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ABSTRACT OF THE THESIS 

IDENTIFICATION, ISOLATION, AND CHARACTERIZATION OF 

DEVELOPMENTAL TOXINS FROM THE CYANOBACTERIUM FISCHERELLA 52-

1 USING THE ZEBRAFISH (DANIO RERIO) EMBRYO MODEL  

by 

Katherine Walton 

Florida International University, 2012 

Miami, Florida 

Professor John Berry, Major Professor 

Cyanobacteria, also known as blue-green algae, are known to produce a number of 

biologically active compounds.  Extracts of cultured cyanobacteria isolated from South 

Florida sources were screened for possible developmental toxins using the zebrafish 

(Danio rerio) embryo as a model of vertebrate development. A strain of cyanobacteria, 

Fischerella 52-1, isolated from the Florida Everglades, was found to produce metabolites 

that caused a consistent developmental dysfunction in embryos exposed to lipophilic 

extract. Initial chemical characterization of the bioactive fraction identified a series of 

eight apparent indole-containing compounds.  The two main components were purified 

using the zebrafish embryo model to guide the fractionation.  Chemical characterization 

using 1- and 2-dimensional NMR, HESIMS, HRHESIMS, and IR determined that the 

two main compounds were the previously identified 12-epi-Hapalindole H Isonitrile, and 

a novel compound 12-epi-Ambiugine B Nitrile.  The major contributor of the 

developmental defects detected in the zebrafish embryos was 12-epi-Hapalindole H 

Isonitrile. 
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SECONDARY METABOLITES OF THE CYANOBACTERIAL FAMILY 
STIGONEMATACEAE 

1.1 Secondary Metabolites of Cyanobacteria 

Cyanobacteria, also called blue-green algae, are known to produce an array of 

bioactive secondary metabolites (Codd et al., 2005).  Many of the bioactive secondary 

metabolites can be defined as toxins or as allelochemicals depending on the effect of the 

metabolite on other organisms (Leflaive et al., 2007). An allelochemical is defined as a 

compound that acts as a chemical signal that can either provide a detrimental or 

beneficial effect on neighboring organisms (Leao et al., 2010).  A toxin, however, is 

defined as a compound that produces a negative health effect mostly observed towards 

humans and livestock (Leflaive et al., 2007).  The classifications of toxins and 

allelochemicals are not two separate entities, and can possibly overlap to include the 

same compounds.   

The cyanobacteria that produce these toxins have been found in a variety of 

environments which include freshwater, brackish water, marine, and terrestrial systems 

(Sivonen et al., 1996).  Many of the cyanobacterial toxins were proposed to be linked to 

health issues which included poisoning of livestock and humans (Codd et al., 1999).  

Known toxin producing genera of cyanobacteria include Anabaena, Oscillatoria, 

Microcystis, Phormidium, Cylindrospermopsin, Aphanizomenon,  Lyngbya, Nostoc, 

Anabaenopsis, Hapalosiphon, Fischerella, Nodulaia, Umezakia, and Schizothrix (Codd et 

al., 1999).  The toxins isolated from these cyanobacteria can be classified by the 

biological systems affected.  Many of these toxins are thus classified as neurotoxins, 
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hepatotoxins, or dermatotoxins (Codd et al., 2005).  Table 1 lists some of the better 

documented toxins under the designated classification. 

Table 1: Toxin Classification (Codd et al., 1999 and Sivonen et al., 1996) 

Toxin Classification Cyanobacterial Toxins 

Neurotoxins Anatoxin-a, Anatoxin-a(s), Saxitoxin 

Hepatotoxins Microcystin, Nodularin, Cylindrospemopsin 

Dermatotoxins Lyngbyatoxin-a, aplysiatoxin, debromoaplysiatoxin 

Many genera that have been shown to produce toxins were also observed to 

produce allelochemicals.  Different cyanobacterial genera, that were determined to 

produce possible allelopathic compounds include Anabaena, Calothrix, 

Gomphosphaeria, Aphanizomenon, Hapalosiphon, Fischerella, Microcystis, Nodularia, 

Nostoc, Oscillatoria, Phormidium, Sytonema, and Trichormus (Gross 2003).  The 

purpose of these compounds is not well known, but a possible reason for producing 

bioactive secondary metabolites could be to deter other organisms that would compete for 

limited resources, and, or that were possible predators (Berry et al., 2008).  The 

previously proposed hypothesis would coincide with the observed bioactivity of many of 

these compounds which include the inhibition of insects, bacteria, fungi, and other algae 

(Leflaive et al., 2007).  Cocultivation of cyanobacterial species with other algae has 

shown that some strains inhibit the growth of other algae; this inhibition has been shown 

to be true for Fischerella, and Nostoc (Gantar et al., 2008).  The effectiveness of 

allelopathic compounds to inhibit algae and predators, especially insects, has some 

researchers suggesting using these compounds as insecticides and algicides (Berry et al., 

2008).  Since the allelopathic compounds already occur in nature it is possible that the 
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bioactive metabolites pose as a more ecofriendly approach to remove unwanted species.  

Secondary metabolites from cyanobacteria stand as an excellent source of biologically 

active compounds.  This chapter will investigate secondary metabolites including indole 

alkaloids produced by the cyanobacterial family Stigonemataceae. 

1.2 Secondary Metabolites from Stigonemataceae 

The family Stigonemataceae is classified as “true branching” filamentous 

cyanobacteria, and has been shown to produce a variety of bioactive compounds (Gugger 

et al., 2004). The main genera of the family that have been investigated are, 

Hapalosiphon, Fischerella, Westiella, Westiellopsis, and Stigonema (Stratmann et al., 

1994; Prinsep et al., 1992; Ogino et al., 1996; Rao et al., 1999).  Originally these genera 

occurred in the family Stigonemataceae, but have been subsequently reclassified under 

different families (Bisby et al., 2010). 

Traditionally the organization of cyanobacteria was done by observing 

morphological and physiological details, but more contemporary methods utilize 16S 

rRNA analysis which has led to a new classification system (Gugger et al., 2004).  Given 

that much of the literature published utilized a classification system where all of the 

genera specified are classified under the same family, this paper will continue to use this 

system.  

  The majority of the secondary metabolites from the family Stigonemataceae 

include various alkaloids, polychlorinated aromatic compounds, and cyclic peptides 

(Stratmann et al., 1994; Falch et al., 1993; Moore et al., 1987).  Secondary metabolites 

classified as toxins, like anatoxin-a, microcystin, cylindrospermopsin, and lyngbyatoxin 

are not well linked to this family. However, there was a documented instance of a 
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freshwater Fischerella producing Microcystin LR in Brazil, and another case found 

Microcystin LA in Hapalosiphon hibernicus in Hawaii (Fiore et al., 2009; Prinsep et al., 

1992).  Most of the isolated bioactive metabolites from the family Stigonemataceae have 

been linked to antialgal, antimicrobial, and antifungal properties.  Examples of these 

compounds are illustrated in Figure 1. 
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Figure 1: Secondary Metabolites from Family Stigonemataceae (Wright et al., 2005; Moore et al., 1987; Hagmann et al., 1996; Stratmann et al., 1994; Prinsep et al., 
1992) 
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Multiple polychlorinated compounds have been isolated from Fischerella 

ambigua (Falch et al., 1993; Wright et al., 2005).  These compounds include the 

polyphenols Ambigol A, B, and C, 2,4-Dichlorobenzoic acid, and the polychlorinated 

carbazole alkaloid Tjipanazole D.  Examples of these polychlorinated compounds are 

shown in Figure 1.  Ambigols A and B and Tjipanazole D were isolated from Fischerella 

ambigua by Falch et al., (1993).  Ambigol A was shown to inhibit cyclooxygenase, an 

enzyme responsible for inflammatory responses, inhibit HIV-1 reverse transcriptase, and 

have strong molluscicidal and antibacterial activity (Falch et al., 2003; Tan et al., 1991).  

Ambigol B was only moderately antimicrobial, molluscicidal, and cytotoxic.  In the 

process of investigating metabolites produced by Fischerella ambigua under different 

culture conditions two new polychlorinated compounds, Ambigol C and 2,4-

Dichlorobenzoic acid, were isolated (Wright et al., 2005).  In the Fischerella culture it 

was observed that Ambigol A and C, Tjipanazole D, and 2,4-Dichlorobenzoic acid were 

isolated but not Ambigol B.  It was speculated that the observance of Ambigol C 

occurred at the expense of Ambigol B.  Ambigol C was shown to be slightly bioactive 

against Plasmodium which is the organism responsible for malaria, and Trypanosoma 

which is responsible for Chagas disease (Wright et al., 2005; Valente et al., 2009).  In the 

Wright et al., (2005) study the medium was also altered to try to replace the chlorine 

atoms with other halides like bromine and iodine, but this was unsuccessful.  It was 

suggested that since the chlorines could not be altered that an enzyme must exist that was 

specific for chlorine halogenation.  The occurrence of this type of enzyme in these 

cyanobacteria would explain why many of these secondary metabolites are chlorinated or 

coexist with non-chlorinated analogues.  The compound 2,4-Dichlorobenzoic acid 
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showed no apparent bioactivity against bacteria, fungi, molluscs, plasmodium, or 

trypanosome.  The chlorinated carbazole alkaloid Tjipanazole D was isolated under both 

conditions and was shown to have moderate antibacterial bioactivity (Falch et al., 1993; 

Wright et al., 2005). 

Other cyclic peptides besides microcystin have been isolated from members of 

Stigonemataceae family which include molecules that have either a depsipeptide or 

bistratamide moiety (Prinsep et al., 1992; Stratmann et al., 1994).  Depsipeptides are 

peptides that have at least one of the amide nitrogens replaced with an oxygen to give and 

ester instead of an amide (Van Wagoner et al., 2007).  The depsipeptide Hapalosin was 

isolated from Hapalosiphon welwitschii and was shown to have P-glycoprotein-mediated 

multidrug resistance (MDR) reversing activity (Stratmann et al., 1994).  The activation of 

P-glycoprotein has been linked to MDR by acting as a drug efflux pump, and it was 

proposed that Hapalosin inhibited the pump thereby allowing accumulation of the drug in 

the cells (Stratmann et al., 1994).  The proposed inhibitory capability of Hapalosin was 

further reinforced by the ability of the compound to increase the accumulation of the 

drugs taxol and vinblastine in P-glycoprotein-overexpressing, vinblastine-resistant 

subline (SKVLB1) of a human ovarian adenocarcinoma cell line.  Further testing against 

other P-glycoprotein-overexpressing cells included human breast carcinoma showed that 

Hapalosin reversed the MDR to the point that vinblastine showed the same cytotoxicity 

towards the P-glycoprotein-overexpressing cells when combined with Hapalosin as with 

the non-overexpressing cells.  Compared to Verapamil, an MDR reversing compound 

clinically studied, Hapalosin was shown to be more effective at reversing MDR.  

Depsipeptides similar to Hapalosin have been isolated from Microcystis, which might 
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indicate a similar biosynthesis of peptide-based compounds by Microcystis and genera 

from Stigonemataceae (Stratmann et al., 1994). 

The bistratamide type peptides include Westiellamide isolated from Westiellopsis 

and the Dendroamides isolated from Stigonema (Prinsep et al., 1992; Ogino et al., 1996).  

The cyclic moiety of the Dendroamides and Westiellamide have a similar structure to the 

natural product Bistratamide C previously isolated from a marine worm Lissoclinum 

bistratum.(Foster et al., 1992 and Prinsep et al., 1992)  Dendroamides A-C were isolated 

from Stigonema dendroideum.  As with Hapalosin, Dendroamide A was also shown to 

reverse MDR by inhibiting P-glycoprotein efflux pump and be more effective than 

Verapamil (Ogino et al., 1996).  Dendroamides B and C were not shown to produce any 

reversal of MDR, which might be as a result of the sulfide side chain on Dendroamide B 

and sulfoxide side chain of Dendroamide C.   Westiellamide, shown in Figure 1, was 

isolated from Westiellopsis prolifica and reported to be cyctotoxic towards KB and LoVo 

cell lines at a concentration of 2µg/mL (Prinsep et al., 1992).  Whether this compound 

reverses MDR is not specified in the isolation study, but the structural similarity of 

Westiellamide and Dendroamide A might suggest that Westiellamide could also reverse 

MDR. 

A number of alkaloids have been isolated from Fischerella, Hapalosiphon, 

Westiella, and Westiellopsis that include indole and enediyne containg alkaloids, which 

are also depicted in Figure 1 (Moore et al., 1987; Stratmann et al., 1994; Smitka et al., 

1992; Hagmann et al., 1996).  The main enediyne, unsaturated polyacetylene, containing 

alkaloids are Fischerellin A and B, isolated from Fischerella muscicola by Hagmann et 

al., (1996). Fischerellin A was shown to produce a wide range of bioactivities which 
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include anticyanobacterial, antialgal, fungicidal, toxicity towards rotifer and crustacean, 

and inhibition of photosystem II which produces an herbicidal activity.  A moderately 

algicidal enediyne containing compound Fischerellin B was also isolated from 

Fischerella muscicola by Papke et al., (1997).  Out of the alkaloids isolated from 

Stigonemataceae, the indole alkaloids are an important and widespread group of 

compounds that are addressed in the following section.   

1.3 Indole Alkaloids from Stigonemataceae 

The genera that have so far been shown to produce these indole alkaloids are 

Fischerella, Hapalosiphon, Westiella, and Westiellopsis (Moore et al., 1987; Stratmann 

et al., 1994; Smitka et al., 1992, Park et al., 1992; Schwartz et al., 1987; Mo et al., 2010).    

The types of indole alkaloids and the genera that the compounds were isolated from are 

shown in Table 2.  An example of the base structures of these indole alkaloids is given in 

Figure 2.  As a result of the variability in the structures of these compounds the variant 

were organized into ten groups.   
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Table 2: Distribution of Indole Alkaloids in the Family Stigonemataceae 

 Fischerella Hapalosiphon Westiella Westiellopsis 

Fischerindoles X X   

Hapalindoles X X   

Ambiguines X X  X 

Welwitindolinones  X X  

Hapalindolinones X X   

Oxidized Welwitindolinones X    

Fischambiguines X    
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Figure 2: Indole Alkaloid from Stigonemataceae (Stratmann et al., 1994; Smitka et al., 1992; Mo et al., 2010; Papke et al., 1997) 
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1.3.1 Hapalindoles 

Out of all of the indole alkaloids produced by the family Stigonemataceae, the 

hapalindoles are the largest group and are classified in Groups 1 and 2 in Figure 2.  The 

base structure can be either tricyclic in the case of Group 2 or more commonly tetracyclic 

as with Group 1 (Moore et al., 1987).  The R2 functional group is either chlorine or 

hydrogen and these chlorinated compounds are commonly isolated with the 

corresponding non-chlorinated analogues.  The R1 functional group is usually either an 

isonitrile or an isothiocyanate, but with Hapalindole T this functional group is a 

thiocarbamate group (Figure 3).   

Hapalindoles A and B were originally isolated from Hapalosiphon fontinalis by 

Moore et al., (1984).  The examination of two sympatric cyanobacteria Hapalosiphon 

intricatus and Anabaena by Moore et al., (1984) showed the inhibition of the growth of 

Anabaena.  In the same investigation, similar observations were reported for 

Hapalosiphon fontinalis which sparked an interest in allelochemicals from this species 

(Moore et al., 1984).  Lipophilic extracts of H. fontinalis produced antimycotic and 

antialgal activity and two novel bioactive compounds, Hapalindoles A and B, were 

isolated from this crude extract.  Hapalindoles A is a tetracyclic, chlorinated; isonitrile 

containing indole alkaloid and Hapalindole B is the corresponding isothiocyanate.  Both 

Hapalindole A and B would be classified under Group 1.  Hapalindole A was shown to 

be the main bioactive compound from the lipophilic extract.  Two oxidation products of 

Hapalindole A, Fontonamide and Anhydrohapoxindole A, were also isolated from a more 

polar fraction of Hapalosiphon fontinalis (Moore et al., 1987).  Singlet oxygen oxidation 

of Hapalindole A produced a possible precursor of the oxidative products labeled 
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Hapalonamide A along with Fontonamide and Anhydrohapoxindole A.  Eighteen other 

hapalindoles, Hapalindoles C-Q and T-V, have been isolated from H. fontinalis by Moore 

et al., (1987), and are shown in Figure 3 with Hapalindoles A and B.  Hapalindoles C-Q 

and T-V were not isolated using bioassay guided fractionation so the bioactivity of these 

compounds was not addressed in these studies.  Hapalindole T was also isolated from 

Fischerella sp. by Asthana et al., (2005), and in this study the bioactivity of the 

hapalindole was investigated.  Hapalindole T was shown to have antibacterial properties 

with an MIC value of 2.5µg/mL towards Staphylococcus aureus, and 2.0 µ/mL towards 

Pseudomonas aeruginosa.  At a concentration of 2.5µg/mL, Hapalindole T was also 

shown to be active against Mycobacterium tuberculosis with inhibition comparable with 

the ant-TB drug Rifampicin.   
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Figure 3: Hapalindole Structures Moore et al., (1987) 
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Epimers of many of these hapalindoles, with a reversed stereochemistry at the 

C(12) position, have also been isolated.  The alkaloid 12-epi-Hapalindole E was 

originally isolated by Schwartz et al., (1990) from Fischerella (ATCC 53558).  This 

compound has also been isolated from Hapalosiphon welwitschii, Hapalosiphon laingii, 

and Fischerella JAVA 94/20 (Doan et al., 2000; Klein et al., 1995). The compound 12-

epi-Hapalindole E Isonitrile had been reported to have a range of bioactivities that 

include algicidal, insecticidal, fungicidal activities, and the ability to inhibit RNA 

polymerase.  A similar compound was isolated from Hapalosiphon laingii and 

Fischerella JAVA 94/20 (12-epi-Hapalindole H Isonitrile).  An isolation of compounds 

from H. laingii by Klein et al., (1995) not only produced the two hapalindole epimers, 

12-epi-Hapalindole H and E Isonitrile, but also 12-epi-Hapalindoles C, G, and Q 

Isonitriles.  The Klein et al., (1995) study also afforded two hapalindolinones, 

Hapalindolinone A and B (Group 9), and unfortunately the bioactivities of the individual 

compounds were not addressed.  The algicide 12-epi-Hapalindole F was isolated from 

Fischerella CENA 19, a strain of Fischerella found in the Amazon River in Brazil 

(Etchegaray et al., 2004).  The latest investigation of novel hapalindoles was a study by 

Becher et al., (2007), where insecticidal compounds from Fischerella (ATCC 43239), a 

bio-film forming strain, was identified and isolated.  In this study a novel epimer, 12-epi-

Hapalindole J Isonitrile, was identified with three other previously identified hapalindoles 

including 12-epi-Hapalindoles C and E Isonitrile and Hapalindole L.  At concentrations 

ranging from 26-37µM each of these compounds was shown to cause 100% mortality of 

the larvae of the Harlequin fly in 48 hours.  Many epimers containing an isonitrile group 

in the structure have been isolated; however, two epimers with the isothiocyanate group 
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were isolated from Hapalosiphon welwitschii by Stratmann et al., (1994).  These 

compounds were 12-epi-hapalindole F and D Isothiocyanate.  The bioactivities of these 

compounds were not addressed in the study. 

