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ABSTRACT OF THE DISSERTATION 

VHITS: VERTICAL HANDOFF INITIATION AND TARGET SELECTION IN A 

HETEROGENEOUS WIRELESS NETWORK 

by 

Faisal Kaleem 

Florida International University, 2012 

Miami, Florida 

Professor Kang K. Yen, Major Professor 

Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, 

high-quality, and reliable communication channels for mobile devices, is now becoming 

a reality. The credit mainly goes to the recent technological advances in wireless 

communications comprised of a wide range of technologies, services, and applications to 

fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, 

WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, 

one of the key ingredients to provide efficient ubiquitous computing with guaranteed 

quality and continuity of service is the design of intelligent handoff algorithms.   

Traditional single-metric handoff decision algorithms, such as Received Signal 

Strength (RSS) based, are not efficient and intelligent enough to minimize the number of 

unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. 

This research presented a novel approach for the design and implementation of a 

multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several 

parallel Fuzzy Logic Controllers were utilized in combination with different types of 

ranking algorithms and metric weighting schemes to implement two major modules: the 
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first module estimated the necessity of handoff, and the other module was developed to 

select the best network as the target of handoff. 

Simulations based on different traffic classes, utilizing various types of wireless 

networks were carried out by implementing a wireless test-bed inspired by the concept of 

Rudimentary Network Emulator (RUNE).  

Simulation results indicated that the proposed scheme provided better 

performance in terms of minimizing the unnecessary handoffs, call dropping, and call 

blocking and handoff blocking probabilities. When subjected to Conversational traffic 

and compared against the RSS-based reference algorithm, the proposed scheme, utilizing 

the FTOPSIS ranking algorithm, was able to reduce the average outage probability of 

MSs moving with high speeds by 17%, new call blocking probability by 22%, the 

handoff blocking probability by 16%, and the average handoff rate by 40%. The 

significant reduction in the resulted handoff rate provides MS with efficient power 

consumption, and more available battery life. These percentages indicated a higher 

probability of guaranteed session continuity and quality of the currently utilized service, 

resulting in higher user satisfaction levels.   
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CHAPTER 1 

INTRODUCTION 

Over the past few years, there have been several exciting innovations in wireless 

network technology [1]. As can be seen from Figure 1.1, the current trends and demands 

in the area of wireless communications are to deliver real-time multimedia applications 

over heterogeneous wireless networks with guaranteed Quality of Service (QoS). The 

consumer demand, to access such applications and services anywhere and anytime, is 

continuously on the rise. New technological developments, such as the Fourth Generation 

(4G) wireless systems [2, 3] and their integration, offer these rich services and 

applications at high data transfer rates and allow for global roaming and seamless 

mobility over a diverse range of heterogeneous wireless networks [4-6].     

Mobile Stations (MSs) in a typical 4G network will be equipped with multiple 

interfaces, and will have the required intelligence to make improved decisions to be able 

to connect to a variety of Access Networks (ANs) in order to provide rich multimedia 

services. These access networks include different types of cellular networks such as Code 

Division Multiple Access (CDMA), Global System for Mobile Communication (GSM), 

High Speed Downlink/Uplink Packet Access (HSDPA/HSUPA), General Packet Radio 

Services (GPRS) [7, 8], Bluetooth-based Personal Area Network (PAN) [9], IEEE 802.11 

Wireless Local Area Network (WLAN) [10], IEEE 802.16 Worldwide Interoperability 

for Microwave Access (WiMAX) [11], Vehicular Ad-hoc Network (VANET), and 

Satellite networks. These wireless networks often have overlapping coverage in the same 

service areas and can offer innovative services based on user demands. The ultimate goal 

of such an environment is to provide simple, uninterrupted accesses to any type of 
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desired service at any time, independent of devices, locations, and available networks, 

[12] while also maintaining satisfactory user experience in a cost-efficient manner.  

The wireless technologies in a heterogeneous wireless network are usually 

different from each other from a technological point of view. Most of them usually differ 

in terms of, but not limited to, their offered bandwidths, operating frequencies and costs, 

coverage areas, and latencies. Currently, no single wireless technology claims to provide 

cost-effective services, which offers high bandwidths and low latencies to all mobile 

users in a large coverage area. This is where the need for well-organized vertical handoffs 

(VHOs) between heterogeneous wireless technologies becomes evident.   

The term “handoff”, or “handover” [13], refers to the process of transferring a 

mobile station from one base station or channel to another. One example is a seamless 

transfer of an ongoing voice or video conversation from one channel served by a core 

network to another. More clearly, handoff is the process of changing communication 

channel (frequency, data rate, modulation scheme, spreading code, or their combination) 

associated with the current connection, while, a communication session (or call) is in 

progress.  

A handoff process can be thought of as having two major stages: handoff 

initiation and handoff execution [13]. In the first phase, a decision is made regarding the 

selection of the new Base Station (BS), or Access Point (AP), to which the MS will be 

transferred. In the execution phase, new radio links are formed between the BS/AP and 

MS, and resources are allocated. A comprehensive overview of handoff management is 

provided in [14] and depicted in Figure 1.2. 
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Figure 1.1:  Evolution of Wireless Communications (from 1G to 4G) 

 

 
Figure 1.2:  Handoff Management Concept [14] 
 

This chapter begins with Section 1.1 describing the motivation and significance of 

this research work, followed by Section 1.2, providing a quick overview of related 

research contributions. Section 1.3 explains how techniques, based on Artificial 

Intelligence (AI), can be used to perform handoff necessity estimation and target network 
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selection in a more intelligent and efficient manner. Finally, Section 1.4 provides an 

outline of the dissertation. 

1.1 MOTIVATION AND SIGNIFICANCE OF RESEARCH 

So far, significant research has been done to achieve seamless mobility while an 

MS moves across different heterogeneous wireless networks. However, this research 

mainly focuses on an important aspect of seamless mobility: vertical handoff initiations 

and decisions. Horizontal handoff decisions between homogeneous wireless networks are 

made mainly on the basis of Received Signal Strength (RSS), whereas decisions for 

vertical handoffs are typically performed based on more than one network’s parameters, 

including, but not limited to, RSS, MS-Velocity, Security, Cost, and QoS parameters. 

These decisions often incorporate network-operators’ policies and end-users’ preferences 

as well. Automating these handoff decisions in a heterogeneous environment is a 

complex task compared to homogeneous wireless networks due to several reasons 

including varying network characteristics, environmental conditions, and mobility 

patterns. 

Many of the existing handoff algorithms, which are based on single metric such as 

RSS, do not exploit the benefits of multi-criteria and the inherent knowledge about the 

sensitivities of these handoff parameters in a heterogeneous wireless environment. In 

addition, while performing vertical handoffs, these algorithms do not take into account 

the QoS of an ongoing session to maximize the end-users’ satisfaction based on their 

preferences, location and/or application contexts. Factors like available network 

bandwidth, latency, security, usage cost, power consumption, battery status of MS, and 
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user preferences should be thoroughly considered while performing these handoff 

decisions.   

In nearly all the existing multi-criteria handoff schemes, assigning different 

weights helps prioritize network parameters. Most of the time, the assignment of these 

weights is done manually without considering how much of a weight is needed for a 

certain network parameter. This could lead to a degraded handoff performance if one 

parameter is given higher weight value as compared to another, especially during an 

ongoing user-session, such as a Voice over IP (VoIP) conversations, where achieving a 

minimum level of quality of service is essential. Thus, calculation for the correct weights 

for network parameters is an important task when operating in a heterogeneous wireless 

environment. Furthermore, nearly all handoff schemes utilize crisp values for these 

weights, ignoring the fact that typical values of parameters in a wireless network are not 

precise and are characterized by inherent uncertainty. Therefore, in order to guarantee the 

quality of the currently utilized service, proper weight assignment, especially for QoS-

related parameters, is of utmost importance and should be done very carefully. In 

addition, the fuzzy nature of these values should be kept in mind while assigning these 

weights.    

The handoff can be divided into handoff initiation and target network selection. 

Most of the research work deals with the target network selection, ignoring the handoff 

initiation and necessity estimation that is of equal importance, as handoff initiation and its 

necessity estimation play a critical role in maximizing end-user’s satisfaction.  Just like 

the values of weights associated with network parameters, the calculations to perform 

handoff necessity estimation and target network selection are usually done using raw or 
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crisp values of parameters provided by different networks, without paying much attention 

to the vagueness and fuzziness contained in this information.  

1.2 RESEARCH CONTRIBUTIONS 

In this research work, an intelligent, scalable, and flexible hybrid scheme is 

proposed to perform intelligen and efficient handoff necessity estimations and target 

network selection decisions. The proposed scheme is divided into two parts. The first part 

examines the existing conditions of current PoA to estimate the necessity of handoff 

using Fuzzy Logic (FL). In the second stage, different parameters of all available 

candidate networks are utilized to determine a new PoA, or an access network, that can 

best fulfill the end-user’s requirements. The target network selection scheme utilizes 

certain ranking algorithms to rank the available networks based on multiple criteria. 

The proposed scheme intends to maximize the end-user’s satisfaction, taking into 

account the quality of the currently utilized service that the end-user experiences at the 

mobile terminal. The following are the main contributions of this research work: 

• A comprehensive survey of current network selection algorithms in 

heterogeneous wireless networks is provided.  

• A module based on Grey Prediction Theory (GPT) is designed to predict 

the future values of the measured RSS in order to minimize the call 

dropping probability of the MS due to a sudden drop of RSS common in 

wireless networks. 

• Several parallel Fuzzy Logic Controllers (FLCs) are developed to estimate 

the necessity of handoffs. The necessity estimation module is important, as 
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a handoff that is done too early is costly in terms of valuable network 

resources. Similarly, a handoff that is performed too late increases the 

call-dropping probability of MS. Furthermore, parallel FLCs offer reduced 

rule-sets, are more efficient, and less complex than a single FLC 

containing bulky rule set. 

• Since a heterogeneous wireless network is comprised of many different 

wireless technologies with varying parameter ranges, the proposed scheme 

also utilizes FLCs to normalize the incoming data to a common scale. 

Consequently, benefit-type parameters such as RSS, and cost-type 

parameters such as network latency, measured from different networks, 

are normalized using FLCs.  

• Different weight calculation methods are developed to calculate priority 

weights for network parameters. These methods include Analytic 

Hierarchy Process (AHP), Fuzzy AHP (FAHP), and Linguistic Variables 

and Triangular Fuzzy Numbers (TFNs). FAHP and Linguistic Variables 

are utilized to demonstrate the weight calculations, keeping in mind the 

vagueness and fuzziness of these subjective values.  

• Several Multi-Attribute Decision Making (MADM) ranking algorithms 

are utilized to demonstrate the selection of best target network among 

other available candidate networks based on the measured values of 

different parameters from each network. These include algorithms such as 

Techniques for Order Preference by Similarity to Ideal Solution 

(TOPSIS), Fuzzy extension of TOPSIS (FTOPSIS), and Fuzzy extension 
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of VIKOR (Serbian: VIseKriterijumsa Optimizacija I Kompromisno 

Resenje, i.e.: multi-criteria optimization and compromise solution) 

(FVIKOR). 

• A simulation test-bed for a heterogeneous wireless network is created for 

evaluating the performance of the proposed scheme. Simulation is carried 

out for three different types of networks providing four different types of 

services. This test-bed simulates in detail a real heterogeneous wireless 

environment with all the Radio Resource Management (RRM) modules 

such as channel assignment, mobility and propagation modules, etc. 

To the best of our knowledge, this research work is a first attempt to utilize 

FAHP, TFNs and Linguistic Variables to calculate weights for network attributes and to 

apply FTOPSIS and FVIKOR to perform target network selection in the context of a 

heterogeneous wireless environment. It is also important to mention that this research 

work attempts to distinguish between the different types of traffic classes based on the 

QoS parameters and tries to find an improved weighting schemes based on these types. 

1.3 JUSTIFICATION OF USING “AI” IN VERTICAL HANDOFFS 

Fuzzy logic and Artificial Neural Networks (ANNs) are extensively used in 

literature to perform vertical handoff decisions in order to select the best access network 

for an MS. The application of these complicated algorithms is necessitated by the 

complexity of vertical handoff decisions and dynamic conditions of wireless networks. 

Unlike the traditional vertical handoff decision approaches where the decisions are solely 
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based on RSS, fuzzy logic and ANN-based approaches can combine various design 

parameters to perform such decisions, which are inherently optimized.  

The fact that fuzzy logic can mimic human expert reasoning and that many of the 

terms used to describe a signal (weak, far, strong, close) are fuzzy in nature, makes fuzzy 

logic a strong candidate for performing vertical handoff decisions. Fuzzy logic can adapt 

easily to these decisions as it can overcome radio environment uncertainty, fluctuations, 

and can deal with heterogeneous inter-system parameters (shadowing effect, traffic 

variations, etc.). 

Artificial neural networks on the other hand, have the ability to handle large sets 

of data in an environment that demands fast processing. They can interpret complex data 

and learn typical trends from it. The learned system can then be used to predict the 

response of an arbitrary input signal. Hence, ANN can be trained to predict an MS’s 

handoff to the best available access networks. 

Another possibility exists where a hybrid solution of fuzzy logic and neural 

networks can be utilized to perform vertical handoff decisions. Known sensitivities of 

handoff parameters are used to create a Fuzzy Logic System (FLS) rule base, but this 

demands large storage and high computational complexity. These demands can be 

circumvented by replacing the rule base in FLS by an ANN to derive an adaptive 

algorithm that retains the high performance of FLS and provides an efficient architecture 

for storage and computational requirements. An ANN can be trained to learn complex 

relationships among the multiple inputs and output of a handoff system. After the ANN is 

trained, its parameters can be used to predict or estimate the outputs for given inputs. 

An overview of these handoff schemes will be presented in Chapter 2.  
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1.4 ORGANIZATION OF THE DISSERTATION 

The organization of this dissertation is as follows. Chapter 2 provides a brief 

background on the process of handoff, followed by a comprehensive overview of the 

related work in the area of vertical handoff decisions. In Chapter 3, an overall framework 

of the proposed handoff scheme is presented. Simulation and experimental results are 

presented in Chapter 4, and finally, Chapter 5 concludes this research work with 

suggested future research directions.  

 

.
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

This chapter begins by providing a background related to the handoff process 

followed by a comprehensive survey of different approaches to make vertical handoff 

decisions. Through the literature review, the available handoff algorithms can be grouped 

into different categories based on the main handoff decision criterion used [14]: RSS-

based, multiple-criteria decision based, user-preference based, context-aware approaches, 

cost-function based, and AI based approaches. Since this research is focused on the usage 

of AI based approaches, a detailed overview of the related work will be provided mainly 

for this category while briefly mentioning the others.  Sections 2.2.1-2.2.8 briefly 

categorize different handoff decision algorithms. In Section 2.2.9, a brief overview of 

multiple criteria based algorithms, is provided. Section 2.2.10 provides a detailed 

overview of the related works using the AI based approaches. Finally, in Section 2.2.11, a 

comparison among few of these techniques is provided.   

2.1 HANDOFF PROCESS BACKGROUND 

2.1.1 HANDOFF CLASSIFICATION  

Handoffs can be classified in several ways as discussed below: 

Horizontal and Vertical Handoff: Depending on the type of network technologies 

involved, handoff can be classified as either horizontal or vertical [15]. Traditional 

handoff, also called horizontal or intra-system handoff, occurs when the MS switches 

between different BSs or APs of the same access network. For example, this typically 

happens when the user moves between two geographically adjacent cells of a third 
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generation (3G) cellular network. On the other hand, vertical handoff or inter-system 

handoff involves two different network-interfaces representing different wireless access 

networks or technologies, e.g., BS in IEEE 802.16 and an AP in IEEE 802.11. Figure 2.1 

[16] depicts the two types of handoffs in heterogeneous wireless networks where 

horizontal handoff occurs between two WLANs, and vertical handoff occurs between a 

WLAN and a CDMA network.  

Hard and Soft Handoff: This classification of handoff depends upon the number 

of BSs and/or APs to which an MS is associated with at any given moment. Hard 

handoff, also called “break before make”, involves only one BS or AP at a time. The MS 

must break its connection from the current access network before it can connect to a new 

one. In a soft handoff, also called “make before break”, an MS can communicate and 

connect with more than one access network during the handoff process [15, 17]. 

Mobile-controlled, Mobile-assisted, and Network-controlled Handoff: As the 

names suggest, these types of handoff classifications are based on the entity, MS or 

access network, which make the handoff decisions [18]. Mobile-assisted handoff is the 

hybrid of mobile-controlled and network-controlled handoff where the MS makes the 

handoff decisions in cooperation with the access network. A detailed handoff 

classification tree can be found in [18] and is shown in Figure 2.2. 

2.1.2 DESIRABLE FEATURES OF HANDOFF 

Figure 2.3 [18] describes several desirable features of handoff algorithms as 

mentioned in the literature [18, 19]. Some of these features are described below: 



13 
 

• Speed: Handoff should be fast enough to avoid service degradation and/or 

interruption at the MS. Mobility of an MS at a high speed requires the 

handoff to be done promptly. 

• Reliability: Handoff should be reliable such that the MS will be able to 

maintain the required QoS after handoff.  

• Successful: Free channels and resources must be available at the target 

access network in order to make the handoff successful. 

• Number of Handoffs: The number of handoffs must be minimized. 

Excessive number of handoffs results in poor QoS and excessive 

processing overheads as well as power loss, which is a critical issue in 

MSs with limited battery power. 

• Multiple Criteria Handoffs: The target access network should be 

intelligently chosen based on multiple criteria. Identification of a correct 

AN prevents unnecessary and frequent handoffs.  

2.1.3 VERTICAL HANDOFF PROCESS 

The traditional horizontal handoff research involves handoff decisions based on 

the manual evaluation of RSS measured at the MS to support the “Always Best 

Connected” communications. These traditional handoffs are triggered when the RSS 

value of the serving BS falls below a specified threshold. On the other hand, an MS in a 

heterogeneous wireless environment can move between different ANs with different 

functionality and characteristics (bandwidth, latency, power consumption, cost, etc.) 

which cannot be directly compared. Hence, in case of vertical handoffs, RSS itself is not 
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sufficient for making efficient and intelligent handoff decisions; other system metrics 

including, but not limited to, cost, network-load and performance, available bandwidth, 

security, and user preferences should be taken into consideration as well. On the other 

hand, the inclusion of multiple metrics increases the complexity of vertical handoff 

decisions and makes the entire process more challenging. A vertical handoff comprises of 

three phases as follows [20]: 

Network Discovery: An MS with multiple active interfaces can discover several 

wireless networks based on broadcasted service advertisements from these wireless 

networks. However, keeping all these interfaces active all the time can significantly affect 

the battery power of the MS.  

Handoff Triggering and Decision: This is the phase where the decision regarding 

“when” to perform handoff is made. In this phase, the target wireless access network is 

selected based on multiple criteria, as discussed before. 

Handoff Execution: This is the last phase of the vertical handoff process where the 

actual transfer of the current session to the new AN takes place. This requires the current 

network to transfer routing and other contextual information related to the MS to the 

newly selected AN as quickly as possible.  

2.1.4 VERTICAL HANDOFF CRITERIA AND METRICS 

Figure 2.4 [18] and Figure 2.5 [21] describe different traffic classes and several 

handoff metrics that are used as inputs to the various vertical handoff algorithms. These 

metrics are described below: 
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Figure 2.1:  Horizontal and Vertical Handoff in Heterogeneous Wireless Networks [16] 

 

• Received Signal Strength: This criterion is simple, direct, and widely used 

in both horizontal and vertical handoffs. This network metric is easy to 

measure and is directly relevant to the QoS of an application. Also, RSS 

readings are inversely proportional to the distance between the MS and the 

BS, and could result in excessive and/or unnecessary handoffs.   

• Available Bandwidth: Measured in bits/sec (bps), available bandwidth is 

used to determine traffic-loading conditions of an AN, and is a good 

measure of available communication resources at the BS.  
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Figure 2.2:  Handoff Classification Tree 
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Figure 2.3:  Desirable Handoff Features 
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• Network Connection Duration: This is the amount of time that the MS 

remains connected to a specific AN. This time duration depends on the 

location and velocity of the MS, which in turn affect its RSS. Due to 

different coverage areas in heterogeneous wireless networks, the 

evaluation of this criterion is very important to determine two factors: 1) 

the triggering conditions required for the handoff at the right time in order 

to maintain a satisfactory QoS while avoiding wastage of network 

resources and 2) to reduce the number of unnecessary handoffs. For 

example, a hasty handoff from an IEEE 802.11 WLAN to a 3G cellular 

network would result in network resources being wasted. On the other 

hand, delaying the handoffs between these networks would result in 

handoff failures and subsequent call drops. Statistics, such as total time 

spent in an AN and arrival time of a new call in the network, can also be 

used as handoff criteria.   

• Monetary Cost: Different operators may operate heterogeneous wireless 

networks and may have varying costs associated with them. The network 

with the least cost should be a preferred target of handoff.  

• Handoff Latency: For an MS, handoff latency is defined as the elapsed 

time between the last packet received from the old AN, and the arrival of 

the first packet via the new AN after a successful handoff. This metric 

varies considerably between various heterogeneous wireless technologies.  

• Security: Certain applications require that the confidentiality, and/or the 

integrity of the transferred data be preserved. This metric can be used to 
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handoff to a network that offers higher security as compared to other 

available networks.  

• Power Consumption: Handoff process demands a fair amount of power 

consumption. If an MS were running low on battery power, it would be 

preferable to handoff to a target AN that would help extend the MS’s 

battery life [18]. 

• Velocity: Velocity is an important decision factor as it relates to the 

network-connection-duration metric and location of the MS. An MS 

travelling at a very high speed may result in excessive handoffs between 

wireless networks. 

2.1.5 CLASSIFICATION OF VERTICAL HANDOFF ALGORITHMS 

Handoff algorithms can be classified based on handoff criteria and their 

processing. In the following paragraphs, we will categorize these algorithms. A detailed 

literature review of these categories is presented in Section 2.2. 

• Signal Strength Based Algorithms: The RSS is used as the main criterion to 

perform handoffs [1]. Different variations of this category exist as follows: 

o Relative Signal Strength Algorithms: This is based on the comparison of 

RSS of the current AN with that of the target network. The advantage of 

this algorithm is the ability of the MS to connect and remain connected 

with the BS that has the strongest RSS. However, excessive handoffs are 

possible due to shadow variations associated with the RSS. A variation of 

this algorithm incorporates hysteresis [22], where a handoff is initiated 
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only if the RSS measured from the target BS exceeds the RSS from the 

current BS by an amount of hysteresis. Hysteresis reduces the number of 

unnecessary handoffs but can also introduce delay and prevent required 

and necessary handoffs that could result in call drops.  

o Absolute Signal Strength Algorithms: In this type of algorithm, a handoff 

is requested as soon as the measured RSS drops below a certain threshold 

level. For a noise and interference limited system, the typical threshold 

values in a cellular system are -100 dbm and -95 dbm, respectively [23]. 

Varying these threshold values may result in better handoffs. The 

disadvantage of this category of algorithms is the setting of the thresholds 

based on the RSS. When RSS is high due to interference, a desirable and 

necessary handoff will not take place. Similarly, a low value of RSS will 

result in unnecessary handoffs regardless of the signal QoS. A variation of 

this scheme is to utilize multiple thresholds to initiate and execute 

handoffs.  

For vertical handoffs, relative RSS is not applicable. This is due to the fact 

that RSSs from different wireless technologies in a heterogeneous 

environment cannot be directly compared against each other.  

o Combined Absolute and Relative Signal Strength Algorithms: These 

algorithms must satisfy two conditions to perform handoffs [24]: The 

average RSS of the current BS must fall below an absolute threshold value 

and the average RSS of the target BS must exceed the average RSS of the 

current BS by an amount of hysteresis.  
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• Bandwidth Based Algorithms: The available bandwidth offered by the AN to the 

MS is used as the main criterion for these algorithms [1]. Handoff can also be 

initiated based on both criteria, i.e., available bandwidth and RSS [1, 25]. 

• Distance Based Algorithms: In this category, the MS is always connected to the 

nearest BS. Propagation delays from different networks are compared for relative 

distance measurement.  

• Signal to Interference Ratio (SIR) Based Algorithms: SIR is a measure of 

communication quality. These algorithms trigger the handoff when the SIR of the 

current BS drops below a certain threshold and another BS is available to provide 

a better SIR. Just like relative-RSS based algorithms, hysteresis can be 

incorporated into these algorithms as well.  

• Velocity Adaptive and Direction Biased Algorithms: Handoff requests from fast 

moving MSs must be processed quickly and with minimal delays. Handoffs to the 

BSs, towards which an MS is moving, are encouraged in this category of 

algorithms. A variation of this is a pre-selection direction biased algorithm [26]. 

• Cost Function Based Algorithms: In this category, several performance metrics 

(usage cost, available bandwidth, delay, security offerings and power 

consumption, etc.) are used to calculate an overall network cost for all available 

candidate networks. Handoff is then performed to the network with the smallest 

calculated cost [27].  Weights and biases may be used with different performance 

metrics to simulate different network conditions and user preferences.      
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• Pattern Recognition Based Algorithms: These types of algorithms can identify 

meaningful regularities in noisy or uncertain environments. The handoff problem 

is studied as a pattern recognition problem in [28, 29]. 

• Prediction Based Algorithms: Estimated future values of different handoff metrics 

are used to predict the behavior of the system [30]. 

• Fuzzy Logic and Neural Network Based Algorithms: These algorithms are suitable 

for multi-criteria handoffs. Sometimes, it is not possible to develop the analytical 

model for the handoff process, especially when a richer set of input parameters 

are involved. This is where machine-learning techniques are used to model the 

complex handoff process.   

Fuzzy logic based techniques allow us to model the qualitative aspects of human 

experts’ knowledge and reasoning behind the handoff process to be encoded as 

handoff algorithms [31]. On the other hand, Neural Networks, using a 

comprehensive set of inputs and desired output(s), can be trained to perform 

optimal handoff decisions [32].   

A third possibility is where adaptive versions of the above mentioned algorithms 

can be created where the system can monitor its performance and modify its 

internal structure to create highly effective and optimal handoff decisions [33].   

2.1.6 PERFORMANCE EVALUATION OF HANDOFF ALGORITHMS 

The performance of different vertical handoff algorithms can be evaluated and 

compared by measuring the following metrics: 
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Figure 2.5:  Traffic Classes and Handoff Metrics
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• Handoff Delay: This metric represents the time elapsed between the handoff 

initiation and completion. The complexity of the handoff algorithm has a direct 

effect on this metric; a simple algorithm results in a smaller value of this metric. 

A smallest possible value of handoff delay is desired for real-time, delay-sensitive 

applications. 

• Number of Handoffs: Unnecessary handoffs should be minimized as they waste 

network resources and increase processing overheads.  

• Number of Handoff Failures: A handoff failure occurs when the target network 

fails to allocate sufficient resources for the MS that is handed over from a 

previous network. This failure is also possible when a moving MS goes out of the 

coverage area of the target network before the completion of the handoff process. 

This metric affects the quality of service of an ongoing session. 

2.1.7 IEEE 802.21 FRAMEWORK 

To complete the discussion relating vertical handoffs, it is important to mention 

the emerging IEEE 802.21 framework. This standard provides a media-independent 

framework and associated services to enable seamless handoffs between heterogeneous 

wireless access technologies [34]. The aim of this framework is to improve end-users’ 

satisfaction by enabling seamless handoffs between different wireless technologies, while 

maintaining session continuity. It is important to note that the standard only provides a 

framework and that all the implementation details regarding handoff decision-algorithms 

and executions are left to the design engineers.   
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2.2 LITERATURE REVIEW 

2.2.1 RSS BASED ALGORITHMS 

In this approach, the RSSs of the different candidate ANs are measured over time 

and the BS or AP with the strongest signal strength is selected to carry out a handoff. A 

number of studies [1, 25, 35] have been conducted in this area due to the simplistic nature 

of this approach. Since heterogeneous wireless networks comprise of different wireless 

technologies, their RSSs cannot be compared directly, and thus relative RSS does not 

apply to vertical handoff decisions. On the other hand, other network parameters such as 

bandwidth, are typically combined with RSS when making decisions for vertical 

handoffs. It is important to mention that the possible signal fluctuations due to multipath 

fading can result in the undesirable so-called “ping-pong effect”, i.e., unnecessary 

handoffs that increases the probability of call failures and drops during the handoff 

process. 

2.2.2 SIR BASED ALGORITHMS 

Signal to interference ratio is typically used to measure the quality of 

communication. In this approach, a handoff is initiated if the SIR of the current PoA, BS 

or AP, is lower than the threshold as compared to the SIR of the target network.  

2.2.3 VELOCITY BASED ALGORITHMS 

Different techniques [36-38] have been presented to perform handoffs, using 

velocity as the main decision criterion. If the MS in a heterogeneous environment moves 

with a relatively high velocity, the probability of a call drop may be higher due to 

excessive delays caused by the handoff process. Based on the velocity of the MS, 
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different values of the velocity threshold can be used to make handoff decisions. This is 

due to the fact that the sojourn time of slower moving MS is much higher than the MS 

travelling with a relatively higher speed.  

2.2.4 DIRECTION BIASED ALGORITHMS 

For high mobility MSs, this category of algorithms can make effective handoff 

decisions based on whether the MSs are moving towards or away from the network 

(BS/AP). This can improve handoff performance by lowering the mean number of 

handoffs, thus reducing the overall handoff delays. Details of this category of algorithms 

can be found in [26, 39, 40].  

2.2.5 MINIMUM POWER ALGORITHMS 

The research work in [41] proposes the use of network’s transmission power as a 

handoff criterion. The proposed technique attempts to find a pair of networks with 

available channel that has a SIR based on minimum transmitted power. This algorithm 

reduces call-dropping probability, but increases the number of unnecessary handoffs.  

2.2.6 USER PREFERENCE BASED ALGORITHMS 

These approaches [42-45] mainly take into account the end-users’ preferences in 

terms of MS’s power consumption, associated service cost, offered security, and the QoS 

provided by a candidate network. Most of these approaches are developed to maximize 

the end-user’s satisfaction while utilizing non-real-time applications.     
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2.2.7 CONTEXT AWARE BASED ALGORITHMS 

The approaches presented in [46-52] use context information to perform 

intelligent handoff decisions. Contextual changes are also taken into account to determine 

the necessity of handoffs. Context information is collected from the following: 

• Mobile Station: Capabilities, remaining battery power, location, and 

velocity. 

• User: User’s preferences in terms of preferred network usage-cost, 

security, and desired QoS. 

• Candidate Network: Provided QoS, coverage area, available bandwidth, 

security offerings, cost of usage, and latency. 

•  Application: QoS requirements based on the type of service 

(Conversational, Background, and Streaming, etc.) needed. 

