibitors of bacterial topoisomerase I do not necessarily have to act as topoisomerase
poisons to be bactericidal.

Studies have shown that topoisomerase I is essential for cellular viability of a number
of important bacterial pathogens, including Mycobacterium tuberculosis [71,72], Streptococcus
pneumoniae [73], P. aeruginosa [74] and Helicobacter pylori [75]. In bacteria that only have one
type IA topoisomerase, the catalytic activity of the enzyme should be essential for overcom-
ing topological barriers that require passage of one strand of DNA through another single
strand [32], and catalytic inhibitors of topoisomerase I would have antibacterial efficacy re-
gardless of the mechanism of topoisomerase inhibition. Hence, bacterial topoisomerase IA
represents a valid target for novel antibiotics aimed at overcoming antimicrobial resistance.
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2.3. Eukaryotic Type IA Topoisomerases as Potential Target for Infectious Disease Treatment

Fungi have only one type IA topoisomerase, TOP3, that has high degree of similarity
to bacterial topoisomerase III. The TOP3 mutant is not viable in Saccharomyces pombe [76,77]
and has a slow growth phenotype in Saccharomyces cerevisiae [78]. In higher eukaryotes, the
TOP3 gene has been duplicated into TOP3A and TOP3B isoforms [50]. TOP3A is essential
for mice embryo development [79]. TOP3B knockout mice developed to maturity but had
a shortened life span [80]. Human topoisomerase III beta (TOP3B) has been shown to have
both DNA and RNA topoisomerase activities [81,82]. It relaxes hyper-negatively super-
coiled DNA in transcription and prevents R-loop accumulation [83,84]. Interaction between
TOP3B and mRNAs [85] is required for neurodevelopment and synapse formation [81,82].
Human TOP3B is stabilized by Tudor domain containing 3 protein (TDRD3) [84,86,87],
which was previously identified as a host protein needed for efficient replication of fla-
viviruses, such as dengue and yellow fever virus [88]. However, subsequent follow-up
studies on the role of TDRD3 in viral replication have revealed that TOP3B is the actual
host factor required for the efficient replication of all positive-sense single-stranded RNA
viruses, with TDRD3 playing a role in the stabilization of TOP3B [49]. Specific inhibitors
for TOP3B could potentially be useful as broad-spectrum antiviral treatments against
flaviviruses and coronaviruses including SARS COV-2 [49].

Topoisomerases in kinetoplastid parasites are potential targets for the development
of improved therapeutic options against deadly parasitic diseases [89,90]. Three type
IA topoisomerases are present in the kinetoplastids. In addition to functionally active
TOP3A [91] and TOP3B [92], a prokaryotic-like mitochondrial TOP1A is also present. The
mitochondrial TOP1A in Trypanosoma brucei is essential for late theta replication intermedi-
ates structure resolution [93]. Since the mitochondrial TOP1A has no close homologs in
humans, it could be a target for selectively toxic new antiprotozoal treatments [93].

3. Screening Approaches
3.1. In Silico Screening

Several strategies and techniques can be used to identify novel topoisomerase in-
hibitors for treatment of infectious diseases. A commonly used strategy is screening
chemical libraries composed of a large number of molecules for the desired activity. This
strategy has been widely used for decades in drug discovery. The chemical libraries used
could comprise of synthetic compounds, natural products, or both. In silico virtual screen-
ing employing docking and molecular dynamics (MD) simulations can be used first to
identify potential inhibitors from compound libraries, followed by biochemical assays on a
small number of in silico hits with the highest predicted binding affinity to confirm the in-
teraction and assess the topoisomerase inhibition and antimicrobial activity. This approach
has been applied to identify inhibitors for E. coli and M. tuberculosis topoisomerase I using
either crystal structures or target structures generated by computational modeling [94–98].

3.2. Biochemical Screening Assays

Various biochemical assays can be used to assess the ability of a compound to inhibit
the activity of a specific topoisomerase, and to determine the mechanism of inhibition
so that the hit can be classified either as a catalytic inhibitor or as a poison inhibitor.
Examples include, but are not limited to, gel based-assays, fluorescence-based assays,
and detection of DNA-enzyme covalent complex via the rapid approach to DNA adduct
recovery (RADAR) assay.

Agarose gel electrophoresis can be used to determine the inhibition of the bacterial
topoisomerase I, since this enzyme relaxes supercoiled plasmid DNA. A supercoiled
plasmid DNA, representing inhibited enzyme or control reaction without enzyme, will
migrate the fastest, while the fully relaxed plasmid DNA will migrate the slowest in
an agarose gel electrophoresis experiment [99]. DNA can be visualized using ethidium
bromide staining. The presence of an effective inhibitor will prevent the enzyme from
relaxing the plasmid DNA, and it will instead remain supercoiled until the concentration
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of the inhibitor is sufficiently low for the enzyme to regain its activity. To further determine
the mode of inhibition, single-stranded DNA or oligonucleotide substrate labeled with
32P at the 5′-end can be used to visualize the shortened cleavage product that results from
topoisomerase I cleaving the substrate following electrophoresis of the reaction products in
denaturing acrylamide gel [100]. A topoisomerase poison inhibitor is expected to result in
the increase in accumulated cleavage product.

Since gel electrophoresis is time consuming and low in throughput capacity, several
fluorescence-based assays have been developed to monitor topoisomerase activities and
detect potential inhibitors with high throughput capacity. One such assay involved the
use of an immobilized triplex-forming oligonucleotide capable of selectively capturing
supercoiled plasmids that can be quantified by SYBR Green dye [101]. Another group of
researchers have developed a homogenous assay that measures the fluorescence anisotropy
of the triplex-forming oligonucleotide and can be applied to assay the activity of both
E. coli gyrase and topoisomerase I [102]. A different approach is to insert into a plasmid
an inverted repeat containing a fluorophore-quencher pair that can emit fluorescence
depending on whether cruciform formation is facilitated by negative supercoiling of the
plasmid [103,104]. An assay based on supercoiling-dependent fluorescence quenching has
been used to study the kinetics of relaxation of negatively supercoiled DNA by E. coli and
Mycobacterium smegmatis topoisomerase I [105]. However, these fluorescence-based assays
designed for the measurement of supercoiling/relaxation of plasmid DNA have not yet
been applied to screen for bacterial topoisomerase I inhibitors from a large compound
library. An oligonucleotide substrate with fluorophore and quencher at the 5′ and 3′ ends
of the stem-loop structure was designed to detect the inhibition of DNA religation by
topoisomerase I poison inhibitors [106]. This assay identified organomercury compounds
that act as poison inhibitors against E. coli and Y. pestis topoisomerase I that bind Zn(II)
with cysteines [100].

The rapid approach to DNA adduct recovery (“RADAR”) assay was first developed
to purify and measure the level of topoisomerase–DNA complex trapped by anticancer
drugs that act as topoisomerase poison inhibitors in mammalian cells [107]. A modified
RADAR/ELISA assay can also measure the level of gyrase covalent complex trapped by flu-
oroquinolones in bacterial cells [108]. Recently, it has been shown that this RADAR/ELISA
assay can detect in E. coli and M. smegmatis increased accumulation of covalent complex
formed by bacterial topoisomerase I with mutations that inhibit DNA rejoining, provid-
ing a potential assay for the discovery and optimization of drugs that act as bacterial
topoisomerase I poison inhibitors [109].

4. Recent Attempts to Discover Novel Bacterial Topoisomerase I Inhibitors

During the past decade, various attempts have been made to find inhibitors of bacte-
rial topoisomerase I to provide potential leads for the development of novel antibiotics,
aiming to combat antimicrobial resistance. These inhibitors are discussed below and the
half maximal inhibitory concentrations (IC50s) for inhibition of E. coli or M. tuberculosis
topoisomerase I activity are shown in Table 1.
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Table 1. Recently described small molecule inhibitors of bacterial topoisomerase I activity.

