
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-9-2012

Power and Thermal Aware Scheduling for Real-
time Computing Systems
Huang Huang
Florida International University, hhuan001@fiu.edu

DOI: 10.25148/etd.FI12042309
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Huang, Huang, "Power and Thermal Aware Scheduling for Real-time Computing Systems" (2012). FIU Electronic Theses and
Dissertations. 610.
https://digitalcommons.fiu.edu/etd/610

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/610?utm_source=digitalcommons.fiu.edu%2Fetd%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

POWER AND THERMAL AWARE SCHEDULING FOR REAL-TIME

COMPUTING SYSTEMS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Huang Huang

2012

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Huang Huang, and entitled Power and Thermal Aware
Scheduling for Real-time Computing Systems, having been approved in respect to
style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Malek Adjouadi

Jiuhua Chen

Chen Liu

Nezih Pala

Gang Quan, Major Professor

Date of Defense: March 9, 2012

The dissertation of Huang Huang is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida Internatinal University, 2012

ii

DEDICATION

I would like to dedicate this Doctoral dissertation to my beloved wife, Yuanyuan, my

dear parents and terrific in-laws. Without their love, understanding, support, and

encouragement, the completion of this endeavor would never have been possible.

iii

ACKNOWLEDGMENTS

I wish to express my deepest appreciation to my major professor, Dr. Gang Quan,

for his guidance, encouragement, support, and patience. His passion, dedication and

sincere interests in scientific research have been a great inspiration to me.

I would also like to thank my committee members, Dr. Malek Adjouadi, Dr.

Jiuhua Chen, Dr. Chen Liu and Dr. Nezih Pala, for their very helpful insights,

comments and suggestions to improve the quality of this dissertation.

Finally, I would like to thank the National Science Foundation (NSF) for support-

ing the research described in this dissertation through grants CNS-0969013, CNS-

0917021 and CNS-1018108.

iv

ABSTRACT OF THE DISSERTATION

POWER AND THERMAL AWARE SCHEDULING FOR REAL-TIME

COMPUTING SYSTEMS

Huang Huang

Florida International University, 2012

Miami, Florida

Professor Gang Quan, Major Professor

Over the past few decades, we have been enjoying tremendous benefits thanks to the

revolutionary advancement of computing systems, driven mainly by the remarkable

semiconductor technology scaling and the increasingly complicated processor archi-

tecture. However, the exponentially increased transistor density has directly led to

exponentially increased power consumption and dramatically elevated system temper-

ature, which not only adversely impacts the system’s cost, performance and reliability,

but also increases the leakage and thus the overall power consumption. Today, the

power and thermal issues have posed enormous challenges and threaten to slow down

the continuous evolvement of computer technology. Effective power/thermal-aware

design techniques are urgently demanded, at all design abstraction levels, from the

circuit-level, the logic-level, to the architectural-level and the system-level.

In this dissertation, we present our research efforts to employ real-time scheduling

techniques to solve the resource-constrained power/thermal-aware, design-optimization

problems. In our research, we developed a set of simple yet accurate system-level

models to capture the processor’s thermal dynamic as well as the interdependency of

leakage power consumption, temperature, and supply voltage. Based on these models,

we investigated the fundamental principles in power/thermal-aware scheduling, and

developed real-time scheduling techniques targeting at a variety of design objectives,

including peak temperature minimization, overall energy reduction, and performance

v

maximization.

The novelty of this work is that we integrate the cutting-edge research on power

and thermal at the circuit and architectural-level into a set of accurate yet simplified

system-level models, and are able to conduct system-level analysis and design based

on these models. The theoretical study in this work serves as a solid foundation

for the guidance of the power/thermal-aware scheduling algorithms development in

practical computing systems.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION 1
1.1 High Power Consumption Problem 1
1.2 Why Temperature Matters . 3
1.3 Research Problems and Our Contributions 5
1.4 Structure of the Dissertation . 9

2 BACKGROUND AND RELATED WORK 11
2.1 Real-time Computing and Scheduling 11

2.1.1 What is Real-time Computing 11
2.1.2 Research on Real-time Scheduling 13

2.2 Power Reduction . 15
2.2.1 Sources of Power Consumption in Digital Integrated Circuit . 15
2.2.2 Power Reduction Techniques 17

2.3 Thermal Management . 23
2.3.1 The Need for Thermal Management 24
2.3.2 Thermal-Aware Design Techniques 24

2.4 Power/Thermal-Aware Scheduling . 29

3 SYSTEM-LEVEL POWER AND THERMAL MODELS 31
3.1 Preliminaries . 31
3.2 Linear Leakage/Tempearture Models 34
3.3 Performance Evaluation of Different Leakage Models 39

3.3.1 Experiment Setup . 39
3.3.2 Leakage Power Estimation . 41
3.3.3 Peak Temperature Estimation 43
3.3.4 Our System-Level Power / Thermal Model 45

3.4 Summary . 47

4 SCHEDULING FOR PEAK TEMPERATURE MINIMIZATION 48
4.1 Related Work . 48
4.2 Peak Temperature Minimization . 50

4.2.1 The Concept of M-Oscillating 50
4.2.2 The M-Oscillating Considering Transition Overhead 53

4.3 Searching Algorithm for the Optimal m 57
4.4 Empirical Studies . 59
4.5 Summary . 60

vii

5 SCHEDULING FOR ENERGY MINIMIZATION 62
5.1 Related Work . 63
5.2 Motivational Examples . 65

5.2.1 M-Oscillating for Overall Energy Reduction 65
5.2.2 Fast and Accurate Energy Calculation is Needed 67

5.3 Energy Estimation Equation . 70
5.3.1 Energy Calculation for Single Speed Interval 71
5.3.2 Energy Calculation for Periodic Schedule 73

5.4 Our Energy Minimization Scheduling Algorithms 78
5.4.1 Energy Minimization for Single Task under Thermal Steady State 79
5.4.2 Energy Minimization of Multiple Sporadic Tasks under the

EDF Policy . 82
5.5 Experimental Results . 87

5.5.1 Accuracy and Efficiency of Energy Estimation Technique . . . 89
5.5.2 Energy Minimization under Thermal Steady State 94
5.5.3 Online Energy Minimization under the EDF Policy 96

5.6 Summary . 98

6 SCHEDULING FOR THROUGHPUT MAXIMIZATION 99
6.1 Related Work . 99
6.2 Preliminaries . 101
6.3 Motivational Examples . 104
6.4 Our Approach . 106

6.4.1 Sleep Mode Distribution for Hot Tasks 107
6.4.2 Improving Throughput by Task Switching 113
6.4.3 Improving Throughput by DVS 119

6.5 Experimental Results . 121
6.5.1 Theorem Validation . 123
6.5.2 Latency Minimization for Synthetic Task Sets 124
6.5.3 Latency Minimization for Real Benchmarks 125
6.5.4 Feasibility Improvement . 127

6.6 Summary . 129

7 CONCLUSIONS 130
7.1 Concluding Remarks . 130
7.2 Future Work . 133

REFERENCES 136

VITA 146

viii

LIST OF FIGURES

FIGURE PAGE

Figure 1.1 The trend of power consumption and transistor count for a
300mm2 die . 2