2.2.8 COST FUNCTION BASED ALGORITHMS 

The cost function based approaches [15, 27, 53-59] combine different system’s 

metrics in a cost function that represents a measure of the benefit obtained by handing off 

to a particular candidate network. For every candidate network, the sum of weighted 

functions of specific parameters is evaluated to produce the final cost of the network. The 

general form of a cost function for a wireless network is given by: 

௡݂ = ∑ ∑ .௦,௜ݓ ௡ೞ,೔௜௦݌            (2.1) 

where ݌௡ೞ,೔ is the cost related to the ݅௧௛ parameter for providing service ݏ on network ݊,  ݓ௦,௜ is the importance weight associated with the ݅௧௛ parameter and ∑ ௜௜ݓ = 1.  
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Two commonly used cost functions found in literature are provided in Equations (2.2) 

and (2.3). ܥ௦௡ = ௦,௝௡ݓ∑ ܳ௦,௝௡ 								s. t. ௦,௝௡ܧ ≠ ,ݏ	∀			0 ݅          (2.2) 

where ܥ௦௡ is the per-service cost for network ݊, ܳ௦,௝௡  is the normalized QoS provided by 

network ݊ for parameter ݆ and service ݓ ,ݏ௦,௝௡  is the weight which indicates the impact of 

the QoS parameter on the user or the network, and ܧ௦,௝௡ is the network elimination factor, 

indicating whether the minimum requirement of parameter ݆ for service ݏ can be met by 

network ݊. The second cost function represents the total cost as the sum of all the 

weighted cost associated with all QoS parameters used.     ܳ௜ = ௜ܥ௖ݓ + ௦ݓ ௜ܵ + ௣ݓ ௜ܲ + ௜ܦௗݓ +  ௜             (2.3)ܨ௙ݓ

where ܳ௜ is the quality factor of network ݅; ܥ௜, ௜ܵ , ௜ܲ , ,௜ܦ and	ܨ௜ are the cost of service, 

offered security, MS’s power consumption, and network conditions & performance, and ݓ௖,ݓ௦, ,௣ݓ ,ௗݓ and	ݓ௙ are the associated weights to the network parameters used. A 

normalization process  

ܳ௜ = ௪೎( భ಴೔)୫ୟ୶	( భ಴భ,…, భ಴೙) + ௪ೞௌ೔୫ୟ୶	(ௌభ,…,ௌ೙) + ௪೛( భು೔)୫ୟ୶	( భುభ,…, భು೙) + ௪೏஽೔୫ୟ୶	(஽భ,…,஽೙) + ௪೑ி೔୫ୟ୶	(ிభ,…,ி೙)       (2.4) 

is used to calculate a normalized quality factor for network ݊. This is required as each 

network’s parameter has a different unit.  

2.2.9 MULTIPLE CRITERIA BASED ALGORITHMS 

This approach is based on a typical MADM problem where the selection of an 

access network is performed based on multiple attributes measured from all available 
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candidate networks. Some of these MADM techniques [21, 60-73] are discussed as 

follows: 

• Simple Additive Weighting (SAW): SAW is the best known and widely 

used scoring method utilized by [21, 27, 61, 62, 64, 70, 74] to rank 

candidate networks. A weighted sum of all the network attributes is used 

to determine the overall score of each candidate network. The score of the ݅௧௛ candidate network is obtained by adding the normalized contributions 

from each metric ݎ௜௝ multiplied by the weight ݓ௝ assigned to the ݆௧௛ 

metric. The selected network has the highest score and is given by: ܣௌ஺ௐ = argmax௜ ∑ ௜௝ே௝ୀଵݎ௝ݓ 								݅ ∈  (2.5)       ܯ

௜௝ݎ    = ௫೔ೕ௫ೕశ 												where		݆ ∈  (2.6)         	ܤ

or ݎ௜௝ = ௫ೕష௫೔ೕ 												where	݆ ∈  (2.7)                   ܥ

௝ାݔ = max௜∈ெ ௝ିݔ        ௜௝        (2.8)ݔ = min௜∈ெ ∑  ௜௝        (2.9)ݔ ௝ݓ = 1				ே௝ୀଵ               (2.10) 

where ݔ௜௝ is the ݆௧௛ attribute of the ݅௧௛ network, ܰ is the number of 

parameters, ܯ denotes the number of candidate networks, B represents 

benefit type criteria (like throughput), and C represents cost type criteria 

(like delay). 
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• Multiplicative Exponent Weighting (MEW): In these techniques [21, 34, 

61], a handoff decision matrix is formed where a particular row and 

column corresponds to the ݅௧௛ candidate network and ݆௧௛ attribute of that 

network, respectively. The weighted product of the attributes is used to 

determine the score ௜ܵ of the ݅௧௛ network as follows: 

௜ܵ = ∏ ௜௝௪ೕே௝ୀଵݔ       (2.11) 

where ݔ௜௝ denotes ݆௧௛ attribute of the ݅௧௛ candidate network, ݓ௝ denotes 

the weight of attribute	݆, and	∑ ௝ே௝ୀଵݓ = 1. The rank of the selected 

network is given by: ܣொௐ = argmax௜ ௜ܵ 									݅ ∈  (2.12)           ܯ

where ܯ denotes the number of available candidate networks. 

• Techniques for Order Preference by Similarity to Ideal Solution: The 

selected network in the TOPSIS schemes [21, 61, 64-67, 69, 75] is the one 

that is closest to the ideal solution and the farthest from the worst-case 

solution. This ideal solution is obtained by using the best value for each 

metric. The selected network is given by: ்ܣை௉ௌூௌ = −argmax௜ ܿ௜ 									݅ ∈  (2.13)      ܯ

where ܿ௜ denotes the relative closeness (similarity) of the candidate 

network ݅ to the ideal solution. This technique can be applicable to 

problems spaces for the attributes with monotonically increasing or 

decreasing levels of utility. The algorithm calculates perceived 
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positive/negative ideal solutions based on the range of attribute values 

available for the alternatives.   

• Elimination and Choice Translating Priority (ELECTRE): This is another 

scheme [60, 61, 69, 74] used to rank the alternatives. The authors in [60] 

utilize a reference vector of attributes as an ideal alternative to adjust the 

raw attributes of the candidate networks. A matrix containing the 

difference between the attribute values of this reference vector and other 

alternatives is formed, and normalized. The resultant matrix contains 

attributes that have a monotonically decreasing utility. Weights are 

assigned to each attribute to take into account their relative importance. 

Finally, the concept of concordance (measure of satisfaction) and 

discordance (measure of dissatisfaction) is applied during the comparison 

of each alternative network with others. A candidate network with the 

highest value of concordance index and lowest value of discordance index 

would be the preferred network.  

• Analytic Hierarchy Process and Grey Relational Analysis (GRA): The 

AHP [67, 68, 70, 72-74, 76] decomposes the network selection problem 

into several smaller problems and assigns a weight value to each of them. 

GRA [77-79] is then used to rank the candidate networks, and the network 

with the highest rank value is chosen. The Grey Relational Coefficient 

(GRC) of each network, which describes the similarity between each 

candidate networks and the ideal network, is calculated. The selected 

network is given by: 
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ோ஺ீܣ = argmax௜ Γ଴,௜ 									݅ ∈  (2.14)      ܯ

where Γ଴,௜ is the GRC of the ݅௧௛ network.  

In [72, 77], the authors propose a combined application of AHP and Grey 

System theory to evaluate the users’ preferences and service requirements, 

and combine the QoS requirements with the candidate networks’ 

performances to make the final network selection decisions.      

• VIKOR: VIKOR [61, 62, 80, 81] is an MADM method that is developed to 

optimize the multi-attribute based complex systems. It is a compromise 

programming approach that is based on an aggregating function that 

represents closeness to the ideal solution. Thus, VIKOR is able to 

determine a compromise-ranking list of alternatives in the presence of 

conflicting criteria.  

A comparative analysis of some of these methods with numerical examples, for 

voice and data applications, in a 4G wireless system is proposed in [21]. It is shown that 

methods such as SAW, TOPSIS, and VIKOR are suitable for voice connections, whereas 

GRA and MEW provide a better performance for data connections. 

Another comparison of these methods, using bandwidth, delay, jitter, and BER as 

system’s parameters is shown in [61]. Results show that MEW, SAW, and TOPSIS 

provide similar performance to the four different classes of traffic (Conversational, 

Streaming, Interactive, and Background) that are used. GRA provides a slightly higher 

bandwidth and lower delay for Interactive and Background traffic classes. Results also 

demonstrated that the performance of these algorithms depends on the priority weights 

assigned to the system parameters.  
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2.2.10 AI BASED APPROACHES 

Just like the cost-function and MADM based approaches, this category of 

algorithms also takes advantage of combining multiple parameters. In addition, the AI 

based schemes such as fuzzy logic, neural networks, expert systems, and Genetic 

Algorithms (GA) are used to perform vertical handoff decisions. As discussed previously, 

classical techniques, which are based on evaluation of imprecise metrics, fail to perform 

efficient handoff decisions. Fuzzy logic based schemes can be used to perform efficient 

handoffs as they can effectively deal with known sensitivities of network parameters with 

the help of inference rules that are based on expert human knowledge. On the other hand, 

handoff data can be used to train neural networks to perform these decisions in an 

efficient manner. Fuzzy logic, combined with ANN or GA, can be used to develop 

adaptive approaches to make highly optimized vertical handoff decisions. In the 

following paragraphs, a detailed survey of AI based techniques, to perform these 

decisions, is presented. 

2.2.10.1 Fuzzy Logic Based Approaches 

A Fuzzy MADM based numerical solution for vertical handoff decisions is first 

introduced in [82], where imprecise, or fuzzy data in terms of Linguistic Variables is used 

to specify network parameters and user preferences in the form of weights. These 

Linguistic Variables are first converted into crisp numbers using a fuzzy number 

conversion scale and then classical MADM methods like SAW and TOPSIS are applied 

to voice and Background traffic. The results indicate that TOPSIS is more sensitive to 
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user-preferences and network-attribute values, and that SAW gives relative conservative 

ranking results. 

In [83], the authors demonstrate the use of fuzzy logic together with AHP. Fuzzy 

Logic is used to calculate the membership values of each parameter measured from 

different networks while AHP is used to determine the weights associated with these 

parameters (data rate, usage cost, battery, latency, etc.). These weights are used to 

evaluate the importance of each network metric based on the network-provider’s and the 

end-users’ preferences. The objective of this scheme is to select a wireless network 

(UMTS, GPRS, and GSM) for a particular service that can satisfy end-users’ preferences 

such as low cost, good RSS, optimum bandwidth, low network latency, high reliability, 

and long battery life. In a related study [84], AHP is used to trigger the handoff, while 

fuzzy logic is used to select the best access network among a list of candidate networks 

that are queued based on the results produced by AHP.   

A fuzzy based adaptive handoff management protocol is proposed in [85]. Metrics 

like MS-velocity and distance are used by the FLS to determine the value of adaptive 

RSS threshold, which is used to trigger the handoff. The proposed scheme does not 

consider any QoS related parameters or end-users’ preferences.  

In [86], the speed of the MS and the loading conditions of the candidate wireless 

networks (UMTS, WLAN, and WiMAX) are used to determine the best access network. 

The main objective of this scheme is to improve the handoff efficiency when the MSs are 

moving at high speeds. 

The authors in [87] propose a modular fuzzy-logic based handoff decision 

algorithm utilizing multiple QoS parameters. The algorithm aims to reduce the 
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computational complexity and execution time of a traditional FLS by incorporating 

multiple parallel fuzzy logic controllers. The scheme divides the handoff parameters into 

multiple groups, each operating with a different fuzzy engine. The outputs of these 

separate engines are then fed into another fuzzy engine that determines the degree of 

overall satisfaction for each of the candidate wireless network. Numerical examples are 

provided based on multiple WLANs, WiMAXs, and cellular networks and significant 

reduction in number of rules and execution time, compared against the traditional fuzzy 

and Adaptive-Network Fuzzy Inference System (ANFIS), has been reported.   

In [88], the author creates three separate fuzzifiers based on separate membership 

functions for three parameters (RSS, velocity, and network-loading) obtained from three 

different wireless networks (3G, WLAN, and WiMAX). The objective of this scheme is 

to apply fuzzy logic to achieve the normalization of network parameters so that the same 

parameters measured from different wireless networks can be compared directly by the 

fuzzy inference engine. The output of the fuzzy inference system is a numerical value 

that is used to rank each candidate network. This network rank, together with user 

preferences, is used to determine the best access network. No QoS parameters are taken 

into consideration in this research work. 

A QoS-aware fuzzy-rule-based multi-criteria algorithm is proposed in [89]. A 

fuzzy logic system that accepts four QoS related parameters as inputs is implemented to 

calculate a handoff score for all available networks. The network with the highest handoff 

score is selected as the target of handoff. AHP is used to calculate importance weights for 

the four different traffic classes. The authors also propose an evaluation model using non-

birth Markov chain with state parameters corresponding to the available networks. The 
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primary reason for using a non-birth Markov chain is that an MS can be in a region 

having no network connectivity or connectivity with more than one network and can go 

from one state to any other state. The major issue with this scheme is the large number of 

rules (81 rules from 4 inputs, each with three membership functions) for each of the four 

different traffic classes. Furthermore, the research does not take into consideration other 

important parameters like RSS, end-user mobility, and preferences when making handoff 

decisions.  

The scheme developed in [31] is implemented to handle handoffs between UMTS 

and WLAN. This scheme employs a pre-decision unit to check for two conditions: 

Condition-1 is to check if the MS is connected to WLAN and if the velocity of the MS is 

higher than some velocity threshold. In this case, in order to prevent a connection 

breakdown a handoff to UMTS is directly initiated, disregarding other decision criteria. 

Condition-2 is checked if the outcome of condition-1 is false. In condition-2, if the 

predicted RSS (PRSS) from WLAN is greater than its threshold, or if the PRSS measured 

from UMTS is less than its threshold, no handoff is triggered. After the pre-decision, the 

fuzzy-logic based Normalized Quantitative Decision (FNQD) is applied. Performance 

Evaluation Values (PEVs) are generated based on the normalization of current RSS, 

predicted RSS, and bandwidth. These PEVs are then used to select the target network. 

The research shows improved performance by reducing the number of unnecessary 

handoffs and by minimizing the “ping-pong effect”. However, calculations of these PEVs 

are done using fixed weights, which is not practical due to the dynamic wireless network 

conditions and user requirements. In addition, QoS parameters and end-users’ preferences 

are not considered in this approach.    
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A scheme similar to [31] utilizing pre-decision based on MS’s motion trends is 

introduced in [90]. The motion trends of MS and the RSS measured from WLAN are 

used to pre-select a number of candidate networks. A final comprehensive performance 

value for each chosen network is then calculated by using fuzzy logic that utilizes RSS, 

available bandwidth, and the network usage cost. The final handoff decision is based on 

these performance values and the dwell timer. The dwell timer is incorporated to reduce 

the “ping-pong effect”.  

In [91], the authors propose a decision support system to address the vertical 

handoff problem by combining fuzzy logic and TOPSIS. Several parallel fuzzy logic 

based subsystems are used to normalize different parameters measured from three 

different wireless networks. These normalized parameters are then used by TOPSIS to 

rank the candidate networks. Although the developed scheme shows significant 

improvements in terms of number of handoffs and handoff failures rate when compared 

against algorithms where vertical handoff is performed based on only MS velocity, 

resource availability, or signal strength, the major deficiency of this scheme is the lack of 

utilization of all QoS related parameters for different traffic classes in order to maximize 

end-user’s satisfaction.  

A vertical handoff decision algorithm based on fuzzy logic in conjunction with 

GPT is presented in [92]. The GPT takes 4 sampled RSSs as input, and predicts the future 

RSS value to trigger the handoff initiation process. Fuzzy logic theory based Quantitative 

Decision Algorithm (FQDA) is used to quantitatively evaluate RSS, available bandwidth, 

and usage cost of the candidate networks. The FQDA produces a Quantitative Decision 

Value (QDV) for each candidate network that indicates the probability of a certain 
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candidate becoming the target of handoff. The final handoff decision is made based on 

the resulted QDVs. The proposed approach does not take into consideration other factors 

like offered security, user preferences, and other QoS related parameters.  

2.2.10.2 Artificial Neural Network Based Approaches 

Although the research work presented in this dissertation does not utilize neural 

networks, a survey of artificial-neural-network based schemes is provided to complete the 

discussion related to AI-based handoffs in heterogeneous wireless networks. 

In [93], a multi-layer feed-forward neural-network-based AN modeling method, 

along with an adaptive parameter adjustment algorithm, is presented. The main objective 

of this scheme is to enhance the end-user’s QoS and improve system performance during 

handoff between WLAN and UMTS. Working mechanism of UMTS and WLAN is 

modeled using the non-linear relationships between the user-parameters as input and the 

QoS requirements as output.  

The authors in [32] present a vertical handoff manager middleware solution that is 

based on neural networks to select the best wireless network, based on a set of pre-

defined user-preferences, device’s capabilities, and wireless-network features that are 

carefully selected to provide optimal performance. A decision function based on the 

weighted factors like cost-of-service, security preference, power consumption, and 

available bandwidth is used to determine the best network. All four preference 

parameters, normalized between 0 and 1 in addition to a network classification parameter, 

are used as inputs to the ANN.  A Success rate of 87% has been reported in finding the 
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best wireless network among other available networks. However, other parameters, like 

load-conditions at the network or MS-velocity, are not considered in this approach.   

A Neural Network based handoff algorithm for a joint system of terrestrial and 

High Altitude Platform Cellular system (HAPS) is presented in [94]. HAPS can provide 

services to the users staying at the corner of cells or at covered area influenced by 

shadowing. In this approach a Radial-Basis Function Network (RBFN) is adopted. The 

inputs to the ANN consist of average-RSS of the current and the target BSs, MS 

directions estimated by the Multiple Signal Classification (MUSIC) algorithm on an 

antenna array, and traffic loads of serving and target BSs. Large scale channel 

propagation like Hata-path-loss model and small scale channel propagation using 

Shadow-Rayleigh fading is considered while calculating average RSS. The timing 

advance concept in GSM system and the MS’s battery power are used to determine if the 

MS is currently located in an obstacle area. Performance of the proposed method is 

compared against the Back Propagation based neural network and the traditional RSS 

with hysteresis method, using metrics like handoff rate, blocking rate, and call dropping 

rate. It is reported that the proposed scheme using the RBFN outperforms the other two 

techniques. However, QoS parameters and user preferences are not given any 

consideration in this research. Furthermore, the algorithm is only restricted to the cellular 

networks. 

A pattern recognition based algorithm that estimates MS’s position and then 

performs handoff in overlay networks is presented in [29]. The proposed method divides 

a given path (a road, a passage, or a corridor) in a wireless network into smaller segments 

called pattern classes that are identified using a unique number. For each segment, signal 
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samples of different cells in different networks are combined in a pattern vector that is 

used to train the Probabilistic Neural Network (PNN). The exact time of handoff is 

decided based on the estimated pattern class number and thus unnecessary handoffs 

caused by uncertainty are avoided. The authors reported a 90% reduction in “ping-ping 

effect” and a better classification as compared to the traditional algorithms. However, 

only the straight path is considered, which crossed multiple WLANs and UMTS cells. 

Furthermore, the algorithm performs handoffs based on only the MS’s position and the 

measured RSS from available networks. No QoS parameters are given any consideration 

in this study.    

2.2.10.3 Combination Algorithms 

In [33], the authors use ANFIS to allow “if-then” rules and membership functions 

to be constructed based on the training data (historical data of the metrics). Two widely 

used performance metrics, the Received Signal Strength Indicator (RSSI), and Bit Error 

Rate (BER) are used in the decision process. A reduction in number of rules and 

increased performance in terms of reduced number of handoff has been reported.  

The authors in [95] utilize both neural networks and fuzzy logic to perform 

vertical handoff decision. The scheme comprises of two steps: first, neural networks are 

used to predict the value of RSS and then, the time for which an MS stays connected to 

the network is estimated. These values are used to trigger the handoff. In the second step, 

FQDA is used to calculate a merit function using RSS, bandwidth, number of users, 

power consumption, and network usage cost. The merit function in conjunction with a 

network elimination factor is used to find the target network based on the end-user’s 
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preferences. The research work demonstrates performance improvements as compared to 

other traditional approaches. On the other hand, the study doesn’t show how quantitative 

evaluation values (QEVs) utilized as part of the FQDA process, are obtained. 

A fuzzy logic and ANFIS based vertical handoff decision-making algorithm [96] 

is proposed for GSM/GPRS, Wi-Fi, UMTS, and WiMAX networks. The network usage 

cost, data rate, and the RSSI are used as inputs to the fuzzy logic system to generate an 

access-point candidacy-value (0-10) that is used to determine the best possible access 

point. Training data for ANFIS is obtained from the developed fuzzy system and human 

expert knowledge. Rayleigh-fading is used to emulate multipath propagation channels. 

The proposed scheme is compared against the developed fuzzy logic and SAW based 

schemes with number of handoffs being used as the performance evaluation criterion. 

The simulation is performed for MS moving along a straight path and generating time 

sensitive voice traffic, GSM based data traffic, and GPRS based data. It is shown in this 

research that the ANFIS based approach dramatically reduces the number of handoffs and 

the decision time. An enhanced version of the same research is presented in [97] where 

the authors replace the ANFIS architecture with GAs to adjust the shape of the fuzzy 

membership functions. These optimized membership functions are obtained in an offline 

mode through the application of GAs and later embedded in the developed fuzzy system 

to make optimal decisions regarding vertical handoffs. Due to the dynamic conditions 

and inherent uncertainty in the wireless networks, the obtained membership functions 

may not produce optimal results after a while. Furthermore, QoS parameters and end-

user’s preferences need to be embedded in the scheme to yield these decisions.   
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A multi-criteria ANFIS based vertical handoff decision algorithm is presented in 

[98] showing throughput gain and reduced “ping-pong effect”. Six input parameters 

including available bandwidth, MS-velocity, number-of-users in WLAN, RSS, MS-

battery-level, and the network coverage area are used. Computational complexity is high 

in the proposed approach. In addition, the research doesn’t perform comparisons against 

any other algorithms. Furthermore, bandwidth is the only QoS parameter that is utilized 

in this scheme ignoring the other QoS related parameters.  

A host mobility support with adaptive network selection method based on neuro-

fuzzy decisions is proposed in [99]. The scheme is based on adaptive fuzzy logic system 

where the rules are derived and extracted from given training data. An alternative 

defuzzification approach based on FALCON model [100] is adopted in the proposed 

scheme. The behavior of a typical user is assumed and response times of services like 

FTP, web browsing, and VoIP are observed. Traffic model w.r.t different BSs, battery 

status of MS, and other QoS factors are not considered in this research.  

The AI scheme in [101], which is based on a hybrid parallel fuzzy-logic-system, 

multiple-criteria decision-making system, and GAs, is developed to provide adaptive, 

flexible, and scalable solution to the vertical handoff decision problem. The decision 

phase takes advantage of three parallel fuzzy-logic subsystems to reduce the expected 

complexity involved with the heterogeneous wireless environment by reducing the 

number of needed inference rules and their complexities. The normalized outputs of these 

subsystems along with their importance weights that are optimized using GAs, are fed 

into a multi-criteria decision making system, which utilizes an enhanced version of 

Simple Multi-Attribute Rate Technique (SMART). Every fuzzy subsystem produces two 
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output variables to describe the probability of acceptance for the new MS in the CDMA 

and TDMA networks. The proposed scheme is compared against three different 

algorithms using four types of services including voice calls, low bit-rate real-time video 

telephony, the high bit-rate streaming video, and the non-real-time data traffic. The 

results show an increase percentage of satisfied users and an overall enhancement of 31% 

over the other algorithms. However, the proposed scheme is limited to only four different 

criteria and does not take into consideration other important decision factors like loading 

conditions of the network. Furthermore, single-objective GAs are used to optimize each 

objective weight independently rather than utilizing a multi-objective utilization method 

to find optimal weights jointly, which could have resulted in an increased performance.  

The authors extended their work in [102] where a multi-criteria radio network selection 

solution is presented with co-existed WLAN, WMAN, and WWAN. The scheme utilizes 

a combined parallel FLCs and an MCDM system to perform handoff decisions. The 

proposed scheme is based on two modules. The first is a network-controlled mobile-

assisted module that considers the operator benefits, network conditions and user 

preferences. The second module is mobile-controlled with network assistance that 

considering mainly user preferences. Both modules comprise of FLC subsystems that 

consider one selection criteria and an MCDM. The MCDM is based on an enhanced 

version of AHP.        

A fuzzy multi-criteria vertical handoff algorithm with its parameters enhanced by 

the use of an inverted 2-layer Multi-Layer Perceptron (MLP) is proposed in [103]. In the 

proposed approach, a preliminary selection of candidate networks is performed using 

RSS to reduce the complexity of the fuzzy logic controller. The FLC takes five inputs 
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including RSS and loading-conditions of the current and the target systems, and the 

velocity of MS. A total of 24 fuzzy handoff rules including general rules, UMTS specific 

rules, and the WLAN specific rules are created. An MLP is used to determine the optimal 

parameters whenever the system condition changes. The MLP is tested using two back-

propagation training algorithm: back-propagation algorithm with an adaptive rate and a 

momentum, and the resilient back-propagation algorithm. In the proposed approach a 2-

layer MLP, with FLS parameters as inputs and the desired UMTS and WLAN throughput 

as outputs, is trained and then inverted using a non-linear system. This inverted MLP that 

has a lower complexity, satisfactory error rate and converges faster, is used to obtain the 

most appropriate FLC design parameters for desired UMTS and WLAN throughputs. The 

proposed approach is compared against an algorithm that is based on fixed coverage and 

load thresholds. However, wireless networks are highly dynamic in nature resulting in 

varying load conditions and coverage. 

An adaptive multi-criteria vertical handoff system using fuzzy inference system 

and a modified Elman neural network is proposed in [104]. In this approach, RSS is 

primarily used to trigger handoff decision process whereas the neural network is used to 

predict the number of users in the target network. The number of users, along with the 

MS-velocity, and available bandwidth of the target network are used as inputs to the 

fuzzy inference system that performs the final decision. The training and the convergence 

speed of a traditional Elman neural network is too slow, so it is modified by connecting 

the context nodes to the output nodes with adjustable weights to improve the overall 

performance. The performance of this proposed scheme is compared against RSS based 

conventional vertical handoff algorithm and shows that the proposed scheme provides 
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better accuracy when performing handoff decisions. However, this research does not 

provide any comparisons against other neuro-fuzzy based algorithms.  

A fuzzy-neural methodology is developed in [105] to perform Joint Radio 

Resource Management (JRRM) to ensure certain QoS constraints in heterogeneous 

wireless networks that comprises of WLAN, UMTS, and GSM Enhanced Data for GSM 

Evolution (EDGE) Radio Access Network (GERAN). The proposed approach is divided 

into two parts: A JRRM based on fuzzy-neural methodology to select the target network, 

and a recursive least square predicator capable of estimating in advance JRRM decisions 

to properly reserve resources for handoff calls. A reinforcement learning procedure is 

also used in conjunction with FLC to let the algorithm adapts its parameters in order to 

minimize the desired target value of dissatisfaction probability. This research work is 

extended in [106] to incorporate additional decision criteria based on users’ preferences 

and operators’ policies utilizing AHP techniques. It is shown that the technique 

outperforms other reference algorithms.      

2.2.11 BRIEF COMPARISON OF THE APPROACHES 

This section provides a comparison of the different handoff approaches that are 

discussed in the above sections. Since the decision phase is the most important one in 

vertical handoffs, the network performance, end-user preferences & satisfactions, 

efficiency, flexibility, and complexity & reliability of the overall algorithm must also be 

considered when evaluating and comparing these handoff approaches.  

Based on the discussions in Sections 2.2.1-2.2.10, different combinations of these 

criteria can be used to perform handoff decisions: Bandwidth, SIR, network-usage-cost, 
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user’s preferences, QoS preferences, MS’s available battery power, delay, throughput, 

jitter, response time, BER, burst error, packet retransmissions, packet losses, security 

preferences, network coverage area, RSS, Traffic load, type of provided services, number 

of active MSs, and speed of MSs. In most cases, a vertical handoff decision strategy 

involves complex considerations and many tradeoffs must be made to provide an efficient 

decision mechanism while keeping the overall complexity at the minimum.   

In terms of complexity, single criterion based handoff algorithms (especially RSS 

based) are usually the simplest among all the categories. On the other hand, multi-criteria 

based handoff algorithms not only require the collection of several network parameters 

but these parameters must be normalized as well. Hence they are more complex than the 

RSS based or bandwidth based handoff techniques. AI based handoff techniques are 

more challenging and complex due to their pre-training and other requirements.  

In terms of reliability, AI based handoff algorithms are considered to be the most 

reliable among all the others, as these systems are trained beforehand. These algorithms 

are well-suited for vertical handoff decision problem as they can provide accurate 

solutions by taking into account multiple decision factors.  

With respect to overall processing delays, AI based approaches suffer from the 

highest delay due to increased system complexity. On the other hand, processing delay 

might be relatively lower in other techniques; nevertheless, these techniques have 

significantly high handoff failure probabilities, high number of handoffs, and high 

number of unnecessary handoffs, which reduces the overall system performance.  
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Table 2.1:  Overall Comparison of Handoff Approaches [14] 
Handoffs 

RSS 
based 

Cost 
Function 

based 

User 
centric 
based 

MADM 
based 

Context 
Aware 
based 

AI based 
Features 

Multi- 
Criteria 

No Yes Yes Yes Yes Yes 

User 
Preferences 

Consideration 
No Low High Medium High 

Medium 
to High 

Efficiency Low Medium Medium High High High 

Flexibility Low High High High High Medium 

Complexity Low Low Low Medium Medium High 

Service 
supported 

Non-
Real 
time 

Multiple 
types 

Multiple 
types 

Multiple 
types 

Multiple 
types 

Multiple 
types 

 

In the context of the above discussion, Table 2.2 [107] provides a comparison of 

different handoff approaches based on common performance metrics. Table 2.1 [14] 

provides an overall comparison between different handoff approaches.   

As our research work is based on AI techniques, this chapter will be concluded 

with a summary of their characteristics as follows: 

• Relatively Complex than other techniques. 

• Typically work with more than one decision criteria. 

• More reliable than others. 

• Offer handoff accuracy. 

• Can avoid ping-pong effect and thus reduce unnecessary handoffs. 

• Can reduce corner effect.  

• Have the capability to improve handoff latency.  
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Table 2.2:  The Comparison of Handoff Algorithms [107] 

 

 

 Conventional Handoffs AI based Handoffs 

Handoff 
Techniques RSS 

based 

RSS with 
threshold 

and/or 
Hysteresis 

SIR 
based 

Minimum 
Power 
Based 

Velocity 
Adaptive 

Direction 
Biased 

Fuzzy 
Logic 
based 

Neural 
Network 

based 

Prediction 
based 

Pattern 
Recognition 

based Features 

Resource 
Management 

Signal 
Strength 

Signal 
Strength 

SIR, 
Integrated 
resource 

management 

SIR, Power, 
Integrated 
resource 

management 

Velocity, 
RSS 

Direction, 
RSS 

Multiple decision criteria (RSS, SIR, velocity, User 
preferences, QoS parameters, usage cost, available 

power, available bandwidth, etc.) 

Ping-Pong 
Effect 

Yes Avoided 
Avoided (by 

using 
hysteresis) 

NA Avoided Avoided Avoided 

Handoff 
Latency 

Relatively 
low 

Increased 
(based on 
hysteresis) 

Relatively 
low  

NA Reduced Reduced Reduced 

Number of 
Handoffs 

Can be 
very high 

Reduced NA NA NA Low Reduced 

Number of 
Unnecessary 

Handoffs 

Can be 
very high 

Reduced 
Relatively 

Low 
Relatively 

High 
NA NA Low Low NA Low 

Corner 
Effect 

(NLOS) 
Possible Possible Possible Possible Yes Yes Yes, but can be avoided 
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CHAPTER 3 

DESIGN OF VHITS 

This chapter introduces the design of VHITS. The proposed scheme has been 

developed using a combination of different techniques to achieve intelligent and efficient 

vertical handoffs decisions, while maximizing end-users’ satisfaction, in heterogeneous 

wireless communication networks.  

