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ABSTRACT OF THE DISSERTATION 

OPERATIONAL PREDICTION OF GROUNDWATER-PHOSPHOROUS 

INTERACTION OVER SURFICIAL AQUIFERS OF SOUTH FLORIDA  

by 

Yirgalem Assegid Chebud 

Florida International University, 2012 

Miami, Florida 

Professor Assefa M. Melesse, Major Professor 

South Florida has transformed from a natural to a managed ecosystem upon 

channelization of Kissimmee River and the wetlands in the 1960’s. The drainage has 

resulted in fast transport of water and nutrient, and subsequently eutrophication of the 

downstream water bodies. The intervention required: intensive management of the 

shallow groundwater to balance ecological water requirement; and nutrient removal, 

namely phosphorus, to minimize eutrophication.  

The study was set to examine and develop an operational prediction method for 

groundwater-phosphorus interactions to support the wetlands management. Accordingly, 

a point scale and a spatio-temporal groundwater level was simulated using sequence 

based Markovian stochastic analysis and dynamic factor analysis methods respectively.  

A root mean square error of 0.12m and 0.15m was observed for a point and spatio-

temporal groundwater prediction.  

Soluble and sequestered phosphorus were also simulated at 13% error using a 

watershed based model called ArcWAM. A spatial analysis on simulated soluble 

phosphorus and groundwater level indicated similarity of patterns (spatial correlation) 
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99% of the time. A geographically weighted multivariate analysis of soluble phosphorus 

using predictors of groundwater level, total phosphorus of surficial water, and distance 

from Kissimmee River showed a goodness of fit (R2 ) of 0.2 – 0.7.  Amongst the factors, 

the groundwater explained 70% of the soluble phosphorus variability. 

In summary, an increase in soluble phosphorus was observed with groundwater 

rise and a decrease during groundwater recession. A reversed relationship was identified 

for the total phosphorus. Presumably, organic matter in the root zone has contributed to 

increased soluble phosphorus with the rise in groundwater. On the other hand, solubility 

of calcium carbonate from the karst aquifers seems to fix and precipitate phosphorus 

during recession of groundwater. The least sequestration of phosphorus, observed in 

oversaturated wetlands also suggested that nutrient removal on karst hydrogeology could 

be risky unless a check is made using vegetation strip to enhance phosphorus uptake. 

The study concluded that phosphorus could be operationally predicted associated 

with forecasting of groundwater fluctuation. Further research is recommended to explore 

factors that could be derived either empirically or from satellite data for prediction of 

soluble phosphorus at minimum cost.  

Key words:  groundwater, phosphorus, spatiotemporal, stochastic, prediction 
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CHAPTER I 

1.1. Introduction 

The functioning of wetlands to attenuate nutrient and reduce influx to surface 

water bodies is a widely established fact. Such functioning of wetlands has been 

exploited by utilizing artificial wetland systems as storm water treatment areas. However, 

wetlands can be effective, if and only if the underlying hydrogeology has the capability to 

attenuate nutrient leaching that could otherwise percolate to groundwater. Also, the 

efficiency of a wetland is dependent on the permeability of the underlying aquifer. The 

lesser the permeability, the higher will be residence time of water and nutrient and hence 

improved attenuation of nutrients. Also, aquifers with abundant Fe and Al ions could 

attenuate higher amount of nutrients from overlying wetlands.  

In karst aquifers such as in south Florida (SF), the effectiveness of wetlands for 

nutrient removal is questionable for the fact that the aquifer is highly transmissive 

draining nutrients to water bodies. Even though the dissolution of calcium carbonate can 

fix nutrients such as phosphorus, the precipitated nutrients are subject to transportation 

because of the porous nature of the aquifer. Currently, nutrient removal is being 

implemented over the karst aquifers of SF regardless of the contextual effectiveness of 

the wetlands. The practice will change wetlands from oligotrophic to hypertrophic 

condition unless research supports the decision making.  

Since the 1960’s, SF wetlands have undergone a transformation from a natural to 

a managed ecosystem because of the channelization of the Kissimmee River for flood 

control (SFWMD, 2010). The change has had consequences on the vegetation pattern, 

surface-groundwater interactions and nutrient dynamics (Koebel et al., 1999). First, 
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preventing the natural flooding had drained excessive load of nutrient to the downstream 

causing eutrophication of water bodies namely to Lake Okeechobee (Chimney et al., 

1999). Second, a relocation of the drained storm water into water conservation areas 

(WCAs) for nutrient removal and flood protection has turned oligotrophic wetland 

systems to hypertrophic ecosystems and has caused unintended vegetation succession 

(Kadlec, 2006). The vegetation succession namely by cattail was in part the consequence 

of nutrient imbalances. Third, canal dredging has caused loss of natural flow 

directionality (Variano et al., 2008) and hence has influenced the surface-groundwater 

interaction. Finally, expansion of agriculture specifically dairy cattle farming, with over 

587 farms between 1995 to 2000 (Zhang et al., 2002), and sod farming in the upstream of 

Lake Okeechobee (Chebud et al., 2011)  has caused excessive nutrient loads exacerbating 

hypertrophic condition of the lake (O’Connar and Sarker,  2001).   

To curb ecological degradation, the South Florida Water Management District 

(SFWMD) promoted Best Management Practices (BMP’s) in the upstream agricultural 

areas, and also developed storm water treatment areas (STAs) at the micro scale, and 

WCAs (at macro scale) (Hiscock et al., 2003). Chimney et al. (1999) reported 

effectiveness of STAs reducing nutrient load by up to 80%, though ecological damages 

on water conservation areas were impacted by vegetation succession (Kadlec, 2006). In 

contrast, Moreno-Mateos et al. (2009) reported the reduction in another wetland was 99% 

on Nitrate (NO3-N) with no reduction on phosphorus.   

The intensive groundwater table management attenuated with recurring drought is 

reported to increase groundwater table fluctuation (Chebud and Melesse, 2011) which in 

turn triggers redox process of phosphorus mineralization and ultimately their transport 
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(Moreno-Mateos et al., 2009). Soluble phosphorus was observed reaching highest level of 

load with the occurrence of rainfall preceded by extended dry season (Young et al., 

2008).   

Phosphorus leaching and its fast drainage was known to be facilitated by the 

shallow water table depth, the coarse nature of  SF soils and the high transmissivity of the 

Karst aquifer that reduces time for adsorption of phosphate (PO3
- ) ion by Fe and Al 

(O’connor et al., 2002; Salzar et al., 2011). The assumption that the calcareous surficial 

aquifer would contribute to the sorption of the soluble and labile phosphate ions (PO3
-) 

and precipitate it to a stable calcium phosphate was probably outweighed by the 

groundwater fluctuation enhanced redox processes of mineralization and fast drainage 

processes. In summary, the managed SF ecosystem had influence on the groundwater 

fluctuation which enhanced redox processes of mineralization that could easily be laden 

by intense rainfall events and contributes much more than its natural state of basin wide 

flooding. 

Evidently, a key contribution of research related to effectiveness of SF wetlands 

functioning on nutrient removal is to capture spatio-temporal processes of nutrient 

attenuation, and loading by subsurface flow. The study proposed a broader research 

framework of developing cheaper methods of groundwater-phosphorus interaction 

monitoring at operational level. A specific goal was set to synthesize groundwater table 

fluctuation and use it as a predictor of soluble phosphorus. The study supports existing 

groundwater and nutrient monitoring activities by SFWMD and Everglades Foundation 

which is reported to be expensive and logistically difficult. The study has particularly 

benefited the Everglades Foundation that sought quantification of phosphorus load, 
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before and after the Kissimmee River restoration program (before 1999 and after 2009), 

and also identification of hotspots of phosphorus sources.  

1.2. Hypothesis 

It was hypothesized that estimate of soluble phosphorus load using groundwater 

fluctuation as a predictor and the measured soluble phosphorus load should show 

similarity at 90% of the time.  In other words, there should not be significant difference 

between measured and predicted phosphorus concentration more than 10 percent of the 

time (p=0.1). 

Retrieval of phosphorus using groundwater level as a predictor is relevant in a 

shallow groundwater system as in SF where subsurface flow dictates nutrient transport. 

Also, understanding the relationship between groundwater fluctuation and phosphorus 

load both at point and regional scales supports decision making on groundwater table 

management, one of the main duties of SFWMD. 

1.3. Objectives of the study 

In this study, specific objectives were set to: 

• Develop a model that simulates a point scale groundwater level in the major 

surficial hydrogeological regions of south Florida which would be an input for 

operational prediction of soluble phosphorus. 

• Develop a spatio-temporal model that simulates groundwater fluctuation which 

would be an input for spatial analysis of groundwater-phosphorus interaction.  

• Conduct a case study of watershed based nutrient transport assessment that 

estimates soluble and sequestered P which would be an input for spatial analysis 

of groundwater-phosphorus interaction..  
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• Develop a remote sensing approach for phosphorus level estimation on surficial 

water bodies that support the prediction of soluble phosphorus load from sources, 

and  

• Conduct a multivariate analysis on the predictability of soluble phosphorus  

1.4. Methodological framework and structure of the documentation 

A Point scale groundwater fluctuation simulation (objective 1) was met using 

sequence based Markovian stochastic method, a probabilistic approach discussed in 

Chapter 3. The simulation is an input for a regional scale spatiotemporal groundwater 

forecasting. The spatiotemporal groundwater fluctuation simulation (objective 2) 

discussed in Chapter 4, involved identification of explanatory and latent factors for the 

synthesis of the groundwater level. The approach has a comparative advantage where 

watershed based models are not applicable. The spatiotemporal groundwater simulation 

output was also used for spatial pattern analysis and as a predictor to soluble phosphorus 

load (Chapter 7). 

A gridded data of soluble phosphorus was vital to validate against the newly 

predictive model introduced in this study. The data was derived from a watershed based 

physical model called ArcWAM, calibrated for SF context and endorsed by SFWMD. 

Kissimmee basin was identified for a case study and objective 3 (Chapter 5) was met 

simulating soluble and sequestrated phosphorus in the wetlands.  

Another input presumed to serve groundwater-phosphorus interaction was the 

phosphorus level of surficial water bodies. The notion is that the Kissimmee River 

phosphorus level is a key feedback from the groundwater-phosphorus interaction, and 
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hence an input for the spatiotemporal soluble phosphorus simulation. Given the spread of 

surficial water bodies at regional scale, it necessitated application of remote sensing 

approach for cost effectiveness. So, phosphorus level of surface water bodies (objective 

4) discussed in Chapter 6 was met by analyzing Landsat Thematic Mapper satellite 

imagery using Artificial Neural Network (ANN).  

Finally, a spatial pattern analysis of groundwater level and soluble phosphorus 

load was conducted using chi-square analysis. Also, geographically weighted 

multivariate analysis was tested to identify key inputs for groundwater-phosphorus 

relationship development. The significance of the method is also tested and deduced in 

Chapter 7. 
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CHAPTER II 

2. Literature Review 

2.1. Phosphorus cycle and the effect of groundwater fluctuation in wetland ecosystems 

Raisin et al. (1999) reported that groundwater-fed wetlands are nutrient sources to 

the surficial water bodies during base flow as well as storm flow conditions. The result 

was supported by Corbett et al. (2002), reporting groundwater loading of phosphorus (P), 

“2 to 7 times the natural level, although 50% reduction was observed from the 

background concentration”. The increased release of phosphorus from the water column 

and soil matrices upon wetting and drying (fluctuation of groundwater) was reported by 

Moreno-Mateous et al. (2009). A report shows that the median P concentration in most 

aquifers was above the thresholds of the ‘ecological requirement’ (Kadlec, 2006).  

The phosphate-groundwater dynamics in the wetland system of karst 

hydrogeology site is dominated by the Ca-P dissolution and precipitation processes. The 

process could be conceptualized by a framework of adsorption vs. desorption, 

precipitation vs. dissolution, mineralization vs. immobilization, plant uptake and leaching 

(Kadlec, 2006; Nahra, 2006). Part of the framework for the wetland system includes 

influx of nutrient from catchments vs. outflow (discharge) to water bodies both in 

surficial and groundwater systems (Kadlec, 2006).  

Adsorption vs. desorption is the fastest process that involves the interaction of the 

phosphate ion with the soil particles governed by an equilibrium balance of the soils 

charged surfaces with the solution ionic content (Nahra, 2006). The proportion of the 

ionic content in the soil solution against the adsorbed amount is dependent on the type of 

soil with the general characteristic of finer soils having higher adsorption capacity 
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(Nahra, 2006). The precipitation vs. dissolution process is known to be the slowest 

process that involves a reaction of phosphate ion with calcium in calcareous soils and 

with Fe/Al in acidic soils forming a stable calcium phosphate or Fe/Al phosphate, 

respectively (Nahra, 2006). The precipitation process in karst areas is dominated by 

formation of calcium phosphate. The process takes place until saturation is reached and 

after which excessive supply of phosphate or calcium has little effect on mobility of the 

phosphate ion. The mineralization process is a conversion of organic phosphorus to ionic 

phosphate making it available to mobility and plant uptake.  The process is favored with 

the subsidence of shallow water table that increases microbial activity. Immobilization is 

a reciprocal process of mineralization involving consumption of phosphate ions by 

microorganism and making immobile organic phosphorus. The framework indicated on 

Figure 2.1 is a simplified form of the complex processes of phosphorus adapted after 

Kadlec (2006), Charles et al., (2005) and Nahara (2006).   

 

Figure 1.1 Phosphorus dynamics framework 

A/D – Adsorption/Desorption; P/D – Precipitation/Dissolution; M/IM – Mineralization / 

Immobilization  
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In general, the process of conversion and mobility of phosphorus is dependent on 

the soil type, microbial activity, sources of phosphorus, vegetation, temperature and 

hydrological processes (drying and wetting) (Raisin et al., 1999). The higher the 

vegetation diversity, the higher would be the uptake of phosphorus. Similarly, the drier 

the subsurface, the greater will be the aerobic microbial activity that facilitates 

mineralization. If intense rainfall is preceded by drier period that favor mineralization, the 

mineralized phosphate certainly impacts water bodies because of its high mobility 

(Moreno_Mateos et al., 2009). The same report indicated that phosphorus load was 

enhanced by the drying and wetting cycles during a summer season.  In Fe/Al rich soils, 

the mineralized phosphate would be attenuated by an adsorption process. However, in the 

case of calcareous soil, drier condition rather allow availability of freely mobile 

orthophosphate ions; the maximum being in times of extended summer that allows 

excessive microbial activity (Young et al., 2006). The same report argued that increased 

microbial activity and maximum phosphorus loads are associated with extended summer 

(climate change).   

The pragmatic way forward is to monitor phosphorus load over shallow water 

bodies and understand complex processes between groundwater and phosphorus 

dynamics in a wetland ecosystem (Young et al., 2006). A remote sensing approach is 

known to be the cheapest approach with no compromise on the quality of the monitoring. 

2.2. Phosphorus monitoring over water bodies: A remote sensing approach  

Applicability of remote sensing to monitor vegetation, precipitation and water 

quality has been reported by Griffth (2002) and Dekker et al. (1996). The relevance in a 

large wetland system is evident for its cost and efficiency to capture basin-wide data. A 
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remote sensing is a necessity to capture water quality parameters in the surficial water 

bodies and relate the phosphorus level against the background groundwater 

concentration. Its importance in a large wetland system in terms of reducing cost of 

monitoring was reported by Chebud et al. (2011) given a recent transition from airborne 

to optical sensors capability to capture water quality parameters. Landsat Thematic 

Mapper (TM) capability to retrieve water quality parameters of chlorophyll-a, turbidity 

and phosphorus was reported by Zhang (2002). 

The different methods used to predict phosphorus include multiple regression 

analyses, neural network methods (Zhang, 2002), and empirical methods (Ritchie et al., 

2003) are commonly used to retrieve water quality parameters. The neural network 

approaches is considered inclusive for its capability to use all the bands as information 

containers (regardless of redundancy) (Zhang, 2002). Importance of neural network 

methods is evident especially on shallow water bodies where the back ground effect from 

sediment needs to be trained. 

2.3. Groundwater and solute transport: A deterministic Approach 

Groundwater and solute transport are coupled by mass balances of the flow and 

hydrogeologic property of the aquifer namely the hydraulic conductivity and diffusivity 

parameters (Equations 2.1 and 2.2). Two of the approaches for quantification of 

groundwater and solute transport, commonly called deterministic methods, use Darcy’s 

Law and Fick’s Law respectively.   

     t

h
SIhK y ∂

∂+=∇∇ )(
    

       (2.1) 

Where K is hydraulic conductivity of the medium; h is head of water; I, recharge, 



 
11

Sy is the specific yield,  t is time and ∇  the gradient operator; 

t

C
RCD

x

C
v

∂
∂=∇∇+

∂
∂− )(

    (2.2) 
 

Where ν is Kinematic viscosity; D is dispersion coefficient; R is the retardation factor 

given by 1+ ρb Kd /θ; ρb is bulk density; Kd is adsorption isotherm and; θ is porosity.  

The retardation factor (R) is the most important factor that captures chemical 

reaction processes of phosphors explained in the percentage of attenuation (degradation) 

in the transport. Applying a finite difference method and boundary conditions to the 

partial differential equation and populating parameters, a spatiotemporal dynamics of 

head of groundwater and phosphorous transport could be retrieved. The relationship is a 

basis for watershed based hydrological models that are used to model surface 

groundwater interaction and nutrient transport deterministically. 

 In the SF context, first, the approach would suffer at least from the absence of 

clearly delineated watershed boundary because of the flat topography with no flow 

dividing lines, except the Kissimmee River basin, which constitutes less than 25% of the 

land mass of SF. Second, the watershed-based models are less practical for operational 

prediction in karst hydrogeology because of the dynamic nature of the hydrogeological 

factors K in equation 2.1; and also D and R in equation 2.2, which raise parameterization 

uncertainty whenever changes occur ( Denic`-Jukic` et al., 2003). Third, in karst 

hydrogeologic areas, quantifying surface–groundwater interaction using distributed 

hydrological models is a difficult exercise since the watershed based hydrological models 

are computationally intensive requiring frequent recalibration whenever new data inputs 

are entered.. 
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2.4. Data driven stochastic simulation of groundwater fluctuation 

A storage change on groundwater transport models is conceptualized as the net 

balance of inflow and outflow from aquifers (Anderson and Woessner, 2002). Inflow 

sources are rainfall, soil moisture in the profile, surface water bodies, and regional 

groundwater flow. The outflow is captured in the form of evapotranspiration, abstraction 

by different users and leak from aquifers (Anderson and Woessner, 2002). Rainfall being 

one of the drivers of the shallow groundwater budget, its random nature dictates the 

nature of water table fluctuation stochastically (Chebud and Melesse, 2011). Laio et al. 

