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ABSTRACT OF THE THESIS 

MODELING OF CROSSTALK IN HIGH SPEED PLANAR STRUCTURE PARALLEL DATA BUSES 

AND SUPPRESSION BY UNIFORMLY SPACED SHORT CIRCUITS 

by 

Gabriel Alejandro Solana 

Florida International University, 2012 

Miami, Florida 

Professor Grover Larkins, Major Professor 

The aim of this thesis is to identify coupling mechanisms for three line microstrip, stripline and microstrip 

with dielectric overlay structures as either inductive or capacitive, quantify through simulation and 

measurement the amount of crosstalk to be expected in terms of scattering parameters. A new method of 

crosstalk suppression is implemented into each three line structure by placing uniformly spaced short 

circuits down the length of the center transmission line.  

All structures were simulated over various physical and electrical parameters. Select microstrip structures, 

shielded and unshielded, were fabricated and measured to validate the effectiveness of the shielding 

technique. Shielding effectiveness was calculated from the measurements, and their results showed that the 

isolation between lines was increased by up to 20dB. 
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CHAPTER 1 

INTRODUCTION 

Modern mobile communication handsets, computer motherboards, graphics cards circuit boards, and PCI 

interconnects all utilize of parallel transmission lines that transmit digital signals between components. For 

transmission lines carrying different information electromagnetic coupling between these lines is of a 

destructive nature. All devices suffer reduced signal integrity because of this coupling. This corruption is 

due to capacitive and/or inductive coupling which was studied extensively by [1,2,3,4,5,6,7,8,9,10].  

The focus of this study is on narrow side coupling of parallel stripline, microstrip and microstrip with 

dielectric overlay transmission lines on FR-4 fiberglass epoxy substrate. In particular, this study focuses on 

the characterization of three symmetric coupled transmission lines and an experimental two line shielded 

geometry. Scattering parameters are numerically calculated, using finite element method solvers, from each 

structure while varying the physical dimensions of each structure. This thesis topic was suggested by Peter 

Bartels of Motorola and the idea for shielding the lines is accredited to Dr. Grover Larkins. Mr. Bartels 

prediction and reason for concern is such that data buses of the future will operate at frequencies between 

500MHz and 5GHz where inter-line coupling becomes problematic. The primary objective of the thesis is 

to predict signal corruption between the transmission lines in the aforementioned form factors by means of 

computer simulations with Sonnet and HFSS. The validation of the simulated results will be accomplished 

by fabrication of the microstrip transmission lines and testing on a vector network analyzer.  

The results of this study will contribute to the design of parallel data buses by allowing layout engineers of 

printed circuit boards (PCB) to accurately predict signal corruption before running extensive and time-

consuming simulations. Designers would be able to refer to information listed in this manuscript or adopt 

the methodology described in the following chapters to arrive at a model for their selected substrate 

because εr is fixed for this study.  
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CHAPTER 2 

COUPLED PLANAR TRANSMISSION LINE STRUCTURES 

Planar transmission lines such as stripline and microstrip have the ability to propagate transverse 

electromagnetic (TEM) waves and quasi TEM waves, respectively.  The solutions to the line parameters are 

non-trivial and the procedure of obtaining the line parameters involves the application of partial differential 

equations which yield solutions that involve infinite summations for the capacitance [7] within the 

dielectric medium separating the conductive planes and strips. The focus of this research is not on the 

analysis of a single line which was done in [11], but on the analysis of 2 and 3 narrow side coupled lines in 

stripline, microstrip and microstrip with a dielectric overlay. 

a.  b.  c.  

   

Figure 1. Microstrip (a), Stripline (b), and Microstrip with dielectric overlay (c) 

The analysis of coupled lines is logically more complex than that of a single line. Many engineers and 

scientists have developed different methods to analyze N-coupled transmission line structures but the route 

to a nominal solution for all of these methods is through numerical techniques where certain simplifications 

have been made [3,4] due to mathematical complexity.  

2.1 FIELD VISUALIZATION 

To establish a simplified concept of the coupling mechanisms involved for the different propagation modes 

of three coupled transmission lines begin by finding find orthogonal components of fields at different 

points of the cross sectional structure. This implies that we are assuming a TEM propagation mode for all 3 

modes. For a three coupled line structure there are three modes of propagation that we define as the side 

active odd mode, center active odd mode, and the even mode. Even mode propagation is defined as all 

three signals propagating in the same direction. The center active odd mode is defined as the center 

conducting strip propagating in the ±z-direction and the outer strips propagating signals in the ∓z-direction. 
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The side active odd mode is defined as either the left or right strip propagating in the ±z-direction and the 

center and right or left in the ∓z-directions.  

2.2 EVEN MODE FIELD ANALYSIS 

Assume a signal with amplitude V(z)=+V0e
-jβz  is applied to all lines in the microstrip geometry shown in 

the figure(XX) below and that the lines are terminated with matched loads to eliminate reflected waves. 

The potential distribution in the x-direction at y=b is given by the curve below along the potential 

distribution in the y-direction under each strip. That is x=[0,W],[W+S, 2W+S],[2(W+S),3W+2S].  

 

Figure 2. Even mode field distribution 

  

Figure 3. Potential distributions for x & y directions in even mode 

The dips in V(x) represent the drop in potential between the transmission lines Assuming a sloped change 

in potential between the strips at y=b and finding the x-component of the electric field by:  

ሬറܧ ൌ െ(2.2-1)                                                                     ܸ 

0

V
(x

)

x

V
0

3W+2S2(W+S)2W+SW+SW y
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(y
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V0
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We can see that the electric x components oppose each other and that there is no electric field component 

between the strips in the even mode. The y-component of the magnetic field can now be found by using the 

following equation. 