Figure 1.2 The portion of dynamic and leakage power consumption of
stationary systems projected by ITRS (2010) 5

Figure 2.1 The illustration of dynamic power consumption in digital ICs 15
Figure 2.2 Three types of leakage current in CMOS transistor 18
Figure 2.3 Apply logic restructuring to reduce switching activity 20
Figure 2.4 Using RC network to model a processor’s heat transfer [101] 27

Figure 3.1 System-level thermal model for single core processor 32
Figure 3.2 Estimated leakage power consumption by different leakage mod-

els under different temperature and supply voltage. 40
Figure 3.3 Estimated peak temperature for different leakage models . . 44

Figure 4.1 A two-speed schedule and its corresponding M-Oscillating sched-
ule. 51

Figure 4.2 In an ideal M-Oscillating schedule, the peak temperature mono-
tonically decreases with number of divisions 52

Figure 4.3 A non-ideal two-speed schedule and its corresponding M-Oscillating
schedule . 55

Figure 4.4 Searching for optimum m . 58
Figure 4.5 Maximal temperature of the non-ideal-case M-Oscillating sched-

ules with different transition overhead and divisions (m) . . . 61

Figure 5.1 Different speed scheduling approaches under EDF policy . . . 66
Figure 5.2 A speed schedule and its temperature curve 70
Figure 5.3 A periodic schedule and its temperature curve 70
Figure 5.4 M-Oscillating and the corresponding temperature curve at

thermal steady state . 79
Figure 5.5 M-Oscillating and the corresponding temperature curve at

transient stage . 83
Figure 5.6 Performance comparison of three different scheduling approaches

in terms of energy minimization and peak temperature reduction 96
Figure 5.7 Normalized energy consumption of three scheduling approaches 97

Figure 6.1 Improve the throughput by distribute sleep period between
task executions . 104

Figure 6.2 Improve the throughput by switching between hot and cool
tasks . 104

ix

Figure 6.3 Illustrate the procedure to find the appropriate number of m
for our sleep time distribution method by considering the non-
negligible transition overhead 111

Figure 6.4 Theorem validation . 122
Figure 6.5 Latency comparisons for synthetic task sets of different schedul-

ing approaches . 123
Figure 6.6 Latency comparisons for real benchmarks of different schedul-

ing approaches . 128
Figure 6.7 Feasibility comparisons of different scheduling approaches . . 129

x

LIST OF TABLES

TABLE PAGE

Table 2.1 Duality between thermal and electrical quantities 26

Table 3.1 Leakage model definition . 38
Table 3.2 Technical parameters of the circuit-level leakage model based

on the 65nm IC technology 41
Table 3.3 The absolute (AEE) and relative (REE) estimation errors of

leakage power consumption by different leakage models. . . 42
Table 3.4 The absolute (AEE) and relative (REE) estimation errors of

peak temperature by different leakage models. 44

Table 5.1 Normalized energy consumptions of four scheduling approaches 66
Table 5.2 Accuracy and efficiency of energy estimation equation for sin-

gle interval . 91
Table 5.3 Transient state energy calculation equation evaluation 92

Table 6.1 Selected benchmark programs and their parameters 126
Table 6.2 Representative task sets consisting of real benchmark programs127

xi

CHAPTER 1

INTRODUCTION

The increased transistor density and the exponentially growing power consumption of

modern computing systems have imposed enormous challenges that not only threaten

to slow down the pace of technology advancement, but also raise serious concerns re-

lated to the economic efficiency and environmental protection. High power consump-

tion directly translates into high temperature, which also makes the thermal issue a

challenging problem to be addressed. Evidently, power/thermal-aware techniques are

urgently needed at every design abstraction level in contemporary computing system

design. This chapter presents the motivations behind this research, introduces an

overview of the research problem, and discusses the major contributions made in this

dissertation.

1.1 High Power Consumption Problem

The continuous shrinking of the semiconductor transistor feature size, together with

the increasingly complicated circuit architecture, have resulted in an exponential in-

crease of power density, which has imposed enormous challenges and threatens to

slow down this progress.

According to [20], more than 40 billion transistors are being integrated into a

single 300mm2 die today, and as shown in Figure 1.11, the number is growing rapidly

toward 100 billion by the middle of 2010’s. The power consumed by these transistors

is significant, reaching 300 watt in a matter of a few years. The soaring power

consumption has posed immediate challenges for system designers in both portable

devices and power-rich systems.

On one hand, battery-operated portable devices, in recent years, have been ex-

1Figure 1.1 is plotted based on the data reported in [20].

1

Figure 1.1: The trend of power consumption and transistor count for a 300mm2 die

periencing revolutionary improvement ranging from functionality, application and

performance. All complicated applications and powerful hardware resources demand

high-capacity batteries to sustain the battery life for the sake of mobility and appli-

cability. Unfortunately, the trend that devices are simultaneously asked to do more

and getting smaller severely limits the battery size and therefore the power they

could generate. The current battery technology, with less-than-5% annual capacity

improvement [9], cannot effectively address this problem. In fact, in many modern

high-performance portable devices, such as smart phones and tablets, battery packs

have already taken the majority of the space within devices’ enclosures [1]. Evidently,

unless sophisticated power reduction techniques are successfully implemented, the

advancement of the mobile computing industry can be severely handicapped by the

limitation of battery life, or the “gating factor”.

On the other hand, even for power-rich computing systems, such as data centers,

the energy consumption is also a major issue. The power usage of U.S. data cen-

ters had doubled between 2000 and 2005. According to an Environmental Protection

Agency (EPA) report [11], in 2006, data centers within the U.S. consumed 61 billion

2

kilowatt hours of energy, which is equivalent to 1.5% of all energy consumed in the

U.S. - at a cost of 4.5 billion dollars and continued to grow at 12% per year. It is

estimated that, as of today, the electricity cost of a server over its lifetime will pass

the price of the hardware. Even worse, an estimation of 70% of the electricity in

the U.S. is generated by fossil fuel. Therefore, considering the costs related to power

consumption and the impact on the environment, data center-related technological

innovations are urgently needed from different aspects, such as cooling equipments,

power conversion/distribution and most importantly, power-efficient computing sys-

tems.

1.2 Why Temperature Matters

The soaring power consumption not only has presented significant challenge that

stresses power supply, but also makes the heat dissipation and the temperature control

even more critical and challenging.

The elevated temperature caused by heat dissipation significantly affects the reli-

ability and the performance of a computing system. It can even cause catastrophic

system failures. The reliability of an electronic system can be modeled by using the

Arrhenius equation [53, 114], i.e. MTF = MTF0e
Ea
KbT , where MTF is the mean-time-

to-failure of a system, and T is the operating temperature. When a system’s operating

temperature increases, its mean-time-to-failure decreases exponentially. According to

Yeh and Chu [114], even if a processor does not completely fail at a high temperature,

a small increase in temperature, e.g. 10oC, can result in as much as 50% reduction

in the device’s life span.