The handoff algorithms based on cost-function combine multiple systems’ metrics 

to choose the target network that offers the highest overall performance. This approach is 

considered optimal as compared to the other traditional approaches that rely on single 

system’s parameter like RSS or available bandwidth to make handoff decisions [1]. 

Further enhancement of the said cost-functions, can be done by applying techniques that 

are based on Artificial Intelligence, Expert Systems, and Machine Learning (for pattern 

recognition). Hence, an efficient handoff system for heterogeneous wireless networks can 

be developed using rule-based expert systems utilizing Fuzzy Logic, an Adaptive Neural 

Fuzzy Inference Expert Systems, or Neural Expert Systems. Due to their inherent 

parallelism and using the inference rules that can be developed by exploiting the human 

knowledge of the system, efficient implementation of rule-based expert systems is 

possible. 

To support seamless mobility while an MS roams in a heterogeneous wireless 

network, vertical handoff necessity estimations and decisions to select a best target 

network are two important aspects of the overall mobility framework. The handoff 

initiation and necessity is critically important to keep the unnecessary handoffs and their 

failures at a low level. On the other hand, to maximize the end-users’ satisfaction levels, 
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the decision to select the best network among other available candidates also plays an 

important role.  

This chapter begins with a brief comparison of the proposed scheme with other 

closely matching schemes. The chapter continues with a detailed discussion of the 

proposed design related to vertical handoff necessity estimation and target network 

selection modules. MATLAB is used to design these two important modules and their 

sub-modules.   

3.1 COMPARISON OF VHITS WITH OTHER SCHEMES 

In this section, a candid discussion is provided to highlight the deficiencies in 

some of the closely related schemes and how VHITS provides an improved design for the 

overall handoff process.  

The scheme in [83] utilizes fuzzy logic with Multiple Objective Decision Making 

(MODM) approach to select the best network segment. The associated weights of the 

network parameters are obtained by using the AHP process. This scheme doesn’t take 

advantage of a full Fuzzy Inference System (FIS) and only utilizes the fuzzifier to 

calculate the membership values of the network parameters. Furthermore, only perceived 

QoS, without using the QoS related parameters, is considered. In addition, the scheme 

does not consider WLAN as an alternative and does not provide any solution to the 

handoff necessity estimation problem. The scheme is evaluated through numerical 

examples only, without performing any emulation/simulation. 

The authors in [84] implement the handoff initiation scheme by combining 

multiple parameters of all available networks in a cost function. AHP is then used to rank 
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all the available networks, including the current PoA. The target network selection is 

done using a FIS, with velocity and available bandwidth as two inputs, which might not 

produce optimal results. Furthermore, not all the QoS parameters are taken into 

consideration while calculating the handoff initiations.  

A modular handoff decision system utilizing parallel FLCs is implemented in 

[87]. The scheme mainly concentrates on QoS related parameters to make handoff 

decisions.  Since, RSS, MS-Velocity, and other important parameters are ignored, the 

scheme might not provide optimal selection decisions. In addition, no handoff necessity 

estimation scheme is provided in this work. 

The research work in [88] uses parallel FLCs to normalize a subset of important 

network parameters to rank the network alternatives. No attention is given to the handoff 

initiation process and the QoS parameters.  

A QoS-aware fuzzy-logic based multi-criteria algorithm is proposed in [89]. AHP 

is utilized to calculate the priority weights of network attributes. Only QoS related 

parameters are considered to create four FLCs for each of the four different traffic types. 

The major issue with this scheme is that it relies on bulky rule sets (81 rules) for each 

FLC, making it inefficient to some extent. Furthermore, the absence of RSS, MS-

Velocity, and other important parameters may result in non-optimal handoff decisions.  

A vertical handoff decision algorithm based on fuzzy logic, in conjunction with 

GPT, is presented in [92]. Since the scheme uses only the predicted values of RSS to 

estimate the necessity of handoffs, unnecessary handoffs are likely to occur. Of all 

available networks, QDVs are produced by utilizing the process of FQDA on RSS, 
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available bandwidth, and usage cost. No consideration is given to any other important 

network parameters including QoS.  

A pattern recognition based algorithm that estimates an MS’s position to perform 

handoffs in overlay networks is presented in [29]. To avoid unnecessary handoffs, a PNN 

is trained to estimate the exact timings of handoff. Although, a reduction in the “ping-

pong effect” is reported, the scheme does not take into account any QoS related 

parameters while performing handoff decisions. 

By far, the schemes in [91, 101, 102] are closer to our design where parallel FLCs 

are used in conjunction with AHP or TOPSIS to produce the final ranking of available 

networks. The major deficiencies with these schemes are the lack of utilization of all QoS 

related parameters to perform network selection decisions. Furthermore, these schemes 

only propose solutions to the network selection problem, while ignoring the handoff 

necessity estimations.  

A fuzzy based MADM scheme is provided in [108] to efficiently deal with 

uncertainty that is inherent with wireless networks. Parallel FLCs are utilized with two 

different ranking algorithms: SAW and TOPSIS. However, the scheme pays no attention 

to the weight elicitation process and arbitrary weights are assigned to conduct simulations 

for VoIP and Web based traffic classes. Although the scheme considers QoS related 

parameters, RSS and other important network parameters are ignored while ranking the 

candidate networks.  

The authors in [109] utilize AHP for both weight elicitation and network selection 

processes. RSS is the only criterion that is used to trigger the handoff. This work is 

extended in [110] where authors implemented AHP weight elicitation process along with 
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TOPSIS to rank the networks. Not all the QoS parameters are utilized to make selection 

decisions.  

A similar scheme for a WiMAX/Wi-Fi environment is provided in [111]. The 

authors also provided a similar solution in [67] that utilizes AHP and FTOPSIS. 

However, only numerical examples are provided to evaluate the scheme and no 

consideration has been given to other important network parameters such as RSS. 

A utility-based FTOPSIS method emphasizing only on network power optimization 

is provided in [112]. TFNs are used to determine the weights for the network parameters. 

The study only provided numerical examples of network selection for the MS based on 

all four traffic classes. Some important parameters such as RSS, security, and QoS related 

parameters are ignored in this work.  

A hybrid scheme that utilizes FAHP for weight calculations and ELECTRE to rank 

the available networks is provided in [113]. Numerical examples, considering only QoS 

related parameters and cost, are provided. 

All the above-mentioned schemes have certain deficiencies and there is no one 

scheme that provides a complete solution to the vertical handoff problem. Some schemes 

lack in utilizing important parameters to perform handoff decisions, some do not give any 

importance to the handoff necessity estimation, some of them are based on bulky fuzzy 

rule-set, and the others only provide numerical examples to evaluate the scheme without 

utilizing any simulation test-bed for heterogeneous wireless networks. 

The VHITS scheme provides a complete framework to perform vertical handoffs in 

a heterogeneous wireless network by incorporating the following: 
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• A GPT based RSS prediction module is created to minimize handoff 

failures and call dropping probabilities.  

• A handoff necessity estimation module is created that incorporates parallel 

FLCs with reduced number of rules. This module calculates the handoff 

necessity based on the predicted RSS, MS-Velocity, weighted QoS 

parameters based on traffic type, and MS’s distance from the current PoA.  

• Different weight elicitation techniques are implemented based on both crisp 

and fuzzy data.  

• Several MADM based algorithms including TOPSIS, FTOPSIS, and 

FVIKOR are utilized to perform network selection. These algorithms utilize 

a rich set of network parameters to make network selection decisions.  

• Simulated scenarios, using a test-bed for heterogeneous wireless 

environment, are provided in addition to numerical examples to 

demonstrate the utility of the proposed scheme.  

Figure 3.1 shows the flowchart of the overall proposed scheme. In this work, we 

mainly concentrate on VHITS Necessity Estimation and Target Network Selection 

mechanisms. The details of these mechanisms are provided in the following sections.  

3.2 VHITS HANDOFF NECESSITY ESTIMATION MODULE 

A multi-attribute vertical handoff decision is more complex than a simple RSS-

based horizontal handoff as the former involves attributes from different wireless 

technologies. In addition, the MS in a heterogeneous wireless environment has the 

capability to establish and maintain connectivity with many overlay networks that offer 
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varying QoSs. Hence, estimating the necessity of a vertical handoff and choosing the 

right initiation time, reduces the subsequent handoffs, improves the overall QoS, limits 

the inherent data signaling and rerouting in a vertical handoff process, thus maximizing 

the end user’s satisfaction. 

The vertical handoff process should be triggered when any of the following 

conditions become true [99, 114]: 

• When the MS detects the availability of a new wireless network or exits 

the coverage area of the serving network. 

• When the MS detects a change in user-preferences. For example, the user 

decides to switch to a more secure network. 

• When the MS detects a request that is made for a new service or if the 

required QoS for an existing session degrades. 

• When there is a severe signal degradation or complete signal loss from the 

current wireless network. 

The proposed VHO necessity estimation module depicted in Figure 3.2 is capable 

of performing handoffs when most of the conditions, discussed above, become true. In 

the following, a detail of each block providing support to the VHITS Necessity 

Estimation module is provided. 

3.2.1 SYSTEM ATTRIBUTES 

There exist various schemes to perform handoffs in heterogeneous wireless 

networks, based on a combination of different system attributes. Our proposed scheme 

utilizes a few carefully chosen attributes that are critical to maximizing the end-users’ 
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satisfaction while performing efficient handoffs. These attributes include network RSS, 

MS-Velocity, distance between the BS/AP and MS, network loading-conditions, security 

provided by the network, service cost, and QoS parameters including network 

throughput, latency, jitter, and Packet Loss Ratio (PLR). Although schemes like [84] also 

consider the MS’s remaining battery status, it is purposely ignored in our proposed 

scheme as the end-user can control this attribute; for example, by connecting a battery 

charger while travelling.  

The VHITS handoff necessity estimation module takes as inputs the MS-velocity, 

distance between the BS/AP and the MS, RSS, and QoS of the currently serving network. 

It is assumed that these values are available to the MS through some mechanism; for 

example, the GPS module installed in most modern MSs is capable of estimating the 

MS’s velocity. These attributes are monitored and evaluated by our handoff necessity 

estimation scheme to determine if any of the VHO triggering conditions mentioned above 

are true. For simplicity, we assume that the MS is equipped with multiple wireless 

interfaces and it can connect to different types of networks, but at a given instant of time 

it is connected to only one network type. The types of networks include WLAN, Wireless 

Metropolitan Area Network (WMAN), and Wireless Wide Area Network (WWAN). 

With the exception of distance between the MS and the PoA, these attributes are 

also utilized in the VHITS Target Network Selection module to determine the best 

network among a list of candidate networks.  
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Figure 3.1:  VHITS Overall Scheme 
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3.2.2 WEIGHTS CALCULATIONS FOR SYSTEM ATTRIBUTES 

From a decision-making perspective, the end-users can specify their needs and 

preferences by assigning priority weights to each system attributes. Since the goal of our 

scheme is to maximize end-users’ satisfaction, higher weights are assigned to network 

RSS and QoS. Furthermore, since QoS requirements vary for various types of traffic 

classes, different weights with respect to traffic types, need to be calculated and assigned, 

specifically for QoS related parameters. The proposed scheme considers four different 

types of traffic classes with different characteristics and QoS demands. These traffic 
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Figure 3.2:  VHITS Handoff Necessity Estimation Module
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classes are defined by 3GPP TS-23.107 specification [115] and are summarized in Table 

3.1. 

Note that these priority weights can either be assigned manually to the system 

attributes or calculated using different techniques as discussed below. Our proposed 

scheme is flexible and offers both manual weight assignments and calculations using 

different techniques as will soon be discussed. 

3.2.2.1 Weights Calculations Using AHP 

The process of making decisions while taking into account more than one 

criterion is a common task and occurs frequently. Network selection problem exhibits the 

same characteristic and can be classified as an MADM problem whose goal is to find a 

network among a set of candidates that can maximize end-users’ satisfaction. Different 

MADM approaches for selecting the best network are presented in Chapter 2. Although, 

AHP is one commonly used approach to perform the network selection, our scheme only 

utilizes it to calculate weights for different system’s attributes.  

The AHP method is introduced by Saaty [76] to find a solution for the 

complicated problems by dividing such problems into a hierarchy of easy to analyze 

decision factors and alternatives. AHP performs pairwise comparisons between the 

attributes, transforms these comparison scores into weights of decision criteria, and 

prioritizes all alternatives on each criterion to obtain the overall ranking of alternatives. It 

consists of the following steps: 
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Table 3.1:  Traffic Classes with varying QoS requirements 
Traffic Classes Comments 

Streaming 

• One-way transport 

• Example: A user watching a video clip from YouTube or 

listening to his favorite radio channel over the Web 

• End-to-end delay is not important 

• Jitter and Throughput plays an important role 

Interactive 

• Two-way transport that relies on request/response mechanisms 

• Example: User chatting with another user using Yahoo 

messenger or performing a financial transaction over the Web 

• Delay and PLR are important 

• Jitter and throughput are relatively less important 

Conversational 

• Two-way transport 

• Example: VoIP and video conferencing between end-users 

• Delay and Jitter are critically important.  

• PLR and throughput are relatively less important 

Background 

• One-way transport 

• Example: User sending SMSs or emails 

• PLR is very important 

• Delay, Jitter and Throughput are relatively less important 

 

1. Determination of the objective and the decision factors: In this step, the 

problem is divided into a hierarchal structure comprised of the main objective, 

decision attributes, and the available alternatives. At any depth, the decision 

attributes can be further decomposed into several sub-attributes. 

2. Determination of the relative importance of the decision factors: During this 

phase, pairwise comparisons between the attributes at each level of the 
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hierarchy are made. These comparisons are based on how strongly an attribute 

influences the other attribute in the pair. Table 3.2 depicts a fundamental scale 

that can be used to perform these comparisons.  

For example, while performing a pairwise comparison between two attributes 

“A1” and “A2”, a value of “5” is assigned. This simply means that “A1” has a 

strong influence (5 times) over “A2”. On the other hand, a reasonable 

assumption can be made that “A2” will have a 1/5 influence over “A1”.  

The comparison results are formulated in a square matrix ܣ = [ܽ௜௝]௡×௡ where ܽ௜௜ = 1, ௝ܽ௜ = ଵ௔೔ೕ ,			ܽ௜௝ ≠ 0 and ݊ represents the number of decision 

attributes. 

3. Normalization and Calculation of the relative weights: In this step, relative 

weights (ݓ) are calculated by normalizing column vector if the matrix is 

consistent (rank = 1). In case that the matrix is inconsistent, the largest 

Eigenvalue/Eigenvector method can be used. First the eigenvalues are 

calculated by solving det(ܫߣ − (ܣ = 0, then the normalized weight vector can 

be obtained as follows: 

ݓܣ                            =  (3.1)                        ݓ	௠௔௫ߣ

where ܣ is the AHP comparison matrix. A matrix with more than one 

eigenvalue indicates potential comparative inconsistency within the pairs of 

attributes. The Consistency Index (CI) and Consistency Ratio (CR) can be 

used to find these inconsistencies. They are defined as follows: 

ܫܥ      = ఒ೘ೌೣି௡௡ିଵ                     (3.2) 
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     Table 3.2:  AHP Fundamental Scale of Importance 
Intensity of Importance Definition 

1 Equal Importance 

3 Moderate Importance 

5 Strong Importance 

7 Very Strong Importance 

9 Extreme Importance 

2, 4, 6, 8 Intermediate Values 

ܴܥ  = ஼ூோூ           (3.3) 

where n is the number of elements being compared, and ܴܫ is the Random 

Consistency Index that is chosen based on the value of n. In practice, ܴܥ	 ≤ 0.1 is considered acceptable; otherwise the subjective judgment of the 

decision makers related to the pairwise comparisons needs to be revised. 

One of the requirements of AHP is that it assumes independence between any two 

attributes at the same level of hierarchy. In the network selection problem, where the QoS 

parameters are also used as decision factors, there exists interdependence between delay, 

jitter, and PLR. The interdependence between these attributes must be resolved before 

finalizing the weights of these conflicting attributes. Our proposed scheme resolves this 

interdependency by repeating the steps of AHP on the conflicting attribute pairs as well.  

Figure 3.3 shows the hierarchal structure of all the attributes and sub-attributes 

utilized by our scheme. The development of this hierarchal structure is the first step 

towards using AHP.  
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Figure 3.3:  AHP Hierarchal Structure for VHITS 
 

The end-user can assign the relative importance of the first-level criteria. On the 

other hand, the proposed scheme defines the relative importance of the second-level 

attributes, considering the different requirements related to the QoS for the four traffic 

classes. The order of preference for level-1 criteria, as utilized in our design, is given as: 

RSS, QoS, Velocity, Network Loading, Security, and Cost; where RSS and QoS are 

given equal importance as our goal is to maximize end-users’ satisfaction. Nonetheless, 

our scheme is flexible and the end-users may change this preference order based on their 

requirements. The detail of the weight calculation process for all four traffic classes is 

given as follows:  

3.2.2.1.1 Weights for Conversational Traffic Class 

Table 3.3 shows the AHP decision matrix for level-1 criteria. Note that these 

values are a sample of end-users’ subjective assignments of relative importance, and may 

Maximize User 
Satisfaction

RSS QoS

Delay

Jitter

Packet Loss Ratio

Throughput

MS-Velocity Network Loading Cost Security

Goal 

Level 1 
Criteria 

Level 2 
Criteria 
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be changed based on their preferences. These values are assigned using the AHP scale of 

importance given in Table 3.2. 

Table 3.4 shows the AHP decision matrix for the relative importance of QoS’s 

sub-criteria based upon the characteristics of Conversational traffic class. As mentioned 

in Table 3.1, delay and jitter are critical for Conversational traffic class and higher values 

of these two attributes could result in an unacceptable quality of service. PLR is relatively 

less important as compared with delay and jitter; humans have the capability of making 

up the contents of the ongoing conversation, regardless of moderate packet loss. On the 

other hand, the throughput requirement for Conversational traffic is relatively low and 

can be supported by all types of networks.  

As explained previously, AHP requires that all decision factors, residing at the 

same level of hierarchy, should not have any interdependence between each other. This is 

clearly not the case with the QoS parameters (level-2 sub-criteria) as delay, jitter, PLR, 

and throughput are all related to each other. This interdependence between the QoS 

parameters can be resolved by repeating the AHP process again by performing various 

comparisons between these sub-criteria as shown in Tables 3.5-3.7.  

 The weights obtained in Tables 3.5-3.7 are combined in an interdependence 

matrix presented in Table 3.8. Note that this interdependence matrix will remain the same 

for all four traffic classes. The final weights for the four QoS parameters are calculated 

by multiplying the values in the interdependence matrix with the weights that are 

obtained in Table 3.4. This is shown in Equation (3.4). 
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Table 3.3:  AHP Decision Matrix for Level-1 Criteria 

Criteria RSS QoS Velocity
Network 

Loading
Security Cost Weights CR 

RSS 1 1 3 4 5 7 0.3271 

0.0392 

QoS 1 1 3 4 5 7 0.3271 

Velocity 1/3 1/3 1 2 3 5 0.1466 

Network 

Loading 
1/4 1/4 1/2 1 3 5 0.1087 

Security 1/5 1/5 1/3 1/3 1 3 0.0591 

Cost 1/7 1/7 1/5 1/5 1/3 1 0.0314 

 

Table 3.4:  AHP Decision Matrix for QoS Sub-criteria for Conversational Traffic 

Criteria Delay Jitter PLR Throughput Weights CR 

Delay 1 1 3 7 0.3950 

0.0275 
Jitter 1 1 3 7 0.3950 

PLR 1/3 1/3 1 5 0.1626 

Throughput 1/7 1/7 1/5 1 0.0474 

 

Table 3.5:  AHP Decision Matrix w.r.t Delay 

Criteria Delay Jitter Weights CR 

Delay 1 5 0.8333 
0.000 

Jitter 1/5 1 0.1667 

 

Table 3.6:  AHP Decision Matrix w.r.t Jitter 

Criteria Jitter Throughput Weights CR 

Jitter 1 3 0.7500 
0.000 

Throughput 1/3 1 0.2500 
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  Table 3.7:  AHP Decision Matrix w.r.t PLR 

Criteria Jitter PLR Throughput Weights CR 

Jitter 1 1/6 1/5 0.0811 

0.0279 PLR 6 1 2 0.5769 

Throughput 5 1/2 1 0.3420 

 

Table 3.8:  AHP Interdependence Matrix for QoS parameters 
Criteria Delay Jitter PLR Throughput 

Delay 0.8333 0.0000 0.0000 0.0000 

Jitter 0.1667 0.7500 0.0811 0.0000 

PLR 0.0000 0.0000 0.5769 0.0000 

Throughput 0.0000 0.2500 0.3420 1.0000 

 
 

 

ொܹ௢ௌି஼௢௡௩ = ൦0.8333		0.0000		0.0000		0.000.1667		0.7500		0.0811		0.000.0000		0.0000		0.5769		0.000.0000	0.2500		0.3420		1.00൪ × ൦0.39500.39500.16260.0474൪ = ൦0.32920.37530.09380.2017൪
ܬܶܲܦ      (3.4) 

Finally, the overall weightings for all the attributes for the Conversational traffic class are 

shown in Equation (3.5). 

 

஼ܹ௢௡௩ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି஽ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି௃ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି௉ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.32710.3271 × 0.32920.3271 × 0.37530.3271 × 0.09380.3271 × 0.20170.14660.10870.05910.0314 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.32710.10770.12280.03070.06600.14660.10870.05910.0314ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

     (3.5) 
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Table 3.9:  AHP Decision Matrix for QoS Sub-criteria for Interactive Traffic 

Criteria Delay Jitter PLR Throughput Weights CR 

Delay 1 7 1/2 3 0.3120 

0.0190 
Jitter 1/7 1 1/8 1/3 0.0487 

PLR 2 8 1 5 0.5230 

Throughput 1/3 3 1/5 1 0.1163 

 

The final weights for the four QoS parameters for the Interactive class are 

calculated by multiplying the interdependence matrix (as shown in Table 3.8), with the 

weights obtained in Table 3.9. This is shown in Equation (3.6). 

ொܹ௢ௌିூ௡௧ = ൦0.8333		0.0000		0.0000		0.000.1667		0.7500		0.0811		0.000.0000		0.0000		0.5769		0.000.0000	0.2500		0.3420		1.00൪ × ൦0.31200.04870.52300.1163൪ = ൦0.26000.13100.30170.3074൪
ܬܶܲܦ      (3.6) 

Finally, the overall weights for all the attributes for the Interactive traffic class are shown 

in Equation (3.7). 

ூܹ௡௧ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌିூ௡௧ି஽ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି௃ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି௉ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.32710.3271 × 0.26000.3271 × 0.13100.3271 × 0.30170.3271 × 0.30740.14660.10870.05910.0314 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.32710.08500.04280.09870.10050.14660.10870.05910.0314ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

          (3.7) 

3.2.2.1.2 Weights for Background Traffic Class 

Table 3.10 shows the AHP decision matrix for the relative importance of QoS’s 

sub-criteria based on the characteristics of Background traffic class and the QoS 

requirements mentioned in Table 3.1.  
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Table 3.10:  AHP Decision Matrix for QoS Sub-criteria for Background Traffic 
Criteria Delay Jitter PLR Throughput Weights CR 

Delay 1 1 1/5 1/9 0.0597 

0.0123 
Jitter 1 1 1/5 1/9 0.0597 

PLR 9 9 1 3 0.6160 

Throughput 5 5 1/3 1 0.2646 

 

The final weights for the four QoS parameters and the overall weightings for all 

the attributes for the Background traffic class are given in Equations (3.8) and (3.9), 

respectively. 

ொܹ௢ௌି஻௔௖௞ = ൦0.8333		0.0000		0.0000		0.000.1667		0.7500		0.0811		0.000.0000		0.0000		0.5769		0.000.0000	0.2500		0.3420		1.00൪ × ൦0.05970.05970.61600.2646൪ = ൦0.04980.10470.35540.4902൪
ܬܶܲܦ      (3.8) 

஻ܹ௔௖௞ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି஽ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି௃ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି௉ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.32710.3271 × 0.04980.3271 × 0.10470.3271 × 0.35540.3271 × 0.49020.14660.10870.05910.0314 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.32710.01630.03420.11630.16040.14660.10870.05910.0314ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

     (3.9) 

3.2.2.1.3 Weights for Streaming Traffic Class 

The AHP decision matrix, for the relative importance of QoS’s sub-criteria based 

upon the characteristics of Streaming traffic class, is shown in Table 3.11. These pairwise 

comparisons are based on the characteristic and QoS requirements for Streaming traffic 

class, as provided in Table 3.1.  
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Table 3.11:  AHP Decision Matrix for QoS Sub-criteria for Streaming Traffic 

Criteria Delay Jitter PLR Throughput Weights CR 

Delay 1 1/5 1/6 1/7 0.0501 

0.0262 
Jitter 5 1 1/2 1/2.5 0.1902 

PLR 6 2 1 1/2 0.2971 

Throughput 7 2.5 2 1 0.4626 

 

Equations (3.10) and (3.11) show the final QoS parameters weights and the overall 

weightings for all the attributes for the Streaming traffic class. 

 

ொܹ௢ௌିௌ௧௥ = ൦0.8333		0.0000		0.0000		0.000.1667		0.7500		0.0811		0.000.0000		0.0000		0.5769		0.000.0000	0.2500		0.3420		1.00൪ × ൦0.05010.19020.29710.4626൪ = ൦0.04170.17510.17140.6118൪
ܬܶܲܦ    (3.10) 

ௌܹ௧௥ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି஽ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି௃ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି௉ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.32710.3271 × 0.04170.3271 × 0.17510.3271 × 0.17140.3271 × 0.61180.14660.10870.05910.0314 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.32710.01360.05730.05610.20010.14660.10870.05910.0314ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

   (3.11) 

3.2.2.2 Weights Calculations Using FAHP 

Despite its popularity, the conventional AHP methodology is often criticized for 

its failure to effectively handle the intrinsic imprecision and fuzziness associated with the 

mapping of the end-user’s preferences to crisp numbers. Fuzzy Logic can be utilized to 

deal with this uncertainty by expressing the pairwise comparisons of the decision factors, 
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at the same level of hierarchy, as fuzzy sets or fuzzy numbers. To solve hierarchal fuzzy 

problems, FAHP [116], a fuzzy extension of AHP, has been developed.  

In FAHP, the nine judgment levels that are used as the fundamental scale in the 

original AHP algorithm are expressed via the Triangular Fuzzy Numbers (TFN) to 

represent the relative importance among the pair of decision factors. A TFN, expressed 

as	ݔ෤ = (݈,݉,  is a special type of fuzzy number whose membership value is defined by ,(ݑ

three real numbers, where parameter ݉ is the most promising value as it gives the 

maximal grade of the membership function	(ݔ)ߤ, and parameters ݈ and ݑ are the lower 

and upper bounds that limit the field of the possible evaluation [117]. The membership 

function of a TFN is given in Equation (3.12). 

(ݔ)ߤ = ۔ە
ۓ (௫ି௟)(௠ି௟) 	ݔ															 ∈ [݈, ݉](௨ି௫)(௨ି௠) 	ݔ															 ∈ [݉,  (3.12)    ݁ݏ݅ݓݎℎ݁ݐ݋																								0				[ݑ

Following, are the steps involved in classical FAHP process: 

1. In the first step, AHP matrices, containing pairwise comparisons of attributes, 

are obtained from multiple decision makers. 

௣ܣ = [ܽ௜௝]௡×௡௣ = ێێێۏ
ଵଵ௣ܽۍ ܽଵଶ௣ ⋯ ܽଵ௡௣ܽଶଵ௣ ܽଶଶ௣ ⋯ ܽଶ௡௣⋮ܽ௡ଵ௣ ⋮ܽ௡ଶ௣ 							 ⋮ܽ௡௡௣ ۑۑۑے

ې
݌         = 1, 2, … ,  ݐ

where ݌ represents the number of decision makers, and ݅ = ݆ = 1, 2, … , ݊. 

2. TFNs representing grades of multiple decision makers are obtained via 

Equation (3.13). 
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݈௜௝ = min௣ቀܽ௜௝௣ ቁ,			݉௜௝ = ∑ ௔೔ೕ೛೟೛సభ௣ ௜௝ݑ				, = max௣ቀܽ௜௝௣ ቁ         (3.13) 

where ݌ = 1, 2, … , ݅ and  ݐ = ݆ = 1, 2, … , ݊         

3. Establish the FAHP comparison matrix that contains TFNs representing 

pairwise comparisons between the attributes at a certain level of hierarchy. 

One such matrix is given in Equation (3.14). 

ሚܣ        = ( ෤ܽ௜௝)௡×௡ = ൦ (1,1,1) (݈ଵଶ,݉ଵଶ, (ଵଶݑ ⋯ (݈ଵ௡,݉ଵ௡, ,ଵ௡)(݈ଶଵ,݉ଶଵݑ (ଶଵݑ (1,1,1) ⋯ (݈ଶ௡,݉ଶ௡, ,ଶ௡)⋮(݈௡ଵ,݉௡ଵݑ (௡ଵݑ ⋮(݈௡ଶ,݉௡ଶ, (௡ଶݑ ⋮(1,1,1) ൪(3.14) 

  where ൫ ෤ܽ௝௜൯ = ൣ ෤ܽ௜௝൧ିଵ = (݈௜௝,݉௜௝, ௜௝)ିଵݑ = ( ଵ௨೔ೕ , ଵ௠೔ೕ , ଵ௟೔ೕ) 
4. Weights of the attributes are acquired using Fuzzy Extent Analysis [118]. 

Equation (3.15) is used to obtain the value of the fuzzy synthetic extent with 

respect to the ݅௧௛ object. ෨ܵ௜ = ∑ ෤݆ܽ݅௡௝ୀଵ × ൣ∑ ∑ ෤݆ܽ݅௡௝ୀଵ௡௜ୀଵ ൧ିଵ	     (3.15) 

where 					∑ ෤݆ܽ݅௡௝ୀଵ = (∑ ݈݆݅௡௝ୀଵ , ∑ ݆݉݅௡௝ୀଵ , ∑ ௡௝ୀଵ݆݅ݑ ) 
and       ൣ∑ ∑ ෤݆ܽ݅௡௝ୀଵ௡௜ୀଵ ൧ିଵ 	= ൬ ଵ∑ ∑ ೙ೕసభ೙೔సభ݆݅ݑ , ଵ∑ ∑ ݆݉݅೙ೕసభ೙೔సభ , ଵ∑ ∑ ݈݆݅೙ೕసభ೙೔సభ ൰ 

5. Calculate the degree of possibility for a convex fuzzy number to be greater 

than ݇ convex fuzzy numbers ෨ܵ௜	(݅ = 1, 2, … , ݇). This is given below: ܸ(෨ܵ ≥ ෨ܵ௜) = ܸ[(෨ܵ ≥ ෨ܵ1)	ܽ݊݀	(෨ܵ ≥ ෨ܵ2)	ܽ݊݀… ܽ݊݀	(෨ܵ ≥ ෨ܵ݇)] ܸ(෨ܵ ≥ ෨ܵ௜) = ݉݅݊൛ܸ(෨ܵ ≥ ෨ܵ௜)ൟ	     (3.16) 

where the degree of possibility of ෨ܵଵ ≥ ෨ܵଶ	and ෨ܵଶ ≥ ෨ܵଵ is given as,  
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ܸ(෨ܵଵ ≥ ෨ܵଶ) = ቐ													1																											݉ଵ ≥ ݉ଶ											0																														݈ଶ ≥ ଵ௟మି௨భ(௠భି௨భ)ି(௠మି௟మ)ݑ , ݁ݏ݅ݓݎℎ݁ݐ݋ ቑ    (3.17) 

ܸ(෨ܵଶ ≥ ෨ܵଵ) = ቐ													1																											݉ଶ ≥ ݉ଵ											0																														݈ଵ ≥ ଶ௟భି௨మ(௠మି௨మ)ି(௠భି௟భ)ݑ , ݁ݏ݅ݓݎℎ݁ݐ݋ ቑ    (3.18) 

Note that in order to compare ෨ܵଵ	and	෨ܵଶ, both values of ܸ(෨ܵଵ ≥ ෨ܵଶ) and ܸ(෨ܵଶ ≥ ෨ܵଵ) are required.  