Inhibitor IC50
E. coli Topo I

IC50
M. tuberculosis Topo I

Bis-benzimidazole DPA 154 [110] 6.6 µM n.d. 1

Bis-benzimidazole PPEF [111] 9.4 µM n.d.
Imipramine [96] No inhibition at 25 µM <0.1 µM

Norclomipramine [96] No inhibition at 25 µM <0.1 µM
Polyamine 2471-12 [112] 7.5 µM 7.5 µM
Polyamine 2471-24 [112] 10 µM 7.5 µM

Gold(III) macrocycle 10 [113] 5 µM 10 µM
Gold(III) chelate 14 [113] 1.3 µM 1.3 µM

Fluoroquinophenoxazine 11a [114] 0.48 µM 0.98 µM
Fluoroquinophenoxazine 11g [114,115] 0.48 µM 0.24 µM

VCC891909 [98] n.d. <7.5 µM
Seconeolitsine (SCN) [116] n.d. 5.6 µM

N-methyl-seconeolitsine (N-SCN) [116] n.d. 8.4 µM
Piperidine amide 7 [95] 15.6–31.3 µM 2 µM

NSC76027 [94] 2.2 µM 4 µM
1 n.d.: Not determined.

4.1. Bis-Benzimidazoles

Bis-benzimidazole derivatives have gained much attention as potential therapeutics
since the development of Hoechst bis-benzimidazole 33,258 and 33,342 as DNA minor
groove binders that inhibit human topoisomerase I and show activity against certain
types of cancers [117,118], but the drug development efforts did not progress to clin-
ical trials due to high cytotoxicity [119]. A series of bis-benzimidazoles with closely
related structures were synthesized by two different groups and found to provide se-
lective inhibition of type IA E. coli topoisomerase I over inhibition of type IB human
topoisomerase I [110,120]. The bis-benzimidazoles specific for E. coli topoisomerase I ex-
hibited low minimum inhibitory concentrations (MICs) of 8 µg/mL against bacterial
pathogens that included methicillin-resistant S. aureus (MRSA), vancomycin-resistant
Enterococcus faecalis, Staphylococcus epidermidis, A. baumannii, Shigella flexneri and clinical
isolates of E. coli [110,111,121]. However, most of these derivatives still had cytotoxicity con-
cerns, due to their DNA-binding activity [110,121]. DPA 154, shown in Figure 2, was also
reported to elicit changes in the cellular ultrastructure including induction of spheroplasts
and membrane lysis, suggesting a dual mechanism of antibacterial action that includes
compromising cell membrane integrity [122]. In vivo efficacy against E. coli was demon-
strated in the mouse systemic infection model as well as the mouse neutropenic thigh
model [111] for one of the bis-benzimidazoles, 2′-(4-ethoxyphenyl)-5-(4-propylpiperazin-
1-yl)-1H,1′H-2,5′-bibenzo[d]imidazole (PPEF), shown in Figure 2. It was proposed that
PPEF shifts the cleavage–religation equilibrium of E. coli topoisomerase I by binding to
the strictly conserved acidic triad D111, D113 and E115 (DDE) based on results from a
site-directed mutagenesis study [123] where the aspartate and glutamate residues in the
acidic triad were replaced with alanine residues. Circular dichroism studies and in silico
docking have shown reduced binding of PPEF to these mutants, especially for the double
mutants where two out of the three DDE residues were replaced by alanine [123]. This
acidic triad of bacterial topoisomerase I is known to be involved in interactions with Mg2+

ions [124,125]. Substitution of the first aspartate to asparagine has been shown to affect
metal binding and result in deficiency of DNA religation [69].
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Figure 2. Structures of bis-benzimidazoles Hoechst 33258, Hoechst 33342, 2′-(4-ethoxyphenyl)-5-(4-
propylpiperazin-1-yl)-1H,1′H-2,5′-bibenzo[d]imidazole (PPEF) and DPA 154.

4.2. Tricyclic Antidepressants

In silico docking was conducted to screen a library of FDA-approved drugs for their
potential activity against a homolog model of M. tuberculosis topoisomerase I with Mg2+

and a DNA fragment bound in the open state [96]. Clinically prescribed tricyclic an-
tidepressant imipramine and norclomipramine, which is the active metabolite of another
tricyclic antidepressant (clomipramine), were then selected based on the docking results
for biochemical and whole cell assays. Imipramine and norclomipramine (Figure 3) were
found to inhibit M. tuberculosis topoisomerase I relaxation activity at <0.1 µM concentra-
tion following 15 min preincubation with the enzyme [96]. However, inhibition of E. coli
topoisomerase I was not detected at up to 25 µM compound concentration. In silico dock-
ing with the M. tuberculosis topoisomerase I homology model has placed imipramine and
norclomipramine near the strictly conserved DDE acidic triad. Alanine substitution at
the glutamate in the third position abolished inhibition by the compounds while alanine
substitution at the first aspartate had no effect on the inhibition. Both compounds showed
a slight increase in cleavage product from a 32P-labeled double stranded oligonucleotide
substrate and enhanced cytotoxicity in M. smegmatis overexpressing recombinant my-
cobacterial topoisomerase I, consistent with the compounds acting with a poison inhibitor
mechanism [96]. However, the MICs required to stop the growth of M. tuberculosis were
relatively high (60 µM for norclomipramine and 250 µM for imipramine). The tricyclic an-
tidepressants have hard-to-tolerate side effects and several drug–drug interactions, which
have recently led to the clinical preference of other classes of antidepressants [126]. There-
fore, the tricyclic antidepressants are probably not a practical clinical option for targeting
bacterial topoisomerase I.
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Figure 3. Structures of tricyclic antidepressant imipramine and metabolite norclomipramine.

4.3. Inhibitors Based on Polyamine Scaffold

The collection of small molecules at Torrey Pines Institute (TPI) now consists of more
than 80 million small molecules organized into a small number of scaffold-ranking libraries
so that promising molecular scaffolds can be identified quickly from a positive result in a
biological assay. Structural analogs in the selected scaffold library mixtures can be studied
with position scanning to identify the most favorable substitutions in the specific molecular
scaffold [127–129]. This approach has been applied previously for the discovery of bacterial
tyrosine recombinase and site-specific recombinase inhibitors [130]. In efforts to discover
small molecules targeting bacterial topoisomerase I, inhibition of E. coli topoisomerase
I relaxation activity was assayed first to identify the most promising scaffold and then
the most inhibitory substitutions at three different R positions of the selected polyamine
scaffold (Figure 4A). Fourteen related compounds that were synthesized as part of the
2471 series based on the position scanning data showed IC50 values < 20 µM against E. coli
and M. tuberculosis topoisomerase I, and MIC values < 50 µM against M. smegmatis [112].
Among these 14 compounds, four polyamine analogues (Figure 4B) were confirmed to
be also active against M. tuberculosis with selectivity index (50% cytotoxic concentration
(CC50) against J774 macrophage cell line/IC50 against M. tuberculosis) values of up to
15. The observed inhibition of bacterial type IA topoisomerases by the 2471 compounds
is unlikely due to non-specific inhibition of the type IA topoisomerase activity by the
positively charged polyamine structure, or non-specific binding of the polyamine inhibitors
to DNA, as the IC50 values for inhibition of human topoisomerase IB and topoisomerase
II activities were >10 fold higher. Viable colony counts obtained following treatment of
M. smegmatis and M. tuberculosis showed that both MICs and cell killing efficacies of these
four polyamine analogs are sensitive to the level of topoisomerase IA activity. The bacteria
became less sensitive when recombinant M. tuberculosis topoisomerase I was overexpressed,
indicating catalytic inhibition of the topoisomerase IA activity as part of the antibacterial
mechanism of action. Further improvement of potency and selectivity is desirable for this
class of type IA topoisomerase inhibitors.
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Figure 4. (A) Polyamine scaffold and (B) individual polyamine inhibitors of bacterial topoisomerase I with antimycobacterial
activity [112].