௬ሬሬሬሬሬറܪ ൌ ଵఎ ݖ̂ ൈ  ௫ሬሬሬሬԦ                                                       (2.2-2)ܧ

௫ሬሬሬሬറܧ  ݔ	ݎ݂ 0 ൌ ܹ,ܹ  2ܵ൨& ሾ2ܹ  ܵ, 2ܹ  2ܵሿ ܪ௬ሬሬሬሬሬറ ൏ 0 

௫ሬሬሬሬറܧ ൏ ݔ	ݎ݂ 0 ൌ ܹ  2ܵ ,ܹ  ܵ൨& ሾ2ܹ  2ܵ , 2ሺܹ  ܵሻሿ ܪ௬ሬሬሬሬሬറ  0 

 

The wave impedance of the TEM wave propagating on the line, η, is only dependent on the material 

properties. The magnetic field y-components are in opposite directions in the left and right half of the 

separation between the lines. By a similar procedure we can calculate the x-component of the magnetic 

field between the ground plane and the strip conductors. 

௫ሬሬሬሬറܪ ൌ ଵఎ ݖ̂ ൈ  ௬ሬሬሬሬԦ                                                       (2.2-3)ܧ

௬ሬሬሬሬറܧ ൏ ݔ	ݎ݂ 0 ൌ ሾ0,ܹሿ; ሾܹ  ܵ, 2ܹ  ܵሿ; ሾ2ሺܹ  ܵሻ, 3ܹ  2ܵሿ ܪ௫ሬሬሬሬറ ൏ 0 

The above result shows that the x-component of the magnetic field under each line is in the same direction 

and thus they add to each other. Combining these results with those of the y-component of the magnetic 

field clearly shows that there is a net magnetic field encircling all 3 transmission lines.  

 

Figure 4. Effective field distribution for even mode 
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Each transmission line forms a closed loop with the ground plane. The x-component of the magnetic field 

and the surface normal of the loop give rise to a mutual inductance between each line on top from their own 

self-inductance.  

Φ ൌ න ଵሬሬሬሬറܤ ∙ റௌೕݏ݀ 	
ܮ ൌ Φܫ 	 

ሾࡸሿ ൌ ܮଵଵ ଵଶܮ ଶଵܮଵଷܮ ଶଶܮ ଷଵܮଶଷܮ ଷଶܮ  ଷଷ൩ܮ
Φij is the magnetic flux linkage between lines i and j. Lii represents the self-inductance of the ith line and Lij 

represents the mutual inductance between the ith and jth lines. From the symmetry in the structure it is clear 

that the inductance matrix is diagonally symmetric. Capacitive coupling between transmission lines is not a 

large concern in the even mode because the x-components of the electric fields are of equal magnitude and 

opposite orientation.   

 

Figure 5. Equivalent self capacitances and mutual inductances for the even mode 

2.3 CENTER ACTIVE ODD MODE FIELD ANALYSIS 

The center active odd mode has the two side transmission lines propagating in the direction opposite to that 

of the center transmission line. In contrast to the even mode, capacitive coupling will be dominant due to 
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the potential difference between the conducting strips. The continuous electric field lines from the center 

conductor to the side conductors imply that the vector sum of the magnetic fields between the lines equals 

zero because of the opposing propagation directions. 

 

Figure 6. Center active odd mode field distribution 

The center conductor has a signal propagating in the +z-direction and the outer conductors in the –z-

direction. By a similar analysis we can approximate the potential distributions in the x and y directions and 

follow the same procedure that will lead to the determination of the directions of electromagnetic fields. 

a. 

 

b. 

 

c. 

 

Figure 7. Potential distributions for x & y directions for center active odd mode 
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The potential distribution for x=[W,W+S] gives rise to an electric field oriented in the +x-direction and the 

potential distribution for x=[2W+S,2(W+S)] gives an electric field component oriented along the –x-

component. For x=[W,W+S/2] there exists a magnetic field y-component aligned with the –y-direction due 

to the signal propagating on the left conductor, and for x=[W+S/2,W+S] the y-component of the magnetic 

field is in the -y-direction as well. A similar trend can be found from x=2W+S to x=2(W+S). These adding 

magnetic fields do not contribute to mutual inductance because they are orthogonal to the surface normal of 

the loop made by each strip conductor and the ground (B·ds=0).  

The potential distribution along the y-direction underneath the left and right transmission lines gives rise to 

an electric field oriented in the –y-direction which implies that the x-component of the magnetic field is in 

the –x-direction. For the center line, the electric field is oriented in the +y-direction and yields a magnetic 

field x-component oriented along the +x-direction. The fact that the x-components of the magnetic fields 

between conductors are canceled out means that the network is magnetically decoupled. The potential 

difference between the center conductor and the left and right conductors gives an electric field component 

that is inversely proportional to the spacing between them. This leads to the conclusion that capacitive 

coupling between the lines in the center active odd mode is the dominant force in destructive coupling for 

the mode.  The capacitive network distribution for the mode is illustrated in the figure below.  

 

Figure 8. Self and mutual capacitances for the center active odd mode 

 



8 

2.4 Side Active Odd Mode Field Analysis  

For the final mode of propagation we will assume that the leftmost strip conductor is propagating a TEM 

wave in the +z-direction and the center and right conductors are propagating a signal in the –z-direction. 

The potential distribution in the parameter for y=b is shown below.  

 

 

 

Figure 9. Side active odd mode field distribution 

 

Figure 10. Potential distribution in the x direction 
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V
(x
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V
0

-V0
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 The potential distribution between the left and center lines is clearly analogous to that of the center 

active odd mode. The potential distribution between the right and center conductors is similar to that for the 

even mode described earlier. Referring to the results of the center active odd mode it is evident that 

capacitive coupling will dominate for the separation of the left and center transmission lines. Inductive 

coupling will be dominant mechanism of signal corruption in the separation between the center and right 

conductors. In contrast to the other two modes of signal transmission, this mode gives rise to the greatest 

amount of field asymmetry and, as a result, makes analysis more complicated. An equivalent circuit of the 

network capacitances is shown below. 