1.3.2 Hapalindolinones 

Hapalindolinones A and B were originally isolated from Fischerella isolated from 

a soil sample from the Florida Everglades (Schwartz et al., 1987).  The unique structure, 

which contains a “spiro-fused cyclopropane ring”, had not yet been documented from the 

indole alkaloids produced by Stigonemataceae (Schwartz et al., 1990).  From Figure 2 

the hapalindolinones are categorized in Group 9.  As with the hapalindoles the R2 group 

is either chlorine or hydrogen and the R1 group is an isonitrile group.  Hapalindolinone B 

is the non-chlorinated version of Hapalindolinone A. Of the two structures, 

Hapalindolinone A was shown to moderately inhibit [3H]arginine vasopressin binding to 

kidney tissue with an IC50 of 37.5 ± 7.6 µM, and kidney (v2) arginine vasopressin 

stimulated adenylate cyclase with an IC50 of 44.6 µM. 

1.3.3 Ambiguines 

The second largest group of indole alkaloids isolated from Stigonemataceae is the 

ambiguines.  Similar in structure to hapalindoles, the ambiguines have an isoprene unit 

attached at the C(2) position of the indole moiety (Figure 2), and the variability of the 

ambiguine structure occurs with the cyclization of this group (Smitka et al., 1992; Mo et 

al., 2009; Raveh and Carmeli 2007).  Accordingly, these indole alkaloids are organized in 

Group 3 for the tetracyclic ambiguines, and Group 4 and 10 for the pentacyclic 

ambiguines (Figure 2).  The pentacyclic ambiguines of Group 5 have also been shown to 

contain a diol, a ketone, or a double bond in place of the epoxide group.  In Groups 3 and 
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4 the R2 group again is defined as the chlorine or hydrogen group, but R1 is either a 

hydroxyl group or hydrogen.  All of the ambiguines in Groups 3 and 4 contain isonitrile 

and so far no isothiocyanate containing ambiguines have been isolated.  Group 10 

ambiguines are unique in that the R1 group can either be hydrogen in the case of 

Ambiguine P or a nitrile group in the case of Ambiguine Q.  The occurrence of the nitrile 

or lack an isonitrile is very different from the majority of the indole alkaloids from 

Stigonemataceae which normally include an isonitrile or isothiocyanate.  Chlorinated and 

non-chlorinated versions of these compounds occur at the R2 position.  Like some of the 

other ambiguines, these structures can also contain a hydroxyl group which would occur 

at the R3 position. 

From a study by Smitka et al.,(1992) six novel indole alkaloids, Ambiguines A-F 

Isonitriles, were isolated, which include both Group 3 and 4 ambiguine structures.  These 

ambiguines were isolated from crude extracts of Fischerella ambigua, Hapalosiphon 

hibernicus, and Westiellopsis prolifica that showed antifungal activity.  Ambiguine 

isonitriles A-F were isolated from Fischerella ambigua, Ambiguine A and E were 

isolated from Hapalosiphon hibernicus, and Ambiguines D and E were isolated from 

Westiellopsis prolifica.  The main fungicidal activity was produced by Ambiguine 

Isonitriles A and E.  Ambiguines A-F showed some activity towards Candida albicans 

with MIC values ranging from 1.25 to 2.5 µg/mL.  The fungicidal activity of the 

ambigiunes was not comparable to the commercial fungicide amphotericin B which 

produced an MIC value of 0.156 µg/mL.  Using the same assay conditions, when 

Ambiguines A-F were tested against Aspergillus fumigatus the MIC values ranged from 

0.625 to 20 µg/mL which again was not comparable to the commercial fungicide 
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tolnaftate which produced an MIC value of <0.02 µg/mL.  Five other ambiguine 

isonitriles from Group 4 were isolated from Fischerella ambigua which included 

Ambiguine K-O Isonitrile (Mo et al., 2009).  Ambiguine K Isonitrile showed moderate 

activity towards Mycobacterium tuberculosis with an MIC value of 6.6 µM.  All of these 

compounds were isolated on the basis of antimicrobial activity.  Ambiguine K-N 

Isonitriles were shown to also be moderately active against Candida albicans with MIC 

values ranging from 1.1 to <0.9 µM.   

Ambiguines H-J Isonitriles were isolated from Fischerella sp. From a soil sample 

collected in Israel (Raveh and Carmeli 2007).  Like Ambiguines K-O, these ambiguine 

structures are from Group 4.  Ambiguine H and I isonitrile showed antibacterial and 

antifungal activity comparable with commercial antibacterial and antifungal agents 

streptomycin and puramycin/amphotericin B.  Ambiguine I Isonitrile was shown to be 

more potent compared to Ambiguine H Isonitrile by producing lower MIC values. 

The first ambiguines to be isolated all contained an isonitrile group, however, a 

paper written by Huber et al., (1998) showed the isolation of a nitrile containing 

ambiguine named Ambiguine G Nitrile from Hapalosiphon delicatulus.  Of the indole 

alkaloids identified from Stigonemataceae this was the first alkaloid that contained a 

nitrile group.  The bioactivity of this compound was not investigated as a result of the 

nature of the fractionation.  Most of these alkaloids are isolated on the basis of some 

observed bioactivity but Ambiguine G Nitrile was isolated by spectral analysis.  The 

nitrile containing ambiguines have a structure classified under Group 10 which contains 

the polyunsaturated ring attached to the C(2) position of the indole moiety.  A paper later 

published by Mo et al., (2010) showed the isolation of a new nitrile containing compound 
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Ambiguine Q Nitrile from Fischerella ambigua.  In this same study a new ambiguine was 

isolated that did not contain either a nitrile or isonitrile group called Ambiguine P.  

Ambiguine P and Ambiguine Q Nitrile showed weak antimicrobial activity. 

1.3.4 Fischambiguines 

From the study previously discussed, two new indole alkaloids were isolated with 

novel tetracyclic structure which is depicted in Figure 2.  Fischambiguines A and B were 

isolated from Fischerella ambigua by Mo et al., (2010) and were shown to have 

antibacterial activity.  The bioactivity was not comparable to the positive controls.  These 

indole alkaloids under Group 5 include either a chlorine or hydrogen at the R2 position 

and a methylene or epoxide group as the R group. 

1.3.5 Fischerindoles 

Fischerindoles were first isolated from Fischerella muscicola by Park et al., 

(1992) in a study that screened cyanobacteria for antifungal activity.  This isolation 

produced Fischerindole L.  Fischerindoles are categorized into Group 6 in Figure 2.  The 

tetracyclic structure of these compounds is similar to the structure of the tetracyclic 

hapalindoles in Group 1 except for the additional double bond in the six membered ring 

and the bonding at the C(2) position in the indole moiety.  As with the hapalindoles, the 

R1 group is either an isonitrile or an isothiocyanate, and the R2 group is either chlorine or 

hydrogen.  The compound called Fischerindole L was named on the basis of the 

similarity in the stereochemistry of the molecule Hapalindole L, also isolated in this 

study.  The structures of each of these compounds are depicted in Figure 4.  

Fischerindole L Isonitrile was shown to have antifungal properties similar to Hapalindole 

L Isonitrile.   
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Figure 4: Structural Comparison of Fischerindole L and Hapalindole L. (Park et al., 1992) 

Epimers of the fischerindoles have also been isolated with similar confirmations 

at the C(12) position as the hapalindoles.  Four other fischerindoles were isolated from 

Hapalosiphon welwitschii named 12-epi-Fischerindole I Isonitrile, 12-epi-Fischerindole 

U Isonitrile and the corresponding isothiocyanate, and 12-epi-Fischerindole G Isonitrile 

(Stratmann et al., 1994).  As with Fischerindole L Isonitrile, the nomenclature of these 

compounds was generated from the similarities of the stereochemistry of the 

fischerindoles to the hapalindoles.  However, unlike the structure depicted in Figure 2, 

12-epi-Fischerindole G isonitrile and 12-epi-Fischerindole U isonitrile, and the 

corresponding isothiocyanate, are lacking the double bond on the six-membered ring.  

The bioactivity of these compounds was not addressed in this study. 

1.3.6 Welwitindolinones 

An interesting group of indolinone containing compounds called 

welwitindolinones was isolated from Westiella intricata and Hapalosiphon welwitschii 
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by Stratmann et al., (1994).  In Figure 2 these compounds are categorized into two 

groups, Group 7 and 8.  Group 7 includes only Welwitindolinone A, a chlorinated, 

isonitrile containing structure with the unique cyclobutane group.  The remaining 

welwitindolinones are classified under Group 8 which contains far greater structural 

variability.  All of the welwitindolinones are chlorinated and have either an isonitrile or 

an isothiocyanate at the R2 position.  Some of these structures are also methylated at the 

R1 position.  The R3 position is hydrogen except for the oxidized welwitindolinones 

which have a hydroxyl group.  Welwitindolinone C isothiocyanate, the corresponding 

methylated indole nitrogen with either the isothiocyanate and isonitrile contain an 

additional double bond at the chlorine substituted carbon. 

From the Stratmann et al., (1994) study, Welwitindolinones B and C 

Isothiocyanate and N-Methylwelwitindolinone C Isothiocyanate were isolated from 

Westiella intricata.  The observed larvicidal activity against blowfly larvae of the 

lipophilic extract of Westiella intricata led to the isolation of the three welwitindolinones.  

The primary larvicidal compound was determined to be N-Methylwelwitindolinone C 

Isothiocyanate, also called welwistatin, which also showed MDR reversing properties.  In 

a later study it was shown by Zhang et al., (1996) that welwistatin was also an 

antimicrotubule compound.  These compounds were also isolated from Hapalosiphon 

welwitschii along with Welwitindolinone A Isonitrile, N-Methylwelwitindolinone D 

Isothiocyanate, 3-epi-Welwitindolinone B Isothiocyanate, and N-

Methylwelwitindolinone C Isothiocyanate (Stratmann et al., 1994).  Welwitindolinone A 

Isonitrile was also shown to be fungicidal. 
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Oxidized products of welwitindolinones have been isolated from Fischerella 

muscicola and Fischerella major (Jimenez et al., 1999).  One new welwitindolinone, N-

Methylwelwitindolinone D Isonitrile, and two oxidized welwitindolinones, 3-Hydroxy-

N-methylwelwitindolinone Isonitrile and Isothiocyanate, were isolated from Fischerella 

sp.  It was shown that photooxidation of the previously isolated N-Methylwelwitindoline 

C Isonitrile produced N-Methylwelwitindolinone D Isonitrile and 3-Hydroxy-N-

methylwelwitindolinone D Isonitrile. 

An extract from a single cyanobacterial strain can contain a variety of these 

compounds, many of which containing two to three types of these indole alkaloids 

(Stratmann et al., 1994).  The observed isolation of multiple similar indole alkaloids from 

a single source leads to the conclusion that a similar biosynthetic pathway occurs for 

these compounds.   

1.4 Biosynthesis of Indole Alkaloids from Stigonemataceae  

A common biosynthesis was proposed that utilized the same precursor molecules 

and produced the variety of indole alkaloid structures isolated.  A biosynthesis of these 

compounds was proposed by Stratmann et al., (1994). In this biosynthetic route the main 

base molecule for the chlorinated, isonitrile-containing indole alkaloids was 12-epi-

Hapalindole E Isonitrile.  Stratmann proposed that the synthesis of this molecule occurs 

by a chloronium ion-induced condensation of 3-(Z-2’-Isocyanoethenyl)Indole and (Z)-

3.7-dimethyl-1,3,6-octatriene as shown in Figure 5.  The formation of 12-ep-Hapalindole 

E Isonitrile is suspected to occur from the derivation of geranyl pyrophosphate and 

tryptophan (Park et al., 1992).  Each of these precursors has been shown to occur in other 

organisms (Evans et al., 1976; Adekunle et al., 2007).  The precursor, 3-(Z-2’-
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Isocyanoethenyl)Indole has been isolated from the bacterium Pseudomonas, and the 

precursor (Z)-3,7-dimethyl-1,3,6-octratriene is a volatile terpene found in higher flora.  

The precursor 3-(Z-2’-Isocyanoethenyl) Indole, also called Antibiotic B371, was isolated 

from Pseudomonas from the muddy water weeds in Harefield, Middlesex, England 

(Evans et al., 1976).  Antibiotic B371 was shown to have MIC value of 8µg/mL against 

Staphylococcus aureus in an agar diffusion assay.  The precursor (Z)-3.7-dimethyl-1,3,6-

octatriene was hypothesized to be a derivative of geranyl pyrophosphate.  Geranyl 

derivatives like geranylacetone have been shown to be produced by cyanobacteria like 

Microcystis (Ikawa et al., 2001).   

 

Figure 5: Biosynthesis of 12-epi-Hapalindole E Isonitrile (Richter et al., 2008) 
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Figure 6: Biosynthesis of Hapalindoles, Fischerindoles, and Welwitindolinones (Richter et al., 2008) 

After the formation of 12-epi-Hapalindole E Isonitrile the biosynthetic scheme 

diverges into three paths as shown in Figure 6 (Richter et al., 2008).  The first path 
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suggests the cyclization between the C(4) carbon in the indole ring and the C(16) carbon 

in the isopropylidene group in 1 (Richter et al., 2008).  The cyclization reaction would 

produce the tetracyclic hapalindoles of Group 1, namely 12-epi-Hapalindole G Isonitrile, 

2.  The formation of oxindoles and formamides could occur through oxidation and 

oxidative cleavage of these tetracyclic hapalindoles.  If an isoprene group is attached to 

C(2) of the indole ring, the indole alkaloids from Group 3 are formed.  However, if the 

isoprene group is then reacted further by intermolecular cyclization this would lead to the 

pentacyclic ambiguines of Group 4.  Oxidation and rearrangement of these compounds 

afford other varieties of the ambiguine family which makes up Groups 5 and 10.   

The second path proposes the cyclization of 12-epi-Hapalindole E Isonitrile 

between C(2) of the indole ring and C(16) of the isopropylidene group producing the 

tetracyclic fischerindoles of Group 6, namely 12-epi-Fischerindole G Isonitrile, 3.  The 

condensation of the hapalindole would occur via acid catalysis and possibly governed by 

an enzyme.  Park et al., (1992) had shown that the cyclization reaction was possible 

without the presence of an enzyme with Hapalindole C Formamide.  A strong acid was 

used to convert Hapalindole C Formamide to Fischerindole C Formamide and 

Fischerindole C Amine (Bonjouklian et al., 1988).  Using the same conditions, this same 

reaction was not able to be reproduced with Hapalindole E Formamide, which differs 

from Hapalindole C Formamide by a chlorine atom.  It is possible that a different catalyst 

would drive the condensation.  

The third path suggests the oxidation of 12-epi-Hapalindole E Isonitrile to 

produce an intermediate indolinone with a structure similar to Anhydrohapaloxindole A.  

Anhydrohapaloxindole A has been shown to be able to be produced from singlet oxygen 
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oxidation of hapalindole A (Moore et al., 1989). This intermediate then undergoes 

intermolecular cyclization between C(3) of the indole ring and C(16) of the 

isopropylidene group via acid catalysis to produce welwitindolinone A 4 from Group 7.  

In order to form the remaining welwitindolinones like 5 from Group 8, an isocyano 

epoxide intermediate is formed and further intermolecular rearrangements occur.  

Oxidation and methylation of the welwitindolinones produces the oxidized 

welwitindolinones, for example, 3-hydroxy-N-methylwelwitindolinone C Isonitrile. 

The proposed biosynthetic route suggests the common synthesis of these 

alkaloids; however, there were two discrepancies in this hypothesis.  The occurrence of 

non-chlorinated and chlorinated versions of the same compounds has been attributed to 

the possible competition at the condensing enzyme active site between proton and 

chlorine ions (Raveh and Carmeli 2007).  Since the chlorine does not play a role in the 

cyclization processes, the formation of non-chlorinated indole alkaloids like hapalindoles, 

ambiguines, fischerindoles, and welwitindolinones would occur.  However, the isolation 

of non-chlorinated welwitindolinones has not been reported, and may be as a result of the 

lack of bioactivity of these compounds.  In the paper by Jimenez et al., (1999), oxidized 

welwitindolinones were isolated using spectral analysis.  In the study only chlorinated 

oxidized welwitindolinones were isolated.  If these compounds were synthesized from the 

precursors using a chloronium ion induced condensation to form a tricyclic hapalindole 

structure that would later produce the welwitindolinones, then a non-chlorinated version 

of these compounds would have to exist.  Another issue with the proposed biosynthetic 

process is the lack of addressing the biosynthesis of the cyclopropane alkaloids the 
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hapalindolinones of Group 9.  The unique structure variability of these compounds may 

indicate an alternative synthetic pathway. 

The biosynthetic origin of the isonitrile group that occurs in many of these 

compounds has been investigated with Hapalindole A from Hapalosiphon fontinalis by 

Bornemann et al., (1987).  In his feeding experiment it was shown that the highest 

percent of the radio-labeled species that was incorporated into Hapalindole A as the 

isonitrile was [2-14C]Glycine, L-[3-14C] Serine, and [14C]Cyanide.  It was shown that 

the labeled 14C and 15N from the labeled glycine were incorporated as the isonitrile 

group.  The observed incorporation leads to the hypothesis that the formation of the 

isonitrile group is plausible as a result of the tetrahydrofolate (THF) metabolism.  The 

carbon and the nitrogen could have been taken up by THF to form an intermediate, 5-

formamino-THF, which then allowed the donation of the carbon and nitrogen to the 

indole containing molecule.   The incorporation of inorganic cyanide was not addressed 

in the present study.  However, it was proposed that the formation of the cyanide was 

possible and could be as a result of the oxidation of amino acids (Knowles et al., 1976).  

The formation of the HCN through amino acid oxidation has been reported with blue-

green algae Anacystis nidulans (Pistorius et al., 1979; Pistorius et al., 1980).  Bornemann 

et al., (1987) also proposed the uptake of the cyanide in the THF metabolism to serve as a 

substrate for the formation of the formamino-THF derivative.  Potassium cyanide was fed 

to the biomass but proved to be toxic to the cyanobacteria.  Similar feeding experiments 

with sponges have also shown that inorganic cyanide can be incorporated in isonitrile 

natural products (Garson and Simpson 2004).  Feeding experiments where Amphimedon 

terpenensis were fed [14C]-labeled inorganic cyanide showed that the cyanide was 
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incorporated into the isonitrile groups of the natural product diisocyanoadociane.  The 

process for incorporating the cyanide was suggested to be a result of an enzymatic 

process since incorporation does not occur without the sponge tissue.  Since it has been 

shown that cyanobacteria can be found in sponges, it is possible that these organisms play 

a symbiotic role with the sponge and may be responsible for some of the metabolites 

produced (Arillo et al., 1993). 