4.4. Gold(III) Complexes

Metal-containing complexes have been used frequently as therapeutics throughout
history, such as the well-known anti-cancer drug cisplatin [131] and the gold-containing
auranofin used to treat rheumatoid arthritis [132]. Gold(III) tetra-aryl porphyrins with
anticancer activity were found to bind DNA and inhibit human topoisomerase I [133]. That
led to an increased interest in using gold compounds to inhibit topoisomerases. A number
of pyrrole-based gold(III) macrocycles were synthesized and tested for anticancer activity
and inhibition of human topoisomerase I [134]. The gold(III) macrocycle 10 illustrated in
Figure 5A was found to be a catalytic inhibitor of human topoisomerase I with selectivity
over human topoisomerase IIA. Gold(III) macrocycle 10 also caused lethality to many of the
NCI’s panel of 60 human cancer cell lines [134]. In a follow up study investigating potential
antibacterial application, some of the gold(III) macrocycles and additional bis(pyrrolide-
imine) gold(III) chelates were found to inhibit the growth of both M. tuberculosis and
Mycobacterium abscessus. The gold(III) chelate 14 (Figure 5B) showed a MIC of 1 µM against
M. tuberculosis and 10 µM against M. abscessus, with bactericidal activity against mycobac-
teria as well. Gold(III) macrocycle 10 had even lower MICs against the mycobacteria but
was not bactericidal, so these two compounds may have differences in their mechanism
of action. Gold(III) chelate 14 showed no activity against Gram-negative species and only
low level inhibition against other Gram-positives, suggesting that it has a specific activity
against mycobacteria, including fluoroquinolone-resistant strains [113]. Both compounds
shown in Figure 5 inhibit the relaxation activity of M. tuberculosis and E. coli topoisomerase
I (Table 1), without any effect on bacterial DNA gyrase activity, suggesting the specificity
these two compounds have for bacterial type IA topoisomerases inhibition [113]. Further
studies are required to characterize the mechanism of antimycobacterial action of these
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gold(III) compounds and provide more insights in their structure–activity relationship
(SAR) to limit the cytotoxicity.

Figure 5. Gold(III) inhibitors of bacterial topoisomerase I [113]. (A) Gold(III) macrocycle 10 and (B) gold(III) chelate 14.

4.5. Fluoroquinophenoxazine Derivatives

A fluoroquinophenoxazine NSC648059 was initially identified in enzyme-based screen-
ing of E. coli topoisomerase I inhibitors [114]. A series of fluoroquinophenoxazine deriva-
tives were synthesized to evaluate the SAR and to probe the structural elements of the
fluoroquinophenoxazine core towards type IA topoisomerase target recognition. These
derivatives were assayed for selectivity in inhibition of type IA topoisomerases, and an-
tibacterial activity. Comparative molecular field analysis (CoMFA) of the three-dimensional
quantitative structure–activity relationship (3D-QSAR) of these fluoroquinophenoxazine
derivatives resulted in a model with reasonable statistics (q2 = 0.688 and r2 = 0.806) and
predictive power (predictive correlation coefficient r2

pred = 0.767). While the structures of
these fluoroquinophenoxazines have similarities to fluoroquinolones that target bacterial
type IIA topoisomerases, this series of fluoroquinophenoxazines tested for selectivity ex-
hibited much greater potency for inhibition of the type IA bacterial topoisomerase than
inhibition of E. coli gyrase, human type topoisomerase I and IIα [114]. Derivative 11a
with 6-methylpiperazinyl and 9-amino groups (Figure 6, IC50 = 0.48 µM) showed broad
spectrum antibacterial activity (MICs = 0.78–7.6 µM) against bacteria that include Gram-
negative E. coli and M. tuberculosis. Derivative 11g with the 6-bipiperidinyl lipophilic
substitution showed the most promising antitubercular activity (MIC = 2.5 µM, selectivity
index (SI) = 9.8) and was also active (MIC = 50 µM) against a clinical isolate of Mycobac-
terium abscessus [114,115]. The mechanism of resistance in mycobacteria was investigated
by stepwise isolation of resistant mutants in M. smegmatis followed by comparison of the
whole-genome sequence of the original strain and mutant isolates. Mutations in genes that
affect compound entry and retention were identified instead of mutations in the topoiso-
merase I gene that might confirm the enzyme as the antibacterial target [115]. Biophysical
analysis showed that DNA binding by fluoroquinophenoxazine 11g may contribute to the
antibacterial mechanism, but could not account entirely for the direct binding and potent
inhibition of the mycobacterial topoisomerase I [115].
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Figure 6. Structures of fluoroquinophenoxazine 11a and 11g [114].

4.6. Vichem’s Benzo(g)quinoxaline Compound

Compounds with antitubercular activity were identified with whole-cell assays from
approximately 17,000 molecules in Vichem’s Nested Chemical Library (NCL) [135]. The
639 compounds with MIC values < 6 µM were assayed for inhibition of M. tuberculosis
topoisomerase I activity, and the results on the 108 compounds found to be active at 100 µM
were used for building machine learning models for M. tuberculosis topoisomerase I in-
hibitors [97]. A selected set of seven Vichem NCL molecules with benzo(g)-quinoxaline,
quinoxaline, or styryl-benzo(g)-quinazoline scaffolds was further characterized [98]. Cyto-
toxicity was measured against three human cell lines. In silico docking predicted strong
binding affinity to specific sites on M. tuberculosis topoisomerase I through interactions with
R167 and R114 [97,98]. The interaction of the selected hits with the human ATP-binding
cassette (ABC) multi-drug transporters was assessed for potential drug resistance. The
human ABCB (MDR/TAP) transporter family plays a major role in multiple drug resis-
tance (MDR) against a variety of tuberculosis therapies, such as fluoroquinolones and
aminoglycosides [98]. Most of the hits demonstrated considerable interaction with the
transporters, except for VCC891909 (Figure 7). This compound also showed no cytotoxicity
in all the human cells lines tested in the cytotoxicity assays with efficient inhibition of
M. tuberculosis growth (MIC90 = 10.4 µM against H37Rv) and topoisomerase I activity
(complete inhibition at 7.5–10 µM), suggesting that VCC891909 might be a good candidate
for further antimycobacterial drug development [98].

Figure 7. VCC891909 from Vichem’s Nested Chemical Library (NCL) [98].

4.7. Alkaloids SCN and N-SCN

Two natural products and boldine-derivative alkaloids, seconeolitsine (SCN) and
N-methyl-seconeolitsine (N-SCN) (Figure 8), were previously found to inhibit both topoiso-
merase I activity and cell growth of Streptococcus pneumoniae at approximately 17 µM [136].
The targeting of topoisomerase I by these compounds was supported by evidence of hyper-
negative supercoiling of DNA in treated cells along with protection from overexpression of
topoisomerase I [136]. SCN has been used to demonstrate the homeostatic regulation of
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DNA supercoiling in S. pneumoniae by the topoisomerase I gene and the transcriptomic
response to changes in local and global supercoiling [137,138]. These two alkaloids were
tested more recently as potential inhibitors of M. tuberculosis topoisomerase I [116]. SCN
and N-SCN exhibited MIC values below 16 µM against multiple isolates of M. tuberculosis
and low IC50 values against the M. tuberculosis topoisomerase I (Table 1). SCN was shown
to inhibit the cleavage of a 5′-biotin-labeled 32-mer oligonucleotide by the enzyme. The
impact of N-SCN on DNA relaxation by topoisomerase I was confirmed by results from
the analysis of topoisomer distribution of the mycobacterial plasmid by two-dimensional
agarose gel, showing that the compound induced a 20% increase in plasmid supercoil-
ing [116]. The action of both SCN and N-SCN as topoisomerase I catalytic inhibitors instead
of poison inhibitors I was further confirmed by the decreasing MIC values of both com-
pounds against M. smegmatis strain that expresses decreased levels of topoisomerase I [116].
Partial inhibition of human topoisomerase I could be observed at 50 µM concentration
of SCN and N-SCN, with a small but significant effect on the viability of neutrophils at
100 µM concentration [136].

