
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-30-2012

Towards Simulation and Emulation of Large-Scale
Computer Networks
Nathanael M. Van Vorst
Florida International University, n@vvc.im

DOI: 10.25148/etd.FI12050124
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Van Vorst, Nathanael M., "Towards Simulation and Emulation of Large-Scale Computer Networks" (2012). FIU Electronic Theses and
Dissertations. 612.
https://digitalcommons.fiu.edu/etd/612

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/612?utm_source=digitalcommons.fiu.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

TOWARDS SIMULATION AND EMULATION OF LARGE-SCALE COMPUTER

NETWORKS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Nathanael Van Vorst

2012



To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Nathanael Van Vorst, and entitled Towards Simulation and
Emulation of Large-Scale Computer Networks, having been approved in respect to style
and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Raju Rangaswami

Ming Zhao

Chen Liu

Jason Liu, Major Professor

Date of Defense: March 30, 2012

The dissertation of Nathanael Van Vorst is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2012

ii



c� Copyright 2012 by Nathanael Van Vorst

All rights reserved.

iii



ACKNOWLEDGMENTS

I would first like to thank my husband Louis. Without his encouragement I would

not have returned to school to finish my doctoral studies. His continued love and en-

couragement has provided me with the fortitude to complete this dissertation. Without

him, none of this would have been possible. I am also grateful for the love, support and

encouragement of my family and friends.

I wish to express my gratitude towards my adviser, Professor Jason Liu. Jason’s com-

mitment to excellence has been, and will continue to be, a source of inspiration for me.

Thank you for always taking time from your busy schedule for me. Our numerous brain

storming sessions and paper discussions were both enjoyable and edifying. I also wish

thank Professors Raju Rangaswami, Ming Zhao, and Chen Liu, the other members of my

Ph.D. committee, for making time to support my dissertation.

I want to thank my constant collaborators, Ting Li and Miguel Erazo. Our many hours

of discussions were enjoyable as well as good sources of fruitful research ideas. I am

grateful that I was able to make this journey with both you. I want to thank Ron Oldfield

and Kevin Pedretti at Sandia National Labs for the opportunity to work with both of you.

My internship at SNL was stimulating, enjoyable, and something I will remember for

years to come.

I also want to thank Florida International University for generously providing me with

a dissertation year fellowship. The fellowship provided me the opportunity to focus on

my research and complete this dissertation.

iv



ABSTRACT OF THE DISSERTATION

TOWARDS SIMULATION AND EMULATION OF LARGE-SCALE COMPUTER

NETWORKS

by

Nathanael Van Vorst

Florida International University, 2012

Miami, Florida

Professor Jason Liu, Major Professor

Developing analytical models that can accurately describe behaviors of Internet-scale

networks is difficult. This is due, in part, to the heterogeneous structure, immense size

and rapidly changing properties of today’s networks. The lack of analytical models makes

large-scale network simulation an indispensable tool for studying immense networks.

However, large-scale network simulation has not been commonly used to study networks

of Internet-scale. This can be attributed to three factors: 1) current large-scale network

simulators are geared towards simulation research and not network research, 2) the mem-

ory required to execute an Internet-scale model is exorbitant, and 3) large-scale network

models are difficult to validate. This dissertation tackles each of these problems.

First, this work presents a method for automatically enabling real-time interaction,

monitoring, and control of large-scale network models. Network researchers need tools

that allow them to focus on creating realistic models and conducting experiments. How-

ever, this should not increase the complexity of developing a large-scale network simu-

lator. This work presents a systematic approach to separating the concerns of running

large-scale network models on parallel computers and the user facing concerns of config-

uring and interacting with large-scale network models.

Second, this work deals with reducing memory consumption of network models. As

network models become larger, so does the amount of memory needed to simulate them.

v



This work presents a comprehensive approach to exploiting structural duplications in net-

work models to dramatically reduce the memory required to execute large-scale network

experiments.

Lastly, this work addresses the issue of validating large-scale simulations by integrat-

ing real protocols and applications into the simulation. With an emulation extension, a

network simulator operating in real-time can run together with real-world distributed ap-

plications and services. As such, real-time network simulation not only alleviates the

burden of developing separate models for applications in simulation, but as real systems

are included in the network model, it also increases the confidence level of network sim-

ulation. This work presents a scalable and flexible framework to integrate real-world

applications with real-time simulation.

vi



TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Simulation Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Parallel Discrete Event Simulation . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Network Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Computer Network Emulation . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Link-Centric Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Node-Centric Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Network-Centric Emulation . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Real-Time Computer Network Simulation . . . . . . . . . . . . . . . . . . . 25

3. INTERACTIVE NETWORK SIMULATION VIA MODEL SPLITTING . . . 29
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Model Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Network Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Real-time Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Model Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Caching Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.3 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.1 Control and Monitoring Framework . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Model Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4. REDUCING MEMORY CONSUMPTION . . . . . . . . . . . . . . . . . . . 54
4.1 Model Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1 Building Network Models Using Replicated Sub-Structures . . . . . . . . 56
4.1.2 Spherical Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Design of Spherical Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



4.2.2 Addressing Scheme and Forwarding Table Structure . . . . . . . . . . . . 67
4.2.3 BGP Policy-Based Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.4 Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Sharing Instance State & Model Structure . . . . . . . . . . . . . . . . . . . 77
4.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Reducing Routing State . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Large-Scale Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.3 BGP validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.4 Reducing Instance State . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5. REAL-TIME SIMULATION & EMULATION OF LARGE-SCALE MODELS 94
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Emulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 The Real-Time Network Simulator and Emulation Device Drivers . . . . . . 99
5.3.1 Remote Emulated Hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.2 Collocated Emulated Hosts . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.3 Traffic Portals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 Compute Node Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 Meta-Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6.1 Validation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6.2 Performance Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

viii



LIST OF TABLES

TABLE PAGE

4.1 Characteristic path lengths and cluster coefficients. . . . . . . . . . . . . . . 60

4.2 Forwarding Table Sizes for Different Replication Factors. . . . . . . . . . . 82

4.3 Forwarding Table Sizes (in KB) and Path Lengths. . . . . . . . . . . . . . . 82

5.1 Error metrics for remotely emulated congestion window trajectories. . . . . 116

5.2 Error metrics for collocated emulated congestion window trajectories. . . . . 118

ix



LIST OF FIGURES

FIGURE PAGE

1.1 Ideal Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Decomposition of simulation models for parallel execution. . . . . . . . . . 11

2.2 Example process-oriented simulation. . . . . . . . . . . . . . . . . . . . . . 12

2.3 Example of how logical processes get deadlocked. . . . . . . . . . . . . . . 14

2.4 Event cancellation example. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Dummynet Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 A schematic view of model splitting. . . . . . . . . . . . . . . . . . . . . . 34

3.2 Network scripting for consistent interactive and execution models. . . . . . . 39

3.3 An example of network scripting. . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 The monitoring and control framework. . . . . . . . . . . . . . . . . . . . . 44

3.5 The model caching mechanism. . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 The access pattern for creating a campus network. . . . . . . . . . . . . . . 49

3.7 Throughput measurement at different locations. . . . . . . . . . . . . . . . . 51

3.8 Jitter measured at the interactive model. . . . . . . . . . . . . . . . . . . . . 51

3.9 Performance of different database storage engines. . . . . . . . . . . . . . . 52

4.1 An example network model. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Internal model structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Network characteristics metrics for different replication factors. . . . . . . . 59

4.4 An example network model. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Internal model structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 An example network model. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Corresponding BGP graph for calculating shortest valley-free paths. . . . . . 71

4.8 An example of asymmetric routes. . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Internal memory layout of the execution model. . . . . . . . . . . . . . . . . 78

x



4.10 Campus model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Distribution of routes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Path length inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.13 Model used to evaluate cost vs. sphere size. . . . . . . . . . . . . . . . . . . 84

4.14 Cost vs. sphere size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.15 Model used to evaluate cost vs. sphere depth. . . . . . . . . . . . . . . . . . 86

4.16 Cost vs. sphere depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.17 Model used to evaluate cost vs. transit spheres. . . . . . . . . . . . . . . . . 87

4.18 Cost vs. transit spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.19 Scalability of spherical routing. . . . . . . . . . . . . . . . . . . . . . . . . 88

4.20 An AS topology annotated with AS relationships. . . . . . . . . . . . . . . . 90

4.21 The histogram of all paths with AS relationships enabled or disabled. . . . . 90

4.22 Memory reduction from replication. . . . . . . . . . . . . . . . . . . . . . . 91

4.23 Preprocessing time reduction from replication. . . . . . . . . . . . . . . . . 91

5.1 The Real-Time Simulation Infrastructure. . . . . . . . . . . . . . . . . . . . 97

5.2 Connecting the Simulator with local and remote environments using differ-
ent emulation device drivers (EDDs). . . . . . . . . . . . . . . . . . . . 100

5.3 OpenVPN Uses Virtual Network Interfaces for Tunneling Application Traffic. 103

5.4 An EDD that employs a TAP driver to exchange packets with collocated
application runtime environments. . . . . . . . . . . . . . . . . . . . . . 104

5.5 Traffic portal example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Compute Node configurations with and without collocated emulated appli-
cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Meta-controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Dumbbell experiment scenarios for remote emulation. . . . . . . . . . . . . 114

5.9 TCP congestion window trajectories for remote emulated hosts. . . . . . . . 114

5.10 Congestion window trajectory distance mappings for remote emulated hosts. 117

xi



5.11 Dumbbell experiment scenarios for collocated emulation. . . . . . . . . . . 118

5.12 TCP congestion window trajectories for collocated emulated hosts. . . . . . 118

5.13 Congestion window trajectory distance mappings for collocated emulated
hosts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.14 TCP fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.15 Cross-traffic scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.16 TCP sequence numbers for Flow 1 . . . . . . . . . . . . . . . . . . . . . . . 122

5.17 TCP throughput for remote hosts . . . . . . . . . . . . . . . . . . . . . . . 123

5.18 TCP throughput for collocated hosts . . . . . . . . . . . . . . . . . . . . . . 123

5.19 Dumbbell experiment scenarios using traffic portals. . . . . . . . . . . . . . 124

5.20 Cross-traffic TCP throughput . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.21 Interactive TCP throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.22 Emulation capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xii



CHAPTER 1

INTRODUCTION

This chapter presents motivations for our research, details the problems this research

aims to address, lists the major contributions of our research, and outlines the remainder

of this dissertation.

1.1 Motivation

As the size of the Internet increases, efficiently studying the behavior of the network be-

comes more and more challenging. Because of the complexity of network behavior, there

are no analytical models available that can accurately describe the behavior of Internet-

scale networks. This makes large-scale network simulation a necessary tool for studying

immense networks. However, large-scale network simulation has not been commonly

used to study networks the size of the Internet. The fact is, researchers often ignore

the possible differences between small-scale and large-scale simulations. They extrapo-

late the results from small simulations and make inferences regarding effect and behav-

ior without performing large-scale simulations. This dilemma is not because large-scale

simulation can be replaced by small-scale simulation, but is primarily due to the lack

of tools and models for large-scale study [RA02, FPP+03]. Previous work has shown

that in certain cases, only large-scale simulation is able to gain credible evidence. Some

applications only show full potential on a large-scale. For example, scalability is crit-

ical for peer-to-peer applications since they exhibit ”network effect”, which means the

behavior of one user is positively affected when another user joins and enlarges the net-

work [RFI02, KS94]. Another example is worm study, which requires a large-scale model

to show the propagation dynamics of the worm [LYPN02]. Furthermore, some appli-

cations of interest often focus on large-scale behaviors more than small-scale since the

large-scale behaviors can be expected to be presented under a wide range of network

1



conditions. For example, local fluctuations are known to be highly sensitive to network

conditions such as the mix of applications, user population, and network topologies in

high-speed network traffic modeling. Therefore, large-scale network simulation is indis-

pensable for studying the behavior of today’s immense network.

One cannot underestimate the importance of simulation validation. There have been

efforts (e.g., [Fal99, BSU00]) in augmenting network simulation with emulation capabili-

ties, which we call real-time network simulation [Liu08]. With the emulation extension, a

network simulator operating in real time can run together with real-world distributed ap-

plications and services. These applications and services generate real packets, which are

injected into the simulation system. Packet delays and losses are calculated as a function

of the simulated network condition. To a certain extent, real-time network simulation not

only alleviates the burden of developing separate models for applications in simulation,

but also increases the confidence level of network simulation as real systems are included

in the network model.

Executing a large-scale real-time network simulation is not enough. Researchers

should be able to visualize not only the topology of the simulated network, but observe

evolutions of states occurring within the simulator. Figure 1.1 depicts a network simu-

lator that executes virtual networks using high performance computers and remote hard-

ware while allowing researchers to visualize, scrutinize, and modify the virtual network.

Some nodes within the virtual network run full-fledged network stacks, others run real

applications, yet others are composed of analytical models. There are a number of chal-

lenges that arise in building a tool that operates at the scale of the Internet. The first

challenge is building a tool which can be easily used by researchers to construct and exe-

cute large-scale network models. In order for large-scale simulation to become common

place, we need to provide methods to configure and interact with large-scale network

models without adding to the already complex task of developing a simulator capable of

2



Online Monitoring
& Control

Network & Data 
Visualization

 

A Virtual Network Running in Real-Time in a HPC Facility

Remote 
Computational 

Facilities

 

 

 

 

 

 
 

  

 

Figure 1.1: A large virtual network is simulated in real-time at a remote HPC facility
along with remote computational resources. Researchers are visualizing and navigating
the virtual network while monitoring and altering the state of the virtual network in real-
time.

executing large-scale models. The second challenge is reducing the memory footprint

of the network model. Maintaining state for hosts and routers running abstract protocols

and applications while also managing the routing state for the entire virtual network is a

huge burden. The integration of real protocols and applications exacerbates this burden

because the real implementations consume even more memory than their abstract coun-

terparts. The third challenge is managing potentially hundreds of thousands of routers

and virtual hosts running real applications. Real applications produce and consume real

network packets which must be managed by the network simulator. Efficiently transport-

ing real and virtual packets in the virtual network quickly becomes problematic because

of the amount of I/O that must be done.

In this dissertation, we consider the following three challenges in building a large-

scale real-time network simulator:

3



• Real-time Interaction with and Control of Large-Scale Experiments: To date,

large-scale simulators have focused on how to efficiently execute network mod-

els on parallel computing platforms and have largely ignored user facing concerns.

Building network models of Internet-scale is a challenging endeavor and the lack

of tools to assist in the development of such models exacerbates the difficulty. Our

goal is provide a framework that can automatically provide users with easy to use

and flexible tools for the configuration, control, and visualization of large-scale

network models without increasing the complexity of constructing an efficient sim-

ulation engine to execute those models.

• Reducing Memory Consumption: As network models become larger, so does the

amount of memory needed to simulate and emulate them. When constructing large-

scale network models, it is common to reuse sub-structures within the model. Our

goal is to exploit these structural duplications to reduce the amount of state that

must be managed during model execution.

• Supporting Large Numbers of Emulated Applications: Packets in a purely vir-

tual network take but a few bytes to represent kilobytes of virtual data. However,

when dealing with packets that originated from real applications, the real-time sim-

ulator must preserve the full extent of the packet data. As such, the speed and effi-

ciency of importing and exporting real-world network packets becomes paramount.

Our goal is to build an emulation infrastructure capable of supporting many thou-

sands of virtual applications in a single experiment.

Throughout this dissertation we aim to develop, implement and evaluate ideas to ad-

dress these problems using our real-time network simulator.

4



1.2 Contributions

This research can be summarized with the following six contributions. Our first contribu-

tion is the development of a methodology which decomposes large-scale network models

into an interactive model and an execution model in order to cleanly separate user facing

concerns from the details of efficiently exploiting parallel platforms to execute large-scale

network models. In order to implement model splitting, we created the technique of net-

work scripting which automatically generates an execution and an interactive model from

a single network model. Network scripting is a lightweight approach to resolve issues of

configuration consistency and runtime synchronization that result from splitting a network

model into the execution and interactive components.

Our second contribution is the conception of a model caching mechanism and a cus-

tom database engine which allows large-scale models to be created efficiently and per-

sisted to disk. The model cache is the core component of the interactive model which

allows users to modify, visualize, and interact with large-scale network models during

their construction and execution.

Our third contribution is the development of a real-time monitoring and control frame-

work. The monitoring and control framework is used to synchronize the interactive and

execution models as well as the deployment and orchestration of large-scale simulation

and emulation experiments.

Our fourth contribution is the development of our model replication strategy and the

associated spherical routing scheme. Model replication and spherical routing can dramat-

ically reduce the memory required to construct and execute large-scale network models.

Our fifth contribution is the development of a comprehensive, flexible, and performant

emulation framework. Using our framework, researchers are able to create experiments

that embed real-time applications running on virtual machines or real hosts connected

5



via a virtual private network in addition to interacting with real networks with arbitrary

topologies.

Our final contribution is the development of the PRIMEX simulator and the associ-

ated integrated development environment (IDE) called Slingshot. PRIMEX extends our

existing parallel discrete event network simulator [Mod], with our interactive, control,

and emulation frameworks. Slingshot and PRIMEX have been used to develop Primo-

GENI [Pri10], a real-time simulation tool embedded within the GENI federation [GEN].

1.3 Outline

Chapter 2 presents relevant background material which is the starting point of this re-

search. Section 2.1 gives an overview of existing network simulators and section 2.2

talks about current emulation techniques. Section 2.3 then discusses real-time network

simulation.

Chapter 3 presents our efforts towards enabling online interaction with large-scale

network simulations. Related work is presented in section 3.1. Section 3.2 contains an

overview of our approach, called model splitting, which automatically generates interac-

tive and execution models using a single network model in order to cleanly separate user

facing concerns from concerns related to the simulator itself. Sections 3.3, 3.4, and 3.5

detail different aspects of model splitting and its implementation in our real-time simula-

tor. The chapter ends with an evaluation of our system in section 3.6 and chapter summary

in section 3.7.

Our work on reducing the memory complexity of network simulations is presented

in chapter 4. Section 4.1 presents our overarching approach, model replication, which

reduces the memory complexity of network models by exploiting structural duplications

within a network topology. We then present our work in applying model replication in the

minimization of the amount of memory required for routing in section 4.2. Section 4.3

6



details our method to further reduce the memory complexity of network models by shar-

ing states between individual network models. We then evaluate our efforts of reducing

the memory complexity of network models in section 4.4. The chapter is then concluded

in section 4.5.

Chapter 5 is focused on realizing a flexible, efficient and scalable emulation infras-

tructure for our network simulator. Section 5.1 contains a discussion of related work. Our

overall framework is then presented in section 5.2, followed by detailed discussions on

the constituent components of our framework in sections 5.3, 5.4, and 5.5. A thorough

evaluation of the emulation framework is then presented in section 5.6 and the chapter is

concluded in section 5.7.

The dissertation is concluded in chapter 6 with a summary of our work and a discus-

sion of future directions in which this research could be taken.

7



CHAPTER 2

BACKGROUND

There are three basic types of network testbeds: physical, simulation, and emulation.

Physical testbeds can accurately capture detailed network transactions. However, they

suffer a major drawback; their scale is inherently limited by physical resources. Emu-

lation abstracts the networking hardware — typically using some form of virtualization

— to overcome some of the scaling limitations of physical testbeds. The major distinc-

tion between simulation and emulation is that networking applications and protocols are

purely virtual in simulation. Whereas in emulation, applications and protocols are real

implementations. Real-time network simulation is somewhere between emulation and

simulation. It aims to combine the fidelity and realism offered by network emulation with

the flexibility, control, and scale of simulation.

The remainder of this section will review the current advances in network simulation,

emulation, and real-time simulation on which this dissertation builds. Physical testbeds,

such as PlanetLab [PACR02] and WAIL [BL03], are not covered here as they are mostly

unrelated to this work. Section 2.1 covers basic simulation and discuss techniques to co-

ordinate the execution of parallel discrete event simulators in section 2.1.1. A few parallel

discrete event computer network simulator exemplars are then outlined in section 2.1.2.

Section 2.2 covers the basics of computer network emulation. Sections 2.2.1, 2.2.2, and

2.2.3 discuss the major types of computer network emulators and describe salient exam-

ples of each. A discussion of real-time computer network simulation is then presented in

section 2.3.

2.1 Simulation Environments

A simulation model can be viewed as an abstract representation that is used to mimic

behaviors of a real-world process or system. A simulator executes simulation models by

8



advancing time and observing how the state variables within the model evolve. We can

classify simulation models by how the simulator advances time. There are two basic meth-

ods of advancing time in simulation: time-stepping and discrete-event. Time-stepping

simulators, as the name implies, advance time in small increments over the course of the

simulation. Time-stepping simulation models represent time as a continuous variable and

are suitable for simulating systems of equations. For example, time-stepping simulation

platforms such as Trilinos [HBH+05, HBH+03] have been used to model and predict

global climate patterns [DNP94, ERS+09] using extremely large systems of differential

equations.

Event-driven simulators, also called discrete event simulators, are executed by pro-

cessing a series of events and not by directly advancing time. Generally speaking, discrete

event simulation models produce and consume events. As events are generated, they are

stamped with the time at which they need to be processed. The simulator maintains all of

the outstanding events in a data structure, typically called an event list, which allows the

simulation to determine which event should be next consumed by the model. The current

time in the system can be viewed as the minimum time-stamp in the event list.

There are three schools of thought when it comes to the development of discrete event

simulators: event-oriented, process-oriented, and activity-scanning [Fuj01]. The event-

oriented approach uses events as its basic modeling construct. Employing an event-

oriented approach to model a system is akin to using assembly language to write a com-

puter program: it is very low-level and consequently more efficient and difficult to use;

especially for larger systems. The process-oriented approach describes a system as set

of interacting processes and uses a process as the basic modeling construct. A process is

used to encapsulate a portion of the system as a sub-model in the same way classes do in

an object-oriented programming language. Typically, process-oriented simulation models

are built on top of event-oriented simulators. A less common approach, activity-scanning,

9



modifies the time-stepping approach by adding a predicate to all of the functions in the

model. At each time step, the simulator will scan all functions within the model and

execute those functions whose predicate evaluates to true.

2.1.1 Parallel Discrete Event Simulation

Discrete event simulation models can be executed in parallel using a parallel discrete

event simulator (PDES). Continuous simulation models can also be executed in parallel,

however, the details of doing so are beyond the scope of this dissertation. Figure 2.1 de-

picts the two basic methods of decomposing a sequential discrete event simulation model

into a parallel discrete event simulation model. To execute the model on p processors we

need to divide the work into p chunks, one for each processor. We can do this division

in either space (i.e. state variables) or time. If we decompose the model in time, each

processor would execute the simulation for a given time period [tp−1, tp), as shown in

figure 2.1(a). The key point with time-parallel decomposition is that we need to be able to

predict all of the states at the time boundaries ({t1, t2, . . . , tp−1, tp}), and if our predictions

are incorrect, we may have to recompute the state evolutions for the time interval. The

advantage of this approach is that each processor can maintain its own event list without

any need to synchronize with event lists on other processors.

We could also decompose the model in space. In this case, we separate the state space

into p partitions and assign each partition to a processor which will simulation those

states for the entire simulation. At each processor, we have a subsection of the original

simulation model that consumes and produces events and a simulator to execute it. This

approach alleviates the need to predict the values of state variables. However, we now

have the problem of how to coordinate the execution of each subsection of the simulation

model in parallel. In general, we can choose to either maintain a centralized event list, or

a distributed event list. With a centralized event list, we need to schedule the execution

10



...State
Variable

Simulation Time
0 t1 t2 t3 t4 tp-1 tp

s

(a) Time-parallel decomposition.

...

State
Variable

Simulation Time
t0

sp
s p-1

s4
s3

s2
s1

(b) Space-parallel decomposition.

Figure 2.1: (a) decomposes the model in time over p processors and (b) decomposes the
model in space over p processors.

of each simulation instance in order to guarantee that any events that are produced by its

associated model subsection are strictly in the future. Using a centralized event list causes

many scalability concerns and the approach is not commonly used. The other approach

is to distribute the event list across all of the simulation instances. In this case, we need

protocols to synchronize the execution of each subsection of the model to ensure that the

final result is the same as if the model were executed serially. Techniques to synchronize

the execution of PDES have been extensively studied in the literature and are well covered

by Fujimoto in [Fuj01]. Here, we only give a brief overview of techniques related to this

dissertation.

Typically, PDES are realized using logical processes. A logical process is a logical

grouping of processes which share a common event list and are executed using a single

thread. Figure 2.2(a) depicts a simulation model employing the logical process approach.

Each logical process has its own event list, executes independently, and each is able to

schedule events in the other’s event list. The logical processes communicate using stan-

dard facilities such Unix pipes or TCP. In this example, LP1 is executing an event with a

timestamp of 1 and LP2 is executing an event with a timestamp of 2. As a result of LP1

11



1LP

1 4

2LP

5 2
4

7

(a) Logical Processes

1 2 53 4

LP1

Simulation Time

LP2

6 7

(b) Timeline

Figure 2.2: (a) contains an process-oriented simulation and (b) contains example timelines
for both processes.

executing its event, it schedules an event in the event list of LP2. This sequence of events

is shown in figure 2.2(b). Recall that within a discrete event simulator, time advances by

the simulator retrieving the next event in its event list with the earliest timestamp. Af-

ter LP2 finishes executing its current event, it will retrieve the next event to execute. If

LP2 is slow and LP1 is fast, the new event will be scheduled in time. However, if LP1 is

slow and LP2 is fast, the new event will be not scheduled in time and LP2 will execute its

events in the incorrect order. This is the heart of the synchronization problem for PDES

frameworks.

Two classes of protocols have been developed to synchronize the execution of logical

processes within parallel discrete event simulators: conservative and optimistic. Conser-

vative protocols tackle the problem by requiring that a logical process should not execute

an event until it can guarantee that no event could arrive from another logical process with

an earlier timestamp. Optimistic protocols, on the other hand, assume that all the logical

processes advance time more or less synchronously so they can simply execute the next

event with the earliest timestamp. However, when a straggler event does arrive (i.e. an

event with a timestamp in the simulated past), an optimistic logical process will have to

“undo” the execution of any events with timestamps later than the straggler’s. Details of

both approaches are below.

12



Conservative Synchronization

The classic conservative synchronization protocol was developed by Chandy, Misra, and

Bryant in the late 1970s. The algorithm, referred to as CMB [CM79], places channels

between all logical processes that will exchange events. When an event is sent over a

channel, it is stored at the receiver end of the channel until it is processed. All of the

events sent over a channel must have strictly increasing timestamps. The main logic loop

of the logical process scans all of its incoming channels and processes the event with the

lowest timestamp. Figure 2.3(a) shows three logical processes, each of which have events

in all of their receiver queues. When a receiver queue at a channel is empty, the logical

process must wait for an event to arrive before it can choose which event to process.

The only way for a logical process to guarantee that it chooses the event with the lowest

timestamp is to wait for an event to arrive at all of its queues. This immediately gives

rise to the deadlock problem, as can be seen in figure 2.3(b). In figure 2.3(a), LP1 will

process the event with timestamp 15, LP2 processes the event with timestamp 9, and LP3

processes the event with timestamp 19. This produces the configuration in figure 2.3(b)

where each logical process is waiting for another logical process before it can proceed,

resulting in deadlock.

The CMB algorithm avoids deadlock using null messages. A null message is sent over

a channel in leu of a real event as a pledge that no event with an earlier timestamp will be

sent over that channel. After a logical process has processed an event, it may send zero

or more events to other logical processes. In CMB’s simplest form, a null message would

be sent to any logical process that did not receive a real event. This approach guarantees

that a logical process will not indefinitely wait for a message on any channel, thereby

avoiding deadlock. The one drawback is that a non-trivial number of null messages must

be sent. Since null messages are purely overhead, the efficiency of the simulation can be

13



3LP2LP

1LP

16

10 15

209

19

15

(a) Logical Processes

3LP2LP

1LP

16

10 15

20

(b) Deadlocked Logical Processes

Figure 2.3: (a) contains an example configuration of logical processes where the simula-
tion can make progress and (b) shows the state after logical process consumes an event
which causes the simulation to become deadlocked.

significantly decreased. There have been many extensions to the classic CMB algorithm

to improve its efficiency. However, it is beyond the scope of this dissertation to discuss

them. It is sufficient to understand the basic operation of the CMB algorithm which allows

for synchronized execution of PDES using a conservative paradigm. A comprehensive

treatment can be found in [Fuj01].