 

Figure 11. Equivalent self and mutual capacitances for the side active odd mode 

2.5 QUANTITATIVE ANALYSIS 

Some researchers have studied crosstalk in microstrip using even and odd mode analysis [1,7], others have 

analyzed the mutual inductances and capacitances [2,3,4,5,6]. Zhou [12] cited Leone [13] stating that 

certain approximations and assumptions were made that ignore the line width and field distribution, not 

because he was inadequate but because, “It is difficult to obtain solution with both simplicity and accuracy 

if one just studies the coupling in a direct way [12].” Abbosh [10] confirms Zhou [12] by stating, 

“Analytical studies result in closed-form expressions which are suitable for analysis and design, but the 

accuracies depend to a large extent on the involved approximations.”  
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Abbosh goes on to say that numerical methods conducted by [14,15] are accurate but do not yield practical 

algorithms for design optimization. Integral equations utilizing image theory were performed by Hellman 

and Palocz [16], and they pointed out that conformal mapping was performed on a single microstrip by 

Black and Higgins [17] and the resulting integral cannot be evaluated in closed form when applied to 

multiple microstrip lines.  
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CHAPTER 3 

ENHANCING NOISE IMMUNITY 

One proposed solution to reduce electromagnetic coupling between parallel lines is to have a grounded 

conducting strip between the transmitting lines. This grounded center strip is terminated into a matched 

load on both ends, and has periodically spaced of vias along the length of the conductor. The purpose of 

these vias along with the center conductor is to capture radiated electric fields and create a closed surface 

for magnetic fields to permeate and cancel based of the principle of Faraday’s Law. This work will 

examine the even and odd propagating modes in this structure give a qualitative analysis of the field 

behavior of this structure and explain how it acts to reduce the coupling between lines. 

3.1 ODD MODE PROPAGATION 

 

Figure 12. Isometric view of proposed shielding structure 

Capacitive coupling is the dominant mechanism that leads to signal degradation for signals propagating in 

opposite directions. The insertion of a grounded strip conductor with periodic short circuit through holes  

allows parasitic electric fields to couple to this conductor and dissipate into the ground plane. For two 

signals propagating in opposite directions with their voltage maximums 180o out of phase, their electric 

fields are such that they couple to the center conductor and the vias. The electric fields couple to the center 

conductor and cancel due to induced surface charge. Recalling the potential distributions in the x-direction 

for the center active odd mode it is easy to see that there is a potential gradient which induces an electric 
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field inversely proportional to the spacing of the lines and directly proportional to the potential difference 

between the lines. 

 

Figure 13. Field distribution for shielded microstrip structure propagating in odd mode 

 Grounding the center conductor allows the potential distribution in the x-direction to have a smaller slope 

for the same spacing. This smaller slope means a lower magnitude x-oriented electric field. The fact that 

the coupling is now with a grounded conductor ensures that there is less re-radiation. This in turn reduces 

the corruption from the signal on its neighboring transmission line. The grounded conductor serves as a 

channel for the radiated energy.  

 

Figure 14. xy projection of shielded microstrip structure with equivalent self and mutual capacitances 

Magnetic fields will be circulating in opposite directions which tell us that the vertical components will 

sum up and create stronger fields but fall off by inverse distance squared. However, horizontal components 
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oppose each other. Assuming symmetrical conditions and identical signals propagating such that peak 

amplitude of one signal and minimum amplitude of the other are aligned along a plane z=z0 such that z0 is 

less than the length of the line, we can conclude that the horizontal components of the magnetic fields 

between the lines will completely cancel. 

3.2 EVEN MODE PROPAGATION 

The even mode propagation for the shielded lines has a similar mechanism to enhance noise immunity with 

the exception being that it comes from magnetic fields. Again for TEM wave propagation we will have 

magnetic fields permeating the surfaces of the loops created in the center conductor and through hole 

shorts. These magnetic fields, according to Faraday’s Law will induce eddy currents into these loops.  

 ⋅−=Φ−=
Semf sd

dt

Bd

dt

d
V




                                          (3.2-1) 

The time derivative can be moved into the integrand because the area of the surface is not changing in time. 

Utilizing Kirchoff’s Current Law, we can see that the currents will sum in such a way as to not cancel each 

other. These induced currents will in turn generate magnetic fields to oppose the magnetic fields 

penetrating the closed surface of the loop thus enhancing the noise immunity of one line from the other. 

In order for induced magnetic field to cancel the incident magnetic field, the self-inductance of the shield 

line must be as high as possible and the resistance of the line as low as possible so that the phase difference 

between the induced voltage and induced current approaches ninety degrees. One such method to ensure 

that line inductance is sufficiently high is to make sure that the vias are made with the smallest diameter to 

height ratio possible as determined by Goldfarb and Pucel [18]. 

3.3 ALTERNATIVE METHODS OF CROSSTALK SUPPRESSION 

Other variations to reduce crosstalk between planar transmission line structures have been worked upon 

and have seen success. The more traditional methods include increased line spacing [19] and using 

materials that have dielectric constants that approach ε0 [20]. These methods are intuitive because if we 

consider the electric fields as the transport mechanism of energy between lines then if line spacing is 
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increased by a factor of two then the electric field strength falls off by a factor of 4 and the power induced 

by a factor of 16. Recalling the formula for parallel plate capacitance gives an intuition as to why low 

relative permittivity substrates have lower crosstalk values. Parallel plate capacitance is linearly 

proportional to the relative dielectric constant. Sometimes greater line spacing is not an option because of 

mechanical constraints. Other instances may require a particular substrate and lower values of relative 

dielectric constant are not available.  