Figure 8. Alkaloids seconeolitsine (SCN) and N-methyl seconeolitsine (N-SCN) [136].

4.8. Additional Small Molecule Inhibitors Identified from Virtual Screening

Virtual screening was conducted sequentially to identify in silico hits against M.
tuberculosis topoisomerase I for assays of enzyme inhibition. The Asinex elite library of
104,000 compounds was first docked against the crystal structure (Protein Data Bank (PDB)
5D5H) of the truncated apo-enzyme of M. tuberculosis topoisomerase I, consisting of N-
terminal domains D1–D4 plus C-terminal domain D5. The top 1000 hits were then docked
against 1000 structures of 5D5H generated by molecular-dynamics to allow deeper binding
of the molecules in the DNA-binding pockets. Six of the 82 in silico hits that were found
to show inhibition of M. tuberculosis topoisomerase I relaxation activity share a common
piperidine amide structural motif in the center that appears to interact with conserved R167
and E115 residues. Docking was then conducted for 200 compounds from the ChemBridge
library that have this piperidine amide motif. Among the 96 top-scoring ChemBridge
compounds purchased for testing, 18 compounds exhibited IC50 < 125 µM. Compound
seven (Figure 9) has the lowest IC50 (2 µM), and >250-fold selectivity over inhibition
of human topoisomerase I and E. coli gyrase. Antibacterial activity of the ChemBridge
hit compounds against M. smegmatis measured in the presence of efflux pump inhibitor
thioridazine showed higher MICs when M. tuberculosis topoisomerase I was overexpressed,
consistent with these compounds acting as catalytic inhibitors of topoisomerase I. Further
utilization of piperidine amide compounds for antimycobacterial activity would require
modifications that improve penetrance and retention of the compounds in mycobacteria.
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Figure 9. Bacterial topoisomerase I inhibitors identified by in silico screening—piperidine amide compound 7 [95] and
NSC76027 [94].

To identify candidates for bacterial topoisomerase I poison inhibitors, stabilization
of the covalent intermediate formed after DNA cleavage was targeted for in silico screen-
ing [94]. The C-terminal domains of E. coli topoisomerase I (from full length structure PDB
4RUL) were connected to the 67 kDa N-terminal domains in covalent complex with cleaved
DNA (PDB 3PX7) based on alignments of the two structures. CGenFF force field parameters
were applied to create the 5′-phospotyrosine linkage between the enzyme and cleaved
DNA, followed by the energy minimization of the structure. To demonstrate the utility
of this minimized E. coli topoisomerase I covalent complex model for in silico screening,
docking was conducted on 2263 molecules selected from the NCI DTP chemical library. Di-
rect interaction between the enzyme and one of the top predicted hits (NSC76027, Figure 9)
was confirmed with surface plasmon resonance (dissociation constant KD = ~80 nM). The
IC50 value of NSC76027 against E. coli topoisomerase I was estimated to be 2.2 µM [94],
with a similar IC50 value of ~4 µM for inhibition of M. tuberculosis topoisomerase I relax-
ation activity (to be published), NSC76027 has no detectable antibacterial activity against
E. coli MG1655 but was found to inhibit growth of M. tuberculosis (MIC = 35 µM) [94].
Further experiments are needed to determine the mechanism of inhibition and selectivity
of NSC76027.

4.9. DNA Molecules as Bacterial Topoisomerase I Inhibitors

A distinct approach to target bacterial topoisomerase I is by using DNA molecules
as specific inhibitors. The first step in the catalytic cycle of the enzyme is the recognition
of the single-stranded regions in duplex DNA [139]. A series of 84 bp double-stranded
oligonucleotides with variations in the number of bulge bases in a single-stranded loop
were synthesized and tested for inhibition of the relaxation activity of E. coli topoisomerase
I [140]. Inhibition efficiency improves as the size of the single-stranded loop increases from
1 to 10 base in length with IC50 reaching 63.1 nM. Inhibition of eukaryotic calf thymus
topoisomerase I relaxation activity was not observed. It was hypothesized that because
the single-stranded loops in the bulge oligonucleotides are not base-paired, the bulge
oligonucleotides may be acting as irreversible competitive inhibitors [140].

In a second study, small circular DNA molecules with curvature that can be recognized
by bacterial topoisomerase I were also investigated as competitive catalytic inhibitors [141].
Several duplex small circular oligodeoxyribonucleotides (cODNs) of varying sizes were
designed, synthesized, and evaluated for inhibition of E. coli topoisomerase I relaxation
activity. The sizes of the DNA circles synthesized mattered because the degree of bending
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and torsional stress in the DNA molecule increases with decreasing ring size, and the
bending and torsional stress can be recognized by the enzyme. The biochemical evaluation
showed inhibition of DNA relaxation activity with a IC50 value of 36.4 nM for the 66 bp
cODN. Small single-stranded DNA circles or cODNs with seven base single-stranded
mismatches have even lower IC50s (~10 nM) [141]. The cODNs have greater thermal
stability than the bulge oligonucleotides.

A general advantage of DNA molecules is the low toxicity for the host compared to
conventional drugs. The major drawback is that the ability of DNA molecules to penetrate
the bacterial cell wall is very low, so more advancements in drug delivery research is
needed [140,141].

5. Future Perspectives

Type IA topoisomerases are novel targets for infectious diseases for which no clin-
ically approved drug has been developed so far. Effect of overexpression of the target
topoisomerase should be informative on the mechanism of inhibition, overexpression of
the target topoisomerase would increase the lethality of poison inhibitors. Conversely,
the increased level of the target topoisomerase would help to overcome the effect of the
catalytic inhibitors. The homeostatic regulation of bacterial topoisomerase I promoter
activity by DNA supercoiling could increase the level of topoisomerase I expression in
response to a catalytic inhibitor. The goal of finding and developing a successful drug
targeting this class of topoisomerases would be greatly facilitated by the availability of
the three-dimensional structure of topoisomerase–inhibitor complex, or ternary complex
with DNA also present. Identification of inhibitors with high binding affinity from specific
interactions with the topoisomerase protein residues would enable such structural studies.
The structural information on the molecular interactions between enzyme and inhibitor
would further validate the targeting of the type IA topoisomerase and allow structure-
based design/optimization of type IA topoisomerase inhibitors for the development of a
new therapy in the fight against the antimicrobial resistance. Determining the structure of
a topoisomerase–RNA complex may also be useful for utilizing human TOP3B as a host
target for providing options of antiviral therapy during flaviviruses and the coronavirus
pandemics [49].
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Abbreviation
WHO World Health Organization.
PDB Protein Data Bank.
ELISA enzyme-linked immunosorbent assay.
MIC minimum inhibitory concentration: The lowest concentration of an agent that stops microbial growth.
CC50 the 50% cytotoxic concentration: The concentration that reduces the cellular viability by 50%.
IC50 the half maximal inhibitory concentration: The concentration that reduces enzymatic activity by 50%.
FDA Food and Drug Administration
NCI National Cancer Institute
SI selectivity index: A ratio of cytotoxicity to antimicrobial activity.
SAR structure–activity relationship: The relationship between the chemical structure of a molecule and its biological activities.