The formation of the isothiocyanate group is not as clearly studied as the isonitrile 

group for these compounds.  It has been proposed that the sulfur could have been 

incorporated into the organic isonitrile intermediate or an inorganic source of thiocyanate 

was incorporated (Stratmann et al., 1994).  The subsequently formed intermediate 3-((Z)-

2’-isothiocyanatoethenyl)indole would then undergo the chloronium ion-induced 

condensation reaction.  A number of feeding studies with sponges have been done to 

determine the origin of the isothiocyanate in marine natural products produced by 

sponges (Simpson and Garson 2004).  From these studies it was observed that cyanide 

and thiocyanate were incorporated into the isothiocyanate group of the natural product 9-

isothio-cyanatopupukeanane by the sponge Axinyssa (Simpson et al., 1998).  In a similar 

study labeled thiocyanate was fed to sponge tissue from A. terpenensis, and was 

incorporated into the isonitrile group of the natural product diisocyanoadociane (Simpson 

et al., 1999). Alternatively, labeled cyanide has been shown to be incorporated into the 

isothiocyanate groups of 9-isothiocyanatopupukeanane by Axinyssa.  These studies show 

that certain enzymatic processes allow the interconversion between the cyanide and 

thiocyanate or the isonitrile and isothiocyanate groups (Garson and Simpson 2004).  This 
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could explain why many of these isonitrile containing indole alkaloids are isolated with 

the isothiocyanate analogues. 

Unlike the isonitriles and isothiocyanates, the nitrile group is only found in the 

ambiguines of Group 10.  The nitrile is proposed to occur by a rearrangement of an 

isonitrile ambiguine (Huber et al., 1998).  The isonitrile is proposed to migrate and 

reverse polarity to produce the nitrile (Van Wagoner et al., 2007). 

1.5 Structure-Activity Relationship of Indole Alkaloids from Stigonemataceae 

The variation in structures has produced a range of bioactivities.  However, from 

the limited data on the bioactivity of many of these compounds, it seems that the 

isonitrile containing alkaloids have more documented cases of bioactivity (Moore et al., 

1987; Stratmann et al., 1994; Smitka et al., 1992).  The isolation of many hapalindoles by 

Moore et al., (1987) was done using TLC analysis and was not guided by any bioassay.  

Therefore, the bioactivity of the isonitrile or isothiocyanate groups of most of these 

compounds was not addressed.  However, the original isolation of Hapalindole A 

Isonitrile showed that the compound was responsible for the observed antialgal and 

antimycotic activity of the crude material (Moore et al., 1987).  Isonitrile containing 

ambiguines have also been shown to have antimicrobial activity; these include 

Ambiguines K and M. (Mo et al., 2009).  Many of the isonitrile containing ambiguines 

also have fungicidal properties which include Ambiguine A through F (Smitka et al., 

1992).  Welwitindolinone A Isonitrile was shown to have fungicidal properties 

(Stratmann et al., 1994).  The isonitrile containing Fischerindole L was shown to have 

antifungal properties (Park et al., 1992).  Isonitrile containing compounds from each type 
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of indole alkaloid have shown some form of bioactivity all of which include some form 

or microbial or fungal activity.  

 Other isonitrile containing marine natural products have shown to be quite 

bioactive as antimalarial compounds (Garson and Simpson 2004).  The isonitrile prevents 

the conversion of iron porphyrins to β-hematin by binding to the porphyrins, and the 

membranes of the malarial parasites are then destroyed by the build-up of heme moieties.  

None of the indole alkaloids from Stigonemataceae have been investigated as 

antimalarial compounds. 

Interestingly there is not much information on the bioactivity of the 

isothiocyanate containing indole alkaloids.  One welwitindolinone, N-

Methylwelwitindolinone C Isothiocyanate, was shown to have insecticidal properties and 

the ability to reverse MDR.  Hapalindole B was isolated in small amounts along with 

Hapalindole A and was not reported to have any bioactivity (Moore et al., 1984).  

Whether this observation is a result of a concentration factor or lack of bioactivity against 

microbes and fungi is unknown.  Other non-isonitrile containing indole alkaloids have 

also been reported to be bioactive.  The thiocarbamate hapalindole, Hapalindole T, was 

also shown to be antimicrobial as previously discussed (Asthana et al., 2006). 

The bioactive compounds; Fischerindole L, Hapalindole A Isonitrile, 12-epi-

Hapalindole E Isonitrile, Welwitindolinone A, N-Methylwelwitindolinone C 

Isothiocyanate, and many ambiguines also contain chlorine groups.  The role of chlorine 

in the bioactivity of these compounds was addressed by Raveh and Carmeli (2007).  They 

have discussed the bioactivity of chlorinated and non-chlorinated ambiguines and the 

lack of any difference in antimicrobial activity for the either kind of compound (Raveh 
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and Carmeli 2007).  The evaluation of bioactive chlorinated hapalindoles versus the non-

chlorinated hapalindoles has only been addressed with the insecticidal bioactivity 

observed with 12-epi-Hapalindole J, C, and E Isonitrile and Hapalindole L.  Both the 

non-chlorinated and chlorinated isonitrile containing hapalindoles were shown to be 

larvicidal towards the harlequin fly larvae at concentrations between 26 and 37µM 

(Becher et al., 2007).  On the basis of data generated by Becher et al., (2007) and Raveh 

and Carmeli (2007) the chlorinated hapalindoles and ambiguines produce comparable 

bioactivities.  Most likely the chlorine does not play much of, if any role in the fungal and 

microbial activity. 

One compound, 12-epi-Hapalindole E Isonitrile had been investigated using a 

variety of bioassays and had shown to produce a range of bioactivities (Doan et al., 

2000).  This compound contains both chlorine and isonitrile groups.   When tested against 

algae, fungi, bacteria, and mammalian cells this compound was shown to have an 

inhibitory effect in the µM dose range for Myeloma (Mouse), the green algae 

Monoraphidium convolutum, and various bacteria, cyanobacteria, and fungi.  The actual 

mode of action was determined to be the inhibition of RNA and protein synthesis.  The 

inhibition was determined to be a result of interaction between 12-epi-Hapalindole E 

Isonitrile and RNA polymerase (Doan et al., 2000).  The hapalindole was shown to 

compete with ATP for the binding site on the enzyme substrate on E. coli RNA 

polymerase.  The observed activity was most likely not the only cellular process that was 

being affected, since the concentration levels to observe inhibition of purified RNA 

polymerase were higher than the levels seen with cellular growth inhibition (Doan et al., 

2001).  A separate instance of isolating insecticidal compounds from Fischerella also 
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produced 12-epi-Hapalindole E Isonitrile (Becher et al., 2007).  It is clear that this 

compound affects a basic biological process that leads to a variety of bioactivities.  With 

many of these indoles containing a similar base structure to 12-epi-Hapalindole E 

Isonitrile, it would be useful to investigate the full range of bioactivity for other indole 

alkaloids.  The analysis the bioactivities of the indole alkaloids previously isolated might 

shed some light on which structures of the compounds are bioactive and could be utilized 

to improve natural product screening from cyanobacteria.   In order to obtain a more wide 

scope of the nature of these compounds, a more complex assay would be useful. 

In the family Stigonemataceae at least four genera have been shown to produce 

these indole alkaloids.  Literature search for hapalindole-like compounds did not yield 

any results outside the cyanobacterial family Stigonemataceae.  The use of these 

compounds has not been determined, but the various forms of bioactivity suggest that the 

genera from Stigonemataceae pose as a good source of biologically relevant chemicals.  
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TOXICOLOGICAL AND CHEMICAL INVESTIGATION OF FISCHERELLA 
52-1 USING THE ZEBRAFISH (Danio rerio) EMBRYO MODEL 

2.1 Introduction 

Fischerella, a genus in the family Stigonemataceae, has been shown to produce a 

number of indole alkaloids as discussed in Chapter 1.  A screening of extracts from 

different cyanobacteria isolated from the Florida Everglades for bioactivity yielded one 

strain of Fischerella that was shown to be very bioactive (Berry et al., 2007; Gantar et 

al.,2008).  Fischerella 52-1 produced a unique consistent set of physical deformities in 

developing zebrafish embryos, and this strain was shown to inhibit growth of 

cocultivated algae.  Initial isolation of the active compound suggested an indole alkaloid 

(unpublished data) (Berry et al., 2007).  In order to identify active compounds from 

Fischerella, the zebrafish (Danio rerio) embyo model was used to guide the purification 

of bioactive compounds. 

2.2 Zebrafish (Danio rerio) as a Toxicological Model 

The zebrafish model has been utilized for a variety of purposes which include but 

are not limited too genetic research, toxicology, drug discovery, and developmental 

biology (Hill et al., 2005; Crawford et al., 2008).  Using the zebrafish model, many 

bioactive metabolites from cyanobacteria have been evaluated (Berry et al., 2008 and 

2009 and Wright et al., 2006).  The zebrafish embryo model has many advantages that 

make it a useful tool in evaluating bioactivity of crude material and guiding the 

purification of bioactive metabolites (Berry et al., 2008). One specific benefit of this 

model is the wide range of bioactivities that are able to be detected.  The ability arises as 

a result of the many biological processes that occur during embryogenesis, and when any 
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one of these processes is affected the embryo does not develop correctly.  The abnormal 

development can then be used to guide the purification of the bioactive compound(s).  

Other advantages of the zebrafish embryo assay include easy husbandry, a transparent 

chorion, small size, and rapid embryogenesis.  The small size, around 1mm in diameter, 

and transparent chorion, or outer “shell” of the zebrafish eggs, allows the embryos to be 

studied light microscopy.  The small size permits a high throughput assay to be 

performed in 24 to 96 wellplates, which can accommodate a substantial quantity of 

extracts or fractions per assay.  The ease of husbandry ensures that a large number of 

eggs can be produced by a relatively small number of breeding pairs. The rapid 

embryogenesis allows multiple assays to be performed in a small window of time, 

between 3 to 5 days.  The zebrafish embryo assay has been performed using two different 

exposure methods (Berry et al., 2007 and 2009).  One includes injecting the material of 

interest into the zebrafish embryos using a microsyringe or a nanoliter injector, and in the 

other method the extracts or toxins are introduced in the rearing media.  The second 

method subjects the embryos to the test solution by immersion in ambient concentrations. 

The bioactivity of several cyanobacterial toxins and extracts have been 

investigated using the zebrafish embryo model (Lefebvre et al., 2004; Oberemm et al., 

1999; Berry et al., 2004, 2007, and 2009).  Oberemm et al., (1999) tested purified 

compounds, Microcystins LR and RR (MC-LR and MC-RR) and saxitoxin, from 

cyanobacteria and crude cyanobacterial extracts against a range of aquatic vertebrate 

embryo models including zebrafish embryos.  In the study performed by Oberemm et al., 

(1999), the toxins and extracts were introduced to the zebrafish through the rearing 

medium.  Microcystin LR and RR, in the µg/L concentrations, showed reduced survival 
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and growth weight of the zebrafish embryos.  Exposure to higher levels of the 

microcystins, as high as 10mg/mL, to the zebrafish through the rearing medium showed 

that the elevated concentrations of MC-LR produced developmental defects, which 

included a pectoral edema and a distended yolk sac.   

Even though it has been shown that MC-LR did not produce much bioactivity, 

except at high concentrations, when the zebrafish embryo was exposed through the 

rearing media, a paper by Wang et al., (2005) suggested that the weak bioactivity 

observed with the MC-LR was as a result of the lack of uptake of the toxin by the 

embryo.  To determine whether a different exposure method could cause a change in the 

degree of bioactivity, the zebrafish embryos were injected with MC-LR via 

microinjection at the connection of the yolk cell and the blastodisc.  The MC-LR was 

injected to insure that the toxin was introduced into the embryo directly, and was not 

relying on cellular uptake from the surrounding environment with the MC-LR only 

available in the cytoplasm.  Embryos injected at the 2-4 cell stage post fertilization were 

shown to suffer from abnormal blastomeres, at the 8 cell stage.  Wang et al., (2005) 

compared the tightly fixed blastomeres that occur in normal embryos to the embryos 

dosed with MC-LR, and discovered an absence of organization which subsequently led to 

increased mortality.  In this study it was also shown that a dose and time-dependent 

mortality trend was observed.  Embryos that were able to survive past the 48 hours post 

fertilization (hpf) point experienced various deformities.  These defects included 

cyclopia, pericardial edema, malformation of the tail, edema of the hatching gland, and 

curvature of the body axis.  The use of the microinjection method produced a greater 

bioactivity compared to the ambient exposure method.  Similar increased bioactivity has 
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been shown for other microinjected cyanobacterial toxins which were not observed when 

the toxin was introduced via the rearing medium (Berry et al., 2009).  The low degree of 

bioactivity produced by the cyanobacterial toxins when exposed to the zebrafish embryos 

in the rearing medium may be a result of the high water solubility of these toxins, or the 

inability of these toxins to pass effectively through the chorion.  The hydrophilic 

character of the molecule might not be the only reason toxins similar to MC-LR was not 

able to diffuse through the chorion.  The size of the large cyclic peptide might have some 

effect on the ability of the molecule to cross into the embryo. 

Saxitoxin, which causes paralytic shellfish poisoning, is a toxin that is produced 

by a dinoflagelletes and cyanobacteria and has also been evaluated with the zebrafish 

embryo model (Oberemm et al., 1999; Lefebvre et al., 2004; Sivonen et al., 1996).  

Oberemm et al., (1999) reported the effects of a Saxitoxin concentration of 500µg/L, 

which was shown to produce embryos with abnormal body axis curvature and edema.  

These defects were shown to be reversible upon the immersion of the embryos in toxin 

free medium.    In the study by Lefebvre et al., (2004), Saxitoxin was introduced into the 

embryos through the egg rearing medium with increasing concentrations.  This paper 

helped to confirm the ability of zebrafish to uptake a toxin through the rearing media.  

Physical morphologies observed included edema of the pericardium, eye, and yolk sac 

and abnormal curvature of the body axis.  Sensory abnormalities were also observed 

which included postponed or diminished touch response and paralysis.  It was suggested 

by Lefebvre et al., (2004) that the edema was most likely caused by the paralysis which 

impeded the ability of the embryo to balance fluids and osmotic pressures. Some of the 

embryos were able to regain normal touch response and reverse the paralysis once 



37 
 

removed to a toxin-free medium.  The microinjection method was not required in the two 

Saxitoxin studies previously discussed, since the molecule was able to diffuse through the 

chorion of the developing zebrafish embryo.  There is a possibility that the smaller size of 

Saxitoxin compared to MC-LR and MC-RR could play a role in the ability for Saxitoxin 

to be taken up by the embryos. 

The cyanobacterial toxin β-N-Methylamino-L-alanine (BMAA), and a glutamate 

analog produced by mixing BMAA and carbonate, were also investigated using the 

zebrafish embryo model in a paper by Purdie et al., (2009).  In this study the zebrafish 

embryos were exposed to rearing media that contained increasing amounts of BMAA, 

and BMAA with sodium carbonate, at 24 hpf.  After five days of exposure the embryos 

were transferred to new rearing media that was free of BMAA and observed for recovery.  

As with many of the previous zebrafish assays, morphological abnormalities were 

observed which included pericardial edema and curvature of the body axis.  The embryos 

exposed to only the BMAA showed some pericardial edema, but the embryos exposed to 

both BMAA and carbonate produced a trend of increasing number of embryos with 

edema with increasing amounts of BMAA and carbonate.  The occurrence of the curved 

spinal cord was increased with the BMAA, and BMAA with carbonate, compared to the 

controls, but no dose dependent trend was observed.  A significant amount of involuntary 

muscle contractions and premature hatching was also observed in embryos exposed to 

BMAA with carbonate.  It was suggested that the convulsions might have some effect on 

the integrity of the chorion leading to the premature hatching.  The study by Oberemm et 

al., (1999), discussed in the previous sections, exposed the zebrafish embryos to other 

water soluble toxins, like Saxitoxin and MC-LR and MC-RR, using the ambient exposure 
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method.  Lower levels of bioactivities were observed in the Oberemm et al., (1999) study 

compared to the Purdie et al., (2009) study.  It is possible that the relatively small size of 

BMAA might allow this molecule to pass into the cytoplasm of the embryo.  

Pahayokolide A, a compound isolated from Lyngbya, was shown to produce 

mortality in the zebrafish embryo assay (Berry et al., 2004).  The method of exposure 

was through dissolution in the rearing media.  Mortality of 100% of the embryos was 

observed at 24 hpf at a concentration of 5µg/mL and at 5 days post fertilization (dpf) at a 

concentration of 3µg/mL.  This compound, however, did not produce any developmental 

defects.  The large size of this molecule compared to MC-LR and MC-RR would suggest 

that the bioactivity would be minimal if the size of the molecule influenced the diffusion 

process of the toxin through the chorion.  However, given the high mortality observed 

with Pahayokolide A it is possible that a portion of the molecule passes through the 

chorion and produces the observed bioactivity.  

The cyanobacteria Aphanizomenon flos-aquae was found in the Mueggelsee in 

Berlin and analyzed for cyanotoxin content by Papendorf et al., (1997).  It was shown 

that the cyanobacteria were producing microcystins at low concentrations which was later 

attributed to possible small amounts of Microcystis sp.  When an extract of the A.flos-

aquae was tested against zebrafish embryos, unusually pronounced developmental 

retardation was observed that could not be correlated to microcystin.  Fractionation and 

purification produced two compounds, Mueggelone and Lupenyl Acetate.  The zebrafish 

embryo assay, using the ambient exposure method, was not used to guide the 

fractionation, but was used to evaluate the bioactivity of the purified compounds.  The 

assay revealed that 10µg/mL of Mueggelone caused mortality of 45% of embryos and 
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severely retarded the development of the surviving embryos.  Lupenyl Acetate, at a 

concentration of 100µg/mL, showed pericardial edema and bent tails.  In this case, the 

ambient exposure through the rearing media allowed new bioactive compounds to be 

detected that might not have been otherwise identified. 