Other exotic methods that reduce crosstalk include the use of magnetic-loaded absorber sheets and breaks 

in the ground plane for microstrip. Drnovsek et al [21] was attempting to determine ways to increase line 

coupling for the design of 3dB couplers and phase shifters using magnetic absorbing sheets placed atop the 

coupled lines. What worked for Drnovsek is not what is of interest. What did not work for Drnovsek is the 

more interesting case for this research. A magnetic absorber sheet with a relative permeability of 20 and 

relative dielectric constant of unity resulted in the lowest values of coupling for their research. Kazerooni et 

al [22] proposed the implementation of parallel slots or total breaks in the ground plane to reduce crosstalk. 

His results concluded that a parallel break in the ground plane effectively lowered the mutual inductance 

and capacitance considerably more than a parallel slot. 

Suspending a floating conducting surface above a coupled microstrip structure was implemented by 

Malisuwan and Ungvichian [23] in order to reduce crosstalk. The height of suspension was varied and their 

results indicated that the closer they could suspend the line the more the crosstalk was reduced.  
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CHAPTER 4 

VALIDATION 

The validation of the aforementioned qualitative analyses is carried out by computer simulation and 

physical fabrication and testing of the boards themselves, shielded and unshielded. With data from 

simulation and these experiments we can validate the accuracy by comparison. Accuracy of Sonnet’s FEM 

simulator was evaluated by Oldfield et al. [24]. 

4.1 COMPUTER SIMULATION IN SONNET 

Computer simulation was initially done in Sonnet, which is a finite element method electromagnetic 

simulator where models are drawn in planar 3D. That is, metallization is drawn on planes and layers of 

dielectrics are added in blocks where their shape is not editable. The following table details what physical 

and electrical parameters were varied in the Sonnet simulator. 

Parameter Values Units 

Length 0.5, 1.0, 1.5, 2.0 Inch 

Substrate Thickness 0.015625, 0.03125, 0.0625 Inch 

Line Spacing 10,20,…,100 % Line Width 

Characteristic Impedances 25, 50, 75, 100 Ohms 

Frequency 5x106 through 5x109 Hertz 

Table 1. Summary of all parameters varied for simulations performed 

Project files were created for every value of line length and for shielded and unshielded lines. 288 

individual project files were created that ran a decade frequency sweep in adaptive band sweep mode and a 

parameter sweep over line spacing where the values of the line spacing were dictated by the width of the 

line which depends on the characteristic impedance.  

The scattering matrix is calculated from the simulations. From geometry considerations we can see that the 

matrix is diagonally symmetric. A sample drawing below illustrate port placement so that reference to cells 

of the scattering matrix become clear. 
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The results of the simulations yielded values for |S61| such that for 10% line width spacing, the magnitude 

of voltage transfer is lower across the entire frequency band of interest! 

 

 

Figure 15. Structure/circuit hybrid diagram to illustrate port numbering scheme 

4.1.1 SONNET RESULTS 

 

Figure 16. 2” Microstrip line cross corner voltage transfer characteristic for shielded and unshielded 

structures 
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The above figure illustrates the simulation results for 50 Ohm lines on FR-4 epoxy substrate with a 10% 

line width spacing (S =10.6mils=0.26924mm). At 5GHz, electrical isolation is increased by 5.6403dB 

which corresponds to a 52.24% reduction of energy transfer when compared to the unshielded case. The 

various structures under investigation have different coupling characteristics as illustrated below. 

 

Figure 17. Crosstalk performance of all structures of 50Ω characteristic impedance 
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When considering the physical layout of the structure, it makes logical sense as to why this characteristic is 

so. Consider geometric optics and Snell’s Law. When there is an electromagnetic wave incident on 

dielectric media there is a certain angle of diffraction that depends on the ratio of indices of refraction and 

the sine of the incident angle. The microstrip structure contains only a single ground plane whereas the 

stripline structure contains dual ground planes. We can postulate that the presence of a second ground plane 

lowers coupling substantially because the electric fields are more strongly coupled to the ground plane. 
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Stripline would closely approximate the characteristics of a coaxial cable because stripline is practically a 

flattened out coaxial cable where the circular cross sections are stretched into an ellipse and then the major 

axis of that ellipse approaches an infinite distance to create a rectangular/planar structure. Another 

observation that can be made is that the resonant frequencies are different for each structure. 

 

Figure 18. Crosstalk performance of all shielded 50Ω structures 
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coupling. There is less diffraction present in this structure because it does not present a discontinuous 

dielectric interface between strip conductors. Because fields do not diffract here their magnetic fields are 
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advantage when designing high density parallel data buses.  
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The microstrip structure, which from the figure above exhibited the worst cross corner coupling 

characteristics for a structure of the same length and width dimensions suffers this because it has the 

weakest strip to ground plane electric field coupling. Once again, like the microstrip with dielectric overlay 

structure, the fringe field coupling to the adjacent conductors is strengthened. 

Because the magnitude of the electric field is proportional to potential difference over separation it would 

make sense that the coupling between lines would decrease for thinner substrates. The figure below 

illustrates that this is the case at higher frequencies on a microstrip structure fabricated on different 

substrate thicknesses. Shielded microstrip structures do exhibit the same properties and with greater 

success. The shielded structure across the entire band of interest exhibits a reduction of corner-to-corner 

coupling greater than 10dB. Because all lines are terminated in the same impedance, this would translate 

into a 20dB improvement in signal to noise ratio.  

The same way reducing the substrate thickness reduces the magnitude of S61 the length of the line also has 

an effect because the mutual inductance increases with line length because the area of the loop increases 

proportionally with line length. 