Moreover, temperature increase also worsens the performance. The clock timing

in the CMOS circuit is very sensitive to temperature variations. Each 15oC increase

in temperature can add roughly 10% to 15% to the circuit delay [96].

3

Furthermore, the escalating chip temperature has directly led to high packaging

and cooling costs. It is estimated that the thermal packaging cost increases at 1-3

dollar per watt [100, 101]. With estimated peak power of future processors well over

300 watts [55], this portion of cost seriously undermines the benefit of new generations

of computing systems.

Even though there are novel and impressive cooling techniques and thermal ma-

terials being developed (e.g. [87]), the cost-effective heat removal capability remains

almost flat in the foreseeable future [87, 55]. The severity of the thermal problem is

further highlighted by Intel’s acknowledgement that it has hit a “thermal wall” [78].

Similarly, thermal challenges exist in high-performance computing systems [12,

17, 21, 100]. Data center designers and operators have to expend tremendous ef-

fort on heat management to improve operational performance and minimize system

downtime. At a data center with many power-hungry computing and networking

equipments, cooling cost has been the primary source of the increased operational

costs. It is estimated that 4−8 million U.S. dollar a year is spent for cooling alone

in a 30,000 square feet data center with 1000 standard computing racks [81]. It is

further estimated that half to one watt has to be consumed just for cooling in order to

sustain each watt consumed on computation [17, 21]. According to [21], the dramatic

increase in engineering costs and financial burdens of providing power and cooling for

data centers have become serious economic problems and will eventually cause the

“economic meltdown of Moore’s Law”.

In addition, high temperature also increases the leakage power consumption, which

is becoming one of the major components in overall power, e.g. up to 70% of total

power [55]. As shown in Figure 1.2 [55], the leakage power consumption will increase

dramatically in the near future. It is catching up and even surpassing the dynamic

power consumption as the IC technology continues its marching toward the deep sub-

4

Figure 1.2: The portion of dynamic and leakage power consumption of stationary
systems projected by ITRS (2010)

micron (DSM) era. Based on the UC Berkeley’s BSIM device model [18], Liao et al.

[65] showed that the leakage power consumption can be 2-3 times higher than the

dynamic power consumption for processors using the 65nm technology.

It has been shown that the leakage power is highly dependent upon the system

temperature and a positive feedback loop exists between the two. Taking the 65nm

technology for example, the leakage power will increase by 21% when chip temper-

ature raises from 60oC to 80oC and the increased power consumption will in turn

produce more heat to escalade the temperature [66]. Therefore, as the thermal issue

becomes increasingly prominent, the system temperature has to be incorporated as

a critical design metric in computing system development. And any power/thermal-

aware design technique can become ineffective if the interdependency between the

leakage and temperature is not properly considered.

1.3 Research Problems and Our Contributions

In the face of the grave challenges to deal with the power consumption and heat gen-

erated by the computing systems today, power/thermal-aware design techniques are

5

urgently demanded from all perspectives and design abstraction levels. To tackle this

problem, efforts have been made at every design abstraction level including circuit-

level, logic-level, architectural-level and system-level. In this dissertation, we are

focusing on addressing this problem from the system-level. Specifically, we study

the power/thermal-aware scheduling problems for real-time computing systems. The

aim of this research is to develop appropriate real-time scheduling algorithms to ad-

dress the system-level power/thermal-aware design optimization problems with the

interplay between temperature and leakage power consumption being taken into con-

sideration. The research will incorporate advanced power manageable features, e.g.

dynamic voltage/frequency scaling (DVS) and dynamic power down (DPD), in the

state-of-the-art computer architecture to meet the increasingly stringent timing re-

quirement, as well as optimize other performance metrics, such as peak temperature,

energy consumption and throughput, of real-time systems.

The contributions of this dissertation can be summarized as follows:

1. We integrate the state-of-the-art research on power, leakage, and temperature

at the circuit and architectural-level and develop a set of accurate yet simplified

power and thermal models which can be used to effectively capture the pro-

cessor’s thermal dynamic as well as the leakage/temperature dependency. The

linear-approximation leakage power model developed in this research helps to

greatly simplify the complexity of temperature calculation while achieves rea-

sonably good accuracy, e.g. 1.3% average relative error for leakage calculation

and less than 4.8% relative error when calculating the temperature.

2. Based on the proposed system-level models, we study the problem on how

to minimize the peak temperature of a processor when executing a periodic

task set. We propose an approach based on an existing algorithm, called M-

6

Oscillating [28], that oscillates task executions between the high and low pro-

cessor speeds. Different from the original algorithm proposed in [28], in this

research, we incorporate the non-negligible processor mode switching overhead

into analysis and present a fast searching algorithm that can be used to effi-

ciently find the appropriate number of mode switchings that can lead to the

minimized peak temperature. From our experimental study, we find that, with-

out taking the transition overhead into consideration, the original M-Oscillating

algorithm can in fact increase the peak temperature in practical scenarios, while

our new approach can effectively accommodate the practical factors such as the

transition overhead.

3. The temperature dependent leakage power makes the energy calculation com-

plicated and computationally expensive. In our research, we further derive a

novel, closed-form energy estimation method that can be used to accurately and

efficiently calculate the energy consumption of a candidate schedule at both the

transient and the thermal steady state. Based on the proposed energy calcula-

tion method, we then develop two scheduling techniques, i.e. an off-line method

for a periodic task set and an on-line method targeting at an aperiodic task set,

to minimize the overall energy consumption of real-time systems. Our experi-

mental results show that the proposed energy estimation method can achieve up

to 177X speedup compared with an existing approach [73] while still maintain-

ing high accuracy (with relative error no more than 4.1%). With a large num-

ber of different test cases, the proposed off-line energy minimization scheduling

method consistently outperforms two existing approaches, e.g. the Naive ap-

proach and the Pattern-based approach [110], by 26.5% and 15.3%, respectively.

Our on-line approach, on the other hand, also shows superior performance in

terms of over energy reduction. Compared with two existing approaches, the

7

Pattern-based approach and the On-line DVS approach [64], on average, our

method gains 14% and 10% additional energy savings, respectively.

To the best of our knowledge, we are not aware of any other thermal-aware

scheduling techniques that can guarantee the hard real-time deadlines for an

aperiodic task set.

4. For a task set consisting of tasks with heterogeneous power and thermal profiles,

we observe that the overall latency when running a task can be reduced if we

split the task execution and insert cooling periods in between. Moreover, we

notice that by frequently switching between the execution of tasks with different

thermal characteristics, e.g. hot and cool tasks, the entire temperature curve

can be maintained under a predefined threshold without introducing any cool-

ing period. Based on these observations, we formally establish and successfully

prove two important theorems, which are used to guide the development of our

peak temperature constrained, throughput maximization scheduling algorithms

for a periodic hard real-time system. Two scheduling approaches are presented

for processors with and without DVS feature. Our experimental results, based

on parameters drawn from the 65nm technology, show that on average our

methods outperform the existing approaches [119] by over 23.3% and 5.3%, for

a processor without and with DVS capability, respectively. Moreover, under

different ambient temperature conditions, the proposed method can guarantee

that all task can be completed without a single occurrence of peak tempera-

ture constraint violation, i.e. a 21% feasibility improvement over the existing

approach [119].