Other harmful toxins produced by other organisms have also been evaluated using 

the zebrafish embryo model (Tiedeken et al., 2005; Lefebvre et al., 2004).  Domoic Acid, 

which results in amnesic shellfish poisoning, is a toxin produced by diatoms unlike many 

of the toxins previously discussed (Tiedeken et al., 2005).  A study by Tiedeken et al., 

(2005) investigated the use of the zebrafish embryo assay whereby the toxin was 

microinjected into the zebrafish embryo.  From the assay it was observed that as the 

concentration of Domoic Acid increased the hatching success rate decreased.  At the 

higher concentrations certain morphological abnormalities were observed, which 

included pericardial edema, downward curvature of the spinal column, and 

underdevelopment of the jaw.  These deformities were observed in most of the unhatched 

embryos exposed to high concentrations of Domoic Acid.  It was suggested that the 

defects were not consistent nor were expressed by all exposed embryos.  Neurotoxic and 

behavioral effects were also observed and included convulsions, lack of escape response 

in the presence of a stimulus, and continuous pectoral fin movements.  A dose-dependent 

trend was observed with embryos exposed to increasing amounts of Domoic Acid.  As 

concentration increased, embryos exhibited neurological defects, abnormal swimming 

behavior, and paralysis.  The bioactivity observed with Domoic Acid may be dependent 

on the susceptibility of the embryo to the toxin which would account for the mixture of 

observations. 
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Another cyanobacterial toxin, the hepatotoxic Cylindrospermopsin (CYN), was 

analyzed using the zebrafish embryo model by Berry et al., (2009).  In this study five 

exposure methods were used to evaluate the toxicological effect of pure CYN on the 

zebrafish embryos, and different cyanobacterial extracts, from the corresponding genera 

Cylindrospermopsis and Aphanizomenon, were evaluated using the assay.  The different 

exposure methods for purified CYN included, microinjection into the yolk cell adjacent 

to the blastomeres, and ambient exposure including, partial dechorionation, use of 

distilled water as an egg rearing medium, and addition of DMSO to normal rearing 

solution.  From this experiment it was observed that microinjection was the only methods 

that produced any bioactivity, and that a dose-dependent mortality, with abnormal 

development, was observed.  Surviving embryos were shown to yield an assortment of 

developmental defects with no discernible pattern.  In the same study, different 

cyanobacterial extracts from Cylindrospermopsis raciborski and Aphanizomenon 

ovalisporum were tested using the zebrafish embryo assay, specifically using the ambient 

exposure method.  From this experiment it was observed that consistent patterns of 

developmental defects formed, a given concentration of lipophilic extracts of these 

species produced the same defect in all of the embryos exposed.  These deformities 

included truncated or curved body axis, pericardial edema, and diminished development 

of the eye.  Delayed hatching was also observed with the exposed embryos.  Most 

notably, developmental defects were observed with chloroform extracts of both CYN and 

non-CYN producing strains.    It was observed that the exposure to the crude material 

produced a consistent set of deformities that were expressed by all embryos in the 

exposed well. 
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One of the key observations in the study by Oberemm et al., (1999), was also the 

difference in activity in zebrafish embryos exposed to purified compounds, including 

microcystin, and those exposed to a crude extract.  More pronounced developmental 

defects were observed in embryos exposed to a crude extract from different 

cyanobacterial species than embryos exposed to microcystins alone.  Interestingly the 

higher levels of deformity were produced by embryos exposed to extracts of Microcystis 

aeruginosa that contained little to no microcystin as determined by High Performance 

Liquid Chromatography.  Some of the defects from the exposure to the crude extract of 

M. aeruginosa included pericardial edema, truncated and curved body axis.  Extracts of 

Aphanizomenon flos-aquae caused the softening and rupturing of the chorion of the 

zebrafish embryo.  The observation of more pronounced developmental defects from 

crude extracts compared to the purified toxins produced by the same cyanobacteria may 

indicate a synergistic effect produced by the exposure of multiple compounds or 

additional unidentified bioactive compounds. 

One particular point of interest with these toxin exposure experiments is the lack 

of uniform phenotypes.  The term “phenotype,” which is defined as the physical 

expression of an organisms genes, does not truly define the observed deformities in the 

exposure experiments since it is not known whether a particular pathway or the genes are 

being affected by the toxin (Raven and Johnson 1990).  The novel term “toxitype” can be 

used to define the common physical expression of the effects of a toxin on all exposed 

embryos (Pat Gibbs personal communication, March 13, 2009).   

In the previously discussed cases, pure cyanobacterial toxins were not shown to 

cause uniform deformities in a particular exposure, however a common toxitype was 
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observed with embryos exposed to crude extracts from various cyanobacteria (Berry et 

al., 2004, 2007, and 2009; Lefebvre et al., 2004, Oberemm et al., 1999, Papendorf et al., 

1997, Purdie et al., 2009, Tiedeken et al., 2005, and Wang et al., 2005).  Many of the 

toxins previously discussed mainly caused mortality and some developmental defects, but 

it was not discussed whether the exposure caused reproducible consistent defects.  Some 

common deformities observed in the ambient exposure, and the microinjection 

experiments, were pericardial edema and curved body axis.  The common occurrence of 

these deformities had not been addressed; however the edema, in one case, was attributed 

to paralysis of the embryo (Lefebvre et al., 2004). 

The zebrafish model has also been shown to be a useful tool in screening for 

bioactive compounds from cyanobacteria in a study by Berry et al., (2008).  In this study, 

polar and nonpolar extracts from different cyanobacterial strains were screened against 

the zebrafish embryo model to explore new bioactivity.  Bioactivity in the polar, 30% 

ethanol, extracts mostly produced deaths among the embryos but the nonpolar; 

chloroform extracts produced developmental defects in live embryos.  The occurrence of 

a consistent toxitype in exposed zebrafish embryos was observed in the lipophilic 

chloroform extracts of some of the cyanobacteria tested (Berry et al., 2008).  Specifically, 

the extract of Fischerella 52-1 was shown to produce the toxitype termed “puffy” in 

embryos exposed to the crude lipophilic extracts of the biomass and the culture medium. 

Initial characterization of one of the active compounds suggests the active compound 

belonged to the family of secondary metabolites that included many indole alkaloids, 

discussed in Chapter 1. 
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Other bioactive metabolites of Fischerella have been identified using the 

zebrafish embryo model (Wright et al., 2006).  A study by Wright et al., (2006) showed 

that when zebrafish embryos were exposed to the culture medium of Fischerella 

ambigua, via ambient exposure, 100% mortality was observed, and when this extract was 

diluted the embryo development was significantly stunted which eventually caused 

embryo mortality.  Fractionation of the active medium identified Ambigol A and C, and a 

small amount of Tjipanazole D discussed in Chapter 1.  When the embryos were exposed 

to each of the purified compounds, only high concentrations of Ambigol A produced any 

activity.  The activity occurred at 1 mg/mL, and caused irregular shape of the body and 

tail and pectoral edema.  High Performance Liquid Chromatography analysis of the 

culture medium showed that the concentration of Ambigol A was 0.47mg/mL, much less 

than the amount required to produce bioactivity.  When compared to the observed activity 

from the culture medium it is apparent that the purified compounds were not as potent 

separately compared collectively. When the fractions were recombined the activity could 

not be reproduced leading to the conclusion that an additional unidentified metabolite, 

was potentially present and acted synergistically with Ambigol A.  The Wright et al., 

(2006) study showed that bioactive compounds were possible to detect and purify from 

cyanobacteria like Fischerella using the zebrafish embryo model.  The analysis of the 

culture medium, confirmed that bioactive metabolites could also be isolated from the 

culture medium and not solely the cellular material.  The observation of bioactivity in the 

zebrafish embryos from a cyanobacterial culture medium was also reported for 

Fischerella 52-1 by Berry et al., (2008). 
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2.3 Use of the Zebrafish Embryo Model to Investigate Bioactive Metabolites from 
Fischerella 52-1. 

Extracts of the cyanobacterium Fischerella 52-1 has been documented to produce 

a number of bioactivities (Berry et al., 2007; Gantar et al., 2008).  Screening of 

cyanobacteria collected from central and south Florida by Gantar et al., (2008), 

investigated the interactions or allelochemistry of cocultivated algae and cyanobacteria, 

and the effects of the cyanobacterial extracts.  The most potent isolate was Fischerella 

52-1 which was shown to inhibit the growth of all tested green algae and cyanobacteria.  

Extracts of Fischerella 52-1 from the biomass, and the culture medium, were investigated 

and the extracts from the culture medium were shown to be more potent.  The effect of 

the culture medium extract of Fischerella 52-1 on the green algae Chlamydomonas was 

investigated further.  The extract exhibited a concentration and time dependent trend of 

increasing photosynthesis inhibition, along with an observed decrease in the organization 

of the cellular structure of Chlamydomonas.  The morphological abnormalities observed 

with exposed Chlamydomonas included bleaching of the cells, swollen membranes, 

deterioration of thylakoids, and disappearance of some organelles like the nucleus.  It was 

suggested from this study that the active compound, as a result of the lipophilic nature of 

the active extracts, might target the membranes of the thylakoids which are lipid-rich, and 

this might cause an interruption of the electron transport system.   

The bioactivity of the lipophilic extract of Fischerella 52-1 was also explored 

with the zebrafish embryo model.  The initial interest in Fischerella 52-1 stemmed from 

the study performed by Berry et al., (2008), where the “puffy” toxitype was first 

observed in the lipophilic extract of Fischerella 52-1 and the culture medium.  
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Interestingly there was a more potent effect from exposing the embryos to the extracted 

culture medium of Fischerella 52-1.  As with the algal bioassay, the zebrafish embryo 

bioassay showed more activity in the extract from the culture medium compared to the 

extract from the biomass.  Because of this observation, it was suggested that secondary 

metabolites were possibly produced by the strain and released into the culture medium 

(Berry et al., 2007).   

Furthermore, the culture of Fischerella 52-1 produced a globular solid that 

surrounded the cellular material and culture flask perimeter.  Exocellular material has 

been shown to occur in some other strains of cyanobacteria, but the nature of its 

occurrence is unclear (Philippis et al., 1998).  One hypothesis is that the material acts like 

a buffer between the cyanobacterial colony and its environment.   The material could 

produce antialgal or antifeedant compounds to protect the colony or limit desiccation by 

storing water and releasing it slowly.  The exocellular material is possibly composed of 

secondary metabolites, which allows the inhibition of predation or the propagation of 

competing species. 

The different bioactivities observed with Fischerella 52-1 suggest that this 

cyanobacterium could produce multiple bioactive compounds (Berry et al., 2007; Gantar 

et al., 2008).  Since the zebrafish embryo model showed such pronounced activity 

towards this extract, this model was used to guide the purification of the active compound 

in this research.  The evaluation of the “puffy” toxitype in each facet of the Fischerella 

52-1 culture, including the unique globular material or extracellular solid (ECS), was 

investigated using the zebrafish embryo assay.  The active fractions and purified 

compounds were analyzed using mass spectrometry and HPLC-UV-vis.   
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2.4 Methods 

2.4.1 Fischerella 52-1 Culture 

Fischerella 52-1 was isolated from the Florida Everglades by Gantar et al., 

(2007). Identification of the taxon was determined using a 16S rRNA gene sequencing 

followed by a BLAST search and was determined to be Fischerella, and the strain was 

labeled 52-1.  The strain was cultured as per Berry et al., (2007).  These conditions 

required the strain to be grown in BG 11 medium, buffered with 2-

morpholinoethanesulfonic acid (MES) to pH 7.2 at 24°C under constant fluorescent white 

light.  Biomass, culture medium, and ECS of Fischerella 52-1 was obtained from non-

axenic unialgal cultures.   

2.4.2 Extraction 

 Each component of the culture including the culture medium, biomass, and ECS 

was extracted for subsequent evaluation.  The culture medium was extracted by C18 solid 

phase extraction (SPE).  Two Restek reverse-phase SPE cartridges with 5g C18 bonded 

silica, and 20mL sample volume, were used to extract two 4-L samples of culture 

medium, and subsequently eluted off with methanol.  Two grams of freeze-dried biomass 

were extracted twice with 200mL of 1:1 propanol and dichloromethane, as specified by 

Moore et al., (1987), on a shaker table overnight.  The material from each of the two 

extractions was combined.  Since the active compound was thought to be a hapalindole, 

the same extraction process was used to extract the cellular material as the original 

hapalindole isolation (Berry et al., 2007; Moore et al., 1987)).  The ECS was collected, 

by Dr. Gantar, from the culture by scraping the material from the biomass of the growing 

culture and culture flask into a 20mL scintillation vial.  The material was extracted 
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overnight on a shaker with10mL of hexane.  The hexane extract was removed, and the 

material was subsequently extracted with acetone.  The hexane and acetone extracts were 

tested against the zebrafish.  The observed bioactive acetone extract was used to compare 

the bioactivity of the ECS to the culture medium and biomass extracts using the zebrafish 

embryo assay. 

2.4.3 Optimized Extraction of ECS 

Analysis of purified materials showed that the solubility of the compounds of 

interest was low for solvents like acetone, ethyl acetate, and hexane.  However, the 

compounds were shown to be quite soluble in methanol.  Because of this observation, the 

extraction procedure for the ECS was optimized by exchanging the overnight hexane and 

acetone extractions for two overnight methanol extractions. 

2.4.4 HPLC Comparison of Bioactive Components of Fischerella 52-1 Culture 

A crude fractionation was performed on each of the initial bioactive extracts from 

the Fischerella 52-1 culture; these included the extracts from the biomass, culture 

medium, and ECS.  The fractionation was performed using a silica solid phase extraction 

(SPE) cartridge with a solvent system ranging from 100% hexane, 5:1, 4:1, 3:1, 2:1, 1:2 

hexane to acetone, and 100% acetone.  Bioactive fractions from each fractionation were 

then evaluated by the HPLC on a Shimadzu Prominence UFLC system, with a PDA 

detector.  A Luna C18 analytical column with dimension of 250 x 4.60 mm and particle 

size of 5µm with 100Å pore size was used.  The method utilized a flowrate of 1ml/min, 

and included a smooth gradient with acetonitrile and water.  The starting concentration of 

acetonitrile was 50% and was increased to 60% over 10 minutes.  The concentration was 
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kept constant for 5 minutes.  The concentration of acetonitrile was increased to 70% over 

5 minutes, and this concentration was kept constant for an additional 10 minutes.  The 

concentration was then increased to 100% over five minutes and kept at a constant 

concentration for 5 minutes. 

2.4.5 Fractionation of ECS 

Two sequential HPLC methods were used to purify indole alkaloids from the 

optimized methanol extracts of ECS using a Shimadzu Prominence UFLC system, with a 

PDA detector to separate the indole containing compounds from the active extract.  The 

indole chromophore observed in the active fraction had a λmax at 220-225 and 278-282 

nm.  The chromatographic methods were developed to separate the observed peaks with a 

λmax at 222nm.   Each method utilized a Luna Semi-Prep C18 column with 5µm particle 

size and dimensions of 250x10mm with a flowrate of 4.5mL/min.  The first HPLC 

method used an acetonitrile and water gradient.  The gradient began at 50% acetonitrile 

and ended at 99% acetonitrile in 20 minutes, and an isocratic gradient at 99% acetonitrile 

was kept for an additional 20 minutes.  The last segment of the method was added after 

the analysis of the gradient, using a PDA detector that was used in sequence with a mass 

spectrometer, showed that compounds not detected by the PDA were observed after the 

20 minute gradient.  The indoles of interest were collected at 15 to 20 minutes, this was 

determined after a smaller scale collection was done and tested against the zebrafish 

embryo model.  The collected fraction at 15-20 minutes was determined to be bioactive 

and was further fractioned using a second method.  The second method used a very slight 

gradient of methanol and water which started with 73.2% methanol and was increased to 

73.5% over the span of 40 minutes. The percent of methanol was again increased to 75% 
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for the following 12 minutes which afforded eight different peaks with indole-like 

chromophores.  Six fractions containing either a single large peak or a group of small 

peaks were collected and tested against the zebrafish embryo assay.  The fractions 

containing peaks 7 and 8 were determined to be pure, but the fraction containing peak 3 

required further purification using the HPLC.  A third method was developed that utilized 

a 25 minute isocratic method with a 53% acetonitrile concentration.  The Luna C18 

analytical column was used in this method at a flowrate of 1ml/min.   

2.4.6 Zebrafish Embryo Bioassay 

The zebrafish embryo assay was performed as per Berry et al., (2007).  The 

zebrafish used to test the quantified crude material were the L3 line, the original 

purification methods used the L4 and L5 lines, and the rest of the analysis was done using 

the P5 line.  The assay utilized polypropylene 24-well plates which contained dried 

cyanobacterial material.  Solvent controls, cyanobacterial extracts, HPLC fractions, and 

solutions of purified compounds from Fischerella 52-1 were pipetted into wells, and 

allowed to dry overnight in a fume hood.  Fertilized zebrafish eggs were obtained from 

Dr. Pat Gibbs at the University of Miami Rosenstiel School of Marine and Atmospheric 

Sciences at Key Biscayne, FL.  To obtain eggs, 50 pairs of zebrafish were bred in 4 10-L 

tanks containing a mesh to separate breeding adults from eggs.  The eggs are collected 

from the tanks, washed, and rinsed with the E3 medium.  The E3 medium was made 

using a 60x stock E3 solution and 0.1% methylene blue solution.  The 60x stock solution 

was made by dissolving 8.6g NaCl, 0.38g KCl, 1.45g CaCl2*H2O, and 1.2g MgSO4 in 

500mL of ultrapure water.  The E3 solution required 8mL of the 60x stock and 250µL of 

the 0.1% methylene blue solution to make 500mL of E3 media.  Following the rinsing, 
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the eggs at the 32 to 64 cell stage were sorted from the unfertilized eggs, poor quality 

eggs, and day 1 embryos.  The assay utilized five fertilized embryos at the 32-64 cell 

stage.  Eggs were pipetted with 1ml of E3 medium into each well.  The bioactivity 

produced by the material in each well was compared to negative controls, and 

documented 3-5 days post fertilization (dpf); the first indication of the toxitype produced 

by Fischerella 52-1, occurred at 3 days post fertilization.   Observations and images were 

taken using an Olympus SZX7 dissecting microscope, with internal camera.  

Crude extracts of the biomass, culture medium, and the ECS were dried and 

weighed to allow a concentration to be calculated and used to quantify the toxicity in 

terms of µg residue/mL solution.  In order to determine which extract of the ECS to use, a 

small zebrafish embryo assay was performed using the hexane and acetone extract.  

When zebrafish embryos were exposed to each fraction, the acetone fraction was shown 

to produce the “puffy” toxitype, and the hexane fraction was no longer utilized.  To 

evaluate the activity of the extracts against the zebrafish embryo model, a bioassay was 

setup where 6 wells with differing concentrations of dried residue from each extract that 

included 0, 10, 25, 50, 100, 250 µg residue/ mL of E3, were evaluated with the zebrafish 

embryos.  Five embryos were exposed to the dried residue in the 1mL of E3 medium.  

Solvent controls with dried hexane and acetone produced no mortality or abnormal 

developmental defects when exposed to the zebrafish embryos. 