Figure 18 shows how the crosstalk performance for stripline and microstrip with dielectric overlay degrade 

after implementing the shield. In order to view how well the shield is working a new parameter can be 

defined that quantifies the effectiveness of the shield for a structure, isolation gain or reduction. The 

isolation gain is defined to be |S61| in decibels for an arbitrary unshielded structure minus |S61| for its 

corresponding shielded structure. That is, 

))((Re 6161 dBSSductionIsolationainIsolationG
UnshieldedShielded

−−=−=
 

Figures 19-21 illustrate isolation gain for all structures at 500MHz, 2.5GHz and 5GHz versus percentage 

line width spacing. A positive value of isolation gain would indicate that the shield has increased noise 

immunity by the value indicated at that particular value of line spacing. Negative values of isolation gain 

would immediately indicate to a designer that the shielded structure would not be worth his/her time to 

fabricate because the shield would degrade signal integrity between these ports.  
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Figure 19. Isolation gain for all structures at 500MHz 

 

Figure 20. Isolation gain for all structures at 2.5GHz 
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Figure 21. Isolation gain for all structures at 5GHz 

 

Figure 22. Crosstalk performance of unshielded 50Ω microstrip for variable thickness 

10 20 30 40 50 60 70 80 90 100
-15

-10

-5

0

5

10
Shielding Effectiveness at f=5GHz

Is
ol

at
io

n 
G

ai
n 

(d
B

)

Spacing (% Line Width)

 

 

Microstrip
Stripline
Microstrip w/ D.O.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

Unshielded Microstrip |S
61

| for Various Substrate Thicknesses (S=0.1W)

|S
61

| (
dB

)

Frequency (GHz)

 

 

62.5 mil
31.25 mil
15.625 mil



22 

 

Figure 23. Crosstalk performance of shielded 50Ω microstrip on FR-4 of varying thickness 

 

Figure 24. Crosstalk performance of unshielded 50Ω microstrip for multiple line lengths 
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Figure 25. Crosstalk performance of shielded 50Ω microstrip for multiple line lengths 

 

Figure 26. Crosstalk vs. line spacing for 2" unshielded 50Ω microstrip 
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Figure 27. Crosstalk vs. line spacing for 2" shielded 50Ω microstrip 
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This view of the curves allows for a clear view of voltage transfer is decreased as the line spacing is 

increased. This result is in agreement with the results found by Kasuga & Inoue [19]. The shielded 

microstrip structure shows a lower amount of crosstalk for the entire spacing range. Where microstrip 

shows a constant decline in crosstalk for increasing spacing, stripline does not. Stripline and microstrip 

with dielectric overlay now follow the same trend as microstrip now having lost their periodicity in 

frequency. To a transmission line designer, this would not be a desirable effect and it is clear that isolation 

gain is a negative value for these structures. 
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4.2 HFSS SIMULATIONS 

In order to meet VSWR requirements to properly test the structures there is a minimum spacing 

requirement set by the recommended pattern of the connectors. Improper signal coupling to the board 

would create spurious radiation at the discontinuities and, in turn, corrupt the measurements. The coaxial to 

microstrip transition itself is a source of error because it is a line discontinuity. This discontinuity is a 

measurement error that will discussed in Chapter 6 in greater detail.  

 

Figure 28. Land pattern used in the fabrication of test structures 

The 440 mil width is also the minimum line spacing that imposes the minimum connector spacing. With 

the minimum value being, 

15.4
106

440min ==
mils

mils

W

S
 

Stepping 4.15 up to 4.5 allows for a small gap between connectors and ensures that connector mounting 

will be clean and easy. Therefore the minimum value of spacing shifts to 4.5·W which is equal to 477mils. 

Stepping these values up 53mils at a time will give the 500%, 550% and 600% values.  This calls for a re-
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simulation of the microstrip structures with the new line spacing values at a fixed length of 2” (50.8mm) 

over the 500MHz to 5GHz band. HFSS is used for the re-simulation primarily because of its ability to 

simulate larger domains where structures are drawn in a full three-dimensional model.  

 

Figure 29. 3D Model of unshielded microstrip in HFSS 

 

Figure 30. 3D Model of shielded microstrip in HFSS 
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Figure 31. HFSS simulation result for unshielded microstrip vs. frequency 

 

Figure 32. HFSS simulation result for shielded microstrip vs. frequency 
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Figure 33. HFSS simulation result for unshielded microstrip vs. line spacing 

 

Figure 34. HFSS simulation result for shielded microstrip vs. line spacing 
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Figure 35. HFSS result for isolation reduction vs. frequency 

 

Figure 36. HFSS result for isolation reduction vs. line spacing 
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Figures 31&32 illustrate the magnitude of the crosstalk present in the system for various values of line 

spacing. According to this data there are certain frequency ranges where a tighter spacing reduces crosstalk 

for certain frequency bands. Figures 33&34 present the crosstalk versus line spacing for three different 

frequencies. Viewing crosstalk in this manner would be beneficial for a designer working on a narrowband 

system that requires high signal quality. This view also serves to show how cross corner coupling may be 

greater for higher frequencies, which is counter intuitive but still occurs. Isolation reduction versus 

frequency and spacing are presented in figures 35&36. Each plot can illustrate whether or not 

implementing a shield would be beneficial or not. Values of isolation gain less than 0 clearly indicate that 

you would only be degrading the structures noise immunity and the values greater than zero would of 

course enhance the noise immunity. 

4.3 LABORATORY TESTING 

The second component toward the validation of hypothesis put forth in the previous chapters is laboratory 

testing. Fabrication and testing procedures are covered with vast detail in this section. Microstrip is a planar 

transmission line that lends itself very well to rapid fabrication methods such as photolithography and 

circuit board milling machines. Therefore, as established earlier, it will be the transmission line structure 

that is to be fabricated for experimental validation purposes. As in the computer simulations, FR-4 epoxy 

will be the only substrate used in fabrication. 50Ω characteristic impedance on a 0.0625” (1.5875mm) 

substrate gives a line width of 0.106” (2.6924mm). 

4.3.1 FABRICATION PROCESS 

The road to fabrication of coupled microstrip lines begins with a survey of the test equipment available and, 

not to mention, necessary. The network analyzer available for measurements has male SMA connectors. 