(2007) has shown that infiltration and evapotranspiration have a random behavior 

because of the rainfall stochasticity.  

The random nature of the water table fluctuation is actually not only from the 

rainfall and stream flow but also because of the spatial variability of soils (subsurface 

aquifers) and their respective hydraulic variables. Texture, porosity, and conductivity of 

medium dictate the spatial stochastic nature (Iturbe et al., 2008). The implication is that 

nutrient transport would also be dictated by the stochastic behavior because of the 

dependence of the diffusivity factor on hydrogeological properties.  

In contexts of large wetland systems, karst hydrogeology and complex interaction 

with surface and oceanic water, effectiveness of data driven and dynamic stochastic 

models were reported by Zhang et al. (1999; 2002).  Markovian probabilistic simulation 

observations have proven predictions up to a month time span (Chebud and Melesse, 

2011).  Unlike deterministic-based stochastic method that suffers from the error 

propagation, data driven stochastic simulation were observed to minimize error 

propagation. The data driven approach is effective for forecasting at monitoring sites, if 
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the relationship is developed from long-term observed data and the model is updated 

whenever new observations are made. In the context of SF, significant hydrological 

monitoring data had helped to develop a simplistic data-based model on groundwater 

fluctuation and stream flow (Zhang et al., 1999).  

2.5. Perspectives of spatiotemporal groundwater-phosphorus interaction simulation 

Given the shallow nature of groundwater and the flat topography of SF, the water 

table can be retrieved on the basis of signals from rainfall, soil moisture, and 

probabilistically from past data.  Beldring et al. (1999) and Jacobs et al. (2004) have 

shown the stability of the soil moisture variance with time and predictable relationship 

with water table fluctuation. A study by Itrube et al. (2006) has shown that soil moisture 

has a power probabilistic distribution regardless of the land use and soil distribution. 

Integration of a spatial structure on point scale processes as well as identification of 

explanatory and latent factors is a key aspect of spatiotemporal modeling.  

However, since capturing all the input variables would not be attainable, the latent 

factor will explain the aggregate of such unidentified factors whereas the exploratory 

factors would be selected using the minimum Akaike Information Criterion (AIC). Both 

the latent and explanatory variables could be determined using dynamic factor analysis 

that helps to identify the input variables as well as their loadings at different spatial and 

temporal scale. The loadings derived at different points could contribute to the regional 

scale forecasting as the weight of variables change over space and time. Finally, the 

spatiotemporal synthesis of groundwater level would support identification of a spatial 

correlation between groundwater and phosphorus concentration at grid points in space 

and ultimately simulation of phosphorus load.  
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CHAPTER III 

3. Operational Prediction of Groundwater Using Markovian Stochastic model 

Chebud, Y., Melesse, A.M, 2011. Operational Prediction of Groundwater Fluctuation in 

South Florida using Sequence based Markovian Stochastic Model, Water Resources 

Management, 25(9): 2279-2294, DOI: 10.1007/s11269-011-9808-z.  

3.1. Abstract 

The ecosystem of south Florida is characterized by a large wetland system, karst surficial 

hydrogeology, and extended coastal boundary. The ecosystem is poised under risks of:  

ecological failure as a result of increased fragmentation by urbanization; groundwater 

flow disruption because of sinkhole formation; and intrusion of oceanic water with 

decreasing water table head because of drought and over pumping. Synthesizing a 

spatiotemporal state of the groundwater hydrology and developing a forecasting model 

was found important to support the intensive management and monitoring in place. An 

objective was set to develop a stochastic sequence model capable of forecasting 

groundwater levels on a monthly span at a daily time scale. The groundwater level 

simulation was conceptualized as a sequence of daily fluctuating states of magnitudes and 

patterns that has a defined probability of occurrence.  The model setup involved 

representation of daily fluctuation magnitudes in 10 states and pattern changes in 3 states. 

The sequential occurrence of states of magnitudes and patterns at each time step was used 

for estimation of the transitional probabilities and employed in a hidden Markov model 

frame work for ensemble generation and estimation of posterior probabilities. A 

realization was chosen using the highest maximum likelihood ratio of 90% and smallest 

root mean square error of 0.05 – 0.12 m against the historical data. A monthly forecasting 
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at daily time step was done dynamically incorporating observed data at each time step 

and revising prior and posterior probability estimation in the hidden Markov model 

formulation. A case study was conducted at three well sites, which are situated at three 

different hydrogeologic settings. The model not only reproduced annual groundwater 

fluctuation patterns but also forecasted monthly fluctuations at maximum likelihood ratio 

above 90% and root mean square error below 0.15m. A further study was recommended 

first to analyze break point parametric estimation for seasonal analysis, and secondly to 

integrate the approach in other hydrological models for the purpose of synthetic 

groundwater fluctuation generation.  

Key words: Groundwater, Stochastic Sequence , Hidden Markov Model, South Florida  

3.2. Introduction 

The ecosystem of south Florida is dictated by a large wetland system, karst 

surficial hydrogeology, and extended coastal boundary with the Atlantic Ocean 

(Gunderson, 2001). The wetland serves to temporarily retain excess surface water during 

the wet season and releases it to streams during the dry season (Paynter et al., 2011). 

However, because of the anthropogenic interference through canal dredging, 

channelization, and drainage it has resulted in fast movement of water to the downstream 

side entailing a risk of disconnectivity of groundwater dependent wetlands during 

extended dry seasons (Ali, 2009). On the other hand, the shallow nature of the 

groundwater and the flat topography makes the urban areas susceptible to the 

groundwater table rise and flooding problems. Regardless of the water level management 

operations, the risk of groundwater rise in urban areas and flooding is prevalent at times 

of high rainfall events, mainly in hurricane seasons.  
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The karst hydrogeology dictates the direction of surface-groundwater interaction 

of the wetlands and canals with occasional disruption of groundwater flow because of 

frequent sinkhole formation (Genereux et al., 1999). The same report indicated re-

connectivity problems of the wetlands which could be exacerbated by sinkhole formation 

posing  both spatial and temporal uncertainty of the groundwater supply to the ecosystem. 

Practices such as surface water abstraction for agricultural practices (Ahmad et al., 2010) 

and domestic use from the surficial aquifer potentially exacerbate the already fragmented 

wetlands through anisotropy and groundwater flow disruption.  

The oceanic coastal boundary poses saltwater intrusion risk whenever the 

groundwater head drops in times of drought or because of over pumping. The thin vadoze 

zone especially along the urbanized coastal areas makes the groundwater susceptible to 

salt water intrusion. The coastal areas naturally maintain their equilibrium through 

flooding in the wet season that counter balances saltwater intrusion. Nevertheless, with 

the expansion of urbanization, the water is partly drained, and in part siphoned for 

industrial or agricultural use, decreasing the water table head further and consequently 

allowing intrusion of ocean water.   

The dryness and wetness of the subsurface because of groundwater fluctuation 

also dictates microbial activity and hence enhances redox processes of nutrient 

mineralization and subsequently its mobility. Apparently, a prediction model on 

groundwater fluctuation would help to predict phosphorus load. 

Currently, the natural equilibrium of SF ecosystem is poised under intensified 

artificial management.  South Florida Water Management (SFWMD) employs extensive 

monitoring with over 1834 stations as part of the management effort to cope against the 
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spatial and temporal uncertainty of the groundwater level dynamics (Florida Council of 

100, 2003). Evidently, availability of data is an opportunity to support the management 

style through synthesis of the spatiotemporal surface-groundwater data and predicting the 

risks related to ecological failure because of groundwater flow disruption; flooding in 

urban areas from groundwater surge in extreme rainfall events; intrusion of saltwater with 

groundwater head drop at times of drought; and nutrient load to surficial water bodies.  

In this research, it was intended to develop a point scale stochastic groundwater 

prediction model that could in the longer term evolve to serve as a component of a 

regional scale spatiotemporal surface-groundwater forecasting model.  The rationale for 

choosing the stochastic approach was (1) its capability to predict any risk 

probabilistically, (2) the stochastic approach is preferable to watershed based 

hydrological models because of the flat topography and extended boundary with the 

Atlantic Ocean which makes delineation of flow dividing lines difficult for the latter 

approach. Only the Kissimmee River basin which covers less than 25% of the district 

could be practically modeled using watershed based approach, and (3) despite the fact 

that south Florida ecosystem is highly managed, rainfall is one of the driving forces of 

groundwater level fluctuation of the surficial aquifer system and hence the stochastic 

approach is acceptable for the stochasticity of the rainfall embedded in the system. The 

assumption holds true, especially on monitoring stations that are reasonably at far 

distance from surface water bodies, whose daily variation would not be influenced at 

short time scale.  

A specific objective was set to develop a sequence based Markovian stochastic 

model that predicts groundwater level at a daily time scale over a span of a month. The 
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study hypothesized that no significant difference would be observed at P value of 0.01 

between a state sequence representation of groundwater fluctuation the measured 

groundwater level.  

Several authors introduced application of Markovian stochastic models for 

synthetic generation of stream flow, power and wind speed (Aksoy, 2004; Aksoy, 2003; 

Szilagyi et. al., 2006; Zahabiyoun, 2005; Shamshad et. al., 2005). The analogy of 

groundwater fluctuation patterns with stream flow pattern would be intuitive in view of 

the similarities of flow patterns that show increasing, decreasing  or constant flow  

(Aksoy, 2004) versus the rising, falling and constant head of groundwater levels. In other 

words, groundwater fluctuation could be represented by the states of the daily fluctuation 

magnitudes and daily change of patterns similar to the stream flow states representation 

by Aksoy (2004).  

The approach is conservative since the size of states and patterns are from the 

long term daily fluctuation and hence less affected by error propagation unlike other 

stochastic methods such as the perturbation method. Moreover, the fact that the approach 

is sequence based and is reliant on historical data makes it unique over other stochastic 

approaches such as the Monte Carlo method that relates probabilistically only the 

preceding and the proceeding events.   

The model development was conceptualized by designating states of fluctuation 

magnitudes and patterns with a prior and posterior parametric formulation on the basis of 

experiences from the stream flow generation studies with a purpose to adapt it to the 

groundwater simulation. The assumption was that stream flow and the groundwater 

fluctuation have analogous patterns of daily increase or decrease. Upon model 
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development, choice for a realization was made using maximum likelihood ratio (MLR) 

and the root mean square error (RMSE) requirements which were tested to maintain 

statistical and pattern consistency of the observed and generated data. The analysis draws 

achievements on monthly forecasting at daily time step and the adaptive behavior of the 

model. Further analysis on its efficiency as part of a regional scale spatiotemporal model 

is also recommended. Last, a break point analysis for seasonal simulation and integration 

of the approach to other hydrological models is suggested. 

3.3. Background 

One of the factors influencing the water table fluctuation in surficial aquifers is 

precipitation (Park et al., 2008). Forced by the random nature of the rainfall, the 

magnitude and pattern of the water table fluctuation assumes a stochastic behavior. As a 

matter of fact the magnitude of the fluctuation is the size of the change whereas the 

pattern is characterized by the state of rise (recharging), drop (discharging) or remaining 

constant.  A stochastic simulation captures both daily magnitudes and patterns of 

groundwater fluctuation by their respective states which represent a range of variation 

that has a defined probability of occurrence in time series. A sequence (time series) of 

states of fluctuation magnitudes and patterns are chosen when the joint probability is 

maximum and also the pattern agrees with observations (Janssen et al., 2006).   

3.3.1. Magnitude of states of groundwater fluctuation 

The daily groundwater fluctuation varies randomly as indicated by schematic 

drops and rises ( l1, l2, l3 in Fig 3.1). If large datasets are available, Najib et al. (2007) 

suggested a coarse resolution of fluctuation states defining peak-over-threshold (POT) 

approach which uses ascending and descending patterns occurring at consecutive time 
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steps.  The POT needs to satisfy the condition that consecutive peaks be independent 

(Najib et al., 2007).  

The fluctuation magnitudes could be represented by a category of states (si) and a 

prior probability of occurrence. For a length of a study period, the groundwater 

fluctuation could be viewed as a sequence of the states which occur at each time step 

shifting from state si to state sj in accordance with their transitional probability Msisj 

formulated in a Markov notation (equation 3.1).  

 

Figure 3.1 Daily fluctuation magnitudes, and peak-to-threshold representation (POT)  

        of groundwater fluctuation. POT1, POT2 are (peak-to-threshold at times 1 and 2) 
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3.3.2. Directional Patterns of groundwater fluctuation 

Adopting states of intermittent flow pattern suggested by Aksoy (2004), the 

pattern of the groundwater fluctuation could be categorized as the recharge mode 

(increasing water level), discharge mode (decreasing water level), or constant (for no 
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changes in water level). Schematically, it could be represented as shown in Fig. 3.2, with 

notations of a, d and c to represent ascending, descending or constant. Each of the 

patterns are observed (‘emitted’) associated with the states of the magnitude si. For each 

occurrence of state of magnitude si an associated emission probability ep as is tabulated 

described in Table 3. 

 

Figure 3.2. Groundwater fluctuation pattern 

Table 3.1 Emission probability representation 

 

 
3.4. Methodology 

3.4.1. Building a state sequence model from the groundwater time series data 

The daily time series of groundwater fluctuation was conceptualized as sequence 

of states of magnitude and direction that have a joint probability of occurrence. So, any 

realization of a sequence (time series of groundwater fluctuation)  constitutes a 

combination of n states of magnitude, s1, s2, …, sn , that have a probability of occurrence 

derived from the joint probabilities of the transition of states. Using an analogous 

relationship of genome sequencing from Durbin et al. (2001), the probability of a 

sequence could be defined by (equation 3.2)  
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 ….s1)….Pr(s1)          

 where si 
k is the ith state of magnitude of fluctuation that occurred at the kth order 

of a t length sequence (time in this context). For the first order Markov chain, the 

probability of each state of magnitude at the kth order (sk) is dependent only on the (k-1)th 

order state (sk-1 ) in the sequence ;  leading to a simplistic formulation (equation.3. 3) 

whose final representation uses the notation of equation.3.1. 
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In the kth order of the sequence, a given state of magnitude has three possible states of 

patterns with emission probability, ep (Table 3.2). Assuming independence of occurrence 

of the patterns, the probability of an observable pattern of the fluctuation over a given 

sequence of states (s) of magnitudes is a conditional probability derivable from (equation 

3.4) and implemented as shown in (equation 3.4). 

∏
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Where  is the emission probability for each states at the kth time order.  The 

probability of a realizable sequence can be determined using the joint probabilities of the 

states of magnitude and patterns represented by the transitional and emission probabilities 

respectively as shown in equation 3. 5.  
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3.4.2. Choice of a realization of a sequence 

A realization of magnitude and pattern at each order of the sequence depends on 

the maximum probabilistic value determined from the joint probability (equation 3.5). In 

other words, the sequence will be selected using a critical path that connects states and 

patterns whose joint probability is maximum at each time step (in the order of the 

sequence) (Durbin et al., 2001). Evaluation of probabilities at each step in the sequence 

and selection of states and emission is called the Viterbi critical path approach, 

demonstrated in Figure 3.3. The Viterbi critical path choice for the maximum joint 

probability ‘V’ at the kth
 order for the t long sequence is commonly done using a 

requirement (equation 3.7) (Durbin et al., (2001). 

 )(])1([)(
2,1
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jji SSSi

n

j ⋅⋅−=
⋅⋅⋅

    (3.6) 

For the first order of the sequence, a state that gives the maximum joint 

probability with all combinations of emission probabilities is chosen. However, in most 

practical cases, the iteration begins by assigning a given state with a probability 1 to 

initiate. The different possible states also take initial probability of 1 whenever new 

sequence is started.  For conservative steps, the product of each state probability P(si) and 

emission probabilities (esi) will be compared and the state and emission with the 

maximum product will be chosen. In order to choose a state for the second order in 

sequence, the maximum product should constitute: (i) the transitional probabilities MSiSj 

from the Markov model that assigns its value on the basis of the chosen state in step 1 to 

all possible new states of magnitude ‘si’; (ii) possible emission probabilities from Table 
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3.2; and, (iii) the previous probability (determined at  the 1st step) that serves as a 

weighting factor. In general, the choice of the state and pattern at the kth order (other than 

first step) has to use a product of preceding maximum probability and the joint 

probability of the transition from previous state i-1 to the next state i defined by the 

transitional and emission probabilities (equation 3.5). The output of the iteration will be 

an ensemble of a sequence of states and patterns (time series of fluctuation). 

The steps followed in selection Viterbi critical path are as follows 

1. Start by choosing an initial state in the sequence that has maximum joint 

probability in terms of magnitude and pattern: 

 ji SS

n

j ePMaxV ⋅=
⋅⋅⋅

][)1(
2,1

      (3.7) 

2. The states and pattern in the 2nd order of the sequence is chosen as  

 jji SSSi

n
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⋅⋅⋅

])1([)2(
2,1

     (3.8) 

3. The states and pattern in the kth order of the sequence is chosen as: 
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   (3.9) 

4. Continue the selection till the end of the sequence length. 
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Figure 3.3. Trellis diagram of the Viterbi critical path selection 

3.4.3. Wells Selection 

The four major surficial hydrogeological units categorized by SFWMD are 

geographically classified as the lower east coast area, the lower west coast area, 

Kissimmee basin, and the upper east coast (Figure 3.4). The hydrogeological unit at the 

upper east coast called the Anstasia formation was dropped for its representation of very 

small area in the district. The lower eastern coast area was identified by the highly 

transmissive Miami limestone;  the Kissimmee basin has unidentified formations overlaid 

by clastic sandy medium soil that has high drainage characteristic; and the western 

coastal area was identified by Forthompson formations that has poor transmissivity. 