Similarly purified amounts of Peak 3, 7, and 8 were analyzed using the zebrafish 

embryo assay and included the concentrations, 0, 0.1, 0.5, 1, 5, and 10µg/mL of E3.  In 

order to measure the amount of each toxin, a pre-weighed HPLC vial, without the cap, 

was filled with a solution of the desired toxin in methanol.  The cap was returned to the 
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vial and the solvent was removed by introducing filtered dry air through a needle that was 

pierced through the septa cap and allowing the air to vent through an additional needle.  

The vial was not allowed to come in contact with any surface which was executed by 

covering the outside of the vial with a Kimwipe.  Once the solvent was evaporated the 

cap of the vial was removed, and then weighed to determine the amount of toxin.  In 

order to make a stock solution 1mL of methanol was then introduced into the vials with 

known amounts of toxin and a desired amount was removed to make a stock solution.  

For Peak 3 the stock concentration was 25ug/mL, for Peak 7 the stock concentration was 

33µg/mL and for Peak 8 the stock concentration was 53µg/mL.  Different volumes of 

each stock were pipetted into wells of a 24-well plate to give the desired concentrations. 

2.4.7 Embryo Removal Experiments 

 In order to assess the recovery from toxic effects, at 3 dpf of the zebrafish embryo 

assay, with the quantified amounts previously discussed of Peaks 3, 7, and 8, one embryo 

was removed from each of the desired bioactive wells.  Each embryo was photographed 

and then removed from the chorion and photographed again.  The removed embryos were 

then placed into new wells in a 24-well plate containing 1mL of only the E3 medium.  

The same removal method was repeated on 4 and 5 dpf with embryos from each of the 

same bioactive wells.  The removed embryos were observed and photographed each day 

after removal.  Two embryos were left in the well containing the cyanobacterial material 

to serve as positive controls. 

2.4.8 Mosquito Larvicidal Assay 

 In addition to the zebrafish embryo assays, extracts and purified compounds were 

evaluated for mosquito larvicidal activity.  The mosquito larvicidal assay was performed 
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by Gerald Berry using his procedure described below.  A 24 well plate was used 

containing dried cyanobacterial extracts or purified compounds in each well.  The 

extracts were resuspended in 10µL of methanol followed by 500µL of water.  The plate 

was then placed on a shaker table for 3hours to allow evaporation of the methanol.  For 

this assay mosquito larvae, Aedes aegypti of the Rockefeller strain, were hatched in 

250mL jars with 75ml of water previously rendered hypoxic by boiling to 50% of the 

volume.  A small piece of paper containing the desired amount of mosquito eggs was 

then added to the jar and sealed.  The eggs were allowed to hatch for 2 hours and the 

larvae were transferred to a petri dish.  Four larvae with 400µL of water were then 

pipetted into each well following the solvent removal.  After the all of the desired larvae 

were transferred into the 24 wellplate, 120µL of 0.1% autoclaved liver powder solution 

was pipetted into each well.  The plates were observed for bioactivity each day after 

hatching for 1 week.  The bioactivity investigated using light microscopy included 

mortality, delayed development, and any other deformities.  Mortality was determined by 

a three stage analysis, first by observing lack of movement, then by agitating the larvae, 

and finally by light microscopy. 

2.4.9 LC-MS of Indoles from ECS 

 Purified compounds and fractions were evaluated by the LC-MS using a TSQ 

Quantum Access LCMS system.  A Heated Electrospray Ionization (HESI) source was 

used both in negative and positive modes.  A methanol and water gradient from 70% to 

99% methanol in water, with a flowrate of 500µL/min, over the span of 28 minutes was 

used on a Kinetex C18 column (100 x 4.6mm, and particle size 2.6µm).  Each scan was 
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evaluated to determine m/z of the purified molecule, and to determine relative purity of 

the sample. 

2.4.10 Toxin Solubility Analysis 

 Two sets of six wells, in two 24-well plates, were used to evaluate the solubility 

of the purified Peaks 7 and 8 in E3 medium.  The six amounts of each toxin, that were 

dispensed twice in six different wells in each of two rows, included 0, 0.1, 0.5, 1, 5, and 

10µg.  Quantification of the purified material was done using the same method described 

above for the analysis of purified toxins.  Once the appropriate amount of each toxin was 

distributed into the 24 wells, the plates were allowed to dry overnight in the hood.  To 

determine the relative solubility of each toxin in the E3, compared to the methanol which 

has shown to facilitate complete dissolution at these concentrations, one row was then 

suspended in 1mL of methanol, and the other row was suspended in 1mL E3. Aliquots of 

each set of six samples were analyzed using the TSQ Quantum Advantage Mass 

Spectrometer.  The method used to detect each peak was composed of a full scan and a 

single ion monitoring (SIM) scan set for the mass of each peak using a methanol and 

water gradient previously discussed.  Each method was performed using a HESI probe set 

to a negative polarity for Peak 7, and a positive polarity for Peak 8.  The column used 

was a Kinetex C18 column, previously discussed, at a flowrate of 500µL/min and the 

gradient included 30 minute increase of methanol concentration from 30% to 99%.  The 

areas of the chromatogram peaks correlating to the SIM scan were used to compare the 

amount of toxin dissolved in methanol, and the amount dissolved in the E3. 
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2.5 Results and Discussion 

2.5.1 Toxicological Investigation of Crude Extracts 

Embryos exposed to the biomass, culture medium, ECS and extracts showed 

developmental dysfunctions including well conserved toxitypes and ranges of effects.  As 

a result of the uniqueness of the developmental defects from Fischerella 52-1 

observations of the development were taken at 2 dpf up until 5 dpf.  At 1 dpf the dosed 

embryos do not appear any different from the controls, it is not until 2 dpf that color 

variation and edema begin to be apparent.  At 5 dpf all embryos should be hatched, but it 

was observed that embryos dosed with small amounts of the crude material developed 

normally but did not hatch even at 7 dpf.  In order to serve as a comparison the normal 

development of the zebrafish is depicted in Figure 7, and control images will be shown 

with each experiment. 
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Figure 7: Normal Zebrafish development; a) Day 1, b) Day 2, c) Day 3, d) Day 4, and e) Day 5 

 

In order to determine which part of the culture was bioactive each component was 

extracted and tested on the zebrafish embryo assay.  The results of the zebrafish embryo 

assay, using the crude extracts, are shown in Table 3 and Figure 8.  From Table 3 it is 
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shown that the ECS produced activity at a much lower mass per volume concentration 

which indicates the possible occurrence of an increased concentration of an active 

compound or compounds.  Alternatively this could also indicate the occurrence of a 

strong bioactive effect of a synergistic mixture of compounds.  The acetone extract from 

the ESC was shown to produce the “puffy” toxitype with the least amount of the crude 

material.  From this observation, it was decided that the ECS would be the main focus for 

further purification. 

Table 3: Results of Zebrafish Embryo Bioassay on Crude Material 

Extract Lowest Concentration with 
Observed Bioactivity 

Cellular Material 250 µg/mL 

Culture Medium 250 µg/mL 

Extracellular Solid 10 µg/mL 
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Figure 8: Fish Embryo Bioassay Observations 5 dpf; a) Control, b) Biomass 250 µg/mL, c) Culture Medium 250 
µg/mL, d) ECS 10 µg/mL 

 The crude fractions of the bioactive extracts from the Fischerella 52-1 biomass, 

culture medium, and ECS, using the silica SPE cartridge, were tested against the 

zebrafish embryo assay.  The “puffy” toxitypes developed in the 5:1 hexane to acetone 

fraction from each component of the culture.  Analysis of each component of the culture 

using HPLC revealed that apparently similar compounds, containing indole 

chromophores, were observed (Figure 9).  The indole chromophore was identified on the 

basis of the UV λmax from other indole alkaloids from Fischerella and related genera that 

are categorized under the family Stigonemataceae, discussed in Chapter 1 (Moore et al., 

1987, Smitka et al., 1992 and Stratmann et al., 1994).  The documented λmax for these 

indole alkaloids occurred from 219-225nm and 275-282nm and sometimes with a 
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shoulder at 290nm.  As an example, Figure 10 is a spectrum obtained from the HPLC of 

one collected indole alkaloid from Fischerella 52-1.  For each component of the culture 

of Fischerella 52-1, the HPLC chromatogram showed a cluster of indole chormophores 

in the time range between 26 and 28 minutes.  In this range two large peaks each 

containing an indole chromophore was observed (Figure 9).  In each component the first 

of these peaks was smaller than the second, but in the culture medium the ratio of the first 

peak to the second peak was higher.  Most likely a larger amount of a single compound or 

multiple compounds are exuded into the surrounding environment. 
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Figure 9: HPLC analysi of different components of Fischerella 52-1; a) ECS, b) Culture Medium, and c) Biomass 
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Figure 10: Indole Chromaphore from ECS produced by Fischerella 52-1 obtained from the HPLC 

2.5.2 Isolation of Indole Alkaloids 

The ECS fractionation obtained by silica SPE was scaled up to a silica glass 

column and the bioactivity was again observed in the fractions from the 5:1 hexane to 

acetone solution.  Subsequently three HPLC methods were used to isolate indole 

compounds from the Extracellular Solid.  The initial method of isolation utilized the same 

acetonitrile gradient specified in the methods section.  The semiprep column was also 

used in the second method, which utilized an isocratic 55% acetonitrile concentration for 

70 minutes, followed by a 5 minutes flush.  The previously determined bioactive fraction, 

was collected in the time range of 62 to 68 minutes using the second method.  The third 

method, however, used the C18 Kinetex column with an isocratic method of 60% 

methanol at a flowrate of 1ml/min.  Unfortunately this method required an oven 

temperature of 34°C, and most of the time the pressure of the HPLC pump reached the 

maximum limit.  This purification scheme, furthermore, produced too little of the isolated 
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compounds to obtain 13C NMR data.  It was subsequently discovered that the active 

compounds were only partially soluble in many of the organic solvents used.  Further 

investigation revealed that the active compounds were quite soluble in methanol, and that 

when the ECS was extracted with methanol, mostly the indole containing compounds 

were extracted.  Using methanol to extract hapalindoles was previously documented by 

Doan et al., (2000) who were able to extract 12-epi-Hapalindole E Isonitrile from 

Fischerella using methanol. Since the compound of interest is most likely a hapalindole 

this would presumably be a better method of extraction.  The optimized extraction 

process with methanol was used for the initial extraction of the ECS with subsequent 

HPLC methods to obtain isolated indole compounds. 

The methanol extract of the ECS was separated using two HPLC methods.  In the 

first HPLC method, which utilized the 50%-99% acetonitrile and water gradient, a 5 

minute segment was collected from minute 15 to minute 20 in the gradient.  This part of 

the chromatogram was shown to have most of the indole containing compounds and the 

main indoles in the ECS.  The 15-20 minute fraction was tested using the zebrafish 

embryo assay and was shown to be bioactive.  Once the activity was confirmed, the 

fraction was then separated using the second HPLC method that utilized a flatter 

methanol gradient. The method resulted in eight peaks with relatively high absorbance at 

225nm and a pronounced chromophore that resembled an indole.  Figure 11 shows the 

chromatogram from this method. 
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Figure 11:HPLC Method 2 Chromatogram of ECS material 

2.5.3 Chemical and Toxicological Investigation of Main Indole Alkaloids 

The eight peaks observed from the second HPLC method were fractioned into 6 

fractions and tested against the zebrafish embryo bioassay.  The composition of each 

fraction and observed bioactivity are given in Table 4.  Images of the described 

bioactivity are given in Figure 12. 
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Table 4: Composition of HPLC Fractions and Observed Bioactivity 
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Figure 12: Bioactivity of Active Fractions Observed 5 dpf; a) Fraction 1, b) Fraction 3, c) Fraction 5, and d) Fraction 6 
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From the collected fraction three observed toxitypes were observed that affected 

all of the embryos in that corresponding well.  Fraction 3 produced a curved body and 

pericardial edema, fraction 5 produced a slight humped body axis, and fraction 6 

produced the “puffy” toxitype.  Fraction 1 produced a mixed set of results that ranged 

from lightened embryos to curved embryos.  Since the bioactivity was not consistent for 

all of the embryos in the corresponding well this fraction was not specified as a particular 

toxitype.  Because of the lack of bioactivity of Fraction 4, which might be a result of the 

relative small amounts of peaks 4-6, this fraction was not collected.  Peaks 1-3, 7, and 8 

were collected and evaluated for purity using a TSQ Access Triple Quadrupole mass 

spectrometer and the HPLC.    The m/z of the presumptive molecular ion of each peak is 

displayed in Table 5 with corresponding retention times and λmax.   

Table 5: Mass and UV λmax of Peaks 1-3, 7, and 8 

Peak Retention Time (min) λmax (nm) [M]+m/z 

1 21.680 221, 281, 290sh 304 

2 25.068 225, 277 302 

3 30.204 223, 279, 290sh 388 

7 41.696 222, 279, 290sh 422 

8 44.648 218, 278, 290sh 304 

 The mass range of Peaks 1 and 8 suggest a hapalindole such as Hapalindole C, H, 

and J Isonitrile discussed in Chapter 1 (Moore et al., 1987).  The difference of two mass 

units between Peak 2 and 1 and 8 suggest a greater degree of unsaturation.  The masses of 

peaks 3 and 7 are too high for a hapalindole, but fall into the mass range of the 

ambiguines also discussed in Chapter 1 (Smitka et al., 1992).  In fact, the mass of Peak 7 
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matches the mass of Ambiguine B Isonitrile and Peak 3 matched Ambiguine C Isonitrile 

(Smitka et al., 1992).  Further chemical characterization of Peaks 7 and 8 is presented in 

Chapter 3. 

Purified samples of Peaks 3, 7, and 8 were tested against the zebrafish model at a 

range of concentrations 0, 0.1, 0.5, 1, 5, and 10 µg/mL.  The second part of this assay 

incorporated the embryo removal experiments from the media containing isolated peaks 

to determine whether the embryos were able to reverse the developmental defects.  In the 

exposure assay, Peak 7 at a concentration of 10µg/mL and Peak 8 at a concentration of 5 

and 10 µg/mL produced abnormally developed zebrafish embryos.  The observations of 

the assay at 3 dpf are shown in Figure 13.  Peak 3 did not show any bioactivity which 

may be the result of low concentration. 
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Figure 13: Zebrafish embryo bioassay of Peaks 7 & 8 3 dpf Observations. a) control, b) Peak 7, 10µg/mL, c) Peak 8, 

5 µg/mL, and d) 10µg/mL 

Compared to the control, the embryos exposed to 10µg/mL of Peak 7 showed a 

slight curvature of the body.  This defect was eventually overcome at 5 dpf when the 

embryos hatched, as seen in Figure 14. 
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Figure 14: Observations 5 dpf of Zebrafish Embryo Bioassay of Peak 7; a) control, b) Peak 7 10µg/mL 

The embryos exposed to Peak 8 at 5 and 10 µg/mL did not hatch at 5 dpf, and 

were severely deformed.  The defects observed included a curved body axis, lack of 

melanophores, and pericardial edema, as depicted in Figure 15.  As extensive as these 

deformities were, it was observed that if the embryos were removed from the chorion and 

into a fresh E3 medium that some of the effects could be reversed.  Figure 16 shows the 

extent of the developmental deformities throughout the time span of the bioassay, and the 

extent of the reversal of the deformities in removed embryos at a concentration of Peak 8 

at 5 µg/mL.  It was observed that if the embryo was removed at 2 dpf, that at 5 dpf the 

embryo appeared very similar to the control, the only difference was the retention of a 

slight pericardial edema.  When the embryo was removed at day 3 the edema was more 

pronounced, but the embryo recovered much of the lost color and the body axis of the 

embryo was less curved. 
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Figure 15: Zebrafish Embryo Assay Peak 8: 1) 5µg/mL and 2) 10µg/mL 5 dpf Observations; a) Overall lack of 

pigment, b) abnormal curvature of the body, c) pericardial edema, d) control 
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Figure 16: Zebrafish Embryo assay 5 µg/mL Peak 8 Observations; a) 2 dpf, b) 3 dpf, c) 5 dpf, d) Removed 2 dpf Observed 5 dpf, e) Removed 3 dpf Observed 5 dpf 
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It is shown in Figure 17 that at a concentration of 10µg/mL of Peak 8, embryos 

removed at 2 and 3 dpf into toxin-free E3 medium were not able to reverse the effects of 

the compound at 5 dpf.  At this concentration it is observed that the embryos are unable 

to reverse the edema or the curved body axis.  However, if the embryo is removed as 

early as 2 dpf it appears to begin producing melanin producing cells. 
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Figure 17: Zebrafish Embryo assay 10 µg/mL Peak 8 Observations; a) 2 dpf, b) 3 dpf, c) 5 dpf, d) Removed 2 dpf Observed 5 dpf, e) Removed 3 dpf Observed 5 dpf 
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As a result of the lack of observed bioactivity with Peak 3, at a concentration as 

high as 10µg/mL, another zebrafish embryo assay was performed.  A more concentrated 

solution of region 3, which includes Peak 3 with small amounts of other indoles, was 

used, however, the exact concentration was not determined.  The bioactivity not observed 

in the previous assay with 10µg/mL of pure Peak 3 was observed in this assay as shown 

in Figure 18.  The embryos exposed to concentrated region 3 developed a curved and 

swollen body, and did not develop melanin.  The range of bioactivities of many of these 

compounds is dependent on concentration.  Another assay using Peak 3 purified with the 

zebrafish embryo assay produced embryos that were not able to hatch at 5dpf.  One of the 

embryos was examined and removed from the chorion (Figure 18).  The embryo 

exhibited a pericardial edema and curved body similar to previous observations of region 

3. 

 
Figure 18: a) Region 3 at 3dpf and b) Purified Peak 3 at 5 dpf 
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2.5.4 Metabolite Solubility Analysis 

The actual amount of each compound that was being exposed to the embryo is 

uncertain, but mass spectrometric measurements of the same six concentrations of Peak 8 

and 7 in E3 showed that very little of these toxins were apparently dissolved in the E3 

media.  The comparison of the peak areas of the compounds dissolved in methanol, and 

those dissolved in E3, are shown in Table 6.  The methanol blank for the Peak 7 analysis 

produced an unusually high value for the peak area, this is most likely a result of 

carryover from the syringe of the autosampler.  In order to conserve valuable instrument 

time, the E3 samples containing Peak 7 were run before the methanol samples which 

would explain the carryover.  It is clear that little of each compound is dissolved in the 

E3.  The low solubility of the bioactive compounds could either indicate the potency of 

these compounds or elude to an alternative process for the zebrafish embryos to uptake 

the bioactive material.   

Table 6: Mass Spectrometric Analysis of Peak 7 and 8 Solubility 
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2.5.5 Mosquito Larvicidal Bioassay 

 The toxicity of the indole fraction of the ECS and the purified Peak 8, was 

additionally evaluated with the mosquito larvae.  Each of these samples was tested using 

an non-quantified concentration of ECS and Peak 8, to determine whether any larvicidal 

activity occurred.  The development of the mosquito larvae can be organized into five 

stages.  The first week of development contains the four instar stages which are shown in 

Figure 19. 