8

1.4 Structure of the Dissertation

This dissertation is organized as follows. Chapter 2 introduces the background of

this research. Specifically, we discuss a number of most important concepts in real-

time computing. Then, we present a number of existing approaches in both power

reduction and thermal management. Finally, we provide an overview of the literature

on power/thermal-aware scheduling, which is closely related to our research in this

work.

In Chapter 3, we provide some details about the system models, especially the

leakage model that we used in this dissertation. We study a large spectrum of leakage

power models, then analyze and compare the trade-off between the complexity and

accuracy of these models, empirically. Based on our experimental results, the one

that is able to account for the leakage/temperature dependency, and in the meantime,

simple enough and thus suitable for the system-level design is chosen and used in this

dissertation.

Based on the system models we derived in Chapter 3, three different, but closely

related, problem areas are studied in Chapter 4, Chapter 5 and Chapter 6, respec-

tively. Specifically, in Chapter 4, we investigate the operational temperature mini-

mization problem. An effective speed scheduling algorithm is proposed to reduce the

peak temperature of a processor when executing a hard real-time periodic task set.

Despite that the temperature and the power consumption of a system are strongly

correlated, a temperature minimization technique does not necessarily optimize the

energy consumption. Therefore, in Chapter 5, we extend our study to the problem

on how to schedule a hard real-time system to achieve the minimal overall energy,

including both dynamic and leakage energy consumption. Chapter 6 focuses on the

throughput maximization problem for a periodic real-time system under a given peak

temperature constraint. We assume that different tasks in our system may have dif-

9

ferent power and thermal characteristics. Two scheduling approaches are presented.

The first one is built upon processors that can be either in active or sleep mode.

Then, we augment this approach to consider processors with DVS capability.

Finally, in Chapter 7, we conclude this dissertation and discuss the possible future

work of this research.

10

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents our research background. We first introduce several important

concepts related to real-time systems and real-time scheduling policies. Then, we

discuss a number of studies on power reduction and thermal management techniques

at different design abstraction levels. We further conduct a more specific survey on

power/thermal-aware scheduling techniques, which are closely related to our research

topic.

2.1 Real-time Computing and Scheduling

Real-time computing has become one of the most important problem areas in research

and design of computing systems. In this section, we discuss some of the key concepts

of real-time systems. Then, we briefly discuss some existing works on the real-time

scheduling policy, i.e. a critical problem in studying real-time systems.

2.1.1 What is Real-time Computing

A real-time system is the one that has to respond to an externally generated stimuli

within a finite and specified time period [98]. In a real-time system, time is critical

that needs to be managed carefully. The correctness of an operation depends not only

on the logical result but also on the time it is delivered. In a real-time system, failure

to respond can cause a degraded quality of service (QoS), or even a catastrophical

accident [98].

In order to understand the behaviors of real-time systems, it is necessary to develop

models of real-time activities and to study their characteristics.

11

Periodic vs. Aperiodic

The real-time applications are consisting of a set of tasks. If the tasks are invoked at

a regular interval, they are referred as periodic tasks. That is, there is a continuous

and deterministic pattern of time intervals between requests of system resources. In

addition, a real-time periodic task must be completed by a specified deadline relative

to the time it is released. In contrast, aperiodic tasks refer to those who are only

triggered by the occurrences of certain events. They are used to model real-time

activities that request system resources during non-deterministic request periods.

There are ample examples exist in our everyday life, for both kinds of real-time

applications. The auto-pilot system on an aircraft is one typical example of periodic

real-time task. The onboard computer monitors a plane’s current altitude, speed,

position and other parameters on a periodic fashion. Then, based on the collected

data, control signals are sent to adjust the plane’s throttle, rudder, flap and etc.

Examples of aperiodic real-time tasks can be found in event-driven real-time systems,

from less sensitive applications, e.g. streaming media, satellite communication, to

timing-critical applications, e.g. pilot seat ejection and missile defense systems.

Hard Real-time vs. Soft Real-time

Hard real-time tasks require deterministic guarantee to meet all deadlines for every

instance, and the failure to meet even a single deadline can be catastrophic. Examples

of hard real-time tasks can be found in aviation control system and automobile’s

ABS. In contrast, soft real-time tasks allow for a statistical bound on the number

of deadline misses, which are neither desirable nor fatal. Examples of soft real-time

applications include media streaming in distributed systems and non-mission-critical

tasks in control systems. Similarly, a deadline is said to be firm if the result produced

by the corresponding task ceases to be useful as soon as the deadline expires. In other

12

word, a late response has no value at all. Like the soft real-time tasks, firm real-time

tasks can tolerate some deadline misses.

2.1.2 Research on Real-time Scheduling

In previous subsection, we have briefly introduced several important concepts of real-

time computing. In this subsection, we discuss some of the existing works in real-time

computing.

Over the years, there are a great number of studies focused on real-time computing

related topics. These works have covered a large variety of applications including real-

time task scheduling, e.g. [68, 33, 85, 79, 93], real-time architecture, e.g. [97, 24, 106,

32], real-time operating system, e.g. [36, 109, 54, 45, 37], real-time communication,

e.g. [76, 123, 41, 82], and etc.

The real-time scheduling, among the above mentioned problem areas, is playing

a critical role in a real-time system. Given tasks with their timing information,

available system resources and design constraints, the real-time scheduling studies

how to determine when and where a task needs to be executed so that the required

design constraints, e.g. timing, are satisfied while some other design metrics, e.g.

energy consumption, are optimized.

For a task set, a schedule is said to be feasible if we can ensure that every single

task instance can be completed by its associated deadline. And a task set is called

schedulable if there exists at least one feasible schedule. The utilization associated

with a given task schedule and the available resource (e.g. CPU) is the fraction of

time that the resource is allocated over the time during which the scheduler is active.

Many scheduling algorithms have been proposed for a variety of task and processor

models. Based on the decision-making time, we have static scheduling and dynamic

scheduling, where static scheduling makes decision off-line, e.g. during compilation or

13

synthesis time, whereas dynamic scheduling makes decision on-line, during the task

execution. Moreover, if at any time instant, only the task with the highest priority can

be executed, we call it preemptive scheduling, otherwise, non-preemptive scheduling.

We also have priority-driven and non-priority-driven scheduling where priority-driven

scheduling refers to the policy under which the task execution is dictated by its

assigned priority. For non-priority-driven scheduling, some other policies are needed,

such as round robin [5], to determine whether or not a task should start running. In

addition, depending on whether tasks are executed on a single processor or multiple

processors, we have single-processor and multi-processor scheduling.

Rate-monotonic (RM) policy and earliest deadline first (EDF) policy are two of

the most important single-processor, priority-driven, preemptive scheduling policies

[68]. They serve as the foundation of many other scheduling algorithms.