Wells farther than 2 miles from riverside and canals were selected (to capture the 

natural fluctuation) from the three hydrogeologic units using the Geographic Information 
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Systems- ArcGIS analyst. Three well sites, G3356, POS-12, and ST2-G stations, which 

are situated at lower east coast, Kissimmee Basin, and the west coast area in order were 

selected. The selection of specific well was randomized from a number of wells within 

the hydrogeologic unit. Groundwater level measured by the SFWMD was collected from 

the SFWMD DBHYDRO database. 

 

Figure 3.4 Wells selected from SFWMD 

3.5. Results and Discussion 

The raw data of groundwater fluctuation head showed extended patterns of 

discharging with some episodes of recharge for months from October to May (a dry 

season in SF). Whereas the period from June to September could be characterized by 

frequent recharging and rise of the water level. Multiple years of data from POS-12 

station (Figure. 3.5) showed almost the same pattern of seasonal variation, which was 

similar across all other sites. The pattern from June to September showed rapid 

fluctuations while months from October to May are dominated by decreasing head 

pattern. Despite the seasonal pattern, the annual data set from year to year showed very 

small differences of variances  (0.1 – 0.4), and the assumption of stationarity was held for 

the Markov stochastic model application. 
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Figure 3.5 Groundwater head fluctuation at POS-12 station, 2004-2009 

3.5.1. States representation and prior probability estimation 

First, daily fluctuations were calculated from the total head data taking difference 

of heads from consecutive time steps using equation (3.11). Second, the maximum daily 

fluctuation was chosen from the daily averaged data for the study period of each of the 

sites (2000-2009 for G3356 and ST2-G stations, and 2004-2009 for POS-12 station). 

Thirdly, states of water level changes were represented by segmenting the maximum 

observed daily water level change into 10 states at 10% interval. So the first state 

represented water level changes that are below 10% the maximum daily fluctuation; the 

second state represented water level changes between 10-20 % of the maximum daily 

fluctuation etc., and continued up to the 10th state representing 90 - 100% of the 

maximum daily water level change (equation 3.12).  

h n = Hn –Hn-1 ,                                                                    (3.10) 

Si = [10 • i • Maximum (hn)  ]  %.        (3.11) 

n = 1, ….,365 , hn  is the nth  date fluctuation,  Hn, head of groundwater level on nth day 

and  Si  is the ith  state 

   The prior transitional probability was estimated for the 3 sites from the data 

(Janssen et al., 2006) and denoted by Msi,sj  to represent the probability of transitions 
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from each of the 10 states s1, s2,  . . .¸ s10 (Tables 3.2a, 3.3a and 3.3a). Also emission 

probabilities that represent states of the pattern were derived from daily differences of 

water levels (Janssen et al., 2006) assigning positive changes (ascending) as “a”, negative 

changes (descending) as “d”, and no changes in water levels (constant) as “c” ( Tables 

3.2b, 3.3b and 3.4b).   

Table 3.2 Transitional (a) and emission (b) probabilities, station G3356 

 

Table 3.3 Transitional (a) and emission (b) probabilities, station POS12 
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Table 3.4 Transitional (a) and emission (b) probabilities, station ST2-G 

 

 
3.5.2. State sequence simulation 

In order to observe relationship of states sequence representation with the 

observed data, the annual head of the state sequence (derived from the data) was fitted to 

the observed annual pattern of the groundwater level. The state sequence derivation from 

the data required substitution of the actual daily groundwater fluctuation by the states of 

magnitude and pattern, and adding them at daily time step to obtain the annual 

fluctuation. The simulation was done using Matlab script and fitted to the observed data. 

The close agreement confirmed that the assumption of state sequence conceptualization 

was realistic as shown for the case of G3356 station in Figure. 3.6b, and for ST2-G and 

POS-12 stations in Figures 3,7a and 3.7b, respectively. Three of the sites showed a good 

agreement with the observed data. The specific fit confirms the possibility to represent 

the groundwater fluctuation using state sequences.   

Using the prior transitional and emission probabilities, random sequences were 

generated that assigns each new sequence a posterior joint probability derived from the 

transitional and emission probabilities (Figure 3.6c). The selection of a realization was 
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done on the basis of the maximum likelihood ratio criteria. Since the joint probability of 

the sequence (implemented using (equation 3.5)) had very small values, known to cause 

numeric underflow problems (Macdonald, 1997), the logarithmic likelihood ratio was 

used (equation 3.12). The MLR selection criterion was set at 90% to limit the increased 

computational time and also avoid failure of convergence as the requirement was 

increased.  
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MLR is the probabilistic ratio of the sample sequence against the observed data.  

However, selecting a sequence that had the same probability as the observed posed a 

pattern irregularity problem on the realizations at detailed points in the sequence order.    

In other words, the MLR ratio did not guarantee the resemblance of the pattern. So, a root 

mean square error (RMSE ≤ 0.15m) was employed as second criteria at least to narrow 

the gaps at peak and threshold patterns with the observed data.  The result was a closer fit 

of the simulated fluctuation with the observed pattern for all sites (Figure 3.6d, 3.7c and 

3.7d), whose RMSE and MLR statistic showing the agreement (Table 3.6).  The 

graphical fit was acceptable given the variability of fluctuations over a year that has 

moment of discharging and recharging.  

Table 3.5 RMSE and MLR of the simulated against the observed 
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Figure 3.6 Station G3356: a) Daily fluctuation b) state sequence representation c) 

ensemble generation and d) Simulated fit 

 

Figure 3.7 Station POS-12: a) state sequence representation, ST2-G station: b) state 
sequence representation,  POS-12 station: c) simulated fit, ST2-G station: d) Simulated fit 
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3.5.3. Integration of the Stochastic Sequence Model for operational prediction  

One key application of the groundwater fluctuation modeling was for operational 

prediction. In this analysis, the observed daily fluctuation data was first segmented for 

each month. The first month data (January for this case) was considered as an observed 

data used for selection criteria test of a realization that had to satisfy the RMSE and MLR 

to accept the forecasting for February. In order to forecast for March, the prior 

transitional and emission probabilities were re-estimated from the observed historical 

data upon incorporating the new observations from February. The process continued 

adapting the transitional and emission probabilities as more observations are made 

through the period of study (12 months). In all the 12 month forecasts, the MLR was kept 

above 90% while the RMSE was below 0.15. The result showed a consistent forecasting 

with the observed data except at the timings of seasonal shift (in this case June and 

October), Figure. 3.8. The first order Markov model depends only on a one step prior 

state. So, the seasonal shift might have caused a bias on prior probability estimation as a 

drainage dominated month of May was expected to predict a recharging (wet season) 

month of June, and vice versa for the case of October. Even then, the observations in both 

June and October automatically corrected the forecasting as the observation was 

incorporated for the forecast of the preceding months.  Separate analysis of forecasting on 

half-yearly basis starting once in October (beginning of drier season) and the other 

starting in June (beginning of wet season) might give an improved RMSE and a pattern 

of fit at all cases compared to the annual cycle forecast. However for simplicity (a 

requirement of operational prediction) annual cycle prediction could be acceptable as 

long as the RMSE is less than 0.15m.  
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Figure 3.8 Monthly spanned forecasted groundwater level  at POS-12 station 
3.6. Conclusion  

The agreement between state representation of the daily fluctuations and the 

observation data confirmed that the sequence based stochastic model offers an alternative 

approach for simulating and forecasting the water table. The states representation 

simulates both the pattern and magnitude acceptably, and its adaptability was proven via 

the Markov model specification. The method could be employed at all sites as 

demonstrated in the three different hydrogeological units which almost cover the district.  

For a more accurate simulation and forecasting, both MLR and RMSE criteria had 

to be employed to retrieve the pattern with good agreements on peak and thresholds as 

well. Acceptable limits of MLR and RMSE need to be set to retrieve a realization from a 

possible random sequence generation with a defined sequence probability. Raising the 

requirement of RMSE has led to convergence compromising MLR and vice versa. In 

other words, as MLR criteria was raised and the computational time grew exponentially 

to satisfy RMSE, in some cases with failure of convergence.  So requirements of MLR 

and RMSE at 90% and 0.15 m, respectively required optimal computation time without 

compromising the results.  
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The model testing for forecasting through segmented daily fluctuation data on 

monthly basis showed that except for months when seasonal changes occur, the results 

were in good agreement.  However, experts knowledge of seasonal changes and 

conscious analysis would help till more data from the new season could be obtained and 

incorporated.  

The model could be used for point scale forecasting at different sites over 

SFWMD. Apparently, interpolating forecasted data obtained from point scale simulation 

would help to develop regional contours that would need to be developed for 

comprehensive synthesis of the hydrological state. Such an approach is vital for SF which 

requires close monitoring and understanding of the surface-groundwater interaction over 

coastal areas, urban zones, and wetland ecosystems. In other words, it could serve as a 

synthetic groundwater data generating component for a regional scale spatiotemporal 

forecasting models inclusive of watershed based models. Finally, observation on seasonal 

versus annual cycle forecasting would be relevant for a further critical analysis and 

parameterization of breakpoints.   
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CHAPTER IV 

4. Spatiotemporal surface-groundwater interaction simulation in South Florida 
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Water Resources Management (in review) 

4.1. Abstract 

South Florida ecosystem is dictated by a large wetland, karst hydrogeology and extended 

coastal boundary with the Atlantic Ocean. The risks related to the ecosystem include: 

disruption of groundwater flow as a result of frequent sinkhole formation; flooding in 

urban areas as a result of the shallow water table; saltwater intrusion from the ocean; and 

excessive nutrient load to surficial water bodies and subsequently eutrophication because 

of the intensive utilization of wetlands for nutrient removal. Attempts to understand 

ecohydrological processes primarily focus on extensive monitoring and use of distributed 

hydrological models. However, the relatively flat nature of the region and also the 

extended coastal boundary with the ocean, makes watershed based approaches less 

realistic. A regional spatiotemporal groundwater level modeling approach was attempted 

using a Dynamic Factor Analysis (DFA) method. The daily water levels of 13 monitoring 

well sites from major hydrogeologic regions and different land uses were used to conduct 

the DFA analysis, and six dynamic factors were identified using minimum Akaike 

Information Criterion (AIC).   Further exploratory analysis to relate the dynamic factors 
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with physically attributable explanatory variables has helped to identify five of the major 

factors that govern the groundwater dynamics in south Florida. Three of the factors were 

attributable to the Lake Kissimmee water level in the north, Caloosahatchee River water 

level in the west, and Hillsboro canal in the east. The other two factors identified were the 

regional averaged rainfall and soil moisture. The spatiotemporal simulation involved 

interpolation of the loadings of the dynamic factors using an inverse distance weighted 

method and convoluting with the dynamic factors. The result has shown a good fit with 

the maximum RMSE of 0.12m.  Given the fact that the factors, namely rainfall, soil 

moisture, and surface water level are derivable from satellite imagery, spatiotemporal 

operational modeling of the groundwater level is achievable. Making use of point scale 

groundwater level predictive models as a sub-component, the modeling approach could 

be used for regional scale operational forecasting.  

Key words: Surface-groundwater interaction, Groundwater, South Florida, Akaike 

Information Criterion, Spatiotemporal modeling, Dynamic Factor Analysis  

4.2. Introduction 

Surface-groundwater interaction in southern Florida is dictated by a wetland 

ecosystem, karst surficial aquifer, and the coastal boundary with the Atlantic Ocean 

(Gunderson, 2001).  The wetland ecosystem interacts with the stream flow retaining flood 

during the wet season and discharging subsurface water to the streams during the dry 

season.   The karst hydrogeology dictates direction of groundwater flow as well as the 

efficiency of nutrient removal vis a vis the dissolution of limestone and hence formation 

of sinkholes (Genereux and Slater, 1999). The coastal boundary with the Atlantic Ocean 

poses saltwater intrusion, especially when groundwater head drops.  
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Apparently any subsurface water management in the SF should take into account: 

the risks associated with ecological failure because of the connectivity of groundwater to 

the wetlands at times of drought; the risk of contamination by saltwater in the coastal 

areas where there is very thin vadose zone and over pumping of groundwater; flooding of 

urban areas from groundwater surge because of the flat terrain and shallow water table; 

and the risks associated with the use of STAs in the karst areas where nutrient attenuation 

could not be achieved.  

Recognizing such risks, South Florida Water Management District (SFWMD) 

uses over 1854 networked stations as a tool to monitor the ecohydrology of the region. 

Harvey et al. (2004) reported the logistical challenge to monitor connectivity of 

groundwater fed micro-ecosystems attributed to the large expanse of the wetland. The 

karst hydrogeologic setting of the district increases the complexity of monitoring because 

of the dynamic property of the hydraulic conductivity potentially causing flow directional 

changes (anisotropy), (Genereux and Slater, 1999). Evidently, real-time analysis and 

synthesis of the groundwater hydrology specifically spatiotemporal modeling of surface-

groundwater interaction at regional scale is vital for decision making. Such analysis 

would not be met using watershed based distributed hydrological models because of the 

absence of clearly delineated watershed boundary (indiscernible from the flat 

topography) with no flow dividing lines, except for the Kissimmee River basin that 

constitutes less than 25% of the land mass. In addition, the watershed based models are 

computationally expensive for operational prediction in karst hydrogeologic region, as in 

SF, because of the dynamic nature of the hydrogeological factors which raise 
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parameterization uncertainty whenever changes occur. For the purpose of operational 

modeling and prediction, low inputs and minimum parameterization is required.  

In this study, a regional scale spatiotemporal model capable of simulating the daily 

groundwater level was developed making use of existing data. The regional scale 

spatiotemporal model is intended to be linked with point scale groundwater operational 

prediction for regional groundwater level forecasting.  The model will be ultimately used 

to identify hot spots of groundwater drop/rise and also as a predictor for soluble 

phosphorus load. The point scale prediction was already developed for major 

hydrogeologic regions from which the model presupposes to use (Chebud and Melesse, 

2011). Therefore, the specific objectives of the study were to: 

• analyze the factors that influence regional groundwater level dynamics,   

• develop a regional scale spatiotemporal modeling approach for future use on 

spatial analysis of nutrient load, salt water intrusion, flooding etc.  

• develop regional scale operational prediction of groundwater dynamics. 

4.3. Factor Analysis 

Water table fluctuation in karst regions is affected by precipitation (Park and 

Parker, 2008, Knotters and Bierkens, 2001), air pressure changes and Moon’s tide 

(Ma`rkus et al., 1999), the soil moisture (Hoogland et al., 2010), surface water level 

(Ritter and Mun’oz-Carpena, 2006, Genereux and Slater, 1999). The effects of some of 

the variables are measureable and categorized as explanatory while the background 

effects of other hidden variables are assumed as latent (Markus et al., 1999). The latent 

factors could also represent unidentified explanatory factors (Zurr et al., 2003), or lack of 
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proper parameterization. The concept helps to reduce a complex interplay of factors to a 

minimum number through factor reduction method (Aggarwal, 1998).  

For explanatory variables reduction, Ramsey and Shaffer (2002) suggested 

sequential forward/backward stepwise regression methods imposing Akaike’s 

Information Criteria (AIC) or the Baye’s Information Criterion (BIC). The AIC and BIC 

inform the  log-likelihood of a model penalizing it for every addition of a parameter as 

indicated on Equation (4.1) and Equation (4.2) (Claeskens and Hjort, 2008). The 

difference in the two criterion is that in the case of BIC, penalization increases with the 

increased number of data and hence it is stricter than AIC.   The penalization is used to 

avoid complication from increased number of parameters. 

AIC = 2ln(θ) – 2length(θ)                            (4.1) 

BIC = 2ln(θ)-log(n)  length(θ)                  (4.2) 

where θ is the parameter and n is the number of the data, length is the number of 

components in the vector θ. 

Another factor reduction method is a multivariate principal component analysis 

(PCA) that trade off with ‘factor analysis’ method (Davis, 2002). The PCA identifies the 

eigen structure of factors using Singular Value Decomposition approach (SVD) and 

retain the factors that give the maximum efficiency (highest content of the explainable 

variance) and discards less informative ones. The method could theoretically identify 

latent factors with prior knowledge of explanatory variables and factor loadings. 

However, variables such as groundwater fluctuation would be affected by the lag factors 

failing to meet independence assumption of factor analysis using PCA (Markus et al., 

1999).   
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Lopes et al. (2008), Zurr and Pierce (2004) and Zurr et al. (2003) reported 

effectiveness of a dynamic factor analysis method to identify the latent factors and 

explanatory variables from a time series of the response variables. The method is reported 

to have flexibility and capture any patterns such as periodic, non-periodic and multiple 

jumps of time series response variables (Zurr et al., 2003). The method masks the 

seasonal elements in the model and hence the representation ultimately captures all 

season simulation (http://www.brodgar.com/index.htm).  The DFA was used as a tool for 

spatiotemporal dynamic forecasting of groundwater fluctuation (Hoogland, 2010). Ritter 

and Mun’oz-Carpena (2006) reported employment of dynamic factor analysis for 

prediction of surface groundwater interaction in the Agricultural areas, north of 

Everglades National Park.  

The dynamic factor analysis formulates the response variable as a combination of 

the effects of latent variables and explanatory variables as indicated on Equation (4.3) 

after Ritter and Mun`oz-Carpena (2006).   
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ρi (t) = ρi (t-1) + φi (t)      (4.4) 

where Y(t) is the jth  response variable at site j and time t; ρi (t) is the ith unknown trend at 

time t;   λi,j   represents the unknown factor loadings ;  μj   is the trend parameter, ωk,j  is a 

regression parameter;  ψk is  the kth  explanatory variable;  εj  and φi  are the observation 

error and  systemic error terms that are independent, normally distributed, and each of 

them with zero mean but unknown covariance matrix.  
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In order to use DFA on surface-groundwater interaction, prior knowledge of the 

explanatory variables would simplify the model uncertainty. The most common 

explanatory variables for the groundwater fluctuation includes rainfall (Park and Parker 

2008), surface-water level (Genereux and Slater, 1999) and pedosphere soil moisture 

(Hoogland et al., 2010, Visser et al., 2010). The unidentified hydrologic and climatic 

variables as well as the dynamic karst aquifer properties could be captured by the latent 

factors.  

4.4. Dynamic factor analysis and spatial structure  

A peculiar application of dynamic factor analysis is to understand the common 

trends of a large area that influence the response variable and their loadings.  An 

important aspect of common regional factors versus their loadings is the possibility of 

incorporating the spatial structure into the later for a spatiotemporal dynamic modeling. 