 
Figure 19: Development of Mosquito Lavae, images are not set to proper size ratio; a) 1st Instar, b) 2nd Instar, c) 3rd 
Instar, and d) 4th Instar. (Pictures provided by Gerald Berry) 

 The ECS fraction produced 100% mortality in 4 days.  Delayed development was 

initially observed since none of the four larvae ever reached the 2nd instar of development 

which should have occurred at day 2.  At day 1, 0% mortality was observed, but from day 

2 to day 4, a 25% increase in mortality was observed each day.  Even though 

development was delayed in the first 2 days, no apparent deformities were observed.  In 

order to determine whether the extract was still active after 100% mortality was 

confirmed at day 4, four more larvae were introduced into the well containing the ECS 

indole fraction.  At day 1, no activity was observed, and the larvae were at the 1st instar.  

However, at day 2 100% mortality was observed. 
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Since mass spectrometry supported Peak 8 to be a hapalindole, and that some 

hapalindoles have been shown to be larvicidal, it was evaluated using the mosquito 

larvicidal assay (Becher et al., 2007).  Peak 8 produced a different bioactivity compared 

to the ECS indole fraction.  The concentration of the purified Peak 8 was not measured 

for the assay.  No mortality was observed for the first two days of the assay, but on the 

second day, the larvae’s movement decreased, as observed using light microscopy and 

compared to the negative controls.  Also, the development of the larvae was delayed, and 

all of the larvae specifically remained at the 1st instar stage.  On day 4, 25% mortality was 

observed, and all of the embryos were still at the 1st instar stage of development.  At day 

5, 50% mortality was observed, and one of the larvae was shown to be at the 2nd instar 

stage, while the remaining larva was still at the 1st instar.  The 2nd instar larva showed 

some defects in its development, which was apparent by comparing to a 2nd instar control 

in Figure 20.  The control showed a deeper color in the head region compared to the 

larva exposed to Peak 8.  The same reduced color was observed in the body axis of the 

larva exposed to Peak 8, compared to the control.  Additionally an abnormal brown 

material was observed in the larva exposed to the Peak 8 which was not observed with 

the control.  Considering the color of the liver powder the larvae were fed was similar to 

the material observed, the digestion of the liver powder might have been impeded, which 

was subsequently accumulated in the gut of the larva. 
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Figure 20: Mosquito Larvacidal Assay Peak 8, a) Peak 8 Day 6 and b) Control 2nd Instar(Pictures produced by Gerald Berry) 
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2.6 Conclusion 

The zebrafish embryo assay was used to investigate the toxicological properties of 

crude extracts of the Fischerella 52-1 biomass, culture medium, and ECS, and isolated 

peaks from the ECS.  The assay was also used to guide the fractionation of peaks with 

indole chromophores from the ECS.  Of the peaks evaluated with the zebrafish embryos, 

Peak 8 was observed to produce a higher level of bioactivity compared to Peak 7.  Peak 3 

was also evaluated with the zebrafish embryo assay but the purified material did not 

produce any observable activity at concentrations as high as 10µg/mL.  A second analysis 

with a larger amount not quantified was exposed to the zebrafish embryos and then 

produced observable defects.  The evaluation of these peaks using the zebrafish embryo 

assay revealed various types and degrees of bioactivities. 

The contribution of each individual bioactive peak to the “puffy” toxitype was not 

determined in the previously discussed experiments, but the toxicological effects of each 

peak could be compared to the crude ECS extract.  Peak 8 was shown to produce a 

unique toxitype that was similar to the “puffy” toxitype produce by embryos exposed to 

the crude ECS extract.  Peak 8 produced a curved body axis, pericardial edema, and 

bleached effect in the exposed embryos (Figure 15).  The bioactivity produced by Peak 8 

was similar to the embryos exposed to the crude material where the embryos were 

lacking in color and developed no discernible body axis (Figure 8).  Peak 7 produced 

only a slight humped body axis in the zebrafish embryos.  Peak 7 may contribute to the 

overall “puffy” toxitype through a synergistic effect with the other bioactive peaks.  

Region 3 produced a toxitype that very closely resembled the “puffy” toxitype, but the 
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isolated Peak 3 showed a lesser degree of bioactivity.  Unfortunately since the 

concentration of region 3 and Peak 3 were not quantified, it is possible that only a low 

amount of Peak 3 was exposed to the zebrafish compared to the concentration found in 

the region 3 exposure.  The difference in concentration would explain the low bioactivity. 

Analysis of the extracts of the culture medium and the biomass, using the LCMS, 

showed that both Peak 3 and Peak 7 were able to be detected in the other components of 

the Fischerella 52-1 culture including the extracted biomass and culture medium (Figure 

21 and Figure 22).  The analysis of other parts of the culture shows that these indole 

alkaloids are ubiquitous in the culture.  The analyses suggest that the indole alkaloids are 

formed in the cells and exuded into the surrounding environment.  In order to reveal a 

possible reason for the activity observed by Peak 8, and the lack of strong activity by 

Peak 7, these compounds were chemically characterized by mass spectrometry and 

nuclear magnetic resonance spectroscopy.  The characterization data is presented and 

analyzed in Chapter 3. 
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Figure 21: Peak 3 and 7 identified in the Culture Medium by LCMS 
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Figure 22:  Peak 3 and 7 identified in the Biomass Extract by LCMS 
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CHEMICAL CHARACTERIZATION OF MAJOR INDOLE ALKALOIDS 
FROM FISCHERELLA 52-1 

3.1 Introduction 

Fischerella has been previously reported to produce various indole alkaloids.  

From the bioactive fraction analyzed in Chapter 2, eight peaks were observed with indole 

chromophores.  Three peaks were collected and evaluated for purity using the TSQ 

Quantum Access Mass Spectrometer.  From Peaks 7 and 8, two compounds were 

purified, which included the previously isolated compound 12-epi-Hapalindole H 

Isonitrile (1) and the novel compound 12-epi-Ambiguine B Nitrile (2).  The structure of 

these compounds was deduced using various identification techniques including Nuclear 

Magnetic Resonance Spectroscopy, Mass Spectrometry, and Infrared Spectroscopy 

(Figure 23).   

 
Figure 23: Structures of 12-epi-Hapalindole H Isonitrile (1) and 12-epi-Ambiguine B Nitrile (2) (Klein et al., 1995 

and Smitka et al., 1992) 
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The compound 12-epi-Hapalindole H Isonitrile (1), as discussed in Chapter 1, was 

previously isolated from Hapalosiphon laingii by Klein et al., (1995).  The toxicological 

effects of 1 were not evaluated in this paper, rather this compound was isolated from a 

purified fraction that was shown to be toxic towards Artemia.  The stereoisomer of 1, 12-

epi-Hapalindole J Isonitrile, was shown to be larvicidal for blowfly larvae (Becher et al., 

2007).  From the toxicological investigation in Chapter 2, 12-epi-Hapalindole H Isonitrile 

was observed to cause physiological abnormalities in the mosquito larvae which thereby 

caused larval mortality.  In the study be Becher et a., (2007) four isonitrile containing 

hapalindoles with inverted C12 stereochemistry were shown to produce larvicidal 

bioactivities.  Which of the two characteristics, the C12 epimer or the isonitrile group, 

caused the insecticidal activity has not been determined and deserves further 

investigation. 

 The novel compound 2 was originally identified as Ambiguine B Isonitrile from 

the mass spectrometer data, however, further investigation via IR and NMR showed the 

absence of the isonitrile group (Smitka et al., 1992).  It was then observed that the 

structure for 2 and Ambiguine B Isonitrile were similar, and using various NMR 

correlation experiments, the structure of 2 was deduced.  The bioactivity of 2 was also 

investigated in Chapter 2, but was shown to only slightly affect the zebrafish embryos.  

Compound 2 was not exposed to the mosquito larvae because of the limited quantities 

available and the large amount needed for the NMR experiments.  Further investigation 

against different organisms will be done in a later study. 
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3.2 Results and Discussion 

3.2.1 12-epi-Hapalindole H Isonitrile 

One compound was shown to occur in Peak 8, which was purified as an 

amorphous white solid.  The indole moiety structure of 1 was originally suggested by the 

occurrence of the λmax at 221, 281, and 290sh from the HPLC PDA detector.  Initial 

analysis to determine the purity of 1 using LCMS produced a peak at 21.86 minutes and 

was composed of five ion clusters.  The three main clusters included m/z values of 305, 

278, and 609, which were subsequently assigned as [M+H]+, [M-HCN]+, and [2M+H]+ 

(Figure 24).  A dimer, similar to the dimer observed in the TSQ data, was observed in the 

ESI analysis of 12-epi-Hapalindole E Isonitrile by Doan et al., (2000).  In the Doan et al., 

(2000) paper the ions observed in the MS analysis included, an ion with m/z values of 

305 assigned [M+H]+, 327 assigned [M+Na]+, and 631 assigned [2M+Na]+.  Given that 

dimers were shown to occur in the mass spectrometric analysis of hapalindoles, the ion at 

305 was assigned as the hydrogen adduct of the molecular ion. This m/z value correlated 

to the mass range of many of the indole alkaloids previously isolated from Fischerella.   

The original extraction method which used hexane and acetone did not afford 

much of Peak 8, and other compounds in active indole fraction were shown to produce 

similar molecular ions.  The high resolution mass spectrometric analysis of the active 

indole fraction produced one ion with an m/z of 305 that was shown to elute after Peak 7.  

The ion with m/z of 305.24534 was suggested to be the hydrogen adduct of 1.  This mass 

would give the formula C21H25N2, which would then give the molecular formula of 

C21H24N2 for 1. The NMR and IR analysis were used to support the proposed formula 

C21H24N2.   
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Figure 24: Mass Spectral Analysis of Peak 8 

The IR analysis of 1 afforded two unique peaks at 3412.10 and 2137.07 cm-1 

(Figure 25).  The peak at 3412.1cm-1 was indicative of a primary amine and the peak at 

2137cm-1 was determined to be produced by the isonitrile groups in many of the indole 

alkaloids produced by Stigonemataceae (Moore et al., 1987 and Pavia et al., 2009).  
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Figure 25: IR of Compound 1 

 
After three consecutive sets of purification from the ECS using the optimized 

method, sufficient quantities of 1 were obtained to allow for carbon NMR experiments to 

be performed.  The NMR experiments performed on 1 included 1H NMR, 13C NMR, 

COSY, and HMQC and are shown in the following five figures (Figures 26-30).  

Different solvents were tested to determine the best solvent to improve dissolution and 

provide chemical shifts without solvent overlapping.  From these tests it was determined 

that d-benzene (C6D6) and d-methanol (MeOD) were the best solvents and were used to 

perform two proton NMR experiments.  The first solvent was a mixture of D2O and 

MeOD, and the second solvent was C6D6.  The spectrum obtained with the methanol and 

water mixture provided better resolution in the range of 1-2ppm range, which allows a 

number of hydrogens to be distinguished because of less overlapping.  In contrast, the 

spectrum obtained using C6D6 showed a considerable signal overlap in the 1-2ppm range.  

Homonuclear Correlation Spectroscopy (COSY) was also performed using both solvent 

systems, and the same correlations were observed in each.  The C6D6 COSY provided a 
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spectrum that was clear of chemical shifts previously thought to be impurities observed in 

the MeOD spectrum, C6D6 was primarily used for the COSY experiments.  

The 1H NMR of 1 supported the formula of C21H24N2 proposed from the OT 

Velos data, with 24 protons observed.  In the carbon NMR only 19 carbons were 

observed, the HMQC scan revealed an additional carbon signal not observed in the 

carbon NMR.  With the addition of the carbon from the HMQC one carbon would still be 

missing thereby disagreeing with the formula.  The chemical shift that would have been 

produced by the carbon in the isonitrile group observed with the IR was not shown in the 

13C NMR.  The absence of the isonitrile carbon signal has been observed by Becher et al., 

(2007) with the compound 12-epi-Hapalindole J Isonitrile when the analysis was 

performed in d-chloroform.  Using the IR as evidence for the occurrence of the isonitrile 

group and the carbons and hydrogens observed in the NMR data the molecular formula 

would be the same as that proposed from the ion selected in the high resolution mass 

spectrometric analysis.  Using all of the analyses previously discussed, 1 was suggested 

to have an indole moiety, an isonitrile group, and the formula C21H24N2.  The formula is 

the same as some previously isolated indole alkaloids including Hapalindole H Isonitrile, 

Hapalindole J Isonitrile, and 12-epi-Fischerindole U Isonitrile (Moore et al., 1987; 

Stratmann et al., 1994).  In order to differentiate between the different families of indole 

alkaloids, discussed in Chapter 1, the splitting patterns in the aromatic region were 

analyzed.  It was determined that 1 was not a fischerindole because of the observed 

coupling of chemical shifts in the aromatic region of the 1H NMR, which specified the 

bonding of the indole moiety at the C3 and C4 positions.  This region also eliminated the 

ambiguine family by showing a singlet produced by the hydrogen on C2 in the indole 
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moiety.  Given that all of the indolinone alkaloids would not produce the observed UV 

spectrum, and the bonding at the aromatic region of the 1H NMR, the compound was 

determined to be a hapalindole.
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Figure 26 1H NMR in D2O and MeOD (* Denotes chemical shifts not assigned) The ethanol assigned above was used to clean the NMR tubes. 
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Figure 27: 1H NMR of 1 in C6D6 
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Figure 28:COSY of 1 in C6D6 
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Figure 29:C13 NMR of 1 in C6D6 
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Figure 30: HMQC of 1 in C6D6 

The assignment of the carbons and hydrogens was done using the numbering 

utilized by Moore et al., (1987) with hapalindoles that had a mass of 304, an isonitrile 

group, and bonding of the indole moiety at positions 3 and 4.  Three hapalindoles were 

found that fulfilled the criteria, these included, Hapalindole H Isonitrile, 12-epi-

Hapalindole H Isonitrile, and 12-epi-Hapalindole J Isonitrile and are compared in Table 

7.  The compound Hapalindole J Isonitrile also fulfilled the criteria, but the 13C NMR 

data was not reported by Moore et al., (1987).  In order to compare 1 with previously 

identified hapalindoles the assignments of the carbons was done on the basis of the 

chemical shift.  Compound 1 was closely resembled 12-epi-Hapalindole H Isonitrile 
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when comparing the 13C NMR data, but further evaluation of the proton data would be 

necessary to determine the structure.  From this comparison 1 was suggested to be 12-

epi-Hapalindole H Isonitrile (Figure 31). 

Table 7: 13C NMR Chemical Shifts of 1, Hapalindole H Isonitrile, 12-epi-Hapalindole H Isonitrile,  
and 12-epi-Hapalindole J Isonitrile 
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Figure 31: 12-epi-Hapalindole H Isonitrile Structure (Moore et al., 1987) 

The assignment of the protons was done by the HMQC spectrum, where the 

assigned carbons were correlated to hydrogen chemical shifts.  The strategy was 

necessary for some of the protons in the cyclohexane ring which had overlapping 

chemical shifts.  The results of these assignments and comparison to four hapalindoles, 

Hapalindole H Isonitrile, Hapalindole J Isonitrile, 12-epi-Hapalindole H Isonitrile, and 

12-epi-Hapalindole J Isonitrile are presented, in Table 8. 
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Table 8: 1H NMR Comparison of 1 and Four Previously Identified Hapalindoles (400 MHz, J in Hz) 

 

In the 1H NMR obtained in MeOD and D2O, the aromatic protons at 7.39, 7.06, 

6.98, and 6.85δ were assigned to positions 2, 5, 6, and 7.  The singlet that corresponds to 

the amine proton in the indole moiety produced a lower intensity presumptively as a 

result of deuterium exchange with the D2O solvent that was added to the sample to 

facilitate dissolution of 1 in MeOD.  Figure 32 illustrates the coupling between the 

protons at the 5, 6, and 7 positions on the benzoid ring of the indole moiety. 
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Figure 32: Aromatic Region of 1H NMR of 1 in MeOH and D2O 

Similar splitting patterns observed in the aromatic region of the MeOD proton 

NMR are observed in the 1H NMR conducted in C6D6 (Figure 32).  The proton at C2 was 

split in the C6D6 spectrum into a doublet of doublet as was observed by Moore et al., 

(1987) for Hapalindole H Isonitrile, and Klein et al., (1995) for 12-epi-Hapalindole H 

Isonitrile.  Moore et al., (1987) deduced that the vicinal coupling to the N1 proton on the 

indole, and long range coupling to the proton at C10, caused a doublet of doublets.  The 

coupling constant calculated for splitting between the protons at C6 and C5 was 7.3 Hz.  

The coupling constant calculated for protons on C6 and C7 was 8Hz.  The coupling 

constants for these protons was not calculated for 12-epi-Hapalindole H Isonitrile by 

Klein et al., (1995) most likely because of the fact that Klein observed multiplets instead 

of a distinguishable splitting pattern.  Moore et al., (1987), however, calculated values of 

7.2 Hz for the coupling between the protons at C5 and C6, and 8.2Hz between the 

protons at C6 and C7 in Hapalindole H Isonitrile.  Thus the coupling constants for 
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Hapalindole H Isonitrile were comparable to the values calculated for 1.  It was shown in 

the COSY (Figure 28) that the doublet of doublet produced by the proton on C6 

coordinates to the both doublets produced by the protons on C5 and C7.  The doublets of 

C5 and C7 were shown to only slightly inter-coordinate.  The doublet of doublets 

produced by the proton at C2 was not shown to coordinate to any other protons, this 

could corroborate the C2 assignment since the corresponding hydrogens of C2 would not 

show correlation in the COSY.  One main discrepancy between the 1H NMR data for 1 

and the reported 12-epi Hapalindole J Isonitrile and 12-epi- Hapalindole H Isonitrile 

NMR data, is the chemical shift of the singlet produced by the proton attached to the 

indole nitrogen.  The change of the chemical environment, as a result of the difference of 

solvent most likely caused the change in chemical shift. 