Optimistic Synchronization

The classic optimistic synchronization protocol, called TimeWarp, was proposed by Jef-

ferson in the mid 1980s [Jef85]. In a TimeWarp paradigm, logical processes consume the

event with the earliest timestamp in their event list in the hope that a straggler event —

an event with an earlier timestamp — will not arrive at a later time. The core of Time-

Warp is how to handle straggler events. When a straggler event is encountered, the logical

process has to “un-process” any events that have a timestamp after the straggler’s times-

tamp. This includes “un-processing” any events that may have been sent to other logical

processes while consuming events which need to be “un-processed”. To “un-process” the

incorrectly executed events, the logical process needs to restore the values of every state

variable to the value they held before processing any events that had a timestamp before

14



that of the straggler. This is the problem of state saving. To “un-process” events sent to

other logical processes, TimeWarp sends out anti-events, which annihilate the events they

are associated with. We elaborate on state saving and anti-events below.

CMB maintains what is conceptually a single list at each logical process for its in-

bound events, and a single copy of each state variable. In TimeWarp, however, each

logical process maintains three lists: one event list for inbound events, one event list

for outbound events, and a list which stores the values of any state variables that were

modified while processing an event. Additionally, once an event or state modification is

added to one of the lists, they are never removed by the logical process — they might

be needed for rollback if a straggler is encountered. For the moment, assume enough

memory is available to maintain the three lists for each logical processing for the entire

simulation. When a straggler is encountered, the logical process knows exactly which

state variables were incorrectly modified, and which events were incorrectly sent to other

logical processes. To rollback, the logical process needs only to copy the correct val-

ues to the effected state variables and send an anti-event to annihilate any event that was

incorrectly sent.

When a logical process receives an anti-event there are three possibilities:

1. An event and it’s associated anti-event could both end up in the inbound event list

waiting to be processed. In this case, the logical process can just remove both events

from the inbound queue.

2. The anti-event could conceivably arrive at the inbound event list before its associ-

ated event. In this case, the logical process can simply leave the anti-event in the

inbound event list and wait for the event to show up, at which time both the event

and anti-event can be removed from the inbound list.

15



3. The event associated with the anti-event may have already been processed by the

logical process. In this case, the logical process needs to rollback the processing of

the event.

It is not strictly necessary to store processed events, sent events, or state variable

updates indefinitely. From a global perspective, there is an event which is unprocessed,

partially processed, or in-flight, whose timestamp is the earliest in the simulation. The

timestamp of that event is called the global virtual time (GVT). It is easy to show that

the GVT never decreases, which means that no logical process can rollback to a time

previous to the GVT. If a logical process knew the GVT, it could release any events from

the inbound or outbound lists and any state variable updates with timestamps earlier than

the GVT. This is commonly known as fossil collection. Efficient mechanisms to compute

the GVT are well studied, but beyond the scope of this dissertation.

Figure 2.4 shows how TimeWarp handles the situation presented in figure 2.2(b).

When LP2 receives the event sent from LP1 with a timestamp of 4, LP2 has already

processed an event with a timestamp of 5 and sent an event with a timestamp of 7 to LP1.

LP2 needs to rollback its state variables and cancel the event sent to LP1. As is clear

from this example, GVT never decreases, but the progression of GVT may stall for long

periods while rollbacks propagate through the network of logical processes.

There is a large and rich body of work improving and augmenting TimeWarp and

other algorithms in a similar vein. For the purposes of this dissertation it is sufficient to

understand the basic operation of the TimeWarp algorithm which allows for synchronized

execution of PDES using an optimistic paradigm. A comprehensive treatment can be

found in [Fuj01].

16



1 4

2 5

1 4

2 5

1 4

2 5

4

1 4

2 4

4

5

4 4 44 4
Global Virtual Time

1

1 4

2 4

4

5

7

7

7

7 77

1 4

2 4

4

5

7 7 1 4

2 4

4

5

7

71 4

2 4

4

5

7

71 4

2 4

4

5

7

5 7 --

LP2
IN

OUT

LP1
IN

OUT

Figure 2.4: Example of how TimeWarp cancels events in response to encountering a
straggler event.

2.1.2 Network Simulators

There have been numerous simulators built to model computer networks. Here we fo-

cus on a few simulators that are of general purpose, and have either gained widespread

adoption, or have some defining characteristic related to this dissertation. We do not men-

tion simulators which are largely purpose built; those that are meant to study a specific

problem and not for use by the research community at large.

NS

The NS-2 [NS-a] simulator is currently the most popular simulator among network re-

searchers. Its wide acceptance is largely due to its diverse set of different protocols and

services at all protocol layers coupled with the ability to handle both wireless and wired

networks. The primary technical contribution of NS-2 is its split programming model

which allows researchers to construct their models using both a compiled language and a

scripting language. Conceptually, developing models in a compiled language such as C is

time consuming and difficult as compared to using a scripting language such a Python or

OTCL. In NS-2, one is able use C++ to develop the core of the simulator and performance

critical aspects of a specific network model. One can also use OTCL to craft the network

17



topology and configuration, in addition to less performance critical aspects of the network

model itself.

At the core of NS-2 is a sequential discrete event simulator which was not designed to

handle large network models. NS-2’s “tips for running large simulations” [NS-b] refers

to large network models as those on the order of a thousand nodes – orders of magnitude

less that what we consider to be a large. However, NS-2’s ease of use and rich collection

of protocols makes it invaluable for evaluating small to moderate-scale network models.

The NS-3 [NS-c] effort was started as the next evolution of NS-2. In theory, NS-3

addresses the shortcomings of NS-2; the most major being the lack of scalability and

real-time simulation support. Balancing the tradeoffs between simplicity, usability, and

scalability have proven to be difficult for NS-3. As such, NS-3 has, to date, failed to gain

the widespread use and acceptance that its predecessor enjoys.

TeD

The Telecommunication Description Language (TeD) [POF98] is one of the earliest PDES

targeted at computer networks. TeD is primarily modeled on the VSIC Hardware Descrip-

tion Language (VHDL). Like VHDL, it has a high-level language in which “components”

(hosts, routers, network interfaces, queues, etc.) are configured and connected using event

channels. In a low level language (C), developers can customize the behaviors of compo-

nents. In TeD, developers can recursively compose components using other components.

Models written in TeD are automatically transformed to be executed on the Georgia Tech

TimeWarp simulator [DFP+94].

18



OMNeT++

OMNet++ [VH08, And] is a popular multi-purpose simulation environment capable of

simulating communication networks, multiprocessors, and many other distributed sys-

tems. OMNet++ is designed to be extremely modular and handle large-scale models.

The simulator’s flexibility is derived from its modularity, a well designed API, and an

extensible integrated development environment. Users are able to create reusable com-

pound modules which encapsulate network components (such as an applications, inter-

faces, queues, etc). In a similar vein as TeD, OMNeT++ allows researchers to wire many

compound modules together using a separate scripting language, called NED. OMNeT++

has been extended to allow the embedding of real applications into experiments using

real-time network simulation techniques. Model developers can also create experiments

which can be executed on parallel machines.

OPNET

OPNET modeler is the flagship product of OPNET Technologies Inc [OPN]. OPNET

is primarily a commercial product which can be freely used by qualifying groups. The

selection of ready-to-use protocols and applications within OPNET rivals that of NS-

2. In many ways, OPNET is much like OMNeT++. Just like OMNeT++, users can

create “modules” in OPNET that can be recursively wired together to create large network

experiments. The main differences between OPNET and OMNeT++ are that OPNET is

written in C while OMNeT++ is written in C++, and because OPNET is commercial,

much of the core simulation code is proprietary and not publicly available.

19



SSFNet

SSFNet [NLLY03] is a PDES built using the Scalable Simulation Framework (SSF) [Jam].

SSF has both Java and C++ implementations. The Java version of SSF is embedded within

SSFNet itself while the C++ implementation is available as stand alone package called

DaSSF [LN]. DaSSF uses a logical process world view and is specifically designed to

execute large-scale simulation models in both shared and distributed memory parallel

computers. SSFNet extends SSF to create a PDES specifically designed for modeling

computer networks.

The key driver of SSFNet is the scale of the network models it aims to execute. Large

network models will have substantial computational demands, hence DaSSF’s support

for parallel execution on both shared and distributed memory parallel machines. DaSSF

was shown to execute over one million events per second using just fourteen proces-

sors [CNO99].

SSFNet also addresses the complexity of configuring a network topology and traf-

fic patterns for large network models [CLL+99] using the Domain Modeling Language

(DML). SSFNet uses DML to separate a network model into a network topology, a traffic

pattern, a network configuration, and model logic. The logic of the protocols and applica-

tions are written in Java or C++ and compiled into simulator. The topology and traffic pat-

terns along with their configuration are specified using DML, and loaded by the simulator

when the network model is executed. This separation is critical to supporting very large

network models. For example, it allows complex tasks such as partitioning the model to

run on a parallel computers to be outside the simulation environment. This diverges from

other contemporary PDES frameworks such as GTNets [Ril03] or PDNS [FPP+03].

20



PDNS

Parallel/Distributed NS (PDNS) [FPP+03] extends the venerable NS-2 simulator with

PDES functionality. To do this, PDNS creates many instances of the NS-2 simulator and

treats each one as a logical process. The idea is compelling. As previously stated, NS-2

is widely adopted and supports a rich collection of protocols. However, specifying large

network topologies and actually executing them on a large parallel machine proves to be

an incredibly arduous task. NS-2’s OCTL configuration language was not designed to

support PDES models and assumes that each NS-2 instance has a complete view of the

entire network; however, in PDNS each NS-2 instance has a partial view of the network.

PDNS modified the configuration language to support this partial view. However, the

modifications result in the user having to manually partition the network topology for

execution on parallel computers. Partitioning a large model is a difficult task [Nic98], and

doing this by hand only increases the complexity. However, with enough effort and time

devoted to constructing the model, PDNS has been shown to process over 106 million

packets per second using 1,536 processors [FPP+03].

GTNetS

The GTNetS [Ril03] simulator is written in C++, and was designed to allow researchers

to easily create large-scale experiments. The design of GTNetS closely matches the de-

sign of real network protocol stacks and networking hardware. The end result is that

researchers are able to easily understand how to extend GTNetS and use it to create ex-

periments. In order to support parallel execution of network models, GTNetS uses ghost

nodes [RJFA04]. In the ghost node approach, each simulation instance contains the entire

network topology. Each simulation instance maintains a complete representation of the

nodes it is executing, and a minimalistic representation for nodes that are executed by

21



other simulation instances (i.e. ghost nodes). GTNetS has been shown to execute over 5

million packets per second using 128 processors [Ril03].

ROSSNet

ROSSNet [BYC+03] extends Rensselaer’s Optimistic Simulation System (ROSS) [CBP00].

ROSS is an extremely modular simulation kernel that is capable of achieving event rates

as high as 1,250,000 events per second [CBP00]. ROSSNet, much like SSFNet, uses

an external configuration language to describe the topology, traffic, and configuration of

a network model. Instead of DML, ROSSNet uses XML with a custom data schema.

ROSSNet has two unique characteristics. It uses an optimistic simulator at its core, and

it adds an additional abstraction to the definition of a network experiment called an ex-

periment design [Jai91]. The basic premise behind experiment design is that running an

experiment has a non-negligible cost so we need to minimize the number of experiments

that are preformed while maximizing how well the system being studied is characterized.

ROSSNet uses concepts from the experiment design in their design of experiments tool

which allows researchers to efficiently explore the parameter space of their model.

2.2 Computer Network Emulation

Network emulation testbeds focus on allowing real applications to interact with an em-

ulated network. There are three basic types of network emulators: link-centric, node-

centric, and network-centric. Link-centric emulators focus on providing a “virtual link”.

The link calculates, in software, packet delays and drops in order to emulate network

behavior. Node-centric network emulators focus on providing a virtual environment in

which real applications run. As network packets leave virtual environments, they are

intercepted by the emulation system and are subjected to delays and losses. Network-

22



Application

TCP/UDP

IP

Ethernet

dummynet
pq_in

rq_outpq_out

rq_out
Application
TCP/UDP

IP

Ethernet

Figure 2.5: Dummynet Architecture.

centric emulators focus on virtualizing the network and can be seen as a blend of the

link-centric emulators, node-centric emulators, and physical testbeds. Both node-centric

and link-centric emulators focus on reproducing behaviors of a single link or connection

between applications, whereas network-centric emulators aim to reproduce network-scale

behaviors. In the remainder of this section, we describe the different classes of network

emulators in more detail.

2.2.1 Link-Centric Emulation

Link-centric emulators create a virtual link which can shape the traffic which passes

through it. The virtual link is represented using finite queues that impose bandwidth

constraints and delays. Dummynet [Riz97] is a popular and prototypical link-centric em-

ulator. The basic functioning of dummynet is depicted in figure 2.5. The virtual link is

modeled as two unidirectional links, one for inbound packets and one for outbound pack-

ets. Each unidirectional link is then modeled with two queues (rq and pq), a maximum

bandwidth (B), a maximum size of rq (k), a propagation delay (pd), and a queuing policy.

The operation of dummynet is as follows:

1. As packets arrive from the upper or lower protocol sessions, they are inserted into

the appropriate rq using the chosen queuing policy. The typical queuing policy is a

23



drop-tail FIFO queue. However, more complex policies such as RED [FJ93] can be

used. Dummynet can also randomly reorder packets at this stage.

2. Packets in rq are moved to pq at a maximum rate of B. pq uses a FIFO policy and

will never drop packets.

3. Packets are stored in the pq for pd seconds at which time they are dequeued and

sent to the next protocol layer. Dummynet can introduce random losses at this stage

to model lossy mediums such as a wireless channel.

Users are able to emulate a wide variety of link/network conditions by changing the

parameters within dummynet. The main drawback here is that one can only test a single

application per dummynet instance. Because dummynet modifies the operating system

kernel, you would need a separate protocol stack for each application to be tested. There

are obvious scalability issues with the link-centric approach.

2.2.2 Node-Centric Emulation

Node-Centric emulation focus on virtualizing the operating system kernel. The goal is

to create a protocol development and test environment that can be run in user-space and

not the operating system kernel. The creation of a realistic protocol stack in user space

becomes the next hurdle. NCTUns [WCH+03] employs TUN/TAP devices to intercept

packets from the operating system and then passes them to a custom protocol stack in user

space which functions like dummynet. ENTRAPID [HSK99] and NIST Net [CS03] take

a different approach and provide “virtualized” operating systems with their associated

protocol stacks in user space. The benefit here is that you can develop protocols using

the actual operating system kernel code instead of a custom one. In general, node-centric

emulators are a more scalable alternative to link-centric emulators.

24



2.2.3 Network-Centric Emulation

Testbeds such as Emulab [WLS+02, GRL05] and DETER [BBK+06] opt for a different

approach to address the scalability issues of link-centric emulators. They assume there

is a large testbed with many compute nodes connected with a programable high-speed

switch. Some of the nodes in the testbed will run unmodified operating systems and host

test applications (application nodes). Other compute nodes will use dummynet to shape

the traffic (delay nodes). They then use VLANs to connect the application and delay

nodes to create a small test network. It is assumed that institutions would have to share

the testbed to reduce costs. The main research problem in Emulab-like environments

is the mapping of multiple current experiments onto the testbed in order to maximize

resource utilization.

ModelNet [VYW+02] takes a slightly different approach. Modelnet, like Emulab,

assumes there is a large testbed with nodes connected with a programable switch. Some

of the compute nodes are used as edge nodes which run test applications and the remaining

compute nodes are used to emulate the core of the network. To model the network’s core,

Modelnet extends dummynet so that many network paths can be emulated in parallel.

The operating systems on the edge nodes are modified to capture traffic from the test

applications and move it through the emulated network core. In a similar fashion, the

edge nodes send traffic from the emulated network core back to the applications. The

main research challenge here is how to extend dummynet to emulate the network core.

2.3 Real-Time Computer Network Simulation

Real-time network simulation aims to combine emulation and large-scale network simu-

lation to create an accurate, scalable, and flexible networking testbed. One of the major

drawbacks of simulation is the difficulty of validation. Developing realistic and scalable

25



simulation models can be difficult and error prone. Allowing existing protocols and appli-

cations to be integrated into simulation helps to validate the realism of the simulation be-

cause real implementations — not abstract models— are used. A major drawback of emu-

lation is the lack of background traffic. Background traffic has been shown to significantly

effect the end-to-end behavior of the (foreground) applications under test [SDRL09].

One of the major drawbacks of both physical and emulation testbeds is a lack of

true scalability. Even with extreme amounts of virtualization, the scale of emulation

and physical testbeds are ultimately limited by physical resources. Simulation provides

a trade-off between scalability and realism (or accuracy). Protocols, applications, and

packets are abstract objects and routing a packet across dozens of routers can be done

with just a few computations. In an emulation testbed however, real applications must

exchange real packets, all of which take resources.

The benefits of combining simulation and emulation testbeds are clear, and a number

of real-time network simulators have been developed. NSE [Fal99], IP-TNE [BSU00],

MaSSF [LXC03], RINSE [LLN+05], and ROSENET [GF09] are good examples. In the

remainder of this section, we will describe these real-time network simulators in more

detail.

NSE

NSE [Fal99] is an extension to the NS-2 simulator. NSE modified the event scheduler

in NS-2 so that it can operate in real-time. NSE uses standard TUN/TAP devices to

intercept packets and inject them into the NS-2 simulator. NSE does nothing to address

the scalability of NS-2. As a result, NSE can only operate with small networks.

26



IP-TNE

IP-TNE [BSU00] extends IP-TN, a PDES, with the ability to process real packets within

the simulation. IP-TNE allows real hosts to route packets through a virtual network.

Instead of using dummynet to create a delay node, IP-TNE allows the delay node to be a

complex network. This reduces the burden on researchers because they no longer have to

abstract the network as a link and estimate parameters for dummynet. Instead, they can

directly describe the network model they wish to evaluate.

In addition to acting as a complex delay node, IP-TNE allows real hosts to interact

with simulated hosts using ICMP and UDP. IP-TNE lacks full-blown TCP implementa-

tions which would be required for simulated hosts to interact with real hosts.

DaSSF based Real-time Network Simulators

Both MaSSF [LXC03] and RINSE [LLN+05], extend the DaSSF [LN] and

SSFNet [NLLY03] simulators. MaSSF adds extensions to emulate grid computing en-

vironments. MaSSF integrates the authors pre-existing MicroGrid emulator [SLJ+00].

MicroGrid uses virtual machines and a virtualized grid software to create an emulated

grid environment in which to execute test applications. MaSSF modifies MicroGrid by

adding a custom wrapped socket interface. The wrapped socket interface is used by ap-

plications within the virtual machines to communicate with each other [LXC04]. Traffic

that is transported over the wrapped sockets is injected into the MaSSF real-time net-

work simulator. MaSSF provides no functionality to allow applications to interact with

simulated routers or hosts. Its primary use is to evaluate how a computing grid’s design

impacts the performance of grid applications.

The Real-time Immersive Network Simulation Environment (RINSE) extends DaSSF

with the ability to exchange traffic with real applications. RINSE expects an instance of

27



the simulator to be run next to each application and uses packet filters [MJ92] to intercept

traffic generated by the application. Traffic is injected back into the operating system

using a raw socket. The operating system will then forward the traffic to the application

as if it originated from a network interface. RINSE has three notable contributions: a

detailed host model, a real-time scheduler, and multi-resolution traffic modeling. The

detailed host model is used to model application and user behaviors on simulated hosts.

The real-time scheduler ensures that simulated and real packets are correctly processed

in the real-time network simulation. In order to reduce the computational demand of

simulating large numbers of TCP sessions, RINSE integrates a fluid model of TCP into

the simulator. Fluid models of TCP have been shown to operate orders of magnitude

faster than their detailed counterparts.

ROSENET

Recently, ROSENET [GF09] has integrated symbiotic emulation into a real-time simu-

lator. In ROSENET, a large-scale network simulator is run disjoint from an emulated

network. The emulated network runs real applications and protocols, and is a scaled

down version of some portion of the network which is being simulated. As both the simu-

lation and emulation progress, they are synchronized. Measurements from the emulation

are used to tune the simulation, and in a similar fashion, results from the simulators are

used to adjust the emulation. The ROSENET approach is interesting in that the emulation

system is used more like an abstract model. This diverges from most other real-time net-

work simulators. Ordinarily, emulation is used to increase the credibility of a real-time

simulation since traffic from real protocols and applications are directly mixed with their

virtual counterparts.

28



CHAPTER 3

INTERACTIVE NETWORK SIMULATION VIA MODEL SPLITTING

Simulation is useful for studying large complex networks, in particular, the emergent

behaviors and large-scale phenomena, which are difficult to scale down due to the inter-

action and inter-dependencies between components at different layers of the system that

cannot be easily abstracted away. And yet, large-scale network simulation is not used

commonly today. This can be attributed to the lack of easy-to-use large-scale network

simulators and realistic network models that can withstand the test of time.

There is an important distinction between developing a large-scale network simulator

and a large-scale simulation experiment. The former copes with the computational issue

of running parallel simulation on high-end computing platforms, while the latter deals

with the challenges of creating topologies and traffic conditions resembling the target

network. In between, different players assume different roles.

A parallel simulation engine provides a method for decomposing large-scale models

into an interconnected graph of logical processes – each capable of processing simulation

events concurrently on today’s parallel and distributed platforms. Large-scale network

simulation produces a huge number of simulation events, thus providing ample opportu-

nities for parallelism. A network simulation framework extends the parallel simulation

engine with domain-specific models, including common network components (such as

subnetworks, routers, hosts, links, and network interfaces), and basic programming con-

structs (such as sending and receiving messages and scheduling timers). Based on these

network components and constructs, network models can be developed for specific net-

work protocols, services, and applications. Most existing network simulators offer a good

selection of common protocols at different layers of the network stack, such as Ethernet,

TCP/IP, BGP, OSPF, DNS, etc. Network experiments consist of a detailed specification

of network topology and traffic for the specific network scenarios for testing applications.

29



Depending on the goal of the simulation, a network experiment typically needs to repro-

duce the network conditions observed on the real network at some level.

To date, several large-scale network simulators have demonstrated good performance

and scalability with various degrees of success. They are confirmed cases of good parallel

simulation practice. For example, TeD [POF98] adopts a time warp simulation engine for

running large-scale network models. PDNS [RFA99] uses a federated approach to paral-

lelize a popular sequential network simulator. SSFNet [CLL+99] features a programming

interface designed for large complex models using conservative synchronization proto-

cols. GTNetS [Ril03] is also a parallel network simulator with a good set of network

protocols. ROSSNet [YBB+03] uses the technique of reverse computation for compact

and light-weight optimistic parallel simulation of large network models.

All the above large-scale network simulators focus primarily on the performance as-

pect of the simulators, and all of them failed, to some degree, to capture the attention of

the network research community at large, which nevertheless is in great need of veritable

large-scale network simulation tools. The failure can be partially attributed to the difficul-

ties in using a large-scale network simulator to conduct experiments. We believe this can

be attributed to a poor separation of concerns. A network researcher is more interested in

the development and use of realistic, verifiable large-scale network models and network

experiments, while a simulator developer is more concerned with methods for developing

the parallel simulation engine and the network simulation framework, which can effec-

tively project large-scale network models onto parallel platforms to achieve good parallel

performance. This separation of concerns inevitably brings complexities both in the de-

scription of the network models and the execution of the models on parallel platforms.

Our work begins with the notion that a large-scale network simulator shall be both

easy to use and able to efficiently execute on parallel platforms. In particular, the simu-

lator must provide a user-friendly interface allowing users to easily focus on developing

30



complex network models and conducting large-scale network experiments, with little con-

cern about model execution issues. Such user-friendly interfaces need to provide a com-

plete end-to-end workflow for network experimentation, from the initial development and

maintenance of network models, through the configuration and execution of the network

experiments, to the visualization and analyses of the experiment results.

We introduce the method of model splitting, which naturally divides the system into

an interactive model and an execution model. The interactive model is an iconic, succinct

representation of the target network configurations; it is intended to be small so it can fit

in a client machine and possibly work in conjunction with a well-designed user interface.

The interactive model is used to address the user facing aspects of the system: it allows

the user to easily specify the network models, visualize the network configurations, scru-

tinize the model parameters, inspect or modify the simulation state, and allow for online

monitoring and steering of the network experiments. In contrast, the execution model

is a full-fledged representation of the large-scale network models for the target high-end

computing platforms. The execution model needs to include partitioning and mapping

information for the network models to be deployed and run on the parallel platforms. The

execution model also needs to capture the detailed evolution of the simulation state. In

addition, certain simulation state needs to be tracked or recorded during the experiment

for online or postmortem data collection and analysis.

To maintain consistency between the interactive model and the execution model, we

introduce a process called network scripting, which allows the system to automatically

create the interactive model and the execution model from a single specification of the

network configuration. To facilitate real-time high-capacity interaction between the in-

teractive model and the execution model, we introduce a streamlined monitoring and

control mechanism, that can modify the runtime state of the simulation and filter state

updates between the execution model and the interactive model in support of interactive

31



experimentation and real-time visualization. To reduce the model size, we introduce the

technique of model replication, which allows the sharing of data for representing the net-

work topologies with identical structures, the state of network entities and the behavior of

network protocols with identical functions. To ensure efficient in-memory processing of

the interactive model, we present a model caching scheme on top of a database manage-

ment system supporting data persistence of large-scale network models that reside out of

core.

We implemented the model splitting approach in PRIMEX, which is a large-scale net-

work simulator with a real-time extension that allows parallel and distributed simulation

of large-scale networks in real time so that the simulator can interact with real network

applications and real network traffic. We created an integrated development environment

that interfaces with the interactive model to allow the users to construct and inspect net-

work models via a graphical user interface, through an interactive python console, or

using scripts written in XML, Java, or Python. The interactive model is persisted to a

database so that the users can later reuse the model – or simply a part of it – to construct

other models. The execution model, equipped with the information of the network con-

figuration and the target execution environment, is run at the parallel machines. During

the experiment, the user can use the graphical user interface to visualize the state of the

network and interactively control the network experiment by reconfiguring the network

model.

The remainder of this chapter is organized as follows. In section 3.1 we outline related

work and in section 3.2 we describe the model splitting technique and identify major

issues which arise from the method. Then in sections 3.3 to 3.5 we present our solutions

to address issues related to model splitting in detail. We then wrap up the chapter with an

evaluation in section 3.6 and a conclusion in section 3.7.

32



3.1 Related Work

Existing network simulators have partially addressed the complexities of configuring net-

work models. A common approach is to use a description language to describe the con-

figuration of the network, e.g., the Domain Modeling Language (DML) used by

SSFNet [CLL+99], and the NEtwork Description language (NED) used by OMNeT++

and INET [And]. Using a separate language can simplify the specification of network

experiments, including the structure of the networks and the parameters for individual

components. However, in doing so, one must manually ensure the consistency between

the description language and the model implementation.

The Telecommunication Description Language (TeD) [POF98], as one of the earliest

efforts of parallel network simulation, takes a different approach. Similar to VHDL,

TeD provides a modular description of the hierarchical structure of the network model

together with the definition of detailed behaviors of the components. The problem with

this approach is that the user is forced to deal with the complexities associated with the

detailed model implementation in the same model description language [PNL96].

Yet another method is to adopt a split programming approach, where the simulation

code is developed in a compiled language and the logic of building and configuring the

network models is written in a scripting language (such as Tcl). This is the approach

employed by NS-2 [BEF+00] and GTNeTS [Ril03]. The split programming approach

certainly simplifies the specification of the network and provides automatic consistency

between the scripting language and the model implementation. However, the two need to

be on the same machine—the simulator cannot handle situations where the specification,

configuration, and visualization is done interactively on a machine separate from where

the model is run.

33



Graphical 
User 

Interface

Interactive 
Console

Scripting 
Language

Experiment
Specification

Network
Models DBMS

DBMS

parallel platform

execution model

 
 

 

  

 

  

  

 

  

 

 

 

 

 

 

interactive model

user workstation

Figure 3.1: A schematic view of model splitting.

3.2 Model Splitting

In this section we present the overall architecture of model splitting and describe the

associated problems and solutions.