Gamerman (2010), and Lopes et al. (2008) suggested implicit framing of the spatial 

structure into the loading ‘λt’ as indicated in Equation (4.5), while the common dynamic 

factors ‘ρt’ in Equation (4.4) capture the temporal changes.   

   λj  ~ N(βj , σj
2 Ωj) 

λt (x) = λt-1 (x) + wt (x)                              (4.5) 

where λj is the loading from Equation (4.4) is independent and distance-based Gaussian 

Random field. βj  an N-dimensional mean vector. Ωj  is given by a correlation function  

f(Іsl-skІ) which could be exponential, spherical etc.  t is time and x is a  coordinate point 

Other methods that exploit the spatial relationship of the loading factors for 

spatiotemporal dynamic formulation include geostatistical approach (Hoogland et al., 
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2010; Visser et al., 2005; Knotters and Bierkens,  2001), Bayesian methods (Diggle and 

Edith, 2010; Lopes et al., 2008), Neural and Networks (Nayak et al., 2005). Amongst the 

methods, using Bayesian method is comparatively less advantageous for the intensity of 

computation whereas the geostatistical approach is the most commonly used (Hoogland 

et al., 2010). 

4.5. Study Area 

The study was conducted over the geographical boundary of SFWMD that 

distinctively constitutes the largest wetland, and extended coastal boundary with the 

Atlantic Ocean. The surficial aquifers of the SFWMD could be broadly categorized as the 

Biscayne aquifer and the undifferentiated aquifer system (Randazzo and Jones, 1997). 

The same report indicates the Biscayne aquifer covers the south eastern part of the district 

namely the Miami Dade, Broward, southern Palm Beach and eastern Marone counties. 

The lithographic layering constitutes up to 6m thick organic soils, 14 m Pamlico sand 

layer, 14 m thick Miami limestone, 150 m thick Forthompson formation, 40 m thick layer 

Ansatsia formation and 20 m thick Key Largo formation in consecutive order from top to 

bottom. Other part of the district is dominated by the undifferentiated formation whose 

Lithographic layering is similar to the Biscayne aquifer except that the top layer is 

alluvium unlike the organic soils of Biscayne and also absence of the Key Largo 

formation. The geographical exposition of the lithographic units in SFWMD is dominated 

by Miami limestone, Tamiami formation, Undifferentiated and the Anstasia formations as 

shown in (Figure 4.1b). The Miami limestone extends in the Eastern and south eastern 

part while the Tamimai formation covers the western and south western. The northern 
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part is a clastic sandy unidentified formation. The Anstasia formation, the smallest in 

proportion, covers the north eastern part of the district. 

The land use of the district is categorically proportioned as 60% wetland, 20% 

pastureland, 10 % cropland, 6% forest land, 1% urban, and the rest 3% are other 

environmental service areas (Chebud et al., 2011).  

 

Figure 4.1 a Rivers, canals, lakes and well sites, Figure 4.1 b Hydrogeological units 

4.6. Methodology 

A stratified sampling was proposed at the outset to select groundwater wells from 

the three major hydrogeologic units splitting by soil type and four major land uses.  The 

selection was made from sites which were at least 5 miles from canals to avoid daily 

influences of the canal operation. About 13 wells (Table 4.1a and Figure 4.1b) were 

selected from the intersection of a given hydrogeological unit, soil type, and land use 

using the Geographic Information Systems tool- ArcGIS analyst. 
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Table 4.1  Sampling distribution of wells 

 

The DFA was conducted for the normalized daily groundwater level from the 13 

wells using Equation (4.3). A coupled statistical package of R was used accordingly as 

suggested by Zurr et al. (2003). Upon the DFA analysis, a search for the relationship of 

the identified factors against explanatory factors was made to give the identified factors a 

physical meaning and help for the development of a unified spatiotemporal model.  

As a preliminary analysis of the explanatory factor search, the relationship of 

groundwater fluctuation with rainfall, canal water level, and soil moisture were observed 

for three stations (ST3G, POS-12, G1213-G, Figure 4.1a), situated in three different 

hydrogeologic units. Daily rainfall as well as daily canal water level readings were 

obtained from the nearest station of each well site (Figure 4.1b). The data sets of 

groundwater level, rainfall and canal water level were taken from the SFWMD 

DBHYDRO data base. The daily soil moisture data for multiple depths below surface 

(10cm, 40cm and 100cm) were obtained from the NOAA-Global Land Data Assimilation 

System (GLDAS) website. The soil moisture is available at 0.125o for the USA from the 

National Land Data Assimilation System (NLDAS).  

Backward and forward stepwise regression method was applied for each 

groundwater monitoring station to identify potential exploratory variables using the AIC 
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Criterion. Upon parameterizing rainfall and soil moisture by their respective regional 

average and normalizing the nearest canal / river water levels, a curve fitting method was 

used to analyze patterns of the explanatory variables and dynamic factor trends. Finally, 

invoking a spatial structure into the loading through interpolation using Inverse Distance 

Weighted (IDW) method, a regional groundwater level was developed at daily scale.  

A descriptive framework of the methodological approach for the spatiotemporal 

modeling is indicated in Figure 4.2.  

 

Figure 4.2 Methodological framework for the spatio-temporal groundwater modeling 

4.7. Analysis 

Using Equation (4.3), which offers several model types depending on the 

experimental design, a framework was chosen assuming all factors are latent. So the 

component of explanatory variable in Equation (4.3) was substituted by latent factor and 

formulated the model as:  

Response variable (groundwater level) =   m common trends + noise                (4.6)  
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Applying the assumption, m > 1, the model served for factor analysis on smaller 

data sets (~20 events) as suggested in (http://www.brodgar.com/index.htm). The DFA 

analysis was employed on each month separately in 2004 for which complete data was 

available for the majority of the wells.  The minimum AIC as well as the RMSE of the 

model was employed as a criterion to determine the number of common factors ‘m’ for 

the regional groundwater fluctuation.  

The DFA analysis was done using normalized groundwater level data series from 

the 13 wells selected. The normalization is required expecting different units of the 

dynamic factors, for instance rainfall (mm), soil moisture (kg/m2) and water level (m). 

Also the normalization removed the local trend μj from Equation (4.3), and reduce the 

complication which could rather be added on the output.  The analysis was conducted 

using the averaged daily data from 2004-2009 in iterative fashion increasing the number 

of common factors mentioned in Equation (4.3) starting from 1. The analysis of the DFA 

for each month showed that minimum AIC was achieved when dynamic common factors 

(trends) are six (Table 4.2).  

Table 4.2 AIC values of the DFA 
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The analysis was further conducted for 2004, a year with complete dataset. The common 

dynamic factors were fixed this time to 6 and analysis was made each month using 

normalized daily data. The DFA analysis extracts a fit of the observed and simulated 

groundwater levels (Figures 4.3a and 4.4a) and the six dynamic trends (Figures 4.3b and 

4.4b). In this paper, only outputs for the month of January and July are presented with the 

intention to represent dry and wet seasons.  The maximum RMSE was only 0.12m for the 

month of July showing a good fit of the observed and simulated.   

Table 4.3 RMSE values at each well site for January and July 2004 
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Figure 4.3 a Simulated and observed groundwater level, January 2004 

 

 

Figure 4.3b Dynamic trends (factors), January 2004 
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Figure 4.4a Simulated and observed groundwater level, July 2004 

 

 

Figure 4.4b Dynamic trends (factors), July 2004 
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Associated with the six identified factors are their loadings that have similar meaning 

to a weight factor. The retrievability of the loadings at each observation point in space 

(Tables 4.4a and 4.4b) offers an opportunity to introduce the spatial structure through 

interpolation in the regional spatiotemporal simulation process. The loadings on Tables 

4.4a and 4.4b, related to the January and July dynamic trends indicated in Figures 4.3b 

and 4.4b, are derived on condition of minimum AIC. 

Table 4.4a Loadings (weights) of each trend for the month of January 

 

Table 4.4b Loadings (weights) of each trend for the month of July 

 



 
58

Explaining the dynamic factors in terms of the physically known variables is the 

key aspect of the development of a generic spatiotemporal model. Most physically known 

variables of the water budget that dictate groundwater level include soil moisture, rainfall 

and surface water level (Ritter and Mun`oz-Carpena, 2006). Assumption was made that 

evapotranspiration is embedded in the soil moisture storage estimation and hence it is an 

already reduced factor. Accordingly, exploratory factor analysis was done in a stepwise 

regression of monthly averaged groundwater level against monthly averaged values of 

rainfall, soil moisture, and canal water level. Factor selection was on the basis of the 

condition of the AIC (Table 4.5).  The analysis was conducted on three hydrogeologic 

areas of the Miami Limestone Surficial aquifer system represented by G1213-G station, 

the Tamiami surficial aquifer system represented by ST3G station and the unidentified 

surficial aquifer system represented by POS-12 station. Explanatory variables for three of 

the hydrogeologic were found different suggesting a stronger filtering effect of the 

subsurface hydrogeology (Figure 4.5). The explanatory variables influencing 

groundwater level fluctuation over Miami limestone area (station G1213_G) are only the 

rainfall and canal water level suggesting that the subsurface layer is serving as a conduit 

which has no delaying effect by soil moisture (Figure 4.5 and Table 4.5).  

An extreme opposite subsurface profile in the peat overlying Tamiami formation 

at station ST3G showed that only the deepest moisture profile and canal water level are 

explanatory variables. In other words, neither rainfall nor top soil moisture profiles could 

explain to the groundwater level change (Figure 4.5 and Table 4.5). The rainfall seems to 

infiltrate less and rather accumulate as runoff causing little direct effect on groundwater 

level rise, as observed on ST3G station of Figure 4.5 and Table 4.5 which showed no 
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direct relationship of rainfall and groundwater level fluctuation. Similarly, the low effect 

of moisture at 10 cm and 40 cm on groundwater suggests that moisture is either retained 

and hence its effect is lagged for longer period (more than a month), or during such 

elongated time it is mostly siphoned as evapotranspiration.   

For the unconsolidated sandy region (Station POS-12), rainfall is identified as one 

of the factors attributable to the higher infiltration rate for the medium sandy top layer 

(Figure 4.5 and Table 4.5). Also the moisture at the top and deepest layer are amongst the 

identified variables suggesting that infiltration at the surface and percolation at the 

deepest layers are key factors while the middle vadose zone is serving only a as a fast 

draining medium.  

In all the hydrogeological regions, the surface water level is identified as the 

major variable dictating the groundwater level at all sites.  Rainfall amount and soil 

moisture are important explanatory factors, although the weight of the explanatory factors 

vary spatially.  
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Figure 4.5 Scatter plots of groundwater level against rainfall, surface water level, and soil 

moisture at different stations 

Table 4.5 AIC values of the stepwise regression 

 

The relationship of the dynamic factors obtained from DFA and possible 

explanatory variables was established fitting normalized and parameterized time series of 

regional average rainfall, regional average soil moisture and surface water level. Results 

showed that the three dynamic factors were found related to three surface water bodies 

namely: the Lake Kissimmee water level in the north (Figures 4.6a and 4.6b); the 

Caloosahatchee River water level in the west (Figures 4.6e and 4.6f); and the Hillsboro 

canal water level in the east (Figures 4.6i and 4.6j) that drains from Lake Okeechobee to 
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the east coastal area. The two other factors identified from the DFA were explainable by 

the regional averaged rainfall (Figures 4.6m and 4.6n), and regional averaged soil 

moisture (Figures 4.6q and 4.6r). The curve fitting of the dynamic factors against the 

explanatory variables show similar trends at all seasons. Only one factor was found 

unexplainable (Figures 4.6u and 4.6v) and assumed as latent factor (Zurr et al., 2003). 

From the point of view of the water balance approach, water abstraction would partially 

explain the latent factor, though not tested for lack of data. 

 The spatial association of the loadings to the explanatory factors was also found 

in agreement with the exploratory factor analysis (Figure 4.5) earlier. The analysis 

showed a localized higher weight in the north as shown in Figures 4.6c and 4.6d, 

attributable to factor 1 (Lake Kissimmee water level); higher weight in the south, Figures 

4.6g and 4.6h, attributable to factor 2 (Caloosahatchee River water level); and discernible 

higher local weight in the east, Figures 6k and 6l, attributable to factor 3 (the Hillsboro 

canal water level).  The effect of factor 4 (rainfall average) is spatially variable and event 

dependent, and hence assumes the loading spatial variability accordingly as shown in 

Figures 4.6o and 4.6p. The effect of factor 5 (soil moisture) in most part of the region is 

observed shifting with seasonal changes as shown in Figures 4.6s and 4.6t.  

The dynamicity and spatiotemporal implicit nature of the loadings was observed from 

the changes over the seasons confirming the applicability of Equation (4.5) after 

Gamerman (2010). The increased loading of the soil moisture from east (Miami 

limestone area) to west as observed on Figures 4.6s and 4.6t suggests the lagging effect 

of the overlying clayey soil on recharge.  The higher loading of most factors in the 
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extreme southern part supports the fact that the area is under high water table over most 

seasons of the year.  

 

Figure 4.6 a Factor 1 Fit – July,  4.6b Factor 1 fit - January 

                  

Figure 4.6 c Factor 1 Loading - January,  4.6d Factor 1 loading –July 

 

Figure 4.6 e Factor 2 fit- January,  4.6f Factor 2 fit - July 

      

Figure 4.6 g Factor 2 Loading – January,  4.6h Factor 2 Loading – July 
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Figure 4.6 i Factor 3 fit – January, 4.6j Factor 3 - July 

         

Figure 4.6 k Factor 3 Loading – January, 4.6l Factor 3 loading - July 

    

Figure 4.6 m Factor 4 fit – January,    4.6n Factor 4 fit - July 

                            

Figure 4.6 o Factor 4 Loading – January,   4.6p Factor 4 Loading - July 
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Figure 4.6 q Factor 5 fit – January, 4.6r Factor 5 fit - July 

       

Figure 4.6 s Factor 5 loading – January,  4.6t Factor 5 Loading 

 

Figure 4.6 u Factor 6 fit – January, 4.6v Factor 6 fit -  July 

                       

Figure 4.6 w Factor 6 loading – January, 4.6x Factor 6 Loading -July 
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4.8. Simulated Groundwater level  

Convolving the dynamic factors with the spatially interpolated loadings, a 

regional scale spatiotemporal groundwater level was simulated. Cases were observed for 

four arbitrary dates of January 15, January 30, July 15 and July 30 as shown in Figures 

4.7a, 4.7b, 4.7c and 4.7d, respectively, all from year 2004.  The results show those 

highest water levels in the east, west and northern part, seemingly a result of the 

management effect.  The lowest drop of groundwater level below the monthly average, 

on January 30 (drier month), was -60.42 cm in the east coast as shown in Figure 4.7b. 

The pattern could be traced for each day of the drier months and observe risks of oceanic 

water intrusion during the dry season. Similarly, the maximum groundwater rise on July 

30 2004 (Figure 4.7d) was 67 cm above the monthly average and such trends could be 

traced for the wettest months to oversee flooding risks. The validation conducted on three 

wells, not included in the simulation, show that the maximum RMSE is 17cm.  

Figure 4.7 Predicted groundwater level 

 

(4.7 a) 15 Jan 2004, (4.7b) 30 Jan 2004 
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(4.7c) 15 July 2004, (4.7d) July 30 2004 

4.9. Conclusion and Recommendation 

The spatiotemporal model was developed extracting dynamic factors and their 

respective loadings from time series observations of groundwater level using a dynamic 

factor analysis (DFA) method, as described in Zhurr et al. (2003). The DFA served to 

extract common latent factors at regional scale together with their loadings in which the 

latter allow incorporation of the spatial structure for a spatiotemporal modeling of 

groundwater levels.  The extracted factors were related to explanatory variables to 

explain the simulation.  

The results of the analysis showed that the surface ground-water interaction in the 

SFWMD is governed by regional averaged rainfall, regional averaged soil moisture, Lake 

Kissimmee water level in the north, Caloosahatchee River in the west and Hillsboro canal 

water level in the East. Only one factor was found latent (hidden) and presumed to be 

related to the water extraction in which case daily data was not available for analysis. 

Further research on data acquisition of subsurface water utilization would be vital to 

observe its relationship with the latent factor. 

A regional water level was simulated using a combination of the factors and 

interpolated loadings at regional level. The validation conducted at arbitrary regional 
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points of well sites result shows that a sound agreement exists between the observed 

groundwater level and the simulated water level with maximum RMSE of 0.12m. The 

model in combination with the point scale groundwater prediction model (Chebud and 

Melesse, 2011) would serve for operational prediction and decision making.  

Spatiotemporal forecasting requires factor reduction to increase its efficiency. On 

the other hand, forecasting requires identification of explanatory as well as latent factors 

that are often embedded in observations. A DFA is a powerful tool to retrieve such 

dynamic factors which are not necessarily independent and hence could have an 

embedded lagging effect.  

The availability of data in south Florida offers an opportunity to test applicability 

of regional spatiotemporal surface-groundwater interaction modeling and forecasting. 

The DFA analysis indicated that the three well known surface water levels namely, the 

Lake Kissimmee water level, the Caloosahatchee River water level, and the Hillsboro 

canal water level as well as the regional averaged soil moisture, and rainfall are key to the 

regional spatiotemporal groundwater level modeling. Apparently, the ease of any 

operational prediction could be achieved as long as data is obtainable ‘economically’.  

For regional spatiotemporal surface-groundwater operational modeling in 

SFWMD, nearly all explanatory variables are obtainable from satellite imagery (cheap 

and real-time). Rainfall is measured both on the ground as well as using radar; soil 

moisture is currently available from programs such as GLDAS. Also surface water levels 

are captured by satellite imagery (TOPIX) in the case of lakes. In extreme cases, such as 

canals and river water levels monitoring networks as in SFWMD could support the effort.  
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Employing DFA over SFWMD and testing its workability is viable given its low 

computational intensive nature and possible readjustment of dynamic factors through 

rigorous analysis. The study concludes that DFA is an efficient tool for its ease of 

synthesis of regional spatiotemporal groundwater level and also capability of forecasting 

using minimum parameters at reasonable accuracy. Further study into the inclusion of 

water extraction as part of the explanatory variables should help for decision making. 