 
Figure 33: Proton NMR of 1 in C6D6 
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The terminal alkene substituent at the C20,21 position in the hapalindole structure 

was confirmed by the three sets of doublet of doublets each inter-correlating in the 2D 

COSY experiment (Figure 34).  The doublet of doublets at 5.73δ was integrated to 1 

proton and was shown to correlate to the two doublets of doublets at 5.06 and 5.08δ in the 

COSY spectrum each of which also integrated to one proton.  The coupling constants 

calculated for the doublet of doublet at 5.73δ were 17.4HZ and 10.8Hz.  The coupling 

constant at 17.4 Hz suggests a coupling between the proton on C20 and the proton at the 

E position on C21.  A value of 17.4 Hz was also calculated in the splitting of the doublet 

of doublet at 5.08δ suggesting that this doublet of doublet was produced by the C21E 

proton.  The doublet of doublet at 5.06δ produced a coupling constant of 10.8Hz which 

suggests that the doublet of doublet was produced by the C21Z proton.  Coupling 

between the protons at C21 was observed and caused splitting in the doublet of doublets 

at 5.06 and 5.08δ with a coupling constant of 0.8Hz (Figure 35). 
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Figure 34: Unsaturated Region of 1H NMR 

 

 
Figure 35: Chemical Shifts of C21 Protons in 1 
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The coupling constants and COSY were key to determine the protons on C10, 11, 

13, 14, and 15.  The broad doublet at 3.21δ was shown to correlate to the broad doublet 

of doublet at 3.09δ.  The chemical shift of the broad doublet corresponds to a proton 

attached to the same carbon as an isonitrile group which is commonly observed in the 

hapalindole family.  The calculated coupling of 10.7Hz for the doublet of doublet and the 

doublet corresponded to diaxial interactions, further confirming the base hapalindole 

skeleton with an isonitrile attached to a cyclohexane ring (Pavia et al., 2009).  The 

doublet was assigned as the proton on C11 and the doublet of doublets was assigned as 

the proton on C10 on the basis of HMQC data.  The HMQC correlated the hydrogens to 

the carbons assigned as C10 and C11 on the basis of the relative chemical shifts.  Given 

the coupling constants that correspond to diaxial coupling, the protons on C11, C10, and 

C15 were determined to all be axial (Figure 36).  This conformation would lead to the 

relative configuration of 10S*, 11S*, and 15S*.   

 
Figure 36: 1H NMR of C10 and C11 Protons in 1 
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The aliphatic region of the 1H NMR in C6D6 was difficult to analyze because of 

the large degree of overlapping of the chemical shifts (Figure 38).  From the COSY it 

was determined that the doublet of doublets at 3.09δ coupled to a multiplet at 1.03δ.  The 

doublet of doublets was deduced to be the hydrogen on the C10 position of the 

cyclohexane ring in the hapalindole structure.  Using the COSY data it was proposed that 

the multiplet at 1.03δ was produced by the hydrogen on C15 as shown in Figure 38. 

 
Figure 37: Aliphatic Region of 1H NMR of 1 
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Figure 38: COSY Correlation of Protons of C10 and C15 in 1 

In order to determine which of the overlapping multiplets were produced by 

particular hydrogens the HMQC data was used to correlate proton and carbon signals.  

The carbon signals were compared to previously identified hapalindoles (Moore et al., 

1987; Klein et al., 1995; Becher et al., 2007) and assigned on the basis of the carbon 

chemical shifts and comparison of proton chemical shifts and splitting.  The carbon signal 

at 36.6δ was labeled as C13 as previously assigned for other hapalindole structures and 

the signal at 21.2δ was assigned as C14.  The doublet of multiplets at 1.33δ was shown to 

correlate in the HMQC to both C13 and C14 (Figure 39).  The overlapping doublet of 

multiplets might be a result of the doublets of triplets and the doublets of quartets 
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produced by the equatorial hydrogens on C13 and C14 observed by Klein et al., (1995).  

The chemical shifts of these multiplets were higher than the other multiplets that were 

produced by the remaining hydrogens on C13 and C14.  The splitting and the chemical 

shifts suggest that these protons are the equatorial C13 and C14 positions since the 

observations by Klein et al., (1995) showed the chemical shift of the equatorial 

hydrogens to be higher than that of the axial hydrogens.  The multiplet at 1.15δ was 

assigned as the axial hydrogen on C14 because of the correlation with the carbon signal 

at 21.2δ.   The remaining multiplet at 0.97δ was assigned as the axial C13 hydrogen 

because of the correlation with the carbon at 36.6δ.   

The singlets at 1.28, 1.10, 0.96δ each integrated to 3 hydrogens and were 

determined to correspond to the three methyl groups observed in the hapalindole family.  

The chemical shifts produced in the 1H NMR differed greatly from the compared 

hapalindoles, most likely a result of the difference in solvents.  For this reason, the 

assignment of the three methyl groups was done by correlating the singlets to the carbon 

signals of C17-19 with the HMQC data.  The methyl groups at C17 and C18 were 

assigned on the basis of the carbon chemical shift shown to correlate to the singlets with 

the HMQC.  The chemical shifts of these two carbons were compared to the previously 

identified hapalindoles in Table 7.  The conformation at the C12 carbon was determined 

on the basis of the chemical shift of the C19 carbon.  With the chemical shift of 17.6δ, the 

carbon directly matches the value of 12-epi-Hapalindole H Isonitrile.  This suggests that 

1 was also a C12 epimer, and that the relative configuration of C12 was 12R*. 
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Figure 39: Assignment of Hydrogens using the HMQC of the Aliphatic Region of 1 

From the various analyses and experiments using the IR, NMR, and MS, it was 

determined that 1 was 12-epi-Hapalindole H Isonitrile.  The IR analysis suggested the 

occurrence of an isonitrile group, the 13C NMR data matched extremely closely to 12-epi-

Hapalindole H Isonitrile, and the stereochemistry determined by the 1H NMR matched 

that observed by Klein et al., (1995). 
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3.2.2 12-epi-Ambiguine B Nitrile 

Compound 2 was isolated as an amorphous white solid from Peak 7.  As with 12-

epi-Hapalindole H Isonitrile, the mass of Compound 2 was deduced by first analyzing the 

compound using the TSQ Access and then selecting the corresponding ion from the OT 

Velos data (Figure 40).  Compound 2 produced the ion [M-H]- with a mass of 421amu in 

negative mode, and the ion [M+H]+ with a mass of 423amu in positive mode.  The exact 

mass was able to be selected because of the unique isotope pattern of 3:1, which 

correlates the presence of a chlorine atom, with the [M+H]+ of 423 m/z and [(M+2)+H]+ 

of 425 m/z.  The isotope cluster was observed at 17.59 minutes as displayed in Figure 42, 

which also included the molecular ion at 422 m/z.  The exact m/z of the molecular ion 

was determined to be 422.2128.  The mass was larger than majority of the previously 

isolated hapalindoles, and suggested that 2 was possibly an ambiguine.  The ambiguines, 

as discussed in Chapter 1, are a group of indole alkaloids that have also been isolated 

from Stigonemataceae, and were first isolated from Fischerella (Smitka et al., 1992).  

The fragmentation of the [M+H]+ ion from the OT Velos data produced a number of ions 

which were proposed to include; [M-CH3]+, [M-Cl]+, [M-H2O]+, and [M-(2CH3+CN)]+ 

(Figure 41).  From this data 2 was proposed to be Ambiguine B Isonitrile, given that the 

formula produced by analyzing the mass spectrometer was C26H31OClN2, the same for 

Ambiguine B Isonitrile. 
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Figure 40: Selection of 2 from the OT Velos HRHESIMS Data 
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Figure 41: HRHESIMS MS/MS of 2 

From the mass spec data it was suggested that 2 was Ambiguine B Isonitrile, but 

further analysis with IR suggested that conclusion was incorrect.  From the IR Spectrum 

(Figure 42) it was observed that 2 lacked the peak at 2135cm-1 that is produced by the 

isonitrile group (Smitka et al., 1992).  It may be possible that as a result of the small 

amounts used to analyze 2 with the IR, the spectrum was not a true representation of 

functional groups in the compound.  Even if this was not the case, the lack of an isonitrile 

group was also observed in the carbon NMR of 2 (discussed later in this chapter). 
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Figure 42: IR spectrum of 2 

As with 12-epi-Hapalindole H Isonitrile, three sets of purification of the ECS was 

required to obtain enough of 2 to allow 13C NMR analysis.  Proton NMR in MeOD was 

originally performed, but it was later determined that C6D6 was a superior solvent for this 

molecule.  The C6D6 allowed a larger amount of 2 to de dissolved and prevented the 

contamination of less soluble impurities.  Using C6D6, 1H NMR, COSY, 13C NMR, 

DEPT, HMQC and NOESY were performed (Figures 43-48). 
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Figure 43:1H NMR of Compound 2 in C6D6 (* Denotes chemical shifts produced by impurities.)
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Figure 44:COSY in C6D6 of 2 
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Figure 45:13C NMR of 2 in C6D6 
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Figure 46: DEPT in C6D6 of 2 
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Figure 47: HMQC in C6D6 of 2 
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Figure 48:NOESY in C6D6 of 2. (*Denotes unassigned correlation.) 

The 1H NMR revealed that 2 contained 32 hydrogens which contradicted the 

formula proposed by the mass spectrometric analysis.  The singlet at 3.0δ was not shown 

to correlate with any other hydrogen in the COSY nor any carbon in the HMQC.  The 

sample was dried and stored in the freezer before the NOESY was performed; upon 

analysis it was revealed that the singlet disappeared altogether.  It was because of these 

observations that the singlet was suggested to be an impurity.  With the singlet removed 

from the analysis, the splitting patterns and the chemical shifts of 2 were similar to those 

produced by the protons in Ambiguine B Isonitrile as shown in Table 9.  It is clear from 

Table 9 that the chemical shifts of many of the protons are different from those of 
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Ambiguine B Isonitrile.  The dissimilarity observed in the proton chemical shifts may be 

a result of the difference in solvents used.  The 1H NMR revealed functional groups in the 

structure that were also observed for Ambiguine B Isonitrile.  These groups included; 2 

terminal alkenes, 5 methyl groups, an indole moiety bonded at the C2, C3, and C4 

carbons, and a cyclohexane ring.  All of these observations suggested that 2 was 

Ambiguine B Isonitrile, but the 13C NMR and IR disagreed with this assignment. 

Table 9: Proton Chemical Shifts from 1H NMR of 2 and Ambiguine B Isonitrile (400 MHz, J in Hz) 
* A quartet splitting pattern was observed, but due to the difference of the chemical environments of the coupling 

hydrogens, it was suggested the splitting pattern was an overlapping doublet of doublet of doublets. 
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The 13C NMR revealed 26 carbons which corroborates the formula produced by 

the mass spectrometric analysis.  However, the carbon that should have produced the 

chemical shift at 159δ was not observed thereby confirming the lack of the isonitrile 

group.  Table 10 depicts the comparison of 2 with Ambiguine B Isonitrile.  The 

assignment of the carbons was done by analyzing the HMQC, DEPT, and NOESY.  

Proton chemical shifts were assigned to a carbon with the HMQC and the carbons were 

numbered on the basis of the comparison of the 1H NMR data of 2 and Ambiguine B 

Isonitrile.  Carbons without protons were assigned by comparing the closest chemical 

shifts to those reported for Ambiguine B Isonitrile.  The carbons were numbered in the 

same fashion of many of the hapalindole-like indole alkaloids, especially the ambiguines 

(Figure 23) (Smitka et al., 1992).  When examining the two sets of data it is apparent that 

the compounds differ in one region, which is observed with the difference in the values of 

C11, C19, and C23 from those published for Ambiguine B Isonitrile.  It was from this 

observation, and the IR, that 2 was determined to be a new ambiguine variant. 
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Table 10: Carbon Chemical Shifts from 13C NMR of 2 and Ambiguine B Isonitrile 

 

The structure of 2 was deduced by first assigning protons to determine similarities 

to Ambiguine B Isonitrile.  In the proton NMR, a similar splitting of proton chemical 

shifts produced by the benzoid ring of the indole moiety was observed as with 1, 

however, the signal produced by the proton at C2 was missing (Figure 49).  The doublet 
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of doublet at 7.27δ was shown to couple to the doublets of doublets at 7.10δ and 6.96δ 

with coupling constants equal to the 3J5,6 and 3J6,7 observed for 1 in the previous section.  

From the 1H NMR data it can be deduced that the indole moiety was substituted at the 

C4, C3, and C2 positions (Figure 50).  The doublet of doublets at 7.27δ was assigned as 

the proton on the C6 carbon and the corresponding carbon at 123.9δ was assigned as C6.  

The two remaining doublets of doublets were assigned on the basis of the carbon 

correlations observed in the HMQC.  The doublet of doublets at 7.10δ correlated to the 

carbon with the chemical shift of 115.6δ.  The value of the carbon chemical shift and the 

doublet of doublets in the aromatic region matched the C5 carbon.  The doublet of 

doublets at 6.96δ was shown to correlate to a carbon with the chemical shift of 108.7δ, as 

with C5, the chemical shift of the carbon and proton allowed the assignment of the C7 

carbon.  The lack of the C2 proton agreed with the structure of previously identified 

ambiguines, which have an isoprenyl unit attached at that position.   
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Figure 49: Aromatic Region of 1H NMR of 2 

In the unsaturated region of the 1H NMR it was observed that two terminal 

alkenes occurred in 2 (Figures 50 & 51).  The assignment of two terminal alkenes for the 

six sets of doublets of doublets was determined by analyzing the COSY and HMQC.  

Each of the six sets of doublets of doublets was shown to integrate to one hydrogen.  The 

doublets of doublets at 5.05δ and 5.09δ were shown to couple to the doublet of doublets 

at 6.78δ with coupling constants of 11 and 17.6 Hz.  Of the doublet of doublets at 5.05 

and 5.09δ the E and Z protons were determined on the basis of the value of the coupling 

constants.  The Z position was assigned as the doublet of doublets at 5.09δ with the 

smaller coupling constant (Pavia et al., 2009).  The E position proton was then assigned 

as the remaining proton with the higher coupling constant (Pavia et al., 2009).  The 

remaining doublet of doublets at 6.05δ was shown to correlate to the other two doublets 
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of doublets at 5.00 and 4.95δ.  The coupling constants were again used to assign the E 

and Z protons.  The E proton was assigned to the doublet of doublets at 5.00δ with a 

coupling constant of 17.6 Hz and the Z proton was assigned as the remaining doublet of 

doublets at 4.95δ with a coupling constant of 10.5 Hz.     

 
Figure 50: Unsaturated Region of 1H NMR for 2 6-7ppm 
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Figure 51: Unsaturated Region of 1H NMR for 2 4.8-5.2ppm 

A cyclohexane component was deduced in the structure of 2 with the splitting 

patterns and coupling constants of the protons at 4.16, 4.13, 2.65, 2.25, and 2.45δ, each of 

which integrated to one hydrogen (Figures 52 & 53).  The doublet of doublets at 4.16δ 

was deduced to be attached to a carbon with a halogen atom attached on the basis of the 

chemical shift.  The assignment of a proton with that chemical shift correlates to the 

chlorine isotope pattern observed in the mass spectrometric analysis.  The doublet of 

doublets was integrated to one hydrogen, and was shown to be coupled to the quartet and 

the doublet of doublets of doublets at 2.25δ. The quartet and the doublet of doublets of 

doublets was also shown to couple to the doublet of doublets at 2.45δ.  A similar pattern 

was observed with the data for Ambiguine B Isonitrile (Table 9).  The coupling constant 

observed in the proton splitting was also very similar to that observed by Smitka et al., 

(1992) for Ambiguine B Isonitrile.  The coupling constants calculated for the doublet of 

doublets at 4.16δ were 4.4 and 12.6 Hz.   The calculated coupling constants matches the 
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coupling constants for the coupling of C13 and C14ax which was 12.5 Hz and C13 and 

C14eq which was 4.4 Hz in the Ambiguine B cyclohexane ring.  The similar chemical 

shift, splitting pattern, and coupling constants suggested a cyclohexane ring in the 

structure, and the assignment of the doublet of doublets at 4.16δ as the proton on C13.  

The carbon correlated to the doublet of doublets was determined by analyzing the HMQC 

data, and showed a correlation to a carbon chemical shift at 67.4δ which was comparable 

to the C13 carbon of Ambiguine B Isonitrile. 

 
Figure 52: 1H NMR of 2 4-4.3ppm 
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Figure 53: 1H NMR of 2 2.2-3.2ppm 

The quartet at 2.65δ was assigned as the axial proton on C14 on the basis of the 

chemical shift and splitting pattern observed with Ambiguine B Isonitrile (Smitka et al., 

1992).  The doublet of doublets of doublets (ddd) at 2.25δ was assigned as the equatorial 

proton on C14 on the basis of similar splitting patterns and coupling constants.  The 

coupling constants calculated for the ddd at 2.25δ were 2.2, 4.3, and 13 Hz, which 

matches the values observed by Smitka et al., (1992).  Smitka observed the coupling of 

14eq and 13 protons, which was previously shown to be 4.4Hz.  The coupling of the 14eq 

and 14ax protons was -13 Hz, and the 14eq and 15 protons was 2.8Hz.  Given the 

comparable coupling constants and splitting patterns the ddd at 2.25δ was assigned as the 

equatorial proton on C14.  The quartet and ddd were shown to correlate to the same 

carbon at 30.5δ which had a comparable chemical shift to C14. 
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The doublet of doublets at 2.45 was shown to couple to both protons on C14 and 

was suggested to be the proton on C15.  The coupling constant calculated by Smitka et 

al., (1992) for the coupling of 15 to 14ax was 12.5 Hz and 15 to 14eq was 2.8Hz.  The 

coupling constants calculated for the doublet of doublets were 2 and 12.6Hz which 

matches the values produced by Smitka et al., (1992).  The doublet of doublets at 2.45δ 

was then assigned as the proton on C15.  As a result of the 12.6 Hz coupling constant 

with 14 ax and the 2Hz with the 14eq proton, it was determined that C15 was axial.  The 

coupling of the C13, C14, and C15 protons was confirmed with the COSY experiments 

observed in Figure 54.  The singlet at 4.13δ had a comparable chemical shift to the 

proton on C11 which also produced a singlet as a result of the lack of protons on any of 

the adjacent carbons.  In Ambiguine B Isonitrile C11 is isolated from the protons in the 

cyclohexane ring and would produce a singlet. 
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Figure 54: COSY of C13-C15 of 2 

The aliphatic region of the NMR showed five singlets that integrated to 3 protons 

each, and a doublet that integrated to 1 proton (Figure 55).  These chemical shifts were 

labeled as the five methyl groups and the hydroxyl group observed in many ambiguines 

including Ambiguine B Isonitrile.  Each of the methyl groups were shown to correlate to 

a carbon chemical shift but the assignment of the methyl groups was only possible with 

the NOESY data. 
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Figure 55: Aliphatic Region of the 1H NMR of 2 

Given the large number of similarities observed in the 1H NMR data of 

Ambiguine B Isonitrile and 2 it was determined that 2 had the same hydrogen skeleton as 

Ambiguine B Isonitrile.  The comparison provides much of the assignment of the 

hydrogen bearing carbons, and agrees with the tetracyclic ambiguines discussed in 

Chapter 1.  The tetracyclic ambiguine structure contains an isonitrile group on the C11 

carbon in the axial position.  The lack of the isonitrile group was previously determined 

by IR and 13C NMR, and the assignment was made of a hydrogen on C11.  Whether the 

hydrogen was axial or equatorial was not able to be determined from the 1H, 13C, COSY, 

DEPT, and HMQC NMR.   The chemical shift of the proton was downfield which 

suggests a heteroatom or unsaturated functional group was attached to the same carbon.  