3.2.1 Architecture

The basic premise behind model splitting is that a user’s interaction with a model should

be explicitly separate from how a model is executed. Figure 3.1 shows a schematic view

of a simulation system that employs the model splitting technique. With the two separate

models—the interactive model that runs on the user workstation and the execution model

that runs on the parallel platform—we are able to address the separation of concerns. The

interactive model should focus on model configuration, experiment specification, inter-

action and visualization, by supporting user facing tools such as the scripting languages,

the graphical user interface, and interactive consoles. In comparison, the execution model

should focus on execution issues, such as parallelization, synchronization, communica-

tion, and data collection on parallel platforms.

34



Both models are derived from the network models implemented for various network

protocols and applications, and the experiment specification with detailed network topol-

ogy and traffic description. However, they intend to address different concerns. More

specifically, the interactive model has four important design considerations:

1. The interactive model shall be constructed and configured easily, through a graphi-

cal user interface or via a scripting language, or both.

2. The interactive model needs to be persistent across different experiments, for re-

peatability, for debugging, and for model reuse.

3. The interactive model needs to maintain a small memory footprint as it is expected

to interact with the user on a user workstation (the front end) with fairly limited

memory.

4. The interactive model can be geographically separated from the execution model:

the user configures and visualizes network experiments at the front end on a user

workstation remotely connected to the back end, which is the parallel computing

cluster running the simulation.

In contrast, there are five key design considerations for the execution model.

1. The execution model shall be able to capture the network operations at sufficient

levels of detail that satisfy the fidelity requirements of the simulation study.

2. The execution model must be able to run efficiently at the back end on the parallel

platform. The model needs to be partitioned and mapped onto the parallel machines

to minimize the synchronization overhead.

3. The execution model needs to conserve memory; this is especially important when

dealing with extremely large-scale network models.

35



4. The execution model needs to interoperate with the interactive model running at the

front end (at the user workstation), for network monitoring and visualization, user

interaction and dynamic reconfiguration.

5. The execution model may generate a huge volume of simulation results, which

needs to be collected efficiently for postmortem analysis.

3.2.2 Problems and Solutions

Splitting the network model and experiment specification into the interactive and execu-

tion models can provide the desired separation of concerns; however, it also brings several

potential problems. The first problem is that we need to maintain consistency between the

two models. On the one hand, the interactive model and the execution model should be

based on the same implementation of the network models. That is, they should contain

the same definition of network entities and protocols with the same state variables (with

the same data types and ranges). Inconsistencies often arise at the development stage

when the network models are constantly being changed. On the other hand, the two mod-

els should be derived from the same experiment specification. They should follow the

same network configuration, with the same number of instances of network entities and

protocols, and the same configuration parameters. Inconsistencies may happen when the

user interactively creates and configures the network experiment.

To solve this problem, we introduce the method of network scripting. Network script-

ing is a technique of automatically generating the interactive and execution models using

annotations embedded in the implementation of the network models. These annotations

provide the meta-information of the state variables and the hierarchical structure of the

network model. For example, the annotations can describe whether the state variables

are configurable by the user, and if so, what are their data types, what are the ranges of

values they can take, and what are the default values. The annotations can also describe,

36



for example, the minimum and maximum number of sessions that can be instantiated for

a protocol on a host or router. The meta-information is used to generate the schema for

the scripting language, the interactive console, and the graphical user interface, which are

then used to create and interact with network experiments. The interactive model is also

embedded with a database management system to deal with large-scale models that must

be handled out of core. The meta-information is used by the execution model to prepare

for the full-fledged network model and enable the mechanism for interoperating with the

interactive model (and the user) during the simulation.

The second potential problem associated with model splitting is that the two models

need to be synchronized during runtime. That is, the state update information needs

be exchanged between the two models: modification to the state of the interactive model

needs to be sent to the execution model in a timely fashion, and vice versa. For large-scale

networks, there can be considerable amount of information exchanged between the two

models causing significant overhead. Furthermore, since the interactive model and the

execution model can be geographically distributed with relatively constrained connections

in-between (i.e., with large latencies and low bandwidths), the update information may

not be delivered without significant delay. To overcome this problem, we propose a real-

time monitoring and control framework to automatically and efficiently synchronize the

states of the interactive and execution models. This is achieved by reducing the volume of

update information and dynamically adjusting the synchronization intervals in response

to user input.

The third problem with model splitting is about the memory consumption. The ex-

ecution model is engineered to run on parallel machines to cope with the computational

demands of large-scale network experiments. The interactive model, however, runs on a

user workstation, which does not have sufficient resources to handle large-scale experi-

ments in the same way as the execution model. We need to conserve memory for both

37



models, particularly for the interactive model. We propose a two-pronged approach to

solve this problem. First, we use model replication to minimize the memory footprint

of large-scale network models. Model replication is a technique for constructing large

network topologies using light-weight copies of identical sub-structures. This method is

especially effective at conserving the memory required to conduct routing on the sim-

ulated network. Second, for the interactive model, we use an efficient model caching

algorithm on top of a database management system for handling experiments that cannot

be contained in the main memory. We extend network scripting to embed functionalities

within the interactive model which allow for transparent paging of the interactive model

to and from the database.

Network scripting is presented in section 3.3 and our framework for real-time interac-

tion and control is described in section 3.4. Our model caching technique is explained in

section 3.5. A detailed discussion of model replication is postponed until chapter 4.

3.3 Network Scripting

Network scripting is a technique of embedding simple annotations within the implemen-

tation of network models to help create a consistent representation of the target network

both in the form of the interactive model (for users to create, configure, visualize, and

control network experiments), and the execution model (for efficient execution of the net-

work experiments on parallel platforms). Using the annotations, network scripting also

automatically creates the mechanisms to synchronize the runtime state of the models dur-

ing the experiment execution.

38



Annotated 
Network Models

A
PI

Database 
Schema

Sy
nc

DBMS

External tools
(GUI, Interactive 

Console, Scripting 
Language)

Model 
Schema

Model Graph

Interactive Model

Partitioned
Model Graph

Parallel 
Simulator

Sy
nc

DBMS

Execution Model

compilation

real-time
updates

Figure 3.2: Network scripting for consistent interactive and execution models.

3.3.1 Annotations

Figure 3.2 illustrates the procedure and the functioning components of network script-

ing. The developer annotates the implementation of network models. All basic network

elements, such as subnetworks, routers, hosts, links, interfaces, and protocols, are repre-

sented as model nodes, each containing the state of the corresponding network element

and defining the logic and behavior of the network element. A network model is orga-

nized as a hierarchy of model nodes: a network may contain subnetworks, routers, hosts,

and links; a router or host may contain one or more network interfaces and a stack of

protocols.

With network scripting, the model nodes shall be embedded with annotations to indi-

cate the relationship of the model nodes within the hierarchy and the access types of the

state variables. More specifically, the model nodes shall contain structure annotations,

which are used to ensure the model nodes can be instantiated properly in relation to one

another. For example, a network can have routers as its children, but not the other way

around. In this case, a child-type annotation is used to specify whether a model node can

be composed of specific types of model nodes as its children. The annotations can also

specify the minimum and maximum number of instances allowed for a specific type of

39



model node. For example, a router requires that it contain at least one network interface,

but at most one IP protocol.

There are four basic types for state annotations: configurable, controllable, mutable,

and sharable. A configurable state annotation is used to mark a variable that can be set

by the interactive model at the configuration stage, in which case the value needs to be

propagated to the execution model before setting up the experiment. Each configurable

state variable can also be defined with a default value: if a configurable state variable is

not specified by the user, the simulator will use the default value. A controllable state

annotation is used to mark a variable that can be modified by the interactive model during

the experiment and the value needs to be propagated to the execution model in real time.

Both configurable and controllable variables can also specify their minimum and maxi-

mum values. A mutable state annotation indicates that when the variable is modified by

the execution model during the experiment, its value needs be propagated to the interac-

tive model in real time. The mutable and controllable variables are essentially used for

online monitoring and steering of network experiments. A sharable state annotation indi-

cates that the variable can be shared among the replicated instances of the model node, in

which case only one copy of the state variable needs to be maintained in the simulation.

In chapter 4, we give a detailed explanation of our model replication technique, which is

designed to reduce the memory consumption of large network models.

The annotated network model is parsed to generate the model schema, which contains

the meta-information about the state variables of the model nodes and the structural rela-

tionship of the the model nodes. The model schema is then used to generate the interactive

model and the execution model.

The interactive model maintains a lightweight representation of network model in-

stances, which we call the model graph. The model schema is used to generate three

major components of the interactive model. It generates an application programming in-

40



c l a s s NIC : p u b l i c ModelNode {
a n n o t a t i o n s {

shared c o n f i g u r a b l e
l ong b i t r a t e {

d e f a u l t =1 e8 ;
min=1 e4 ;

}
shared c o n f i g u r a b l e
l ong maxqlen {

d e f a u l t =65536;
min =1024;

}
c o n t r o l l a b l e c o n f i g u r a b l e
do ub l e d r o p p r o b {

d e f a u l t =0;
min =0; max=1;

}
mutable l ong i n b y t e s = 0 ;
mutable l ong o u t b y t e s = 0 ;
c h i l d t y p e <NICQueue>
queue { min =1; max=1; }

} ;
Timer s e n d t i m e r ;
. . .
vo id r e c e i v e ( P a c k e t ∗ p k t ) ;
vo id send ( P a c k e t ∗ p k t ) ;

} ;✝
(a) Annotated model
node.

c l a s s NIC e x t e n d s ModelNode {
NIC ( ModelNode∗ p a r e n t ) {

s u p e r ( p a r e n t ) ;
}

l ong g e t I n i t B i t r a t e ( ) { . . }
vo id s e t I n i t B i t r a t e ( l o ng v ) { . . }

l ong g e t I n i t M a x q l e n ( ) { . . . }
vo id s e t I n i t M a x q l e n ( lo ng v ) { . . }

do ub l e g e t I n i t D r o p p r o b ( ) { . . }
vo id s e t I n i t D r o p p r o b ( d o ub l e v ) { . . }
do ub l e ge tDropp rob ( ) { . . }
vo id s e t D r o p p r o b ( d ou b l e v ) { . . }

l ong g e t I n b y t e s ( ) { . . }
vo id g e t O u t b y t e s ( l o ng v ) { . . }

L i s t <NICQueue> getQueue ( ) { . . }
NICQueue addDropTai lQueue ( ) { . . }
NICQueue addREDQueue ( ) { . . }

}✝
(b) Generated interactive model
node.

c l a s s NIC : p u b l i c ModelNode {
c l a s s shared : p u b l i c
ModelNode : : shared {

Configurable<long> b i t r a t e ;
Configurable<long> maxqlen ;
shared ( ) :

b i t r a t e (1 e8 ) ,
maxqlen ( 6 5 5 3 6 ) {}

} ;
C o n t r o l l a b l e<double> d r o p p r o b ;
Mutable<long> i n b y t e s ;
Mutable<long> o u t b y t e s ;
Chi ldLi s t<NICQueue> queue ;
Timer s e n d t i m e r ;
. . .
NIC ( ) :

ModelNode ( new shared ( ) ) :
d r o p p r o b ( 0 ) , i n b y t e s ( 0 ) ,
o u t b y t e s ( 0 ) {}

NIC ( shared ∗ s ) :
ModelNode ( s ) , d r o p p r o b ( 0 ) ,
i n b y t e s ( 0 ) , o u t b y t e s ( 0 ) {}

. . .
vo id r e c e i v e ( P a c k e t ∗ p k t ) ;
vo id send ( P a c k e t ∗ p k t ) ;

} ;✝
(c) Generated execution
model node.

Figure 3.3: An example of network scripting.

terface (API), which contains the definition of the interactive model nodes. An interactive

model node is a memory-efficient representation of the corresponding model node defined

in the annotated network model, which contains only the configurable, controllable and

mutable state variables. The API provides a common framework for all external tools,

such as the graphical user interface, the interactive console, and the scripting language,

which are used to configure and interact with the execution model visually or program-

matically.

The model schema generates the database schema, which is used to marshall model

nodes to and from an external database. The network model is persisted to the database

so that one can repeat the network experiment or reuse any element of the network model.

Persisting to a database also allows us to handle large-scale network models out of core.

The model schema also generates the synchronization mechanism. After the user fin-

ishes the configuration of the network model and the specification of the target runtime

environment, this information needs to be “compiled” and sent to the execution model.

Also, preprocessing needs to be done at this stage, such as the automatic IP address as-

41



signment for the network interfaces, the pre-calculation of static routing tables, and the

partitioning of the network model for the target parallel platform. During the execution of

the experiment, the interactive model can update the controllable variables, which need

to be propagated to the execution model in real time; similarly, the mutable variables can

be updated by the execution model and need to be propagated to the interactive model in

real time. In section 3.4 we describe the real-time interactions between the two models in

more detail.

The execution model maintains a full-fledged representation of network model in-

stances, which we call the partitioned model graph. The execution model includes both

annotated and unannotated states of all model nodes already partitioned to run on the par-

allel machines. For the annotated states, the execution model uses the model schema to

create a variable map so that each state can be individually retrieved and modified. The

execution model also provides a special treatment for sharable state variables: it groups

all sharable states within a model node together so that the entire collection can be shared

among replicated mode nodes. We discuss model replication in more detail in chapter 4.

The model schema generates the synchronization mechanism for the execution model,

so that it can import information about the network configuration and the preprocessed

results from the interactive model. The execution model also needs to receive real-time

updates of controllable variables from the interactive model, and send real-time updates

of both controllable and mutable variables to the interactive model. The partitioned model

is executed by the parallel simulator on the parallel platform, which generates simulation

results and trace data to be stored in a distributed database or a parallel file system.

3.3.2 Implementation

We implemented network scripting in our PRIMEX simulator. We annotated the network

model implemented in C++. Figure 3.3(a) shows an example of an annotated model node,

42



which represents a network interface. In the annotations block, we defined three

configurable variables: bitrate is the bandwidth of the network interface, maxqlen

is the maximum queue length, and dropprob is the packet drop probability. Two of

them are also marked as shared. We also defined two mutable variables (inbytes and

outbytes) for collecting the statistics on the number of bytes received and sent by the

network interface during simulation. A network interface is required to have one and only

one child of type NICQueue—either a drop-tail queue or a RED queue depending on the

configuration. There are also unannotated variables defined within the model node. Here

we show only sendtimer, which is used for scheduling packet departure events.

The annotated network model is parsed to generate the interactive model and the ex-

ecution model. Figure 3.3(b) shows the corresponding interactive model node, which is

implemented in Java. There is also an XML schema (not shown) generated from the anno-

tated network model. For each annotated variable in a model node, the interactive model

provides the corresponding getter and setter methods. If the variable is configurable (such

as bitrate, maxqlen, and dropprob), we define getInit and setInit meth-

ods so that the user can check and modify the variable during model configuration. If the

variable is controllable (such as dropprob), we define both getter and setter methods

so that the user can query and modify the value of the variable during the runtime. If

the variable is mutable (such as inbytes and outbytes), we only need to provide the

getter method, since the execution model will update this variable in real time.

In the example, the network interface has one child type, NICQueue; we define a

getQueues method to obtain a list of network queues (although only one is allowed

according to the model schema). For each model node type derived from NICQueue,

we create a separate add method. The model schema identified only two derived model

node types: DroptailQueue and REDQueue; that’s why there are two add methods.

43



Partitioning
Information

Master
Controller

Slave
Controller

DB
Parallel 

Simulator
Instance

Local 
Controller

Interactive
Model

   Parallel
Machine

  User
Workstation

Figure 3.4: The monitoring and control framework.

We implemented a graphical user interface (using Prefuse [Hee04]) for the users to

visualize and interact with the network model. We also implemented an interactive con-

sole in Python, which uses a python interpreter written in Java [Jyt]. PRIMEX allows the

user to specify the network model in XML, Python, or Java. All these tools are developed

using the above API generated from the model schema.

Figure 3.3(c) shows the definition of the corresponding execution model node for the

network interface in C++. All sharable variables (bitrate and maxqlen) are put to-

gether and defined in an inner class, called shared. The default constructor of the model

node creates the shared region when a new model node is created; however, if the new

model instance is “replicated”, the second constructor is used so that the region is shared

among the replicated instances. The configurable, controllable, and mutable variables are

all wrapped using templates (Configurable, Controllable, and Mutable) for

a uniform treatment of all data types when synchronizing with the interactive model. In

addition, for controllable and mutable variables, the templates also track modifications so

that the changes can be propagated to the interactive model during runtime.

44



3.4 Real-time Interactions

To support real-time interaction with network experiments, the interactive and execution

models must synchronize their runtime state by exchanging state updates. In this section,

we describe the design and implementation of an online monitoring and control frame-

work for this purpose.

The monitoring and control framework, shown in figure 3.4, consists of: 1) a lo-

cal controller, collocated with the interactive model at the user workstation; 2) a master

controller, chosen to run at one of the parallel machines; and 3) the slave controllers,

each running together with the corresponding parallel simulator instance on the paral-

lel platform. The master and slave controllers are collocated with the execution model.

When the execution model modifies the controllable or mutable states, the simulator in-

stance generates state updates and sends them to the slave controller collocated on the

same parallel machine. The slave controller then forwards the state updates to the master

controller, which sends them to the local controller at the user workstation. The local

controller eventually updates the interactive model. In the opposite direction, when con-

trollable states are modified in the interactive model, which generates the state updates

and forwards them to the master controller. The master controller, with the help of the

partitioning information, sends the state updates to the corresponding slave controller,

which modifies the execution model accordingly.

We implemented two mechanisms for collecting data from the execution model. One

is a monitor, which is associated with a state variable. A monitor can output data, period-

ically (with a predefined interval), on-demand (whenever the state changes), or both (by

exporting the data at most once for a given period if it is changed). The other mechanism

is an aggregator, which is associated with a collection of state variables. An aggregator is

used to produce the aggregate statistics from a collection of state variables, and can thus

45



reduce the amount of data that needs to be collected. Note that, in addition to supporting

real-time interaction, these mechanisms can also be used to support data collection for

postmortem analysis, by storing the data in a collocated database or using a parallel file

system.

The interval at which the execution and interactive models exchange state updates de-

termines the responsiveness and timeliness of the interaction. Ideally, the interval should

be kept small. However, the connection between the interactive and execution models

may be constrained, making it infeasible to send updates at a high frequency. We propose

two techniques to reduce the volume of state updates. The first method defines an area

of interest, which is the set of interactive model nodes that a user is currently viewing or

interacting with. A user (or program) cannot access the runtime state of a model node

beyond the area of interest. The interactive model keeps track of the set of model nodes

that are currently viewed by the user and informs the execution model to only send the

state updates within the area of interest.

The second method uses a rate limiting mechanism, which dynamically adjusts the

interval at which state updates are sent. As a user interacts with an experiment, the area of

interest may grow to be very large, and in extreme circumstances it may include the entire

execution model. This could cause a significant backlog of state updates to accumulate

on the path from the execution model to the interactive model. To prevent the backlog,

we can dynamically adjust the interval of the state updates so that the rate stays below the

capacity of the system. This would ensure that the updates can be delivered in a timely

manner, however, at a lower rate. We implemented the rate limiting mechanism in the

simulator to control the time interval between sending batches of updates for all mode

nodes within the area of interest.

46



Data
Base

Model
Cache

DB
Thread

A

B C

D FE

1

3

2

4

5

Interactive 
Network
Model

Figure 3.5: The model caching mechanism.

3.5 Model Caching

The interactive model needs to operate on large network models potentially too big to fit

in the main memory. We present a model caching technique for out-of-core processing,

which transparently marshals the interactive model nodes to and from a database as they

are created and modified.

3.5.1 Design

Figure 3.5 shows a basic design of the model caching mechanism, which we explain

below. Network scripting automatically creates an interactive model node for each anno-

tated network model node. All interactive model nodes extend a base class that includes

the functionalities for out-of-core processing. The user runs the external tools, such as the

graphical user interface, in separate threads to create, modify or delete the model nodes.

The interactive model registers these events with the model cache, which is also run as a

separate thread (step 1 in the figure).

47



The model cache maintains a working set of model nodes that have been recently

accessed or modified. The model nodes that are not in the working set must be persisted

to the database. To do this, we use an advanced Java referencing scheme, in which a

model node refers to its parent and children using soft references, as opposed to strong

references typically used in Java. The main difference between strong and soft reference

is that softly referenced objects can be reclaimed by the Java Virtual Machine (JVM)

during the garbage collection. The model cache maintains a strong reference to all nodes

within the working set to ensure that they cannot reclaimed by the JVM (step 2). When

new model nodes are added to the working set, and if the cache is full, the model cache

needs to evict existing model nodes by removing the strong references to them and by

sending requests to the queue to have the model nodes written back to the database (step

3). When the interactive model accesses a model node, it checks to ensure the node is in

memory, and if it is not, the model cache will send a request to load the node from the

database and it will wait for the completion of the requested operation (also, step 3). We

designate a separate thread, called the DB thread, to handle the requests from the model

cache and perform the corresponding database operations (step 4). When the DB thread

finishes loading a model node, it will unblock the waiting model cache thread (step 5).

3.5.2 Caching Policy

An important aspect in the design of the model caching mechanism is the choice of the

cache eviction policy. The eviction policy needs to take advantage of the access local-

ity. We study the typical access pattern of the interactive model via an experiment. We

constructed a synthetic network connecting 216 campus networks [Nic] in a four tier

topology. The model contains a total of 425,369 models nodes including all the hosts,

routers, network interfaces, links, and subnetworks.

48



Mo
de

l C
re

ati
on

 

Ad
dr

es
s A

ss
ig

nm
en

t (
Pa

ss
 1

)

M
od

el
 V

er
ific

at
io

n

0                5                10             15              20             25              30              35              40              45             50
Time (seconds)

400

350

300

250

200

150

100

50

0

O
bj

ec
t I

D 
(th

ou
sa

nd
)

Ad
dr

es
s A

ss
ig

nm
en

t (
Pa

ss
 3

)

X
Y
Z

Ad
dr

es
s A

ss
ig

nm
en

t (
Pa

ss
 2

)

Figure 3.6: The access pattern for creating a campus network.

Figure 3.6 shows the results. The y-axis is the id of the model nodes being accessed.

The diagonal lines indicate the model nodes are accessed in sequence at different prepro-

cessing stages. For example, the first diagonal line shows that the model nodes (425,369

of them) are created one by one. The network topology has multiple levels and replica-

tions are applied at each level. At the bottom level are the campus networks, each with

around 2K model nodes (denoted as X in the figure); the next to the bottom level has

around 12K model nodes (Y); and the level above it has around 72K model nodes (Z).

The figure shows that lower level model nodes are more frequently accessed because they

are replicated by the other model nodes and they contain the sharable state variables.

The campus network topology and its replications account for nearly all of the locality

seen in our models, as was the case in this example. Since the model nodes are accessed

mostly sequentially, we choose to use a modified FIFO eviction policy. We select the vic-

tim to be the earliest created model node that is not a network and has not been replicated.

This allows the model cache to give priority to networks and model nodes that have been

replicated in memory.

49



3.5.3 Database

Another important aspect in the design of model caching is the choice of the database

and the supporting framework for persisting the interactive network model. We first im-

plemented the interactive model using the Java persistence architecture (JPA), which is a

standard programming framework for managing relational data in applications. We found,

however, that the JPA incurs significant overhead when dealing with large datasets; as a

result, it was unable to handle network experiments with more than a few hundred thou-

sand model nodes. We went on implementing a custom persistence framework so that we

could have full control over the overhead involved in persisting and retrieving objects to

and from the database.

We also implemented two storage engines for the database. One uses the standard

JDBC interface to store models in the Apache Derby database [Apaa]. Derby is a Java

database with a stable and relatively fast implementation. It can be easily embedded

within a Java application. The other one is a custom database based on files. The custom

database takes a “write once” approach: once a model node is persisted on disk, it cannot

be updated in place—a modification will cause the entire model node to be written out to

replace the original one. This approach can benefit from large sequential writes, which

are critical to good I/O performance, but at the cost of wasted disk space. Fortunately, the

wasted space can be reclaimed offline.

3.6 Evaluation

3.6.1 Control and Monitoring Framework

To evaluate the effectiveness of using the area of interest and the rate limiting scheme, we

conducted an experiment with a synthetic network model with 12K model nodes running

on a Linux cluster. We placed the local controller, the master controller, and the slave

50



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20  40  60  80  100  120  140  160  180

T
h

ro
u

g
h
p

u
t 

(t
h
o

u
sa

n
d
 u

p
d

a
te

s/
se

c)

Offered Load (thousand updates/sec)

Simulator
Slave

Master
GUI

Figure 3.7: Throughput measurement at
different locations.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 20  40  60  80  100  120  140  160  180

M
ea

n 
Ji

tte
r (

se
co

nd
s)

Threshold (thousand updates/sec)

Figure 3.8: Jitter measured at the interac-
tive model.

controller on three separate machines connected by a gigabit switch and measured the

throughput at the simulator and the three controllers. First, we fixed the area of interest

to encompass 75% of the model and changed the update frequency to produce different

loads. Figure 3.7 shows the throughput at different measurement locations, averaged

over ten separate trials (the confidence intervals are too small to be seen on the figure).

Although the simulator can output updates at a high rate, the throughput peaks at around

74K updates per second at the slave controller, and around 68K updates per second at the

master and local controllers.

This experiment shows the throughput limitations of the monitoring and control frame-

work implementation. If the offered load is higher than the achievable throughput, the

system may become congested, which would cause further delays for the updates to reach

the interactive model. We conducted another experiment, this time by changing the area

of interest at the interactive model to oscillate between 25% and 75% of the model every 5

seconds. We also enabled the rate limiting mechanism to control the rate at the simulator

to stay below a given threshold. We varied the threshold in the experiment and measured

the mean jitter, calculated as the difference in the arrival time between the successive

batches of updates. Figure 3.8 shows the results. We observe that the jitter increases dra-

51



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Start Build Assign UIDs Assign IPs Static Routing Export to Sim. Flush to DB Complete

T
im

e
 (

se
co

n
d
s)

256MB    (derby)
512MB    (derby)
768MB    (derby)

1024MB    (derby)
256MB (custom)
512MB (custom)
768MB (custom)

1024MB (custom)

 0

 100

 200

 300

 400

Complete
 0

 100

 200

 300

 400

 500

Creating
Model

Assigning
UID

Assigning
IP Addresses

Calculating
Static Routes

Compiling
Runtime Info

Flusing to
Database

Finishing
Preprocessing

Ti
m

e 
(s

ec
on

ds
)

Figure 3.9: Performance of different database storage engines.

matically between 30K and 50K updates per second, which is before the peak throughput.

This could be attributed to the lack of rate limiting within the batch. The experiment nev-

ertheless demonstrates that, with the proper threshold, the rate limiting mechanism can

deliver the updates with less jitter.

3.6.2 Model Caching

We conducted an experiment to compare the performance of Derby and our custom

database. We used the same network model as in the previous experiment. We varied

JVM’s memory size from 256 MB to 1024 MB, and measured the time to create and pre-

process the interactive model. Figure 3.9 shows the cumulative time averaged among ten

trials (the confidence intervals are too small to be seen). The x-axis shows the preprocess-

ing stages in order. With 1024 MB of memory the entire model fits in memory, and at 768

MB about 90% of the model is in memory. Both databases spent the majority of the time

flushing the model to disk. Our custom database is about 5 times faster than Derby.

52



With less memory (512 MB), the performance difference between the two databases

becomes significant. Derby must preform a lot of small-size random writes for the objects

that are modified and flushed, while the custom database benefits from the “write once”

approach, which sequentializes the writes. The results show a 15x performance improve-

ment. For 256 MB, the time it takes to flush to the database increases dramatically for our

custom database. This is because of the significant increase in the number of interleaved

read and write operations. The custom database is optimized for writes, but not reads; the

interleaved read and write operations caused the I/O cost to soar.

3.7 Conclusion

Model splitting divides a network model into an interactive model and an execution model

in order to separate the user-facing concerns, such as visualization and interaction, from

the concerns for the efficient execution of network models on parallel computers. The

consistency problem between the two models is addressed using network scripting, which

allows us to extract the model schema and automatically generate the interactive and

execution models using simple annotations. The interoperation between the interactive

and execution models is accomplished by a real-time monitoring and control framework

with data filtering and rate limiting mechanisms to cope with a constrained connection

between the two models. Finally, we presented a modeling cache scheme which utilizes

an external database to enable processing of large-scale interactive models.