In summary, spatiotemporal modeling was achieved at regional scale in a reasonably 

flat topography, where watershed based modeling was less applicable and direction of 

flow is subjected to be disrupted by karst hydrogeology. Apart from synthesizing the 

regional scale water level dynamics, the modeling approach would help for predictions of 

spatiotemporal groundwater level fluctuation coupled with the point scale dynamic 

forecasting as reported by Chebud and Melesse, (2011).   
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CHAPTER V 

5.   Phosphorus run-off assessment in a watershed 

Chebud Y., Naja G.M., Rivero R. (2011). Phosphorus run-off assessment in a watershed, 

 J. Environ. Monit., 2011 (13) 66, DOI: 10.1039/c0em00321b – Reproduced by  

permission of The Royal Society of Chemistry 

5.1. Abstract 

The Watershed Assessment Model was used to simulate the runoff volume, peak flows, 

and non-point source phosphorus loadings from the 5870 km2 Lake Okeechobee 

watershed as a case study. The results were compared to on-site monitoring to verify the 

accuracy of the method and to estimate the observed/ simulated error. In 2008, the total 

simulated phosphorus contribution was 9634, 6524 and 3908 kg (P) y-1 from sod farms, 

citrus farms and row crop farmlands, respectively. Although the dairies represent less 

than 1% of the total area of Kissimmee basin, the simulated P load from the dairies (9283 

kg (P) y-1 in 2008) made up 5.4% of the total P load during 2008. On average, the 

modeled P yield rates from dairies, sod farms and row crop farmlands are 3.85, 2.01 and 

0.86 kg (P) ha-1 y-1, respectively. The maximum sediment simulated phosphorus yield 

rate is about 2 kg (P) ha-1  and the particulate simulated phosphorus contribution from 

urban, improved pastures and dairies to the total phosphorus load was estimated at 9%, 

3.5%, and 1%, respectively. Land parcels with P oversaturated soil as well as the land 

parcels with high phosphorus assimilation and high total phosphorus contribution were 

located. The most critical sub-basin was identified for eventual targeting by enforced 

agricultural best management practices. Phosphorus load, including stream assimilation, 

incoming to Lake Okeechobee from two selected dairies was also determined.  
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5.2. Introduction 

Water quality degradation in many watersheds caused by phosphorus and nitrogen-laden 

runoffs from farmed fields is known to be responsible for significant ecological changes 

throughout entire ecosystems. Freshwater as well as marine ecosystems are 

carelessly damaged by the introduction of increasing levels of nutrients leading to 

eutrophication. Phosphorus (P) levels in Lake Erie (Canada and USA) have been steadily 

increasing since the 1990s causing severe blue-green algae blooms, Schwab e al. (2009). 

The 730 square-mile Lake Okeechobee (LO) ecosystem (south Central Florida, USA) has 

become more eutrophic and less efficient at retaining nutrients because of its exposure to 

higher nutrient levels from agriculture and urban activities within its watershed (Breaonik 

et al., 1998; Redfield et al., 1998; Richardson et al., 2007).  The total maximum 

phosphorus load (TMDL) for LO has been established at 140 mtons y-1  (equivalent to 

383.5 kg day-1 ) by the Florida Department of Environmental Protection (FEDP) (FEDP, 

2001). During 2004 and 2005, the monitored total phosphorus load brought into LO 

exceeded 930 and 830 mtons y-1 , respectively (SFWMD, 2008). Although best 

management practices (BMPs) in agriculture have been implemented in LO watershed 

since 1970s, the phosphorus concentration in the lake increased from ~60 mg L-1 in 1975 

to ~210 mg L-1 in 2008 (Zhang et al., 2009). Research on agricultural management 

practices that aim to reduce phosphorus in runoff from agricultural land, dairy farms and 

residential areas has been hampered by the need to study large watersheds over relatively 

long time periods to account for both the temporal and spatial effects of scale. The diffuse 
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non-point phosphorus inputs derived from many sources makes it difficult to manage its 

levels when compared to point source pollution.  

5.3. Environmental impact 

A novel environmental modeling and analytical method was presented to assess the non-

point source phosphorus loadings from a large watershed draining into a lake and the 

nutrient transport through the stream network. Specific locations where elevated levels of 

non-point source phosphorus may be expected were pointed out. The method has broad 

applicability for the assessment of nutrient and non-point source loadings into large 

shallow lakes where monitored data may be lacking. It could also be used in the control 

of non-point source discharges so as to facilitate the meeting of regulatory rules.i 

Lake Okeechobee watersheds are characterized by surface water and groundwater 

flows, most of the time occurring in an integrated fashion because of the relatively low 

land surface elevations coupled with shallow water tables. Significant degradation of the 

surface water quality originates from non-point source polluting discharges, in addition to 

direct surface water discharges (Donigian et al., 1995). For many non-point source 

pollutants, measurement of the discharges is not technically or economically feasible and 

monitoring non-point source loadings is particularly difficult and expensive. Several 

spatial computer models using the geographic information system (GIS) have been 

developed to assess the water quality (for point and non-point sources) and nutrient 

transport on the basis of land-use conditions, soil type, topography, hydrology, and other 

factors (Morse et al., 1994).  

The objective of the present work is to assess the phosphorus loading from the 

Kissimmee basin, north of LO, using the Watershed Assessment Model (WAM), a water 
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quality/ hydrology model with a GIS interface. The predictive capabilities of the WAM 

model with respect to runoff volume, peak flows, non-point source phosphorus loading 

(soluble and particulate) to LO from the 5870 km2 watershed was estimated from the 

period between 1998 and 2008. The results have been compared to those from on-site 

monitoring to verify the accuracy of the method. The nutrient transport over the 

landscape and through a stream network was simulated for the purposes of the watershed 

nutrient pollution investigation. Specific locations where elevated levels of phosphorus 

may be expected were highlighted and specific phosphorus loadings to the lake from two 

selected dairies were verified. Although this study was directed specifically at 

quantification of P loadings from agricultural fields in a specific watershed for a single 

lake, results have important implications for many other lakes in similar landscapes that 

are facing the same problems. In addition, the cost-effective method described here has 

broad applicability for the assessment of nonpoint source nutrient loadings into large 

shallow lakes. 

5.4. Experimental section: Watershed Assessment Model (WAM) description 

The WAM model, schematically represented in the support document SI1 Figure 

S11, developed and calibrated by the Soil Water Engineering Technology, Inc. (SWET: 

www.swet.com, Gainesville, FL), was GIS based continuous time model that operates on 

a daily time step (Bottcher, Hiscook and Jacobson (2002); Jacobson et al., (1998). The 

 

1 Supporting Information (SI) for the paper Phosphorus run-off assessment in a  
watershed by  Chebud Y, Naja M., Rivero R., 2011.   
http://www.dcs.ufla.br/site/_adm/upload/file/pdf/Prof%20Marx/Aula%205/Outro%
20art%20interesse/Chebud%20et%20al%202010_v%C3%A1rios%20modelos_P
%20enxurrada.pdf 
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WAM model was used to assess the phosphorus loadings from the Kissimmee basin to 

LO. Details regarding the model are reported in the SI2 .  Briefly, the model uses a grid-

based system to assess the spatial impact of existing and modified land uses on water 

quality and quantity. The grid cell representation allows for the identification of surface 

and groundwater flows and phosphorus concentrations for each cell. The BUCSHELL 

(Basin Unique Cell) cell model integrates three well-known subroutine modules that are 

identified as (1) Everglades Agricultural Area Model (EAAMOD) to model transport in 

high water table soils (Bottcher et al., 1998) (2) Groundwater Loading Effects of 

Agricultural Management Systems (GLEAMS) to simulate the nutrient transport in 

deeper water table areas (Leonard et al., 1987) and (3) Field Hydrology and Nutrient 

Movement (FHANTM for dairy runoffs and a category of special functions to capture the 

functionality of wetlands, mining, aquaculture and urban areas (Campbell et al., 1995). 

The cell models are used to simulate the hydrologic contaminant transport by first 

modeling the grid cell combinations of land use, soil types and rain zone. The model then 

‘‘routes’’ the surface water and groundwater flows from the cells to assess the flow and 

phosphorus levels throughout the watershed. The dynamic routing is performed using the 

BLASROUTE module for the determination of the attenuation coefficients. The 

attenuation factors for each water quality parameter are related to a complex combination 

of transport, dispersion, and assimilation factors dependent on land uses and wetland 

 

2 Supporting Information (SI) for the paper Phosphorus run-off assessment in a  
watershed by  Chebud Y, Naja M., Rivero R., 2011.   
http://www.dcs.ufla.br/site/_adm/upload/file/pdf/Prof%20Marx/Aula%205/Outro%20art
%20interesse/Chebud%20et%20al%202010_v%C3%A1rios%20modelos_P%20enxurrad
a.pdf 
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types and are chosen on the basis of published assimilation rates (Brown et al., 1995; 

Cooper et al., 1993). The boundary conditions are related to the studied area and its 

outlets. 

5.5. Study area and model input/output parameters  

A phosphorus runoff simulation was performed to predict the soluble phosphorus 

and sediment phosphorus-enriched loads to the adjacent streams at a grid size of 0.01km2. 

The selected area for the present study was the Kissimmee basin within the LO watershed 

(Figure S23) that encompasses the lower Kissimmee (S65A-E basins, 1737 km2) and the 

upper Kissimmee (4130 km2) basins, including different types of land uses (Figure 5.1a) 

as well as 16 water quality, 21 flow and 30 rainfall monitoring stations (Figure 5.1b). The 

study period covered 11 years (from January 1, 1998 to December 31, 2008). Three 

monitoring stations are located at the area of discharge into LO (Stations S72, S71 and 

S65E).  

The data input into the model included the land use, soil and BMP types, 

topography, hydrography and rainfall zones, basin boundaries, climate data, point sources 

and service area coverage (as detailed in Figure S11). The inputs for monitored 

parameters such as the rainfall (from 30 stations), land use practices, phosphorus and 

flow monitoring data were downloaded for each of the stations from the south Florida 

Water Management District database that is available from the web site  

 

3 Supporting Information (SI) for the paper Phosphorus run-off assessment in a  
watershed by  Chebud Y, Naja M., Rivero R., 2011.   
http://www.dcs.ufla.br/site/_adm/upload/file/pdf/Prof%20Marx/Aula%205/Outro%20art
%20interesse/Chebud%20et%20al%202010_v%C3%A1rios%20modelos_P%20enxurrad
a.pdf 
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(http://www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu).   

 

Figure 5.1 Kissimmee basin map (a) Land use distribution and location (b) Monitoring 

stations (flow, rain and water quality) and outlets (S65 E, S-71 and S-72) 

The monitoring station data were fed into the model-the flow was measured on a 

daily basis and the nutrient concentration biweekly. The observed mean annual rainfall in 

the Kissimmee basin averaged around 1255 mm and the temperature ranged between min 

-1 oC and max 30.5 oC, with an average around 22.3 oC. It is worth noting that the P 

loading to Lake Okeechobee mainly occurs during the wet season (June–October, 

characterized by heavy rainfall), thus making the non-point runoff a challenging problem 

from a P management perspective. 

The simulated variables were a daily time series of the surface and groundwater 

flow, and the water quality at source cells, sub-basins and individual stream reaches. The 

model-simulated water quality parameters derived from the model run were the 
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suspended solids, sediment nitrogen, sediment phosphorus, soluble nitrogen, soluble 

phosphorus and the biochemical oxygen demand. The model also provided several other 

output data such as the ranking of land uses by load source and the comparative 

displays of different BMP scenarios.  

The simulated P loadings were derived from daily simulated flows and 

concentrations. The estimation of P loads at the basin outlet is determined using a routing 

process combining transport, dispersion, and assimilation that, in most cases, will result 

in an attenuation, or decrease, in P concentration. Most of the attenuation will occur in 

the surface water. Once the runoff has left the source cell, it is attenuated to the streams 

depending on the flow rate, characteristics of flow path, flow distance and land use. 

Separate coefficients for different land uses and wetland types and background 

concentrations are stored within the WAM model (Bottcher, Hiscook and Jacobson, 

2002). 

5.6. Model testing and accuracy  

The WAM model accuracy was tested taking into account the changes in land uses 

throughout the years and their effect on water quality, nutrient runoff and soil properties. 

The simulated time series and cumulative flow (total and deviation points) derived from 

water flow (peaks, base and transitions) and stage (minimum and maximum time series) 

were compared to the data points from monitoring stations that were analyzed for spatial 

and temporal patterns. A ground-truth visit was also conducted to the land parcels 

showing the highest total phosphorus load for a land-use adjustment. The ground-truthing 

was done on crop lands, dairies, citrus farms, tree nurseries, sod farms and improved 

pastures. 
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5.7. Results and discussion 

Basin land use as phosphorus surface runoffs are directly linked to land uses in the 

region, it is important to accurately determine the land use distribution. The land use 

distribution considered in this work corresponded to the most recent one acquired by the 

South Florida Water Management District in 2006. Figure 5.2 shows the land use 

distribution in the Kissimmee basin watershed (Figure 5.2a) compared to the land use of 

the entire LO watershed (Figure 5.2b). Similar land use categories are found in the 

Kissimmee basin and in the entire LO watershed. The dominant land use is clearly the 

‘‘natural areas’’ that respectively represent 46% and 36% of the total area in the 

Kissimmee basin and the LO watershed.  

Improved (18%) and unimproved pastures (4%), woodland and rangeland (7%), 

urban (16%) and citrus (5%) represent 50% of the total land use in the Kissimmee basin 

(Figure 5.2a). Improved (20%) and unimproved pastures (4%), woodland and rangeland 

(5%), urban (11%) and citrus (7%) represent 47% of the total land use in the entire LO 

watershed (Figure 5.2b). Some land uses are worth noting such as dairies, sod farms or 

row crops because of their high phosphorus load to LO despite their relatively small 

surface (Bottcher, 2008).  
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Figure 5.2 Land use surface area distribution (%) in the Kissimmee basin (5.2a) 

compared to the entire Lake Okeechobee watershed (5.2b). 

5.8. Phosphorus load and yield rate 

All the land uses described above are generating phosphorus and contributing to the total 

phosphorus load to LO (Cisar et al., 1992). Table 5.1 summarizes the average simulated P 

load from land-use classes in 2008, calculated from the daily simulated flows and 

concentrations. The total simulated P load (170 mtons y-1) from the Kissimmee basin 

exceeded the TMDL (total maximum daily load) for LO by 22%. In 2008, the highest 

simulated contribution was 46.118 kg (P) y-1 and 42,468 kg (P) y-1  from improved 

pastures and urban areas, respectively. Jointly, they accounted for 52% of the total P load 
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coming from the studied basin. In 2008, the total simulated incoming P load was 9,634 kg 

(P) y-1 from sod farms and 3,908 kg (P) y-1 from row crops. Although some BMPs target 

agricultural areas, applications of high-phosphorus chemical and organic fertilizers to 

agricultural soils most often exceed the crop requirements and they are responsible for 

heavily phosphorus loaded runoff (Sharpely et al., 1999). Dairies also generate significant 

phosphorus quantities through cow manure production which is rich in P. Although 

dairies represent less than 1% of the total surface of the Kissimmee basin, the simulated P 

load from the dairies (9,283 kg (P) y-1  in 2008) represented 5.4% of the total LO 

phosphorus load during 2008. 

Simulated phosphorus load contributions to the adjacent streams are presented in 

Figure 5.3a. Phosphorus loads to adjacent streams, driven by flows and concentrations, 

was not homogeneous in the basin. Natural areas were among the lowest P contributors to 

the streams with only <0.5 kg (P) ha-1 y-1 yield rate and <0.05 mg L-1 concentrations. 

Some lakes (Figure 5.3a) actually represented a negative load because of their 

assimilation of phosphorus (biota) and retention in sediments. The land uses contributing 

the highest total P load to the nearby streams were the dairies, row crops, sod farms and 

improved pastures. Table 5.1 lists the average simulated total phosphorus yield rates by 

region and by land use as an output of the WAM model for the Kissimmee basin in 2008. 

The averages were calculated from the total simulated P load by land use and by 

property. Generally, the simulated P load is proportional to the individual farm area 

(having the same stocking density). The larger the farmed or urban area, the higher the P 

loads originating from it as run-off. The highest phosphorus load per hectare originated 

from the dairies, sod farms and row crops, confirming the values represented in Figure 
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5.3a. As an average, the simulated P yield rates of dairies, sod farms and row crop 

farmlands were 3.85 kg (P) ha-1  y-1 , 2.01 kg (P) ha-1  y-1  and 0.86 kg (P) ha-1  y-1 , 

respectively. The urban areas in the basin include high, medium and low densities and 

their respective contribution of P to the streams depended on the area density (Table 5.1).  

The values for the entire LO watershed (except upper Kissimmee) published by 

Bottcher (2008) (Table 5.1) and those in the present paper fall in the same range for many 

land uses. It should not be forgotten that when studying P load from farms and dairies, 

the loads differ depending on the basin and the region. Indeed, the surface runoff and 

sediment P load (or export) coefficients are highly dependent on many variables such as 

rain, topography, basin, tributary location, groundwater elevation and on whether a high 

percentage of the basin farmers are applying some BMPs to control the runoff. The 

quantities could be averaged on a basin or on a sub-basin level but averaging them at a 

watershed level would lead to a higher uncertainty because of the spatial and temporal 

variability leading to larger uncertainties in the load estimation. Published data by 

Shrestha  et al. (2008) and Penn et al. (2007) demonstrated the spatial variability of P in 

soil across agricultural landscapes and within agricultural fields, leading to a spatial 

heterogeneity affecting the phosphorus loss to runoff. The heterogeneities are highlighted 

in Table 5.1 which also presents the simulated phosphorus load determined for S65 and 

for the upper Kissimmee basins. The values could be compared to the overall one for the 

entire Kissimmee basin. Dairies and sod farms are perfect examples. Dairies, more 

concentrated in the Table 5.1 The total simulated phosphorus (P) load from land use 

classes in the Kissimmee basin during 2008. The average simulated P yield rate kg ha-1 y-

1 values by the land use and by the region (upper Kissimmee and S65) are compared to 
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other studies. Land uses Area/ha Total P load/kg y-1  S65 basin, showed a higher modeled 

P yield rate (3.89 kg (P) ha-1  y-1 ) when compared to the dairies in the upper Kissimmee 

basin(2.43 kg (P) ha-1  y-1 ). The same observation applies to the sod farms that had an 

average modeled yield rate of 2.44 kg (P) ha-1 y-1 in S65 and only 1.90 kg (P) ha-1 y-1 in 

the upper Kissimmee basin. The spatial heterogeneity generally tends to increase the P 

loading estimation uncertainty when averaging the values on a watershed level.  