Rate Monotonic Under the fixed-priority rate monotonic scheduling algorithm,

tasks’ priorities are assigned based on their periods. It is shown by Liu and Layland

[68] that RM is the optimal among all fixed-priority scheduling policies. They have

proved that a feasible schedule can be found by using RM if the total utilization is

less than or equal to ln(2) (69.3%).

Earliest Deadline First The EDF is a preemptive, dynamic-priority scheduling

algorithm. Task’s priorities are assigned dynamically during run time. The task with

the least time remaining before its deadline acquires the highest priority and thus

executed before others. In fact, it is proved in [68] that if a task set is schedulable,

then EDF algorithm can schedule it. Due to its 100% utilization bound, EDF becomes

the underlying scheduling algorithm for a number of other scheduling techniques with

different design objective, such as the “low power EDF” algorithm proposed in [112].

14

Pull-up

network

Pull-down

network

VDD

Input Output

CL

Charging

Discharging

Figure 2.1: The illustration of dynamic power consumption in digital ICs

2.2 Power Reduction

In this section, we first introduce the sources of power consumption in DSM domain

digital integrated circuits. Then, we discuss a number of existing power reduction

techniques at different design levels.

2.2.1 Sources of Power Consumption in Digital Integrated Circuit

The power consumption in CMOS digital ICs, based on their sources, can be divided

into two categories: dynamic power and static power [92].

Dynamic Power Consumption

The dynamic power consumption, also known as capacitive power, or switching power

[92, 84], is associated with the switching of the logic value of a gate. As shown in

Figure 2.1, this part of power consumption is essential to performing useful logic

operation by charging and discharging the load capacitance.

15

The value of the switching power can be estimated by [92]

Pswitching = αCLV
2
ddf, (2.1)

where α is the switching factor, which represents the number of state transitions

in one clock cycle, CL is the total load capacitance, Vdd is the supply voltage level

and f is the clock frequency. As indicated by equation (2.1), the switching power is

in proportion to the square of the Vdd, the complexity of a logic gate, the working

frequency as well as the switching activity of a circuit.

Static Power Consumption

In contrast to the dynamic power, the static power is consumed due to the leakage

mechanism of a CMOS transistor and it does not contribute to any useful computa-

tion.

To understand how leakage current occurs, we first need to understand how a

transistor works. A transistor controls the flow of the current between two terminals,

e.g. source and drain. When the transistor is in “off” state, no current is allowed

to flow through the drain and the source terminal, because an insulating material,

e.g. channel, is placed in between. However, when the voltage level increases at the

gate terminal, the conductivity of the channel increases (“on” state), which allows

the normal flowing of current between the drain and the gate. The value at which

the gate’s voltage is high enough to turn “on” the transistor is called the threshold

voltage (Vt).

However, in an imperfect world, transistors are not built ideally. In other word,

even when the applied gate voltage of a transistor is below its Vt, there are still

different kinds of current leaking through.

As shown in Figure 2.2, based on the path of current flow, the leakage current

16

can be further categorized into three parts [84], the junction leakage current, the gate

direct tunneling leakage current and the sub-threshold leakage current.

• The junction leakage is the current that flows from the source or drain to the

substrate through a reverse-biased diode when a transistor is in off state. This

part of leakage is determined by the physical property of a transistor.

• The gate direct tunneling leakage occurs from the gate terminal, through the

dielectric material, to the substrate. Its magnitude depends on the thickness of

the gate oxide material. With the introduction of high-k material, e.g. hafnium,

this gate direct tunneling leakage current can be effectively reduced without

sacrificing the circuit performance.

• The sub-threshold leakage is due to the diffusion current of the minority carriers

in the channel of a transistor. It flows directly from the drain to the source even

when a transistor is in off state. The sub-threshold leakage depends on the chip’s

temperature, Vt, supply voltage level as well as some other process dependent

technology constants.

At the current CMOS technology node, the sub-threshold leakage is much larger

than other leakage components [55], and thus, a great number of recent research

efforts are focusing on dealing with the sub-threshold leakage (with details provided

later).

2.2.2 Power Reduction Techniques

In this subsection, we introduce some of the most effective power reduction techniques,

targeting at both the dynamic and the leakage power.

17

SOURCE GATE DRAIN

SUBSTRATE

ISUB

IGATE

IJCT

Figure 2.2: Three types of leakage current in CMOS transistor

Dynamic Power Reduction Techniques

The dynamic power used to be the dominant component of the overall power con-

sumption. Early studies on power reduction techniques are mainly focusing on how

to reduce the dynamic power. A great number of techniques are proposed at different

design levels to tackle this problem.

Based on equation (2.1), the dynamic power consumption can be reduced from

the following aspects.

• Reducing the load capacitance: Since the physical capacitance depends on low-

level design parameters such as transistor sizes and wire lengths, we can reduce

the capacitance, for example, by reducing transistor sizes.

• Reducing the switching activity : It is important to devise techniques in this

category since the chip’s switching activity is intensified by the increasingly

complicated processor architecture. One intuitive method is to cut off the clock

signal from reaching those functional blocks that are not working.

• Reducing frequency : The dynamic power can be reduced by lowering the clock

frequency. However, this method can affect the system performance and does

18

not help to reduce the energy consumption.

• Reducing supply voltage: Reducing the supply voltage is usually associated with

a proportional lowering of clock frequency. Therefore, this is the most effective

way to reduce dynamic power and theoretically, a linear scaling down of the

execution speed can achieve a cubic dynamic power consumption reduction.

With these facts in mind, a number of dynamic power reduction schemes are proposed

at the circuit, logic, architectural and system-level, including transistor sizing [58],

input reordering [80], logic gate restructuring [92, 107], clock gating [77] and dynamic

voltage scaling (DVS) [73].

Transistor sizing is a circuit-level approach that tries to determine the width of

a transistor so that the dynamic power consumption can be minimized without sac-

rificing the circuit performance. The size of the transistor affects its equivalent ca-

pacitance, which determines the dynamic power consumption (equation (2.1)). In

general, a larger transistor helps to reduce the logic gate’s delay, but consumes more

power and vice versa. Therefore, this technique can only be applied to those transis-

tors that are not on the critical path to avoid performance penalty. Algorithms for

applying this technique usually try to scale down the size of each transistor to be as

small as possible without violating its delay constraint.

Input reordering is another effective circuit-level method that rearranges the order

of transistors to minimize their switching activities. The guideline to implement this

technique is to place transistors closer to a circuits output, if they switch more fre-

quently, to prevent unnecessary switching activities of other transistors. This method

requires a profiling stage to determine how frequently different transistors are likely

to switch [107].