53



CHAPTER 4

REDUCING MEMORY CONSUMPTION

Memory consumption is a critical problem for large-scale network simulations. The

enormous memory footprint needed for maintaining routing tables can severely obdurate

scalability. Reducing the space requirement of routing tables is key to minimizing the

space complexity of large-scale simulations. Previous work on reducing memory con-

sumption in network simulation has primarily focused on reducing routing state. Routing

state, however, is not the only consumer of memory in large-scale network models. We

feel that a more systematic approach to the problem should be taken.

We propose a new technique called model replication which exploits replicated sub-

structures within network models to dramatically reduce the space complexity of network

models. One can group the memory consumption within a network simulator into the

following three categories:

• Structural: This type of information deals with the topology of the network model.

For example, the data needed to keep track of which hosts are in which networks,

which interfaces are attached to which hosts, and how to route between hosts, would

all be considered structural information. We further sub-classify structural memory

into routing state and model structure. Routing state is the information needed to

make forwarding decisions in the network, and model structure is everything else.

• Instance State: This type of information deals with parameters of specific elements

in the network model. The memory required to store interface and link bandwidths,

delays, host addresses, and other state that is associated with specific entities within

the model, would be considered instance state. We can further sub-classify instance

state as sharable and internal. Sharable instance state is state that is common to

many entities within a network model and changes relatively infrequently. Infor-

mation such as the link bandwidth or type of TCP protocol that is run on a host

54



would be considered sharable. Information such as the IP of an interface or the

packets within an output buffer are examples of internal state; each instance must

have its own mutable copy of the state.

• Ephemeral: In packet oriented network simulations, applications exchange data us-

ing discrete packets. Ephemeral state refers to short lived objects within the simula-

tor such as network packets and TCP sessions states. The proportion of ephemeral

state is largely dictated by the specific traffic patterns within a network model.

By exploiting replications within the network model, one can reduce memory the

complexity of structural and instance state. Ephemeral state is primary related to the

specific traffic patterns within the network model. Modeling traffic patterns in beyond

the scope of this dissertation and as such, we focus our attention to reducing the memory

complexity of structural and instance state of network models. Section 4.1 presents our

model replication technique. We first argue that one can build network models using

replicated sub-structures in section 4.1.1 and then in section 4.1.2 we briefly describe

spherical routing, a novel routing scheme which reduces the space complexity of routing

state. Section 4.2 presents the design of spherical routing. We then discuss our work

on reducing the amount of memory used to store both instance state and model structure

in section 4.3. The chapter is then wrapped up with an evaluation in section 4.4 and a

conclusion in section 4.5.

4.1 Model Replication

Model replication is designed to allow users to create memory-efficient network models

by sharing both structural and instance state among the model nodes that are replicated

from the same base structure. The topology of the network model is represented as an

augmented tree that encodes the replications. Figure 4.1 shows an example of a small

55



 

 
 

 

 

 Net1
Net2

Net4

Net3

R1

R2

R3

R4

R5

R6

Net5

Net6

H1

H2

H3

H4

L1

L2

L3

L4

L5

L6
L7

L8
L9

H5

Figure 4.1: An example network model.

topnet

Net2
Net1

Net3

Net4 R1

H1

H2 H3
H4

R3

L1 L2 L3

L4 L5

L6 L7
L8

L9

Figure 4.2: Internal model structure
configured with routing spheres.

topology and figure 4.2 contains its corresponding internal representation. The top-level

network contains two identical subnetworks, Net1 and Net2, each also containing two

identical subnetworks. In the internal representation, Net2 makes a reference to Net1,

which indicates that both share the same sub-structure and use the same set of sharable

variables. Similarly, Net4 makes a reference to Net3, and H2, H3 and H4 all make a ref-

erence to H1. At the preprocessing step, the tree will be expanded; however, all replicated

model nodes still maintain only one copy of sharable variables. The example network

contains six subnetworks, six routers, twenty links, and sixteen hosts in the two subnet-

works at the top level. Eventually, only one set of sharable variables is needed for each

of the two subnetworks (Net1 and Net3), the two routers (R1 and R3), the links (L1 - L9),

and the one host (H1).

4.1.1 Building Network Models Using Replicated Sub-Structures

Network generators, such as BRITE [MLMB01] and Orbis [MHK+07], are often used to

construct large-scale network models. These network generators make use of metrics and

trends extracted from measurements of real networks. Having the topologies used in sim-

56



ulation match the characteristics of real networks is critical in accurately representing the

behavior of network applications and protocols [PF97]. We argue that realistic network

models can be built with replicated network structures while maintaining the same net-

work characteristics. In this section we explore the effects of composing network models

using structural replications.

The intuition that network models can be built using replicated structures is bol-

stered by Leskovec’s recent work in building realistic network models using Kronecker

graphs [LCK+10]. The basic idea is that, starting from a small graph (called the ini-

tiator) which captures some essential qualities of a target network, one can recursively

build a large network mathematically through an operator (called the Kronecker prod-

uct). The resulting network graph shares the same network structure of the initiator at

all different levels. It has been shown that with a properly chosen initiator, the resulting

network graph can preserve all the fundamental network characteristics of the Internet.

This includes static graph patterns like heavy-tail distributions for in-degree, out-degree,

eigenvalues and eigenvectors, and temporal evolution patterns such as the densification

power law (i.e., the network diameter shrinks as the network grows).

For this study, network graphs generated by BRITE [MLMB01] were used. BRITE

can produce hierarchical network models using a top-down method. The top-down method

first generates a network topology for the autonomous systems (ASes). Then for each AS,

BRITE generates a router-level topology. Finally, BRITE generates the overall network

topology by merging the AS-level and router-level topologies and connecting the routers

belonging to different ASes. To introduce structural replication, BRITE was modified to

generate the router-level topologies according to a given replication factor α . α is defined

as the fraction of the ASes having the same router-level topologies as other ASes. For ex-

ample, if one generates 100 ASes and the replication factor is 0.2, 20 ASes will have

57



router-level topologies that are exact replicas of those randomly chosen from the other 80

ASes.

In the experiment, the modified BRITE was used to generate network topologies with

the replication factor varying from 0 (no replication) to 0.8. Figure 4.3 plots the statistics

of generated network topologies that contain 50 ASes, each with 50 routers. The first plot

in figure 4.3 is a log-log plot of the node’s out-degree versus its rank in the sequence of

decreasing out-degrees for all nodes. The second is a log-log plot of the frequency versus

the out-degree, and the third is a log-log plot of the number of nodes within a given

number of hops. For each level of replication, 20 different topologies are generated, and

the plots only show the average results. The standard deviation is not shown here because

it would be indistinguishable in the plots. The same tests were run on topologies of up to

100 ASes each with 2000 routers. The results (not shown) are very similar to those here.

Overall, little difference is seen among the results from different replication levels.

The characteristic path lengths and cluster coefficients of the generated network graphs

are also calculated. The characteristic path lengths include the mean and standard devi-

ation of the shortest-path lengths among all nodes. The cluster coefficients capture the

level of connectivity among all the nodes. For any given node, the node and its neighbors

form a cluster from which a cluster coefficient can be calculated, by dividing the number

of connections among all the nodes in the cluster by N(N−1) (assuming N is the size of

the cluster). The mean and standard deviation among all the nodes in the network graph

are then calculated. The results are shown in table 4.1. Like before, the replication factor

does not have any obvious effect on these values. All the results above strongly suggest

that one can use structural replication to build realistic large-scale network models.

58



 1

 10

 100

 1  10  100  1000  10000

N
od

e 
O

ut
-d

eg
re

e

Node Rank

Replication Factor = 0.8
Replication Factor = 0.6
Replication Factor = 0.4
Replication Factor = 0.2

No Replication

 0.1

 1

 10

 100

 1000

 10000

 1  10  100

Fr
eq

ue
nc

y

Node Out-degree

Replication Factor = 0.8
Replication Factor = 0.6
Replication Factor = 0.4
Replication Factor = 0.2

No Replication

 1

 10

 100

 1000

 10000

 1  10  100

N
um

be
r o

f N
od

es

Hop Count

Replication Factor = 0.8
Replication Factor = 0.6
Replication Factor = 0.4
Replication Factor = 0.2

No Replication

Figure 4.3: Network characteristics of BRITE-generated graphs with varying replication
factors.

59



α Path avg Path std Cluster avg Cluster std
0.0 11.28 0.34 7.76E −5 2.33E −6
0.2 11.02 0.28 7.91E −5 6.40E −6
0.4 11.3 0.24 7.76E −5 2.06E −6
0.6 11.21 0.23 8.05E −5 6.66E −6
0.8 11.41 0.42 7.56E −5 3.39E −6

Table 4.1: Characteristic path lengths and cluster coefficients.

4.1.2 Spherical Routing

Spherical routing is a novel static routing scheme for large-scale network simulations.

Spherical routing pre-calculates the forwarding tables and conducts routing within so-

called routing spheres, each with a user-specified routing strategy. A routing sphere is

defined internally as a network graph (with vertices and edges) on which a single routing

strategy is applied. A routing strategy can either be based on shortest paths, which is

commonly used for intra-domain routing (such as OSPF and RIP), or based on routing

policies dictated by the peering relationships between autonomous systems (as used by

BGP for inter-domain routing). Using spherical routing, a network can be viewed as a

hierarchy of routing spheres: a routing sphere of a sub-network is enclosed by the routing

sphere of its parent network; the routing sphere of the sub-network is represented as a

vertex in the network graph of the parent network’s routing sphere. Within each sphere,

a static forwarding table is calculated according to its routing strategy before simulation.

During simulation, the simulator conducts packet forwarding according to the forwarding

table and the location of the routing sphere with respect to its parent network’s routing

sphere.

The hierarchy of the routing spheres is defined by the modeler according to the net-

work structure. The space complexity of the model can be reduced (1) by subdividing

the network into multiple routing spheres so that the size of the forwarding tables can

60



be reduced, and (2) by identifying routing spheres with identical network graphs. If two

routing spheres have the same network structure, we can reduce the memory consumption

by allowing the spheres to be replicated to share the same forwarding table. In general,

spherical routing allows the modeler to control the trade-offs between modeling accuracy

and space complexity.

4.1.3 Related Work

Most network simulators implement common routing protocols. Some even do so with

the capabilities of performing large-scale routing experiments so as to capture network

dynamics in great detail. For example, Griffin and Premore [GP01] studied the con-

vergence behavior of inter-domain routing using a full-fledged BGP implementation in

SSFNet [CNO99]. Bauer et al. [BYCK06] studied the stability and dynamics between

OSPF and BGP using ROSSNet [YBB+03].

There are also simulators tailored specially for inter-domain routing. BGP++ [DR03]

implements BGP in the NS-2 simulator [BEF+00] by porting from a public domain rout-

ing software called Zebra [Kun]. Follow-up work on BGP++ [DR04] proposed optimiza-

tions to reduce the space complexity. One technique is to change Zebra’s memory recycle

scheme to provide an architecture to enable the multiple information bases within a BGP

router to share the same memory. C-BGP [QU05] only simulates the BGP decision pro-

cess based on router configurations and network topology, but ignores timers and packet

exchange between peers. The trade-off is, the simulator can reproduce the routing behav-

ior algorithmically in a cost effective manner. However, the simulation cannot represent

detailed routing effect from network dynamics.

In the above cases, the simulators can support large-scale network scenarios, and some

even benefit from parallel and distributed simulation, the cost of running detailed routing

protocols (both in time and space) is considerably high. It is certainly undesirable if

61



the primary focus of the simulation is not on routing. In this case, routing should be

considered a service to effectively forward packets within the simulation. Our work falls

into this category.

There are two methods commonly used for implementing routing services in simula-

tion: pre-calculation and on-demand. Given a network model, pre-calculation prepares

the forwarding information off-line and the simulator queries this information to forward

packets during run-time. Alternatively, the routes can be calculated on demand when a

packet forwarding decision must be made at a router during simulation.

Global shortest-path routing flattens the network model to perform shortest path cal-

culations. The calculations only consider reachability and do not consider routing policies

for inter-domain routing. This is the default routing strategy used in the NS-2 simulator.

For a network with N nodes, a flat shortest-path routing requires O(N2) memory space.

To reduce the memory consumption, NS-2 allows hierarchical shortest-path routing. For

simplicity, suppose a network is divided into K clusters (K<<N), and each cluster is rep-

resented as node in the network graph. Further, each cluster is divided into K sub-clusters

and therefore each cluster can also be represented as a graph of K nodes. If one continues

in this fashion until all graph nodes are either routers or end hosts, the space complexity

for the forwarding tables is O(KN).

To further reduce the cost, Huang and Heidemann [HH01] proposed algorithmic rout-

ing, which maps a given network topology to a k-ary tree and reassigns the node addresses

to match the newly imposed tree. This pre-assigned order allows simple next hop com-

putation without maintaining a route table. The space complexity is reduced to O(N),

which comes from maintaining the address mapping between the original topology and

the corresponding k-ary tree. Hiromori et al. [HYY+03] proposed combining the al-

gorithmic routing and the global shortest-path algorithm to reduce the amount of path

inflation caused in the original algorithmic routing approach. One method is to find the

62



near-optimal shortest-path tree by comparing the result of algorithmic routing with the

result of the global shortest-path routing algorithm. Another method is to maintain a vari-

able number of shortest-path trees for a given topology, and at run time choose the best

path from the trees.

NIx-vector routing [RAF00] is an on-demand routing scheme. Routes are calculated

on-demand via breadth-first search. The result is a sequence of NIC indices, which are

compacted and stored in the packet for it to traverse through the network from source to

destination (like source routing). Liljenstam and Nicol [LN04] proposed an on-demand

algorithm for modeling BGP routing which relies on Gao’s work on the peering relation-

ships between autonomous systems [Gao01]. For on-demand routing, since it is unnec-

essary to store all forwarding tables, we see a huge memory savings. If the simulated

traffic is only between a relatively small number of network nodes, the additional time

used for computing the routes is justifiable given the substantial space savings. However,

the performance degradation can be significant if the condition is not satisfied.

The aforementioned approaches all suffer from a problem. The calculated routes may

differ from the true routes — sometimes significantly — such as in the case of algorith-

mic routing. Of course, the amount of difference depends on the network model, and the

significance of the difference depends on the goal of the simulation. Spherical routing

allows hierarchical routing with specific routing strategies (either shortest-path or policy

based) within individual routing spheres. Further, spherical routing allows the modeler to

define the boundary of the routing spheres to balance between accuracy and memory con-

sumption. Spherical routing also uses a combination of pre-calculation and on-demand

routing strategies to balance between computing cost and memory consumption.

63



4.2 Design of Spherical Routing

This section focuses on the design of the spherical routing algorithm. Section 4.2.1 de-

scribes how the algorithm works through a simple example. Section 4.2.2 introduces the

addressing scheme and forwarding table structure which allows spherical routing to effi-

ciently conduct routing within spheres and effectively share forwarding tables. We then

present our BGP routing policy for spherical routing in section 4.2.3. Section 4.2.4 de-

tails how packets are forwarding within spherical routing and section 4.2.5 presents subtle

issues related to how routes are calculated and packets are forwarded.

4.2.1 An Example

We use an example to show how spherical routing works. The user specifies a network

model in a hierarchical fashion, where networks serve as containers for routers, hosts,

links and sub-networks. Figure 4.4 shows a network consisting of two sub-networks with

the same network structure (Net1 and Net2), connected by three links (L1, L2 and L3).

In this case, the simulator simply marks Net2 as a replica of Net1 in its internal tree

representation of the network (as shown on the right of figure 4.5). Net1 consists of two

sub-networks (Net3 and Net4), one router (R1), and two links (L4 and L5). Again,

Net4 is simply a replica of Net3. The latter consists of four identical hosts (H1 to H4),

one router (R3), and four links (L6 to L9). H2, H3 and H4 are replicas of H1. Hosts

and routers also serve as containers for network interface cards (NICs); we ignore them

in the figure for simplicity. Net1, R1, H1, and L1, are examples of names one can use

to identify network entities in the model. In simulation, all network entities (networks,

routers, hosts, links, and interfaces) are assigned unique integer identifiers that capture

the hierarchical structure of the model (we describe the hierarchical addressing scheme in

section 4.2.2).

64



 

 
 

 

 

 Net1
Net2

Net4

Net3

R1

R2

R3

R4

R5

R6

Net5

Net6

H1

H2

H3

H4

L1

L2

L3

L4

L5

L6
L7

L8
L9

H5

Figure 4.4: An example network model.

topnet

Net2
Net1

Net3

Net4 R1

H1

H2 H3
H4

R3H1
H2
H3

H4

Net4

Net6

Net3
Net5

R1

R2

R3

PP

CP
CP

PP

CP

PC

PC
L1 L2 L3

L4 L5

L6 L7
L8

L9

S1

S2
S3 S4 S5

Figure 4.5: Internal model structure
configured with routing spheres.

For each network in the model, the user can assign a routing sphere. A sub-network

can also inherit the routing sphere of its parent network. For network entities within a

network, the routing sphere is called the owning routing sphere. Each routing sphere

must specify a routing strategy based on either shortest paths or routing policies. In the

example, the top-level network (named topnet) is assigned a routing sphere for policy-

based inter-domain routing. Net1 and Net2 are not specified with routing spheres, so

they inherit the routing sphere of topnet, and their network graphs are flattened into the

network graph of the owning routing sphere. Net3 through Net6 each have their own

routing sphere specified for shortest-path intra-domain routing, and the routing spheres

for Net4 though Net6 are actually replicas of Net3. If a sub-network is assigned a

routing sphere, the sub-network is represented as a “super-node” in the network graph of

the routing sphere for the parent network. The routing sphere for the parent network is

called the parent routing sphere; the routing sphere for the sub-network is called the child

routing sphere. Like routers, a super-node can have multiple network interfaces. Unlike

routers, the distance between the interfaces on the same super-node is not always zero,

since the interfaces may actually belong to different hosts or routers. In this case, the

distance should be calculated based on the network topology and the associated routing

strategy of the child routing sphere. The example defines five routing spheres, S1 through

65



S5, as shown on the left of figure 4.5. Because of replication, there are actually only two

routing spheres in this model. Note that topnet’s routing sphere, S1, uses policy-based

routing. The user needs to classify all the links in its network graph as either customer-

provider (we mark them as either cp or pc depending on whether the left end-point is a

customer or a provider), peer-peer (pp), or sibling-sibling (ss). This classification reflects

the BGP peering relationships between the autonomous systems [Gao01].

Once a network model has been specified, the static forwarding table for each routing

sphere is calculated based on its topology and associated routing strategy. The result-

ing forwarding tables are stored together with the network model. R-trees [Gut84] are

used for a compact representation of the forwarding table entries and fast look-up dur-

ing packet forwarding (the details of the forwarding table data structure are described in

section 4.2.2). The forwarding tables are loaded during model instantiation when the sim-

ulation starts, and the simulator creates the data structure for all network entities. For a

replica, it creates only a shallow copy of the data structure to save space. All replicated

network entities share the same network structure as well as all static configurations (such

as the maximum TCP window size). Each replica still needs to maintain its own run-time

state (such as the TCP congestion window size). In the case of replicated routing spheres,

they all share the same static forwarding table. However, they maintain their own copy of

the run-time state (such as a cache used to improve the forwarding table look-up time).

Now, suppose a packet is sent from H1 to H5. At H1, the owning routing sphere, S2,

determines that the destination is outside of this sphere and therefore consults its parent

routing sphere, S1, for the cost of sending the packet out from its external interfaces to the

destination. S1 has two external interfaces connected to L1 and L4 respectively. S1 finds

that the destination is within Net6. Both Net3 (the source) and Net6 (the destination)

are represented as super-nodes in the routing sphere S1. Using its forwarding table,

S1 determines the cost from the interface at Net3 connected to L1 to Net6 is infinite

66



(since there is no valley-free path), and the cost from the interface connected to L4 is 3

(hops). This information is used by S2 to settle a routing path from H1 to the external

interface connected to L4 by consulting its own forwarding table. The idea of NIx-vector

routing [RAZ01] is extended to work within a routing sphere. To forward the packet,

three NIx-vectors are created as the packet enters the three routing spheres, S3, S1, and

S5. The previous steps only apply to the first packet in the flow of packets from H1 to H5.

The NIx-vectors and the result of the up-call from S3 to S1 are cached so that subsequent

packets in the flow can be forwarded almost immediately.

4.2.2 Addressing Scheme and Forwarding Table Structure

All network entities (networks, routers, hosts, links, and interfaces) in simulation are

uniquely identified using an integer. The simulator provides name services, which can

translate from network entity names or IP addresses to unique identifiers (UIDs), and vice

versa. Although using integers is efficient, UIDs must be able to capture the hierarchical

structure of the model. As mentioned earlier, networks serve as containers for hosts,

routers, links, and other networks. Similarly, hosts and routers are containers for network

interfaces. A network model is represented as a tree (such as the one shown on the right

of figure 4.5). If a network entity A is contained in another network entity B, A is a

descendant of B (and B is an ancestor of A) in the tree representation. For example, in the

network model shown in figure 4.5, router R1 and link H1 are both contained in network

Net1. Given the UID of a network entity, one should be able to determine whether the

network entity is contained within another network entity in an efficient manner. Further,

since a forwarding table is shared among routing spheres with the same network structure

(i.e., with the same network topology), one should be able to use relative identifiers (RIDs)

in the forwarding table. That is, one should be able to translate from a network entity’s

RID to UID, and vice versa, in an efficient manner.

67



The RID of a network entity A is defined with respect to its ancestor B, denoted as RB
A,

to be the rank of A in the post-order traversal (starting from 1) of the sub-tree rooted at

B, as if all replicated nodes were expanded. Considering the network model in figure 4.5,

RNet1
R3 = 5 and RNet1

R1 = 21. Note that, for simplicity, this example does not account for the

interfaces contained within hosts and routers. The UID of a network entity A, denoted as

UA, is defined to be the RID of A with respect to the top-level network, i.e., UA = Rtopnet
A .

In practice, each network entity (A for instance) in the tree representation is simply labeled

with an offset related to its parent (OA) and its tree size (SA). For example, ONet3 = 0,

SNet3 = 10, OR1 = 20, and SR1 = 1. It is easy to see that:

RB
A = OA+SA+ ∑

a∈γB
A

Oa (4.1)

where γBA is the list of ancestors of A who are descendants of B. For example, γNet1R3 =

{Net3}, and RNet1
R1 =OR3+SR3+ONet3 = 4+1+0= 5. In this way, one need not expand

the replicated nodes in the tree representation in order to calculate the RIDs. Suppose C

is an ancestor of B, and B is an ancestor of A, it can easily be shown that:

RC
A = RC

B+RB
A−SB (4.2)

Equation 4.2 is used to convert between UID and RID.

The forwarding tables use RIDs to encode addresses within routing spheres. As dis-

cussed above, one can convert the RID of a node with respect to its owning routing sphere

to UID, and vice versa. The forwarding table is a map from the source and destination

RIDs to the next hop RID and associated cost. After all the forwarding table entries are

determined, the following procedure is applied to compress the forwarding table. The

entries are first sorted by the next hop RID, then by the cost, then by the source RID,

and finally by the the destination RID. A linear scan of the sorted entries is then made

where entries with the same next hop RID and cost are merged if the source and/or

68



destination RIDs form a contiguous range. The forwarding table entries take the form

�[srcmin,srcmax], [dstmin,dstmax]� → �next hop,cost�. This compression technique is par-

ticularly effective for routing spheres representing local area networks where all the hosts

in the network use a common gateway to reach outside of the network.

To obtain the next hop cost, the forwarding tables are loaded at the start of the sim-

ulation and queried during packet forwarding using the source and destination RIDs. R-

trees [Gut84] are used to store the compressed forwarding table entries with intervals for

fast look-up. R-trees are similar to B-trees, but are used for spatial queries. The data

structure splits the space hierarchically using nested bounding rectangles. The search is

done recursively starting from the root of the R-tree searching for the child node that spa-

tially overlaps the search rectangle. In our case, the search rectangle is a single point with

the source and destination RIDs as its coordinates.

4.2.3 BGP Policy-Based Routing

After the user specifies the network model, we can pre-calculate the forwarding tables for

the routing spheres. As mentioned earlier, spherical routing is for static routing, and there-

fore is not meant for studying the detailed routing dynamics (such as BGP convergence

and stability). Rather, it should be used as a simulation service for realistic packet for-

warding to study other aspects of large-scale networked systems or applications (such as

caching policies for content distribution networks). For shortest-path routing, the calcula-

tion can be done using traditional shortest-path algorithms (such as Dijkstra’s algorithm).

In this section, we describe an algorithm for simplified BGP policy-based routing.

For common global-scale network simulations, BGP is expected to be applied at the

routing sphere of the top-level network, where different subnetworks are treated as au-

tonomous systems (ASes) and defined as individual routing spheres. For BGP, the re-

lationships between the ASes play a critical role in determining the forwarding paths,

69



in which case graph connectivity no longer implies reachability. Previously, Gao classi-

fies the AS relationships into three categories: customer-provider, peer-peer, and sibling-

sibling [Gao01]. By studying the common practice of BGP policy settings, it follows that

legitimate BGP routes should be valley-free paths, which consist of an uphill segment

and a downhill segment. The uphill segment is composed of zero or more customer-

provider or sibling-sibling links and is optionally followed by a single peer-to-peer link.

The downhill segment is comprised of zero or more provider-customer or sibling-sibling

links. This observation was later confirmed through measurement studies that shortest

valley-free paths are commonly selected as the forwarding paths on Internet [MQWZ05].

Our algorithm simplifies the shortest valley-free path calculation based on Gao’s classifi-

cation of AS relationships to derive the static forwarding tables.

The definition of a valley-free path can be expressed as a regular expression:

(cp∪ ss)∗(pp∪ ε)(pc∪ ss)∗ (4.3)

where cp stands for a customer-to-provider link, pc is provider-to-customer, ss is sibling-

to-sibling, and pp is peer-to-peer. The corresponding deterministic finite automaton (DFA)

that recognizes this regular expression is a 5-tuple: M= (Q,Σ,δ ,q0,F). The DFA has two

states: Q= {s0,s1}, and four input symbols: Σ= {pc,cp,pp,ss}. The transition function,

δ : Q×Σ→ Q, is defined as follows:

δ (q, i) =






s0, if q= s0∧ i ∈ {cp,ss}

s1, if q= s0∧ i ∈ {pp,pc}

s1, if q= s1∧ i ∈ {pc,ss}

(4.4)

The DFA has a start state: q0 = s0, and two accept states: F= {s0,s1}.

Our algorithm simplifies Gao’s idea in calculating the shortest valley-free paths [Gao01].

The input to our algorithm is the network graph of a routing sphere (e.g., S1 in figure 4.5).

The graph, G = (V,E), contains vertices representing ASes as routers or super-nodes for

70



Net4

Net6

Net3
Net5

R1

R2

PP

CP

CP
PP

CP

PC

PC

Figure 4.6: An example network model
with BGP annotations.

1

0

Net4

1

0

R2 1

0

Net6

1

0
Net5

1

0
Net3

1

0 R1

Figure 4.7: Corresponding BGP graph
for calculating shortest valley-free
paths.

child routing spheres. The links between the vertices are labelled with the proper AS re-

lationships (customer-provider, peer-peer, or sibling-sibling). Our method is to construct

another network graph G� based on G, so that running the shortest-paths on G� will result

in the shortest valley-free paths on G.

We construct G� as follows. For each vertex v ∈ V, we add two vertices v0 and v1 in

G� (corresponding to the two states in DFA). For each link (u,v) ∈ E, we add several links

to G� in accordance with the AS relationships between the vertices. If the link (u, v) is a

customer-provider link, assuming u is v’s provider, we add (v0, u0), (u0, v1), and (u1, v1)

to G�. If (u, v) is a peer-peer link, we add (u0, v1) and (v0, u1) to G�. If (u, v) is a sibling-

sibling link, we add (u0, v0), (u1, v1), (v0, u0), and (u1, v1) links to G�. Figure 4.7 shows

the BGP graph constructed corresponding to the network model in figure 4.6 (which is

sphere S1 in figure 4.5).