Therefore, we elected to purchase the narrowest SMA end launch female connector available. The 

narrowest such connector on the market was 0.375” (9.525mm) which imposes a minimum spacing of 

0.440” (11.176mm) or 415% line width between conductors, after taking the land pattern into consideration 

for 50Ω microstrip on 0.0625” (1.5875mm) thick FR-4. This minimum spacing was beyond the bounds of 

the computer simulations already carried out. However, I have hypothesized that the magnitude of S16 for a 

shielded line will still be about 5dB lower than the unshielded line even at values of spacing greater than 
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100% based on the following simulation result. From the plot below, at 5GHz, the unshielded line has a 

corner to corner voltage transfer magnitude of -23.8540dB and the shielded line has a value of -29.1543dB 

giving a difference of 5.300209dB. So from 10% spacing to 100% for 50 Ohm lines fabricated on 

1.5875mm FR-4 the difference between voltage transfer at 5GHz remains just about constant, interesting 

behavior if valid. 

The spacing values required for a fabricated board requires the simulation of these structures which is done 

in HFSS. Installation of end launch connectors requires the insertion of  several copper landing pads that 

straddle the strip the connector will connect to in order to achieve the best possible match for the coaxial to 

microstrip transition. This is important to the validation because without a proper match between connector 

and line there will be reflected waves that will distort the results.  

 

Figure 37. Crosstalk performance comparison of 50Ω microstrip structures 
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Next, the platform that will be used to fabricate the test structures is the LPKF ProtoMat S52. This rapid 

prototyping printed circuit board milling machine is a good choice because it is time efficient as well as 

having an auxiliary end mill set with a minimum mill size of 10 mils (254 microns). The software that runs 

the milling machine, CircuitCAM, accepts many file formats including Gerber and *.dxf. I chose to draw 

my layout in AutoCAD where I can have a high degree of control of line spacing and implement the 

connector land patterns with extreme ease. I was able to create a 1x4 array of boards after the completion of 

the first and then adjust the spacing from 450% to 500% for the second board and so forth. Then create a 

2x1 array of those four boards and place 17 equally spaced through holes down the length of the center 

conductor.  

From this point, the file is saved as an AutoCAD 2000/LT2000 DXF so that I have full compatibility with 

CircuitCAM. In the CircuitCAM environment the details for board outline and copper rubout are specified. 

With the CircuitCAM file complete, fabrication begins. The file exported from CircuitCAM is then 

imported into Board Master which is the software that controls the LPKF ProtoMat S52. The tools 

necessary for the fabrication were defined in CircuitCAM which are then loaded into the ProtoMat along 

with the double sided half ounce FR-4 board. The milling process is initiated, followed by the drilling, 

followed by the contour routing which allows the boards to be extracted from the source material.  

Once the boards are extracted from the source material, connectors can now be mounted onto them. First, 

the through holes must be shorted to the ground plane by requirement for the SMA connectors and the 

center conductors for the experiment. The shielded boards require short circuits to be placed in through 

holes placed down the center conductor. This is accomplished by taking 30AWG enamel coated copper 

wire and threading it in a zig-zag pattern down the length of the board trying to minimize the air gap 

between wire and copper strip. The areas to be soldered are treated with rosin flux to allow for easy 

soldering without having to apply excessive heat. An example of a final build is shown in figure 42. Four of 

the six connectors have 50Ω terminations in place. This image shows how a board would be connected to a 

two port vector network analyzer to characterize corner to corner coupling (S61).  
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Figure 38. AutoCAD drawing used for board fabrication 
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Figure 39. Detailed view of a shielded microstrip structure to be fabricated 
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Figure 40. LPKF Protomat S52 milling a set of boards 

 

Figure 41. A set of milled boards before contour routing phase 
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Figure 42. Completed shielded structure ready for crosstalk measurement |S61| 

4.3.2 MEASUREMENT CONSIDERATIONS 

Measurements were taken on an Agilent 8720ES Vector Network Analyzer. The symmetry of the structure 

allows for symmetry to lower the number of measurements taken illustrated below. 
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Symmetry Breakdown 

Reflection in Side Lines S11=S22=S55=S66 

Reflection in Center Line S33=S44 

Throughput Side Lines S12=S21=S56=S65 

Throughput Center Line S34=S43 

Next Line Adjacent Side Induction S13=S31= S24=S42=S35=S53=S46=S64 

Next Line Opposite Corner S14=S41=S23=S32=S36=S63=S45=S54 

Side Corners S15=S51=S26=S62 

Cross Corners S16=S61=S25=S52 

Table 2. Types of symmetry present in scattering parameter matrix used to reduce number of measurements 

needed 

There were 3 types of structures fabricated for testing: Dual Line, Unshielded Line and Shielded Line. The 

only structure of the three that can take full advantage of the symmetry and have the added advantage of 

higher data transmission rate because of having a third transmitting (or receiving) line is the unshielded 

structure. Dual and shielded line structures may or may not have the advantage of higher signal integrity, 

that is what is being validated. 

Taking these symmetries into consideration it is easy to see that the only port combinations that must be 

measured for an unshielded geometry are 1&2, 1&3, 1&4, 1&5, 1&6 and 3&4 in order to determine the 

entire scattering matrix. Dual and shielded lines will be measured at the same ports with the exception of 

1&3, 1&4 and 3&4. Shielded line measurements were taken under 4 different conditions that will be 

presented in the following sections.  
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CHAPTER 5 

MEASUREMENT RESULTS 

All measurements were exported to a text(*.csv) file format along with an image (*.jpg) file which are 

included in Appendix B. All text based data was imported into the MATLAB environment for post-

processing and comparison between structures. 

 

Figure 43. Measured crosstalk of all 450% spaced structures 
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corner voltage transfer. The curves illustrate that from 500MHz to about 1.3GHz that the guarded lines 
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performs the best in this band. At about 1.4GHz there is a transition to where shielded lines will have lower 

values for S61. When considering only the shielded lines and the unshielded lines, the shielded lines 
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point the shielding mechanism loses its effectiveness. The following figure shows the side line throughput 

which could help give a clue as to how much energy is being radiated from the side line over to the 

adjacent lines. 