Microorganisms 2021, 9, 86 16 of 21

3D-QSAR
three-dimensional quantitative structure–activity relationship: A quantification of SAR via mathematical
relationships between physicochemical properties of a molecule and its biological activities.

CoMFA
comparative molecular field analysis: One of the QSAR methods, where mathematical relationships between steric
and electrostatic properties of a ligand and the resulting receptor–ligand interactions are determined.

CGenFF CHARMM General Force Field
DTP Developmental Therapeutics Program

References
1. Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial Resistance. JAMA 2016, 316, 1193–1204.

[CrossRef] [PubMed]
2. Boucher, H.W. Bad Bugs, No Drugs 2002–2020: Progress, Challenges, and Call to Action. Trans. Am. Clin. Climatol. Assoc. 2020,

131, 65–71. [PubMed]
3. Schrader, S.M.; Vaubourgeix, J.; Nathan, C. Biology of antimicrobial resistance and approaches to combat it. Sci. Transl. Med. 2020,

12, eaaz6992. [CrossRef] [PubMed]
4. Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [CrossRef] [PubMed]
5. Bin Zaman, S.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells are

Ringing. Cureus 2017, 9, e1403. [CrossRef] [PubMed]
6. Bush, K.; Jacoby, G.A. Updated Functional Classification of beta-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [CrossRef]
7. Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry 2014, 53, 1565–1574. [CrossRef]
8. Wilson, D.N.; Hauryliuk, V.; Atkinson, G.C.; O’Neill, A.J. Target protection as a key antibiotic resistance mechanism. Nat. Rev.

Microbiol. 2020, 637–648. [CrossRef]
9. Li, X.-Z.; Plésiat, P.; Nikaido, H. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clin.

Microbiol. Rev. 2015, 28, 337–418. [CrossRef]
10. Blair, J.M.A.; Richmond, G.E.; Piddock, L.J.V. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic

resistance. Future Microbiol. 2014, 9, 1165–1177. [CrossRef]
11. Andersson, D.I.; Hughes, D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 2011, 35, 901–911.

[CrossRef] [PubMed]
12. Dunn, S.J.; Connor, C.; McNally, A. The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella

pneumoniae: The complexity of clones and plasmids. Curr. Opin. Microbiol. 2019, 51, 51–56. [CrossRef] [PubMed]
13. Sugden, R.; Kelly, R.; Davies, S. Combatting antimicrobial resistance globally. Nat. Microbiol. 2016, 1, 16187. [CrossRef] [PubMed]
14. Harding, E. WHO global progress report on tuberculosis elimination. Lancet Respir. Med. 2020, 8, 19. [CrossRef]
15. WHO. Consolidated Guidelines on Tuberculosis: Module 4: Treatment—Drug-Resistant Tuberculosis Treatment; WHO Guidelines

Approved by the Guidelines Review Committee; WHO: Geneva, Switzerland, 2020.
16. Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti-Infect. Ther. 2013, 11,

297–308. [CrossRef]
17. De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicro-

bial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33. [CrossRef]
18. Beiras-Fernandez, A.; Vogt, F.; Sodian, R.; Weis, F. Daptomycin: A novel lipopeptide antibiotic against Gram-positive pathogens.

Infect. Drug Resist. 2010, 3, 95–101. [CrossRef]
19. Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs,

No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [CrossRef]
20. Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [CrossRef]
21. Bush, N.G.; Evans-Roberts, K.; Maxwell, A. DNA Topoisomerases. EcoSal Plus 2015, 6. [CrossRef]
22. Nagaraja, V.; Godbole, A.A.; Henderson, S.R.; Maxwell, A. DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug

Discov. Today 2017, 22, 510–518. [CrossRef] [PubMed]
23. Tse-Dinh, Y.-C. Exploring DNA Topoisomerases as Targets of Novel Therapeutic Agents in the Treatment of Infectious Diseases.

Infect. Disord. Drug Targets 2007, 7, 3–9. [CrossRef] [PubMed]
24. Hiasa, H. DNA Topoisomerases as Targets for Antibacterial Agents. Methods Mol. Biol. 2018, 1703, 47–62. [CrossRef] [PubMed]
25. Pommier, Y. Drugging Topoisomerases: Lessons and Challenges. ACS Chem. Biol. 2013, 8, 82–95. [CrossRef] [PubMed]
26. Zechiedrich, E.L.; Khodursky, A.B.; Bachellier, S.; Schneider, R.; Chen, D.; Lilley, D.M.J.; Cozzarelli, N.R. Roles of Topoisomerases

in Maintaining Steady-state DNA Supercoiling in Escherichia coli. J. Biol. Chem. 2000, 275, 8103–8113. [CrossRef] [PubMed]
27. Brochu, J.; Breton, É.-V.; Drolet, M. Supercoiling, R-Loops, Replication and the Functions of Bacterial Type 1A Topoisomerases.

Genes 2020, 11, 249. [CrossRef]
28. Liu, L.F.; Wang, J.C. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. USA 1987, 84, 7024–7027. [CrossRef]
29. Ma, J.; Wang, M.D. DNA supercoiling during transcription. Biophys. Rev. 2016, 8 (Suppl. S1), 75–87. [CrossRef]
30. Vos, S.M.; Tretter, E.M.; Schmidt, B.H.; Berger, J.M. All tangled up: How cells direct, manage and exploit topoisomerase function.

Nat. Rev. Mol. Cell Biol. 2011, 12, 827–841. [CrossRef]
31. Pommier, Y.; Sun, Y.; Huang, S.-Y.N.; Nitiss, J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic

stability. Nat. Rev. Mol. Cell Biol. 2016, 17, 703–721. [CrossRef]

http://dx.doi.org/10.1001/jama.2016.11764
http://www.ncbi.nlm.nih.gov/pubmed/27654605
http://www.ncbi.nlm.nih.gov/pubmed/32675844
http://dx.doi.org/10.1126/scitranslmed.aaz6992
http://www.ncbi.nlm.nih.gov/pubmed/32581135
http://dx.doi.org/10.1128/MMBR.00016-10
http://www.ncbi.nlm.nih.gov/pubmed/20805405
http://dx.doi.org/10.7759/cureus.1403
http://www.ncbi.nlm.nih.gov/pubmed/28852600
http://dx.doi.org/10.1128/AAC.01009-09
http://dx.doi.org/10.1021/bi5000564
http://dx.doi.org/10.1038/s41579-020-0386-z
http://dx.doi.org/10.1128/CMR.00117-14
http://dx.doi.org/10.2217/fmb.14.66
http://dx.doi.org/10.1111/j.1574-6976.2011.00289.x
http://www.ncbi.nlm.nih.gov/pubmed/21707669
http://dx.doi.org/10.1016/j.mib.2019.06.004
http://www.ncbi.nlm.nih.gov/pubmed/31325664
http://dx.doi.org/10.1038/nmicrobiol.2016.187
http://www.ncbi.nlm.nih.gov/pubmed/27670123
http://dx.doi.org/10.1016/S2213-2600(19)30418-7
http://dx.doi.org/10.1586/eri.13.12
http://dx.doi.org/10.1128/CMR.00181-19
http://dx.doi.org/10.2147/IDR.S6961
http://dx.doi.org/10.1086/595011
http://dx.doi.org/10.1016/j.mib.2019.10.008
http://dx.doi.org/10.1128/ecosalplus.ESP-0010-2014
http://dx.doi.org/10.1016/j.drudis.2016.11.006
http://www.ncbi.nlm.nih.gov/pubmed/27856347
http://dx.doi.org/10.2174/187152607780090748
http://www.ncbi.nlm.nih.gov/pubmed/17346206
http://dx.doi.org/10.1007/978-1-4939-7459-7_3
http://www.ncbi.nlm.nih.gov/pubmed/29177732
http://dx.doi.org/10.1021/cb300648v
http://www.ncbi.nlm.nih.gov/pubmed/23259582
http://dx.doi.org/10.1074/jbc.275.11.8103
http://www.ncbi.nlm.nih.gov/pubmed/10713132
http://dx.doi.org/10.3390/genes11030249
http://dx.doi.org/10.1073/pnas.84.20.7024
http://dx.doi.org/10.1007/s12551-016-0215-9
http://dx.doi.org/10.1038/nrm3228
http://dx.doi.org/10.1038/nrm.2016.111