G� contains links between u ∈ {u0,u1} and v ∈ {v0,v1}, if and only if (u, v) is in

G. That is, G� cannot contain paths that do not exist in G. Furthermore, since the links

between u∈ {u0,u1} and v ∈ {v0,v1} are only added if they obey the state transition rules

as specified in the DFA, any path between u ∈ {u0,u1} and v ∈ {v0,v1} must be valley-

71



free. Therefore, we can simply run the shortest-path algorithm on G� to find all of the

shortest valley-free paths in G.

4.2.4 Packet Forwarding

In spherical routing, every sphere maintains its own forwarding table and can conduct for-

warding locally. For packets with destinations outside of the routing sphere, the routing

sphere needs to consult with its parent routing sphere to determine the outbound inter-

faces to send the packets out. The routing sphere is treated as a super-node in its parent

routing sphere, which applies the same packet forwarding decision process. Thus, we can

establish a recursion.

We first make a few definitions. Let S be the source node. It can be a host or a router,

which is either the traffic source or an immediate node along the path through which a

packet is forwarded to the destination. We denote ΩS to be the owning routing sphere of

S, and ΨS to be the set of network interfaces that S possesses. In our algorithm, S can also

be a routing sphere that contains the source node (recall that a routing sphere is treated

as a super-node in its parent routing sphere). In this case, ΩS is S’s parent routing sphere

and ΨS is the set of interfaces of hosts and routers within routing sphere S that connect to

the outside of S. When needed, we call these interfaces the edge interfaces of the routing

sphere to distinguish them from the interfaces of a host or router.

For a given a routing sphere X, suppose i and j are network entities defined within X,

the distance between i and j, denoted by ω(RX
i ,R

X
j ), can be determined by querying the

pre-calculated forwarding table for X using the interfaces’ RIDs, RX
i and RX

j . The RIDs

can be calculated using equation (4.1). The UIDs of all network entities contained within

the routing sphere X shall range between UL
X = Rtopnet

X −SX+1 and UX = Rtopnet
X . Note

that the same range can still apply if we consider X as an individual router or host.

72



Algorithm 1 : packet forwarding
Require: S, the node that conducts packet forwarding, and T, the UID of the destination node
1: if UL

ΩS
≤ T≤ UΩS

then
2: find node Z ∈ ΩS such that UL

Z
≤ T≤ UZ

3: for all i ∈ΨS do
4: di ⇐ minj∈ΨZ

{ω(RΩS

i
,RΩS

j
)}

5: else
6: {d�

j
,∀j ∈ΨΩS

}⇐ packet forwarding(ΩS, T)
7: for all i ∈ΨS do
8: di ⇐ minj∈ΨΩ

S

{d�
j
+ω(RΩS

i
,RΩS

j
)}

9: return {di,∀i ∈ΨS}

Algorithm 1 shows the main logic behind the packet forwarding decisions. The algo-

rithm takes two arguments as input: S is the source node (in the beginning it’s the host or

router that conducts the packet forwarding), and T is the UID of the packet destination.

The algorithm is recursive and eventually returns a set of distances to the destination, one

for each of S’s interfaces: {di,∀i ∈ ΨS}. A packet shall be forwarded out from the in-

terface with the least distance to destination: argmini∈ΨS
di,∀i ∈ ΨS. The algorithm first

determines whether the destination is within S’s owning or parent routing sphere ΩS (line

1). If so, the algorithm finds (within ΩS) the node or the child routing sphere, denoted as

Z, that contains the destination (line 2). For each of S’s interfaces, i ∈ ΨS, the algorithm

calculates the minimal distance di to all interfaces of Z (lines 3 and 4). If the destination

is outside of ΩS, the algorithm makes a recursive call which returns the set of distances

to the destination from ΩS’s interfaces: {d�j,∀j ∈ ΨΩS
} (line 6). Then, for each of S’s

interfaces, i ∈ ΨS, the algorithm calculates the minimal distance di to all edge interfaces

of ΩS (lines 7 and 8).

The cost of running the algorithm depends on the size of the forwarding tables and the

location of the destination in relation to the source. It is common for a network session to

send a large number of packets from the same source to the same destination. As long as

the forwarding path does not change, those packets should be forwarded along the same

path. In order to improve the performance of packet forwarding, we cache the paths within

73



the routing spheres using NIx-vectors [RAZ01]. A NIx-vector is a compact representation

using a sequence of network interface indices to indicate a routing path from the source to

the destination (similar to source routing). During simulation, the NIx-vector is included

as part of the packet header and at each hop that the packet traverses, the NIx-vector is

shifted left by the number of bits needed to represent all network interfaces at the hop to

retrieve the index of outgoing interface to forward the packet.

We actually provide two caches. We use the first cache to store the target local in-

terface. If the destination, T, is within the owning/parent routing sphere, ΩS, we insert

a map entry (after line 4) from (S,T) to the target local interface’s RID, RΩS

j , where

j= argminj∈ΨZ
{ω(RΩS

i ,RΩS

j ),∀i ∈ΨS}. If the destination is outside of ΩS, we add an en-

try from (S,T) to RΩS

j (after line 8), where j= argminj∈ΨΩ
S

{d�j+ω(RΩS

i ,RΩS

j ),∀i ∈ΨS}.

The second cache stores a map from the source node, S, and the target local interface’s

RID, RΩS

j , to the NIx-vector. After the first packet populates these caches, subsequent

packets can use the same NIx-vector from the cache.

4.2.5 Discussions

In this section we discuss some subtle and yet important issues regarding the algorithm

design.

Child routing spheres are treated as super-nodes in the parent routing sphere. The dif-

ference between a super-node and a regular node that represents a host or router is that the

distance between the edge interfaces of a super-node can be greater than zero, since they

may belong to different hosts or routers within the child routing sphere. For shortest-path

calculations, we must consider the cost for traversing a node in the graph. Consequently,

we need to calculate the shortest paths between interfaces rather than nodes. Also, we

need to calculate the shortest paths from bottom up; that is, we settle the forwarding ta-

bles for the child routing spheres before their parents, since the parent routing sphere may

74



require the distances between the edge interfaces of a child routing sphere. Note that for

BGP policy-based routing, the distances between the edge interfaces of a child routing

sphere are not needed in calculating the shortest valley-free paths, because BGP path is

only a list of ASes (not routers).

The algorithm for packet forwarding returns the distance to destination node via all

interfaces of the source node. In this way we can make a recursive procedure: if the

destination node is outside of the routing sphere containing the source node, we walk up

the routing sphere hierarchy until we find the routing sphere that contains the destination

node. However, we do not walk down the hierarchy for the destination node. That is,

once we find the routing sphere that contains the destination node, we do not make a

recursive call into the destination routing sphere (i.e., node Z at line 2 of Algorithm 1),

even if the destination node is not an immediate child of the destination routing sphere.

Our decision is based on three reasons. First, this method can bring a significant cost

reduction. Not walking down the routing sphere hierarchy can cut the average number of

spheres that need to be traversed by half. Second, for parallel and distributed simulation,

walking down the destination routing sphere implies that each simulation instance must

maintain the forwarding tables of all routing spheres. This is certainly not a scalable

solution. Third, global shortest path is not realistic for routing. It is common for the top-

level sphere of a network model to adopt an inter-domain policy-based routing and treat

the second-level spheres as autonomous systems. In this case, one does not need to walk

up to the top-level sphere. This implies “hot potato routing”: between ASes with multiple

peering locations, it is common practice (based on the normal peering agreements) for

an AS to pass traffic off to another AS via the nearest peering location. In this case,

the distances from the edge interfaces to the destination node are all treated as equal; no

recursion into the top-level sphere is necessary.

75



R1

H1

Sphere 2

R2

R4

R3

Sphere 5

R5 R6

Sphere 1

R7 R8

R9

H2

Sphere 4

Sphere 3

R10

H3

Sphere 6

Sphere 0

Figure 4.8: An example of asymmetric routes.

There are two important consequences of not walking down the hierarchy of routing

spheres while selecting the specific routes for packets. First, paths can be inflated: Once

we reach the the topmost routing sphere, we select an entry point to descend into the child

routing spheres without actually descending into them. We make this choice by choosing

the entry point which has the shortest path to the source, however, this entry point may not

have the shortest path to the destination. Asymmetric routes are the second consequence.

In figure 4.8, we have a scenario where the route between node H1 and H2 is inflated

by one hop (compared to global shortest path) and is different than the route from H2 to

H1. In this case, the routes between H1 and H2 are asymmetric. As this example shows,

asymmetric routes are also caused by our algorithm not descending into child routing

spheres before selecting a route. On the way from H1 to H2 (the blue line) we chose to

leave Sphere1 using the left interface of R5, which causes the route to be inflated as we

76



enter Sphere3 through R8. The right interface is chosen arbitrarily because the path from

either interface of R5 are equidistant to H1. On the reverse path from H2 to H1 (the red

line), we select R7’s interface to exit Sphere3, which yields the shortest path from H2

to H1. A previous measurement based study of routes within the global Internet found

that asymmetric routes are somewhat common [Pax96]. The study found that asymmetric

routes account for nearly 20% of the observed routes. In many cases, the asymmetries

could be attributed to so called “hot potato routing”, which further bolsters our decision

to not descend into child spheres. Given this, we feel that any potential negative effects

of slightly inflated routes or asymmetric routes are easily outweighed by the performance

improvement to online route calculations and increased scalability of spherical routing.

4.3 Sharing Instance State & Model Structure

As previously described in section 3.3, we use network scripting to generate model nodes

using annotations embedded in the original network models. Model replication is pri-

marily concerned with state variables which are annotated as shared. There are three

important details about how the model node classes are generated:

1. All states which are annotated as sharable are grouped into an internal class called

shared, and all other variables are placed into a separate class called internal (see

figure 3.3).

2. The generated model node contains two member variables, pointers to their shared

and internal state classes, and functions to implement the network model’s func-

tionality. The result is that all model nodes are the same size, irrespective of type.

3. The model nodes are generated using a class hierarchy. In the end there are three

class hierarchies. One for the model nodes, one for the shared state classes, and one

for the internal state structures.

77



Model Nodes

Network
Virtual Function Table

Shared State Ptr

Internal State Ptr

Network
Virtual Function Table

Shared State Ptr

Internal State Ptr

Router
Virtual Function Table

Shared State Ptr

Internal State Ptr

...
Router

Virtual Function Table

Shared State Ptr

Internal State Ptr

Networks

...Shared
State

...Internal
State

Routers

...Shared
State

...Internal
State

ModelNode

Host
Router

ChildOffsets
Size
Offset

ModelNode

Host
Router

ParentPtr

UID
NameChildOffset List

Offset
Type ID

Offset
Type ID

Offset
Type ID ... Offset

Type ID

Figure 4.9: Internal memory layout of the execution model.

In section 4.3.1 we present details on how the simulator’s memory layout exploits

structural replications, and in section 4.3.2 we discuss the limits of how much memory

can be saved by sharing model structure and sharable instance state.

4.3.1 Design

Figure 4.9 shows the basic memory layout of model nodes within the network simulator.

All of the model nodes are stored in an array – we can do this since all nodes types are the

same size and extend a common base class). Nodes are organized within the array based

on their UID (see section 4.2.2 for details on how UIDs are assigned. For each type of

model node, we also create an array of shared and internal states – we must make different

arrays for each type because the size of the shared and internal state classes depend on the

model node’s type. During initialization, we assign each model node an instance of it’s

78



associated internal state. Replicated model nodes are given a pointer to the same shared

state structures.

In addition to pointers to their shared and internal state classes, each node must also

have a mechanism to retrieve its parent and child nodes. This could have been avoided by

assigning UIDs in a k-nary fashion (UIDs are not). However, in order to assign UIDs in a

k-nary fashion, we would have had to assign K to be the largest number of children found

in the model – which could be large. Assuming we could cap the number of children at

sixty four; we would exhaust an unsigned sixty four bit integer after just eleven levels

in the model. As seen in figure 4.5, eleven levels is not much considering each host and

router will also expand into two, three, or more levels, depending on how complex the

model is. Clearly, a k-nary approach would not support large network models.

For ease and simplicity, each model node stores a pointer to their parent in their in-

ternal state class. However, in order to share the structural information we store indirect

references to the child nodes using our ChildOffsetList structure which can be

shared between replicated nodes. Using the offset from the ChildOffsetList and

the UID, size, and offset of the node, we are able to calculate the UID of each child

and use that as an index into our model node array using equations 4.1 and 4.2. The Type

ID is used to provide type-safe access and type-specific child iterators for use by network

model developers to implement the model’s functionality.

4.3.2 Limits

size(E,x) =






Sx+ Ix+O+C if E is not replicated,

Ix+O if E is replicated,
(4.5)

The amount of memory used by a model instance (E) of type x can be calculated using

equation 4.5, where:

79



• Sx is the size of the shared state class for model node of type x, not including the

memory cost of the child index array.

• Ix is the size of the internal state class for model node of type x.

• O is the overhead of maintaining the object, the pointers to the internal and shared

state classes, and the virtual function table.

• C is the cost of maintaining the child-offset list in order to access the children. For

simplicity, we estimate the cost to be e
logN
logH where N is the number of nodes in the

model and H is maximum depth of the model.

Given the number of entities of each type (Nx) and the number of each type which

are replicated (Nrep
x ), one can estimate the amount of memory (Mtotal) needed to store the

entire network model using the following (where T is the set of all model node types):

Mtotal = ∑
x∈T

[Nx (Ix+O)+(Nx−Nrep
x )(Sx+C)] (4.6)

From equation 4.6 it follows that the maximum amount of savings (i.e. ∑x∈TNx ≈

∑x∈TN
rep
x ) that can be obtained using replications can be calculated using:

Percentsaved ≈ ∑
x∈T

Nx�
1− Ix+O

Sx+C

�
|T |

(4.7)

Equation 4.7 shows that the cost of storing model structure (i.e. C) can be nearly elimi-

nated, and the amount of space needed to store instance state depends on two factors: the

proportion of sharable and internal state for each entity type, and the proportion of entity

types within a specific network model. This is expected. To maintain realism, entities

need the ability to act independently. This can only be done if the entity is allowed to

keep some states that are specific to itself (i.e. internal state).

80



4.4 Evaluation

We evaluate spherical routing in section 4.4.1. We then evaluate spherical routing’s scal-

ability in section 4.4.2 and validate our BGP algorithm in section 4.4.3. We then evaluate

how well we exploit structural replications to reduce instance state and model structure in

section 4.4.4.

4.4.1 Reducing Routing State

In this section we present several experiments to evaluate spherical routing in terms of

memory and run time.

Memory Consumption

Spherical routing can reduce memory consumption by allowing users to compose net-

work models using structural replications. Our first experiment examines the memory

reduction using models generated using our modified BRITE with different replication

factors, α , as described in section 4.1.1. Table 4.2 shows the memory consumption of the

forwarding tables, both uncompressed and compressed for range queries using R-trees (in

columns 2 and 4, respectively). As expected, the ratio of memory reduction (R%) is al-

most proportional to (1−α) in both cases. The compression ratio (CR) varies depending

on the network topology, and in this case stays about 60%.

Spherical routing also allows one to adjust the trade-off between accuracy and mem-

ory consumption by selecting routing spheres differently. Our second experiment exam-

ines this trade-off using a simple campus network model [Nic]. The model has a backbone

connecting four subnetworks, two of which contain smaller subnetworks, as seen in fig-

ure 4.10. In total, the network has 508 hosts and 30 routers in 17 subnetworks. We study

the effect of different routing sphere configurations by placing different routing spheres at

81



α Uncomp. R% Comp. R% CR
0.0 7.05 MB 100% 4.18 MB 100% 59.3%
0.2 5.75 MB 81.6% 3.48 MB 83.3% 60.5%
0.4 4.49 MB 63.7% 2.75 MB 65.8% 61.4%
0.6 2.87 MB 40.7% 1.72 MB 41.2% 60.0%
0.8 1.29 MB 18.3% 0.70 MB 16.8% 54.4%

Table 4.2: Forwarding Table Sizes for Different Replication Factors.

Uncomp. Comp. CR Path Lengths
ALG1 16 KB - - 8.15±2.99
SP1 9.5 MB 857 KB 9.0 % 7.39±2.73
SP4 4.6 MB 475 KB 10.2 % 7.71±3.06
SP17 72 KB 28 KB 38.9 % 7.66±2.98

Table 4.3: Forwarding Table Sizes (in KB) and Path Lengths.

different subnetworks. As a baseline, we set up one routing sphere for the entire campus

network and use either algorithmic routing (ALG1) or shortest-paths (SP1) as the routing

strategy. We also include a setup with 4 routing spheres for the subnetworks connected by

the backbone (SP4) and another with 17 routing spheres (SP17). Table 4.3 shows the for-

warding table sizes and the path lengths for different sphere placements. With 17 routing

spheres, the compressed forwarding tables take only 28 KB, a reduction over two orders

of magnitude compared to the global shortest paths (9.5 MB). The memory consumption

for SP17 is comparable to that of algorithmic routing (16 KB).

To investigate the accuracy of different routing strategies, we use a simple metric to

show how the routes are distributed over the network. We count the number of unique

routes that cross each link in the model and then plot the distribution by sorting the links

by the number of routes. Figure 4.11 clearly shows that algorithmic routing concentrates

the routes to fewer links than does the global shortest-path routing (about 80% of the links

being removed by algorithmic routing since they have no routing paths through them).

82



  

  

net 3

 

 net 0
 

 

net 1

  

 

  

  

 

 

net 2

 

Lan with 42 Hosts

Figure 4.10: Campus model.

100

101

102

103

104

105

106

 0  500  1000  1500  2000  2500  3000

N
um

be
r o

f R
ou

te
s 

ac
cr

os
s 

Li
nk

Link ID

1 Sphere (ALG)
1 Sphere (SP)
4 Spheres (SP)
17 Spheres (SP)

Figure 4.11: Distribution of routes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Path Length (Hops)

1 Sphere (ALG)
1 Sphere (SP)
4 Spheres (SP)
17 Spheres (SP)

Figure 4.12: Path length inflation.

Subdivision of routing spheres, on the other hand, yields a nearly identical distribution

as the global shortest paths. We also compute the distribution of path lengths for the

different strategies. Figure 4.12 shows that algorithmic routing produces a very different

distribution, while using different number of routing spheres only slightly inflates the

path lengths (at most by one hop for longer paths). This is caused by the algorithm’s

cost-saving measure of not walking down the destination routing sphere (as discussed in

section 4.2.5).

83



{E

{ E

Figure 4.13: Model used to evaluate cost
vs. sphere size.

E
:8

E
:1

6

E
:3

2

E
:6

4

E
:4

E
:8

E
:1

6

E
:3

2

E
:6

4

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Without Caching With Caching

Fwding
NIX Calc
Dst Map

  0

  5

  10

  15

  20

  25

E
:4

Figure 4.14: Cost vs. sphere size.

Run Time

Our next experiment examines the packet forwarding time in spherical routing. The time

associated with spherical routing consists of: (1) the time to map a destination node in a

remote sphere to a node local to the current sphere, (2) the time to create the NIx-vector,

and (3) the time to forward the packet at each network interface (either processing the

Nix-vector or looking up the forwarding table). As such, the total cost of forwarding a

packet from the source to the destination is determined by four major factors. The first

factor is the path length within each sphere: a longer path will cost more to build the

NIx-vector and process it during packet forwarding. The second factor is the depth of the

routing sphere in the hierarchy: spheres at lower levels will spend more time to make an

up call during remote destination mapping. The third factor is the number of spheres that

a packet needs to traverse before reaching its destination: more transit spheres will add to

the cost of mapping remote destinations to local nodes. The last factor is the number of

edge interfaces at a routing sphere: the algorithm needs to select the shortest among the

shortest paths from each edge interface at the current routing sphere to each edge interface

at the destination routing sphere.

To estimate the overhead we construct a network model where we can easily configure

the routing path length. We created the network model in figure 4.13, which contains a

84



single routing sphere consisting of hosts placed on a rectangular grid. We designate a host

in one corner of the grid (the red node) to send 100 pings to each host in the grid (the white

nodes). We vary the number of edge interfaces (E), and the path length, by changing the

dimension of the rectangular grid. We run the experiment on a Linux workstation with

a 2.3 GHz Intel Core2 Duo processor and 2 GB of RAM. We preform this experiment

with and without caching and present the median of 50 trails. When caching is enabled,

we make sure that the cache is large enough to store all entries without eviction (at least

64 entries for this experiment). Figure 4.14 shows a breakdown of the average cost (per

sphere) of sending a packet from source to destination. The cost of destination mapping

remains constant with and without caching, and with varying number of edge interfaces.

This is simply because we have just one routing sphere here. The cost of forwarding a

packet includes both the time for creating the NIx-vector and the time for extracting the

next hop from the NIx-vector at each hop in the path. The cost increases as we increase

the path length; the cost is similar with and without caching. The cost for calculating

the NIx-vector is reduced drastically when caching is enabled. This is expected. Without

caching, the algorithm has to determine the shortest path for each packet at the source; the

cost is proportional to the number of forwarding table lookups, or the path length, which

is determined by the dimension of the rectangular grid. In case of caching, the cost stays

very low and increases only slightly for bigger cache as we increase the dimension of the

rectangular grid (more destinations).

We construct two additional network models where we can control the height of the

hierarchy of the routing spheres and the number of transit spheres. In one experiment

we vary the height of the hierarchy (H) by arranging the rectangular grids vertically, each

being a routing sphere. The test model is shown in figure 4.15. We designate a host at

the bottom routing sphere (the red host) to send 100 pings to each host at the top routing

sphere (the green hosts). The results are shown in figure 4.16. When caching is disabled,

85



H1
H2
HN

{E

{ E

{E

{E

Figure 4.15: Model used
to evaluate cost vs. sphere
depth.

Without caching

Dst Map

  0

  50

  100

  150

  200

  250

  300

  350

  400

  450

  500

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

T
im

e
 (

m
ic

ro
se

co
n
d
s)

H: 2 H: 4 H: 8 H: 16

Fwding
NIX Calc

With caching

Fwding
NIX Calc
Dst Map

  0

  1

  2

  3

  4

  5

  6

  7

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

T
im

e
 (

m
ic

ro
se

co
n
d
s)

H: 2 H: 4 H: 8 H: 16

Figure 4.16: Cost vs. sphere depth.

the total cost is dominated by the cost of destination mapping. The cost is quadratic

in the number of edge interfaces because the algorithm needs to calculate the shortest

among the shortest paths from every edge interface at the source routing sphere to every

edge interface at the destination routing sphere. The cost also increases linearly with

H since the calculation needs to be carried out at each routing sphere in the hierarchy.

Caching is most effective in this case. The overall cost reduces significantly by almost

two orders of magnitude. As we increase H, the cost of destination mapping increases due

to the increasing cache lookup cost (which is slightly super-linear to E) and the increasing

number of cache lookups (which is related to H).

86



{E

{ E

W1W2WN

Figure 4.17: Model used to evaluate cost vs. transit spheres.

Without caching

NIX Calc
Dst Map

  0

  10

  20

  30

  40

  50

  60

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

T
im

e
 (

m
ic

ro
se

co
n
d
s)

W: 2 W: 4 W: 8 W: 16

Fwding

With caching

W: 16

Fwding
NIX Calc
Dst Map

  0

  1

  2

  3

  4

  5

  6

  7

  8

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

E
:2

E
:4

E
:8

E
:1

6

T
im

e
 (

m
ic

ro
se

co
n
d
s)

W: 2 W: 4 W: 8

Figure 4.18: Cost vs. transit spheres.

In another experiment, we vary the number of transit spheres (W) by placing the

rectangular grids horizontally. Again, each rectangular gird is a routing sphere, as shown

in figure 4.17. We designate a host at the left-most routing sphere (the red host) to send

100 pings to each host at the right-most routing sphere (the green hosts). The results

are shown in figure 4.18. When caching is disabled, the total cost is again dominated by

the cost of destination mapping, which is insensitive to the number of transit spheres, W.

Caching in this case can reduce the forwarding time by an order of magnitude. The cost of

destination mapping increases due to the increasing cache lookup time as we increase the

number of destination hosts (which is related to E). For both experiments, with caching,

the average cost for forwarding a packet at each hop (for an average path length of 32.8

hops) is approximately 1.44 µs.

87



64K

128K

256K

512K

1024K

2048K

 1  2  4  8  16  32  64
R

o
u
tin

g
 E

n
tr

ie
s 

p
e
r 

P
a
rt

iti
o
n

Number of Partitions

Without replication
With replication

Figure 4.19: Scalability of spherical routing.

4.4.2 Large-Scale Model

We extend one of the tier-1 ISP topologies provided by Rocketfuel [SMWA04] to build

a large network model to show the overall effectiveness of spherical routing. We choose

the AT&T backbone network, which contains 640 routers and 1,382 links. We use the

METIS [Geo] graph partitioner to partition the backbone network into 16 clusters similar

in size. Each cluster is assigned a routing sphere. We then attach 1,920 campus networks

(each having 17 routing spheres) evenly distributed among the clusters, resulting in a

network model with a total of 1,033,600 hosts and routers in 328,337 routing spheres or-

ganized in 6 levels. For spherical routing, the total memory consumed by the forwarding

tables measures only about 7.4 MB. For global and hierarchical shortest-path routing, the

memory consumption can be derived from the number of all possible source-destination

pairs and the size of each forwarding table entry. The hierarchical shortest-path rout-

ing calculates the forwarding tables independently for the ISP backbone and the campus

networks. The global and hierarchical shortest-path routing strategies would need ap-

proximately 12 TB and 6.2 GB, respectively. Even with the 9% compression (from the

previous experiments), the forwarding tables could still dominate the memory consump-

tion.

88



We then partitioned the network model (using METIS) to execute on a different num-

ber of compute nodes (from 1 to 64) and measured the number of routing entries needed

at each compute node (with compression). Figure 4.19 shows the number of route entries

per partition with and without using replication. When replication is enabled, each parti-

tion contains only one copy of the campus’ routing table in addition to the subsection of

the backbone network it is responsible for. As a result, the number of entries per parti-

tion is nearly constant. If we disable replication, each campus keeps its own forwarding

table. Since the campuses are divided evenly among the compute nodes, the total size

of the forward tables decreases as we increase the number of partitions. This experiment

shows that spherical routing can spread the memory burden of maintaining routing state in

distributed simulations in a scalable fashion whether or not routing spheres are replicated.

We randomly select 500 pairs of hosts such that each pair had hosts from different

routing spheres. We then direct one host from each pair to send 100 pings to the other

host and measure the time taken to forward the pings across all the routing spheres. From

50 trials we obtain the average time to forward a packet at each hop to be 91.8 µs without

caching and 2.4 µs with caching (the cache size being 1024 entries). This shows spherical

routing can yield good performance on large realistic topologies.

4.4.3 BGP validation

We provided a simplified BGP routing algorithm in section 4.2.3, which determines the

forwarding paths based on the policy relationships between autonomous systems (ASes).

Network models that treat BGP routing as if it were plain shortest path routing by not

considering AS relationships will experience inaccuracies such as shorter paths, larger

path diversity and lower traffic load than in reality [DKVR07]. Here, we show that by

using our BGP routing algorithm, these inaccuracies can be avoided. For simplicity, we

borrow the AS topology used by Dimitropoulos et al [DKVR07] to validate our algorithm.

89



PPAS8

AS1

AS7

AS5

AS2

AS6

AS3

AS4

PP

PP

PP

CP

CP

CP

CP

CP

CP

Figure 4.20: An AS topology annotated
with AS relationships.

  15

  20

  25

  30

1 2 3 4 5

F
re

q
u

e
n

cy

Path Length

BGP
 Shorest Path

  0

  5

  10

Figure 4.21: The histogram of all paths
with AS relationships enabled or dis-
abled.

The topology, shown in figure 4.20, is a portion of an AS topology that is annotated with

AS relationships that were inferred using real-word measurements [DKH+05].

We verified that all of the routes produced using our simplified BGP algorithm were

valley-free. We then compared our BGP routes to routes produced using standard shortest

path. A histogram of path lengths produced by the two routing strategies is shown in

figure 4.21. We can see that considering the AS relationships will produce routes that are

longer than plain shortest path. In this case, a shortest path policy produces paths with

an average of 1.75 hops while a BGP routing policy produces paths with an average of

2.0 hops. More specifically, we found that 23% of the paths produced by BGP are longer

than those produced by shortest path.