6. Assuming that ݀௜ᇱ = ݉݅݊൛ܸ(෨ܵ௜ ≥ ෨ܵ௞)ൟ, the weight vector is given by: 

ᇱݓ  = (݀ଵᇱ , ݀ଶᇱ , … ݀௡ᇱ )்         (3.19) 

7. Finally, the normalized non-fuzzy weight vector is given in Equation (3.20).          

     ܹ = (݀ଵ, ݀ଶ, … , ݀௡)் = ( ௗభᇲ∑ ௗ೔ᇲ೙೔సభ , ௗమᇲ∑ ௗ೔ᇲ೙೔సభ , … , ௗ೙ᇲ∑ ௗ೔ᇲ೙೔సభ )     (3.20) 

In the proposed scheme, the FAHP algorithm is coded using MATLAB to 

calculate the weights for attributes based on different traffic classes. The developed 

algorithm is capable of taking one or more decision matrices. For the case when only a 

single decision matrix is available, pre-defined TFNs are used to define the end-user’s 

preferences. These TFNs and their corresponding reciprocal values are defined in Table 

3.12.  

In this newly developed algorithm, similar steps as discussed in Section 3.2.2.1 

are followed to calculate the weights for each attribute, with the exception of applying 

FAHP instead of classical AHP algorithm. In the following paragraphs, we will 

summarize the calculated weights for all of the four traffic classes using FAHP approach. 
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Table 3.12:  TFNs and Reciprocal TFNs for FAHP Levels of Importance 
Intensity of  

Importance 

Definition TFN Reciprocal 

TFN 

1 Equal Importance (1, 1, 1) (1, 1, 1) 

2 Intermediate Values (1/2, 3/4, 1) (1, 4/3, 2) 

3 Moderate Importance (2/3, 1, 3/2) (2/3, 1, 3/2) 

4 Intermediate Values (1, 3/2, 2) (1/2, 2/3, 1) 

5 Strong Importance (3/2, 2, 5/2) (2/5, 1/2, 2/3) 

6 Intermediate Values (2, 5/2, 3) (1/3, 2/5, 1/2) 

7 Very Strong Importance (5/2, 3, 7/2) (2/7, 1/3, 2/5) 

8 Intermediate Values (3, 7/2, 4) (1/4, 2/7, 1/3) 

9 Extreme Importance (7/2, 4, 9/2) (2/9, 1/4, 2/7) 

3.2.2.2.1 Weights for Conversational Traffic Class 

Tables 3.13-3.14 show FAHP decision matrices for level-1 and level-2 criteria for 

the Conversational traffic class, respectively. The tables also display the corresponding 

TFNs and the weights for all attributes based on the FAHP algorithm. The TFNs 

generated in Tables 3.15-3.17 are used to create the interdependence matrix of QoS 

parameters given in Table 3.18. 

Finally, the overall weightings for all the attributes for the Conversational traffic 

class are shown in Equation (3.21). 

஼ܹ௢௡௩ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି஽ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି௃ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି௉ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.26850.2685 × 0.29000.2685 × 0.38120.2685 × 0.07850.2685 × 0.25030.16150.14590.12090.0346 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.26850.07790.10240.02110.06720.16150.14590.12090.0346ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

    (3.21) 
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Table 3.13:  FAHP Decision Matrix for Leve-1 Criteria for Conversational Traffic 

Criteria RSS QoS Velocity 
Network 

Loading 
Security Cost Weights 

RSS 
1 

(1,1,1) 

1 

(1,1,1) 

3 

(0.667,1,1.5) 

4 

(1,1.5,2) 

5 

(1.5,2,2.5) 

7 

(2.5,3,3.5) 
0.2685 

QoS 
1 

(1,1,1) 

1 

(1,1,1) 

3 

(0.667,1,1.5) 

4 

(1,1.5,2) 

5 

(1.5,2,2.5) 

7 

(2.5,3,3.5) 
0.2685 

Velocity 
1/3 

(0.667,1,1.5) 

1/3 

(0.667,1,1.5) 

1 

(1,1,1) 

2 

(0.5,0.75,1) 

3 

(0.667,1,1.5) 

4 

(1,1.5,2) 
0.1615 

Network 

Loading 

1/4 

(0.5,0.667,1) 

1/4 

(0.5,0.667,1) 

1/2 

(1,1.33,2) 

1 

(1,1,1) 

2 

(0.5,0.75,1) 

4 

(1,1.5,2) 
0.1459 

Security 
1/5 

(0.4,0.5,0.667) 

1/5 

(0.4,0.5,0.667) 

1/3 

(0.667,1,1.5) 

1/2 

(1,1.33,2) 

1 

(1,1,1) 

3 

(0.667,1,1.5) 
0.1209 

Cost 
1/7 

(0.286,0.33,0.4) 

1/7 

(0.286,0.33,0.4) 

1/4 

(0.5,0.667,1) 

1/4 

(0.5,0.667,1) 

1/3 

(0.667,1,1.5) 

1 

(1,1,1) 
0.0346 

 
 

Table 3.14:  FAHP Decision Matrix for QoS Sub-criteria for Conversational Traffic 
Criteria Delay Jitter PLR Throughput Weights 

Delay 
1 

(1,1,1) 

1 

(1,1,1) 

3 

(0.667,1,1.5)

7 

(2.5,3,3.5) 
0.4238 

Jitter 
1 

(1,1,1) 

1 

(1,1,1) 

3 

(0.667,1,1.5)

5 

(1.5,2,2.5) 
0.3207 

PLR 
1/3 

(0.667,1,1.5) 

1/3 

(0.667,1,1.5) 

1 

(1,1,1) 

3 

(0.667,1,1.5) 
0.2356 

Throughput 
1/7 

(0.286,0.33,0.4)

1/5 

(0.4,0.5,0.667)

1/3 

(0.667,1,1.5)

1 

(1,1,1) 
0.0199 

  
 
    Table 3.15:  FAHP Decision Matrix w.r.t Delay 

Criteria Delay Jitter Weights 

Delay 
1 

(1,1,1) 

4 

(1,1.5,2) 
0.6842 

Jitter 
1/4 

(0.5,0.667,1)

1 

(1,1,1) 
0.3158 
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  Table 3.16:  FAHP Decision Matrix w.r.t Jitter 
Criteria Jitter Throughput Weights 

Jitter 
1 

(1,1,1) 

3 

(0.667,1,1.5)
0.5000 

Throughput 
1/3 

(0.667,1,1.5)

1 

(1,1,1) 
0.5000 

 

Table 3.17:  FAHP Decision Matrix w.r.t PLR 
Criteria Jitter PLR Throughput Weights 

Jitter 
1 

(1,1,1) 

1/3 

(0.667,1,1.5)

1/2 

(1,1.33,2) 
0.3694 

PLR 
3 

(0.667,1,1.5)

1 

(1,1,1) 

3 

(0.667,1,1.5) 
0.3330 

Throughput 
2 

(0.5,0.75,1) 

1/3 

(0.667,1,1.5)

1 

(1,1,1) 
0.2976 

 
 
         Table 3.18:  FAHP Interdependence Matrix for QoS parameters 

Criteria Delay Jitter PLR Throughput 

Delay 0.6842 0.0000 0.0000 0.0000 

Jitter 0.3158 0.5000 0.3694 0.0000 

PLR 0.0000 0.0000 0.3330 0.0000 

Throughput 0.0000 0.5000 0.2976 1.0000 

 

3.2.2.2.2 Weights for Interactive Traffic Class 

Table 3.19 shows FAHP decision matrix for level-2 criteria for the Interactive 

traffic class using TFNs and FAHP algorithm. The overall weights for all the attributes 

for the Interactive traffic class are shown in Equation (3.22). 
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Table 3.19:  FAHP Decision Matrix for QoS Sub-criteria for Interactive Traffic 
Criteria Delay Jitter PLR Throughput Weights 

Delay 
1 

(1,1,1) 

4 

(1,1.5,2) 

1/2 

(1,1.33,2) 

3 

(0.667,1,1.5) 
0.3200 

Jitter 
1/4 

(0.5,0.667,1) 

1 

(1,1,1) 

1/8 

(0.25,0.286,0.333)

1/3 

(0.667,1,1.5) 
0.0079 

PLR 
2 

(0.5,0.75,1) 

8 

(3,3.5,4) 

1 

(1,1,1) 

5 

(1.5,2,2.5) 
0.5475 

Throughput 
1/3 

(0.667,1,1.5) 

3 

(0.667,1,1.5)

1/5 

(0.4,0.5,0.667) 

1 

(1,1,1) 
0.1246 

 

ூܹ௡௧ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌିூ௡௧ି஽ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି௃ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି௉ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.26850.2685 × 0.21890.2685 × 0.30720.2685 × 0.18230.2685 × 0.29150.16150.14590.12090.0346 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.26850.05880.08250.04900.07830.16150.14590.12090.0346ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

   (3.22) 

3.2.2.2.3 Weights for Background Traffic Class 

FAHP decision matrix for level-2 criteria and the overall weightings for all the 

attributes for the Background traffic class are shown in Table 3.20, and in Equation 

(3.23), respectively.  

஻ܹ௔௖௞ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି஽ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି௃ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି௉ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.26850.2685 × 0.16530.2685 × 0.31340.2685 × 0.10480.2685 × 0.41650.16150.14590.12090.0346 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.26850.04440.08420.02810.11180.16150.14590.12090.0346ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

    (3.23) 
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Table 3.20:  FAHP Decision Matrix for QoS Sub-criteria for Background Traffic 
Criteria Delay Jitter PLR Throughput Weights 

Delay 
1 

(1,1,1) 

1 

(1,1,1) 

1/4 

(0.5,0.667,1)

1/2 

(1,1.33,2) 
0.2416 

Jitter 
1 

(1,1,1) 

1 

(1,1,1) 

1/4 

(0.5,0.667,1)

1/2 

(1,1.33,2) 
0.2416 

PLR 
4 

(1,1.5,2) 

4 

(1,1.5,2) 

1 

(1,1,1) 

3 

(0.667,1,1.5) 
0.3147 

Throughput 
2 

(0.5,0.75,1)

2 

(0.5,0.75,1)

3 

(0.667,1,1.5)

1 

(1,1,1) 
0.2020 

 
Table 3.21:  FAHP Decision Matrix for QoS Sub-criteria for Streaming Traffic 

Criteria Delay Jitter PLR Throughput Weights 

Delay 
1 

(1,1,1) 

1/3 

(0.667,1,1.5)

1/4 

(0.5,0.667,1)

1/5 

(0.4,0.5,0.667) 
0.1767 

Jitter 
3 

(0.667,1,1.5)

1 

(1,1,1) 

1/2 

(1,1.33,2) 

1/3 

(0.667,1,1.5) 
0.2628 

PLR 
4 

(1,1.5,2) 

2 

(0.5,0.75,1) 

1 

(1,1,1) 

1/2 

(1,1.33,2) 
0.2756 

Throughput 
5 

(1.5,2,2.5) 

3 

(0.667,1,1.5)

2 

(0.5,0.75,1) 

1 

(1,1,1) 
0.2849 

3.2.2.2.4 Weights for Streaming Traffic Class 

Table 3.21 shows FAHP decision matrix for level-2 criteria for the Streaming 

traffic class, and the overall weightings for all attributes are given in Equation (3.24). 

ௌܹ௧௥ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି஽ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି௃ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି௉ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.26850.2685 × 0.12090.2685 × 0.28900.2685 × 0.09180.2685 × 0.49830.16150.14590.12090.0346 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.26850.03250.07760.02460.13380.16150.14590.12090.0346ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

    (3.24) 
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3.2.2.3 Weights Calculations Using Linguistic Variables 

Linguistic Variables and TFNs have been extensively used in calculating the 

criteria weights in MADM problems [119-121]. Linguistic Variables are represented in 

Linguistic terms, whose values can be modeled using fuzzy sets. These Linguistic 

Variables have proven very useful when dealing with complex problems involving 

uncertainty. For the case of network selection, the uncertainty resides in the vague 

preferences specified by the end-users. This research work follows the same methodology 

proposed in [121], which is based on the usage of triangular fuzzy numbers representing 

Linguistic Variables. Using this approach, the TFNs can be transformed into crisp 

numbers via Equation (3.25), making the algorithm easier and more efficient. Table 3.22 

shows TFNs and their corresponding crisp values for different Linguistic terms utilized in 

this research work.  

     ܹ൫ܣሚ൯ = ଵ଺ (݈ + 4݉ +  (3.25)      	(ݑ

where ܣሚ = (݈,݉,  .represents a triangular fuzzy number (ݑ

The weights for each attribute, based on the different traffic classes, are calculated 

using the same steps outlined in Section 3.2.2.1. The only difference is the adaption and 

application of Linguistic Variables with triangular fuzzy numbers. Final weights are 

produced following a simple weighted sum normalization process. A summary of the 

calculated weights for all of the four traffic classes using this modified approach is 

provided as follows. 
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3.2.2.3.1 Weights for Conversational Traffic Class 

Tables 3.23-3.24 show assigned Linguistic Variables and their corresponding 

normalized weights for level-1 and level-2 criteria for the Conversational traffic class, 

respectively. The weights generated in Tables 3.25-3.27 are used to create the 

interdependence matrix of QoS parameters, given in Table 3.28. Weights for all the 

attributes for the Conversational traffic class are shown in Equation (3.26). 

஼ܹ௢௡௩ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି஽ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି௃ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି௉ொܹ௢௦ × ொܹ௢ௌି஼௢௡௩ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.24580.2458 × 0.25010.2458 × 0.08900.2458 × 0.02410.2458 × 0.07120.20340.15250.10170.0508 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.24580.06150.08900.02410.07120.20340.15250.10170.0508ۍێێ

ۑۑۑ
ېۑۑ ܬܶܲܦܴ
ܥܮܸܵ

    (3.26) 

3.2.2.3.2 Weights for Interactive Traffic Class 

Table 3.29 shows assigned Linguistic Variables and their corresponding 

normalized weights for level-2 criteria for the Interactive traffic class. The weights used 

for the Interactive traffic class are shown in Equation (3.27). 

 

ூܹ௡௧ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌିூ௡௧ି஽ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି௃ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି௉ொܹ௢௦ × ொܹ௢ௌିூ௡௧ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.24580.2458 × 0.28890.2458 × 0.23410.2458 × 0.15080.2458 × 0.32620.20340.15250.10170.0508 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.24580.07100.05750.03710.08020.20340.15250.10170.0508ۍێ

ۑۑۑ
ېۑ ܬܶܲܦܴ
ܥܮܸܵ

    (3.27) 
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  Table 3.22:  Linguistic Variables with TFNs and Crisp Values 
Linguistic Variable Triangular Fuzzy Number Crisp Value 

Very Low (VL) (0.0, 0.0, 0.2) 0.0333 

Low (L) (0.0, 0.2, 0.4) 0.2000 

Medium (M) (0.2, 0.4, 0.6) 0.4000 

High (H) (0.4, 0.6, 0.8) 0.6000 

Very High (VH) (0.6, 0.8, 1.0) 0.8000 

Excellent (E) (0.8, 1.0, 1.0) 0.9667 

  
 

 

Table 3.23:  Linguistic Variables and Weights for Level-1 Criteria 
Criteria Linguistic Variable Normalized Weights 

RSS E 0.2458 

QoS E 0.2458 

Velocity VH 0.2034 

Traffic Load H 0.1525 

Security M 0.1017 

Cost L 0.0508 

   
 

 

Table 3.24:  Linguistic Variables and Weights for QoS criteria, Conversational Traffic 
Criteria Linguistic Variable Normalized Weight 

Delay E 0.3537 

Jitter E 0.3537 

PLR H 0.2195 

Throughput L 0.0732 
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 Table 3.25:  Linguistic Variables and Weights w.r.t Delay 
Criteria Linguistic Variable Normalized Weight 

Delay E 0.7073 

Jitter M 0.2927 

 

Table 3.26:  Linguistic Variables and Weights w.r.t Jitter 
Criteria Linguistic Variable Normalized Weights 

Jitter E 0.6170 

Throughput H 0.3830 

 

Table 3.27:  Linguistic Variables and Weights w.r.t PLR 
Criteria Linguistic Variable Normalized Weights 

Jitter M 0.1846 

PLR E 0.4462 

Throughput VH 0.3692 

 

 Table 3.28:  Linguistic Variables Interdependence Matrix for QoS parameters 
Criteria Delay Jitter PLR Throughput 

Delay 0.7073 0.0000 0.0000 0.0000 

Jitter 0.2927 0.6170 0.1846 0.0000 

PLR 0.0000 0.0000 0.4462 0.0000 

Throughput 0.0000 0.3830 0.3692 1.0000 

 

 Table 3.29:  Linguistic Variables & Weights for QoS Sub-criteria, Interactive Traffic 
Criteria Linguistic Variable Normalized Weight 

Delay E 0.4085 

Jitter L 0.0845 

PLR VH 0.3380 

Throughput M 0.1690 
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 Table 3.30:  Linguistic Variables & Weights for QoS Sub-criteria, Background Traffic 
Criteria Linguistic Variable Normalized Weight 

Delay L 0.1132 

Jitter L 0.1132 

PLR M 0.2264 

Throughput E 0.5472 

 

3.2.2.3.3 Weights for Background Traffic Class 

Table 3.30 shows Linguistic Variables and the corresponding weights for level-2 

criteria for the Background traffic class, and Equation (3.28) gives the overall weightings 

for this traffic class. 

஻ܹ௔௖௞ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି஽ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି௃ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି௉ொܹ௢௦ × ொܹ௢ௌି஻௔௖௞ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.24580.2458 × 0.08010.2458 × 0.14480.2458 × 0.10100.2458 × 0.67410.20340.15250.10170.0508 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.24580.01970.03560.02480.16570.20340.15250.10170.0508ۍێ

ۑۑۑ
ېۑ ܬܶܲܦܴ
ܥܮܸܵ

 (3.28) 

3.2.2.3.4 Weights for Streaming Traffic Class 

The Linguistic Variables and their corresponding normalized weights for level-2 

criteria for the Streaming traffic class are shown in Table 3.31. Equation (3.29) displays 

the weights of all the attributes for the Streaming traffic class. 
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Table 3.31:  Linguistic Variables & Weights for QoS criteria, Streaming Traffic 
Criteria Linguistic Variable Normalized Weight 

Delay L 0.0779 

Jitter H 0.2338 

PLR VH 0.3117 

Throughput E 0.3766 

 

ௌܹ௧௥ =
ێێۏ
ێێێ
ێێێ
ۍ ோܹௌௌொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି஽ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି௃ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି௉ொܹ௢௦ × ொܹ௢ௌିௌ௧௥ି்௏ܹ௘௟௢௖௜௧௬ேܹ௪ି௅௢௔ௗ௜௡௚ௌܹ௘௖௨௥௜௧௬஼ܹ௢௦௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
=
ێێۏ
ێێێ
ۍێێ

0.24580.2458 × 0.05510.2458 × 0.22460.2458 × 0.13910.2458 × 0.58120.20340.15250.10170.0508 ۑۑے
ۑۑۑ
ېۑۑ =

ێێۏ
ێێێ
ۑۑے0.24580.01350.05520.03420.14280.20340.15250.10170.0508ۍێ

ۑۑۑ
ېۑ ܬܶܲܦܴ
ܥܮܸܵ

    (3.29) 

3.2.3 BRIEF COMPARISON OF WEIGHTS CALCULATIONS SCHEMES 

For the convenience, Table 3.32 shows the weights for different attributes for all 

four traffic classes calculated using the three different schemes provided in the previous 

sections. 

3.2.4 RSS PREDICTION USING GREY PREDICTION THEORY 

Although RSS, with threshold and hysteresis approaches [107], can minimize the 

number of unnecessary handoffs, these schemes result in a low data rate and high 

dropping probabilities since at the time of handoffs, the RSS reception from the current 

PoA may become too weak. Grey Prediction [122] based technique is used in [123] to 

predict values of RSS with threshold and hysteresis to perform horizontal handoffs.  
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Table 3.32:  Comparison of Different Weighting Schemes 

 RSS 

QoS 

Velocity Loading Security Cost 
D J P T 

AHP 

Conv 0.3271 0.1077 0.1228 0.0307 0.0660 0.1466 0.1087 0.0591 0.0314

Str 0.3271 0.0136 0.0573 0.0561 0.2001 0.1466 0.1087 0.0591 0.0314

Int 0.3271 0.0850 0.0428 0.0987 0.1005 0.1466 0.1087 0.0591 0.0314

Back 0.3271 0.0163 0.0342 0.1163 0.1604 0.1466 0.1087 0.0591 0.0314

FAHP 

Conv 0.2685 0.0779 0.1024 0.0211 0.0672 0.1615 0.1459 0.1209 0.0346

Str 0.2685 0.0325 0.0776 0.0246 0.1338 0.1615 0.1459 0.1209 0.0346

Int 0.2685 0.0588 0.0825 0.0490 0.0783 0.1615 0.1459 0.1209 0.0346

Back 0.2685 0.0444 0.0842 0.0281 0.1118 0.1615 0.1459 0.1209 0.0346

TFN 

Conv 0.2458 0.0615 0.0890 0.0241 0.0712 0.2034 0.1525 0.1017 0.0508

Str 0.2458 0.0135 0.0552 0.0342 0.1428 0.2034 0.1525 0.1017 0.0508

Int 0.2458 0.0710 0.0575 0.0371 0.0802 0.2034 0.1525 0.1017 0.0508

Back 0.2458 0.0197 0.0356 0.0248 0.1657 0.2034 0.1525 0.1017 0.0508

 

In order to reduce the call dropping probability under a lognormal fading 

heterogeneous wireless environment, the proposed scheme utilizes predicted RSS values 

measured from the current PoA, as well as from the target networks. These predicted 

values, obtained using GPT, are utilized by the proposed scheme to determine if a future 

handoff is necessary or not. A MATLAB module is implemented to perform the above 

task.  

In Grey theory, system dynamic model can be represented by ܯܩ(݊, ℎ), where ݊ 

is the order of Grey differential equation, and ℎ defines the number of variables. This 

research work utilizes one of the most popular and widely used Grey prediction models; 



85 
 

the 1)ܯܩ, 1)	model takes a sequence of ݊ RSS samples, which is given as	ܺ(଴) ,(1)(଴)ݔ}= ,(2)(଴)ݔ … ,  The Accumulated Generating Operation (AGO) is utilized .{(݊)(଴)ݔ

to further process these samples due to the possible presence of random noise. The AGO 

operation produces a first-order AGO sequence that is given in Equation (3.30). 

(݇)(ଵ)ݔ   = ∑ ௞௜ୀଵ(݅)(଴)ݔ ,											݇ = 1	,2, … , ݊      (3.30) 

A linear dynamic model given in Equation (3.31) is then used to approximate the 

sequence that is obtained in Equation (3.26). ݔ(଴)(݇) + (݇)(ଵ)ݔܽ = ܾ                                   (3.31) 

where ܽ (developed parameter) and ܾ (grey input), which can be calculated using the 

least square approximation, are the coefficients of the differential equation whose 

solution is given in Equation (3.32). ݔ(ଵ)(݊ + 1) = ቂݔ(଴)(1) − ௕௔ቃ ݁ି௔௡ + ௕௔      (3.32) 

The vector representation of the parameters ܽ and ܾ is given by Equation (3.33).  ܿ = [ܽ	ܾ]் =  ௡       (3.33)ߛ்ܤଵି(ܤ்ܤ)

where 

 

ܤ = ێێێۏ
ۍێ − ଵଶ (1)(ଵ)ݔ] + [(2)(ଵ)ݔ 1− ଵଶ (2)(ଵ)ݔ] + [(3)(ଵ)ݔ 1⋮− ଵଶ ݊)(ଵ)ݔ] − 1) + [(݊)(ଵ)ݔ ۑۑۑے1⋮

ېۑ
  

and ߛ௡ = ,(2)(଴)ݔ] ,(3)(଴)ݔ … ,  ்[(݊)(଴)ݔ
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Table 3.33:  Predicted Values of RSS using GPT for Different Network Types 
Network Type RSSs Samples (dbm) PRSS (dbm) 

WLAN [-110 -110 -112 -113] -114.69 

WMAN [-140 -150 -151 -155] -157.08 

WWAN [-110 -111 -100 -95] -86.84 

 

Thus the predicted value of RSS can be obtained by using Equation (3.34). ݔ෤(଴)(݊ + 1) = ቂݔ(଴)(1) − ௕௔ቃ ݁ି௔௡(1 − ݁௔)      (3.34) 

Table 3.33 shows RSS samples measured from different types of networks and 

their predicted values using GPT. While a continuous drop pattern for RSS can be 

observed for both WLAN and WMAN networks, results calculated using GPT could help 

reduce the unnecessary call drops due to the predicted value of weak RSS. 

3.2.5 NORMALIZATION OF ATTRIBUTES USING FUZZY TECHNIQUES 

A heterogeneous wireless network typically comprises of different types of 

wireless access technologies with dissimilar operating parameters and characteristics. In 

general, these dissimilar parameters are not directly comparable. For example, the RSS 

ranges of WLAN and WMAN are quite different. Therefore, a high value of RSS 

measured from a WLAN may not be considered high in a WMAN environment. Thus 

Fuzzy Logic is utilized to normalize these parameters in the range of [0, 1].  

Fuzzy sets for each parameter are created based on the different network types. 

The Universe of Discourses (UoDs), for the input parameters, are selected based on the 

published standards for different network types (IEEE 802.11, IEEE 802.16, UMTS) [61, 
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108] and include the lowest and the highest values of the parameter that can be measured 

at the MS. Different Linguistic Variables such as low, medium, and high are created to 

partition these UoDs. Typical operating ranges of the attributes for three types of 

networks, utilized in this work are given in Table 3.34. For security and cost, we use a 

range of [1, 10], 10 being the highest level of security provided and the most expensive 

network utilized. 

Figures 3.4-3.6 show the fuzzy sets representing RSS of WWAN, WMAN, and 

WLAN, respectively. Due to their computational simplicity, trapezoidal membership 

functions, as defined in Equation (3.35), are used. 

(ݔ)஺ߤ = 	
۔ۖۖەۖۖ
ۓ 0௫ି௟௖ିమೢି௟

ݔ < ݈; ݔ > ݈ݑ < ݔ < (ܿ − ௪ଶ)௨ି௫௨ିమೢି௖ 		ቀܿ + ௪ଶቁ < ݔ < 1							ݑ ቀܿ − ௪ଶቁ < ݔ < (ܿ + ௪ଶ)ۙۘۖۖ
ۖۗۖ

       (3.35) 

where ݈, and	ݑ are the lower and upper bounds respectively, ܿ is the center and ݓ is the 

width of the top side of the symmetric trapezoid. 

 

 
Figure 3.4:  Fuzzy Set Representing RSS (WWAN) 
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Figure 3.5:  Fuzzy Set Representing RSS (WMAN) 

 

 
Figure 3.6:  Fuzzy Set Representing RSS (WLAN) 

 

Table 3.34:  Parameter Ranges for Different Network Types 
 WLAN WMAN WWAN 

RSS (dbm) -110 – -55 -160 – -100 -150 – -90 

Delay (ms) 100 – 150 10 – 50 10 – 75 

Jitter (ms) 10 – 30 3 – 12 5 – 15 

PLR per 106 bytes (%) 3 – 7 1 – 8 1 – 5 

Throughput (Mbps) 50 – 150 20 – 100 0.1 – 3 

Network Range (m) 0 – 100 0 – 350  0 – 750  

Velocity (mps) 0 – 10  

Traffic Load (%) 0 – 100  

Security 1 – 10  

Cost 1 – 10  
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Several parallel FLCs with reduced rule-sets are created to normalize network 

parameters. These network parameters can be classified as benefit type or cost type. For 

example, RSS is a benefit type attribute, as highest possible value of RSS is desired from 

a given network. On the other hand, network delay, which is preferred to be a minimal 

value, is characterized as a cost type attribute. The normalization of both classes of 

parameters is performed using specific fuzzy rules in such a way that the respective FIS 

produces high membership values for benefit type parameters and low membership 

values for the cost types. Figures 3.7-3.8 show FLCs for RSS (measured from WMAN) 

and the respective rule-set, whereas Figures 3.9-3.10 show the same for cost type 

parameter, latency. Since RSS is a benefit type parameter, inference rules are used to find 

the probability of the MS selecting WMAN based on the measured RSS. On the other 

hand, the probability of the MS rejecting WMAN is calculated based on the measured 

value of delay, a cost type parameter.  

Other system parameters, such as throughput and Security preference, are 

considered as benefit type attributes, whereas jitter, PLR, velocity, traffic-load, and 

network cost are classified as cost type attributes.  The calculated membership values of 

all these parameters are utilized in the future steps of our proposed scheme.  

3.2.6 CALCULATION OF DEGREE OF QoS FOR CURRENT PoA 

In order to maximize the end-user’s satisfaction, the QoS, as provided by the 

current PoA (serving network), for the existing service (based on the traffic class) is 

calculated, monitored, and compared using a fuzzy inference system (discussed in the 

next section).  
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Figure 3.7:  FLC for RSS (WMAN) 

 

 
Figure 3.8:  Fuzzy Rule-set for RSS (WMAN) 

 

 
Figure 3.9:  FLC for Latency (WMAN) 

 

 
Figure 3.10:  Fuzzy Rule-set for Latency (WMAN) 

 

The degree of QoS is calculated in the range of [0, 1] by performing a weighted 

sum of the membership values of delay, jitter, PLR, and throughput, which are obtained 

in the previous section. This weighted sum is given in Equation (3.36). ܳܵ݋ௗ௘௚௥௘௘ = ௛௥௢௨௚௣௨௧൧்ߤ				௉௅ோߤ	௃௜௧௧௘௥ߤ		஽௘௟௔௬ߤൣ × [ ்ܹ஼஽ 		்ܹ ஼௃ 		 ்ܹ஼௉ 	 ்ܹ஼்]்    (3.36) 
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where ்ܹ஼௑ is the weight of the QoS parameter X (delay, jitter, PLR, and throughput) for a 

particular traffic class TC (Conversational, Streaming, Background, and Interactive). 

These weights are calculated using different mechanisms as discussed in Section 3.2.2.  

The degree of QoS that is obtained in this step serves as one of the inputs to the 

fuzzy inference system that is defined next.  

3.2.7 VHO FACTOR CALCULATION USING FUZZY LOGIC 

In our proposed scheme, we utilize four different fuzzy logic controllers to 

calculate the value of Vertical Handoff Factor and determine the necessity of handoffs 

based on the current conditions of serving PoA. In order to reduce the number of rules 

and system complexity, three fuzzy logic controllers are combined in a parallel fashion. 

The outputs of these three FLCs are then fed into the fourth fuzzy logic controller that 

produces the final VHO factor. Both Sugeno [124] and Mamdani [125] type FISs are 

incorporated with carefully designed rules. Figure 3.11 shows the overall design of these 

FLCs that are used to determine the necessity of VHO. In the following subsections, the 

details of these four fuzzy logic controllers are provided. 