Microorganisms 2021, 9, 86 17 of 21

32. Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol. 2002, 3, 430–440.
[CrossRef] [PubMed]

33. Tse, Y.C.; Kirkegaard, K.; Wang, J.C. Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between
certain DNA topoisomerases and DNA. J. Biol. Chem. 1980, 255, 5560–5565. [PubMed]

34. Delgado, J.L.; Hsieh, C.-M.; Chan, N.-L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J. 2018, 475, 373–398.
[CrossRef] [PubMed]

35. Thomas, A.; Pommier, Y. Targeting Topoisomerase I in the Era of Precision Medicine. Clin. Cancer Res. 2019, 25, 6581–6589.
[CrossRef] [PubMed]

36. Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 2009, 9, 338–350. [CrossRef]
37. Champoux, J.J. DNA Topoisomerases: Structure, Function, and Mechanism. Annu. Rev. Biochem. 2001, 70, 369–413. [CrossRef]
38. Baker, N.M.; Rajan, R.; Mondragón, A. Structural studies of type I topoisomerases. Nucleic Acids Res. 2009, 37, 693–701. [CrossRef]
39. Kirkegaard, K.; Wang, J.C. Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded

loop. J. Mol. Biol. 1985, 185, 625–637. [CrossRef]
40. Lima, C.D.; Wang, J.C.; Mondragón, A. Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase

I. Nature 1994, 367, 138–146. [CrossRef]
41. Changela, A.; DiGate, R.J.; Mondragón, A. Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded

DNA molecule. Nature 2001, 411, 1077–1081. [CrossRef]
42. Mills, M.; Tse-Dinh, Y.-C.; Neuman, K.C. Direct observation of topoisomerase IA gate dynamics. Nat. Struct. Mol. Biol. 2018, 25,

1111–1118. [CrossRef] [PubMed]
43. Tse-Dinh, Y.C. Uncoupling of the DNA breaking and rejoining steps of Escherichia coli type I DNA topoisomerase. Demonstration

of an active covalent protein-DNA complex. J. Biol. Chem. 1986, 261, 10931–10935. [PubMed]
44. Sorokin, E.P.; Cheng, B.; Rathi, S.; Aedo, S.J.; Abrenica, M.V.; Tse-Dinh, Y.-C. Inhibition of Mg2+ binding and DNA religation by

bacterial topoisomerase I via introduction of an additional positive charge into the active site region. Nucleic Acids Res. 2008, 36,
4788–4796. [CrossRef] [PubMed]

45. Bhat, A.G.; Leelaram, M.N.; Hegde, S.; Nagaraja, V. Deciphering the Distinct Role for the Metal Coordination Motif in the
Catalytic Activity of Mycobacterium smegmatis Topoisomerase I. J. Mol. Biol. 2009, 393, 788–802. [CrossRef] [PubMed]

46. Cao, N.; Tan, K.; Annamalai, T.; Joachimiak, A.; Tse-Dinh, Y.-C. Investigating mycobacterial topoisomerase I mechanism from the
analysis of metal and DNA substrate interactions at the active site. Nucleic Acids Res. 2018, 46, 7296–7308. [CrossRef] [PubMed]

47. Corbett, K.D.; Berger, J.M. Structure, Molecular Mechanisms, and Evolutionary Relationships in DNA Topoisomerases. Annu.
Rev. Biophys. Biomol. Struct. 2004, 33, 95–118. [CrossRef] [PubMed]

48. Ahmad, M.; Xue, Y.; Lee, S.K.; Martindale, J.L.; Shen, W.; Li, W.; Zou, S.; Ciaramella, M.; Debat, H.; Nadal, M.; et al. RNA
topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res. 2016, 44,
6335–6349. [CrossRef]

49. Prasanth, K.R.; Hirano, M.; Fagg, W.S.; McAnarney, E.T.; Shan, C.; Xie, X.; Hage, A.; Pietzsch, C.A.; Bukreyev, A.; Rajsbaum, R.; et al.
Topoisomerase III-β is required for efficient replication of positive-sense RNA viruses. Antivir. Res. 2020, 182, 104874. [CrossRef]

50. Forterre, P.; Gadelle, D. Phylogenomics of DNA topoisomerases: Their origin and putative roles in the emergence of modern
organisms. Nucleic Acids Res. 2009, 37, 679–692. [CrossRef]

51. Bjornsti, M.-A.; Kaufmann, S.H. Topoisomerases and cancer chemotherapy: Recent advances and unanswered questions.
F1000Research 2019, 8, 1704. [CrossRef]

52. Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs.
Chem. Biol. 2010, 17, 421–433. [CrossRef] [PubMed]

53. Liu, L.F. DNA Topoisomerase Poisons as Antitumor Drugs. Annu. Rev. Biochem. 1989, 58, 351–375. [CrossRef] [PubMed]
54. Pham, T.D.M.; Ziora, Z.; Blaskovich, M.A.T. Quinolone antibiotics. MedChemComm 2019, 10, 1719–1739. [CrossRef] [PubMed]
55. Solary, E.; Bertrand, R.; Pommier, Y. Apoptosis Induced by DNA Topoisomerase I and II Inhibitors in Human Leukemic HL-60

Cells. Leuk. Lymphoma 1994, 15, 21–32. [CrossRef]
56. Dwyer, D.J.; Kohanski, M.A.; Hayete, B.; Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in

Escherichia coli. Mol. Syst. Biol. 2007, 3, 91. [CrossRef]
57. Terekhova, K.; Gunn, K.H.; Marko, J.F.; Mondragón, A. Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA

via distinct pathways. Nucleic Acids Res. 2012, 40, 10432–10440. [CrossRef]
58. Terekhova, K.; Marko, J.F.; Mondragón, A. Single-molecule analysis uncovers the difference between the kinetics of DNA

decatenation by bacterial topoisomerases I and III. Nucleic Acids Res. 2014, 42, 11657–11667. [CrossRef]
59. Massé, E.; Drolet, M. Escherichia coliDNA Topoisomerase I Inhibits R-loop Formation by Relaxing Transcription-induced

Negative Supercoiling. J. Biol. Chem. 1999, 274, 16659–16664. [CrossRef]
60. Lee, C.M.; Wang, G.; Pertsinidis, A.; Marians, K.J. Topoisomerase III Acts at the Replication Fork To Remove Precatenanes.