The identity of the functional group was not able to be determined with the NMR data so 

all of the carbons and protons were accounted for and the remaining atoms were utilized 
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to propose a structure.  The location of the chlorine was deduced to be on C13 as a result 

of the coupling with two hydrogens in a cyclohexane ring that were shown to correlate to 

the same carbon, C14.  The assignment of the hydroxyl group was done on the basis of 

the structures of previously isolated ambiguine and hapalindoles which places the 

hydroxyl group on C10.  The assignment and positions of the hydroxyl group, each of the 

terminal alkenes, and the five methyl groups were not able to be deduced fully without 

the NOESY data. 

 From the 1H NMR, 13C NMR, DEPT, COSY, and HMQC, the majority of the 

hydrogens were assigned along with the corresponding carbons through the HMQC 

analysis.  The remaining hydrogens were assigned using the NOESY data, and numbered 

using the structure in Figure 56. 

 
Figure 56: Structure and Numbering of 2 
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 The hydroxyl group was assigned to C10.  In the NOESY NMR analysis, the 

doublet produced by the hydroxyl group was shown to correlate to two methyl groups, 

the doublet of doublets at 5.05δ, and the singlet assigned as the hydrogen on C11.  Since 

the hydrogen on C15 was determined to be axial the hydroxyl group would not spatially 

correlate to that hydrogen.  From this analysis it was determined that the hydroxyl group 

was assigned correctly to C10 since this position would afford spatial correlation to at 

least two methyl groups, the hydrogen on C11, and either of the terminal alkenes 

depending on the stereochemistry. 

The doublet of doublets at 5.05δ were shown to couple to the doublet of doublets 

at 6.78δ and 5.09δ.  The carbons bearing these hydrogens were shown to match closely to 

the chemical shifts of the C20 and C21 carbons.  The positions of these carbons were 

investigated using the NOESY.  The quartet at 2.65δ, assigned as the C14 axial proton, 

was shown to produce a correlation with the doublet of doublets at 6.78δ.  With this 

correlation it was determined that the terminal alkene was attached to the cyclohexane 

ring.  Given the structure of the cyclohexane ring the axial position of the C14 carbon 

positions out of the x,y plane.  With the observed correlation in the NOESY data the 

alkene normally observed on the C12 carbon in most of these indole alkaloids must also 

position out of the x,y plane to produce the observed correlation.  With the deduction of 

the position of the alkene the remaining methyl group also normally located on the C12 

carbon in these indole alkaloids must be positioned towards the back of the plane.  The 

configuration of the four carbons bonded to the C12 carbon includes the cyclohexane 

bonded carbons oriented in the plane, the methyl group positioned to the back of the 

plane and the terminal alkene positioned coming out of the plane.  The observed 



130 
 

orientation of the functional groups suggests a C12 epimer sometimes observed with the 

hapalindoles (Klein et al., 1995).  The remaining terminal alkene was deduced to be the 

C25-C26 position normally observed in ambiguines.  The assignment was made on the 

basis of the chemical shift of the carbons shown to correlate to carbons C25 and C26 in 

Ambiguine B Isonitrile.  In order to confirm this assignment the methyl groups normally 

attached to C24 would have to correlate to at least one set of doublet of doublets 

produced by C25 or C26 hydrogens. 

Assignment of the positions of the five methyl groups was necessary to propose 

the ambiguine structure.  The singlet at 1.58δ was assigned as the C19 methyl group, on 

the basis of the correlations observed in the NOESY.  The singlet was shown to correlate 

to the doublet of doublet produced by the C13 proton, the singlet assigned as the proton 

on C11, and the doublet of doublets assigned as C21 E proton.  The correlation to the 

C13 proton suggests a methyl attached to the C12 carbon normally observed in 

ambiguines and hapalindoles.  Which the observed correlations the singlet at 1.58δ was 

labeled as the methyl group C19. 

The remaining four methyl groups were attached to two carbons, C16 and C24.  

The methyl groups attached to C24 should correlate to C25 or C26 hydrogens.  The 

singlet at 1.05 was shown to correlate to the singlet assigned as C11, the C10 hydroxyl 

group, and the C26 E proton.  The correlations suggest the methyl group was most likely 

attached to the C24 carbon. Given that the hydroxyl group was assigned as coming out of 

the x,y plane as a result of the NOESY correlation to the C11 proton and the C19 methyl 

group, the orientation of the methyl group was determined to be coming out of the x,y 
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plane thereby assigning the methyl as C27.  The carbon chemical shift of 29.45δ closely 

matched the shift produced by C27 of Ambiguine B Isonitrile. 

The singlet at 1.18δ was determined to be a methyl group attached to the C16 

carbon of one of the cyclohexane rings.  The singlet was observed to correlate to the 14ax 

proton and the hydroxyl group on C10.  The 14ax proton was oriented coming out of the 

plane thereby assigning the methyl as also coming out of the plane to allow spatial 

correlation.  In Ambiguine B Isonitrile, the methyl group attached to C16, and oriented 

coming out of the plane, was labeled as the C17 methyl.  From the similar observations 

the singlet at 1.18δ was assigned as the protons on C17.  From the HMQC the singlet was 

shown to correlate to a chemical shift of 27.2δ which closely matched the chemical shift 

of 26.5δ reported for C17 in ambiguine B Isonitrile. 

The remaining two methyl groups, that produced singlets at 1.26 and 1.28δ, were 

shown to only differ by 0.2δ in the 1H NMR.  The NOESY was not able to resolve the 

correlations, and therefore different regions of the proposed structure were shown to 

correlate to the two methyl singlets.  By evaluating the ambiguine structure it was 

determined that the two singlets most likely were the methyls C18 and C28.  The singlet 

at 1.26δ was shown to correlate to the carbon chemical shift at 28.1δ which matches the 

27.6δ reported for C28 in Ambiguine B Isonitrile.  The singlet at 1.28δ correlated to a 

carbon chemical shift at around 27.6δ in the HMQC.  Unfortunately the C19 methyl 

group also correlated to a carbon chemical shift at around 27.6δ.  From all of the NOESY 

and HMQC data, the singlets observed in the 1H NMR could be assigned, however, the 

carbon assignments of C19 and C18 were not possible.  Therefore, from the inability to 

resolve the carbon-hydrogen correlations, the C19 and C18 carbon assignments were only 
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relative compared to the carbon chemical shifts to Ambiguine B Isonitrile  From the 

NOESY data the 3 dimensional structure was deduced with the chiral centers 10R*, 

11S*, 12R*, 13R*, and 15R*. 

Once all of the proton chemical shifts were assigned the quaternary carbons were 

left to assign.  Using Ambiguine B Isonitrile as a template the remaining carbons were 

assigned by how similar the chemical shift of the carbons of 2 matched the assigned 

carbons in Ambiguine B Isonitrile.  Majority of the carbons matched very closely to 

Ambiguine B Isonitrile with the exceptions of C11, C19, C20, C21, and C23.  The 

discrepancy between the C19 and C20-21 was attributed to the orientation of the 

substituents on C12.  The difference observed with C11 was attributed to the unidentified 

functional group attached to C11.  Even with the difference in carbon chemical shifts, the 

1H NMR corroborates the assignment of all of the carbons except C23.  Once all of the 

carbons were assigned one carbon chemical shift was left with a value of 120.1δ.  The 

unassigned carbon was determined to be quaternary from analyzing the DEPT 

experiment.  Also the formula produced from the mass spectrometric analysis specified 

two nitrogens, and only one had been assigned to the structure in the indole moiety.  With 

this information many possible functional groups were eliminated.  Even though the IR 

did not observe any peaks at 2100-2200 cm-1, the functional group was determined to be 

a nitrile on the basis of the carbon chemical shift which falls into the range of a nitrile, 

110-140δ, the quaternary nature of the unassigned carbon, and the remaining unassigned 

nitrogen (Pavia et al., 2009).  With the assignment of the C11 proton as equatorial and 

oriented coming out of the x,y plane the nitrile group was then assigned as axial which 

would decrease any steric interactions with the isoprenyl group attached to C2. 
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3.3 Conclusion 

It was proposed from the data that 1 was 12-epi-Hapalindole H Isonitrile and 2 

was 12-epi-Ambiguine B Nitrile.  The main evidence to support the structure of 1 was the 

carbon chemical shifts which matched very closely to the previously reported NMR data 

for 12-epi-hapalindole H Isonitrile, and the IR detection of the isonitrile group (Klein et 

al., 1995).  The nitrile group proposed in 2 was assigned using the remaining atoms not 

accounted for in the formula.  However, the remaining parts of the structure closely 

matched the structure of Ambiguine B Isonitrile except for the stereochemistry of C12.  

In order to confirm the nitrile group, an IR would have to be done on 2 either in liquid 

phase or using a larger amount of solid.  In Chapter 1 it was noted that many isonitrile 

containing compounds had pronounced bioactivity.  From the toxicological evaluations 

of 1 and 2, 1 was shown to be discerningly more bioactive than 2 which might be caused 

by the occurrence of an isonitrile group in 1 and the nitrile group in 2. 

3.4 Experimental Section 

3.4.1 Purification 

Two sequential HPLC methods were used to purify indole alkaloids from the 

optimized methanol extracts of ECS using a Shimadzu Prominence UFLC system, with a 

PDA detector to separate the indole containing compounds from the active extract.  The 

indole chromophore observed in the active fraction had a λmax at 220-225 and 278-282 

nm.  The chromatographic methods were developed to separate the observed peaks with a 

λmax at 222nm.   Each method utilized a Luna Semi-Prep C18 column with 5µm particle 

size and dimensions of 250x10mm with a flowrate of 4.5mL/min.  The first HPLC 

method used an acetonitrile and water gradient.  The gradient began at 50% acetonitrile 
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and ended at 99% acetonitrile in 20 minutes, and an isocratic gradient at 99% acetonitrile 

was kept for an additional 20 minutes.  The indoles of interest were collected at 15 to 20 

minutes, this was determined after a smaller scale collection was done and tested against 

the zebrafish embryo model.  The collected fraction at 15-20 minutes was determined to 

be bioactive and was further fractioned using a second method.  The second method used 

a very slight gradient of methanol and water which started with 73.2% methanol and was 

increased to 73.5% over the span of 40 minutes. The percent of methanol was again 

increased to 75% for the following 12 minutes which afforded eight different peaks with 

indole-like chromophores.  Six fractions containing either a single large peak or a group 

of small peaks were collected and tested against the zebrafish embryo assay.  The 

fractions containing Peaks 7 and 8 were determined to be pure.  Peak 7 and 8 produced 

two amorphous white solids each of which was then analyzed using the TSQ Quantum 

Access using a data dependent scan to determine purity. 

3.4.2 Ultraviolet and Infrared Analysis 

The UV data was obtained from the PDA detector of the HPLC during fractionation.  The 

IR was performed on a Perkin Elmer Spectrum IR using solid aliquots of each compound. 

3.4.3 Mass Spectrometer Analysis 

High resolution mass was determined by LC-MS, using an OT Velos Orbitrap 

Mass Spectrometer at the Thermo Scientific Teaching Center, with a 0.1% formic acid in 

water and 0.1% formic acid in acetonitrile gradient using an Heated Electrospray 

Ionization (HESI) source.  High resolution mass spectrometry was not performed on the 

purified individual compounds.  However, high resolution analysis of the active indole 

fraction of the ECS produced a number of ions with m/z of 305.  In order to propose a 
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high resolution mass for 1, the relative retention times of the eight peaks discussed in 

Chapter 2 were used to select the ion with an m/z value of 305.24534, which was shown 

to elute after Peak 7.  This same order of elution was observed in various other conditions 

using the HPLC and LCMS.  Analysis of 1 on the TSQ using acetonitrile did not produce 

any molecular ion, however, the ions were able to be observed in a methanol and water 

gradient.  The proposed mass was the further evaluated using IR and NMR experiments.  

The mass of 2 was determined by filtering ions with an m/z value of 423 with a chlorine 

isotope [M+2]+ from the OT Velos data.  Only one mass was observed and was used to 

propose a formula.  In the TSQ Quantum data, masses not produced by the compound 

were determined by comparison to a HPLC solvent blank to account for any impurities 

produced from the column or solvents.  These masses were ignored in the final analysis. 

3.4.4 Nuclear Magnetic Resonance Spectroscopic Analysis 

NMR analyses were performed on a Bruker 400 MHz NMR, and experiments 

included, 1H NMR, 13C NMR, DEPT 135, COSY, HMQC, and NOESY.  The analyses 

were performed using C6D6 for both, MeOD for 2, and MeOD and a small amount of 

D2O for 1.  Many previously identified indole alkaloids from Stigonemataceae were 

analyzed with the NMR using d-chloroform.  However, a study by Moore et al., (1992) 

observed that the normally occurring isonitrile groups degrade in d-chloroform.  The 

formation of the formamide from the isonitrile was observed to occur after three days in 

d-chloroform.  This same reaction was utilized by Moore et al., (1988) to study the 

biosynthesis of the isonitrile group, where the formamide was formed from the isonitrile 

via acid hydrolysis.  In order to avoid unwanted degradation the NMR analyses were not 

performed in d-chloroform.  Chemical shift produced by each compounds were identified 
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by comparison to a blank for each solvent and also with comparisons to previously 

identified indole alkaloids.  The chemical shifts were calibrated using the methanol 

solvent shift in the MeOD samples and 0.05% TMS in the C6D6.   

12-epi-Hapalindole H Isonitrile: amorphous white solid; IR vmax 3412 and 2137 

cm-1; UV (PDA) λmax 218, 278, 290sh nm; 1H NMR (400MHz, C6D6) δ (multiplicity, J 

in Hz, assignment; COSY); 6.75 (br s, 1-NH); 7.55 (dd, H-2); 7.05 (d, H-5, J = 7.3Hz; 6); 

7.26 (dd, H-6, J = 7.3 and 8.0 Hz; 5,7); 6.96 (d, H-7, J = 8 Hz; 6); 3.09 (dd, H-10ax, J = 

11 and 10.8 Hz; 11, 15); 3.21 (br d, H-11ax, J = 11 Hz; 10); 0.97 (m, H-13ax; 13eq, 14ax, 

14 eq); 1.33 (m, H-13eq; 13ax, 14ax, overlap 14eq); 1.15 (m, H-14ax; 13ax, 13eq, 14eq); 

1.33 (m, H-14 eq; 14ax, 13ax, overlap 13eq); 1.03 (m, H-15; 10, 13ax, 13eq, 14ax, 14eq); 

0.96 (s, H3-17); 1.28 (s, H3-18); 1.10 (s, H3-19); 5.73 (dd, H-20, J = 17.4 and 10.8Hz; 

21E, 21Z); 5.08 (dd, H21E, J = 17.4 and 0.8 Hz; 20, 21Z); 5.06 (dd, H-21Z, 10.8 and 0.8 

Hz; 20, 21E); 13C NMR (400MHz, C6D6) δ (position); 118.7 (C-2);113.4 (C-3); 140.8 (C-

4); 113.0 (C-5); 123.1 (C-6); 108.6 (C-7); 134.0 (C-8); 125.8 (C-9); 36.3 (C-10); 65.6 (C-

11); 37.3 (C-12); 36.0 (C-13); 20.6 (C-14); 49.6 (C-15); 40.6 (C-16); 24.7 (C-17); 24.9 

(C-18); 17.0 (C-19); 145.9 (C-20); 113.6 (C-21); HESIMS m/z 278 ([M-HCN]+, 305 

([M+H]+), 609 ([2M+H]+); HRHESIMS m/z 305.24534 (C21H24N2, Δ+44mmu). 

12-epi-Ambiguine B Nitrile: amorphous white solid; IR vmax 3378 and 1616 cm-

1; UV (PDA) λmax 222, 279, 290sh nm; 1H NMR (400MHz, C6D6) δ (multiplicity, J in 

Hz, assignment; COSY; NOESY); 8.04 (br s, 1-NH); 7.10 (dd, H-5, J = 0.5, 7.3Hz; 6; 

18); 7.27 (dd, H-6, J = 7.3 and 8.0 Hz; 5,7; 18); 6.96 (dd, H-7, J = 0.5, 8 Hz; 6); 4.13 (s, 

H-11eq; na;10-OH, 19, 27, 28); 4.16 (dd, H-13ax, J = 12.6 and 4.3 Hz; 14ax, 14 eq; 19, 

14ax, 14eq, 15); 2.65 (q, H-14ax, J = 12.6Hz; 13eq, 14eq, 15ax; 13, 17, 20); 2.25 (ddd, 
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H-14 eq, J = 13, 4.3, 2.8 Hz ; 14ax, 13ax, 15; 18, 13); 2.45 (dd, H-15, J = 12.6 and 2 Hz; 

14ax, 14eq; 18, 13); 1.05 (s, H3-17; ; 10-OH, 14ax); 1.58 (s, H3-18; ; 5, 6, 14eq, 15); 

1.18 (s, H3-19; ; 11, 13, 21E); 6.78 (dd, H-20, J = 17.6 and 11 Hz; 21E, 21Z; 14ax, 21E, 

21Z); 5.05 (dd, H21E, J = 17.6 and 0.5 Hz; 20, 21Z; 19, 20, 21Z); 4.69 (dd, H-21Z, 10.5 

and 0.7 Hz; 20, 21E; 20, 21E); 6.05 (dd, H-25, J = 17.6 and 10.5 Hz; 26E, 26Z; 26E, 

26Z); 4.69 (dd, H-26E, J = 17.6 and 0.7 Hz; 25, 26Z, 27, 28); 5.05 (dd, H-26Z, J = 11 and 

> 0.5 Hz; 25, 26E; 25, 26E); 1.26 (s, H3-27; ; 10-OH, 11, 26E); 1.28 (s, H3-28; ; 26E); 

1.54 (d, 10-OH; J = 5.2 Hz; 20;11, 27, 17); 13C NMR (400MHz, C6D6) δ (position); 138.9 

(C-2);112.2 (C-3); 140.3 (C-4); 115.0 (C-5); 123.3 (C-6); 108.1 (C-7); 132.3 (C-8); 125.7 

(C-9); 73.3 (C-10); 53.8 (C-11); 44.3 (C-12); 66.8 (C-13); 29.9 (C-14); 51.4 (C-15); 37.0 

(C-16); 26.6 (C-17); 27.0 (C-18); 27.1 (C-19); 142.1 (C-20); 113.9 (C-21); 119.5 (C-23); 

38.9 (C-24); 147.4 (C-25); 112.7 (C-26); 28.8 (C-27); 27.5 (C-28); HESIMS m/z 421/423 

(3:1 [M-H]- ion cluster); HESIMS m/z 423/425 (3:1 [M+H]+ ion cluster); HRHESIMS 

m/z 422.2128 (C26H31OClN2, Δ + 0.9 mmu). 
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