Table 5.1 Total simulated phosphorus (P) load from land use classes in the Kissimmee 

basin during 2008. The simulated P yield rate kg ha-1y-1 values by the land use and by the 

region (upper Kissimmee and S65) are compared to other studies 

 

 

 

Figure 5.3 Maps of the total simulated phosphorus yield rate (a) simulated sediment 

phosphorus yield rate (b), and total simulated phosphorus amount sequestered in soil (c) 

from the different lands of the nearby streams 
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5.9. Phosphorus sequestration in soil and sediment transport 

The phosphorus load into LO is composed of soluble phosphorus and phosphorus 

in particulate forms transported with the runoff that ends up in the receiving lake (Metha 

and Hwang, 1989) as demonstrated in Figure 5.3b. Haygarth and Jarvis (1999) elaborated 

on the three processes for P transfer from agricultural fields namely dissolution, 

incidental and physical transfers. The physical transfer is the opposite of dissolution, 

related to the mechanisms of detachment and soil erosion involving the physical 

displacement and entrainment of colloids and submicron-sized material. The particles 

contain phosphorus molecules, bound with soil minerals and other organic compounds, 

which could be remobilized when biological and/or physico-chemical conditions change. 

The proportion of particulate P in the total phosphorus in surface runoff varies with soil 

types and hydrological conditions (Uusitalo et al., 2001). Figure 5.3b shows the modeling 

results concerning phosphorus yield rate to the streams originating from sediment 

transport. The highest modeled sediment phosphorus yield rate is about 1 kg (P) ha-1 y-1 

transported via rivers, streams and water bodies as seen from Figure 5.3b.  

The model estimated the particulate phosphorus contribution to the total 

phosphorus load from urban, improved pasture areas and dairies, respectively at 9%, 

3.5%, and 1%. The urban areas (south of Orlando) in the north LO watershed showed the 

highest phosphorus contribution through particulate transport (Figure 5.3b). Some dairies, 

sod farms and improved pastures that generate a high phosphorus load in a dissolved 

form also contribute phosphorus through particulate transport (Figure 5.3b), indicating 

that the soil within the land uses is phosphorus saturated (heavy leaching) with some 

erosion occurring. He et al. (2006) studied the transport of phosphorus through surface 
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runoff from agriculture lands in south Florida. Sandy soils, the dominant soil types north 

of LO, usually contain low levels of clay and organic matter for binding to phosphorus. 

There is, therefore, a good reason for concern about P losses from sandy soils in field-

drains as the potential of P leaching from them is usually high (Zhang et al., 2002). The 

total particulate phosphorus in the runoff water reported by He et al. (2006) varied 

widely, ranging from 0.01 to 19.94 mg L-1, with a median of 0.23 mg L-1. The numbers 

agree with the modeled particulate phosphorus contribution observed in the present work 

(Figure 5.3b), whereby the highest concentration of phosphorus in the sediment was 

around 0.5 mg L-1.  

According to Graetz and Nair (1995) the maximum P storage in surface soil of the 

LO watershed was 2 and 0.42 kg (P) ha-1 y-1 for the areas with pastures and non-impacted 

areas, respectively. The present investigation determined (by modeling) the maximum of 

P sequestered in soil around 2 kg ha-1 y-1 (Figure 5.3c) agreeing well with the values 

stated above. Comparison of Figure5.3a and 5.3c indicates land parcels where the soil 

was oversaturated and leaching phosphorus (dark in Figure 5.3a) with low P assimilation 

(light in Figure 5.3c). Some of the land parcels are identified by a square in Figure 4.3c. 

Only a few locations (improved pastures and sod farms) contributed high phosphorus to 

the water bodies (dark in Figure 5.3a) and featured high phosphorus soil assimilation 

(dark in Figure 5.3c). Some of the land parcels are circled in Figure 5.3c. Figure 5.3 

Maps of the total simulated phosphorus yield rate (3a); simulated sediment phosphorus 

yield rate (3b); and total simulated phosphorus amount sequestered in soil (3c) from the 

different lands to the nearby streams.  
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5.10. Water balance and annual phosphorus load, modeling vs. monitoring  

To verify the accuracy of the WAM model (Sohrabi et al., 2003), the predicted P 

concentration levels from the three outlets were compared to the annual measured values 

(Figure 5.4). Moreover, the total daily simulated flow and P load were compared to the 

daily monitored values as shown in Figure S3 and S4, respectively. † Visual comparisons 

of measured and simulated values showed very good matches, especially during rainfall 

events (Figure S3 and S4 †). The yearly monitored and simulated phosphorus 

concentration standard deviations differed depending on the outlet. The estimated 

observed/simulated error was around 13.7% for S65E, 10% for S72 and increased to 31% 

for S71 for the 1998–2008 period. It is worth noticing that while the simulation gives the 

phosphorus concentration daily, the actual measured values were obtained from bi-

weekly sampling by monitoring stations. As an average, there were only 115, 33 and 42 

phosphorus monitoring points per year for S65E, S72 and S71 outlets, respectively 

(Figure 5.1b). The values for monitored daily concentrations were calculated by 

interpolating between the grab samples and the loads were then calculated from daily 

measured flows and so calculated interpolated concentrations. The technique would give 

reasonable estimates of phosphorus loads but with errors ranging between 25 and 50% of 

the actual loads (Jacobson, 2002). The average measured (monitored) load to LO from 

S72 was 13.8 mtons (P) y-1  compared to 11.5 mtons (P) y-1  (simulated) for the 11-year 

period. While S65 outlet was loading 139.5 mtons (P) y-1  (monitored) to the lake 

compared to the simulated 92 mtons (P) y-1 , S71 outlet was loading 47.75 mtons (P) y-1  

(monitored) to the lake compared to the simulated 30.5 mtons (P) y-1 . Figure 5.4 

indicates that P concentration in the runoff from S65slightly decreased during the last two 
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years, from S71 it remained constant, and from S72 it slightly increased. The trends are to 

be followed during the next few years to assess the BMP application effectiveness in 

decreasing the P load to LO.  

 
Figure 5.4 Yearly simulated/observed averaged phosphorus concentration at the three 

outlets S65 E (4.4a), S-72 (5.4b) and S-71 (5.4c). The number (n) of the observed or 

simulated sampling points is indicated on each figure. 

 

Figure 5.5 Maps of the priority sub-basin. Land use (5.5a) and simulated phosphorus 

yield rate (5.5b) from the different lands to the nearby streams. 
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5.11. Identification and prioritization of critical sub-basins  

Looking at the P-loading and soil P-sequestration maps, the most critical sub-basin 

identified is presented in Figure 5.5 and it encompasses a variety of land uses near 

Kissimmee River and Lake Istokpoga. The sub-basin was visited for ground-truthing and 

indeed some sod farms, row crops and dairies were identified that should be prioritized 

for future BMP applications. The model indicated that some of the lands in the basin, 

mainly dairy and row crop farms (Figure 5.5b), contributed as much as 2 kg (P) ha-1 day-1 

to the nearby streams. Since their locations near the Kissimmee River, the run-off P from 

them will not be assimilated and will reach directly the stream and the lake. The ground-

truth visit corroborated the results of the modeling whereby the non-commitment to the 

regulations was visually noticed. The properties should be targeted with enforced BMPs 

to decrease their P contribution to the streams and the lake.  

5.12. Phosphorus assimilation and load to LO from two selected dairies 

The phosphorus assimilation capacity of a specific land use depends on complex 

physical, chemical and biological parameters. The modeled loads to LO from two 

selected properties (Figure S54 dairy 1, upper watershed, latitude: 27o33.90’ N; longitude: 

81o 21.10’ W and dairy 2, lower watershed, latitude: 27o18.80’ N; longitude: 81o4.090’ 

W) were determined knowing the routing process and estimating the attenuation of 

phosphorus concentration. The method was already used by Zhang et al., (2002) to 

 

4 Supporting Information (SI) for the paper Phosphorus run-off assessment in a  
watershed by  Chebud Y, Naja M., Rivero R., 2011.   
http://www.dcs.ufla.br/site/_adm/upload/file/pdf/Prof%20Marx/Aula%205/Outro%20art
%20interesse/Chebud%20et%20al%202010_v%C3%A1rios%20modelos_P%20enxurrad
a.pdf 
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calculate the assimilation capacity of several sites using a simple function relating the 

phosphorus concentration at the outlet to the total length of transport and one single 

assimilation factor. A first-order decay formula (equation 5.1) was used in the present 

study to estimate the attenuation whereby once the runoff had left the source cell, it was 

attenuated to the streams related to flow rate, characteristics of flow path, and flow 

distance: 

dC = (C-Cb) e(-aq-bd)      5.1 

where dC is the change in concentration (mg L-1 ), C and Cb are the current and 

background concentrations, respectively (mg L-1 ), a is the attenuation multiplier, b is the 

attenuation exponent, q is the flow rate (m3 s-1 ) and d is the flow distance (m). The 

attenuation coefficients a and b as well as Cb were used as determined in the WAM 

model. Values of a and b (Table S25), depend on the stream conveyance feature such as 

wetlands, lakes, or others. The dairies 1 and 2 have a surface area of 3–3.5 km2 

each and contributed 487 kg (P) y-1  (0.33 mg L-1  as soluble P) and 1612 kg (P) y-1  (1.4 

mg L-1 as soluble P), respectively, to the nearby stream-modeling values. The phosphorus 

in the runoffs from dairy 1 and dairy 2 reaches LO after getting assimilated 

along 61 km and 16.3 km of different types of streams (freshwater marshes, shrub and 

brush land,.), respectively. The present calculation showed the modeled soluble P 

concentration originating from dairy 1 and reaching LO was 0.06 mg L-1 . The modeled 

 

5 Supporting Information (SI) for the paper Phosphorus run-off assessment in a  
watershed by  Chebud Y, Naja M., Rivero R., 2011.   
http://www.dcs.ufla.br/site/_adm/upload/file/pdf/Prof%20Marx/Aula%205/Outro%20art
%20interesse/Chebud%20et%20al%202010_v%C3%A1rios%20modelos_P%20enxurrad
a.pdf 
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soluble P concentration originating from dairy 2 and reaching LO was 0.21 mg L-1 . The 

modeling results indicated that dairy 1, discharging 487 kg (P) y-1 (1.6 kg (P) ha-1 y-1 ) 

into Figure 5.5 Maps of the priority sub-basin. Land use (5a) and simulated phosphorus 

yield rate (5b) from the different lands to the nearby streams. 

The nearby stream, contributed 91 kg (P) y-1 (0.3 kg ha-1  y-1) into LO whereby 

dairy 2, discharging 1612 kg (P) y-1 (4.5 kg (P) ha-1  y-1) into the nearby stream, 

contributed 250 kg (P) y-1 (0.7 kg (P) ha-1  y-1) into LO. The remaining phosphorus was 

assimilated in the farmland system and the farther away the dairy was, the more 

phosphorus was assimilated.  

5.12. Conclusion 

For many non-point source pollutants, measurements of nutrient discharges are not 

technically or economically feasible and monitoring non-point source loadings is 

particularly difficult and expensive. The method described in this paper was successful in 

quantifying the phosphorus loads from agricultural run-off. Specific locations where 

elevated levels of non-point-source phosphorus may be expected were highlighted and 

the phosphorus loadings from two selected dairies to the lake were estimated. 

The estimation of how much each land type contributes to the total phosphorus 

load received by LO could be used as a basis for regulating the non-point source 

discharges in such a way as to ensure that the total maximum daily load (TMDL) of the 

lake would be met. Although the study was directed specifically toward quantifying P 

loadings from agricultural fields in a specific watershed for a single lake, it obviously has 

a broad applicability for the assessment of nutrient and non-point source loadings into 

large shallow lakes where monitored data may be lacking.  
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CHAPTER VI 

6. Water quality monitoring using remote sensing and artificial neural network  

Y. Chebud, a, G.M. Najab *, R. Riverob and A. M. Melessea 

b Everglades Foundation, Science Department, Miami, Florida 33157, USA 

a Florida International University, Department of Earth and Environment, Miami, Florida 33199, USA 

In review 

6.1. Abstract 

In remotely located watersheds or large water bodies, monitoring water quality 

parameters is often not feasible because of high costs and site inaccessibility. A cost-

effective remote sensing based methodology was developed to predict water quality 

parameters over a large and logistically difficult area. Landsat spectral data were used as 

a proxy and a neural network model was developed to quantify water quality parameters, 

namely chlorophyll-a, turbidity and phosphorus before and after ecosystem restoration 

and during the wet and dry seasons. The results demonstrate that the developed neural 

network model provided an excellent relationship between the observed and simulated 

water quality parameters correlated at r2>0.95 in 1998–1999 (dry and wet seasons, before 

restoration) and in 2009–2010 (dry and wet seasons, after restoration). Moreover, the root 

mean square error values for phosphorus, turbidity and chlorophyll-a were below 0.03 

mg·L-1, 0.5 NTU and 0.17 mg·m-3, respectively, for all seasons at the neural network 

training and validation phases. Using the developed methodology, the trends for temporal 

and spatial changes of the selected water quality parameters were investigated. Moreover, 

the amounts of phosphorus and chlorophyll-a stored in the water column were calculated.  

Keywords: neural network, Landsat TM, Kissimmee River, remote sensing. 
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6.2. Introduction 

High phosphorus and nitrogen concentrations mainly originating from fertilizer rich 

agricultural runoffs and effluents from wastewater treatment plants are threatening many 

worldwide ecosystems (Reed-Andersen et al., 2000). Increases of the primary 

productivity have already been observed in several water bodies (Reddy et al., 1996). 

Kissimmee River in Florida is one of such ecosystems characterized by high phosphorus 

and nitrogen loadings originating mainly from agricultural runoffs.  The situation has 

been aggravated by the channelization of the river in 1960, transforming the 167 km long 

meandering river into a wide canal only 90 km long (Koebel et al., 1999). Water quality 

parameters, generally used as indicators of ecosystem degradation or restoration, have 

nowadays been intensively monitored over the vast wetlands of the Kissimmee basin and 

the Kissimmee River to assess the river state. The South Florida Water Management 

District (SFWMD) database (South Florida Water Management District, 2010a) shows 

that about 1,834 sampling stations are currently monitoring the water quality status in the 

basin. The frequent monitoring program is necessary to capture pulses of water quality 

changes. However, frequent and extensive monitoring of waterbodies and wetland areas 

presents logistical difficulties and challenges in terms of cost and manageability (Dekker 

et al., 1996).  

Remotely sensed data coupled with the application of the Geographic Information 

System (GIS) was proposed as a complementary technique to conduct dynamic 

monitoring and prediction of water quality parameters at operational levels (Glasgow et 

al., 2004).  Several authors suggested that water quality data could be retrieved from 

satellite imagery upon training existing monitored data. Hu et al. (2004) applied a space 
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borne optical remote sensing technique on the shallow waterbodies of south Floridian 

estuaries. The same method was also used by Ritchie et al. (2003) to examine the 

Mississippi River basin. The studies have reported a successful determination of water 

quality parameters namely chlorophyll-a (Chl-a), suspended sediments (TS) and total 

phosphorus (TP) at multiple spatial and temporal scales. In these studies, Chl-a, turbidity 

and TP served as indicators of water quality status for the fact that the parameters can be 

used as a proxy for phytoplankton biomass growth rate and hence eutrophication (Wool 

et al., 2007).  

The application of remote sensing techniques to landscape analysis and habitat 

monitoring has advanced in the past three decades (Schowengerdt 2007). The use of the 

technique in ecology and water quality monitoring is considered as providing an “out of 

the box” solution to resource managers (Sawaya et al., 2003). The main objective of the 

present work was to apply a remote sensing technique to assess and monitor the spatio-

temporal dynamics of Chl-a, turbidity and TP in the Kissimmee River, south Florida. 

Although this study focused on the Kissimmee River in Florida, the technique could be 

generalized and applied to other water bodies. The methodology would optimize the cost 

of monitoring while significantly reducing the number of grab samples. The changes in 

water quality were assessed pre (1998-1999) and post (2009-2010) Kissimmee River 

restoration during both wet and dry seasons. However, the main purpose of this paper is 

not to evaluate the restoration impacts on water quality in the Kissimmee River but to 

present an alternative cost effective methodology for monitoring water quality parameters 

of large water bodies. 
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6.3. Background 

Several studies reported that Chl-a and turbidity observations could be retrieved from 

the visible, mid-infrared and infrared bands (Akbar et al., 2009). Because of the 

characteristic color of Chl-a, its relationship with water radiance at 500 and 600 μm 

wavelengths was documented using optical sensors at laboratory scale by Ritchie et al. 

(2003) and at field scale by Sass and Creed (2008), Oyama et al. (2009), and Zhang et al. 

(2003). Ritchie et al. (2003) reported the signatures of Chl-a and suspended sediments 

and showed their higher reflectance at the green and thermal bands. The same paper 

indicated that the reflectance value increased when the concentration of Chl-a increased 

which  was also true for the suspended sediments within the same band (Ritchie et al., 

2003).   

Different water quality parameters were retrieved using specific space borne sensors 

with radiometric resolutions such as Landsat Thematic mapper (TM) (Zhang et al., 2003), 

Satellite Aperture Radar (SAR-1) (Ritchie et al., 2003), (Sass and Creed 2008) and 

(Oyama et al., 2009), Moderate Resolution Imaging Spectroradiometer (MODIS) (Hu 

2009) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS)  (Soto et al., 2009). The 

possibility of retrieving TP water quality data was documented by Shafique et al. (2006) 

over the Ohio River using hyperspectral bands of air-borne optical sensors at 554 nm, 

564 nm, 710 nm and 740 nm wavelengths. Han and Jordan (2005) suggested the use of 

MODIS and Landsat TM as preferable because they are economical and available for the 

public use. Furthermore, MODIS has higher radiometric and temporal resolution 

(capturing data on a daily basis), whereas, Landsat TM has an advantage in its higher 
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spatial resolution of 30 m (to be compared to 250 m for MODIS) enabling to obtain 

observations for individual canals and rivers.  