19

AND2

AND2

AND2

A

B

C

D

AND2

AND2

AND2

A

B

C

D

3/16

7/64

15/256

15/256

3/16

3/16

(a). Four input AND gate implemented in

chain structure
(b). Four input AND gate implemented in tree

structure

Figure 2.3: Apply logic restructuring to reduce switching activity

Logic gate restructuring studies how to arrange logic gates and their input signals

to reduce switching activities. It works at the logic-level. An example of this method

is shown in Figure 2.3. In this example, by using two input AND gate, we have two

ways to build a four input AND gate, the chain structure (a), and the tree structure

(b). These two setups result in an identical logic function, but different switching

patterns. Assuming all primary input (A, B, C and D) have equal chance to be 1

and 0, then the possibility that the logic value at each gate’s output is calculated 1

and marked in Figure 2.3. In this example, the chain implementation has a lower

overall switching activity than the tree implementation for random inputs (7
64
< 3

16
)

when the glitching effects are ignored 2. The reason is that each gate in a chain has a

lower probability of having a 0-1 transition than its predecessor since the probability

depends on those of all its predecessors.

Clock gating, at the architectural-level, is one straightforward but effective method

1The transition probability of a logic gate can be calculated by N0·N1

22N
, where N is the number of

input. N0 and N1 are the number of zero entries and one entries in the output column of a gate’s
truth table, respectively [92].

2This is a simple example to demonstrate the influence of circuit topology on a circuit’s switching
activity when glitching effects are ignored. However, when the timing behavior are considered, tree
topology will have lower (or even no) glitching activity and less propagation delay than the tree
topology, since the signal paths are balanced to all the gates [92].

20

to reduce a circuit’s switching activity. This technique simply disables the clock signal

of those components which are not currently in use. By applying the clock gating,

the switching activities of flip-flops within a component as well as the components

along the fanout data path can be reduced.

DVS, at the system-level, is one of the most effective methods to minimize the

dynamic power due to the convex relationship between the dynamic power and the

supply voltage level. For instance, the dynamic power consumption can be reduced

to one fourth of the original value if we decrease the supply voltage by half (assuming

the frequency is unchanged). The rationale behind this technique is to operate the

circuit “just fast enough”, so that the workload can be finished at the predefined

deadline or certain QoS can be guaranteed.

Static Power Reduction Techniques

Reducing the supply voltage, indeed, helps to minimize the dynamic power. It also

adversely affects the system performance. In fact, logic gates become less responsive

because the scaled Vdd weakens the driving current, which in turn increases the gate’s

propagation delay. Therefore, in order to prevent performance loss while at the same

time minimize dynamic power consumption, one has to scale down the threshold

voltage of a transistor simultaneously [92]. Unfortunately, the reduced transistor

threshold voltage significantly increases the leakage current. According to [84], every

100mv decrease of the threshold voltage results in a 10 times increase of the leakage

current. And this leakage mechanism is further exacerbated as the transistor feature

size continues to shrink.

A number of circuit and architecture-level leakage minimization techniques are

proposed. Such techniques include multiple-threshold voltage transistor [49, 25, 13,

21

59, 95, 99], body bias control, dual-threshold voltage cells, and input vector control

[39, 44].

Multiple-threshold voltage transistor, also known as sleep transistor, is an effec-

tive way to reduce the leakage power when a circuit is in the standby state. According

to this method, all functional units are implemented by using low Vt transistors, which

are fast but leakage prone. Between functional units and the ground, a high Vt tran-

sistor, or sleep transistor is inserted. In the active state, the sleep transistor is turned

on to allow normal operation of a circuit. If functional units are in the standby state,

the sleep transistor is turned off to cut off the leakage current path to the ground.

Inserting high Vt sleep transistor, however, can degrade the circuit performance since

it reduces the magnitude of the driving current. Therefore, designers must carefully

adjust the size of the transistor to gain a balance between leakage reduction and cir-

cuit performance.

Body bias control is another concept to reduce the leakage during the idle state.

The key idea is to bias the source terminal of an “off” transistor in order to expo-

nentially reduce the leakage current of a device. Based on this method, a positive

bias voltage is applied during the standby state to the source terminal. By doing so,

the threshold voltage of a device is raised and as a result, the transistor is turned off

more strongly to reduce leakage current.

Dual-threshold voltage cells can be used to reduce the leakage power consump-

tion in the active mode. According to this method, a circuit is partitioned into

high and low threshold voltage gates. Low Vt transistors are implemented in critical

paths to maximize the performance while high Vt transistors are assigned to gates

22

along non-critical paths to minimize the leakage current. A trade off between the

performance and the leakage reduction needs to be found. The effectiveness of leak-

age minimization can be reduced if there exist multiple critical paths, so that only

leaky, low Vt transistors can be implemented without sacrificing circuit’s performance.

Minimum leakage vector is based on the fact that the leakage current of a logic

gate is a strong function of its input value. As reported in [10], the ratio between the

maximum and the minimum leakage of a circuit can be as high as 6. The reason is

that the input values affect the number of “off” transistors in a logic gate. There are

certain input patterns exist that can maximize the effective resistance between the

VDD and the ground, and as a result, minimize the leakage current.

As we can see, the aforementioned low-level techniques are effective to reduce

the leakage. However, leakage current varies not only with the logic topology and

transistor parameters such as gate length, oxide thickness and threshold voltage, but

also with the supply voltage and the operating temperature. This presents a unique

advantage and opportunity for dealing with the leakage problem at the system-level.

2.3 Thermal Management

In previous section, we introduced the sources of power consumption in digital ICs

as well as some state-of-the-art technologies to reduce both the dynamic and leakage

power consumption. As we know that the exponentially increased power has directly

translated into high temperature, which negatively affects a system’s cost, perfor-

mance and reliability. Therefore, as the semiconductor technology continues to scale,

the thermal issue is becoming a critical problem to be studied. In this section, we in-

troduce the background of the thermal-aware design. We first discuss the importance

23

of thermal management. Then, we introduce a number of existing works in this area.

2.3.1 The Need for Thermal Management

The aggressive semiconductor technology scaling has been pushing the device feature

size into the deep sub-micron region. As a result, the chip power density has been

doubled every two to three years [4, 19, 101]. One immediate consequence of this ele-

vated power consumption is the exponentially raised heat density. As we introduced

in Chapter 1 that high temperature can adversely affect the computing system in

various ways. Without proper solutions, the high-temperature issue may threaten to

slow down the advancement of the entire semiconductor industry.

Although the high system temperature results from the high power consumption,

a low power or power-aware design technique alone, cannot be directly applied to

solve the thermal-aware design problem [101]. As evidenced in [101], one effective

low-power technique may have little or no effect on operating temperature due to the

spatial and temporal non-uniformity of the power density and hotspot. Therefore,

thermal management and power management are closely related but distinctly differ-

ent problem areas. And thermal management techniques, at every design levels, are

worth to be investigated and urgently needed.

2.3.2 Thermal-Aware Design Techniques

In this subsection, a number of existing works related to thermal-aware design, at

different design abstraction levels are introduced.

Packaging-Level Approach

Early research on thermal-aware design techniques are mainly targeting at the packaging-

level. These works include but not limited to the study on how to design thermal

24

package with high heat-removal capability, high-performance fan, advanced thermal

conducting materials, circuit board arrangement and etc. Conventionally, thermal

packages are designed for worst-case scenarios to sustain the hottest spot a chip

could reach.