3.2.7.1 Design of Fuzzy Logic Controller 1 

Velocity is considered an important factor in the proposed scheme. To reduce the 

call dropping probability and the unnecessary handoffs, MSs with higher speeds should 

be connected to networks with larger coverage areas; for example, WWAN. Figures 3.12-

3.13 show the design for FLC-1 and the membership function for the input variable (MS-

Velocity), respectively. A Sugeno based FIS with one input (MS-Velocity) and three 

output variables are utilized. The input variable has three membership functions (Low, 
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Medium, and High) and each of the three output variables has three singleton 

membership functions (Low, Medium, and High). The output variables reflect the 

probability of rejection for an MS to be in a specific network type at a given input speed. 

 

 
Figure 3.11:  Fuzzy Logic Controllers for VHO Necessity Estimation 

 
 

 
Figure 3.12:  Design for FLC-1 
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Figure 3.13:  Membership Function for MS-Velocity for FLC-1 

 

 
Figure 3.14:  Inference Rules for FLC-1 

 

Inference rules, as shown in Figure 3.14, are designed with the objective of 

connecting the higher speed MSs to a network with larger coverage area.  

Figure 3.15 shows the control surface for the output variable WWAN-Reject. It is 

clear from the figure that the probability of rejecting WWAN network at higher speed is 

very low. 

Figure 3.16 shows the evaluation of rules for FLC-1 with an MS moving at a 

speed of 7.5 meters per second. It can be observed from this figure that the probabilities 

of rejections for an MS to be in WLAN, WMAN, and WWAN are 0.95, 0.803, and 0.132, 

respectively.  
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Figure 3.15:  The Control Surface of the Output Variable             

 WWAN-Reject for FLC-1 
 

 
Figure 3.16:  Rules Evaluation for FLC-1 

 

 
Figure 3.17:  Design of FLC-2 (WLAN) 
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Figure 3.18:  Membership Functions for FLC-2 (WLAN) 

 

 

 
Figure 3.19:  Membership Functions for FLC-2 (WMAN) 

 

 

 
Figure 3.20:  Membership Functions for FLC-2 (WWAN) 
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Figure 3.21:  Inference Rules for FLC-2 (WLAN) 

 

 
Figure 3.22:  Inference Rules for FLC-2 (WMAN) 

 

 
Figure 3.23:  Inference Rules for FLC-2 (WWAN) 

 

3.2.7.2 Design of Fuzzy Logic Controller 2 

Distance between the MS and the current PoA (BS/AP) also plays a critical role in 

determining the necessity of handoffs. As the distance between the MS and the current 

PoA increases, the measured values of RSS and other critical factors decrease. Thus, 

handoff becomes imminent. The FLC-2 in the proposed scheme is designed based on the 

coverage provided by a specific network type. Since the coverage area of the three types 

of networks are different, and the assumption that at the most MS will be connected to 

one PoA, separate membership functions with different UoDs are designed based on 

these network types. Figure 3.17 shows the FLC-2 design for WLAN. A Sugeno based 

FIS with one input (Distance between MS and AP) and one output (probability of 

rejection in WLAN) is created. A similar design for WMAN and WWAN is followed. 

Figures 3.18-3.20 show the membership functions representing distance for WLAN, 

WMAN, and WWAN, respectively. Figures 3.21-3.23 show the inference rules designed 

for FLC-2 for the three network types. Figure 3.24 shows the control surface for the 



97 
 

output variable WMAN-Reject and Figure 3.25 shows the rule evaluations for FLC-2 for 

a WMAN network. 

 

 
Figure 3.24:  The Control Surface of the Output Variable                
WMAN-Reject for FLC-2 

 

 

 
Figure 3.25:  Rules Evaluation for FLC-2 (WWAN) 
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3.2.7.3 Design of Fuzzy Logic Controller 3 

The main objective of the proposed scheme has been to maximize the end-user’s 

satisfaction in terms of the quality and continuity of the currently utilized service. RSS 

and QoS play a very important role in achieving this objective. If any of these two 

parameters fall below a threshold, the overall quality of the current application session 

diminishes resulting in reduced end-user’s satisfaction levels. The FLC-3 is designed to 

make sure that the MS performs handoff before any of these two factors fall below the 

minimum network values required to sustain the quality of the currently utilized service.  

 Since the QoS measurements vary from one network type to another, separate 

FLCs are designed for each of the three network types. Figure 3.26 shows the design of 

FLC-3 for WLAN. A Mamdani based FIS with two inputs and one output is utilized. The 

inputs, WLAN-PRSS-degree and WLAN-QoS-degree, calculated in Sections 3.2.5 and 

3.2.6, respectively, represent the quality of the received signal measured at the MS and 

the quality of the currently utilized service. Figures 3.27-3.28 show the trapezoidal 

membership functions for these input variables, respectively. The inference rules for 

FLC-3 for WLAN, as shown in Figure 3.29, indicate that a low value of both inputs 

results in a high value for the output variable, PRSS-QoS-Factor, indicating a handoff 

possibility. Figure 3.30 shows the control surface area for the output variable PRSS-QoS-

Factor for FLC-3 that is designed for WLAN. Figures 3.31-3.32 show two different 

instances with low and high values of the two input variables. After evaluating the 

inference rules, a high value of the output variable, indicating high handoff probability, 

can be observed from these figures.  
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Figure 3.26:  Design of FLC-3 (WLAN) 

 

 
Figure 3.27:  Membership Function for Input Variable PRSS of FLC-3 (WLAN) 

 

 
Figure 3.28:  Membership Function for Input Variable QoS of FLC-3 (WLAN) 

 

Similar FLCs are designed for WMAN, and WWAN. The only difference 

between these three FLCs is the different UoDs with different ranges utilized for the three 

network types due to the varying QoS values.  
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Figure 3.29:  Inference Rules for FLC-3 (WLAN) 

 

 
Figure 3.30:  Control Surface of the Output Variable    

         PRSS-QoS-Factor of FLC-3 (WLAN) 

 
 

 
Figure 3.31:  Rules Evaluation for FLC-3 (WLAN) (Low RSS and High QoS) 
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Figure 3.32:  Rules Evaluation for FLC-3 (WLAN) (High RSS and Low QoS) 

 

3.2.7.4 Design of Fuzzy Logic Controller 4 

The FLC-4 is the main controller that determines the necessity of vertical 

handoffs based on the existing conditions of serving PoA. These conditions are evaluated 

using parallel FLCs to generate three different handoff factors (as discussed in the 

previous sections). These handoff factors serve as inputs to Mamdani based FLC-4, 

which in turn, outputs the VHO factor for the current PoA. Note that the PoA can be 

WLAN, WMAN, or WWAN. Figure 3.33 shows the design for FLC-4 where Figures 

3.34-3.38 are all related to this design. A reduced number of rules (19 instead of 27) can 

be seen from Figure 3.35. This is due to the fact that the proposed scheme gives more 

importance to the RSS-QoS-Factor, as it plays a critical role in determining the quality of 

the currently utilized service, and maximizing the end-user satisfaction. Figures 3.39-3.40 

demonstrate evaluation of these rules for two different cases, showing whether handoff is 
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required or not. As can be seen from Figure 3.39, a high value of VHO-Factor is 

generated, indicating a high probability of handoff. This is due to the fact that the MS is 

currently connected to WLAN and is moving away from the AP.  

 
Figure 3.33:  Design for FLC-4 

 
 

 
Figure 3.34:  Membership function for Input Variable    

 MS-PoA-Distance-Factor  for FLC-4 
 

 
Figure 3.35:  Inference Rules for FLC-4 
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Figure 3.36:  Control Surface for the Output Variable                       

 WLAN-HO-Factor for FLC-4 
 

 
Figure 3.37:  Control Surface for the Output Variable    

 WMAN-HO-Factor for FLC-4 
 

 
Figure 3.38:  Control Surface for the Output Variable   

 WWAN-HO-Factor for FLC-4 
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Figure 3.39:  Rules Evaluation for FLC-4 (High Handoff Probability) 

 

 

 
Figure 3.40:  Rules Evaluation for FLC-4 (Low Handoff Probability) 
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3.2.8 HANDOFF NECESSITY ESTIMATION 

The final handoff factor that is obtained as the output from FLC-4 is compared 

against a threshold value to determine if a handoff from the serving PoA is required. This 

threshold value can be adjusted according to the sensitivity of the network types. Note 

that a higher value of this threshold will prevent necessary handoffs, resulting in high 

probability of call drops. On the other hand, a low value will result in frequent and costly 

handoffs, resulting in unnecessary wastage of system resources. Thus, a balanced value 

for this threshold is required. Performing numerous simulations and observing the need 

for handoffs based on different input conditions achieve this balanced value. The 

proposed scheme utilizes a value of 0.75 for all three network types. 

3.3 VHITS TARGET NETWORK SELECTION MODULE 

A heterogeneous wireless network comprises of different wireless access 

technologies including IEEE 802.11 Wi-Fi, IEEE 802.16 WiMAX, 3G/4G, and satellite 

network, etc. On the other hand, a variety of mobile devices, including but not limited to 

smartphones, iPads, etc., have surfaced during the past few years and have been evolving 

rapidly while becoming smarter and more powerful. Most of these mobile devices are 

equipped with multiple interfaces in order to obtain services via different wireless access 

technologies in a heterogeneous environment. These technical advancements in the area 

of wireless communication and technology ultimately lead towards a ubiquitous and 

pervasive environment offering powerful and rich connectivity; a wireless environment 

where multiple access technologies are available and the end-users are served with 

anywhere, anytime networks, the so called “Always Best Connected” (ABC) networks. 
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These ABCs have been designed to provide support for different types of services that 

can be consumed by end-users. These rich multimedia services are characterized by 

different traffic demands and diverse QoS requirements that must be fulfilled in order to 

guarantee end-users’ satisfaction.  

Hence, selection of an ABC to meet specific application/service’s QoS 

requirements to maximize the end-user’s satisfaction is a very challenging task and 

involves several key attributes including RSS, QoS, traffic load, MS’s velocity, offered 

security, and network usage cost. Since all of these key parameters play a critical role in 

determining an ABC network, ranking the candidate networks based on a single criterion 

will not provide an optimal result while selecting a best target network.  

Several MADM approaches [126] that rank alternatives by comparing them based 

on relative importance of multiple criteria have been developed. Since network selection 

has recently become a multi-criteria problem, application of different MADM algorithms 

to rank candidate networks in a preferential order is considered in this research work. In 

the following paragraphs, different algorithms, namely TOPSIS, Fuzzy TOPSIS, and 

Fuzzy VIKOR are discussed. These algorithms are successfully applied to implement the 

target network selection mechanism of VHITS. Figure 3.41 shows an overall design of 

the VHITS Target Network Selection scheme. A comparison of Figures 3.2 and 3.41 

shows the presence of several common components utilized by both VHITS Handoff 

Necessity Estimation and VHITS Target Network Selection modules. Hence, in this 

section the details of some of these components that are already provided in Section 3.2 

are intentionally skipped and only minor exceptions are noted.  
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3.3.1 SYSTEM ATTRIBUTES 

The VHITS target network selection scheme utilizes nine parameters including 

PRSS, individual QoS parameters (delay, jitter, PLR, and throughput), MS-velocity, 

traffic-load, security-preference and network-usage-cost. These nine parameters are 

measured from all available candidate networks that can provide coverage to the MS. As 

discussed in VHITS handoff necessity estimation module, we assume the availability of 

these system parameters to MS.  

START 

READ ATTRIBUTES FROM 
ALL NETWORKS IN RANGE  
(WLAN, WMAN, WWAN) 

WEIGHTS CALCULATIONS 
BASED ON TRAFFIC CLASS 

RSS PREDICTION 
BASED ON 
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Figure 3.41:  VHITS Target Network Selection Scheme 
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3.3.2 WEIGHTS CALCULATIONS FOR SYSTEM ATTRIBUTES 

Due to the fact that the effects of multiple criteria on evaluating the available 

alternatives have natural variances, the relative importance of each of the attributes 

involved in ranking the available candidate networks based on users’ and/or operators’ 

preferences is decided by assigning weights to each of the utilized attributes. Any of the 

methods discussed in Section 3.2.2 can be utilized to calculate these weights. The 

TOPSIS based network selection method can work with any of these weighting schemes 

as all of them generate crisp values for final weights. However, these weight calculation 

schemes cannot be utilized with FTOPSIS and FVIKOR ranking methods, as these fuzzy 

based schemes require that their attributes and corresponding weights must be either 

Linguistic Variables or triangular fuzzy numbers. Hence, certain modifications are 

needed in these weighting schemes..  

3.3.3 RSS PREDICTION USING GREY PREDICTION THEORY 

A heterogeneous wireless network is characterized by a fast fading environment 

where the RSS of any available candidate network can fall below a threshold that is 

required to maintain the connectivity with the MS. The GPT is used to predict the future 

RSS values for all available candidate networks. This is to ensure that the networks with 

strong signals are available and will remain available at the time of handoff. 

3.3.4 NORMALIZATION OF ATTRIBUTES USING FUZZY TECHNIQUES 

The crisp values of all the required attributes, from all available candidate 

networks, are measured and normalized using the same process as detailed in Section 

3.2.5; several FISs are utilized to determine the probability of selection/rejection for an 
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MS to be connected to a given network type. After this process, all system attributes with 

different units and ranges are normalized to a common scale, which is required by all 

candidate-ranking algorithms.  

The TOPSIS algorithm can then be used with these normalized parameters to 

obtain the rank of all available networks. On the other hand, since the measured data and 

their corresponding membership values are crisp, it cannot be utilized directly with Fuzzy 

TOPSIS and Fuzzy VIKOR schemes as they rely on Linguistic Variables and/or 

triangular fuzzy numbers. Hence, the proposed scheme utilizes a similar scale as 

presented in Table 3.22 to transform these crisp values into triangular fuzzy numbers that 

can be utilized by these fuzzy based methods.  

3.3.5 SIGNIFICANCE OF INDIVIDUAL PARAMETERS 

The VHITS handoff necessity estimation scheme relies on the degree of QoS for a 

specific traffic class that is obtained based on the values of QoS parameters provided by 

the current PoA. This degree is calculated using a weighted sum of membership values 

for all QoS parameters as shown in Equation (3.32). The assignment of weights is based 

on the type of current service consumed by the end-user.  

The VHITS target network selection scheme cannot use this degree directly since 

at a given instance of time, measured values of these QoS parameters from multiple 

candidate networks are required during the network selection process. Hence, the 

proposed scheme measures individual QoS parameters from each of the available 

candidate networks, assigns weights to these parameters, based on the traffic class 

currently utilized or requested by the end-user, and then feeds them to the network 
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ranking algorithm. This way the VHITS target network selection algorithm can rank the 

candidate networks based on the strength of individualized parameters to capture their 

significance in the final ranking order during the network selection process.  

The target selection mechanism of VHITS relies on nine different parameters 

obtained from all available candidate networks (alternatives). These values are arranged 

together to create a decision matrix. The decision matrix, along with criteria weights, is 

then fed into the ranking algorithms that are discussed next.  

3.4 NETWORK SELECTION (RANKING) ALGORITHMS 

This section introduces different ranking algorithms that can be utilized in the 

proposed scheme. As discussed previously, the users in a heterogeneous wireless 

environment have a need to be always best connected anywhere at anytime. In order to 

guarantee the continuity and the quality of the current session, vertical handoffs, based on 

intelligent decisions to select the optimal network, are required.  

Various MADM algorithms such as SAW, MEW, ELECTRE, VIKOR, and GRA, 

have been proposed to make such selection decisions but application of fuzzy logic in 

addition to these algorithms especially in the area of wireless communication is just 

starting. These algorithms are used to rank the alternatives (candidate networks) 

according to their attractiveness (based on weighted criteria). This in turn helps to 

achieve the overall objective; that is to satisfy the maximum number of mobile users in a 

heterogeneous wireless environment.  

The rest of this section discusses TOPSIS, FTOPSIS that is an extension of 

TOPSIS based on fuzzy logic, and Fuzzy VIKOR. To the best of our knowledge, this 
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research work is the first attempt to apply FTOPSIS and Fuzzy VIKOR to the network 

selection problem in a heterogeneous wireless environment.  

3.4.1 NETWORK SELECTION USING TOPSIS 

TOPSIS [91, 121, 127], an MADM ranking algorithm, is designed to measure the 

relative efficiency of the available alternatives based on certain criteria. One of the 

reasons for its popularity is that it requires limited subjective inputs from decision 

makers, which happens to be the preference weights assigned to different criteria. The 

principle behind this algorithm is very simple; the chosen alternative should be as close to 

the ideal solution as possible and as far from the negative-ideal solution as possible. The 

ideal solution is a composite of the best performance values, for each attribute, exhibited 

by any alternative. The negative-ideal solution is the composite of the worst performance 

values. The distance between each alternative and these performance values is measured 

in the Euclidean sense to decide relative closeness to the ideal solution. Note that this 

distance is affected by the decision maker’s subjective preferences for each criterion. The 

following steps are involved in TOPSIS ranking algorithm: 

1. Decision Matrix Construction: A ݉ × ݊ decision matrix containing the 

ratings of each alternative w.r.t each criterion is created. This is expressed 

in Equation (3.37). ܥଵ ⋯						ଶܥ				 ௡ܥ		
ܦ = ௠ܣ⋮ଶܣଵܣ ൦݀ଵଵ݀ଶଵ⋮ ݀ଵଶ ⋯ ݀ଵ௡݀ଶଶ ⋯ ݀ଶ௡⋮			 ⋯ 			⋮݀௠ଵ ݀௠ଶ ⋯ ݀௠௡൪     (3.37) 
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where ܣଵ, ,ଶܣ … , ,ଵܥ ,௠ are the possible alternativesܣ ,ଶܥ …	,  ௡ are theܥ

criteria. Each element	݀௜௝of the decision matrix represents the 

performance rating of the alternative ܣ௜ with respect to the criterion	ܥ௝. 
2. Decision Matrix Normalization: Decision matrix is normalized based on 

the following equation: ݎ௜௝ = 	 ௗ೔ೕට∑ ௗ೔ೕ೘೔సభ 				݅ = 1, 2, …	,݉									݆ = 1, 2, …	, ݊    (3.38) 

 where ݎ௜௝ is the normalized value of element ݀௜௝.  
3. Weighted Normalized Decision Matrix Construction: This matrix is 

constructed by multiplying each element ݎ௜௝ with its associated weight ݓ௝, 
as follows: 

௜௝ݒ  = ௜௝ݎ ×  ௝        (3.39)ݓ

4. Calculation of Positive & Negative Ideal Solution: The positive and 

negative ideal solutions, ܣା	and	ିܣ, respectively, are defined as: ܣା = ,ଵାݒ) ,ଶାݒ … , (௡ାݒ = ൛൫max௜ ௜௝ݒ ห݆ ∈ ,஻൯ܥ ൫min௜ ௜௝ݒ ห݆ ∈ ିܣ ஼൯ൟ     (3.40)ܥ = ଵିݒ) , ଶିݒ , … , ௡ିݒ ) = ൛൫min௜ ௜௝ݒ ห݆ ∈ ,஻൯ܥ ൫max௜ ௜௝ݒ ห݆ ∈  ஼൯ൟ     (3.41)ܥ

where ܥ஻ and ܥ஼ denote the sets with benefit and cost criteria, 

respectively. 

5. Calculation of Separation between Alternatives & Ideal Solutions: The 

separation (distance) between each alternative, from the positive ideal 

( ௜ܵା)	and negative ideal solutions ( ௜ܵି ), are calculated as follows: 

௜ܵା = ට(ݒ௜௝ − ݅   ௜ା)ଶݒ = 1, 2, …	, ݉									݆ = 1, 2, …	, ݊    (3.42) 
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௜ܵି = ඥ(ݒ௜௝ − ௜ିݒ )ଶ    ݅ = 1, 2, …	, ݉									݆ = 1, 2, …	, ݊   (3.43) 

6. Calculation of Relative Closeness to the Ideal Solution: This step involves 

calculating the relative closeness to the ideal solution, which is defined as: ܥ௜ = ௌ೔షௌ೔షାௌ೔శ   ݅ = 1, 2, …	, ݉									               (3.44) 

7. Ranking of the Alternatives: Sorting the values of relative closeness	ܥ௜ in 

descending order, allows the ranking of the alternative. The best 

alternative has the highest value of	ܥ௜. 
As part of the VHITS target network selection scheme, MATLAB code is 

implemented to perform the selection of the best network among the other available 

candidates, using a modified version of the above mentioned TOPSIS algorithm. The 

proposed scheme modifies the original TOPSIS algorithm by skipping the decision 

matrix normalization step (step 2). This is due to the fact that the proposed scheme 

normalizes all the parameters for all available candidate networks in the range [0, 1], 

using fuzzy techniques. This is previously discussed in detail in Sections 3.2.5 and 3.3.4. 

The preference weights that are required by the TOPSIS algorithm are obtained by using 

different techniques highlighted in Section 3.2.2. Numerical examples illustrating the 

VHITS target network selection mechanism are provided in Chapter 4. 

3.4.2 NETWORK SELECTION USING FUZZY TOPSIS 

A wireless environment is characterized by its dynamic nature, inherent 

uncertainty, and imprecise parameters and constraints. Network parameters like 

throughput, RSS, and network delays, etc., are intrinsically imprecise. Due to this 



114 
 

vagueness, the accurate measurement of these network parameters in a wireless 

environment is a difficult task.   

In the past, several MADM algorithms are used to establish rankings among 

available candidate networks, but due to the imprecise and vague nature of the input data, 

they are unable to produce efficient handoff decisions; the uncertainty in user preferences 

(in the form of criteria weights) are considered while the impreciseness in the measured 

data is ignored. 

In the classical TOPSIS method, the ratings of the alternatives and the weights of 

the criteria are known precisely and crisp values are assumed and used during the ranking 

process. Therefore, an extension of TOPSIS method [128, 129] is proposed that deals 

with fuzzy data, where the weights of the attributes and the performance ratings of all 

available alternatives are evaluated using Linguistic Variables. These Linguistic 

Variables can be expressed as trapezoidal or triangular fuzzy numbers. In this research 

work, Linguistic Variables and triangular fuzzy numbers, defined in Table 3.22, are 

utilized. The details of the FTOPSIS algorithm are provided as follows: 

1. Formation of Committee of Decision-Makers: A committee of ݇ decision-

makers is formed, where fuzzy ratings of alternatives and weights of 

criteria obtained from each decision maker ܦ௞ can be represented in terms 

of a triangular fuzzy number ݔ෤ = (݈,݉,  whose membership function is (ݑ

given in Equation (3.12).  

2. Fuzzy Decision Matrix Construction: This step is the same as the classical 

TOPSIS, with the exception that the ratings for all attributes are 
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represented as triangular fuzzy numbers instead of crisp values. This is 

shown as ܥଵ ⋯						ଶܥ				 ௡ܥ		
෩௞ܦ = ௠ܣ⋮ଶܣଵܣ ێێۏ

ۍ ሚ݀ଵଵሚ݀ଶଵ⋮
ሚ݀ଵଶ ⋯ ሚ݀ଵ௡ሚ݀ଶଶ ⋯ ሚ݀ଶ௡⋮			 ⋯ 			⋮ሚ݀௠ଵ ሚ݀௠ଶ ⋯ ሚ݀௠௡ۑۑے

ې
       (3.45) 

where element ሚ݀௜௝ of the fuzzy decision matrix ܦ෩௞ is the fuzzy 

performance rating of the alternative ܣ௜ with respect to the criterion ܥ௝, 
provided by the kth decision maker.  

3. Aggregation of Ratings and Weights from k Decision Makers: The fuzzy 

ratings for alternatives and fuzzy weights for each attributes obtained from 

k decision makers are aggregated and given as: ܦ෩ = (݀௟, ݀௠, ݀௨)											 ෩ܹ௝ = ൫ݓ௝௟, ݇					௝௨൯ݓ,௝௠ݓ = 1,2, … ,  (3.46)   								ܭ

 where ݀௟ = min௞(݀௟௞),				݀௠ = ଵ௄ ∑ ݀௠௞௄௞ୀଵ ,				݀௨ = max௞(݀௨௞)  
 ݀௜௝௟ = min௞(݀௜௝௟௞ ),				݀௜௝௠ = ଵ௄ ∑ ݀௜௝௠௞௄௞ୀଵ ,				݀௜௝௨ = max௞(݀௜௝௨௞ )     (3.47) 

௝௟ݓ = min௞(ݓ௝௟௞),				ݓ௝௠ = ଵ௄ ∑ ௝௠௞௄௞ୀଵݓ ௝௨ݓ				, = max௞(ݓ௝௨௞ )      (3.48) 

where ݀௜௝௟, and	݀௜௝௨ are the lower and upper bounds of matrix element ݀௜௝, 
respectively, represented as a triangular fuzzy number. The lower and 

upper bounds of triangular fuzzy number representing the weight of the jth 

attribute is denoted by ݓ௝௟, and	ݓ௝௨, respectively.   

4. Fuzzy Decision Matrix Normalization: Normalization may or may not be 

necessary depending upon the Linguistic Variables and their 
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corresponding triangular fuzzy numbers. In most cases, the fuzzy decision 

matrix is already normalized since the triangular fuzzy numbers belongs to 

the range [0, 1]. Then the element ̃ݎ௜௝ = ,௜௝௟ݎ̃) ,௜௝௠ݎ̃  ௜௝௨) represents theݎ̃

triangular fuzzy number of the normalized value for alternative i with 

respect to attribute j. In case the normalization is necessary, a linear scale 

transformation can be used as follows: 

௜௝ݎ̃ = ൬௥̃೔ೕ೗௕ೕశ , ௥̃೔ೕ೘௕ೕశ , ௥̃೔ೕೠ௕ೕశ ൰								 ௝ܾା = max௜ ௜௝௨ݎ̃ 								݆ ∈  (3.49)    	ܤ

or 

௜௝ݎ̃ = ൬ ௖ೕష௥̃೔ೕೠ , ௖ೕష௥̃೔ೕ೘ , ௖ೕష௥̃೔ೕ೗൰								 ௝ܿି = min௜ ௜௝௟ݎ̃ 								݆ ∈  (3.50)    		ܥ

 where B and C are the sets of Benefit and Cost based criteria, respectively. 

5. Weighted Normalized Decision Matrix Construction: This matrix is 

constructed by multiplying each element ̃ݎ௜௝ by its associated weight ݓ෥௝, as 

follows: 

෤௜௝ݒ  = ௜௝ݎ̃ ×  ෥௝        (3.51)ݓ

6. Calculation of Fuzzy Positive & Negative Ideal Solutions: The fuzzy 

positive and negative ideal solutions, ܣሚା	(FPIS)	and	ܣሚି	(ܵܫܰܨ), 
respectively, are defined as: ܣሚା = ,෤ଵାݒ) ,෤ଶାݒ … , ෤௝ାݒ														(෤௡ାݒ = max௜ ሚିܣ ௜௝௨         (3.52)ݒ = ଵିݒ) , ଶିݒ , … , ௡ିݒ ෤௝ିݒ													( = min௜  ௜௝௟         (3.53)ݒ
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where	ݒ෤௝ା, and ݒ෤௝ି  represent the maximum and minimum ratings of the 

alternative with respect to the jth criterion, respectively, and ݒ௜௝௨ and ݒ௜௝௟ 
represent the upper and lower bound of the triangular fuzzy number ݒ෤௜௝. 

7. Calculation of Separation between Alternatives & Fuzzy Ideal Solutions: 

The separation (distance) between each alternative from the fuzzy positive 

ideal and fuzzy negative ideal solutions are calculated as follows: ݀௜ା = ∑ ݀௩(ݒ෤௜௝, ෤௝ା)௡௝ୀଵݒ    ݅ = 1, 2, … ,݉      (3.54) ݀௜ି = ∑ ݀௩(ݒ෤௜௝, ෤௝ିݒ )௡௝ୀଵ    ݅ = 1, 2, … ,݉      (3.55) 

where ݀௩(∗, ∗) is the distance measurement between two fuzzy numbers 

calculated by using the vertex method as follows:  

 ݀௩൫ܣሚ, ෨൯ܤ = ටଵଷ [(ܽ௟ − ܾ௟)ଶ + (ܽ௠ − ܾ௠)ଶ + (ܽ௨ − ܾ௨)ଶ]    (3.56) 

8. Calculation of Relative Closeness to the Ideal Solution: This step involves 

calculating the relative closeness to the fuzzy ideal solutions, which is 

defined as: ܥ௜ = ௗ೔షௗ೔షାௗ೔శ   ݅ = 1, 2, … ,݉									               (3.57) 

9. Ranking of the Alternatives: Sorting the calculated values of relative 

closeness	ܥ௜ in descending order, allows for the ranking of the alternatives. 

The best alternative has the highest value of	ܥ௜, where alternative ܣ௜ will 

be closer to ܣሚା and farther from ܣሚି as 	ܥ௜ approaches 1. 

A FTOPSIS module with minor modifications is implemented in MATLAB to 

support the VHITS target network selection scheme. As explained previously, the 
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original FTOPSIS algorithm requires the usage of Linguistic Variables for rating the 

alternatives and the weights of the attributes. Since the VHITS target network selection 

scheme relies on crisp measurements obtained from all available networks, a 

modification is done in the original algorithm to transform these crisp values into 

triangular fuzzy numbers for each measured attributes from all available candidate 

networks. The process explained in Section 3.3.4 is followed to transform and normalize 

these crisp values into triangular fuzzy numbers. These TFNs are then used to form the 

fuzzy decision matrix that is required by the FTOPSIS algorithm. It is worth mentioning 

that the algorithm is implemented in a flexible way, such that it can utilize both 

Linguistic Variables and TFNs to form the fuzzy decision matrix.   

The first three steps in the original FTOPSIS algorithm collect information from 

multiple decision makers and create an aggregated fuzzy decision matrix for ratings and 

an aggregated preference weights vector for all attributes. In the network selection 

problem, using FTOPSIS, these steps do not fit well, as the information is measured 

directly from the available networks and not provided by any decision makers; the only 

exception to this is the weight vector, where the weights for some of the attributes such as 

RSS and QoS can be collected and aggregated from multiple design engineers and can be 

pre-assigned. Hence, this research work proposes two alternatives: 

• Skip these three initial steps and form the fuzzy decision matrix from the 

attributes values measured directly from all available networks. 

• Read multiple samples of each attributes from all available networks and 

then, after aggregating these samples create the fuzzy decision matrix, 

following the steps outlined in the original FTOPSIS algorithm. This is the 
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recommended approach as it will incorporate the fuzziness and vagueness 

of imprecise values of each measured attributes.   

The implemented FTOPSIS algorithm is capable of utilizing both alternatives.  

The preference weights for the attributes required by the FTOPSIS algorithm 

must be calculated using Linguistic Variables. Hence, the weighting methods proposed in 

Section 3.2.2 cannot be used directly with FTOPSIS as the final weights generated by 

these schemes are crisp in nature. This can be seen in Table 3.32, where a comparison 

between different weighting schemes is shown. Hence two alternatives, for calculating 

weights for FTOPSIS algorithm, are proposed in this research work: 

• The direct use of Linguistic Variables for all the attributes: These weights 

in terms of Linguistic Variables can be obtained from multiple decision 

makers that can include network operators as well as the end-users. These 

preferences from operators and end-users can be aggregated following the 

first three steps defined in the original FTOPSIS algorithm.  

• The usage of Linguistic Variables for all the attributes, in addition to 

performing a similar weight elicitation technique, as proposed in Section 

3.2.2.1: The benefit is two folds; the resolution of interdependence 

between any two attributes at the same level of hierarchy and the effective 

handling of intrinsic imprecision and vagueness associated with end-

user’s preferences by utilizing triangular fuzzy numbers.  