J. Bacteriol. 2019, 201. [CrossRef]
61. Raji, A.; Zabel, D.J.; Laufer, C.S.; Depew, R.E. Genetic analysis of mutations that compensate for loss of Escherichia coli DNA

topoisomerase I. J. Bacteriol. 1985, 162, 1173–1179. [CrossRef]
62. Dinardo, S.; Voelkel, K.A.; Sternglanz, R.; Reynolds, A.E.; Wright, A. Escherichia coli DNA topoisomerase I mutants have

compensatory mutations in DNA gyrase genes. Cell 1982, 31, 43–51. [CrossRef]

http://dx.doi.org/10.1038/nrm831
http://www.ncbi.nlm.nih.gov/pubmed/12042765
http://www.ncbi.nlm.nih.gov/pubmed/6155377
http://dx.doi.org/10.1042/BCJ20160583
http://www.ncbi.nlm.nih.gov/pubmed/29363591
http://dx.doi.org/10.1158/1078-0432.CCR-19-1089
http://www.ncbi.nlm.nih.gov/pubmed/31227499
http://dx.doi.org/10.1038/nrc2607
http://dx.doi.org/10.1146/annurev.biochem.70.1.369
http://dx.doi.org/10.1093/nar/gkn1009
http://dx.doi.org/10.1016/0022-2836(85)90075-0
http://dx.doi.org/10.1038/367138a0
http://dx.doi.org/10.1038/35082615
http://dx.doi.org/10.1038/s41594-018-0158-x
http://www.ncbi.nlm.nih.gov/pubmed/30478267
http://www.ncbi.nlm.nih.gov/pubmed/3015947
http://dx.doi.org/10.1093/nar/gkn460
http://www.ncbi.nlm.nih.gov/pubmed/18653534
http://dx.doi.org/10.1016/j.jmb.2009.08.064
http://www.ncbi.nlm.nih.gov/pubmed/19733176
http://dx.doi.org/10.1093/nar/gky492
http://www.ncbi.nlm.nih.gov/pubmed/29905859
http://dx.doi.org/10.1146/annurev.biophys.33.110502.140357
http://www.ncbi.nlm.nih.gov/pubmed/15139806
http://dx.doi.org/10.1093/nar/gkw508
http://dx.doi.org/10.1016/j.antiviral.2020.104874
http://dx.doi.org/10.1093/nar/gkp032
http://dx.doi.org/10.12688/f1000research.20201.1
http://dx.doi.org/10.1016/j.chembiol.2010.04.012
http://www.ncbi.nlm.nih.gov/pubmed/20534341
http://dx.doi.org/10.1146/annurev.bi.58.070189.002031
http://www.ncbi.nlm.nih.gov/pubmed/2549853
http://dx.doi.org/10.1039/C9MD00120D
http://www.ncbi.nlm.nih.gov/pubmed/31803393
http://dx.doi.org/10.3109/10428199409051674
http://dx.doi.org/10.1038/msb4100135
http://dx.doi.org/10.1093/nar/gks780
http://dx.doi.org/10.1093/nar/gku785
http://dx.doi.org/10.1074/jbc.274.23.16659
http://dx.doi.org/10.1128/JB.00563-18
http://dx.doi.org/10.1128/JB.162.3.1173-1179.1985
http://dx.doi.org/10.1016/0092-8674(82)90403-2


Microorganisms 2021, 9, 86 18 of 21

63. Pruss, G.J.; Manes, S.H.; Drlica, K. Escherichia coli DNA topoisomerase I mutants: Increased supercoiling is corrected by mutations
near gyrase genes. Cell 1982, 31, 35–42. [CrossRef]

64. Yigit, H.; Reznikoff, W.S. Escherichia coli DNA Topoisomerase I and Suppression of Killing by Tn5 Transposase Overproduction:
Topoisomerase I Modulates Tn5 Transposition. J. Bacteriol. 1998, 180, 5866–5874. [CrossRef] [PubMed]

65. Yigit, H.; Reznikoff, W.S. Escherichia coli DNA Topoisomerase I Copurifies with Tn5 Transposase, and Tn5 Transposase Inhibits
Topoisomerase I. J. Bacteriol. 1999, 181, 3185–3192. [CrossRef]

66. Mattenberger, Y.; Silva, F.; Belin, D. 55.2, a Phage T4 ORFan Gene, Encodes an Inhibitor of Escherichia coli Topoisomerase I and
Increases Phage Fitness. PLoS ONE 2015, 10, e0124309. [CrossRef]

67. Yamaguchi, Y.; Inouye, M. An endogenous protein inhibitor, YjhX (TopAI), for topoisomerase I from Escherichia coli. Nucleic Acids
Res. 2015, 43, 10387–10396. [CrossRef]

68. Cheng, B.; Shukla, S.; Vasunilashorn, S.; Mukhopadhyay, S.; Tse-Dinh, Y.-C. Bacterial Cell Killing Mediated by Topoisomerase I
DNA Cleavage Activity. J. Biol. Chem. 2005, 280, 38489–38495. [CrossRef]

69. Cheng, B.; Annamalai, T.; Sorokin, E.; Abrenica, M.; Aedo, S.; Tse-Dinh, Y.-C. Asp-to-Asn Substitution at the First Posi-
tion of the DxD TOPRIM Motif of Recombinant Bacterial Topoisomerase I Is Extremely Lethal to E. coli. J. Mol. Biol. 2009,
385, 558–567. [CrossRef]

70. Narula, G.; Annamalai, T.; Aedo, S.; Cheng, B.; Sorokin, E.; Wong, A.; Tse-Dinh, Y.-C. The Strictly Conserved Arg-321
Residue in the Active Site of Escherichia coli Topoisomerase I Plays a Critical Role in DNA Rejoining. J. Biol. Chem. 2011,
286, 18673–18680. [CrossRef]

71. Ravishankar, S.; Ambady, A.; Ramachandran, V.; Eyermann, C.J.; Reck, F.; Rudrapatna, S.; Sambandamurthy, V.K.; Sharma, U.K.;
Awasthy, D.; Mudugal, N.V.; et al. Genetic and chemical validation identifies Mycobacterium tuberculosis topoisomerase I as an
attractive anti-tubercular target. Tuberculosis 2015, 95, 589–598. [CrossRef]

72. Ahmed, W.; Menon, S.; Godbole, A.A.; Karthik, P.V.; Nagaraja, V. Conditional silencing of topoisomerase I gene of Mycobacterium
tuberculosis validates its essentiality for cell survival. FEMS Microbiol. Lett. 2014, 353, 116–123. [CrossRef] [PubMed]

73. Liu, X.; Gallay, C.; Kjos, M.; Domenech, A.; Slager, J.; Van Kessel, S.P.; Knoops, K.; Sorg, R.A.; Zhang, J.-R.; Veening, J.-W.
High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol. Syst. Biol. 2017, 13,
931. [CrossRef] [PubMed]

74. Yan, R.; Hu, S.; Ma, N.; Song, P.; Liang, Q.; Zhang, H.; Li, Y.; Shen, L.; Duan, K.; Chen, L. Regulatory Effect of DNA Topoisomerase
I on T3SS Activity, Antibiotic Susceptibility and Quorum- Sensing-Independent Pyocyanin Synthesis in Pseudomonas aeruginosa.
Int. J. Mol. Sci. 2019, 20, 1116. [CrossRef] [PubMed]

75. Suerbaum, S.; Brauer-Steppkes, T.; Labigne, A.; Cameron, B.; Drlica, K. Topoisomerase I of Helicobacter pylori: Juxtaposition
with a flagellin gene (flaB) and functional requirement of a fourth zinc finger motif. Gene 1998, 210, 151–161. [CrossRef]

76. Goodwin, A.; Wang, S.-W.; Toda, T.; Norbury, C.; Hickso, I.D. Topoisomerase III is essential for accurate nuclear division in
Schizosaccharomyces pombe. Nucleic Acids Res. 1999, 27, 4050–4058. [CrossRef] [PubMed]

77. Maftahi, M.; Han, C.S.; Langston, L.D.; Hope, J.C.; Zigouras, N.; Freyer, G.A. The top3+ gene is essential in Schizosaccharomyces
pombe and the lethality associated with its loss is caused by Rad12 helicase activity. Nucleic Acids Res. 1999, 27, 4715–4724.
[CrossRef] [PubMed]

78. Wallis, J.W.; Chrebet, G.; Brodsky, G.; Rolfe, M.; Rothstein, R. A hyper-recombination mutation in S. cerevisiae identifies a novel
eukaryotic topoisomerase. Cell 1989, 58, 409–419. [CrossRef]