However, as the chip power as well as the heat density continue to increase expo-

nentially, processor packages are prohibitively expensive to be designed for worst-case

scenarios. Instead, it has been suggested [22, 46] that the package should be designed

for the average-case to reduce the packaging cost. If the heat dissipated by a processor

when running an application exceeds the heat-removing capacity that the package can

provide, some alternative dynamic thermal management (DTM) mechanisms should

be engaged. Therefore, thermal-aware design techniques at architectural and system-

levels, have been intensively studied in recent years.

Circuit-Level Leakage/Temperature Modeling

As we mentioned earlier, the leakage/temperature dependency plays an important

role in the development of power and thermal-aware design techniques. Therefore,

one of the most important topics in this field, is to investigate in depth, how exactly

leakage and temperature interact with each other.

Based on the circuit-level analysis, a complex relationship between the leakage

and temperature is established by [65, 120], where the leakage current is formulated

as

Ileak = Is · (A · T 2 · e((α·Vdd+β)/T) + B · e(γ·Vdd+δ)), (2.2)

where Is is the leakage current at certain reference temperature and supply voltage, T

is the operating temperature, Vdd is the supply voltage, A,B, α, β, γ, δ are empirically

determined technology constants. By using these relations, many practical power and

thermal analysis tools are developed, for example “HotSpot” [8, 101], which can be

25

used to simulate and study a processor’s thermal phenomena at the architectural-

level.

Architectural-Level Thermal Modeling

By using the well known duality between the heat transfer and the electrical current

flow (as shown in Table 2.1), Skadron et al. [8, 101] proposed an architectural-level

thermal analysis tool called “Hotspot”.

Table 2.1: Duality between thermal and electrical quantities

Thermal Quantity Electrical Quantity

Power consumption: P (W) Current flow: I (A)

Temperature: T (oC) Voltage: V (V)

Thermal resistance: R (oC/W) Electrical resistance: R (Ω)

Thermal capacitance: C (J/oC) Electrical capacitance: C (F)

Given the floorplan of the functional units within a processor as well as some

other physical properties, such as dimensions and materials, “Hotspot” can generate

a three dimensional RC network to model the heat transfer (Figure 2.4 (adopted

from [101])). Each functional unit on the chip is represented by one or more nodes

within the RC network. Based on this RC network and basic circuit laws, a differential

equation system can be established. In these equations, R and C are constants, which

represent the physical characteristics of the chip, e.g. the thermal resistance and the

thermal conductance. Current sources are used to model the power consumption of

a given functional unit. The unknowns of these equations are the node voltages,

which denote the temperature values of those corresponding locations. Then, if the

power profile (current change) when running an application is given, by solving the

differential equations, the corresponding temperature variation (voltage change) can

26

be obtained.

Figure 2.4: Using RC network to model a processor’s heat transfer [101]

According to [101], an effective architecture-level thermal model must be simple

enough to allow architects to reason about thermal effects; detailed enough to model

dynamic temperature change within different functional units; and computationally

efficient for use in a variety of architecture simulators. “Hotspot” is one of such

tools and has already become the most popular one that has been widely used in the

research and development of power/thermal-aware design techniques.

Architectural-Level Approaches

Dynamic thermal management refers to a range of possible hardware and software

strategies which work dynamically, at run-time, to control the operating temperature

of a chip [22]. At the architectural-level, a number of DTM approaches are proposed

recently, such as task migration [67], global clock gating [46], fetch toggling [22] and

27

decode throttling [101].

Task migration proposes to modify the architecture and the floorplan of a processor

and add spare functional units to some cold areas of a chip. When thermal emergency

occurs at the primary unit, the task execution can be migrated to a spare unit. One

important trade-off needs to be considered that hot units tend to run even hotter

when adjacent whereas they introduce additional communication latency if too far

away. The dual-pipeline processor proposed in [67] could be considered as one ex-

ample of migrating computation. However, in this scheme, the secondary pipeline

is not designed for high-performance. Therefore, considerable performance losses are

expected in the case of thermal emergency.

Clock gating is a widely used technology that cuts off the clock signal when the

temperature exceeds a predefined threshold and allows normal operation when the

temperature drops down.

Fetch toggling is similar to clock gating method. Instead of cutting off the clock sig-

nal, it throttles the instruction cache when the temperature emergency is detected.

This method can effectively reduce the processor’s fetch bandwidth and thus cool

down the temperature.

These architectural-level DTM techniques introduced above are proved to be effec-

tive to maintain the processor’s temperature under a predefined threshold [101, 22].

However, they are reactive in nature. These mechanisms are triggered whenever the

system temperature reaches a predefined limit. Therefore, unexpected performance

penalty can be incurred by different degrees as we turn off, slow down or migrate the

28

task execution in between the functional units. As a result, these techniques can only

be applied for applications without hard deadlines.

2.4 Power/Thermal-Aware Scheduling

At the system-level, speed scheduling studies the problem on how to apply advanced

DVS and DPD mechanism to dynamically adjust the speed level, e.g. clock frequency

and supply voltage, of a processor when executing a set of real-time tasks so that the

workload completion can be guaranteed while some other design metrics are achieved.

Working at the system-level, a unique advantage is that it has the knowledge of both

the characteristics of the applications and the availability of the hardware resources.

Therefore, it is considered as one of the most effective power and thermal management

techniques.

Early research on speed scheduling problem are mainly focused on reducing the

dynamic power and energy, i.e. the predominant component of the overall power

and energy consumption. By taking advantage of the convex relationship between

the dynamic power and supply voltage, a number of methods (e.g. [64, 112]) were

proposed to lower down the processor’s supply voltage and working frequency. The

processor speed is reduced to a minimum so that the workload can be finished just

before the “deadline”.

As the leakage becomes more prominent, it is no longer optimal to use all the

timing slack and bring the speed down to the minimum simply because the saved

dynamic energy might be overweighed by the increased leakage. With this fact in

mind, a few techniques are proposed to minimize the overall energy. For example,

Jejurikar et al. [57] proposed a scheduling technique, based on the so called critical

speed to balance the dynamic and leakage energy consumption, with the goal to

minimize the overall energy consumption. These approaches (e.g. [30, 57]) assume

29

that the leakage current is constant. However, as semiconductor technology ventures

into the DSM domain, the leakage/temperature dependency becomes too significant

to be ignored. As shown in [51], a power/thermal-aware design technique simply

becomes ineffective if the interdependence of leakage and temperature is not properly

addressed.

Recently, by taking into consideration the critical leakage/temperature depen-

dency, a great number of literature are published on solving the power/thermal-aware

scheduling problems. Different criteria can be used to sort these existing works into

categories. For example, based on the target platforms, we have techniques proposed

for single-core [110, 119], multi-core [47, 48], or even 3D multi-core platforms [71, 121].

Based on the task models, we have tasks with stochastic [70] or deterministic work-

load [27, 118]. Based on the timing requirement, we have soft real-time [116] or hard

real-time scheduling [28, 110]. We also have on-line approaches [116, 75] and off-line

approaches [52, 119] depending on during which stage the scheduling decisions are

made. Based on the design objectives, there are methods proposed for temperature

minimization under the timing constraint [28, 56], energy minimization under the

timing or temperature constraint [116, 16] or throughput maximization under the

peak temperature constraint [27, 118].