Landsat TM has seven bands of which three are in the visible range, two in the 

infrared and mid-infrared, and two in the thermal region. According to Akbar et al. 

(2009), Chl-a and turbidity water quality parameters are potentially separable at a defined 

ratio using the green (0.50-0.60 μm) and red bands (0.60-0.70 μm) of Landsat TM. The 

greenish characteristic of Chl-a driven algal system would have higher reflectance at the 

green band and higher absorption at the red band. In the same paper (Akbar et al., 2009), 

the TP levels were determined through a combination of the green (0.545-0.565 μm) and 

red bands (0.62-0.67 μm) of Landsat TM.  

Despite knowing the water quality parameter signatures, the practical retrieval of their 

concentration from shallow water bodies using optical sensors is often challenging 

because of the background effect from the reservoir floor, embankments, rocks and 

sediment deposits. Hu (2009) and Zhang et al. (2003) indicated that water quality 

parameter retrieval methods were found somehow dependent on the waterbody class and 

water depth requiring multiple bands with different information content.  Zhang et al. 

(2003) indicated the need of comparing multiple approaches namely deterministic, semi-

empirical, and data driven regression analysis methods when retrieving water quality 

parameters.  In Zhang et al. (2003), a framework for Chl-a data retrieval was suggested 

from the blue and green band combinations of the Landsat TM imagery upon calibrating 

an empirical relationship as shown in Equations (6.1) and (6.2): 

Chl-a = Co+ Ck(DNi/DNj)
k;      (6.1) 

Chl-a = Co +∑ Ci DNi  + ∑Cj combDNj    (6.2) 
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where Co, Cj and Ck are constants; DNi and DNj are the digital number (DN) values of the 

optical bands, and combDNj is the band combination (ratios or differences).  

Ritchie et al. (2003) suggested the applicability of a non-linear relationship model 

(Equation 6.3) from the results obtained after examining several water bodies in Arkansas 

and Mississippi, USA. 

R = Co C
Q        (6.3) 

where R is the sensor reflectance value, Co and C are constants and Q is the water quality 

parameter (Chl-a, turbidity or TP) that could be determined upon linearizing and 

inverting Equation (6.3).  

Brezonik et al. (2005) used a regression analysis of multiple band combinations and 

showed that no single band combination has uniqueness, implying the need to explore all 

possible band combinations. The idea of using neural network approaches was suggested 

by Jensen (2005), demonstrating the superiority of the method over the traditional 

statistical methods. To capture both linear and non-linear relationships, Sudheer et al. 

(2006) also suggested a neural network approach as a more flexible method to retrieve 

water quality parameters. The advantage of neural networks over non-linear regression 

approaches is attributable to the fact that the latter demands a prior knowledge of the 

parameter relationships while the neural network does not.  The approach is vital in view 

of the complexity of retrieving water quality parameters affected by atmospheric and 

other background factors under non-ideal contexts causing uncertainties to be accounted 

for in Equations (6.1), (6.2) and (6.3).   

The most widely used neural network model is the McCulloch and Pitt model (Hu 

and Hwang 2002) constituted of neurons accumulating a weighted sum of multiple inputs 
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called  ‘input function’  that will later be subjected to a transfer function called 

‘activation function’ to synthesize the outputs as represented in Figure 6.1.  The net 

function of the McCulloch and Pitt’s neuron model (Hu and Hwang 2002) is represented 

as a weighted linear function as indicated in Equation (6.4).  Other higher order net 

functions could be used for complex models replacing the single input term by the 

product of two or more inputs.  

θ+=
=

N

j
jj xwu

1

      (6.4) 

where wj   are weight parameters, xi  are network inputs,  θ is the bias (threshold). 

 

Figure 6.1 Sketch of the neural network modeling approach. 

N is the input function at each neuron that gives the network to model the linear behavior; 

w the weight for each input x; δ is the noise which controls the activation level of the 

sigmoid; S is a sigmoid function as described in Hu and Hwang (2002) that serves to 

model non-linear relationships (Zhang et al., 2002); and O is the output. 

The net output of the McCulloch and Pitt’s neuron model is a nonlinear 

transformation of the weighted linear function u (Equation (6.4)) by a sigmoid 

distribution called activation function as shown in Equation (6.5).   
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        (6.5) 

where T is a target parameter used by the sigmoid distribution to fit the output.  

Other models that serve the same purpose of transformation could be linear, Gaussian 

radial basis, inverse tangent and hyperbolic tangent. Among the different types of 

activation functions, Hu and Hwang (2002) rated the sigmoid type as the most commonly 

used. 

The objectives of this paper are 1) to develop a new cost effective technique coupling 

remote sensing with an artificial neural network to monitor water quality parameters of 

shallow water bodies and 2) to assess the effectiveness of the new methodology while 

examining changes in water quality in Kissimmee River during wet and dry seasons pre 

(1998-1999) and post (2009-2010) restoration.  

6.4. Methodology 

6.4.1. Study area 

The selected area for this study was the Kissimmee River basin in south Florida (North of 

Lake Okeechobee and south of Lake Kissimmee), within the Northern Lake Okeechobee 

watershed (Figure 6.2). This study was conducted focusing on the lower Kissimmee 

River basin where the meandering river channel was straightened by a canal (C-38) in 

1960 with a resulting flood plain of 16,200 hectares dried out. An important restoration 

strategy was developed in 1990, implemented by the SFWMD over multiple phases 

starting from 1999. Three construction phases are now complete, and continuous water 

flow has been reestablished to 37 km of the meandering Kissimmee River. According to 

the SFWMD report (South Florida Water Management District 2010b), the first phase (I) 
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backfilled 12.9 km of the C-38 canal, while the second (II) and third (III) phases 

backfilled 14.5 km of the canal. The fourth (IV) phase reestablished flow to 9.7 km of 

reconnected river channel. So far this resulted in 4,960 hectares of wetlands restored. 

Phases IV, I and II/III correspond to the upper section, the middle section and the 

downstream sections of the river, respectively (Figure 6.2).  Technically, the restoration 

involves water release in the river original meandering route, backfilling of canals, 

excavating the river channel and removing some water control structures and locks. The 

four phased restoration cross-sections, the pre and post restoration channels and the 

floodplain are indicated in Figure6.2. 

 

Figure 6.2 Restoration phases of the Kissimmee River 

The present work has focused on four selected days during the dry (November 1 to 

April 30) and wet (May 1 to October 31) seasons before (dry 1998 – wet 1999) and after 

restoration (dry 2009 – wet 2010). The selected years are considered as average years as 

could be noticed when comparing the average temperature and rainfall. The average 
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annual temperature and rainfall during the wet season of the selected years are around 

23.2°C and 228 mm, respectively. The average temperature and rainfall during the dry 

season of the selected years are around 16.2°C and 53.5 mm, respectively.   

6.5. Data compilation and processing 

The stretch from Lake Kissimmee outlet down to S65E monitoring station, 

constituting both the old and retrained courses of the river, was delineated from the 2006 

land-use GIS database of the SFWMD using ArcGIS 9.3 suite (Figure 6.2). Upon 

delineation, water quality data from the monitoring stations were downloaded from the 

SFWMD web site (DBHYDRO database (South Florida Water Management District 

2010a)), overlaid onto the river basin and selected for further data screening and 

collection. Accordingly, a total of 25 stations were identified along the Kissimmee River. 

From these stations, 6 stations have only TP (lacking Chl-a and turbidity) and other 7 

stations were inactive since 1997 or earlier. Therefore, only 11 stations were used to 

capture water quality parameters namely Chl-a, turbidity and TP as indicated in 

Figure6.2.  Water quality data were downloaded from the DBHYDRO database for the 

dates matching the satellite pass time (dry season of 1998-1999: December 15, 1998; wet 

season of 1998-1999: July 24, 1999; dry season of 2009-2010: November 27, 2009; wet 

season of 2009-2010: July 9, 2010) (Table 6.1). The water quality monitoring for Chl-a, 

turbidity and TP in south Florida are conducted biweekly at most stations, thus meeting 

the temporal resolutions of the Landsat TM which passes overhead every 16 days. Most 

of the selected water sampling dates for the dry and wet seasons of 1998 -1999 and 2009 

- 2010 were within 96 hours of the satellite pass time and hence considered acceptable 

(Zhang et al., 2002) (Table 6.1).  
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Table 6.1 Water quality data obtained from stations identified in Figure 6a 

 

Chl-a stands for chlorophyll–a (mg m-3), TP for total phosphorus (mg L-1), Turb for 

Turbidity (NTU) and NA for not applicable. 

The Landsat TM images provide adequate spatial resolution for regional coverage 

with rather negligible image distortion. The Landsat images collected from the US 

Geological Survey - Earth Resources Observation and Science (USGS-EROS) were 

already preprocessed for geometrical correction and hence did not need any further 

action. Kissimmee River (Florida) lies in a large wetland system where high humidity 

(water vapor) affects the visible spectrum. Indeed, the high humidity makes it difficult to 

obtain cloud-free images (Yang 2009) particularly during the wet season in Florida 

(Rivero et al., 2009). For water quality assessment, it is critical to use imagery without 
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cloud cover or haze because it can affect the spectral-radiometric responses and cause 

erroneous results (Olmanson et al., 2008). The images had cloud coverage and 

atmospheric correction was conducted using the Atmospheric and Topographic 

Correction software (ATCOR) implemented into the ERDAS Imagine 9.3 interface. The 

atmospherically corrected images were then used to capture a subset of the Kissimmee 

River before and after restoration.  

The river has a width larger than 107 m enabling thus the capture of 3 or more pixels 

(each with 30 m dimension) of the imagery within the river. After overlaying the water 

quality monitoring stations onto the reflectance images, each pixel was read from the 

seven Landsat TM bands. The reflectance values from the different bands were used as 

inputs to train the neural network while the corresponding readings of the water quality 

parameters were used as targets as shown schematically in Figure 6.3. The training and 

simulation were conducted using the MATLAB software (www.mathworks.com).  

 

Figure 6.3 Schematic diagram of the input and output layers of ANN  model 

The neural network technique was applied after splitting the data into 70 % for the 

training and 30 % for the validation purposes. The iteration was made changing the 

hidden number of neurons from 3-5 while minimizing the root mean square error 
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(RMSE) at the training stage  and testing the validation separately with a requirement 

setting  the  maximum RMSE criterion for TP  less than 0.05 mg L-1 corresponding to the 

10 % of the Maximum Contaminant Level (MCL) value published by the US-

Environmental Protection Agency (EPA 2000). The Chl-a and turbidity maximum RMSE 

values were set at 10 % of the average observed data. 

6.6. Results and Discussion 

6.6.1. The remote sensing image quality and the neural network results 

Landsat TM images have been widely used for environmental monitoring, resource 

management, and land cover/land use classification (Haack et al., 1987; Park and 

Stenstrom, 2006). The images obtained from the 2009 - 2010 wet and dry seasons 

showed only little residual haziness with much more improvement after haze removal and 

atmospheric corrections. The 1998 dry season image had cloud coverage at the northern 

tip portion of the river where no river restoration was conducted and that portion could 

thus be removed from the analysis. The image taken in the 1998 wet season contained 

scattered clouds (not over the river course) and the haze removal and atmospheric 

correction had decreased the cloud coverage in this image to 1 % considered as an 

acceptable value (Tucker et al., 1985).   

The results from the neural network technique showed that the RMSE values for TP 

were below 0.03 mg L-1 for all seasons at the neural network training and validation 

phases (Table 6.2). Similarly, the average RMSE values for Chl-a and turbidity were 0.17 

mg m-3 (ranging from 0.03 to 0.54 mg m-3) and 0.5 NTU (ranging from 0.03 to 1.38 

NTU), respectively, at the training stage and at the validation stage (Table 6.2) below the 

10 % level of the observed data (0.91 mg m-3 and 0.51 NTU, respectively). The 
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correlation coefficients (r2) obtained after graphically fitting the observed and simulated 

results were above 0.95. Figure 6.4 presents some of the graphical fit results for the three 

selected water quality parameters, indicating the relatively good agreement between the 

monitored and the simulated values and revealing that the present methodology can be 

used as a suitable technique to predict water quality data in the Kissimmee River.  

 

Figure 6.4 Graphical fit of the water quality parameters against 1-1 line of predicted (Y) 

and targeted (T) for the different seasons of 1998-1999 and 2009-2010.
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Table 6.2 RMSE (m) and averaged weights of the ANN inputs 

 

Chl-a stands for chlorophyll–a (mg m-3), TP for total phosphorus (mg L-1), Turb for 

Turbidity (NTU) and NA for not applicable. The unit of the RMSE is the unit of the 

quantity being estimated. 

Several other authors attempted to employ remote sensing image data in water quality 

mapping. Nas et al. (2010) used the Landsat imagery to investigate spatial water quality 

patterns in Lake Beysehir. Their best model led to regression correlation coefficient 

values ranging between 0.61 and 0.71 when comparing the measured and estimated 

values of water quality parameters. Wu et al. (2010) attempted to develop empirical 

models to estimate TP concentration in the mainstream of the Qiantang River in China 

using Landsat data. The optimal regression model produced a correlation coefficient of 

0.77. Olmanson et al. (2008) conducted a 20-year assessment to evaluate the accuracy of 

a Landsat method to obtain a comprehensive spatial and temporal coverage of key water 
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quality characteristics that can be used to detect trends at different geographic scales. In 

the same study, the reliability of the data was evaluated by examining the precision of 

repeated measurements on individual lakes within short time periods and by comparing 

water clarity computed from Landsat data to field-collected Secchi depth data. The 

agreement between satellite data and field measurements of Secchi depth within Landsat 

paths was strong (average r2 of 0.83 and range 0.71–0.96).     

The nonlinear neural network model enables to produce more accurate estimations 

than can be obtained with the more conventional methods.  Especially so when only 

sparse, gapped data are available for model training (Abrahart and See 2000; Li et al., 

2010; Srivastava et al., 2006). The main advantage of using the neural network is that it 

allows considering nonlinear multi-parameter relationship between reflectance from the 

different spectral bands and the water quality parameters (Ceyhun and Yalcin, 2010). The 

weight of each of the bands used in the linear part of the neural model averaged over the 

multiple neurons in each model is presented in Table 6.2. The results indicated that band 

1 weighted the highest during the wet season in 2009 – 2010, whereas the weight of 

bands 3 and 7 were mostly lower when compared to other band weight. Similarly, band 2 

and band 5 showed dominant weights and closer ties averaging for each parameter type 

over the years. Band 2 and band 5 is attributable to the fact that similar information 

content is captured by the different bands, and unlike other multivariate methods, the 

neural network would not remove redundancy (Benediktsson et al., 1990). Indeed, 

although each individual spectral band reveals different characteristics of the examined 

parameters, the dataset as a whole contains a degree of redundancy because of the 

correlation between the spectral bands (Kavzoglu and Mather 2000). Taking into account 
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this redundancy and after comparing the neural network model to a traditional regression 

model, Wang et al. (2008) estimated the error to below 25 % using the neural network 

while estimating water quality parameters such as suspended solids, dissolved oxygen, 

total nitrogen, TP and Chl-a.  

6.6.2. Water quality parameters monitoring  

The main purpose of the Kissimmee restoration was the reestablishment of hydrologic 

conditions and fluctuations while restoring the Kissimmee River and its floodplain. 

However, the impacts of the floodplain restoration on the water quality remain uncertain 

(South Florida Water Management District 2010b). It is expected that the flooding of the 

natural wetland zones adjacent to the Kissimmee River would impact the selected water 

quality parameters (TP, Chl-a and turbidity). Settlement of sediments, attenuation of 

nutrient levels and change of vegetation pattern could be expected in the long run. 

Colangelo (2007) examined the response of the river metabolism to restoration of flows 

and reported that the post-restoration dissolved oxygen of the Kissimmee River increased 

from < 2 mg/L to 4.70 mg/L thus meeting the target values derived from free flowing and 

minimally impacted reference streams. The present work focused on Chl-a, TP and 

turbidity as water quality parameters.  

Chl-a is an important parameter considered as an indicator of a waterbody trophic 

status. Spatial patterns of chl-a tend to be complex, being a result of biological as well as 

physical and chemical factors. Figure 6.5a represents the levels of Chl-a during the four 

days of the dry and wet seasons of 1998 -1999 and 2009 - 2010. The modeling results 

showed that during 2009-2010, Chl-a decreased from the 5-40 mg m-3 level to the 0-5 mg 

m-3 level during the dry season and from the 15-40 mg m-3 level to the 0-15 mg m-3 level 
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during the wet season (Figure 6.5a). During the two selected days representative of the 

1998 -1999 dry and wet seasons, the Chl-a across the river showed higher values (25-40 

mg m-3) at the river bank. The values decreased to 5-15 mg m-3 in the center of the river,  

agreeing with the physical process of sedimentation along the banks and algae 

encroachment (Sabater et al., 2008).  During the two selected days representative of the 

2009 - 2010 season, much of Chl-a was retained in the meandering section of the river 

course thus decreasing the Chl-a levels in the river downstream (Sabater et al., 2008).  

While Colangelo (2007) reported a general increase in the concentration of Chl-a pre and 

post-restoration, the same authors did not compare the amount of Chl-a stored in the 

water column during the pre and post-restoration periods. The results obtained from the 

maps generated in the present study could be further processed to obtain the amount of 

Chl-a stored in the water column as summarized in Table 6.3 (taking into account the 

averaged monitored water depth and the pixel area 30x30 m).  

Data on discharge was not available for all the stations consistently and thus could not 

be considered. When examining the upper section of the river, the amount of Chl-a 

decreased by 67.5 % and 88.9 % when comparing the four selected days of the 1998 -

1999 and 2009 - 2010 dry and wet seasons, respectively.  Except for the middle section of 

the river and when comparing the 1998 - 1999 to the 2009 - 2010 wet and dry seasons, 

the same decreasing tendency could be observed for the middle and lower sections of the 

river (Table 6.3). However, it is worth noticing that the results are on the basis of 

comparison between two days of the wet and dry seasons before and after restoration. A 

longer time period should be investigated for better establishment of the general increase 

or decrease tendency for Chl-a in the water column.  
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The second modeled parameter was the turbidity generally caused by the presence of 

suspended and dissolved matter such as clay, finely divided organic matter, plankton, 

other microscopic organisms and organic acids. Unlike Chl-a, turbidity did not exhibit a 

cross sectional concentration variation and showed a decreasing trend from upstream to 

downstream as observed in Figure 6.5b. This is attributable to the fact that Kissimmee 

River meanders in the flat plain which gives enough time for the sediments to settle down 

with a resulting decrease in turbidity toward downstream locations.  