An even more important observation is that any node which is connected in a network

topology will also be able to reach that node when using a shortest path routing policy.

With BGP, however, connectivity does not imply reachability. In this small topology, 9%

of all pairs had no valid paths between them. For example, there are no valid paths from

AS6 to AS8 when considering AS relationships, even though they are clearly connected

in the topology.

90



  0.25

  0.30

  0.35

0
.2

5

0
.5

0

0
.7

5

0
.9

9

M
e

m
o

ry
 R

e
d

u
ct

io
n

Proportion of Replicated Nodes

216 Campuses
512 Campuses
1000 Campuses

  0.00

  0.05

  0.10

  0.15

  0.20

Figure 4.22: Memory reduction from
replication.

  0.50

  0.60

  0.70

  0.80

  0.90

0
.2

5

0
.5

0

0
.7

5

0
.9

9

T
im

e
 R

e
d
u
ct

io
n

Proportion of Replicated Nodes

216 Campuses
512 Campuses
1000 Campuses

  0.00

  0.10

  0.20

  0.30

  0.40

Figure 4.23: Preprocessing time reduc-
tion from replication.

4.4.4 Reducing Instance State

To evaluate the effectiveness of model replication, we conducted an experiment using a

synthetic network. We varied the proportion of replicated sub-structures in the model

and measured the memory needed to instantiate the execution model. At the base level,

we used the campus network, which consists of 508 hosts and 30 routers in 17 nested

subnetworks [Nic]. We examined three networks with 216, 512, and 1,000 campuses. We

varied the proportion of replicated campuses from 25% to 99%. The results are shown in

figure 4.22.

The three network models performed consistently. The memory savings due to model

replication reached as much as 33%. A detailed analysis of the model’s memory usage

reveals that the amount of sharable state stays around 38%. The 5% difference is due to

the overhead of maintaining the replications, which include the memory for the virtual

function tables, pointers to the shared state, and some auxiliary data structures to allow

the model nodes to be shared among replications.

Model replication can save memory for both interactive and execution models (see

chapter 3 for details on interactive and execution models). For the interactive model, it can

also improve the preprocessing time. This can be attributed to three factors. First, model

91



replication reduces memory for storing the interactive model and therefore demands less

I/O when the interactive model is persisted to the database (see section 3.5 for details on

out-of-core processing). Second, putting the sharable variables together improves locality,

which can be exploited by an intelligent caching technique (again, section 3.5). Finally,

preprocessing is needed by the interactive model to compile and send the information

about the network configuration and the runtime environment to the execution model.

The preprocessing time is reduced for replicated models because it can reuse the results

from replicated model nodes.

We conducted another experiment using the same network models and measured the

reduction in the preprocessing time of the interactive model. Figure 4.23 shows the re-

sults. We observe significant reduction in the preprocessing time, as much as 83%, with

99% replications.

4.5 Conclusion

Model replication addresses the problem of the large memory requirement for executing

large-scale network models. The method takes advantage of two important observations.

One observation is that, by partitioning the network model into smaller subnetworks on

which one can conduct localized packet forwarding, the memory space for maintaining

the forwarding tables can be reduced significantly. The other observation is that large-

scale network models can be built using sharable model fragments, in which case we

can significantly reduce the memory consumption by allowing structural replications and

sharing of the forwarding tables and states.

Spherical routing provides the flexibility for modelers to construct network mod-

els judiciously using structural replications and subdivision of routing spheres to bal-

ance between model accuracy and space complexity. It also allows different routing

spheres to adopt their own static routing strategies. We implemented three routing strate-

92



gies: shortest-path routing, simplified BGP policy-based routing, and algorithmic routing

(which is based on shortest-path trees). Spherical routing is also amenable to parallel and

distributed simulation, in which case most routing spheres associated with the network

partitions can be assigned to different processors for parallel processing; only the rout-

ing spheres at higher levels in the hierarchy need to be shared, and spherical routing can

safely replicate them across the processors.

93



CHAPTER 5

REAL-TIME SIMULATION & EMULATION OF LARGE-SCALE MODELS

Building an emulation infrastructure that is able to cope with large-scale network

models presents a number of challenges. First, real applications require far more compu-

tational resources than purely simulated applications. Second, transporting real packets

within the virtual network requires the system to perform a significant amount of I/O. If

the system cannot keep up with the CPU or I/O demands of an application, the system will

exhibit unrealistic artifacts causing the realism of the experiment to suffer. Our emulation

framework aims to address the following issues:

• Scalability: The framework should provide scalable interaction and effortless in-

tegration with real applications. A real-time simulation infrastructure should be

provided for the network simulator to run on large parallel machines. This enables

dynamic interaction with a large number of real applications.

• Flexibility: Applications that require special hardware or have strict resource con-

straints need the ability to run on dedicated hardware which is remote from the

simulator.

• Realism: Application behaviors that are observed within the emulation framework

should accurately reflect behaviors that would be seen in native environments.

The remainder of the chapter is organized as follows. Section 5.1 discusses related

work. The current emulation framework and how it addresses the needs for scalability,

flexibility, and realism are outlined in sections 5.2, 5.3, 5.4, and 5.5. Section 5.6 presents

an experimental evaluation of our emulation infrastructure. The chapter is then concluded

in section 5.7.

94



5.1 Related Work

Network testbeds are commonly used for prototyping, evaluating, and analyzing new

network designs and services. Physical testbeds, such as WAIL [BL03] and Planet-

Lab [PACR02], provide an iconic version of the network for experimental studies, some-

times even with live traffic. They provide a realistic testing environment for network

applications, but with limited user control. Further, being shared facilities, they are con-

stantly overloaded due to heavy use, which can severely affect their availability and accu-

racy [SPBP06].

An emulation testbed can be built on a variety of computing platforms, including

dedicated compute clusters, such as ModelNet [VYW+02] and EmuLab [WLS+02], dis-

tributed platforms (such as VINI [BFH+06]), and special programmable devices, such as

ONL [DKP+06] and ORBIT [RSO+05].

While most emulation testbeds provide basic traffic “shaping” capabilities, simula-

tion testbeds can generally achieve better flexibility and controllability. For example,

ns-2 [NS-a] features a rich collection of network algorithms and protocols that can be se-

lected to model a myriad of network environments, wired or wireless. Simulation can also

be scaled up to handle large-scale networks through parallelization, e.g., SSFNet [Ren],

GTNeTS [Ril03] and ROSSNet [YBB+03]. It would be otherwise difficult and costly to

build a large-scale physical or emulation testbed.

Real-time simulation is the technique of running network simulation in real time, and

thus can interact with real implementations of network applications [Liu08]. Most exist-

ing real-time simulators, e.g., [Fal99, BSU00, LC04, ZJTB04], are based on existing net-

work simulators extended with emulation capabilities. PRIMEX is a discrete-event simu-

lator designed to run on parallel and distributed platforms and handle large-scale network

95



models. This work builds up the Parallel Real-Time Immersive Modeling Environment

(PRIMEX) for real-time simulation. PRIMEX provides several important functions:

• PRIMEX provides models for 14 TCP variants (mostly ported from the Linux TCP

implementation). They have been validated carefully through extensive simulation

and emulation studies [ELL09].

• PRIMEX uses multi-scale modeling for large-scale simulation. PRIMEX imple-

ments a fluid traffic model, which has been integrated with simulated and emulated

network traffic. The hybrid traffic model can achieve a speedup of more than three

orders of magnitude over the traditional packet-oriented simulation [LL08].

5.2 Emulation Framework

The emulation infrastructure needs to support high-throughput low-latency data commu-

nication between the emulated hosts and the simulation instances.

There are two kinds of emulated hosts: collocated and remote. Collocated emulated

hosts run as virtual machines on the same compute node as the simulator instance that

simulates the subnetwork containing the corresponding virtual hosts. In our approach

we assume the compute nodes run OpenVZ. OpenVZ can support a large number of

collocated emulated hosts and therefore allows for network emulation at larger scales.

Remote emulated hosts are either physical compute nodes collocated with the real-

time simulator (not VMs), or machines that are not part of the compute cluster and have

the potential for different geographic locations. Remote emulated hosts can run applica-

tions which cannot otherwise be run on a virtual machine due to either stringent resource

requirements or system compatibility concerns. For example, an emulated host may re-

quire a special operating system (or version), or need specialized hardware that is not

available on the compute node.

96



H3

H4

to other
simulator 
instances

Simulator
Instance

Emulation 
Device Drivers

Virtual
Machine

H2

Firewall

Simulation
Gateways

VPN Server

ssfgwd

VPN Server

Remote machines 
running a VPN client

H3
H4

ssfgwd

 

 

  

 
 

 

 

 

H1

Parallel Machine

Virtual Network

Traffic
Portal

Virtual
Machine

H1

Compute Node

H2

External
Network

Figure 5.1: A virtual network is run on parallel machines and emulated hosts are run on
remote machines and collocated with simulator instances.

In addition to emulated hosts, our architecture provides traffic portals to exchange

traffic with real networks. Traffic portals allow hosts and routers outside the virtual net-

work to interact with simulated and emulated traffic within the virtual network.

Figure 5.1 contains a high level view of the emulation infrastructure which consists of

three major components: the virtual network interfaces, the emulation device drivers, and

the interconnection mechanism.

The virtual network interfaces (VNICs) are installed at the emulated hosts, and treated

as regular network devices, through which applications can send or receive network pack-

ets. Packets sent to a VNIC are transported to the simulator instance that handles the

corresponding virtual host. The simulator subsequently simulates the packets traversing

the virtual network as if they were originated from the corresponding network interface

97



of the virtual host. When packets arrive at a network interface of an emulated virtual host

in simulation, they are sent to the corresponding VNIC at the emulated host, so that its

applications can receive the packets.

The emulation device drivers (EDDs) are collocated with the simulator instances run-

ning on the compute nodes. They are software components used by the real-time sim-

ulator to import real network packets sent from VNICs at the emulated hosts or traffic

portals. Conversely, EDDs also export simulated packets and send them to the emulated

hosts or traffic portals. Our emulation infrastructure supports different types of EDDs

for remote emulated hosts, collocated emulated hosts, and traffic portals. PRIMEX pro-

vides functions designed specifically for interactive simulations, which include handling

real-time events and performing conversions between fully formed network packets and

simulation events. Further details of emulation device drivers are presented in section 5.3.

The interconnection mechanism connects VNICs on emulated hosts and EDDs with

the simulator instances. Its design depends on whether it is dealing with traffic portals,

remote or collocated emulated hosts. For remote emulated hosts, we use an OpenVPN-

based infrastructure where clients are run at the remote emulated hosts, each correspond-

ing to a single VNIC. One or more compute nodes are designated to run modified Open-

VPN servers, which forward IP packets to and from the EDDs collocated with the simula-

tor instances. Detailed information about this interconnection mechanism can be found in

section 5.3.1. The interconnection mechanisms for collocated emulated hosts and external

networks are described in section 5.3.2 and section 5.3.3, respectively.

In section 5.4 we present relevant details of the design of the compute nodes which

will host remote and collocated emulated hosts as well as traffic portals. In section 5.5 we

present a meta-controller framework which automates the deployment and configuration

of large emulation experiments.

98



5.3 The Real-Time Network Simulator and Emulation Device Drivers

A virtual network is partitioned among compute nodes to be simulated in parallel. Each

compute node is composed of one or more parallel processors. Each processor is assigned

a simulation process for event processing. Additionally, if the simulation process man-

ages virtual nodes which are emulated, the process will spawn an EDD for each type of

emulated host. The EDD(s) are responsible for both exporting and importing packets.

EDDs are composed of two essential functions: importing and exporting packets.

EDDs come in two basic types: blocking and polling. Blocking drivers must use threads

to execute the import and export functions because their underlying transport requires that

the processes wait for I/O operations to complete. In other words, the underlying transport

is synchronous. In contrast, polling devices do not require separate threads to execute the

import and export functions. Instead, polling devices schedule themselves to “poll” for

new packets. Exactly how often a polling devices reschedules itself is implementation

specific. When exporting packets, polling devices use the context of the virtual node

which requests the packet to be exported to perform the necessary I/O to export the packet.

The EDDs use established SSF functions designed specifically to support emula-

tion, including both exporting simulation events and importing real network packets (see

[LLN+05] for more details). Each emulated virtual node in the simulation contains an

emulation session that intercepts packets at the link layer (i.e. ethernet). When a virtual

node’s network interface receives a simulated packet, it checks whether it has an active

emulation session. If it has an active emulation session, the session is queried to deter-

mine if the associated application runtime environment is available to accept packets. If

so, the interface hands the simulated packet to the emulation session which will route the

packet to the correct EDD. The EDD translates the packet into a fully formed IP packet

and exports it to the application runtime environment. If the EDD is exporting the packet

99



Compute Node

Simulation Process

OpenVZ
EDD

Import & 
Export
threads

TCP UDP

IP

Emulation
Session

virtual host

NIC NIC

VPN
EDD

TCP UDP

IP

Emulation
Session

virtual host

NIC NIC

TCP UDP

IP

Emulation
Session

virtual host

NIC NIC

TCP UDP

IP

Emulation
Session

virtual host

NIC NIC

tun0

Traffic 
Portal
EDD

Import & 
Export
threads

Import & 
Export
threads

Raw Socket

Simulation 
Gateway

ssfgwd

VPN server

Figure 5.2: Connecting the Simulator with local and remote environments using different
emulation device drivers (EDDs).

to a remote environment, it will use a simulation gateway to accomplish this. Otherwise,

the driver will interact with the host OS to export and route the packet to the correct ap-

plication. On the reverse path, when a EDD receives an IP packet, it translates the packet

to a simulation event and presents it to its associated simulation process. That process

forwards the event to the emulation session on the corresponding virtual interface, which

pushes the packet down the simulated protocol stack. This procedure is illustrated in

figure 5.2.

5.3.1 Remote Emulated Hosts

Emulation device drivers that connect to remote emulated hosts are composed of two main

components: (1) the local import/export mechanisms and (2) the simulation gateway.

The simulation gateway resides between the network simulator and the client applica-

tions running on distributed machines. An OpenVPN server is set up at each simulation

gateway managing incoming connections from the client machines. There can be multiple

100



simulation gateways for balancing the traffic load, or for differentiated services. For ex-

ample, each simulated gateway could offer a different quality of service guarantee for its

connected clients. At each gateway, traffic to and from the client applications are handled

by OpenVPN.

In addition to running the OpenVPN server that manages the OpenVPN clients, an-

other process is created at the simulation gateway (ssfgwd) to handle traffic to and from

the real-time network simulator. The ssfgwd daemon is a process responsible for shunt-

ing IP packets between the simulator’s emulation device driver and the OpenVPN server.

It maintains a separate TCP connection with the export and import threads of each EDD

that has connected to the gateway. Packets to be inserted into the real-time simulator are

sent from ssfgwd via a dedicated TCP connection to the import thread associated with

the simulation process on the parallel machines. Packets exported from the real-time sim-

ulator are sent from the export thread via another TCP connection to ssfgwd. In either

case, it is important to have the TCP connections initiated from the simulator, since the

simulator is expected to run on high-performance hardware like supercomputers, which

are normally situated behind firewalls and/or cannot be determined a priori.

When an EDD connects to a simulation gateway, it sends the IP addresses of all virtual

hosts that it is responsible for. The ssfgwd process records this list of IP addresses

and creates a mapping from each IP address to the corresponding TCP connection to the

import thread that sends these addresses. Later, ssfgwd uses this mapping to forward

traffic from the client machines to the correct EDD.

In order to support emulation of hosts with multiple network interfaces, the VPN

server was modified to spawn the ssfgwd process directly and communicate with it us-

ing standard Unix pipes. An IP packet received by the VPN server from one of its clients

is preceded with the client’s IP address before it is sent to ssfgwd via the pipe. The IP

address is used by ssfgwd to deliver the packet to the corresponding simulation process.

101



A mapping from the IP address to the simulation process that contains the client’s virtual

host is established immediately after the TCP connection is made by the import thread.

Once the TCP connection is located, the packet is sent via that connection to the desig-

nated EDD. The packet is subsequently inserted into the protocol stack of the virtual node

that carries the same IP address of the client machine that initiates this packet. In such

a way, the packet appears as if it were generated directly by the virtual host. Similarly,

when an IP packet emanating from a virtual host is sent to the simulation gateway through

the TCP connection established by the export thread, the packet is preceded with an IP ad-

dress identifying the virtual interface that exports the packet. The ssfgwd process sends

both the IP address and the packet via a pipe to the OpenVPN server, which forwards the

packet to the corresponding OpenVPN client with the IP address that preceded the packet.

In such a way, the packet arrives at the client machine as if it received the packet directly

from a physical network.

The VPN Connections

Our scheme supports the use of multiple simulation gateways to alleviate the traffic load

placed otherwise on a single gateway. Such load balancing decisions can be made ei-

ther statically or dynamically. All virtual nodes in the virtual network can be partitioned

and assigned to different simulation gateways at configuration time. The entire emula-

tion traffic is therefore divided among the simulation gateways and a better throughput

is anticipated. Alternatively, a client may dynamically choose among a set of simula-

tion gateways at connection time. For example, the IP Virtual Server (IPVS) can be used

to implement a rather sophisticated load balancing scheme at a front-end server, which

subsequently redirects services to a cluster of servers at the back-end [Lin]. OpenVPN’s

simple load-balancing scheme, where clients can choose randomly to connect to a server

from a set of simulation gateways at the time of connection, was adopted in our imple-

102



tun0 eth0

Application
(e.g., iperf)

OpenVPN
Client

Client Machine eth0

OpenVPN
Server

ssfgwd

Simulation Gateway

10.0.1.2 131.94.130.15

10.0.0.14 131.94.130.11

131.94.130.19

tun0 eth0

Application
(e.g., iperf)

OpenVPN
Client

Client Machine

Simulator 
InstanceSimulator 

InstanceSimulator 
Instances

Figure 5.3: OpenVPN Uses Virtual Network Interfaces for Tunneling Application Traffic.

mentation. Additionally, mechanisms to allow a client to connect to a different gateway

were implemented. This modification registers clients with the simulator, so traffic from

the simulator will be routed to the client machine through the gateway with which the

client is currently engaged.

OpenVPN was chosen to allow applications to dynamically connect to the simula-

tion gateway and to emulate network interfaces in the application runtime environments.

OpenVPN was chosen because it is publicly available and runs on most operating systems.

OpenVPN uses the TUN/TAP interface provided by the operating system. As shown in

figure 5.3, each OpenVPN instance creates a virtual network device (named tun0 in this

case). The virtual network device has two end-points: one as a regular network interface

with an assigned IP address, and the other with a file interface through which one can ap-

ply read and write operations. The virtual network interface is assigned an IP address that

matches the IP address of the emulated network interface in simulation. An entry to the

kernel forwarding table is also added to direct all traffic targeted at the virtual IP address

space to be sent through the virtual network device. In this way, the client machine will

assume the proper identity, as applications running on this machine can transparently for-

ward traffic to the simulated network. IP packets sent to the virtual network interface are

read by OpenVPN through the file interface. Subsequently, OpenVPN applies proper data

103



tap1 tap2

Simulator 
Instance

R2

0
0

1

EDD

Container 1Container 0 Container 2

veth2.1 veth2.0 veth1.0

H1

R1

bridge1

bridge1

eth0 eth1eth0

Emulated
Applications

on H1

Emulated
Applications

on R1

OpenVZ Kernel

Figure 5.4: An EDD that employs a TAP driver to exchange packets with collocated
application runtime environments.

compression and encryption to the packets before sending them via UDP to the OpenVPN

server running at the simulation gateway. In the opposite direction, UDP packets received

from the remote OpenVPN server are decrypted and decompressed before the packets are

written out the virtual network interface. Thus, the packets arrive at the application as if

they come directly from the virtual network interface.

5.3.2 Collocated Emulated Hosts

This section describes an interconnection mechanism designed for collocated emulated

hosts, which use Linux bridges and TAP devices. Figure 5.4 depicts our design. For each

collocated emulated host, we create a software bridge and a TAP device connected to the

bridge. Multiple bridges are used to segregate the traffic of each emulated host and ensure

the emulated traffic is routed properly. In particular, we do not allow collocated emulated

hosts to communicate with each other directly without going through the simulator. There

are two possible alternatives. One could use VLANs to separate the traffic. However,

processing the VLAN headers may introduce additional overhead. One could also use

ebtables, which is a mechanism for filtering traffic passing through a Linux bridge [Art].

104



In the implementation, we use the TAP device for the EDD collocated at the simulator

instance (in container 0) to send and receive packets to and from the VNICs1. The EDD

also acts as an ARP proxy responding to the ARP requests from the emulated hosts, so as

to direct packets originated from the VNICs to the associated TAP device.

The collocated emulated hosts are running as OpenVZ containers. We use a virtual

ethernet device [Opeb] for each VNIC on the emulated hosts. The virtual ethernet de-

vice is an ethernet-like device, which actually consists of two ethernet interfaces—one in

container 0 (the privileged container) and the other in the container where the emulated

host is. The two interfaces are connected to each other, so that a packet sending to one

interface will appear at the other interface. We connect the interface at container 0 to the

bridge which corresponds to the emulated host.

In order to explain how this mechanism works we will follow the path of a ping

packet from H1 via R1 and R2 as shown in figure 5.4. Suppose H1 and R1 are emulated

in container 1 and 2, respectively. Before container 1 can send a packet to R1, assuming

its ARP cache is currently empty, it sends an ARP request out from eth0 asking for the

MAC address of R1’s network interface eth0. The EDD responds with the MAC address

of tap1, which is the TAP device connected to bridge1, the software bridge designated for

container 1. Subsequently, container 1 is able to forward the ICMP packet to the EDD,

which injects the packet into the simulator (by inserting an event that represents the packet

sent out from network interface 0 of the simulated host H1). Once the simulation packet

gets to R1 on the simulated network, the packet is exported from the simulator and sent

by the EDD to eth0 in container 2 through tap2 and bridge2. Similarly, before container

2 forwards the packet onward to R2, it sends an ARP request out from eth1. The EDD

responds with the MAC address of tap2, which is the TAP device connected to bridge2,
1The latest TAP device implementation prohibits writing IP packets to the kernel, possibly for

security reasons. We choose to use a raw socket instead for the EDD to send IP packets.

105



the software bridge designated for container 2. In this way, the packet can find its way to

the simulator, which forwards it on the virtual network.

5.3.3 Traffic Portals

A simulated network interface can be attached to an external network using a traffic por-

tal. Traffic portals are an interconnection mechanism designed to allow physical networks

to exchange traffic with the simulated network. Figure 5.5 shows an example where we

attach two physical networks to the simulated network: the 13.0.0.0/8 network is

attached to interface 1 of R1 and the 14.0.0.0/8 network is attached to interface 2

of R3. In this example, each traffic portal manages the connection to a single physical

network; in general, a traffic portal is capable of managing multiple external networks

with the only restriction being that each external network can only be attached to a single

traffic portal.

The traffic portals are mapped to network interfaces on the compute node running the

virtual network. In the previous example, interface 1 of R1 is mapped to eth1 and interface

2 of R3 is mapped to eth2 on the compute node. The EDD uses raw sockets to read/write

raw ethernet packets from/to the interfaces. Additionally, the EDD runs the ARP protocol

and responds to ARP requests for any IP addresses that are within the simulated network

or other attached external networks. For example, the ARP on eth1 will respond to ARP

requests for any IP in the simulated network and in the 14.0.0.0/8 network. For all

other address the EDD will remain silent.

In order to explain the traffic portal mechanism, we will follow the path of a ping

packet from 13.1.0.30 via R1, R2 and R3 to 14.1.0.20. Before 13.1.0.30 can send a packet

to 14.1.0.20, assuming its ARP cache is currently empty, it sends an ARP request for the

MAC address of 14.1.0.20. The EDD responds with the MAC address of eth1, which is

the network interface mapped to the traffic portal for the 13.0.0.0/8 network.

106



Linux Kernel

eth1 eth2

Simulator Instance

R4 R3

R1 R21
1

2

13.0.0.0/8

14.0.0.0/8
2

2
1

EDD

eth1 eth2

14.1.0.2013.1.0.30

Figure 5.5: Traffic portal example

Subsequently, the EDD will receive the ICMP packet, which is injected into the sim-

ulator (by inserting an event that represents a packet received on network interface 1 of

the simulated router R1). The packet is routed through the virtual network until it arrives

at R3. The packet is then exported from the simulator and sent by the EDD via eth2

and routed by the real switch to 14.1.0.20. Similarly, before 14.1.0.20 can respond to the

ICMP ECHO request, it must send an ARP for 13.1.0.30. The EDD responds with the

MAC address of eth2. In this way, real packets can be routed back through the virtual

network.

In the previous example we have directly attached eth1 and eth2 to separate switches

of the corresponding physical networks. This is but one of many configurations that could

be used. One could also attach eth1 and eth2 to a single switch. However, the interfaces

must segregate the traffic of the two physical networks; otherwise the underlying hard-

ware could bypass the simulator and route the traffic around the simulated network. We

can simply use VLAN tags to segregate traffic from the two networks in this case. Fur-

thermore, the structure of the external network could be arbitrarily complex. For the sake

of clarity we have kept this example simple.

107



5.4 Compute Node Configuration

Virtual machines (VMs) come in many different forms, but can generally be categorized

into system level virtualization and OS level virtualization. System level VMs allow for

entirely distinct operating systems, each with their own kernels, to be run along side the

host OS, thereby sharing the underly hardware. System level VMs are typically expensive

in terms of resources since the different OSes cannot share resources or services, and

the hypervisor [SN05] must intervene to broker access to shared devices like network

interface cards. OS level VMs can partition the systems into a set of distinct containers

that each appear to be stand-alone machines. The major difference is that OS level VMs

typically share a common kernel. As such, OS level VMs are very efficient in comparison

to system level VMs because they can share resources between the containers.

There are a number of different OS level VM solutions available, each one providing

a unique set of features. Application runtime environments must provide some level of

memory, CPU, and network isolation. Memory and CPU isolation are needed to limit the

interactions of applications from different virtual nodes that are emulated on the physical

hardware. Network isolation is necessary to capture traffic from the application runtime

environments and to inject traffic back into the application environments. Without the

network isolation, one would have to employ to the techniques to capture and inject traffic

used in MaSSF [LXC03].

We have adopted OpenVZ [Opea] to run the virtual machines for the emulated hosts

where unmodified network applications can run. OpenVZ is an OS-level VM solution

that meets our minimum requirements in terms of providing necessary separation of CPU,

memory, and network resources among the VMs. OpenVZ compartmentalizes the system

resources inside the so-called containers; applications can run within these containers as if

they were running on dedicated systems. Each container has its own set of processes, file

108



system, and manages its own set of users (including root), and network stack (including

network interfaces and routing/forwarding tables). Using OpenVZ, we are able to perform

network experiments with a large number of emulated hosts.

We provide an OS template with which we preload each guest container. The OS tem-

plate consists of a root file system and common network applications that may be run on a

container (such as iperf and tcpdump). Additional applications can be added to individual

containers using the meta-controller framework, which we describe in section 5.5.

Each container maintains its own file system. The amount of storage space needed by

the file system at each container may range from tens to hundreds of megabytes, depend-

ing on the applications the experimenter wishes to run. Consequently, network experi-

ments with a large number of emulated hosts could require a lot of disk space. To solve

this problem, we choose to use a union file system [Ste]. A union file system consists of

two parts: a read-only file system (RF), which is common to all containers, and a writable

file system (WF), which is specific to a container. A copy-on-write policy is used: when

a file in RF needs to be modified, the file will be first copied to WF. To prepare the file

system for each emulated host, we union the default OS-template with an initially empty

writable base file system. In this way we need only to store changes that later occur for

each container as opposed to storing the entire file system.

Figure 5.6 depicts the two possible configuration scenarios of a compute node. If

there are collocated emulated applications, then there will be one simulator instance on

the compute node run in container zero. The emulated applications would then be run

in separate containers, one for each virtual node. If the compute node does not host col-

located emulated applications, then there will be a simulator instance for each processor

on the compute node. This second case applies even if the simulation instance contains a

remote application environment or traffic portals.