 

Figure 44. Measured throughput for all 450% spaced structures 
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resonant frequency with a reflection coefficient value of -38.34dB or 0.0121. Input impedance at this 

frequency is defined in terms of the reflection coefficient, Γ, by the following expression. 

Ω=
+
−Ω=

Γ−
Γ+= 23.51
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Figure 45. Input reflection coefficient for all 450% spaced structures 
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It is apparent that the half wavelength is at this frequency because it is numerically close to the free space 

wavelength. Where wavelength is two times the line length (λ=2l). Substituting this for λ, we obtain. 
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This result is as expected given that the effective dielectric constant should lie between unity and the 

relative dielectric constant of the substrate, which for FR-4 fiberglass epoxy is ≈4.9.  

 

Figure 46. Scattering matrix magnitude for 450% Line Spacing 
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equal to unity for a lossless network where the structure does not radiate or suffer losses to finite 

conductivity and the dielectric’s small but finite conductivity due to displacement current. Theoretically 

because the system is isolated from other sources of radiation and time varying fields in simulation. For the 

unshielded structure at 450% spacing the sum of each element in the first column dotted with its complex 

conjugate is calculated to get a numerical grasp as to how much energy has entered or been dissipated.  
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Because all ports are terminated into the characteristic impedance of the line, the total power incident at 

each port will be, 
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The network analyzer was set to stimulate at a constant 1mW (0dBm) for all frequencies stimulated. 

Therefore, the difference between input and output power will reveal how much energy was lost or gained 

in the system. 
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Positive values of ΔP mean that the structure has lost energy to finite conductivity of the conductor and 

substrate, displacement current in the dielectric and radiation. Negative values of ΔP mean that the system 

has gained energy from external electromagnetic fields. Power loss to the dielectric can be calculated by the 

following expression. 
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Where k0 is the free-space propagation constant linearly proportional to frequency. The attenuation per unit 

length due to conductor losses can be found by. 
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The total attenuation for 50Ω microstrip line two inches in length(50.8mm) can be found by the following. 
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Input impedance can be found in order to calculate the incident voltage at port one. 
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In order for input power to remain constant the incident voltage must also vary with frequency which is 

shown by the frequency dependence of the input impedance.  

 

Figure 47. Three line structure power gain/loss 

Figure 47 shows that there is a large amount of external interference in the measurements. The greatest 

amount of incident energy being around 2.4GHz.This result makes sense because there are active cellular 
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phones and Bluetooth devices in the laboratory. Loss due to all factors is present at every frequency, but the 

non-encapsulated geometry of microstrip permits any incident electromagnetic waves to create noise on the 

structure.  

Measured isolation reduction versus frequency with respect to either the dual or three line structure plots 

are shown in figures 48-55. Each dual/three line pair of plots illustrates isolation reduction for the shielded 

structure under certain termination conditions. Each of these plots would be useful for a layout engineer 

because it would allow him/her to see at what frequency band and spacing he/she would be able to apply a 

shielding technique and achieve that much better noise immunity. For example, if a designer was debating 

whether or not two transmission lines could be spaced 450% and saw that the crosstalk magnitude from an 

extracted scattering parameter was borderline high for his/her application in the 4.5 to 5GHz band then 

he/she could refer to figure 48 and see that crosstalk can be reduced by at least 10dB for the majority of the 

band. If the application were in the 1 to 2GHz band then crosstalk performance would vary over the band 

but be degraded for most of the band. Figure 48 shows isolation reduction when ports three and four are 

terminated. If the designer were to take a look at figure 50 then he/she would say that there is an added 

benefit in having the shield line terminations as open circuits.  

Figures 56-61 illustrate the isolation reduction vs. line spacing. This view of isolation reduction would 

allow a designer to see how much noise immunity would be gained if a shielded line under specific 

termination conditions were implemented for a specific frequency and the isolation reduction is viewed 

versus line spacing. An example in applying such a plot would be if a designer is working in a narrow band 

that is centered at 2.5GHz, and has been given mechanical constraints for line spacing and has determined 

that they can be anywhere from 450% to 600%. A look at figure 58 shows that the implementation of a 

shielded line at 450% spacing would enhance the noise immunity of the data bus by about 1dB with the 

port on the shielded line adjacent to the transmitting line open circuited. The designer is better off staying 

with a dual line structure in this case. However, if the center frequency is moved down to 500MHz, noise 

immunity is degraded by approximately 7.6dB with the shield line ports open. At 5GHz noise immunity is 

severely degraded for all shield line termination conditions by approximately 14dB with the shield line 

ports terminated in the line characteristic impedance. Therefore the variance of isolation gain is very large 
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and is, in most application viewed best versus frequency and compared against the different termination 

conditions on the shielded line.  

 

Figure 48. Measured isolation reduction vs. frequency referenced to dual line (ports 3&4 Terminated) 

 

Figure 49. Measured isolation reduction vs. frequency referenced to three line (ports 3&4 Terminated) 
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Figure 50. Measured isolation reduction vs. frequency referenced to dual line (ports 3&4 open) 

 

Figure 51. Measured isolation reduction vs. frequency referenced to three line (ports 3&4 open) 
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Figure 52. Measured isolation reduction vs. frequency referenced to dual line (port 3 open) 

 

Figure 53. Measured isolation reduction vs. frequency referenced to three line (port 3 open) 
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Figure 54. Measured isolation reduction vs. frequency referenced to dual line (port 4 open) 

 

Figure 55. Measured isolation reduction vs. frequency referenced to three line (port 4 open) 
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Figure 56. Measured isolation reduction vs. line spacing referenced to dual line structure (f=500MHz) 

 

Figure 57. Measured isolation reduction vs. line spacing referenced to three line structure (f=500MHz) 
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Figure 58. Measured isolation reduction vs. line spacing referenced to dual line structure (f=2.5GHz) 

 

Figure 59. Measured isolation reduction vs. line spacing referenced to three line structure (f=2.5GHz) 
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Figure 60. Measured isolation reduction vs. line spacing referenced to dual line structure (f=5.0GHz) 

 

Figure 61. Measured isolation reduction vs. line spacing referenced to three line structure (f=5.0GHz) 
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CHAPTER 6 

INTRINSIC ERROR BETWEEN DOMAINS 

In this chapter, we will discuss errors introduced into the system and why there is not a 100% correlation 

between the results of the digital domain and the real world measurements. The coaxial to microstrip 

transition is a discontinuity [25] that creates reflections, impedance mismatches, at the source and load end 

of the lines.  