The FTOPSIS algorithm that is implemented as part of this research can utilize 

both alternatives to calculate the final weights for each attributes. A separate weight 

elicitation module is implemented to support weight calculations based on the second 
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alternative. Since this involves several mathematical and matrix operations on triangular 

fuzzy numbers, MATLAB modules are created to support fuzzy operations on triangular 

fuzzy numbers. This is another contribution of this research work. Equations (3.58) to 

(3.71) show mathematical operations [130] on triangular fuzzy numbers that are utilized 

by this research work. 

Assuming	ݔ෤ = ,௟ݔ) ,௠ݔ ෥ݕ	௨) andݔ = ,௟ݕ) ,௠ݕ  ,௨) are two triangular fuzzy numbersݕ

then, ݔ෤	(+)	ݕ෤ = ௟ݔ) + ,௟ݕ ௠ݔ + ,௠ݕ ௨ݔ + ෤ݕ	(−)	෤ݔ         (3.58)						௨)ݕ = ௟ݔ) − ,௨ݕ ௠ݔ − ,௠ݕ ௨ݔ − ෤ݕ	(×)	෤ݔ ௟)         (3.59)ݕ = ௟ݔ) × ,௟ݕ ௠ݔ × ,௠ݕ ௨ݔ × ෤ݔ   (௨ݕ 	> ෤ݕ				,0 	> ෤ݕ	(×)	෤ݔ (3.60)            	0 = ௟ݔ) × ,௨ݕ ௠ݔ × ,௠ݕ ௨ݔ × ෤ݔ   (௟ݕ 	< ෤ݕ				,0 	> ෤ݕ	(×)	෤ݔ (3.61)            	0 = ௨ݔ) × ,௨ݕ ௠ݔ × ,௠ݕ ௟ݔ × ෤ݔ   (௟ݕ 	< ෤ݕ				,0 	< ෤ݕ	(÷)	෤ݔ (3.62)            	0 = (௫೗௬ೠ , ௫೘௬೘ , ௫ೠ௬೗ ෤ݔ     ( 	> ෤ݕ				,0 	> 0	            (3.63) 

෤ݕ	(÷)	෤ݔ = (௫ೠ௬ೠ , ௫೘௬೘ , ௫೗௬೗)     ݔ෤ 	< ෤ݕ				,0 	> 0	            (3.64) 

෤ݕ	(÷)	෤ݔ = (௫ೠ௬೗ , ௫೘௬೘ , ௫೗௬ೠ)     ݔ෤ < ෤ݕ				,0 	< .ߚ (3.65)            	0 ෤ݔ 	= .ߚ) ,௟ݔ .ߚ ,௠ݔ .ߚ ߚ																																		(௨ݔ ∈ ℛ, ߚ > .ߚ (3.66)      0 ෤ݔ 	= .ߚ) ,௨ݔ .ߚ ,௠ݔ .ߚ ߚ																																		(௟ݔ ∈ ℛ, ߚ < 0        (3.67) 

ଵ௫෤ 	= ቀ ଵ௫ೠ , ଵ௫೘ , ଵ௫೗ቁ									           (3.68) (−ݔ෤) 	= ෥,ݔ)max (3.69)             									(௟ݔ−,௠ݔ−,௨ݔ−) (෤ݕ		 = {max(ݔ௟, (௟ݕ ,max(ݔ௠, (௠ݕ ,max(ݔ௨, ෥,ݔ)௨)}     (3.70) minݕ (෤ݕ		 = {min(ݔ௟, (௟ݕ ,min(ݔ௠, (௠ݕ ,min(ݔ௨,  ௨)}     (3.71)ݕ
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A fuzzy number ܣሚ is called positive fuzzy number if ߤ஺෨(ݔ) = 0, ݔ	∀ < 0.  

3.4.3 NETWORK SELECTION USING FUZZY VIKOR 

VIKOR is an MADM method that is developed to optimize the multi-attribute 

based complex systems. It is a compromised programming approach based on an 

aggregating function that represents closeness to the ideal solution. VIKOR [81] is able to 

determine a compromise-ranking list of alternatives in the presence of conflicting criteria. 

This characteristic makes VIKOR an appropriate ranking and decision algorithm for 

handoff decisions in heterogeneous wireless networks.  

Fuzzy VIKOR [80, 131, 132] is an extension to the original algorithm including 

the domain of vagueness and fuzziness. The steps of Fuzzy VIKOR are outlined as 

follows: 

1. Aggregation of Decision Makers’ ratings and weights: The initial step, to 

construct a group of decision makers and identify the appropriate 

Linguistic Variables to evaluate the rating for alternatives and weight of 

criteria, is the same, as presented in FTOPSIS. The aggregation of these 

ratings and weights from k decision makers is obtained by: 

෥௝ݓ  = ଵ௞ ෥௝ଵݓൣ + ෥௝ଶݓ + ⋯+  ෥௝௞൧     (3.72)ݓ

෤௜௝ݔ    = ଵ௞ ෤௜௝ଵݔൣ + ෤௜௝ଶݔ + ⋯+ ෤௜௝௞ݔ ൧     (3.73) 

where ݓ෥௝ is the aggregated weight of the jth attribute and ݔ෤௜௝ is the 

aggregated rating of the ith alternative with respect to the jth attribute in the 

fuzzy decision matrix. 
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2. Determination of the Fuzzy Best and Fuzzy Worst Values: The fuzzy best 

value (FBV) ሚ݂௝ାand the fuzzy worst value (FWV) ሚ݂௝ି for all criteria is 

determined by: ሚ݂௝ା = max݅ ෤௜௝ݔ 				݆ ∈ ሚ݂௝ି (3.74)     ݐ݂݅݁݊݁ܤ = min݅ ෤௜௝ݔ 				݆ ∈  (3.75)     ݐݏ݋ܥ

3. Computation of Separation Measures: The separation measure ሚܵ௜ of 

alternative Ai from the FBV, and the separation measure ෨ܴ௜ from the FWV 

are defined as: 

  ሚܵ௜ = ∑ ௝ݓ ௙ሚೕశି௫෤೔ೕ௙ሚೕశି௙ሚೕష௡௝ୀଵ        (3.76) 

  ෨ܴ௜ = max௝ ൤ݓ௝ ௙ሚೕశି௫෤೔ೕ௙ሚೕశି௙ሚೕష൨      (3.77) 

4. Computation of indices ሚܵା, ሚܵି, ෨ܴା, ෨ܴି, ܽ݊݀	 ෨ܳ௜: These indices are 

calculated as follows:  ෨ܳ௜ = ݒ ൤ ௌሚ೔ିௌሚ೔శௌሚ೔షିௌሚ೔శ൨ + (1 − (ݒ ൤ோ෨೔ିோ෨೔శோ෨೔షିோ෨೔శ൨
                   

(3.78) 

where ሚܵା = min௜ ሚܵ௜ defines the index with a maximum majority rule, ෨ܴା = min௜ ෨ܴ௜	defines the index with a minimum individual regret of 

opponent,	 ሚܵି = max௜ ሚܵ௜ 	 , ෨ܴି = max௜ ෨ܴ௜, and v is the weight in the 

strategy of the maximum group utility (or the majority of the criteria), 

usually	ݒ = 0.5. 

5. Defuzzification of Triangular Fuzzy Numbers: In the original algorithm, 

triangular fuzzy numbers are converted into crisp values using Chen’s 

[133] method of maximizing set and minimizing set. In order to simplify 
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the process, this research work utilizes the centroid method to perform 

defuzzification as follows: ݌ݏ݅ݎܥ஺෨ = ଵ଺ (݈஺෨ + 4݉஺෨ +  ஺෨)       (3.79)ݑ

6. Ranking the Alternatives: The ranking of the alternatives is based on the 

crisp values of	 ෨ܳ௜, as this index implies the separation measure of the 

alternative ܣ௜ from the best alternative. This means an alternative with 

better performance, as compared with others, is indicated by the smaller 

value of ෨ܳ௜. 
7. Propose Compromise Solution: The last step of the process is to propose  

compromise solution ܣᇱ, using the crisp values of the ෨ܳ௜ index based on 

the following condition: 

• Acceptable Advantage Condition: This is given by:  (ܳ஺ᇲᇲ − ܳ஺ᇲ) ≥  (3.80)      ܳܦ

where ܳܦ = ଵெିଵ , M is the number of available alternatives, and ܣᇱᇱis the alternative that comes out in second position based on the 

minimum values of Q index. 

If the above condition is not satisfied, then	ܣᇱ, ,ᇱᇱܣ …	,  ,are (௠)ܣ

compromised candidates and the alternatives are ranked based on the 

ascending values of the Q index. 

The ranking scheme based on Fuzzy VIKOR is implemented in MATLAB as part 

of our VHITS target network selection scheme. Like FTOPSIS, this scheme cannot 

utilize the different weight elicitation techniques discussed earlier. The calculations of the 
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priority weights are based on the same module implemented for the FTOPSIS ranking 

algorithm. Once again, the implemented scheme can accept Linguistic Variables or 

triangular fuzzy numbers as inputs. To the best of our knowledge, this research work is 

the first attempt to apply fuzzy VIKOR to select a best network among other available 

candidate networks in a heterogeneous wireless environment. 
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CHAPTER 4 

SIMULATIONS AND RESULTS 

In this chapter, the performance evaluations of the proposed scheme are 

presented. The two developed modules, VHITS handoff necessity estimation and VHITS 

target network selection, are simulated and evaluated using a test-bed that is developed 

based on the concepts of RUNE. Four types of traffic classes, Conversational, Streaming, 

Background, and Interactive, using three types of wireless networks, WLAN, WMAN, 

and WWAN, are utilized in evaluating the performance of the proposed scheme. 

Simulations and comparisons are also carried out among the different types of preference 

weighting schemes and network selection & ranking algorithms.  

This chapter is organized into six major sections. Section 4.1 presents numerical 

examples based on different scenarios to verify the validity and usability of the proposed 

model. Section 4.2 provides the details of the implemented test-bed to simulate the 

proposed scheme including the mobility, propagation, and traffic models implemented 

using RUNE. Simulation results assuming a single mobile station in a heterogeneous 

wireless network are presented in Section 4.3. In Section 4.4, simulations are performed 

strictly based on user preferences that are set manually. Section 4.5 presents results 

considering a multi-user heterogeneous wireless environment. Finally, Section 4.6 

concludes the chapter with a brief comparison of different selection schemes. 

4.1 NUMERICAL EXAMPLES 

In this section, numerical examples, using a scenario-based approach, are 

provided to verify and validate the usability of different aspects of VHITS. 
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Table 4.1:  Different Parameters for Current PoA 
Parameters Values 

Current PoA WLAN 

Current Traffic Class Streaming 

Metric Weight Scheme AHP 

MS-Velocity (m/s) 0 (Low) 

MS-PoA Distance (m) 10 (Near) 

RSS Samples (dbm) -58.5, -55.3, -57.6, -59.8 

PRSS using GPT (dbm) -62.21 (High) 

Delay (ms) 100 (Low) 

Jitter (ms) 10 (Low) 

PLR (loss per 106 bytes) 3 (Low) 

Throughput (Mbps) 130 (High) 

 

Scenario 1: For the VHITS handoff necessity estimation, we assume that the end-

user is currently watching a recorded webcast (streaming) using his/her own WLAN. 

Different parameters for this scenario are shown in Table 4.1. 

A comparison of weights, calculated based on the different preference weighting 

mechanisms, is shown in Figure 4.1. The first-level criteria weights are assigned based on 

the user and/or operator preferences and are purely subjective in nature. To guarantee the 

continuity and the quality of the on-going session, higher weight assignments can be 

observed for RSS and QoS. A detailed description for the weight calculation process can 

be found in Chapter 3.  

An observation that can be made from Figure 4.1 is that AHP tends to assign 

higher weights for RSS and QoS as compared with FAHP and TFN based weighting 

schemes. This is due to the fact that the pairwise comparisons between the attributes in 
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AHP are performed using crisp values as compared with FAHP and TFN that utilize 

fuzzy numbers. A better distribution of weights among all parameters can be observed in 

TFN based scheme that relies on the usage of Linguistic Variables.  

Figure 4.2 shows AHP-based weights assignments for different QoS parameters 

based on the characteristics of different traffic classes followed by Figures 4.3-4.4 that 

show the calculated weights for QoS parameters using FAHP and TFN-based weighting 

schemes, respectively. It can be seen that all three weighting schemes assign higher 

weight to throughput with respect to the Streaming class and higher weights to delay, and 

jitter for traffic based on Conversational class. 

 

 
Figure 4.1:  First-Level Weights based on All Weighting Schemes 
 



128 
 

 
Figure 4.2:  AHP-based Weights for QoS Parameters 
 

 
Figure 4.3:  FAHP-based Weights for QoS Parameters 
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Figure 4.4:  Linguistic-Variables based Weights for QoS Parameters 

 

Based on the parameter values presented in Table 4.1, the overall handoff factor 

that the VHITS handoff necessity estimation module calculates comes out to be a low 

value of 0.25. Since this value is less than the handoff threshold (0.75), set for WLAN, 

the MS will not perform any handoff and will remain connected to its current PoA.  

Scenario 2: Assuming that the end-user leaves home for work and starts walking 

toward the nearest bus stand while watching the same webcast, the distance between the 

WLAN-AP and MS increases and the RSS becomes weaker the further the user walks 

away from his/her home. The new parameter set is presented in Table 4.2. Note that 

based on the RSS samples, the GPT predicted an RSS value that cannot be sensed by the 

MS. In this scenario, the VHITS handoff necessity estimation calculates a handoff factor 

of 0.85 that is higher than the set handoff-threshold. Hence, the module will trigger the 

handoff and execute the VHITS target network selection module to find out the best 
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available network that can support the continuity and the quality of the currently utilized 

service.  

Table 4.2:  New Parameter Set When User Walks Away from Current PoA 
Parameters Values 

Current PoA WLAN 

Current Traffic Class Streaming 

Metric Weight Scheme AHP 

MS-Velocity (m/s) 1(Low) 

MS-PoA Distance (m) 85 (Far) 

RSS Samples (dbm) -90.5, -92.7, -97.3, -98.9 

Predicted RSS using GPT (dbm) -102.63 (Undetectable) 

Delay (ms) 120 (High) 

Jitter (ms) 20 (High) 

PLR (loss per 106 bytes) 4 (Medium) 

Throughput (Mbps) 30 (Low) 

 

As the user is walking towards the bus stand, the VHITS handoff target network 

selection scheme senses the availability of three different networks. The parameter values 

for these three networks are presented in Table 4.3. These values are fed into the parallel 

FLCs of the VHITS handoff target network selection scheme. The FLCs normalize these 

parameters and produce their corresponding membership values based on whether the 

parameters are benefit or cost type. These normalized values are presented in Table 4.4. 

Note that the MS has different membership values for MS-Velocity corresponding to 

each available network. This is because the fuzzy logic rules are designed to assign 

higher speed MSs to WWAN while keeping the slower MSs to WLAN. Since the current 

walking velocity is 2 m/s, the FLCs estimate a lesser probability of rejection for an MS to 
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be associated with the WLAN. A graphical representation of the normalized parameter 

values is shown in Figure 4.5. 

Table 4.3:  Parameter Set for Available Networks in-Range of Walking User 
Parameters WLAN WMAN WWAN 

PRSS (dbm) -114.05 -137.40 -116.10 

Delay (ms) 130 20 10 

Jitter (ms) 27 5 4 

PLR (loss per 106 bytes) 3 4 3 

Throughput (Mbps) 70 60 1.5 

NW-Load (%) 20 30 40 

Security (1-10) 1 5 7 

Cost (1-10) 3 4 7 

MS-Velocity (m/s) 2 

 

 
Figure 4.5:  Normalized Networks Parameters (Velocity = 2 m/s) 
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Table 4.4:  Normalized Parameter Set and AHP based Weights for All Networks 
Parameters WLAN WMAN WWAN Weights 

(AHP) 

PRSS (dbm) 0.42 0.65 0.65 0.3199 

Delay (ms) 0.65 0.25 0.25 0.0120 

Jitter (ms) 0.95 0.65 0.25 0.0574 

PLR (per 106 bytes) 0.25 0.65 0.65 0.0548 

Throughput (Mbps) 0.45 0.80 0.65 0.1957 

MS-Velocity (m/s) 0.03 0.73 0.94 0.1337 

NW-Load (%) 0.01 0.01 0.50 0.1337 

Security (1-10) 0.25 0.50 0.75 0.0607 

Cost (1-10) 0.25 0.36 0.75 0.0320 

 

In order to select the best target network which maximizes the end-user 

satisfaction in terms of service continuity and QoS, the decision matrix, comprising of 

normalized values from Table 4.4 along with their associated weights, are fed into the 

TOPSIS ranking algorithm. Figure 4.6 shows the ranking values for all available 

networks produced by TOPSIS for all four traffic classes. It can be observed that based 

on the selected values of network parameters and their corresponding weights, an MS 

moving with a velocity of 2 m/s prefers WMAN for Streaming and Conversational traffic 

classes. On the other hand, for Interactive and Background traffic classes, connecting to 

WLAN would fulfill end-user’s requirements; a higher throughput is required for the 

Streaming traffic class and Conversational traffic class requires smaller values of end-to-
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end delay and jitter. A strong competition between WLAN and WMAN, for 

Conversational and Streaming traffic classes, can also be observed. As can be seen from 

Figure 4.5 and Table 4.4, WMAN fulfills these requirements for both classes. 

Although a weaker RSS can be seen for WLAN, other factors like velocity, 

network-loading and network-cost, influence TOPSIS to select WLAN as the preferred 

network for Interactive and Background traffic classes. 

Scenario 3: Assuming that the same user, who is watching the webcast, steps in a 

bus that starts to move with a relatively higher velocity than that of walking user. We will 

provide numerical examples for two different velocities. Although, RSS and some other 

parameters do not remain constant and changes rapidly due to the dynamic nature of 

wireless networks, we will keep these values constant just to focus on the effects of 

velocity on the network selection process. Note that in Sections 4.3-4.5 we will provide 

results, taking into consideration the dynamic behavior of wireless networks. 

Figure 4.7 shows the membership values for all the network parameters when the 

bus is moving at a velocity of 5 m/s. It can be seen that the probability of rejection for an 

MS to be associated with WLAN has now increased, whereas for WMAN and WWAN it 

is relatively lower. This is because the inference rules for FLC-1 are designed to select 

WMAN or WWAN for higher speed MSs. Consequently, TOPSIS prefers WMAN and 

WWAN for all traffic classes as can be observed from Figure 4.8. For Streaming, 

Background, and Interactive traffic classes, TOPSIS prefers WMAN over WWAN. A 

close competition can be observed between both networks for Interactive class. As the 

Conversational traffic class does not tolerate higher values of delay and jitter, TOPSIS 
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prefers to choose WWAN over WMAN; a relatively lower value of delay and jitter are 

provided by WWAN as can be seen from Figure 4.7. 

A higher velocity MS moving through a network with a smaller coverage area 

performs frequent handoffs. Since WWAN provides a larger coverage area than WLAN 

and WMAN, the FLC-1 is designed to associate higher speed MSs to WWAN to avoid 

frequent handoffs and to preserve the continuity of the current session. The rankings of 

preferred networks for different traffic classes, when the bus moves at a velocity of 10 

m/s, are presented in Figure 4.9. Based on the above explanation, TOPSIS prefers 

WWAN over WMAN, and WLAN.  

Figures 4.10-4.12 show TOPSIS rankings for the same scenarios discussed above, 

but utilizing the FAHP weighting scheme. By utilizing FAHP weighting method, 

uncertainty and vagueness from subjective perceptions of user’s preferences can be 

effectively represented. For the MS with a velocity of 2 m/s, TOPSIS with FAHP prefers 

WLAN for all types of traffic classes. When the MS is moving at 5 m/s, the preference is 

WMAN. The WWAN is preferred by TOPSIS at much higher velocities.  

The rankings for all networks utilizing TOPSIS with the TFN weighting scheme 

for MSs moving with different speeds are presented in Figures 4.13-4.15. A similar trend, 

like FAHP weighting scheme, can be observed where the preferred network is WLAN for 

slower moving MSs and WWAN for MSs moving with higher speeds. However, Figure 

4.13 shows a close competition between WLAN and WMAN for MSs moving with a 

velocity of 2 m/s. A similar competition can be observed between WMAN and WWAN 

for MSs moving with 5 m/s. This can be observed from Figure 4.14.  
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Figure 4.6:  TOPSIS Ranking of Networks based on Traffic Classes and AHP weighting 
(Velocity = 2 m/s) 
 

 
Figure 4.7:  Normalized Networks Parameters (Velocity = 5 m/s) 
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Figure 4.8:  TOPSIS Ranking of Networks based on Traffic Classes and AHP weighting 
(Velocity = 5 m/s) 

 

     
Figure 4.9:  TOPSIS Ranking of Networks based on Traffic Classes and AHP weighting 
(Velocity = 10 m/s)  
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Figure 4.10:  TOPSIS Ranking of Networks based on Traffic Classes and FAHP 
weighting (Velocity = 2 m/s) 
 

 
Figure 4.11:  TOPSIS Ranking of Networks based on Traffic Classes and FAHP 
weighting (Velocity = 5 m/s) 
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Figure 4.12:  TOPSIS Ranking of Networks based on Traffic Classes and FAHP 
weighting (Velocity = 10 m/s) 
 

 
Figure 4.13:  TOPSIS Ranking of Networks based on Traffic Classes and TFN weighting 
(Velocity = 2 m/s) 
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Figure 4.14:  TOPSIS Ranking of Networks based on Traffic Classes and   

 TFN weighting (Velocity = 5 m/s) 
 

 
Figure 4.15:  TOPSIS Ranking of Networks based on Traffic Classes and   

 TFN weighting (Velocity = 10 m/s) 
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In a possible situation where a preferred network fails to provide an available 

channel to MS, the VHITS handoff target network selection scheme is intelligent enough 

to select the second or third preferred network as the target of handoff. The parameter 

values used to generate rankings in Figure 4.16 are exactly the same as used in Figure 

4.8, with the exception of Network-Loading for WWAN network. Since there are no 

available channels on WWAN network, the VHITS target selection scheme selects 

WMAN as the preferred network; WMAN is ranked second in Figure 4.8. In case of both 

WWAN and WMAN not being available, as shown in Figure 4.17, WLAN is the target 

network.  

We will complete this section by providing numerical examples, results, and brief 

discussion for two network selection schemes, namely FTOPSIS and FVIKOR, where 

both parameter values measured from networks and their associated weights are treated 

as fuzzy values. Similar values of parameters as depicted in Table 4.3 are used to 

generate results. The only exception is MS-speed that is set at 5 m/s.  

Tables 4.5-4.6 show the decision matrix containing network attributes and their 

associated weights, respectively. The network attributes are represented using TFNs, and 

Linguistic Variables are used to represent their weights. The decision and weight 

matrices are then used as inputs to the FTOPSIS scheme. The normalized weighted 

decision matrix for the Streaming traffic class is shown in Table 4.7. This table also 

contains the FPIS (A+) and FNIS (A-) for the Streaming traffic class. Similar tables can be 

constructed for the other three traffic classes as well. Note, the FPIS (A+) and FNIS (A-) 

values can also be set manually as (1,1,1) for benefit and (0,0,0) for cost criterion, 

respectively.  
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Figure 4.16:  TOPSIS Ranking of Networks with AHP weighting   

 (Velocity = 5 m/s, WWAN-Loading = 100%) 
 

 
Figure 4.17:  TOPSIS Ranking of Networks with AHP weighting   

 (Velocity = 5 m/s, WWAN-Loading = 100%, WMAN-Loading = 100%) 
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Table 4.8 shows different calculations required for FTOPSIS for all traffic classes 

and available networks. These include the calculations of distances between each 

alternatives and FPIS & FNIS, which are given by ݀(ܣ௜, ,௜ܣ)݀ ା) andܣ  .respectively ,(ିܣ

The table also shows, for each alternative, the Closeness Coefficients from the ideal 

solution, which determine the final rankings of the available networks.  These rankings 

are depicted in Figure 4.18 where it can be seen that WMAN outperforms all other 

networks for all four traffic classes.  

The calculations for FVIKOR ranking scheme is shown in Tables 4.9-4.10. Fuzzy 

Best Values (FBV) ( ሚ݂௝ା) and Fuzzy Worst Values (FWV) ( ሚ݂௝ି ) for Streaming traffic class 

are calculated that are also provided in the same table. FBV and FWV for other traffic 

classes can be generated in a similar fashion. Table 4.10 shows all the numerical 

calculations required for FVIKOR ranking algorithm. The triangular fuzzy number ෨ܳ௜ is 

then defuzzified into a crisp number. The Network with the smallest value of ܳ௜ is chosen 

as the target network; smaller value implies better performance of a candidate. These 

network rankings are presented in Figure 4.19 for all types of traffic classes. Note that 

only ranking number of the preferred network is displayed in this figure. Hence, the 

network preferred by FVIKOR for an MS moving with a velocity of 5 m/s, is WMAN 

with a ranking of 1. WWAN and WLAN are second and third choices. 

4.2 SIMULATION SETUP AND ENVIRONMENT 

The VHITS handoff necessity estimation and target selection schemes are 

implemented in MATLAB (R2011a). Fuzzy Logic toolbox is used to implement the 

different FLCs that are used in this research work. The developed scheme is evaluated 
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using a test-bed created based on the concept of RUNE [134]. RUNE, originated as a 

research project at Ericsson, is a special purpose simulator to simulate heterogeneous 

wireless networks. It is well verified and extensively used in the field of wireless 

communications [29, 91, 135-137]. Several models, including system, mobility, 

propagation, and traffic, are created using RUNE. In the following, a brief explanation 

regarding the implementation of these models is provided.  

System Model: The system model defines the details of different types of 

networks. These details include, but are not limited to, the number and characteristics of 

the cells that constitutes a specific type of network. To simulate the proposed scheme, a 

system model is created with several co-existing WLANs, WMANs, and WWANs. 

The WLAN is defined with 27 cells, each with a radius of 100 meters. The 

WMAN and WWAN are defined with 12 cells, each with a radius of 375 and 750 meters, 

respectively. The standard hexagonal shape with omni-directional antennas is considered 

for each cell for all three network types. A cluster of 3 cells is formed and the total 

frequency range for each network is divided among these 3 cells. These divided 

frequencies are repeated at each cluster. This arrangement is kept the same for all three 

network types. The total number of available channels per cell is kept as 8, 12, and 16, 

for WLAN, WMAN, and WWAN, respectively. All channels are assumed to be 

orthogonal. The “wrap-around” function of RUNE is utilized to avoid cell boundaries for 

different coverage areas. This is necessary to make sure that the MS cannot move over 

the edge outside the coverage area and if they move, the adjacent service area 

automatically covers them.  
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Figure 4.18:  FTOPSIS Ranking for all traffic types and Available Networks 

 (Velocity = 5 m/s) 
 

 
Figure 4.19:  FVIKOR Network Rankings for all Traffic classes (Velocity = 5 m/s) 
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 Table 4.5:  Fuzzy Decision Matrix for FTOPSIS 
Networks RSS Delay Jitter PLR T.put Velocity Loading Security Cost 

WLAN [0.2, 0.4, 0.6] [0.4, 0.6, 0.8] [0.8, 1.0, 1.0] [0.0, 0.2, 0.4] [0.2, 0.4, 0.6] [0.8, 1.0, 1.0] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] 

WMAN [0.4, 0.6, 0.8] [0.0, 0.2, 0.4] [0.4, 0.6, 0.8] [0.4, 0.6, 0.8] [0.6, 0.8, 1.0] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.2, 0.4, 0.6] [0.2, 0.4, 0.6] 

WWAN [0.4, 0.6, 0.8] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.4, 0.6, 0.8] [0.4, 0.6, 0.8] [0.4, 0.6, 0.8] [0.2, 0.4, 0.6] [0.6, 0.8, 1.0] [0.6, 0.8, 1.0] 

 

 

         Table 4.6:  Linguistic Weights used with FTOPSIS for Different Traffic Classes  
Parameter RSS Delay Jitter PLR Throughput Velocity Loading Security Cost

Streaming E L M VH E VH H M L 

Conversational E E VH M L VH H M L 

Interactive E VH L VH M VH H M L 

Background E L L M H VH H M L 
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Table 4.7:  Normalized weighted Matrix, Streaming Class, showing FPIS and FNIS 
 RSS Delay Jitter PLR T.put Velocity Loading Security Cost 

WLAN [0.16, 0.4, 0.6] [0.0, 0.12, 0.32] [0.16, 0.4, 0.6] [0.0, 0.16, 0.4] [0.16, 0.4, 0.6] [0.48, 0.8, 1.0] [0.0, 0.0, 0.16] [0.0, 0.08, 0.24] [0.0, 0.04, 0.16] 

WMAN [0.32, 0.6, 0.8] [0.0, 0.04, 0.16] [0.08, 0.24, 0.48] [0.24, 0.48, 0.8] [0.48, 0.8, 1.0] [0.0, 0.0, 0.2] [0.0, 0.0, 0.16] [0.04, 0.16, 0.36] [0.0, 0.08, 0.24] 

WWAN [0.32, 0.6, 0.8] [0.0, 0.04, 0.16] [0.0, 0.08, 0.24] [0.24, 0.48, 0.8] [0.32, 0.6, 0.8] [0.24, 0.48, 0.8] [0.08, 0.24, 0.48] [0.12, 0.32, 0.6] [0.0, 0.16, 0.4] 

FPIS (A+) [0.32, 0.6, 0.8] [0.0, 0.04, 0.16] [0.0, 0.08, 0.24] [0.0, 0.16, 0.4] [0.48, 0.8, 1.0] [0.0, 0.0, 0.2] [0.0, 0.0, 0.16] [0.12, 0.32, 0.6] [0.0, 0.04, 0.16] 

FNIS (A-) [0.16, 0.4, 0.6] [0.0, 0.12, 0.32] [0.16, 0.4, 0.6] [0.24, 0.48, 0.8] [0.16, 0.4, 0.6] [0.48, 0.8, 1.0] [0.08, 0.24, 0.48] [0.0, 0.08, 0.24] [0.0, 0.16, 0.4] 

 
 
Table 4.8:  FTOPSIS Calculations for All Traffic Classes 

Networks WLAN WMAN WWAN 

Traffic Class ݀(ܣ௜, ,௜ܣ)݀ (ାܣ ,௜ܣ)݀ ܥܥ (ିܣ ,௜ܣ)݀ (ାܣ ,௜ܣ)݀ ܥܥ (ିܣ ,௜ܣ)݀ (ାܣ  ܥܥ (ିܣ

Streaming 1.9254 0.7151 0.2708 0.7230 1.9217 0.7266 1.3656 1.2886 0.4855 

Conversational 2.208 0.5619 0.2029 0.7230 2.0544 0.7397 1.0674 1.7072 0.6133 

Interactive 1.8193 0.7151 0.2821 0.6536 1.8828 0.7423 1.2644 1.2837 0.5038 

Background 1.6726 0.5619 0.2515 0.5004 1.7362 0.7763 1.1491 1.0991 0.4889 

 



147 
 

Table 4.9:  FVIKOR Decision Matrix, showing FBV ( ሚ݂௝ା) and FWV ( ሚ݂௝ି ), Streaming Traffic 

Networks RSS Delay Jitter PLR T.put Velocity Loading Security Cost 

WLAN [0.2, 0.4, 0.6] [0.4, 0.6, 0.8] [0.8, 1.0, 1.0] [0.0, 0.2, 0.4] [0.2, 0.4, 0.6] [0.8, 1.0, 1.0] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] 

WMAN [0.4, 0.6, 0.8] [0.0, 0.2, 0.4] [0.4, 0.6, 0.8] [0.4, 0.6, 0.8] [0.6, 0.8, 1.0] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.2, 0.4, 0.6] [0.2, 0.4, 0.6] 

WWAN [0.4, 0.6, 0.8] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.4, 0.6, 0.8] [0.4, 0.6, 0.8] [0.4, 0.6, 0.8] [0.2, 0.4, 0.6] [0.6, 0.8, 1.0] [0.6, 0.8, 1.0] 

FBV (ࢌ෨࢐ା) [0.4, 0.6, 0.8] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.6, 0.8, 1.0] [0.0, 0.2, 0.4] [0.0, 0.2, 0.4] [0.6, 0.8, 1.0] [0.0, 0.2, 0.4] 

FWV (ࢌ෨ି࢐ ) [0.2, 0.4, 0.6] [0.4, 0.6, 0.8] [0.8, 1.0, 1.0] [0.4, 0.6, 0.8] [0.2, 0.4, 0.6] [0.8, 1.0, 1.0] [0.2, 0.4, 0.6] [0.0, 0.2, 0.4] [0.6, 0.8, 1.0] 
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      Table 4.10:  FVIKOR Calculations for All Traffic Classes 
Traffic Classes Indices WLAN WMAN WWAN 

 ܵା ܴା ܵି ܴି ௜ܵ ܴ௜ ܳ௜ ௜ܵ ܴ௜ ܳ௜ ௜ܵ ܴ௜ ܳ௜ 
Streaming 

[-7.00,  

1.80,  

3.50] 

[0.40, 

 0.80, 

4.00] 

[-1.80, 

 3.40, 

7.90] 

[0.99, 

1.00,  

8.00] 

[-1.80, 

3.40,  

7.90] 

[0.99, 

1.00,  

8.00] 

[-0.40,  

1.00,  

-2.70] 

[-5.90, 

 1.80, 

3.50]  

[0.40, 

0.80,  

4.00] 

[-0.55, 

0.28,  

-1.59] 

[-7.00, 

3.10,  

4.80] 

[0.79, 

 0.80, 

6.00] 

[-0.56,  

0.64,  

-2.04] 

Conversational 

[-6.33, 

1.20, 

0.78] 

[0.80, 

0.50, 

2.40] 

[-4.64, 

3.91, 

3.35] 

[1.49, 

1.00, 

3.20] 

[-5.66, 

3.91, 

3.35] 

[1.49, 

1.00, 

3.20] 

[-0.52, 

1.00, 

-2.22] 

[-4.64, 

1.20, 

0.79] 

[1.20, 

0.50, 

2.40] 

[-0.53, 

0.12, 

-1.54] 

[-6.33, 

2.00, 

0.78] 

[0.80, 

0.60, 

2.40] 

[-0.70, 

0.25, 

-1.54] 

Interactive 

[-9.36, 

1.40, 

1.60] 

[0.19, 

0.80, 

2.4] 

[-7.10, 

3.22, 

4.51] 

[0.99, 

1.00, 

4.80] 

[-7.10, 

3.22, 

4.51] 

[0.99, 

1.00, 

4.80] 

[-0.47, 

1.00, 

-2.43] 

[-8.31, 

1.40, 

1.60] 

[0.19, 

0.80, 

2.40] 

[-0.60, 

0.28, 

-1.41] 

[-9.36, 

2.62, 

2.17] 

[0.79, 

0.80, 

3.60] 

[-0.57, 

0.59, 

-1.87] 

Background 

[-3.88, 

1.20, 

2.75] 

[0.19, 

0.50, 

3.2] 

[-0.77, 

2.91, 

6.38] 

[0.99, 

1.00, 

6.40] 

[-0.77, 

2.92, 

6.38] 

[0.99, 

1.00, 

6.40] 

[-0.35, 

1.00, 

-2.87] 

[-2.88, 

1.20, 

2.75] 

[0.19, 

0.50, 

3.20] 

[-0.52, 

0.13, 

-1.62] 

[-3.88, 

2.47, 

3.71] 

[0.79, 

0.60, 

4.80] 

[-0.52, 

0.47, 

-2.12] 
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The system model is shown in Figure 4.20. The straight-line path of a single MS 

crossing several cell boundaries can be seen from Figure 4.21, where different wireless 

access technologies are shown providing coverage to the moving MS. 