109



Simulator Instance
Network

Applications
Running on H2

Network
Applications

Running on  H1

 

H1
H2

other simulator instances

Container 1Container 0 Container N

OpenVZ Kernel

Compute Node with Emulated Hosts Compute Node without Emulated Hosts 

   

Container 0
Simulator
Instance

Simulator
Instance

Simulator
Instance

OpenVZ Kernel

other simulator instances

Figure 5.6: Compute Node configurations with and without emulated hosts. Simulation
instances use MPI to communicate, and the emulated hosts communicate with their col-
located simulation instance via emulation device drivers.

Master
Meta-Controller

Slave
Meta-Controllers

User

OpenVZ Kernel

SIM EMU EMU
OpenVZ Kernel

SIM EMU EMU

OpenVZ Kernel

SIM EMU EMU

OpenVZ Kernel

SIM EMU EMU

OpenVZ Kernel

SIM EMU EMU

Figure 5.7: Meta-controllers

5.5 Meta-Controllers

Manually configuring each compute node within a large experiment proves to be a diffi-

cult and burdensome task. We developed a tiered command framework, which automates

the configuration of the compute nodes used for the experiment, and orchestrates experi-

ment execution.

The command framework, as illustrated in figure 5.7, uses MINA, a Java framework

for distributed applications [Apab]. MINA provides both TCP and UDP-based data trans-

port services with SSL/TLS support. It is designed with an event-driven asynchronous

API for high-performance and high-scalability network applications. Our implementation

requires each compute node to run a meta-controller daemon process. When the meta-

110



controller starts, it waits for an incoming connection. At this point, the meta-controller

takes no role, but after the connection is made, the meta-controller will become either a

master or a slave. The master meta-controller acts as a central point to receive commands

which are then distributed to the slave controllers which will execute them. In order to

launch an emulation experiment, a user will start meta-controllers on all utilized compute

nodes, and send the experiment to a controller chosen to be the master.

The master controller will then issue commands to all the slaves in order to config-

ure the compute nodes to run the simulation and corresponding emulated hosts or traffic

portals. Each command specifies the target compute node or one of its containers on

the compute node where the command is expected to run. A command can be either a

blocking command or a nonblocking command. If it is a blocking command, the meta-

controller will wait until the command finishes execution, and returns the result of the

command (i.e., the exit status) to the user. If the command is a nonblocking command,

the meta-controller forks a separate process to handle the command and immediately re-

sponds to the user. Our current implementation uses blocking commands to instantiate

the containers and the emulation infrastructure, and uses nonblocking commands to start

the simulator and the experimental applications within the containers. To configure the

experiments correctly, the meta-controllers on the compute nodes need to run a series of

commands:

1. Set up MPI. The master meta-controller creates the machine file and instructs the

slave meta-controllers to generate the necessary keys for MPI to enable SSH logins

without using passwords.

2. Create containers. The meta-controller creates a container for each collocated em-

ulated host on the compute node. This step also includes creation of union file

systems for the containers.

111



3. Initialize the emulation infrastructure. This step includes installing and configur-

ing necessary network devices and other software components (such as software

bridges and TAP devices) in containers, and on the physical host. For collocated

emulated hosts, this step includes installing the virtual ethernet devices in the con-

tainers, creating and configuring the software bridges and TAP devices, and then

connecting the network devices to the bridges. For remote emulated hosts, this step

includes setting up the OpenVPN server(s).

4. Run the experiment. The partitioned experiment is distributed among the compute

nodes. The master meta-controller initiates the MPI run, which starts the simulator

instances on each compute node with the partitioned model.

5. Start applications within containers. Individual commands are sent to the meta-

controllers to install and run applications at the emulated hosts.

6. Shut down the experiment. At any time, one can shut the experiment down by

terminating the simulator, stopping the containers, and removing the emulation in-

frastructure.

The meta-controller framework allows users to easily script entire emulation experi-

ments. Users can script the deployment and configuration of the compute nodes, as well

as schedule real-applications to generate traffic and interact with the virtual network dur-

ing the experiment’s execution. The cleanup of the compute nodes and final shutdown of

the experiment can also be scripted. The meta-controller framework is an extension of

the real-time monitoring and control framework presented in section 3.4.

112



5.6 Evaluation

The experiments described in this section are conducted on a Linux cluster with eight

Dell PowerEdge R210 rack-mount servers, each with dual quad-core Xeon 2.8 GHz pro-

cessors, and 8 GB memory. The servers are connected using a gigabit switch.

5.6.1 Validation Studies

We validate the accuracy of the testbed by comparing the TCP performance between em-

ulation and simulation. TCP is used in these experiments because it is highly sensitive

to delay, jitter, and losses, and can therefore magnify the errors introduced by the em-

ulation infrastructure. We choose to use our simulated TCP protocols has a baseline in

these experiments because the low-level behaviors of real or emulated TCP protocols will

vary slightly for each run. We can do this because our simulated TCP protocols have

previously been validated to produce realistic behavior [ELL09].

Remote Emulated Hosts

The TCP congestion window trajectories achieved by the real Linux TCP implemen-

tations on the OpenVPN clients are compared against those from our simulation. We

arbitrarily choose three congestion control algorithms: BIC, HIGHSPEED, and RENO;

out of the 14 TCP variants implemented in the PRIMEX simulator. We use a dumbbell

network model for the experiments. The dumbbell model has two routers connected by

a bottleneck link with 10 Mb/s bandwidth and 64 ms delay. We attach two hosts to the

routers on either side using a link with 1 Gb/s bandwidth and negligible delay. The buffers

in all network interfaces are set to be 64 KB.

In the experiments, we direct a TCP flow from one host to the other that traverses the

two routers and the bottleneck link. For each TCP algorithm, we test the three scenar-

113



Scenario 2:

Emulated 
Host H4

R1 R2
H1

H4

H3

H2

Scenario 1:

VPN Gateway

Compute Node 1

Simulator

Compute
Node 3

Compute
Node 2

Emulated 
Host H2

Compute Node 0

Emulated 
Host H4

R1 R2
H1

H4

H3

H2

VPN Gateway

Compute Node 2

Simulator

Compute
Node 4

Compute
Node 3

Emulated 
Host H2

Compute Node 0

Scenario 3:

Simulator

Compute Node 1

R1 R2
H1

H4

H3

H2

Simulator

Compute Node 0

Figure 5.8: Dumbbell experiment scenarios for remote emulation.

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

C
o

n
g

e
st

io
n

 W
in

d
o

w
 S

iz
e

 (
M

S
S

)

Time (seconds)

BIC

pure simulation
emulation, sequential run

emulation, parallel run

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

C
o

n
g

e
st

io
n

 W
in

d
o

w
 S

iz
e

 (
M

S
S

)

Time (seconds)

HIGHSPEED

pure simulation
emulation, sequential run

emulation, parallel run

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

C
o

n
g

e
st

io
n

 W
in

d
o

w
 S

iz
e

 (
M

S
S

)

Time (seconds)

RENO

pure simulation
emulation, sequential run

emulation, parallel run

Figure 5.9: TCP congestion window trajectories for remote emulated hosts.

ios depicted in in figure 5.8. In the first scenario, we perform pure simulation and use a

simulated traffic generator. The pure simulation scenario (S1) is compared against sce-

narios two (S2) and three(S3). In remaining two scenarios, we designate the two hosts

as remote emulated hosts. In order to collect the TCP trajectories from the remote em-

ulated hosts, we sample the (/proc/net/tcp) file at regular intervals to extract the TCP

congestion window size. For simulation, we use a script to analyze the trace output.

Figure 5.9 shows an example of the congestion windows trajectories (CWTs) we ob-

served. The trajectories for RENO and HIGHSPEED match simulation well for all three

scenarios. BIC’s trajectories do not match as well because BIC is more sensitive to jitter

in the delay which our OpenVPN infrastructure can introduce. However, for all three al-

gorithms, the congestion window peaks around 150 segments, which matches well with

simulation.

We computed the following three metrics to compare congestion window trajectories:

114



• We calculated the normalized Manhattan distance (dX,Ym ) between the simulated

trajectory (scenario one) and emulated trajectories (scenarios two and three). We

calculated the normalized Manhattan distance as

dX,Ym =
1
n

n

∑
i=0

��Xi−Yi

�� (5.1)

• We calculated the normalized Euclidean distance (dX,Ye ) between the simulated tra-

jectory (scenario one) and emulated trajectories (scenarios two and three). We cal-

culated the normalized Euclidean distance as

dX,Ye =
1
n

�
n

∑
i=0

�
Xi−Yi

�2 (5.2)

• We calculated the normalized dynamic time warp distance between the simulated

trajectory (scenario one) and emulated trajectories (scenarios two and three). Dy-

namic time warp [BC94, HDSM05] automatically aligns the two congestion win-

dow trajectories in order to minimize the the DTWError :

DTWError =
|W|

∑
k=0

��Xi−Yj

�� where Wk = (i, j) (5.3)

Wk is the alignment of the two traces which minimizes DTWError. We used the

dynamic time warp package provided by Giorgino [Gio09] to compute Wk and the

normalized dynamic time warp distance (dX,Yw ).

The results are shown in table 5.1. The dX,Ym and dX,Ye metrics indicate very different

behavior. On one hand, dX,Ym indicates that both the parallel (S3) and sequential (S2) traces

for all TCP variants differ by more than 20 packets in comparison to the simulated trace.

The difference is so large because dX,Ym is sensitive to local noise and the traces are not

perfectly aligned. On the other hand, dX,Ye shows that the traces differ by single packet.

The difference is small because dX,Ye dampens local noise. Neither dX,Ym nor dX,Ye are good

metrics for similarity of the congestion traces.

115



dS1,S2m dS1,S3m dS1,S2e dS1,S3e dS1,S3w dS1,S3w

BIC 22.29 18.38 0.97 0.95 5.25 5.10
HIGHSPEED 29.79 32.79 1.14 1.29 4.58 4.20

RENO 31.54 31.73 1.23 1.24 7.97 7.57

Table 5.1: Error metrics for remotely emulated congestion window trajectories.

Dynamic time warp aligns the traces before computing the differences. The result is

that dX,Yw shows the traces differ by about 5 packets on average. This matches a visual

inspection of figure 5.9. The alignments that were chosen by dynamic time warp are

shown in figure 5.13. In general, the alignments track the behavior of the two curves very

well.

Collocated Emulated Hosts

We use the same three TCP variants and dumbbell model as in the remote emulation

experiments. For each TCP algorithm we test the three scenarios depicted in figure 5.11.

In the first scenario, we perform pure simulation and use a simulated traffic generator. The

pure simulation scenario is compared against scenarios two and three. In the remaining

two scenarios, we designate the two hosts as collocated emulated hosts.

Figure 5.12 shows an example of the congestion windows trajectories (CWTs) we

observed. The trajectories for all three variants match simulation well for all three sce-

narios. We also observe the congestion window for all three variants peaking around 150

segments, the same as in the remote emulation experiments. We also computed the nor-

malized Manhattan, Euclidean, and dynamic time warp distances as we did for remotely

emulated hosts. The results are shown in table 5.2. Again, the dX,Ym and dX,Ye metrics indi-

cate very different behavior. dX,Ym indicates that both the parallel (S3) and sequential (S2)

traces for all TCP variants differ by more than 15 packets in comparison to the simulated

trace. dX,Ye shows that the traces differ by single packet. Visually, we can see that the con-

116



BIC  (Sequential)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

20
40

60
80

10
0

12
0

14
0

16
0

18
0

BIC  (Parallel)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

HIGHSPEED  (Sequential)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

HIGHSPEED  (Parallel)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

20
40

60
80

10
0

12
0

14
0

16
0

18
0

RENO  (Sequential)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

40
60

80
10

0
12

0
14

0
16

0
18

0

RENO  (Parallel)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

40
60

80
10

0
12

0
14

0
16

0
18

0

Figure 5.10: Congestion window trajectory distance mappings for remote emulated hosts.

gestion window trajectories for collocated emulated hosts match the simulated trajectory

better than the trajectories of remotely emulated hosts, yet neither dX,Ym nor dX,Ye indicate

this. Dynamic time warp, however, indicates that the collocated traces are more similar to

the simulated traces than those of remotely emulated hosts. Again, dX,Yw is the preferred

metric. The alignments that were chosen by dynamic time warp are shown in figure 5.13.

In general, the alignments track the behavior of the two curves very well.

117



Scenario 2:

R1 R2
H1

H4

H3

H2

Scenario 1:

R1 R2
H1

H4

H3

H2

Scenario 3:

R1 R2
H1

H4

H3

H2

Emulated 
Host H2

Container 1

Compute Node 0

Container 1

SIMEmulated 
Host H4

Container 2

Compute Node 0

Container 0

SIM Emulated 
Host H2

Container 1

Compute Node 1

Container 0

SIM Emulated 
Host H4

Container 1

Compute Node 0

Container 0

SIM

Figure 5.11: Dumbbell experiment scenarios for collocated emulation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  20  40  60  80  100

C
o

n
g

e
st

io
n

 W
in

d
o

w
 S

iz
e

 (
M

S
S

)

Time (seconds)

BIC

pure simulation
emulation, sequential run

emulation, parallel run
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  20  40  60  80  100

C
o

n
g

e
st

io
n

 W
in

d
o

w
 S

iz
e

 (
M

S
S

)

Time (seconds)

HIGHSPEED

pure simulation
emulation, sequential run

emulation, parallel run
 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

C
o

n
g

e
st

io
n

 W
in

d
o

w
 S

iz
e

 (
M

S
S

)

Time (seconds)

RENO

pure simulation
emulation, sequential run

emulation, parallel run

Figure 5.12: TCP congestion window trajectories for collocated emulated hosts.

dS1,S2m dS1,S3m dS1,S2e dS1,S3e dS1,S3w dS1,S3w

BIC 15.02 14.19 0.68 0.63 2.25 1.54
HIGHSPEED 15.60 17.97 0.82 0.85 1.36 1.18

RENO 27.47 28.54 1.11 1.12 4.81 4.86

Table 5.2: Error metrics for collocated emulated congestion window trajectories.

Next, we use a TCP fairness test to show whether our approach can correctly intermin-

gle emulated and simulated packets. Using scenario two from figure 5.11, we generate

two TCP flows in the same direction—one for each of the two hosts on the left side to

one of the two hosts on the right side. We select the TCP HIGHSPEED algorithm for

both flows. We start one flow 20 seconds after the first flow. We compare the first and

the second scenario. The results are shown in figure 5.14. In both cases, we see that the

congestion window size of the first TCP flow reduces when the second TCP flow starts;

118



BIC  (Sequential)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

BIC  (Parallel)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

HIGHSPEED  (Sequential)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

HIGHSPEED  (Parallel)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

RENO  (Sequential)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

RENO  (Parallel)

Time (seconds)

C
on

ge
st

io
n 

W
in

do
w

 S
ize

 (M
SS

)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

Figure 5.13: Congestion window trajectory distance mappings for collocated emulated
hosts.

both flows eventually converge with a fair share of the bandwidth (at about 30 seconds af-

ter the second flow starts transmitting). Again, we see similar results between simulation

and emulation.

119



 0

 50

 100

 150

 200

 0  10  20  30  40  50  60  70  80
C

o
n
g
e
st

io
n
 W

in
d
o
w

 S
iz

e
 (

M
S

S
)

Time (seconds)

RENO

pure simulation, first flow
pure simulation, second flow
mixed experiment, first flow

mixed experiment, second flow

Figure 5.14: TCP fairness

Traffic Portals

In this experiment, we investigate whether the traffic portal can correctly intermingle

real and simulated flows. We evaluated three scenarios shown in figure 5.15. In the

first scenario (called “simulated”), we simulate the entire model. In the second scenario

(called “mixed”), we simulate all of the routers, as well as hosts S2, C2, S3 and C3. We

use two real hosts, S1 and C1, and connect them to the simulator via the traffic portals.

In the third scenario (called “physical”), we instantiated the whole network topology on

Utah EmuLab [WLS+02].

During the experiment, we first start Flow1 at time zero, which consists of a single

TCP flow from S1 to C1. We then start Flow2 10 seconds later, which consists of two

separate TCP sessions from S2 to C2. 10 seconds after Flow2, we start Flow3, which

also consists of two TCP sessions from S3 to C3. Each TCP session in Flow2 and Flow3

transfers 100 MB. The TCP session in Flow1 transfers an object large enough that it does

not complete during the experiment.

In figure 5.16 we plot the TCP sequence numbers over time for Flow1. We conducted

25 runs per data point and plot the average with the 95% confidence intervals. The results

match fairly well in the first 10 seconds, and after 50 seconds. Between 10 and 50 seconds,

120



C2 S2

C3 S3

R1 R2 R3 R4
Flow 1

Flow 2

Flow 3

C1 S1

Compute
Node 0

Compute Node 1

Compute
Node 2

C2 S2

C3 S3

R1 R2 R3 R4
Flow 1

Flow 2

Flow 3

Compute Node 0

C1 S1

Mixed:

Simulation:

    

Flow 1

Flow 2

Flow 3

S1

S2

S3

C2

C1

C3

Physical:

Figure 5.15: Cross-traffic scenarios.

when Flow1 interacts with the other two flows, we observe some difference in throughput

achieved for the mixed scenario. We attribute this to the additional delay imposed by the

I/O system that we discuss in the next section.

5.6.2 Performance Studies

The emulation infrastructure inevitably puts a limit on the throughput of the emulated

traffic. In this section we explore the limitations of the different types of EDDs.

Remote Emulated Hosts

For this experiment, we use same dumbbell model as in the validation studies. However,

to increase the TCP throughput, we reduce the delay of the bottleneck link of the dumbbell

121



-1e+08

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0  10  20  30  40  50  60  70  80
T

C
P

 S
e
q
u
e
n
ce

 N
u
m

b
e
r

Time (seconds)

simulation
physical
mixed

Figure 5.16: TCP sequence numbers for Flow 1

model to 1 millisecond. We vary the bandwidth of the bottleneck link from 10 Mb/s to

450 Mb/s with increments of 40 Mb/s. As in the previous experiment, we direct a TCP

flow from one host to the other through the bottleneck link and we compare the three

scenarios in figure 5.8.

Figure 5.17 shows the results. While the throughput increases almost linearly with

the increased bandwidth for the simulated flow, the error becomes apparent for emulated

traffic at high traffic intensity. The throughput for the emulated traffic is kept below

roughly 200 Mb/s for sequential runs (scenario 2) and 130 Mb/s for parallel runs (scenario

3). The reduced throughput for parallel runs is due to the communication overhead as the

TCP traffic gets exposed to the additional delay between the parallel simulator instances

(over MPI).

Collocated Emulated Hosts

Again, for this experiment, we use same dumbbell model as in the validation studies, but

we reduce the delay of the bottleneck link of the dumbbell model to 1 millisecond. We

vary the bandwidth of the bottleneck link from 10 Mb/s to 450 Mb/s with increments of

122



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200  250  300  350  400  450

T
C

P
 T

h
ro

u
g
h

p
u

t 
(M

b
it/

se
c)

Bottleneck Link Bandwidth (Mbit/sec)

pure simulation
emulation, sequential run
emulation, parallel run

Figure 5.17: TCP throughput for remote
hosts

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200  250  300  350  400  450

T
C

P
 T

h
ro

u
g
h

p
u

t 
(M

b
it/

se
c)

Bottleneck Link Bandwidth (Mbit/sec)

pure simulation
emulation, sequential run
emulation, parallel run

Figure 5.18: TCP throughput for collo-
cated hosts

40 Mb/s and direct a TCP flow from one host to the other through the bottleneck link and

we compare the three scenarios in figure 5.11.

Figure 5.18 shows the results. Again, the throughput increases almost linearly with

the increased bandwidth for the simulated flow and at high traffic intensity the error be-

comes apparent for emulated traffic. The throughput for the emulated traffic is kept below

roughly 250 Mb/s for sequential runs (scenario 2) and 130 Mb/s for parallel runs (scenario

3). Sequential runs see an additional 50 Mb/s of throughput over remote emulation be-

cause of the reduced delay. Again, the reduced throughput for parallel runs is due to the

communication overhead as the TCP traffic gets exposed to the additional delay between

the parallel simulator instances (over MPI).

We were surprised to find the throughput of the sequential run was limited to roughly

250 Mb/s. We conducted preliminary evaluations using UDP and saw a throughput closer

to 500 Mb/s. After an extensive investigation, we discovered that the I/O system intermit-

tently imposed significant delays on packets when the packet rate was low. This would

have a significant impact on TCP during its starting phase, and cause TCP to throttle the

throughput.

123



Scenario 2:

Physical 
Host H4

R1 R2
H1 H3

Simulator

Compute
Node 2

Compute
Node 0

Physical 
Host H2

Compute Node 1

Physical 
Host H4

R1 R2
H1 H3

Simulator

Compute
Node 3

Compute
Node 0

Physical
 Host H2

Compute Node 1

Scenario 3:

Simulator

Compute Node 2

Scenario 1:

R1 R2
H1

H4

H3

H2

Simulator

Compute Node 0

Figure 5.19: Dumbbell experiment scenarios using traffic portals.

Traffic Portals

We also take a closer look at the capacity of the traffic portal. We use the same dumbbell

model as in the previous section. However, this time we test the three scenarios in fig-

ure 5.19. Both H2 and H4 are physical hosts, and we run the simulator either sequentially

on one compute node, or in parallel on two compute nodes. We direct either one or ten

TCP flows between the two physical hosts through the traffic portal. We again compare

the results with those from the pure simulation case.

Figure 5.20 shows the results. While the throughput increases linearly with the in-

creased bandwidth for the simulated flow, it becomes apparent that the traffic with 10

TCP flows crossing through the traffic portal is capped at roughly 500 Mb/s for sequential

runs and 180Mb/s for parallel runs. Again, the reduced throughput for parallel runs is due

to the communication overhead imposed by the simulator as the TCP traffic goes across

the boundary of the parallel simulator instances. This indicates there is room for future

improvement.

In the case of 1 TCP flow, the throughput is significantly lower. We discovered that

this is due to the same timing issue at the I/O system that we mentioned earlier. The

sporadic delay imposed on the packets caused TCP to throttle its congestion window size.

As a result, we also found significant variance in the throughput measurement for the

124



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800

A
g
g

re
g

a
te

 T
C

P
 T

h
ro

u
g

h
p
u

t 
(M

b
it/

se
c)

Bottleneck Link Bandwidth (Mbit/sec)

pure simulation, 1 flow
pure simulation, 10 flows
sequential run, 10 flows

parallel run, 10 flows
sequential run, 1 flow

parallel run, 1 flow

Figure 5.20: Cross-traffic TCP through-
put

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800

A
g
g

re
g

a
te

 T
C

P
 T

h
ro

u
g

h
p
u

t 
(M

b
it/

se
c)

Bottleneck Link Bandwidth (Mbit/sec)

pure simulation
emulation, sequential run

emulation, parallel run

Figure 5.21: Interactive TCP throughput

sequential runs. This behavior is not obvious for the parallel runs because the throughput

is limited by MPI communication overhead.

In another experiment, we evaluated the ability for an external physical host to in-

teract with a simulated host using TCP. The physical host acted as a client to simultane-

ously download 10 files of significant size from a simulated host. PRIMEX provides full

TCP interoperability. The results are shown in figure 5.21. We measured the aggregate

throughput of all TCP flows and found the throughput is limited to about 250 Mb/s for

sequential runs and about 120 Mb/s for parallel runs. This is mainly due to the simulator

falling behind when generating large amounts of traffic. This indicates further room for

improvement.

Emulation Capacity

In the previous experiments, we determined that the emulation infrastructure is placing

an upper limit on the emulation traffic the system can support. Here, we use a set of

experiments to measure the capacity of the emulation infrastructure as we increase the

number of TCP flows, while increasing the number of emulated hosts we run.

125



 0

 50

 100

 150

 200

 250

 300

 1  2  4  8  16  32  64  128

A
g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t 
(M

b
it/

se
c)

Number of Emulated TCP Flows

one compute node
two compute nodes
four compute nodes

Figure 5.22: Emulation capacity

Here we use the same dumbbell model (with a bottleneck link of 1 Gb/s bandwidth

and 1 millisecond delay), and attach the same number of emulated hosts on each side of

the dumbbell routers. We start a TCP flow (using iperf) for each pair of emulated hosts,

one from each side of the dumbbell. So the total number of TCP flows is half the number

of emulated hosts. We create the same number of the TCP flows from left to right as those

from right to left. The measured throughput (from iperf) is shown for all emulated TCP

flows in figure 5.22. The curves shown in figure 5.22 correspond to three experiments,

described as follows.

In the first experiment, all emulated hosts are run on the same compute node. For one

flow, the throughput reaches about 250 Mb/s. This is was also observed in the previous

experiment for sequential runs. The aggregate throughput increases slightly for two flows,

but drops continuously as we increase the number of flows all the way to 64 flows (128

VMs). The slight increase is probably due to TCP’s opportunistic behavior that allows

it achieve better channel utilization with more flows. We suspect the emulated hosts

(OpenVZ containers) are competing for shared buffer space in the kernel network stack,

causing the drop in throughput. As more emulated hosts are placed on the same compute

126



node, each container gets a smaller share of the available buffer space thereby degrading

TCP’s performance.

In the second experiment, we divide the network between two compute nodes (split-

ting the model along the bottleneck link). As observed previously, the throughput for one

emulated flow in this case is around 130 Mb/s. As we increase the number of flows, the

aggregate throughput slightly increases until we reach 32 flows. After 32 flows we start to

see a significant drop in the aggregate throughput. Running the simulation on two com-

pute nodes results in more event processing power; the simulator is capable of handling

more emulated flows than in the sequential case.

In the third experiment, we extend the dumbbell model by placing four core routers

in a ring and connecting them using bottleneck links. We attach the same number of

emulated hosts to each core router. We direct TCP flows from an emulated host attached

to one router to an emulated host attached to the next router in the ring. This allows us

to spread the number of emulated flows evenly among the emulated hosts. The aggregate

throughput for the four-node case is higher than the scenarios using two compute nodes.

Again, we think this is due to the higher processing power of the parallel simulator. The

throughput starts to drop at 128 flows (that’s 32 VMs per compute node) resulting from

increased contention for the shared buffer space.

5.7 Conclusion

A real-time network simulation and emulation framework that is both scalable and flex-

ible has been presented. Both the scalability and flexibility are derived from the ability

to emulate applications in both remote and collocated environments. The framework

provides the necessary tools for experimenters to construct and configure the network

models, allocate, deploy and run the experiments, and collect the experiment results. The

resources may consist of the compute nodes in the cluster and possibly remote machines.

127



Each compute node is treated as a scaling unit, and can be configured to run a parallel

simulator instance together with a set of virtual machines for emulated hosts. The latter

provides a realistic operating environment for testing real implementations of network

applications and services. The PRIMEX network simulator uses distributed simulation

techniques to synchronize the simulator instances running within the scaling units. The

virtual machines are connected with the simulator instances using a flexible emulation

infrastructure.

Our validation experiments show that our infrastructure can produce accurate emu-

lation results when the emulated traffic does not exceed the capacity of the emulation

infrastructure. Our performance studies show that the throughput of the emulated traffic

is dependent upon the number of virtual machines running on each scaling unit.

128



CHAPTER 6

CONCLUSIONS

This chapter presents a brief summary of this dissertation and future directions the

research could be taken.

6.1 Summary

The focus of this dissertation is on improving large-scale network simulation and emula-

tion. Specifically, we investigated the following:

1. A poor separation of concerns has lead to complex and unwieldy tools that are

not designed for performing large-scale network experiments, but for exploring the

details related to implementing a large-scale simulator itself. The end result is that

using large-scale network simulators is still not a common practice in the network

research community. In order to address this we did the following:

• We developed the technique of model splitting which cleanly divides a net-

work model into an interactive model and an execution model. Within the

interactive model, we can focus on user facing concerns and in the execution

model, we can focus on implementing an efficient and performant parallel

simulator.

• We developed network scripting which generates the interactive and execution

models from a single network model using simple annotations.

• We developed our model caching method in order to operate on large network

models out-of-core by persisting the interactive model to a database.

• We developed an interactive and control framework which allows for geo-

graphically separated execution and interactive models to be synchronized in

real-time.

129



2. Large network models come with an enormous memory demand which can obturate

the scalability of their execution. In order to reduce the memory complexity of

large-scale network models we did the following:

• We developed our model replication technique which allows large network

models to be constructed in a recursive manner using duplicated sub-structures.

We implemented our model replication technique in three different configura-

tion languages (Java, Python, and XML).