Finite substrate dimensions have an effect on the capacitance of the microstrip lines. Baginski et al. [26] 

showed that microstrip capacitance versus distance from board edge was at a minimum at the board edge 

and increased in a 1-e-x fashion toward its infinite substrate value. For substrates with εr between four and 

five the capacitance approached its infinite substrate self-capacitance value at approximately one line width 

from the edge measured from the nearest strip edge. The 600% structure has a distance, in line widths, of 

approximately three. This would lead one to postulate that the self-capacitance of all strip conductors are 

approximately equal because line spacing only decreases from 600% thus giving greater confidence that the 

strip conductor has reached its infinite substrate self-capacitance value.  

Simulation environments provide the convenience of being able to completely tune out and ignore external 

effects such as incident electromagnetic waves. The ability to tune out external factors is invaluable for 

understanding the consequences of altered physical and/or electrical properties of a structure. A user of 

these environments must always be aware that the model simulated is limited by the amount of detail that 

the user can put in the model and that there are unpredictable sources of noise that will corrupt 

measurement results. The measured results showed a large external bombardment from a wireless router 

operating at 2.4GHz. An extra 4mW were induced into the structure. Modeling in HFSS or Sonnet allows 

you to ignore these factors. This external interference was not detected in HFSS simply because I did not 

include it.Percentage error between domains can reveal instrument calibration error, miscalculation in 

simulation depending on what domain is used as reference and large percentage errors can be interpreted as 

external bombardment of electromagnetic radiation. The percentage error referenced to the simulated data 

will be expressed as, 
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Figure 62. Percentage Error for three line structure 

 

Figure 63. Percentage Error for terminated shielded structure 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

In this thesis, the coupling mechanisms for microstrip were investigated qualitatively in terms of their field 

interactions. Simulations were carried out in Sonnet’s finite element method solver in order to quantify the 

coupling between closely spaced transmission lines in a microstrip, stripline, and microstrip with dielectric 

overlay structure. The results show that the stripline structure intrinsically possesses the greatest noise 

immunity because of its encapsulated form where the ground plane can serve as a reflector for incident 

electromagnetic radiation and the results for crosstalk after implementation of the shielding line only serves 

to degrade noise immunity immensely as frequency increases. Microstrip with dielectric overlay exhibited 

the same isolation characteristics as stripline but to a lesser degree. Isolation on the unshielded microstrip 

with dielectric overlay was not as high as stripline and, like stripline, did suffer a degradation in crosstalk 

performance where the crosstalk continued to increases constantly as frequency increases. The greatest 

benefit to the shielding technique was seen in the microstrip structure. One example of this success was in 

figure 16 the crosstalk performance is clearly improved by approximately 5dB for the majority of the 

frequency band of interest.  

Other factors such as decreased substrate thickness and greater line width to substrate thickness ratio, 

greater spacing to line width ratios all lower crosstalk considerably and  

HFSS provided the means to simulate larger domains and the actual microstrip structure that was to be 

fabricated with great ease. Accuracy between measurements and simulation suffered greatly due to external 

interference. Though the accuracy suffered a loss the actual isolation reduction was measured and shown to 

be negative when referenced to both three line and dual line structures which indicated that the shield line 

is a technique that works in certain frequency bands depending on the structure and termination conditions. 

Three variations of microstrip structures were fabricated in house in order to validate the findings of the 

simulations in HFSS and to also have a reference for the isolation gain calculations. Measurements were 

taken with the shielded structures under different termination conditions for the shielded line. These 

variations on termination did have an effect on the overall crosstalk response. Depending on the 



55 

application, after the designer is able to conclude that the shield line would enhance the noise immunity, the 

appropriate terminating condition for the shielded line would be applied. The gain in noise immunity is 

given as the isolation gain.  

Errors were expected to be found in the coaxial to microstrip transition, in the finite dimensions of the 

substrate, line width variance that creates small impedance mismatches and reflections. The presence of 

other devices in the laboratory influenced the outcome of the measurements greatly. 4mW of power were 

absorbed by the device under test at 2.4GHz because of the router present in the laboratory. Errors between 

the virtual domain and reality were found to be mainly the lack of detail in the model and the absence of the 

incident electromagnetic radiation. 

In the future, it would be beneficial to further investigate the shielded lines by varying the width of the 

shield line, varying the spacing between vias, apply effective through hole plating for the short circuits to 

minimize the height difference and altered charge distributions found when using copper wire for short 

circuits.   
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APPENDICES 

Appendix A. Permissions 

A. Copyright Permission Statement from IEEE  

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users 

must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line 

© 2011 IEEE.  

2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original 

publication] IEEE appear prominently with each reprinted figure and/or table.  

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain 

the senior author’s approval. 

       B.  United States Code, Title 17, Chapter 1, §107  

Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including 

such use by reproduction in copies or phonorecords or by any other means specified by that section, for 

purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom 

use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of 

a work in any particular case is a fair use the factors to be considered shall include—  

(1) the purpose and character of the use, including whether such use is of a commercial nature or is for 

nonprofit educational purposes;  

(2) the nature of the copyrighted work;  

(3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and  

(4) the effect of the use upon the potential market for or value of the copyrighted work.  

The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon 

consideration of all the above factors.  
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Appendix B. Measured Data Figures 
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