79. Li, W.; Wang, J.C. Mammalian DNA topoisomerase IIIα is essential in early embryogenesis. Proc. Natl. Acad. Sci. USA 1998, 95,
1010–1013. [CrossRef]

80. Kwan, K.Y.; Wang, J.C. Mice lacking DNA topoisomerase IIIβ develop to maturity but show a reduced mean lifespan. Proc. Natl.
Acad. Sci. USA 2001, 98, 5717–5721. [CrossRef]

81. Stoll, G.; Pietiläinen, O.P.H.; Linder, B.; Suvisaari, J.; Brosi, C.; Hennah, W.; Leppa, V.; Torniainen, M.; Ripatti, S.; Ala-Mello, S.; et al.
Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders. Nat. Neurosci. 2013,
16, 1228–1237. [CrossRef]

82. Xu, D.; Shen, W.; Guo, R.; Xue, Y.; Peng, W.; Sima, J.; Yang, J.; Sharov, A.; Srikantan, S.; Yang, J.; et al. Top3β is an RNA
topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nat. Neurosci. 2013, 16, 1238–1247.
[CrossRef] [PubMed]

83. Zhang, T.; Wallis, M.; Petrovic, V.; Challis, J.; Kalitsis, P.; Hudson, D.F. Loss of TOP3B leads to increased R-loop formation and
genome instability. Open Biol. 2019, 9, 190222. [CrossRef] [PubMed]

84. Yang, Y.; McBride, K.M.; Hensley, S.; Lu, Y.; Chedin, F.; Bedford, M.T. Arginine Methylation Facilitates the Recruitment of TOP3B
to Chromatin to Prevent R Loop Accumulation. Mol. Cell 2014, 53, 484–497. [CrossRef] [PubMed]

85. Ahmad, M.; Shen, W.; Li, W.; Xue, Y.; Zou, S.; Xu, D.; Wang, W. Topoisomerase 3β is the major topoisomerase for mRNAs and
linked to neurodevelopment and mental dysfunction. Nucleic Acids Res. 2016, 45, 2704–2713. [CrossRef] [PubMed]

86. Siaw, G.E.-L.; Liu, I.-F.; Lin, P.-Y.; Been, M.D.; Hsieh, T.-S. DNA and RNA topoisomerase activities of Top3β are promoted by
mediator protein Tudor domain-containing protein 3. Proc. Natl. Acad. Sci. USA 2016, 113, E5544–E5551. [CrossRef]

87. Goto-Ito, S.; Yamagata, A.; Takahashi, T.S.; Sato, Y.; Fukai, S. Structural basis of the interaction between Topoisomerase IIIβ and
the TDRD3 auxiliary factor. Sci. Rep. 2017, 7, 42123. [CrossRef]

http://dx.doi.org/10.1016/0092-8674(82)90402-0
http://dx.doi.org/10.1128/JB.180.22.5866-5874.1998
http://www.ncbi.nlm.nih.gov/pubmed/9811643
http://dx.doi.org/10.1128/JB.181.10.3185-3192.1999
http://dx.doi.org/10.1371/journal.pone.0124309
http://dx.doi.org/10.1093/nar/gkv1197
http://dx.doi.org/10.1074/jbc.M509722200
http://dx.doi.org/10.1016/j.jmb.2008.10.073
http://dx.doi.org/10.1074/jbc.M111.229450
http://dx.doi.org/10.1016/j.tube.2015.05.004
http://dx.doi.org/10.1111/1574-6968.12412
http://www.ncbi.nlm.nih.gov/pubmed/24593153
http://dx.doi.org/10.15252/msb.20167449
http://www.ncbi.nlm.nih.gov/pubmed/28490437
http://dx.doi.org/10.3390/ijms20051116
http://www.ncbi.nlm.nih.gov/pubmed/30841529
http://dx.doi.org/10.1016/S0378-1119(98)00065-1
http://dx.doi.org/10.1093/nar/27.20.4050
http://www.ncbi.nlm.nih.gov/pubmed/10497270
http://dx.doi.org/10.1093/nar/27.24.4715
http://www.ncbi.nlm.nih.gov/pubmed/10572171
http://dx.doi.org/10.1016/0092-8674(89)90855-6
http://dx.doi.org/10.1073/pnas.95.3.1010
http://dx.doi.org/10.1073/pnas.101132498
http://dx.doi.org/10.1038/nn.3484
http://dx.doi.org/10.1038/nn.3479
http://www.ncbi.nlm.nih.gov/pubmed/23912945
http://dx.doi.org/10.1098/rsob.190222
http://www.ncbi.nlm.nih.gov/pubmed/31795919
http://dx.doi.org/10.1016/j.molcel.2014.01.011
http://www.ncbi.nlm.nih.gov/pubmed/24507716
http://dx.doi.org/10.1093/nar/gkw1293
http://www.ncbi.nlm.nih.gov/pubmed/28039324
http://dx.doi.org/10.1073/pnas.1605517113
http://dx.doi.org/10.1038/srep42123


Microorganisms 2021, 9, 86 19 of 21

88. Barrows, N.J.; Anglero-Rodriguez, Y.; Kim, B.; Jamison, S.F.; Le Sommer, C.; McGee, C.E.; Pearson, J.L.; Dimopoulos, G.; Ascano,
M.; Bradrick, S.S.; et al. Dual roles for the ER membrane protein complex in flavivirus infection: Viral entry and protein biogenesis.
Sci. Rep. 2019, 9, 9711. [CrossRef]

89. Saha, S.; Chowdhury, S.R.; Majumder, H.K. DNA Topoisomerases of Kinetoplastid Parasites: Brief Overview and Recent
Perspectives. Curr. Issues Mol. Biol. 2019, 31, 45–62. [CrossRef]

90. Balaña-Fouce, R.; Alvarez-Velilla, R.; Fernandez-Prada, C.; García-Estrada, C.; Reguera, R.M. Trypanosomatids topoisomerase
re-visited. New structural findings and role in drug discovery. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 326–337. [CrossRef]

91. Kim, H.-S.; Cross, G.A.M. TOPO3α Influences Antigenic Variation by Monitoring Expression-Site-Associated VSG Switching in
Trypanosoma brucei. PLoS Pathog. 2010, 6, e1000992. [CrossRef]

92. Banerjee, B.; Sen, N.; Majumder, H.K. Identification of a Functional Type IA Topoisomerase, LdTopIIIβ, from Kinetoplastid
Parasite Leishmania donovani. Enzym. Res. 2011, 2011, 230542. [CrossRef]

93. Scocca, J.R.; Shapiro, T.A. A mitochondrial topoisomerase IA essential for late theta structure resolution in African trypanosomes.
Mol. Microbiol. 2008, 67, 820–829. [CrossRef] [PubMed]

94. Tiwari, P.B.; Chapagain, P.P.; Seddek, A.; Annamalai, T.; Üren, A.; Tse-Dinh, Y. Covalent Complex of DNA and Bacterial
Topoisomerase: Implications in Antibacterial Drug Development. ChemMedChem 2020, 15, 623–631. [CrossRef] [PubMed]

95. Sandhaus, S.; Chapagain, P.P.; Tse-Dinh, Y. Discovery of novel bacterial topoisomerase I inhibitors by use of in silico docking and
in vitro assays. Sci. Rep. 2018, 8, 1437. [CrossRef]

96. Godbole, A.A.; Ahmed, W.; Bhat, R.S.; Bradley, E.K.; Ekins, S.; Nagaraja, V. Targeting Mycobacterium tuberculosis Topoisomerase I
by Small-Molecule Inhibitors. Antimicrob. Agents Chemother. 2015, 59, 1549–1557. [CrossRef]
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