Similar to Chl-a, the TP concentration decreased from the bank towards the center, 

confirming their theoretical relationship in trophic waterbodies (Smith and Shapiro 1981) 

(Figure 6.5c). During the day selected as representative of the 2009 - 2010 wet season, 

TP relocated from the river course to the wetlands (higher concentrations in the 

floodplains generally considered as nutrient attenuation zones). This elevated TP levels 

could originate from the legacy phosphorus of the dried-up wetlands. Indeed, after 

channelization of the Kissimmee River, the primary land use of the drained floodplain 

was as cattle pasture and included also some sod farms (van der Valk et al., 2009) that 

would certainly leave behind an important legacy phosphorus deposits in the soil. The 

overall trend in TP stored in the water column presented in Table 6.3 is not conclusive 

since an increase and a decrease in the TP levels were observed in different sections of 

the river. 
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Figure 6.5 Modeling results of chlorophyll-a (6.5a), turbidity (6.5b) and phosphorus 

(6.5c) levels during the wet and dry seasons and before (1998-1999) and after restoration 

(2009-2010) 

  

(6.5a) 

 

(6.5b) 
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 (6.5c) 

Table 6.3 Percentage of increase(+) or decrease (-) in the phosphorus and chlorophyll-a 

amounts stored in the water column in the upper, middle and lower section of the river. 
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6.8. Conclusions 

Optical sensors such Landsat TM could be used as a cost effective technique to monitor 

water quality parameters at a basin scale. The developed neural network model reduced 

the uncertainty from the exclusion of any of the bands and also captured both the linear 

and non-linear complex relationships. The neural network model provided an excellent 

relationship between the observed and simulated water quality parameters correlated at r2 

> 0.95. The results showed that the root mean square error values for phosphorus, 

turbidity and chlorophyll-a were below 0.03 mg L-1, 0.5 NTU and 0.17 mg m-3, 

respectively, for all seasons at the neural network training and validation phases. The 

trends for changes in the selected water quality parameters were established while 

noticing that the results were on the basis of the comparison between two days during the 

wet and dry seasons before and after restoration. A longer time period should be 

investigated to follow the general increase or decrease tendency of selected water quality 

parameters in the water column, taking into account the difference in water depth and 

surface area before and after restoration.   
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CHAPTER VII 

7.  Spatial Relationship of Groundwater-phosphorus Interaction 

Chebud, Y. A., Melesse, A.M. 

Department of Earth and Environment,  

Florida International University 

7.1. Abstract 

After the channelization of the Kissimmee River in the 1960’s, the water that 

naturally inundates the flood plains was drained to the downstream Storm Water 

Treatment Areas and Water Conservation Areas for nutrient removal. The shift from a 

natural equilibrium ecosystem to a managed ecosystem has required operational 

prediction both on water and nutrient dynamics.  In this research, operational prediction 

of soluble phosphorous that used groundwater fluctuation as a predicto was analyzed. A 

graphical fit of soluble phosphorus with groundwater level showed goodness of fit (R2, 

0.8 - 0.99). Also, a chi-square analysis showed similarity of pattern between groundwater 

fluctuation and soluble phosphorus level 99% of the time. Finally, a geographically 

weighted multivariate analysis of soluble phosphorus was conducted using inputs of 

groundwater fluctuation, water quality of adjacent surface water bodies (discharge sites) 

and distance from source to discharging sites. The result indicated no significant 

difference between the simulated and observed soluble phosphorus level at p-value of 

0.01. The groundwater fluctuation was capable to explain up to 70% of the phosphorus 

variation. Amongst the inputs, distance to surface water bodies and their respective water 

quality (feedback input) showed significant weight only within a 5-mile range from the 
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water body. The study showed predictability of soluble phosphorus using groundwater 

fluctuation in the wetlands of south Florida.  

Key:  Multivariate analysis, Soluble Phosphorus, Total Phosphorus, Groundwater 

fluctuation. 

7.2. Introduction and Background 

Chebud et al. (2011) reported a 13% accuracy of watershed based models to 

estimate soluble and sequestered P in SF. However the high resolution of inputs required 

such as land use, management practices, soils and climatic data pose the challenge to use 

them for operational prediction at routine level. Moreover, in a large wetland expanse on 

flat topography, watershed-based analysis is neither effective nor affordable. Apparently, 

a methodology is necessary for spatiotemporal prediction of phosphorus associated with 

the groundwater level prediction and inputs from surficial water quality.  

In a large wetland system, where flow directionality is dynamic, accounting all 

inputs is unaffordable in terms of data acquisition and computational costs (Chebud et al., 

2011).  The technical complexity and logistical problems of monitoring such a large 

wetland system is reported by Harvey et al., (2004). One option would be developing 

simplistic monitoring approach namely, using data driven simulation (Chebud and 

Melesse, 2011) supported with cheaper data acquisition techniques of remote sensing.  

Therefore, the study hypothesized that soluble phosphorus could be predicted 

using groundwater fluctuation that embeds the intensive processes of wetting and drying; 

and also a feedback from the phosphorus level in surficial water bodies with no-

significance difference between the observed and predicted values at 90% of the time (p-

value of 0.1).   
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The specific objective of the study was set to conduct a point and spatiotemporal 

analysis of the groundwater-phosphorus interaction that could ultimately contribute to 

spatiotemporal prediction of soluble phosphorus coupled with groundwater fluctuation.  

In a groundwater driven hydrological and nutrient transport systems, coupling 

nutrient dynamics with groundwater level prediction would be realizable given 

availability of a point and spatiotemporal groundwater fluctuation models (Chebud and 

Melesse, 2011). 

7.4. Study Area 

The study area for the point scale groundwater-phosphorus interaction was 

Everglades Nutrient Removal (ENR) project sites (Figure 7.1). The project sites are part 

of storm water treatment areas (STA). The sites are strategically situated in the 

downstream side of Lake Okeechobee Agricultural Area; on the upstream side of water 

conservation area 1 (WCA-1), and north of Everglades National Park (Figure 7.1). The 

stations chosen and availability of data are shown in Table 7.1. 

Table 7.1. Phosphorus monitoring wells used for analysis 
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Figure 7.1 Location of phosphorus monitoring well sites over SFWMD 

The study area for the spatial pattern analysis of the phosphorus dynamics against 

the groundwater fluctuation was tested for the S-65 sub-basin commonly called Lower 

Kissimmee Basin (Figure 6.2, Chapter 6).  Soluble phosphorus for the S-65 sub-basin 

(Figure 7.2a) was obtained from soluble P of the watershed based simulated output (the 

simulated result of Chebud et al. (2011)). Also the groundwater level change was 

extracted from the simulated spatiotemporal groundwater level reported in Chapter 4 of 

this dissertation (Figure 7.2b).   

 

Figure 7.2 S-65 sub-basin (a) Soluble phosphorus,  (b) groundwater levels 
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7.5. Methodology 

Analysis of phosphorus dynamics against groundwater fluctuation was tested 

using data obtained from ENR. Data on dissolved phosphate, total phosphorus and 

groundwater level are collected on monthly basis and only for certain time of the year 

(with no time pattern). Despite the non-regular pattern of data collection, the collected 

data constitutes both groundwater level (measured from surface), total phosphorus and 

soluble phosphorus. In some of the wells, measurements are taken at groundwater depth 

of 0.15, 0.3, 0.45 and 0.6 m for shallow water tables. The depth of monitoring reaches up 

to 2.5 m over deeper water table sites.  

A spatial pattern relationship between phosphorus levels and groundwater table 

depth spatial patterns was first observed using a cross-tabulation method which was a 

measure of joint frequencies obtained for a matrix of classes of the two patterns. Chi-

square was used as a measure of test for the cross-classified patterns, evaluated using 

equation (7.1). Groundwater level and soluble phosphorus were classified in 10 classes  

for a chi-square analysis  at regional scale. 
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where O and E are observed and expected frequencies, respectively,  in a matrix 

of N and M classes of the phosphorus and groundwater level spatial patterns to be 

compared; xij is frequency of observation on classes i (phosphorus) and j (groundwater 

level). 
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  A geographically distributed multivariate analysis that fit to the local system was 

conducted using the method of least squares varying the number of neighboring cell sizes 

until a reasonable fit was obtained. The analysis was done on ArcGIS suite 10 and S+ 

statistical software package. 

7.6. Inputs for operational prediction 

Groundwater level was chosen as one of the factors after a report by Young et al. 

(1998) which states that groundwater fluctuation has a direct effect on redox process and 

hence on soluble phosphorus. The Kissimmee River phosphorus level (Figure 7.3b) was 

also considered as an input because of the dominance of groundwater transport dictated 

by the flat topography not only during base flow but also in wet season flow. Distance 

from the river (Figure 7.3c) was chosen because of the direct relationship with 

attenuation processes of phosphorus as it drains to the river.   

 

 

Figure 7.3 Inputs for the soluble phosphorus prediction a) Groundwater level deviation 

from mean b) distance from Kissimmee River c) Phosphorus level of Kissimmee River. 
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 7.6. Analysis  

7.6.1. Point scale groundwater level vs. water quality parametric relationship 

Graphical plot of soluble phosphorus against groundwater table (measured from 

surface) showed increased solubility with rise of water table (Figures 7.4a, 724, 7.4e). 

The relationship could be explained by increased saturation and solubility from top soil 

(with higher organic matter) as well as proximity of water table to the surface that 

enhances quick percolation to the groundwater.  Groundwater recession will be 

accompanied by soluble phosphorus fixation because of the increase in solubility of 

calcium carbonate from the limestone formations. The relationship was the same across 

all sites showing a power decrease of soluble phosphorus with receding groundwater 

level from surface. The fit of the curves showed an R-squared value of 0.96 - 0.99 (Table 

7.1).    

 In contrast, the graphical fit of total phosphorus versus groundwater table depth 

showed an increase in total phosphorus with recession of the groundwater table (Figures 

7.4b, 7.4d, 7.4f). As mentioned earlier, the dissolved calcium carbonate from the karst 

aquifer might have decreased the soluble phosphorus forming a particulate calcium 

phosphate.  Total phosphorus has shown a logarithmic increase with groundwater 

recession at R-squared value of 0.63 - 0.99 (Table 7.1).  
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Figure 7.4 Total and soluble phosphorus relationships with groundwater table 

 

7.5 Total phosphorus (7.4b) Soluble phosphorus at 3AN1-GW / PZ * and ENR40* 

 

7.6c Total phosphorus (7.4d) soluble phosphorus at 3AS3-GW / PZ and ENR403* 

 

 

7.7 Total phosphorus (7.4f) soluble phosphorus at SBS1-GW/ PZ* and ENR404* 
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Table 7.2 R-squared for the testing sites 

 

Because of the complexity of the phosphorus dynamics being affected by 

vegetation, soil type, drainage and hydrogeology, the analysis could not extend and 

interpret that groundwater has a causative relationship. However, the given exploratory 

analysis of the patterns of relationship is sufficient to test whether phosphorus dynamics 

holds the same relationship with groundwater fluctuation at watershed / regional scale. 

Finally, a spatial analysis of the soluble phosphorus against groundwater level using the 

chi-square analysis showed similarity of patterns at 99% of the time. 

7.6.2. Soluble phosphorus prediction: A multivariate analysis  

The point scale as well as chi-square analyses mentioned earlier strengthen the fact 

that groundwater fluctuation (Figure 7.4a) could be explanatory variable for local level 

change of phosphorus. Accordingly a multivariate analysis of soluble phosphorus using 

groundwater level, distance from water bodies and P concentration on surface water 

bodies showed a visual similarity of predicted soluble phosphorous with a pattern of the 

ArcWAM simulated soluble phosphorus (Figures 7.5a and 7.5b). The analysis showed a 

spatial dependence of variability with goodness of fit (R2) ranging 0.2 – 0.7 (Figure 7.6). 

Hotspot occurrences (maximum phosphorus sources) as well as phosphorus sinks (vast 
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wetlands) were captured (Figures 7.5a and 7.5b). The highest correlation was observed 

on hot-spots of phosphorus sources and sinks alike which seem to be related to local 

homogeneity of observations.  The predicted versus observed fit (Figure 7.6, plotted 

graphs) at different sections of the basin indicated slight over prediction (confirming the 

visual observation, Figure 7.5b).  

 

Figure 7.5 a) Phosphorus extracted from watershed based estimation, 'observed' b) 

Predicted soluble phosphorus 

 

 

Figure 7.6 The goodness of fit (R2) and graphical fit  of observed versus predicted 
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A residual analysis was also done using the difference between observed soluble 

phosphorus and the predicted. The residual spatial patterns showed highest and lowest at 

transitional sites between hotspots of sources or sinks, respectively as it might be 

expected (Figure 7.7a). However, the residuals were also found fitting a normal 

distribution (Figure 7.7b)  with mean value of 0 revealing a non-significant difference 

between the observed and simulated phosphorus levels at p-value of 0.01. 

 

Figure 7. 7a Residual of observed and predicted soluble phosphorus   

Figure 7.7b Histogram of residuals fitted with normal distribution 

The average weight given to groundwater level for the phosphorus prediction was 

0.4 with 99% confidence of occurrence. Whereas the weights of Kissimmee River 

phosphorus level and the distance from the river course were small showing no 

significant difference with null value at p-value of 0.2.  However, the weights were 95% 

of the time significantly different near the Kissimmee River (within 5 miles range).    
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7.8. Conclusion 
This study revealed the possibility of predicting soluble P with groundwater 

spatiotemporal simulation. Point scale relationship of phosphorus dynamics with 

groundwater level changes were observed over the wetlands of south Florida that showed 

increased soluble phosphorus with the rise of groundwater. In contrast, total phosphorus 

was observed to decrease with rise in groundwater and vice versa.  A geographically 

weighted multivariate analysis using inputs of regional groundwater level change, 

distance from discharging sites and water quality of discharging sites (surficial water 

bodies) showed that groundwater could explain phosphorus 70% of the time at p-value of 

0.01. A chi-square analysis revealed similarity of pattern between groundwater 

fluctuation pattern and soluble phosphorus over 99% of the time. Analysis of the residual 

on the predicted and observed soluble phosphorus showed no significant difference at p- 

value of 0.01 exceeding the expected p-value of 0.1. Therefore, the ultimate goal of 

predicting phosphorus for operational purposes coupled with groundwater fluctuation 

was found possible. The research recommended on further data acquisition and fine 

tuning input factors. 
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CHAPTER VIII 

Conclusion and Recommendation 

The research has introduced point and regional scale groundwater fluctuation 

model that uses the available data in SFWMD. However, the approach could equally help 

data scarce areas through synthetic generation of groundwater fluctuation vis a vis  

scenario analysis. The synthetic generation of state sequences at point scale is the core of 

prediction in addition to the dynamic nature of the model that updates whenever new 

observations are made.  

Further research on point scale process of phosphorus state retrieval with 

groundwater level over a range of scenarios would contribute to the development of 

minimum input operational prediction of phosphorus at point scale as it was observed for 

groundwater. The way forward would be simulating point scale phosphorus dynamics 

with analogical approach to groundwater fluctuation simulation since groundwater 

fluctuation has shown similarly of patterns  with soluble phosphorus at 99% the time.  

The spatiotemporal groundwater fluctuation simulation has contributed 

identifying explanatory factors which could later serve for future spatiotemporal 

simulation of P. Since all the factors identified from spatiotemporal groundwater 

simulation could easily be captured using a remote sensing approach, the developed 

model is applicable to use for operational prediction purposes. The rainfall, soil moisture, 

and water levels from lakes and canals could be captured from satellite imagery as 

discussed elsewhere.   
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 Because of the extended management strategy of groundwater level by SFWMD, 

identification of the relationship between the groundwater fluctuation and phosphorus 

dynamics and the methodological approach developed for soluble phosphorus estimation 

using groundwater as predictor serves as part of the decision support system  

The methodological approach for phosphorus prediction was realized using  

groundwater fluctuation that explained 60-70% of the variation. The hypothesis was met 

showing no significant differences between groundwater based prediction of soluble 

phosphorus and the results from the physical based model at p-value of 0.01, exceeding 

the hypothesized p-value of 0.1. Further identification of explanatory variables that could 

be captured with minimum cost (using satellite imagery) as in the case of the 

spatiotemporal groundwater fluctuation simulation would enhance operational prediction 

for a greater precision.  

The relationship of depth of groundwater and soluble phosphorus draw the 

attention because of the fact that the site is dominated by karst hydrogeology (excessively 

transmissive - 300 m/day) to drain phosphorus to surficial water bodies. Because of the 

observed low sequestration of P in oversaturated areas and subsequently an inevitable 

transport of soluble and particulate phosphorus from karst hydrogeology to water bodies, 

a management decision targeted improving uptake of soluble phosphorus would be 

realistic.  The urgency to use vegetation is pronounced, especially in storm water 

treatment areas where excessive load of phosphorus needs to be siphoned off before it 

gets at depth and ultimately transported, though in particulate form.  A physical 

management system  being practiced currently to keep the groundwater table at a 



 
139

specified depth from surface to reduce the soluble phosphorous would serve less on 

nutrient removal.   

The limitation of the study was the absence of primary generated data. The study was 

fully dependent on the published data of SFWMD. As a result, data was not captured at 

varying hydrogeological and land use settings. Similarly, the threshold depth where 

soluble phosphorus shows changes (increase /decrease) at different hydrogeological 

contexts could not be comprehended because of the scarcity of data. So, future work 

recommended include: 

1. Capturing soluble and total phosphorous at varying hydrogeology, soil type, land 

use outside of the wet lands to understand the causative relationship for the 

groundwater-phosphorus dynamics. 

 
2. Capturing temporal variation of the relationship between groundwater and 

phosphorus dynamics was averaged out because of the scarcity of the data. 

Therefore, generating the groundwater and phosphorus dynamics over meaningful 

temporal ranges at least  for 3 to 5 years would help for conclusiveness of the data 

 
3. Since phosphorus levels of surface water bodies was identified as a feedback 

input to the groundwater phosphorus prediction, emphasis need to be given to 

fine-tuning the neural network methods over a reasonable number of shallow 

surface water bodies.   
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