• We preformed an empirical study to determine whether network models con-

structed with large proportions of identical sub-structures exhibited different

graph metrics than network models that were constructed using no identical

sub-structures. Our study found that models with a large percentage of iden-

tical sub-structures were virtually indistinguishable from those with no dupli-

cate sub-structures.

• We developed a method to exploit model replication and reduce the memory

required to store, instantiate, and execute network models. The core of this

was the development of spherical routing which provides a flexible and re-

alistic framework for routing within large-scale network models. Spherical

routing is able to reduce the memory complexity of routing state by several

orders of magnitude while preserving a high-degree of realism.

3. Large network models are hard to validate. We can improve the realism of network

models by integrating network traffic from real applications and external networks

into the simulation. To this end, we developed a flexible and scalable emulation

framework.

130



• Our framework is able to exchange real network data with remote applications

using OpenVPN and subject the real traffic to the conditions of the virtual

network.

• Our framework is able to exchange real network data with applications run-

ning in collocated virtual machines and subject the real traffic to the conditions

of the virtual network.

• Our framework is able to interact with external networks, subjecting all traffic

that is routed through our framework to the conditions of the virtual network.

• Our interactive and control framework was extended to automate the deploy-

ment and configuration of large emulation experiments.

4. We implemented model splitting and model replication in our parallel real-time

network simulator, called PRIMEX. We also embedded our emulation framework

and interactive and control framework in PRIMEX. PRIMEX is the basis of the

PrimoGENI project which embeds network simulation into the GENI federation of

network testbeds [GEN]. Additionally, we developed an integrated development

environment called Slingshot using PRIMEX’s interactive model. Slingshot allows

network researchers the ability to visualize, inspect, modify, persist, and reuse net-

work models. Slingshot also automates the process of deploying, configuring, con-

trolling, and executing network models involving real, emulated, and simulated

components.

6.2 Future Directions

The research presented in this dissertation can be extended in at least three directions.

The first direction would be to improve and extend spherical routing. Spherical routing

is able to produce huge memory gains because it uses statically computed routing tables.

131



Requiring all spheres to be static reduces the scenarios which spherical routing can be

used to study. Spherical routing could be extended in the following two ways:

1. In spherical routing, the routing within each sphere is mostly independent from

the routing in other spheres. Spherical routing could be extended to support real

routing protocols within a subset of routing spheres. Embedding a real routing

protocol within a sphere could be done by embedding a simulated version of the

protocol. To embed a real protocol using emulation or direct execution would be

another approach. Using either method would prove very useful in studying how

local routing protocols interact and are effected by routing in the Internet.

2. Currently within spherical routing, if a particular network interface or router goes

offline, then all routes that use the failed router or interface will simply drop the

packets. In other words, we do not reroute around network failures. This is due

to the fact that spherical routing only maintains a single forwarding table for each

routing sphere. In reality, a routing protocol would adapt to the failure and route

around it. Spherical routing could be extended to support link, interface, or router

failures by re-calculating shortest path routes online and dynamically switching

between statically calculated and dynamically calculated forwarding tables.

Another direction would to be improve the emulation capacity of PRIMEX. Currently,

we use standard interfaces to interact with collocated emulated hosts or external networks.

The following could extend our emulation framework to support improved emulation

capacity:

1. Using custom hardware such as FPGAs to offload the processing of real data. With

this type of approach, the FPGA would interact with the virtual machine or external

networks and signal the simulator using a light-weight API. In such a scheme, real

packets in the network simulator only include the IP headers. When packets are

132



dropped, forwarded, or when IP header fields are changed, the simulator would

communicate those changes to the FPGA.

2. Supporting emulation via directly executed virtual machines. By extending and

combining the approach taken by the Denali isolation kernel [WSG02] and Weaves

runtime framework [Var04] we could compile test applications with all their asso-

ciated operating system dependencies into a single executable that could be em-

bedded into the simulator. This would give us many of the benefits of running a

full-blown virtual machine but with more control and less overhead.

3. Improving the real-time event scheduler within the simulation framework (SSF).

The event scheduler currently uses a ”best effort” approach. There are two imme-

diate problems with this. First, there is no warning or indication that the system on

which the simulator is running is oversubscribed. It is not until the user observes

artifacts from the oversubscription during execution of the simulation that they are

notified. Second, when resources are in short supply, the scheduler has a bias for

simulation events (or, with a simple modification, a bias for emulation events). We

could extend and improve the scheduler by applying quality of service algorithms in

order to guarantee a minimum level of service for emulation and simulation events.

The last direction would be to devise an algorithm which could automatically trans-

form a network model that was not explicitly built using model replication into a network

model which is equivalent with the exception of taking full advantage of model replica-

tion. Such a tool would be useful in determining how often real networks exhibit structural

duplications. It would also allow users to automatically optimize their network model in

terms of memory use and further reduce the burden of developing large-scale network

experiments.

133



BIBLIOGRAPHY

[And] András Varga. OMNeT++ Network Simulation Framework. http://
www.omnetpp.org/.

[Apaa] Apache Project. Derby Database. http://http://db.apache.org/
derby/.

[Apab] Apache Project. Multipurpose Infrastructure for Network Applications
(MINA). http://mina.apache.org/.

[Art] Art in Algorithms. Ethernet Bridge Tables (ebtables). http://
ebtables.sourceforge.net.

[BBK+06] Terry Benzel, Bob Braden, Dongho Kim, Clifford Neuman, Anthony
Joseph, Keith Sklower, Ron Ostrenga, and Stephen Schwab. Experience
with DETER: A testbed for security research. In Proceedings of the 2nd
IEEE Conference on testbeds and Research Infrastructures for the Develop-
ment of Networks and Communities (TRIDENTCOM’06), 2006.

[BC94] D. J. Berndt and J. Clifford. Using Dynamic Time Warping to Find Patterns
in Time Series. In Proceedings of KDD-94: AAAI Workshop on Knowledge
Discovery in Databases, pages 359–370, Seattle, Washington, 1994.

[BEF+00] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu,
and Haobo Yu. Advances in network simulation. Computer, 33(5):59–67,
2000.

[BFH+06] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer
Rexford. In vini veritas: realistic and controlled network experimentation. In
SIGCOMM ’06: Proceedings of the 2006 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pages
3–14, New York, NY, USA, 2006. ACM.

[BL03] Paul Barford and Larry Landweber. Bench-style network research in an
Internet instance laboratory. ACM SIGCOMM Computer Communication
Review, 33(3):21–26, 2003.

[BSU00] Russell Bradford, Rob Simmonds, and Brian Unger. A parallel discrete
event ip network emulator. In MASCOTS ’00: Proceedings of the 8th In-
ternational Symposium on Modeling, Analysis and Simulation of Computer

134



and Telecommunication Systems, page 315, Washington, DC, USA, 2000.
IEEE Computer Society.

[BYC+03] D. Bauer, G. Yaun, C.D. Carothers, M. Yuksel, and S. Kalyanaraman.
Ross.net: optimistic parallel simulation framework for large-scale internet
models. In Simulation Conference, 2003. Proceedings of the 2003 Winter,
volume 1, pages 703 – 711 Vol.1, dec. 2003.

[BYCK06] David Bauer, Murat Yuksel, Christopher Carothers, and Shivkumar Kalya-
naraman. A case study in understanding OSPF and BGP interactions using
efficient experiment design. In Proceedings of the 20th Workshop on Princi-
ples of Advanced and Distributed Simulation (PADS), pages 158–165, 2006.

[CBP00] Christopher D. Carothers, David Bauer, and Shawn Pearce. ROSS: a high-
performance, low memory, modular time warp system. In Proceedings of
the 14th Workshop on Parallel and Distributed Simulation (PADS’00), pages
53–60, May 2000.

[CLL+99] James Cowie, Hongbo Liu, Jason Liu, David Nicol, and Andy Ogielski. To-
wards realistic million-node internet simulations. International Conference
on Parallel and Distributed Processing Techniques and Applications, 1999.

[CM79] K.M. Chandy and J. Misra. Distributed simulation: A case study in design
and verification of distributed programs. IEEE Transactions on Software
Engineering, 5(5):440–452, 1979.

[CNO99] James H. Cowie, David M. Nicol, and Andy T. Ogielski. Modeling the
global internet. Computing in Science and Engineering, pages 42–50, 1999.

[CS03] Mark Carson and Darrin Santay. NIST Net: a Linux-based network emu-
lation tool. SIGCOMM Computer Communication Review, 33(3):111–126,
2003.

[DFP+94] Samir Das, Richard Fujimoto, Kiran Panesar, Don Allison, and Maria Hy-
binette. Gtw: A time warp system for shared memory multiprocessors. In
Proceedings of the 26th conference on Winter Simulation, WSC ’94, pages
1332–1339, San Diego, CA, USA, 1994. Society for Computer Simulation
International.

[DKH+05] X. Dimitropoulos, D. Krioukov, B. Huffaker, KC Claffy, and G. Riley. In-
ferring as relationships: Dead end or lively beginning? In Proceedings of
Springer Workshop on Experimental Algorithms (WEA), 2005.

135



[DKP+06] John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, Charlie Wise-
man, and Ken Wong. The open network laboratory. ACM SIGCSE Bulletin,
38(1):107–111, 2006.

[DKVR07] X. Dimitropoulos, D. Krioukov, A. Vahdat, and G. Riley. Graph annotations
in modeling complex network topologies. 2007.

[DNP94] C. Daly, R. P. Neilson, and D. L. Phillips. A Statistical Topographic Model
for Mapping Climatological Precipitation over Mountainous Terrain. Jour-
nal of Applied Meteorology, 33:140–158, 1994.

[DR03] X. Dimitropoulos and G. Riley. Creating realistic bgp models. Symposium
on Modeling, Analysis and Simulation on Computer and Telecommunication
Systems (MASCOTS), 2003.

[DR04] X. Dimitropoulos and G. Riley. Large-scale simulation models of bgp.
In Proceedings of the 12th Annual International Symposium on Model-
ing, Analysis and Simulation on Computer and Telecommunication Systems
(MASCOTS), pages 287–294, 2004.

[ELL09] Miguel Erazo, Yue Li, and Jason Liu. SVEET! A scalable virtualized eval-
uation environment for TCP. In Proceedings of the 5th International Con-
ference on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TridentCom’09), April 2009.

[ERS+09] Katherine J. Evans, Damian W. Rouson, Andrew G. Salinger, Mark A. Tay-
lor, Wilbert Weijer, and James B. White, Iii. A scalable and adaptable
solution framework within components of the community climate system
model. In Proceedings of the 9th International Conference on Compu-
tational Science, ICCS 2009, pages 332–341, Berlin, Heidelberg, 2009.
Springer-Verlag.

[Fal99] Kevin Fall. Network emulation in the Vint/NS simulator. In Proceedings
of the 4th IEEE Symposium on Computers and Communications (ISCC’99),
pages 244–250, July 1999.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413,
1993.

[FPP+03] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and G. F.
Riley. Large-scale network simulation: How big? how fast? In Proceed-

136



ings of the 11th IEEE/ACM International Symposium on Modeling, Analysis
and Simulation on Computer and Telecommunication Systems (MASCOTS),
2003.

[Fuj01] Richard M. Fujimoto. Parallel simulation: parallel and distributed simula-
tion systems. In WSC ’01: Proceedings of the 33nd conference on Winter
simulation, pages 147–157, Washington, DC, USA, 2001. IEEE Computer
Society.

[Gao01] L. Gao. On inferring autonomous system relationships in the internet.
IEEE/ACM Transactions on Networking, 9(6):733–745, 2001.

[GEN] GENI Project Office. The Global Environment for Network Innovations
(GENI). http://www.geni.net.

[Geo] George Karypis Lab. The METIS Graph Partitioner. http://www.cs.
umn.edu/˜metis/.

[GF09] Yan Gu and Richard Fujimoto. Performance evaluation of the rosenet net-
work emulation system. Simulation, 85(5):319–333, 2009.

[Gio09] Toni Giorgino. Computing and visualizing dynamic time warping align-
ments in r: The dtw package. Journal of Statistical Software, 31(7):1–24, 8
2009.

[GP01] Timothy G. Griffin and Brian J. Premore. An experimental analysis of
bgp convergence time. In International Conference on Network Protocols
(ICNP), pages 53–61, 2001.

[GRL05] Shashi Guruprasad, Robert Ricci, and Jay Lepreau. Integrated network ex-
perimentation using simulation and emulation. In Proceedings of the 1st
International Conference on Testbeds and Research Infrastructures for the
DEvelopment of NeTworks and COMmunities (TRIDENTCOM’05), pages
204–212, February 2005.

[Gut84] Antomn Guttman. R-trees: A dynamic index structure for spatial searching.
In ACM SIGMOD International Conference on Management of Data, pages
47–57, 1984.

[HBH+03] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan
Hu, Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric

137



Phipps, Andrew Salinger, Heidi Thornquist, Ray Tuminaro, James Wil-
lenbring, and Alan Williams. An overview of trilinos. Technical Report
SAND2003-2927, Sandia National Laboratories, 2003.

[HBH+05] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoek-
stra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R.
Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K.
Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and
Kendall S. Stanley. An overview of the trilinos project. ACM Trans. Math.
Softw., 31(3):397–423, 2005.

[HDSM05] Matthias Hauswirth, Amer Diwan, Peter F. Sweeney, and Michael C. Mozer.
Automating vertical profiling. In OOPSLA, pages 281–296, 2005.

[Hee04] Jeffrey Heer. prefuse: a software framework for interactive information
visualization. Master’s thesis, University of California, Berkeley, 2004.

[HH01] X. W. Huang and J. Heidemann. Minimizing routing state for light-weight
network simulation. 9th International Symposium on Modeling, Analysis
and Simulation on Computer and Telecommunication Systems (MASCOTS),
pages 108–116, 2001.

[HSK99] X. W. Huang, R. Sharma, and S. Keshav. The ENTRAPID protocol devel-
opment environment. In Proceedings of the IEEE INFOCOM 1999, pages
1107–1115, March 1999.

[HYY+03] A. Hiromori, H. Yamaguchi, K. Yasumoto, T. Higashino, and K. Taniguchi.
Reducing the size of routing tables for large-scale network simulation. In
Proceedings of the 17th Workshop on Parallel and Distributed Simulation,
2003.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis: techniques
for experimental design, measurement, simulation, and modeling. Wiley,
1991.

[Jam] James H. Cowie. Scalable Simulation Framework API Reference Manual.
http://www.ssfnet.org/SSFdocs/ssfapiManual.pdf.

[Jef85] David R. Jefferson. Virtual time. ACM Transactions on Programming Lan-
guages and Systems, 7(3):404–425, 1985.

138



[Jyt] Jython Project. Jython: Python for the Java Platform. http://www.
jython.org/.

[KS94] M. Katz and C. Shapiro. Systems competition and network effects. Journal
of Economic Perspectives, 8(2):93–115, 1994.

[Kun] Kunihiro Ishiguro. GNU Zebra. http://www.gnu.org/software/
zebra/.

[LC04] Xin Liu and Andrew A. Chien. Realistic large-scale online network sim-
ulation. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 31, Washington, DC, USA, 2004. IEEE Computer
Society.

[LCK+10] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani.
Kronecker graphs: an approach to modeling networks. Journal of Machine
Learning Research (JMLR), 11:985–1042, Feb 2010.

[Lin] Linux Virtual Server Project. IP Virtual Server (IPVS). http://kb.
linuxvirtualserver.org/wiki/IPVS.

[Liu08] Jason Liu. A primer for real-time simulation of large-scale networks. In
ANSS-41 ’08: Proceedings of the 41st Annual Simulation Symposium (anss-
41 2008), pages 85–94, Washington, DC, USA, 2008. IEEE Computer So-
ciety.

[LL08] Jason Liu and Yue Li. On the performance of a hybrid network traffic model.
Simulation Modelling Practice and Theory, 16(6):656–669, 2008.

[LLN+05] Michael Liljenstam, Jason Liu, David M. Nicol, Yougu Yuan, Guanhua Yan,
and Chris Grier. RINSE: the real-time interactive network simulation envi-
ronment for network security exercises. In Proceedings of the 19th Work-
shop on Parallel and Distributed Simulation (PADS’05), pages 119–128,
June 2005.

[LN] Jason Liu and David M. Nicol. Dartmouth Scalable Simulation Frame-
work (DaSSF). http://www.cis.fiu.edu/˜liux/research/
projects/dassf/index.html.

[LN04] M. Liljenstam and D. Nicol. On-demand computation of policy based routes
for large-scale network simulation. In Proceedings of the 2004 Winter Sim-
ulation Conference, pages 215–223, 2004.

139



[LXC03] Xin Liu, Huaxia Xia, and Andrew A. Chien. Network emulation tools for
modeling grid behavior. In Proceedings of 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid’03), May 2003.

[LXC04] Xin Liu, Huaxia Xia, and Andrew A. Chien. Validating and scaling the
microgrid: A scientific instrument for grid dynamics. J. Grid Comput.,
2(2):141–161, 2004.

[LYPN02] M. Liljenstam, Y. Yuan, BJ Premore, and D. Nicol. A mixed abstraction
level simulation model of large-scale internet worm infestations. In Pro-
ceedings of the 10th Annual International Symposium on Modeling, Analysis
and Simulation on Computer and Telecommunication Systems (MASCOTS),
2002.

[MHK+07] Priya Mahadevan, Calvin Hubble, Dmitri Krioukov, Bradley Huffaker, and
Amin Vahdat. Orbis: rescaling degree correlations to generate annotated
Internet topologies. ACM SIGCOMM Computer Communication Review,
37(4):325–336, 2007.

[MJ92] Steven Mccanne and Van Jacobson. The bsd packet filter: A new architec-
ture for user-level packet capture. pages 259–269, 1992.

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite:
An approach to universal topology generation. In Proceedings of the 9th
Annual International Symposium on Modeling, Analysis and Simulation on
Computer and Telecommunication Systems (MASCOTS), 2001.

[Mod] Modeling and Networking Research Group. PRIME Project. http://
www.primessf.net/bin/view/Public/PRIMEProject.

[MQWZ05] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On as-level path inference. In
Proceedings of the 2005 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 339–349, 2005.

[Nic] David Nicol. DARPA NMS baseline network topology. http://www.
ssfnet.org/Exchange/gallery/baseline/index.html.

[Nic98] David M. Nicol. Scalability, locality, partitioning and synchronization pdes.
In PADS ’98: Proceedings of the twelfth workshop on Parallel and dis-
tributed simulation, pages 5–11, Washington, DC, USA, 1998. IEEE Com-
puter Society.

140



[NLLY03] David M. Nicol, Jason Liu, Michael Liljenstam, and Guanhua Yan. Sim-
ulation of large scale networks i: simulation of large-scale networks using
ssf. In WSC ’03: Proceedings of the 35th conference on Winter simulation,
pages 650–657. Winter Simulation Conference, 2003.

[NS-a] NS-2 Project. ns-2. http://nsnam.isi.edu/nsnam/index.php/
Main_Page.

[NS-b] NS-2 Project. Tips and Statistical Data for Running Large Simulations in
NS. http://www.isi.edu/nsnam/ns/ns-largesim.html.

[NS-c] NS-3 Project. ns-3. http://www.nsnam.org/index.html.

[Opea] OpenVZ Project. Linux Containers. http://openvz.org.

[Opeb] OpenVZ Project. OpenVZ Virtual Ethernet Device. http://wiki.
openvz.org/Veth.

[OPN] http://www.opnet.org.

[PACR02] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A
blueprint for introducing disruptive technology into the Internet. In Proceed-
ings of the 1st Workshop on Hot Topics in Networking (HotNets-I), October
2002.

[Pax96] Vern Paxson. End-to-end routing behavior in the internet. In Conference
proceedings on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM ’96, pages 25–38, New York, NY,
USA, 1996. ACM.

[PF97] V. Paxson and S. Floyd. Why we don’t know how to simulate the internet.
In Proceedings of the 1997 Winter Simulation Conference (WSC), 1997.

[PNL96] B. J. Premore, D. M. Nicol, and X. Liu. A critique of the telecommunica-
tions descripting language (ted). Technical Report PCS-TR96-299, Depart-
ment of Computer Science, Dartmouth College, 1996.

[POF98] Kalyan Perumalla, Andy Ogielski, and Richard Fujimoto. TeD – a lan-
guage for modeling telecommunication networks. ACM SIGMETRICS Per-
formance Evaluation Review, 25(4):4–11, March 1998.

141



[Pri10] http://groups.geni.net/geni/wiki/PrimoGENI, 2010.

[QU05] Bruno Quoitin and Steve Uhlig. Modeling the routing of an autonomous
system with C-BGP. IEEE Network, 19(6), 2005.

[RA02] George F. Riley and Mostafa H. Aremar. Simulating large networks - how
big is big enough? In Conference on Grand Challenges for Modeling and
Sim., 2002.

[RAF00] George F. Riley, Mostafa H. Ammar, and Richard Fujimoto. Stateless rout-
ing in network simulations. In Proceedings of the 8th International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, pages 524–531, 2000.

[RAZ01] George F. Riley, Mostafa H. Ammar, and Ellen W. Zegura. Efficient routing
using nix-vectors. In Proceedings of IEEE Workshop on High Performance
Switching and Routing (HPSR), 2001.

[Ren] Renesys. SSF Research Network. http://www.ssfnet.org/.

[RFA99] George F. Riley, Richard Fujimoto, and Mostafa H. Ammar. A generic
framework for parallelization of network simulations. In Proceedings of
the 7th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS’99), pages 128–
135, 1999.

[RFI02] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and implications for
system design. IEEE Internet Computing special issue on Peer-to-Peer Net-
working, 6(1):50–57, 2002.

[Ril03] George F. Riley. The georgia tech network simulator. In MoMeTools ’03:
Proceedings of the ACM SIGCOMM workshop on Models, methods and
tools for reproducible network research, pages 5–12, New York, NY, USA,
2003. ACM.

[Riz97] Luigi Rizzo. Dummynet: a simple approach to the evaulation of network
protocols. ACM SIGCOMM Computer Communication Review, 27(1):31–
41, January 1997.

142



[RJFA04] George F. Riley, Talal M. Jaafar, Richard M. Fujimoto, and Mostafa H. Am-
mar. Space-parallel network simulations using ghosts. Parallel and Dis-
tributed Simulation, Workshop on, 0:170–177, 2004.

[RSO+05] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh. Overview of the ORBIT radio grid
testbed for evaluation of next-generation wireless network protocols. In Pro-
ceedings of the IEEE Wireless Communications and Networking Conference
(WCNC 2005), 2005.

[SDRL09] Pramod Sanaga, Jonathon Duerig, Robert Ricci, and Jay Lepreau. Mod-
eling and emulation of internet paths. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’09),
NSDI’09, pages 199–212, Berkeley, CA, USA, 2009. USENIX Association.

[SLJ+00] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and
A. Chien. The microgrid: a scientific tool for modeling computational grids.
In Proceedings of IEEE Supercomputing (SC 2000, pages 4–10, 2000.

[SMWA04] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP
topologies with Rocketfuel. IEEE/ACM Transactions on Networking,
12(1):2–16, 2004.

[SN05] J.E. Smith and Ravi Nair. The architecture of virtual machines. Computer,
38(5):32 – 38, may. 2005.

[SPBP06] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab
for network research: myths, realities, and best practices. ACM SIGOPS
Operating Systems Review, 40(1):17–24, 2006.

[Ste] Stephane Apiou. Union filesystem for FUSE (FunionFS). http://
funionfs.apiou.org/.

[Var04] Srinidhi Varadarajan. The weaves runtime framework. In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th International,
page 197, april 2004.

[VH08] András Varga and Rudolf Hornig. An overview of the omnet++ simula-
tion environment. In Simutools ’08: Proceedings of the 1st international
conference on Simulation tools and techniques for communications, net-
works and systems & workshops, pages 1–10, ICST, Brussels, Belgium,

143



Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[VYW+02] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic,
Jeff Chase, and David Becker. Scalability and accuracy in a large scale net-
work emulator. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI’02), 2002.

[WCH+03] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Yang, C. C.
Chiou, and C. C. Lin. The design and implementation of the nctuns 1.0
network simulator. Comput. Netw., 42(2):175–197, 2003.

[WLS+02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An inte-
grated experimental environment for distributed systems and networks. In
Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI’02), pages 255–270, 2002.

[WSG02] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali: A scal-
able isolation kernel. In Proceedings of the Tenth ACM SIGOPS European
Workshop, 2002.

[YBB+03] Garrett R. Yaun, David Bauer, Harshad L. Bhutada, Christopher D.
Carothers, Murat Yuksel, and Shivkumar Kalyanaraman. Large-scale net-
work simulation techniques: examples of TCP and OSPF models. ACM
SIGCOMM Computer Communication Review, 33(3):27–41, 2003.

[ZJTB04] Junlan Zhou, Zhengrong Ji, Mineo Takai, and Rajive Bagrodia. MAYA: in-
tegrating hybrid network modeling to the physical world. ACM Transactions
on Modeling and Computer Simulation (TOMACS), 14(2):149–169, 2004.

144



VITA

Nathanael Van Vorst

March 14, 1981 Born, Denver, Colorado

1999–2003 B.S., Electrical Engineering & Computer Science
Colorado State University
Fort Collins, Colorado

2005–2007 M.S, Computer Science
Colorado School of Mines
Golden, Colorado

2008–2012 Doctoral Candidate
Florida International University
Miami, Florida

PUBLICATIONS

J. Liu, S. Mann, N. Van Vorst, and K. Hellman, An open and scalable emulation infras-
tructure for large-scale real-time network simulations. INFOCOM 2007 MiniSympo-
sium, Anchorage, Alaska, May 6-12, 2007.

J. Liu, Y. Li, N. Van Vorst, S. Mann, and K. Hellman, A real-time network simulation
infrastructure based on OpenVPN. Journal of System Software (2009), pg 473-485.

N. Van Vorst, K. Pedretti, and R. Oldfield, Super-Scale Real-Time Network Simulation on
the Cray XT. CSRI Summer Proceedings 2010. SAND Report, pg 309-320.

N. Van Vorst, T. Li, and J. Liu, How Low Can You Go? Spherical Routing for Scalable
Network Simulations. The 19th Annual Meeting of the IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
Raffles Hotel, Singapore, July 25-27, 2011.

N. Van Vorst, M. Erazo, and J. Liu. PrimoGENI: Integrating Real-Time Network Simula-
tion and Emulation in GENI. 25th Workshop on Principles of Advanced and Distributed
Simulation, Nice, France, June 14-17, 2011.

T. Li, N. Van Vorst, R. Rong, J. Liu. Simulation Studies of OpenFlow-Based In-Network
Caching Strategies. SpringSim (CNS) 2012, Orlando, FL, March 26-29, 2012.

145



N. Van Vorst, J. Liu, Realizing Large-Scale Interactive Network Simulation via Model
Splitting. 26th Workshop on Principles of Advanced and Distributed Simulation, Zhangji-
ajie, China, July 15-19, 2012.

N. Van Vorst, M. Erazo, and J. Liu. PrimoGENI for Hybrid Network Simulation and Em-
ulation Experiments in GENI. Journal of Simulation. To appear.

T. Li, N. Van Vorst, J. Liu. A Fast Rate-Based TCP Traffic Model. Submitted.

PRESENTATIONS

N. Van Vorst and M. Erazo. PrimoGENI Demonstration. 7th GENI Engineering Confer-

ence, Durham, NC, March 16-18, 2010.

J. Liu, N. Van Vorst and M. Erazo. PrimoGENI Tutorial. 10th GENI Engineering Con-

ference, San Juan, Puerto Rico, March 15-17, 2011.

N. Van Vorst. PrimoGENI Poster. 11th GENI Engineering Conference, Denver, CO, July

26-28, 2011.

N. Van Vorst. Graduate Student Seminar. School of Computing and Information Sci-

ences, Florida International Univerisity, Miami, FL, Feburary 9, 2012.

J. Liu, N. Van Vorst and M. Erazo. PrimoGENI Tutorial and Plenary Demonstration.

13th GENI Engineering Conference, Los Angeles, CA, March 13-15, 2012.

146


	Florida International University
	FIU Digital Commons
	3-30-2012

	Towards Simulation and Emulation of Large-Scale Computer Networks
	Nathanael M. Van Vorst
	Recommended Citation


	Towards Simulation and Emulation of Large-Scale Computer Networks