Mobility Model: The mobility model is created to simulate the mobility of MS 

within each cell. To simulate VHITS, a mobility model is implemented where MSs are 

uniformly distributed over the entire system. Each MS moves a random distance at 

defined time steps. The mobility pattern of each MS depends on its velocity and 

acceleration. The velocity ௝ܸ of the ݆௧௛ MS is updated using Equation (4.1). 

ܸ݆ = (ܸ݆−1 × ܲ) + (෩ܸ × ܴ × ඥ1 − ܲ2)       (4.1) 

where the updated velocity of the MS is given by ܸ݆, ܸ݆−1 is the velocity of the mobile user in 

the previous time-step, and ෩ܸ is the mean velocity of MS. The variable ܴ is a Rayleigh 

distributed magnitude with a mean value of 1 and the variable ܲ is used to correlate the 

velocity between simulated time-steps and is based on both mean velocity and mean 

acceleration. The value of ܲ can be calculated from Equation (4.2) as follows: 

ܲ = ݁ష∆೟×෥ೌೇ෩             (4.2) 

where ෤ܽ is the mean acceleration of the MS. 

Service Model: The service model is implemented to specify the four types of 

services, each with unique characteristics. Chapter 3 explains the requirements of 

Streaming, Conversational, Background, and Interactive traffic classes considered in this 

study. Most of the simulations performed are based on these traffic classes to study the 

behavior of available networks with varying conditions.  
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Traffic Model: The generation of MSs for the simulation is done with the help of 

traffic model. All MSs utilizing the system are created using the Poisson process [138] to 

make sure that the arrivals of new calls and their subsequent departures are exponentially 

distributed.  These generated MSs are distributed uniformly among all the cells using an 

average Poisson arrival rate. This is shown in Figure 4.22.  

Propagation Model: The propagation model is the most important model, as the 

performance of any wireless communication system depends on how well the radio 

waves propagate through the medium. These radio waves, propagated via radio channels 

are affected by phenomenon like reflection, scattering, and diffraction. Hence, a mobility 

model is developed that considers different losses and gains during the signal propagation 

between the MS and the BS/AP. The radio propagation model that is used in this 

simulation work considers path losses due to signal attenuation based on distance, 

antenna gain, and both shadow and Rayleigh fading. This model can be defined as the 

logarithmic sum of all of these components. This is given in Equation (4.3). ܩ = ௉௔௧௛ି௅௢௦௦ܩ	 + ஺௡௧௘௡௡௔ܩ + ௌ௛௔ௗ௢௪ܩ +  ோ௔௬௟௘௜௚௛            (4.3)ܩ

As the distance between the MS and the BS/AP increases, the wireless signal 

attenuates. This signal attenuation is modeled using Hata Path Loss model [139] and is 

given in Equation (4.4). ܩ௉௔௧௛ି௅௢௦௦ = 10 × ߟ × logଵ଴ ݀ +  (4.4)            ܥ

where ݀ is the distance between the transmitter and the receiver, ߟ is the path loss 

exponent that relates the transmitted-power decay with distance, and ܥ is a constant 

accounting for different system losses depending on carrier frequency, the size of the 

antenna, and other physical parameters.  
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Figure 4.20:  System Model for VHITS Simulation 

 

 
Figure 4.21:  System model (zoomed-in) Depicting the Mobility of Single User 
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Figure 4.22:  Distribution of MSs across Different Networks 
 

In wireless communication, fading [140] is defined as the rapid fluctuations of the 

signal that it experiences over certain propagation media. There are two types of fading: 

Shadow Fading and Rayleigh Fading. Shadow fading is used to statistically model the 

effect of signal attenuation due to large object, such as a building located between the 

transmitter and the receiver. In this type of fading, the amplitude and phase change 

imposed by the channel can be considered roughly constant over the period of use. This 

change in the amplitude is often modeled using a log-normal distribution with a standard 

deviation according to the log-distance path loss model. On the other hand, Rayleigh 

fading is used to model the effect of scattering due to the presence of different objects 

between the transmitter and the receiver resulting in multi-path propagation of signal with 
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no line-of-sight between the two end-stations. In this case, the change in amplitude and 

phase varies considerably over the period of use. 

Different network parameters that are used for simulating the proposed scheme 

are depicted in Table 4.11. These parameters are randomly selected to indicate the QoS, 

security offered by a specific network, and their usage cost. The values for RSS and 

Network-Loading are obtained from the test-bed as they are different for each iteration, 

where MS-Velocity varying from 0-10 m/s. The maximum velocity of 10 m/s is selected 

to match the WLAN cell radius of 100 m.  

Table 4.11:  Network Parameters used for VHITS Simulation 

 
Delay 

(ms) 

Jitter 

(ms) 

PLR 

(per 106 

bytes) 

Throughput

(Mbps) 

Security 

(1-10) 

Cost 

(1-10) 

WLAN 130 30 5 140 5 2 

WMAN 30 10 4 50 5 4 

WWAN 10 1 2 0.2 5 7 

 
Table 4.12 summarizes some of the system parameters to setup the simulation 

environment. 

4.3 SIMULATION RESULTS: SINGLE MOBILE USER 

In this section, we present different simulation results assuming the presence of 

only one MS moving in a straight line with access to different wireless networks. The 

percentage of network connection is a metric that is used to evaluate the performance of 

our scheme. This metric indicates the percentages of networks’ connections that our 

proposed scheme prefers for an MS moving with a speed of 0-10 m/s. Note that this 

percentage is calculated after the system completes the entire simulation. 
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Table 4.12:  System Parameters used for VHITS Simulation 
Parameters WLAN WMAN WWAN 

Cell Shape Hexagonal with Omni-directional Antennas

Cell Size (meters) 100   375  750  

Number of Cells 27 12 12 

Number of Clusters 9 4 4 

Allocated Channels per Cell 8 12 16 

Mean Velocity (m/s) 0-10 

Mean Acceleration (m/s2) 0.01

Mean Service holding time (sec) 20 

Thermal Noise Floor (dbm) -118 

Standard deviation for fading (dB) 6 

Fading Correlation (downlink) 0.5 

Fading Correlation distance (m) 20 

Average Number of Calls per Cell 1-10 

Min. RSS to connect (dbm) -110 -160 -150 

Attenuation at 1 m distance (dB) -40 -55 -28 

Path Loss Exponent 3.3 4 4 

 

4.3.1 TOPSIS BASED NETWORK SELECTION 

This section provides the results for the network selection based on TOPSIS 

ranking algorithm with AHP weighting method. Figures 4.23-4.26 show the percentages 

of connections to different types of wireless networks that the MS prefers for any of the 

four traffic classes.  

Based on the network parameters provided in Table 4.11, the proposed scheme for 

the Conversational traffic class prefers to connect to WLAN approximately 98% of the 
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time, for the slower moving MS. As depicted in Figure 4.23, at medium speed, WMAN 

can be seen as the preferred network with approximately 61% connections. Similarly, for 

a higher speed MS, the preferred connectivity is to WWAN. It can be noted that WLAN 

shows a strong presence at medium and high speeds with higher preference towards 

WLAN as compared with other networks with MS-speeds of 6-7 m/s. 

A similar pattern like Conversational traffic can be observed for Interactive traffic 

class from Figure 4.24. At an MS speed of 7 m/s, a high connectivity preference of 

approximately 90% can be seen towards WLAN.  

For Background traffic class, WLAN seems to be the preferred network for slow 

and fast moving MS. It can be observed from Figure 4.25 that an MS moving at slower or 

higher speed, WLAN connectivity preference is approximately 90%-95%. A similar 

behavior can be observed for Streaming traffic class, as shown in Figure 4.26. 

 
Figure 4.23:  Percentage of NW-Connection, TOPSIS, AHP, for Conversational 

 



156 
 

 
Figure 4.24:  Percentage of NW-Connection, TOPSIS, AHP, for Interactive 
 

 

 
Figure 4.25:  Percentage of NW-Connection, TOPSIS, AHP, for Background 
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Figure 4.26:  Percentage of NW-Connection, TOPSIS, AHP, for Streaming 
 

Network selection based on TOPSIS and FAHP weighting schemes is presented 

in Figures 4.27-4.30, whereas Figures 4.31-4.34 show simulation results from the same 

ranking algorithm, but using TFN weighting scheme. As explained earlier, both FAHP 

and TFN schemes are based on fuzzy data to incorporate the vagueness and uncertainty 

inherent in the selection of priority weights for network attributes. Both FAHP and TFN 

weighting schemes, when used with TOPSIS ranking algorithm, show a clear choice of 

network connectivity preferences at slower, medium and higher speeds.  
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Figure 4.27:  Percentage of NW-Connection, TOPSIS, FAHP, for Background 
 

 

 
Figure 4.28:  Percentage of NW-Connection, TOPSIS, FAHP, for Conversational 
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Figure 4.29:  Percentage of NW-Connection, TOPSIS, FAHP, for Interactive 

 
 

 
Figure 4.30:  Percentage of NW-Connection, TOPSIS, FAHP, for Streaming 
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Figure 4.31:  Percentage of NW-Connection, TOPSIS, TFN, for Background 
 

 
Figure 4.32:  Percentage of NW-Connection, TOPSIS, TFN, for Conversational 
 



161 
 

 
Figure 4.33:  Percentage of NW-Connection, TOPSIS, TFN, for Interactive 

 

 
Figure 4.34:  Percentage of NW-Connection, TOPSIS, TFN, for Streaming 
 

 



162 
 

It can be observed from these figures that with minor differences, the percentages 

of connectivity towards a preferred wireless network for different traffic classes are 

almost the same. A 100% preference towards WWAN for the MS with higher speeds 

contrasting a 98% connectivity preference for WLAN can be observed. For slower speed, 

the percentage of connectivity to a preferred network provided by FAHP and TFN based 

schemes is exactly the same as AHP scheme, which is based on crisp data.  

A comparison of Figure 4.23 with Figure 4.28 and Figure 4.32 shows that for 

Conversational traffic class, TOPSIS with AHP prefers WLAN at a mobile speed 

between 6-8 m/s. On the other hand, the fuzzy based weighting mechanism prefers 

WMAN and WWAN at these speeds, which should be the case. For Background traffic 

class, at higher speeds of the MS, the fuzzy based FAHP and TFN weight mechanisms 

give 100% preference towards WWAN (Figure 4.27 and Figure 4.31), whereas the crisp 

based AHP weighting scheme shows higher preference towards WLAN at higher speeds 

(Figure 4.25). Similar observations can be made for Interactive and Streaming traffic 

classes. 

Based on the above discussion, it can be concluded that the performance of 

TOPSIS ranking algorithm utilizing fuzzy based weighting schemes (FAHP and TFN) is 

better, as compared with that of the crisp-value based AHP weighting mechanism. 

4.3.2 FTOPSIS BASED NETWORK SELECTION 

In a Fuzzy TOPSIS based network selection, the network attributes as well as 

their associated weights are treated as fuzzy values. The FTOPSIS is partially similar to 
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TOPSIS with FAHP and to TOPSIS with TFN in terms of the weights of the network 

attributes that are based on fuzzy data. 

Figures 4.35-4.38 depict percentages of connections towards a preferred network 

selected by FTOPSIS scheme. The percentage of network selection for the Background 

traffic class is shown in Figure 4.35. It can be seen from this figure that FTOPSIS shows 

higher preference towards WLAN for the MS moving with slow and medium speeds. 

Approximately 98% and 62% connectivity preferences for WLAN can be seen for slow 

and medium speed MS. WMAN with 37% connectivity preference can be observed as the 

second choice for a medium speed MS whereas 100% connectivity preference is shown 

for WWAN at higher speeds.  

For Conversational and Interactive traffic classes, FTOPSIS prefers WWAN for 

medium and high speeds MS, with an average network connectivity of 60% and 100%, 

respectively. Both of these traffic classes require a lower value of network delay and 

WWAN is fulfilling this requirement. On the other hand, WLAN is the preferred network 

for a slower moving MS. This can be seen from Figure 4.36 and Figure 4.37. 

The behavior of FTOPSIS for Streaming traffic class is the same as 

Conversational and Interactive class with the exception of the MS moving with a medium 

speed. It can be seen from Figure 4.38, that the percentage of network connections for 

WMAN for a medium speed MS is around 60%. As discussed earlier, the Streaming 

traffic class requires a higher throughput from the network. As can be seen from this 

figure, WLAN and WMAN fulfill this requirement for lower and medium MS-speed, 

respectively. 
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Figure 4.35:  Percentage of NW-Connection, FTOPSIS for Background Traffic 

  
 

 
Figure 4.36:  Percentage of NW-Connection, FTOPSIS for Conversational traffic 
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Figure 4.37:  Percentage of NW-Connection, FTOPSIS for Interactive Traffic 
 

 

 
Figure 4.38:  Percentage of NW-Connection, FTOPSIS for Streaming Traffic 
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4.3.3 FVIKOR BASED NETWORK SELECTION 

Similar to FTOPSIS, FVIKOR also utilize fuzzy data for both network attributes 

and their associated weights. Unlike the other ranking techniques discussed earlier, 

FVIKOR demonstrates a distribution of percentages for connectivity preferences among 

the available networks for different traffic types. This is depicted in Figures 4.39-4.42.  

For Background traffic class, approximately 94% and 60% connectivity 

preferences towards WLAN can be observed for slower and high speed mobile, 

respectively. At medium speed, a strong competition between WLAN and WMAN can be 

observed from Figure 4.39, where the first preference is given to WMAN with 

approximately 42% of network connectivity. On the higher speed side, WWAN trails 

WLAN with a network connectivity of 38%. An important trend that can be observed 

from this figure is that as the speed of the MS increases, the percentage of network 

connections to WLAN decreases from 94% to 60%. FVIKOR gives higher connectivity 

preference for Conversational traffic class to WLAN for an MS moving with any speed. 

This is shown in Figure 4.40. 

For Interactive traffic class, a mixed behavior can be observed where WLAN and 

WWAN are given higher connectivity preferences as compared with WMAN. This is 

depicted in Figure 4.41. At higher speed, approximately 60% of network connections 

preferred WWAN.  
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Figure 4.39:  Percentage of NW-Connection, FVIKOR for Background Traffic 

 

 
Figure 4.40:  Percentage of NW-Connection, FVIKOR for Conversational Traffic 
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Like Conversational traffic class, FVIKOR gives similar preferences to the 

Streaming traffic class. Streaming traffic class requires a higher value of throughput and 

WLAN is the network currently providing this higher value. As can be seen from Figure 

4.42, WLAN is the preferred wireless network for any MS-speed whereas WMAN and 

WWAN are given second preferences by FVIKOR for an MS moving with medium to 

higher speeds, respectively. 

4.4 SIMULATION RESULTS: SINGLE MOBILE USER PREFERENCES 

In this section, different simulation results are presented based on the end-user’s 

preferences in terms of cost and security. Once again, we still assume the presence of 

only one MS moving in a straight line with access to different wireless access networks. 

Simulation results for only Streaming traffic class is presented here, the results for the 

other traffic classes can be obtained in a similar fashion.  

4.4.1 TOPSIS BASED NETWORK RANKING WITH USER PREFERRED COST 

Figures 4.43-4.45 show a high end-user preference towards connecting to a less 

costly network. Based on the network parameters listed in Table 4.11, WLAN is the 

network that can fulfill this user requirement as it provides connectivity at a relatively 

low cost. It can be observed that in this case, the weighting schemes in general become 

irrelevant as the user assigns more weights towards the cost attribute. For the same 

reason, approximately 90% of the connections are towards WLAN, regardless of the MS-

speed. On the other hand, since the overall QoS provided by WLAN is relatively weaker 

as compared with WWAN, approximately 10% connectivity preferences can be seen 

towards WWAN.  
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Figure 4.41:  Percentage of NW-Connection, FVIKOR for Interactive Traffic 

 

 
Figure 4.42:  Percentage of NW-Connection, FVIKOR for Streaming Traffic 

 



170 
 

 
Figure 4.43:  Percentage Connections, Preferred Cost, TOPSIS, AHP, Streaming 

 

 

 
Figure 4.44:  Percentage Connections, Preferred Cost, TOPSIS, FAHP, Streaming 
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Figure 4.45:  Percentage Connection, Preferred Cost, TOPSIS, TFN, Streaming 

 

4.4.2 TOPSIS NETWORK RANKING WITH USER PREFERRED SECURITY 

In the scenario where the end-user prefers a network with a higher offering of 

security, 100% connectivity preference for WWAN can be seen from Figures 4.46-4.48. 

Once again, the weighting scheme does not play an important role here since the user 

assigns higher weights towards security attribute. These results can be verified by 

observing the chosen parameters in Table 4.11 where a higher security offering with 

relatively better QoS parameters is offered by WWAN. Since the WWAN can fulfill the 

requirements for all traffic classes while providing a higher security, it is the preferred 

network for the MS travelling at any speed.  
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Figure 4.46:  Percentage of NW-Connection for Preferred Security,  

 TOPSIS, AHP, Streaming 
 

 
Figure 4.47:  Percentage of NW-Connection for Preferred Security,  

 TOPSIS, FAHP, Streaming 
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Figure 4.48:  Percentage of NW-Connection for Preferred Security, TOPSIS, TFN, 
Streaming 
 

4.4.3 FTOPSIS AND FVIKOR BASED NETWORK RANKING WITH USER 

PREFERRED COST 

Figures 4.49-4.50 show percentages of network connection that are assigned to 

the MS with preferred cost for FTOPSIS, and FVIKOR schemes, respectively. These 

results are different as compared with the ones where TOPSIS based schemes are used 

(Figures 4.43-4.45). FTOPSIS based scheme respects the users’ preference of cost by 

assigning the MS with a slow to medium speed to WLAN. For higher MS-speed, 100% 

of the network connection to WWAN can be seen. This is because for a higher speed MS, 

VHITS prefers WWAN. Even though the user wants low cost network and WLAN can 

fulfill this requirement for the most part, FTOPSIS intelligently assigns a higher speed 

MS to WWAN to guarantee continuity and quality of the currently utilized service.  
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Figure 4.49:  Percentage of NW-Connection for Preferred Cost, FTOPSIS, 

 Streaming 
 

 
Figure 4.50:  Percentage of NW-Connection for Preferred Cost, FVIKOR, Streaming 
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Figure 4.51:  Percentage of NW-Connection for Preferred Security, FTOPSIS, Streaming 
 

FVIKOR on the other hand, behaves the same but shows a different pattern for 

the MS moving with medium speed. As can be seen from Figure 4.50, WLAN is the 

preferred network for the MS moving at slow speed as it fulfills the low cost user 

preference, whereas WWAN is chosen for a medium to higher speed MS.  

4.4.4 FTOPSIS AND FVIKOR BASED NETWORK RANKING WITH USER 

PREFERRED SECURITY 

The percentages of network connection for FTOPSIS and FIKVOR with user-

preferred security are depicted in Figures 4.51 and 4.52, respectively. As per the chosen 

network settings, WWAN provides higher security as compared with any other network. 

FTOPSIS chooses WWAN for a medium to higher speed MS. For slower speed, a 

connectivity preference of 20% can be seen towards WWAN. 
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Figure 4.52:  Percentage of NW-Connection for Preferred Security, FVIKOR, Streaming 

 

A higher connectivity preference towards WWAN for the MS moving with any 

speed can be seen in Figure 4.52 where the selection is based on FVIKOR. 

4.5 SIMULATION RESULTS: MULTIPLE MOBILE USERS 

This section presents the evaluation of the proposed scheme assuming the 

presence of multiple MSs distributed uniformly throughout the system. As explained 

earlier, Poisson distribution is used to control the call arrival and departure for all MSs 

to/from the simulation system. The direction of movement and the speed of MSs are 

randomly chosen. This means that at a given moment in time, there are multiple MSs in 

the simulation system that are within the coverage area of multiple wireless access 

technologies and are either moving towards or away from BSs/APs. Note that the multi-
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user environment is uncontrolled as compared to single-user where the assumption is a 

single-user moving in a straight line crossing several cells with different coverage areas.  

The following metrics are considered to evaluate the proposed scheme. 

• Average Outage Probability: The average outage probability is a statistical 

measure that defines the probability of an MS failing to receive a signal 

with adequate quality at a particular location. This outage occurs when the 

SINR of an MS falls below a prescribed threshold. The proposed scheme 

is evaluated using this metric. The necessity of handoff and the decision to 

select the best network as the target of handoff is related to this metric. A 

lower value of this metric indicates a high number of MSs that have 

received adequate signal strength, which in turn, translates into intelligent 

and efficient network selection decisions made by the proposed scheme.   

• Average New Call Blocking Probability: The new call blocking 

probability is the likelihood that the new call/session that is initiated 

cannot be completed due to unreachable signal or unavailable channel 

within a cell. Mathematically, this can be defined as the ratio of new-calls-

connect rejects and the total new-calls-connect requests. From the 

perspective of end-user satisfaction, this factor is not as critically 

important as the handoff call blocking probability that deals with active 

calls/sessions. This metric cannot be used to evaluate VHITS necessity 

estimation scheme since for any new service requests, the VHITS 

necessity estimation module is skipped and VHITS only executes the 
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VHITS target network selection mechanism. Hence this metric is used to 

evaluate the VHITS Target network selection module. 

• Average Handoff Blocking Probability: The handoff blocking probability, 

also called forced termination probability, is the probability that the 

requested handoff to the target network is blocked. This occurs due to 

many reasons including the sudden drop of signal and non-availability of a 

channel or other resources within a cell. Mathematically, this can be 

defined as the ratio between rejected handoffs and the total requested 

handoffs in a system. This metric is considered more important than the 

blocking probability of new calls because the call/session is already active, 

and the QoS is more sensitive for the handed-off calls. This importance is 

basically from the end-user perspective because loss of connections during 

active calls/sessions are worse than new call rejects, which in turn result in 

reduced overall satisfaction of the end-user. This metric is used to evaluate 

the overall VHITS scheme that involves handoff initiation and target 

selection.  

• Average Handoff Rate: The handoff rate is defined as the number of 

handoffs that the MS has performed during a call connection. The metric 

is critically important as it affect the quality of the ongoing service. A 

lower value of this metric is desirable to maximize end-user satisfaction in 

terms of guaranteed continuity and quality of service. It is important to 

mention that the average handoff rate is directly proportional to the MS-
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battery consumption. The higher the handoff rate, the more quickly the 

MS-battery drains. 

• Percentage of Network Connections based on Average Call Arrivals per 

Cell: This metric is used to compare the percentages of network 

connections that our scheme prefers for moving MSs utilizing different 

types of traffic classes. A higher value of this metric indicates intelligent 

and efficient network selection decisions by the proposed scheme.  

The proposed scheme, using the above metrics, is evaluated using the traditional 

RSS based reference algorithm combined with the network’s traffic loading conditions. 

Note that the RSS based algorithm is used mainly for benchmarking purposes and not 

necessarily for comparing the performance of the proposed scheme. These evaluations 

are done based on the average number of arrived calls in each cell with multiple MSs 

moving randomly at a speed of 1 m/s, 5 m/s, and 9 m/s, respectively. As depicted in 

Table 4.12, the average number of calls per cell is random and varies from 1-10. Note 

that the simulations are shown only for Conversational traffic class and similar results 

can be obtained for other traffic classes as well.  

4.5.1 AVERAGE OUTAGE PROBABILITY WITH TOPSIS BASED SELECTION 

Figure 4.53 shows the average outage probability based on TOPSIS and crisp-

based AHP weighting scheme. It can be observed that MSs moving with any speed, the 

average outage probability of TOPSIS with AHP is better than the traditional RSS based 

scheme. For slower moving MSs, the TOPSIS with AHP has an outage probability below 

20%. For MSs moving with medium and high velocities, the outage probability increases 
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as the number of average call arrival per cell increases. For higher speed MSs with the 

maximum number of average call arrival per cell, the outage probability for TOPSIS with 

AHP scheme is approximately 41% as compared to RSS based that is around 49%.   

The outage probabilities calculated using TOPSIS with fuzzy based FAHP and 

TFN weighting schemes are shown in Figures 4.51-4.55. A minor improvement over 

TOPSIS-AHP scheme can be observed for both slower and faster moving MSs. With 

maximum loading and at higher speeds, TOPSIS with FAHP, with an outage probability 

of less than 40%, performs better than both TOPSIS with AHP and TOPSIS with TFN 

schemes. 

 

 
Figure 4.53:  Average Outage Probability, TOPSIS, AHP, Conversational 
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Figure 4.54:  Average Outage Probability, TOPSIS, FAHP, Conversational 

 

 

 
Figure 4.55:  Average Outage Probability, TOPSIS, TFN, Conversational 
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Figure 4.56:  Average Outage Probability, FTOPSIS, Conversational 

 

4.5.2 AVERAGE OUTAGE PROBABILITY WITH FTOPSIS AND FVIKOR  

The FTOPSIS based network selection scheme shows significant performance 

improvement over traditional RSS-based and TOPSIS-based schemes. It can be observed 

from Figure 4.56, the average outage probability for MSs moving with slower speed with 

maximum number of calls per cell is around 13% as compared to RSS with 31%, 

TOPSIS-FAHP with 18%, and TOPSIS-TFN with 19%, respectively. Similarly, at higher 

speeds and maximum system loading, the outage probability for FTOPSIS is around 

35.5%. 

Fuzzy based FVIKOR network selection scheme performs better as compared 

with the traditional RSS and TOPSIS combined with AHP, FAHP, or TFN based 

schemes. For maximum number of average calls per cell, the average outage probabilities 

of 18%, 32%, and 45% for slow, medium, and high moving MSs, respectively, can be 



183 
 

observed from Figure 4.57. On the other hand, a comparison of Figure 4.56 with Figure 

4.57 shows FTOPSIS providing superior performance with FVIKOR.  

4.5.3 AVERAGE HANDOFF BLOCKING PROBABILITY BASED ON TOPSIS 

As depicted in Figure 4.58, the TOPSIS-AHP based network selection scheme 

shows an overall reduced performance when compared with the reference algorithm. For 

slow moving MSs with a low number of average call arrivals per cell, the scheme 

performs marginally better than the RSS based reference algorithm. It can be observed 

from the figure, that for slow moving MSs, the TOPSIS-AHP scheme starts to diverge 

when the average number of calls per cell becomes greater than 3. For medium and high 

speed MSs, this divergence takes place earlier as compared with slow speed MSs. On the 

other hand, a convergence can be seen for average call arrival rates between 7 and 10.  

 

 
Figure 4.57:  Average Outage Probability, FVIKOR, Conversational 
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Figure 4.58:  Average Handoff Blocking Probability based on TOPSIS-AHP 

 

The performance of the TOPSIS-FAHP based scheme shows a little improvement 

when compared with TOPSIS-AHP scheme. It can be observed from Figure 4.59 that at 

MSs’ speed of 1 m/s the scheme provides a lower value of handoff blocking probability 

for average calls of 4 or less. On the other hand, with maximum average call arriving at 

each cell, the handoff blocking probability increases to approximately 92% for medium 

and higher speeds MSs.  

TOPSIS-TFN scheme behaves similarly to TOPSIS-FAHP with a minor 

improvement for medium speed MSs with less numbers of system average call arrival per 

cell. This is shown in Figure 4.60.  
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Figure 4.59:  Average Handoff Blocking Probability based on TOPSIS-FAHP 

 

 

 
Figure 4.60:  Average Handoff Blocking Probability based on TOPSIS-TFN 
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4.5.4 AVERAGE HANDOFF BLOCKING PROBABILITY BASED ON FTOPSIS 

AND FVIKOR 

Figure 4.61 shows the handoff blocking probability when FTOPSIS is used as the 

target network selection algorithm. It can be seen from this figure that FTOPSIS 

outperforms other schemes based on purely crisp data, or a hybrid of crisp and fuzzy 

data. For MSs moving at any speed, and for any number of average call arrivals per cell, 

FTOPSIS performs better than the above-mentioned schemes. For the maximum number 

of average calls arriving per cell, the handoff blocking probability is around 55%, 65%, 

and 70%, for slow, medium and high speed MSs, respectively. This can be compared 

against RSS based scheme with handoff blocking probabilities of 75%, 80%, and 82%, 

for slow, medium, and high speed MSs. This means that the FTOPSIS scheme makes 

better and intelligent decisions to find the best target network that can fulfill the end-user 

requirements.  

The fuzzy based FVIKOR also shows improvements especially when there are 

increased numbers of average system calls per cell. For mobile stations moving with 

medium or higher speeds with an average number of 4 calls or less, the reference 

algorithm performs better than FVIKOR. Nevertheless, FVIKOR shows improvements 

for average calls of 5 and more per cell. It is important to note that FVIKOR does not 

provide the same performance as FTOPSIS, when the average handoff blocking 

probability at maximum system loading for MSs with average speeds of 9 m/s is around 

70% as compared with FVIKOR, where the blocking probability is around 75%.  
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Figure 4.61:  Average Handoff Blocking Probability based on FTOPSIS 

 

 

 
Figure 4.62:  Average Handoff Blocking Probability based on FVIKOR 
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Figure 4.63:  Average New Call Blocking Probability based on TOPSIS-AHP 

 

4.5.5 AVERAGE NEW CALL BLOCKING PROBABILITY BASED ON TOPSIS 

The average new call blocking probability for TOPSIS based schemes is 

presented in Figures 4.63-4.65. Just like average handoff blocking probability, a similar 

trend can be observed from these figures. The traditional RSS based scheme is able to 

provide a better performance as compared with all TOPSIS based schemes. But unlike 

Figures 4.58-4.60 where the average handoff blocking probability at maximum system 

load of 10 calls per cell is above 90%, the probability of new call blocking is below 80%.  
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Figure 4.64:  Average New Call Blocking Probability based on TOPSIS-FAHP 

 

 

 
Figure 4.65:  Average New Call Blocking Probability based on TOPSIS-TFN 
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Figure 4.66:  Average New Call Blocking Probability based on FTOPSIS 

 

4.5.6 AVERAGE NEW CALL BLOCKING PROBABILITY BASED ON FTOPSIS 

AND FVIKOR 

Figure 4.66 shows the new call blocking probability based on FTOPSIS ranking 

module. As discussed earlier, the evaluation of VHITS target network selection module 

can be done based on this metric. This figure clearly depicts an overall enhanced 

performance, especially for system-loading with an average call arrival rate of 3 and 

more. For a very busy system, FTOPSIS produces a new call blocking probability of less 

than 65% for MSs moving with any speed. On the other hand, FVIKOR, depicted in 

Figure 4.67, shows promising results only for an average call arrival rate of 8 and more 

per cell. Again, FTOPSIS shows better performance when compared with the other 

demonstrated schemes.  
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Figure 4.67:  Average New Call Blocking Probability based on FVIKOR 

 

4.5.7 AVERAGE HANDOFF RATE BASED ON TOPSIS 

Figures 4.68-4.70 depict the average number of handoff rates that the system has 

performed during an on-going call/session, using TOPSIS with AHP, FAHP, and TFN 

weighting schemes. It is obvious from these figures that the average handoff rate of the 

VHITS scheme utilizing TOPSIS with any weighting scheme is far better than the RSS 

based reference algorithm. With MSs moving with high speeds and with system at 

maximum load, the average handoff rate is approximately 50% for TOPSIS-AHP 

scheme. On the other hand, when TOPSIS is combined with FAHP or TFN weighting 

mechanisms, an improvement of 24% over RSS based algorithm can be noted for higher 

speed MSs accessing system with higher number of arrival calls per cell.  
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Figure 4.68:  Average Handoff Rate based on TOPSIS-AHP 

 

 

 
Figure 4.69:  Average Handoff Rate based on TOPSIS-FAHP 
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Figure 4.70:  Average Handoff Rate based on TOPSIS-TFN 

 

This overall performance gain, in terms of average number of handoffs, is due to 

the design of VHITS necessity estimation module that incorporates parallel FLCs and 

takes advantage of GPT with a moving average filter to predict RSS based on the 

measured samples from available networks; furthermore, this results in reduced and 

intelligent handoffs to the best available target networks. Due to the intelligence of the 

VHITS necessity estimation module, the “ping-pong effect” is also reduced significantly. 

4.5.8 AVERAGE HANDOFF RATE BASED ON FTOPSIS AND FVIKOR 

The average handoff rate for VHITS utilizing FTOPSIS and FVIKOR is 

presented in Figure 4.71 and Figure 4.72, respectively. Once again, these fuzzy-data 

based schemes demonstrate a superior performance when compared against the reference 

algorithm and the different TOPSIS combinations discussed in the above paragraphs. As 

can be seen from these figures, the performance of FTOPSIS is better than FVIKOR. An 
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improvement of 32% and 7% can be seen for FTOPSIS when compared to RSS-based 

and FVIKOR schemes, respectively. These handoff rates are calculated for average call 

arrival rate of 10 per cell and with MSs’ speed of 9 m/s. This improvement over 

traditional scheme shows that the VHITS scheme is performing handoff necessity 

estimation and target selection mechanism in a more intelligent and efficient manner. 

4.5.9 PERCENTAGE OF NETWORK CONNECTIONS BASED ON AVERAGE 

SYSTEM CALLS-TOPSIS 

This and the following sections discuss the overall percentages of network 

connections that the proposed scheme assigns to the three types of available networks 

based on the Conversational traffic class. The effect of different speeds of MSs is 

observed for three different average arrival rates of 1, 5, and 10 calls per cell. RSS based 

selection mechanism that is used as reference algorithm is also provided. Note that these 

percentages are calculated after the completion of the entire simulation to observe and 

discover some interesting trends based on the overall state of the system.  

Figures 4.73-4.81 show the percentages of network connections based on TOPSIS 

with AHP, FAHP, and TFN weighting schemes. A common trend observed from these 

figures is that WWAN is consistently given higher preference as compared with WMAN, 

and WLAN. This is true for any mobile speed and any number of average system calls 

per cell. WMAN and WLAN are given second and third preferences, respectively. As 

explained earlier Conversational traffic class requires a low value of delay and jitter, and 

according to the chosen parameters listed in Table 4.11, WWAN provides the lowest 

values for these attributes, followed by WMAN and WLAN.  
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Figure 4.71:  Average Handoff Rate based on FTOPSIS 

 

As the speed of the MS increases from 1 m/s to 9 m/s, the percentage of network 

connections to WWAN also increases for all three system traffic loadings. This should be 

the case, as the proposed scheme prefers WWAN for higher speed MSs. For example, for 

an average call arrival rate of 1, it can be observed that the percentage of connectivity 

towards WWAN based on TOPSIS-AHP, increases from 70% to 75% for average MSs’ 

speeds of 1 m/s and 9 m/s, respectively.  
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Figure 4.72:  Average Handoff Rate based on FVIKOR 

 

 

 
Figure 4.73:  Percentage of NW-Connection per Number of Average Calls,   

 TOPSIS-AHP, Velocity = 1 m/s 
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A similar pattern can be observed when the average number of calls increases 

from 1 to 10. At an average call arrival rate of 10, a distribution of connections among 

the three available networks can be observed. Based on the characteristics of the 

Conversational traffic class, the VHITS scheme still assigns more calls to WWAN as it 

currently offers a better overall QoS for the Conversational traffic class. For example, 

Figure 4.73 shows approximately 51%, 31%, and 18% of the network connection 

assignments to WWAN, WMAN, and WLAN, respectively, at a system average call 

arrival rate of 10 and with mobiles moving with an average speed of 1 m/s. As discussed 

above, an increase in speed causes the proposed scheme to assign more calls to WWAN 

due to its larger coverage. For the same case, this can be observed from Figure 4.75 

where these percentages have changed to 56%, 32%, and 12%, for WWAN, WMAN, and 

WLAN, respectively. 

A comparison of the proposed scheme can be done against the RSS based 

reference algorithm, where for all the above-mentioned cases the proposed scheme 

performs better by assigning more calls/sessions to WWAN. For example, Figure 4.75 

shows that the proposed scheme assigns approximately 75% of the connections to 

WWAN for a system average call arrival rate of 1, as compared with 50% calls assigned 

by RSS based scheme. For an average call arrival rate of 10, the proposed scheme still 

outperforms RSS by a difference of approximately 9%.  

TOPSIS with FAHP and TFN based mechanisms offer similar trends as discussed 

above. At slower speeds, the call assignments based on TOPSIS-FAHP favor WLAN and 

WMAN by very small percentages. This can be observed from Figure 4.76 where the 

percentage of WMAN and WLAN has increased by 1% as compared with Figure 4.73, 
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when the system arrival rate is 1. For medium and high speeds MSs, the TOPSIS-FAHP, 

as shown in Figures 4.77-4.78, assigns higher priority to WWAN than the TOPSIS-AHP 

scheme. This is due to the fact that FAHP utilizes fuzzy data for calculating system 

weights.  

A comparison of Figures 4.76 and 4.79 show that at slower speeds, the 

performances of TOPSIS-FAHP and TOPSIS-TFN are almost the same. For MSs with 

medium speeds, TOPSIS with TFN assigns more call to WMAN as compared with 

WLAN. This can be observed from Figure 4.80. A minor performance difference 

between TOPSIS-FAHP and TOPSIS-TFN, at medium and higher arrival call rates, can 

be observed from Figure 4.81.  

 

 
Figure 4.74:  Percentage of NW-Connection per Number of Average Calls, 

 TOPSIS-AHP, Velocity = 5 m/s 
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Figure 4.75:  Percentage of NW-Connections per Number of Average Calls, 

 TOPSIS-AHP, Velocity = 9 m/s 
 

 

 
Figure 4.76:  Percentage of NW-Connections per Number of Average Calls, 

 TOPSIS-FAHP, Velocity = 1 m/s 
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Figure 4.77:  Percentage of NW-Connections per Number of Average Calls, 

 TOPSIS-FAHP, Velocity = 5 m/s 
 
 

 
Figure 4.78:  Percentage of NW-Connections per Number of Average Calls, 

 TOPSIS-FAHP, Velocity = 9 m/s 
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Figure 4.79:  Percentage of NW-Connections per Number of Average Calls, 

 TOPSIS-TFN, Velocity = 1 m/s 
 

 

 
Figure 4.80:  Percentage of NW-Connections per Number of Average Calls, 

 TOPSIS-TFN, Velocity = 5 m/s 
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Figure 4.81:  Percentage of NW-Connections per Number of Average Calls, 

 TOPSIS-TFN, Velocity = 9 m/s 
 

Based on the preceding discussions, it can be concluded that TOPSIS with FAHP 

or TFN perform better when compared with TOPSIS with AHP, which relies on crisp 

data. 

4.5.10 PERCENTAGE OF NETWORK CONNECTION BASED ON AVERAGE 

SYSTEM CALLS-FTOPSIS AND FVIKOR 

The results for FTOPSIS and FVIKOR based network selection are presented in 

Figures 4.82-4.87. All the observations made for TOSPIS based schemes are also valid 

for FTOPSIS and FVIKOR target network selection schemes. Since both FTOPSIS and 

FVIKOR rely on fuzzy based network’s attributes and weights, a higher preference can 

be seen towards WWAN. For example, approximately 87%, and 58% preference towards 

WWAN can be observed from Figure 4.82, for an average system call rate of 1 and 10, 
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respectively. For FTOPSIS, this preference is even higher for fast moving MSs; 

approximately 90% for system call arrival rate of 1, as can be seen from Figure 4.84. 

For slow and medium speed MSs with a system call arrival rate of 10, FVIKOR 

performs nearly the same as the RSS based scheme. This is shown in Figure 4.85 and 

Figure 4.86.  

A comparison of FTOPSIS with FVIKOR reveals that VHITS selection scheme, 

based on FTOPSIS, produces better percentage of network connections at different MSs-

speeds and at different system loading conditions. FTOPSIS also performs better than the 

TOPSIS based schemes as well as the traditional RSS based reference algorithm.  

4.6 COMPARISON BETWEEN DIFFERENT SCHEMES 

This chapter concludes by providing an overall comparison between the discussed 

schemes. This comparison is based on the same metrics discussed in Section 4.5 for 

evaluating VHITS in a multi-user scenario.  

Tables 4.13-4.16 show comparisons among the different ranking algorithms that 

VHITS utilizes to perform vertical handoff decisions based on the four different traffic 

classes. All four tables depict different probabilities based on MSs’ speed of 1, 5, and 10 

m/s, assuming maximum system loading of 10 calls per cell. These tables also show the 

handoff rates based on the same values of MS-speed and system loading. The percentages 

of connections towards the three types of networks based on the four traffic classes can 

be observed as well from these tables. 
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Figure 4.82:  Percentage of NW-Connections per Number of Average Calls, FTOPSIS, 
Velocity = 1 m/s 

 

 
Figure 4.83:  Percentage of NW-Connections per Number of Average Calls, FTOPSIS, 
Velocity = 5 m/s 

 



205 
 

 
Figure 4.84:  Percentage of NW-Connections per Number of Average Calls, FTOPSIS, 
Velocity = 9 m/s 

 

 
Figure 4.85:  Percentage of NW-Connections per Number of Average Calls, FVIKOR, 
Velocity = 1 m/s 
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Figure 4.86:  Percentage of NW-Connections per Number of Average Calls, FVIKOR, 
Velocity = 5 m/s 

 

 
Figure 4.87:  Percentage of NW-Connections per Number of Average Calls, FVIKOR, 
Velocity = 9 m/s 
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It can be seen that FTOPSIS outperforms all other schemes in terms of average 

outage probability, new call blocking probability, handoff blocking probability, average 

handoff rate, and percentage of connection towards a preferred network for all four traffic 

classes. 

Table 4.13 shows the comparison between different selection schemes based on 

the Conversational traffic class. As can be seen from this table, at higher speeds and 

maximum system loadings, the VHITS scheme utilizing FTOPSIS performs 17% better 

than the reference algorithm in terms of average outage probability, 22% better in terms 

of new call blocking probability, and 16% better in terms of handoff blocking probability. 

The handoff rate also shows significant improvement of 40% over the reference 

algorithm, this being a clear indication of decreased “ping-pong effect” as well. The 

significant reduction in the handoff rate provided by the proposed scheme is translated 

into a better power consumption and more available battery life for MSs; as higher 

handoff rates consumes more battery power. As mentioned earlier, Conversational traffic 

class is characterized by low values of delay and jitter. Based on the current parameter 

set, these requirements are fulfilled by WWAN and followed by WMAN and WLAN. 

Higher connectivity preference towards WWAN can be observed from this table, for MSs 

utilizing the Conversational traffic class; the second preferred network is WMAN 

followed by WLAN, which offers the weakest QoS for Conversational traffic among all 

three networks. 

The comparison of the schemes based on the Streaming traffic class is shown in 

Table 4.14. Just like Conversational traffic class, reduced values of different metrics can 

be seen for this class as well. As noted before, low value of jitter and a relatively higher 
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value of throughput are required for Streaming traffic class. Based on the chosen 

parameters, WWAN provides the lowest value of jitter and WLAN provides the highest 

throughput. It can be observed from this table that WWAN provides the overall QoS 

required by the Streaming class. A connectivity preference can be seen towards WLAN 

for MSs moving at low speeds. A competition between WMAN and WLAN can also be 

observed for low MSs moving with low to mid speeds, this is due to WLAN providing 

better throughput when compared with WMAN. 

Similar observations, in terms of lower outage and handoff rates, handoff 

blocking probabilities, and new call blocking probabilities, can also be made for the 

Background and Interactive traffic classes as can be seen from Table 4.15 and Table 4.16, 

respectively.  

FVIKOR shows improvement in some areas especially when compared against 

the other non-fuzzy based and partially fuzzy based schemes. It can be noted that 

FVIKOR does not provide the same overall performance as FTOPSIS in terms of the 

metrics used to evaluate the proposed scheme. 

The performance of TOPSIS-AHP for some metrics, such as new call and handoff 

blocking probability, is not good as compared with the RSS based reference algorithm. 

On the other hand, when subjected to fuzzy based weighting mechanisms such as FAHP 

or TFN, TOPSIS showed improved performance. 

A comparison of FAHP weighting scheme with TFN reveals that TFN, which is 

based on simple usage of Linguistic Variables, mostly performs better than FAHP for all 

four traffic classes. 
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We will conclude this chapter by making a final comment regarding the 

complexity of our scheme. Although, we have not performed a detailed complexity 

analysis in terms of resource usage, we believe that our scheme can be implemented on 

any smart mobile terminals since the latest innovations in mobile technology provides 

powerful processors and increased and efficient storage space; besides most of the latest 

consumer electronics such as digital cameras, are based on embedded fuzzy logic and 

provide superior performances. Just like any other complex MADM-based handoff 

scheme, we assume that the MS’s battery consumption of our scheme is higher as well. 

Nonetheless, the proposed scheme, as noted from previous discussions, is able to achieve 

reduction in “ping-pong effect” by performing efficient and intelligent handoff decisions, 

which translate into better MS’s power consumption.   
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Table 4.13:  VHITS Selection Schemes Comparison for Conversational Traffic Class 
 

 

Average 
Outage 

Probability 
(%) 

New Call 
Blocking 

Probability 
(%) 

Handoff 
Blocking 

Probability 
(%) 

Average 
Handoff 

Rate  
(%) 

Percentage of Network Connections 
for WLAN, WMAN, WWAN 

(%) 

Speed 
(m/s) 

1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 

Call 
Arrival 

10 10 10 10 10 10 10 10 10 10 10 10 1 5 10 1 5 10 1 5 10

C
ri

sp
 RSS 25 41 52 87 88 87 86 89 91 39 60 71

14 22 28 10 25 29 9 26 30
24 30 28 26 29 27 27 27 28
62 48 44 64 46 44 64 47 42

TOPSIS 
AHP 

17 32 41 87 88 88 92 89 91 16 33 43
7 16 26 5 10 18 5 14 19
18 31 27 20 33 32 24 31 30
75 53 47 75 57 50 71 55 51

F
u

zz
y 

W
ei

gh
ts

 

TOPSIS 
FAHP 

16 31 40 85 87 88 91 87 89 16 30 39
7 17 26 4 5 10 2 8 12
18 31 28 20 35 35 24 33 33
75 52 46 76 60 55 74 59 55

TOPSIS 
TFN 

16 32 40 84 86 88 90 86 88 15 28 38
8 16 23 3 5 12 2 8 12
18 30 29 19 36 34 24 33 34
74 54 48 78 59 54 74 59 54

A
ll

 F
u

zz
y FVIKOR 17 31 39 70 69 67 76 75 77 15 26 36

10 16 24 5 12 22 6 15 23
17 29 28 19 30 29 16 29 27
73 55 48 76 58 49 78 56 50

FTOPSIS 14 28 35 67 68 65 73 72 75 11 22 31
10 15 22 8 10 20 4 16 21
12 29 28 13 30 27 16 26 27
78 56 50 79 60 53 80 58 52
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Table 4.14:  VHITS Selection Schemes Comparison for Streaming Traffic Class 

 

 

Average 
Outage 

Probability 
(%) 

New Call 
Blocking 

Probability 
(%) 

Handoff 
Blocking 

Probability 
(%) 

Average 
Handoff 

Rate  
(%) 

Percentage of Network Connections 
for WLAN, WMAN, WWAN 

(%) 

Speed 
(m/s) 

1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 

Call 
Arrival 

10 10 10 10 10 10 10 10 10 10 10 10 1 5 10 1 5 10 1 5 10

C
ri

sp
 RSS 25 41 52 87 88 87 86 89 91 39 60 71

14 22 28 10 25 29 9 26 30
24 30 28 26 29 27 27 27 28
62 48 44 64 46 44 64 47 42

TOPSIS 
AHP 

20 35 46 88 87 87 92 88 89 17 32 44
7 19 25 6 13 20 4 13 22
18 27 28 19 31 32 20 29 28
75 54 47 75 56 48 76 58 50

F
u

zz
y 

W
ei

gh
ts

 

TOPSIS 
FAHP 

19 34 45 87 89 88 92 91 90 17 31 42
7 16 25 4 6 13 2 10 16
18 31 27 19 33 34 23 32 31
75 53 48 77 61 53 75 58 53

TOPSIS 
TFN 

19 33 44 86 89 88 90 89 88 16 30 39
8 15 23 4 7 14 2 11 15
18 31 29 19 35 34 23 30 31
74 54 48 77 58 52 75 59 54

A
ll

 F
u

zz
y FVIKOR 18 32 43 72 71 71 77 76 78 15 28 40

8 17 22 6 16 20 4 14 21
16 29 29 22 30 30 20 30 30
76 54 49 72 54 50 76 56 49

FTOPSIS 16 30 42 69 68 67 74 72 74 12 25 36
12 21 23 10 18 28 9 16 23
10 20 26 13 22 30 15 26 27
78 59 51 77 60 52 76 58 50
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Table 4.15:  VHITS Selection Schemes Comparison for Background Traffic Class 
 

 

Average 
Outage 

Probability 
(%) 

New Call 
Blocking 

Probability 
(%) 

Handoff 
Blocking 

Probability 
(%) 

Average 
Handoff 

Rate  
(%) 

Percentage of Network Connections 
for WLAN, WMAN, WWAN 

(%) 

Speed 
(m/s) 

1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 

Call 
Arrival 

10 10 10 10 10 10 10 10 10 10 10 10 1 5 10 1 5 10 1 5 10

C
ri

sp
 RSS 25 41 52 87 88 87 86 89 91 39 60 71

14 22 28 10 25 29 9 26 30
24 30 28 26 29 27 27 27 28
62 48 44 64 46 44 64 47 42

TOPSIS 
AHP 

17 32 43 88 88 87 93 89 88 16 37 48
8 17 25 5 12 19 4 13 24
18 28 28 19 31 32 20 30 28
74 55 47 76 57 49 76 57 48

F
u

zz
y 

W
ei

gh
ts

 

TOPSIS 
FAHP 

17 32 40 87 88 88 92 90 89 16 30 38
7 16 25 3 5 13 2 10 14
18 31 28 21 33 34 24 33 31
75 53 47 76 62 53 74 57 55

TOPSIS 
TFN 

17 32 42 87 88 88 93 88 89 16 29 40
8 16 23 4 7 16 2 12 17
18 31 29 19 33 32 23 30 31
74 53 48 77 60 52 75 58 52

A
ll

 F
u

zz
y FVIKOR 18 32 44 70 68 66 79 77 78 14 36 46

7 9 18 5 15 24 4 16 24
18 33 31 19 31 28 21 31 28
75 58 51 76 54 48 75 53 48

FTOPSIS 16 31 44 71 70 69 76 75 76 13 35 45
10 16 20 7 10 21 5 18 20
13 25 27 17 30 23 19 24 25
77 59 53 78 60 54 76 58 55
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Table 4.16:  VHITS Selection Schemes Comparison for Interactive Traffic Class 
 

 

Average 
Outage 

Probability 
(%) 

New Call 
Blocking 

Probability 
(%) 

Handoff 
Blocking 

Probability 
(%) 

Average 
Handoff 

Rate  
(%) 

Percentage of Network Connections 
for WLAN, WMAN, WWAN 

(%) 

Speed 
(m/s) 

1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 

Call 
Arrival 

10 10 10 10 10 10 10 10 10 10 10 10 1 5 10 1 5 10 1 5 10

C
ri

sp
 RSS 25 41 52 87 88 87 86 89 91 39 60 71

14 22 28 10 25 29 9 26 30
24 30 28 26 29 27 27 27 28
62 48 44 64 46 44 64 47 42

TOPSIS 
AHP 

17 31 42 88 88 87 92 88 87 15 32 43
7 17 22 5 14 21 4 13 20
17 28 29 23 31 30 23 30 29
76 55 49 72 55 49 73 57 51

F
u

zz
y 

W
ei

gh
ts

 

TOPSIS 
FAHP 

17 30 41 88 90 90 93 92 89 17 31 42
8 15 25 4 7 11 2 6 13
17 31 28 21 35 35 24 33 32
75 54 47 75 58 54 74 61 55

TOPSIS 
TFN 

16 30 42 87 89 88 93 92 90 15 29 42
7 16 26 3 6 14 2 9 16
18 31 28 19 35 34 24 32 31
75 53 46 78 59 52 74 59 53

A
ll

 F
u

zz
y FVIKOR 15 27 41 71 68 66 76 76 77 15 28 41

7 11 16 4 13 23 4 14 22
19 31 32 18 31 29 19 30 28
74 58 52 78 56 48 77 56 50

FTOPSIS 13 25 37 70 68 65 73 73 74 11 26 34
10 18 22 6 16 16 4 12 17
12 22 24 14 23 27 16 26 27
78 60 54 80 61 57 80 62 56
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the research work and discusses potential directions for 

future handoff-related research.  

5.1 SUMMARY 

In a highly integrated ubiquitous heterogeneous wireless environment, the 

selection of a network that can fulfill end-users’ service requests while keeping their 

overall satisfaction at a very high level is vital; a wrong selection can lead to undesirable 

conditions such as unsatisfied users, weak QoS, network congestions, dropped and/or 

blocked calls, and wastage of valuable network resources. The selection of these 

networks is performed during the handoff process when an MS switches its current PoA 

to a different network due to the degradation or complete loss of signal and/or 

deterioration of the provided QoS. Traditional schemes perform the necessity of 

handoffs, and trigger the network selection process based on a single metric such as RSS. 

These schemes are not efficient and intelligent enough, so they do not take into 

consideration the traffic characteristics, user preferences, network conditions and other 

important system metrics.   

The focus of this research work is on the design and implemention of a scheme 

that can perform efficient and intelligent vertical handoffs in heterogeneous wireless 

networks. The main objective of the developed scheme is to minimize the number of 

unnecessary handoffs while maximizing the sojourn time with a preferred network, 

resulting in increased end-users’ satisfaction levels.  
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Two modules are proposed, namely VHITS Handoff Necessity Estimation, and 

VHITS Handoff Target Network Selection. The fuzzy logic-based VHITS Handoff 

Necessity Estimation module determines whether a handoff is necessary by taking into 

consideration the predicted RSS values provided by the current PoA, the degree of the 

provided QoS based on the requested traffic class (Conversational, Streaming, 

Background, and Interactive), and the speed of the vehicle including the direction 

(toward/away from the PoA) in which the MS is travelling. The future value of RSS 

predicted using GPT is used to minimize call dropping probabilities due to sudden loss of 

signal in a lognormal fading environment that is inherent in wireless networks. Several 

parallel FLCs are designed to make the computation of the proposed scheme efficient by 

minimizing the number of required inference rules.  

The VHITS Target Selection scheme also utilizes fuzzy logic in addition to 

different ranking algorithms and weight elicitation techniques that are implemented to 

select the best target network that can fulfill end-users’ preferences. Multiple weighting 

schemes are developed: AHP uses crisp values to indicate user preferences while FAHP, 

TFN, and Linguistic Variables based schemes are developed to deal with uncertainty and 

vagueness in user-provided preferences by treating them as fuzzy data. Multiple ranking 

algorithms are implemented and compared to perform network selection: TOPSIS uses 

crisp values for multiple networks’ attributes required to make the selection, while 

FTOPSIS and FVIKOR are based on fuzzy data. These schemes are implemented to deal 

with uncertain and fuzzy values of the measured parameters inherent in a dynamic 

wireless environment. The carefully chosen network attributes from WLAN, WMAN, 

and WWAN include predicted RSS, QoS-related parameters (delay, jitter, PLR, and 
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throughput), and speed of the MS including its moving direction, traffic-loading 

conditions, security preferences, and the cost of the provided service. Four different types 

of services, namely Conversational, Streaming, Background, and Interactive, are 

considered in this research work.  

As noted from the discussion above, the developed modules utilize the benefits of 

parallel FLCs, and different weighting and MADM algorithms that can work with both 

crisp and fuzzy data. Furthermore, the proposed scheme is flexible and scalable as it can 

work with any number of networks with a large set of decision criteria. These are obvious 

advantages of using this scheme over traditional ones as well as other schemes that utilize 

multiple metrics, to perform handoff decisions.  

Numerical examples are provided and simulations using RUNE tools are done 

comparing the performance of the proposed scheme with the traditional reference 

algorithms. Simulations based on certain types of traffic classes are also carried out 

comparing the performance of implemented weighing schemes as well as the network 

ranking algorithms. The simulation results indicate a better overall performance of the 

proposed scheme in terms of minimized handoffs, lower probability of handoff blocking 

and new call blocking, and increased connection time with the selected network that is 

preferred by the end-user. The VHITS necessity estimation scheme is able to reduce the 

number of handoffs, and the VHITS target network selection scheme based on FTOPSIS 

outperforms the other schemes implemented and simulated in terms of intelligent and 

efficient handoff decisions. 
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5.2 FUTURE WORK 

Different aspects of the proposed scheme can be further improved. Some of the 

major future directions related to handoff research are briefly discussed as follows: 

• The handoff process is just one aspect of an overall mobility framework to 

provide ubiquitous access to MSs moving in a heterogeneous wireless 

environment. The proposed handoff algorithm can be combined with other 

resource management tasks such as power and call admission control, and 

channel assignments to provide continued and guaranteed quality of 

service. A joint optimization of such an integrated system may result in an 

overall optimal performance with increased users’ satisfaction. 

• We intend to optimize the proposed weight elicitation process to improve 

the efficiency of handoffs for each of the four traffic classes. This 

optimization can be achieved through the use of neural or Bayesian 

networks.   

• The proposed scheme is based on fuzzy logic with rules and membership 

functions that are subjective in nature. Hence, research needs to be done in 

finding out the different types of membership functions that can result in 

optimal handoff performance. One possibility is to utilize an Adaptive-

Network-based Fuzzy Inference System (ANFIS) where the system can 

construct an input-output relationship based on both subjective human 

knowledge and stipulated input-output data pairs. By embedding the fuzzy 

inference system into the framework of adaptive networks, a set of fuzzy 

if-then rules with appropriate membership functions is created to generate 
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the stipulated input-output pairs. Another possibility includes suitable 

learning methods such as neural and Bayesian networks. 

• The proposed scheme is tested using RUNE that can provide propagation 

data based on different mobility and path models. Further improvements 

may be achieved by optimizing the algorithm using real propagation data 

and by testing its performance utilizing real wireless network conditions.   

• The proposed scheme investigates handoffs using three types of networks, 

namely WLAN, WMAN, and WWAN, without targeting a specific 

wireless network technology. We plan to extend this research work by 

applying this newly developed scheme to the handoff process of specific 

wireless technologies such as LTE advance, 60 GHz millimeter waves, 

Bluetooth, IEEE 802.11, and IEEE 802.16.  

• We plan to perform a detailed complexity analysis in terms of resources 

usage to determine the feasibility of our proposed scheme. As MS-battery 

consumption is critical in any MADM based scheme, we intend to extend 

our work by offering a power-efficient handoff scheme that can provide 

similar intelligent handoff decisions.   
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