In this dissertation, we are interested in the problem of developing scheduling al-

gorithms for single-core platform, hard real-time system with deterministic workload,

to achieve various design objective, e.g. (i) temperature minimization, (ii) energy

minimization and (iii) throughput maximization.

In what follows, we introduce our system models in Chapter 3. The temperature

minimization, energy reduction and throughput maximization scheduling problems

are tackled one by one from Chapter 4 to 6. Finally, we conclude this dissertation in

Chapter 7.

30

CHAPTER 3

SYSTEM-LEVEL POWER AND THERMAL MODELS

To study the power/thermal-aware scheduling problem, the first priority is to effec-

tively model the power consumption and thermal behavior of a system. As discussed

before, one key aspect of system modeling is to capture the interdependency between

the leakage power and the temperature. While previous circuit-level research results

can capture the leakage/temperature dependency accurately, they are too complex

and thus ineffective in high-level, e.g. system-level, design and analysis.

In this chapter, we present a set of system-level models we used throughout

this dissertation. Specifically, we study a large spectrum of leakage power models

that are able to account for the leakage/temperature dependency, and at the same

time, are simple enough and suitable for system-level design. We analyze and com-

pare the trade-off between the complexity and accuracy of these models empirically.

Our experimental results strengthen the important role that the leakage power con-

sumption plays in the electronic system design as the transistor size continues to

shrink. More importantly, our results highlight the fact that it is vital to take the

leakage/temperature and leakage/supply voltage dependency into considerations for

system-level power/thermal-aware design.

3.1 Preliminaries

For system-level thermal analysis, we adopt the widely used RC thermal model to

capture the temperature dynamic of a processor (e.g. [15, 31, 90, 118]). Based on the

circuit depicted in Figure 3.1, we have

RC
dT (t)

dt
+ T (t)−RP (t) = Tamb, (3.1)

31

Figure 3.1: System-level thermal model for single core processor

where Tamb is the ambient temperature, P (t) denotes the power consumption (in

Watt) at time t, and R, C denote the thermal resistance (in oC/W) and thermal

capacitance (in J/oC), respectively. By scaling T such that Tamb is zero, we have

dT (t)

dt
= aP (t)− bT (t), (3.2)

where a = 1/C and b = 1/RC.

Assuming that all processor running modes are safe and do not cause processor

temperature to “run away”, i.e. the scenario when the processor temperature in-

creases indefinitely, the temperature becomes gradually stable if the processor runs

in one mode long enough. Consider the processor’s thermal steady state, we have

dT (t)

dt
→ 0. (3.3)

As a result, from equation (3.2), when the processor temperature becomes stable

at Tmax, we have

aP (v)− bTmax(v) = 0, (3.4)

32

or

4Tmax(v) =
a

b
4 P (v). (3.5)

Equation (3.5) shows the relationship between the estimation error of the stable

temperature and overall power consumption. As an example, for the conventional air

cooling option, we have Rth = 0.8oC/W and Cth = 340J/oC [101], and thus we have

4Tmax(v) = 0.84 P (v). (3.6)

From equation (3.6), to ensure an accurate thermal analysis result, we need to

model the processor power consumption accurately.

The processor considered in this research is assumed to be able to run in n different

modes, with each mode characterized by (vi, fi), i = 0, 1, ..., n − 1, where vi is the

supply voltage and fi is the working frequency in mode i 1. We assume that vi < vj,

if i < j. We also assume that the processor speed is in proportion to the supply

voltage. In what follows, we use processor speed and supply voltage interchangeably.

Given a supply voltage level v, the processor power consumption is composed of

two parts, i.e. dynamic Pdyn and leakage Pleak,

P = Pdyn + Pleak. (3.7)

The dynamic power consumption is independent to the temperature and can be for-

mulated as Pdyn = Cloadfv
2
k, where Cload is the equivalent parasitic capacitance, f is

the clock frequency and v is the supply voltage. Since the working frequency is in

proportion to the supply voltage level, we can further assume that Pdyn = C2v
3
k [92],

where vk is the kth supply voltage level and C2 is a constant.

1In this research, we only consider n distinctive supply voltage and frequency pairs. The scenarios
that one supply voltage level supports different frequencies or one frequency runs under different
supply voltages are not considered.

33

The leakage power consumption, on the other hand, depends on temperature and

can be formulated as:

Pleak = Ngate · Ileak · vdd, (3.8)

where Ngate represents the number of gates, vdd is the voltage level, and Ileak is the

leakage current. Ileak varies with both temperature and supply voltage and can be

calculated by using equation (2.2). While using equation (2.2) can accurately estimate

the leakage current, with relative error less than 1% [65], it is too complicated to be

used for high level system analysis due to its high-order and exponential terms. Liu

et al. [72] found that using the linear approximation can estimate the leakage with

a reasonably good accuracy, i.e. with error within 1% using the piece-wise linear

function or less than 5.5% using single linear function.

In what follows, we derive six different linear leakage models, and study the com-

plexity/accuracy trade-off in power and thermal-aware system-level analysis.

3.2 Linear Leakage/Tempearture Models

Since leakage power consumption depends on both temperature and supply voltage,

a general polynomial model to simplify the leakage/temperature dependency can be

formulated as

Pleak = C0 + C1T + C2vdd + C3Tvdd, (3.9)

where C0, C1, C2, C3 are constants. In this section, we develop six leakage models,

Model 1 to Model 6, based on equation (3.9), to simplify the leakage/temperature

relationship.

Note that the leakage model, described in equation (3.9), is one of the linear-

approximated leakage models. However, the methodology we used to determine the

constants of a linear model is based on the first-order polynomial curve fitting, which

34

produces two coefficients to describe a single line. By using this method, we are

unable to determine the appropriate values of the four constants in equation (3.9).

And thus, we cannot really take advantage of the additional coefficients provided by

equation (3.9) to further improve the accuracy of the linear approximation. Therefore,

we exclude equation (3.9) from our leakage model comparison.

• Model 1 can be formulated as follows:

Pleak(i) = C0, (3.10)

where Pleak(i) denotes the leakage power consumption with processor running in

mode i. In this model, the leakage power is assumed to be constant, and depends

on neither temperature nor supply voltage. This is the simplest leakage model.

• Model 2 can be formulated in equation (3.11), that

Pleak(i) = C0 + C1T. (3.11)

This model assumes that the leakage power varies with temperature linearly but

not with supply voltage. This model is adopted in a number of recent studies

such as [31].

• Model 3 is formulated in equation (3.12).

Pleak(i) = C0(i)vi. (3.12)

In contrast to Model 2, this model assumes that the leakage power changes

linearly with supply voltage but not with temperature.

35

• Model 4 is formulated in equation (3.13), that

Pleak(i) = C0(i)vi + C1T. (3.13)

This model improves upon Model 2 and Model 3 by assuming that the leakage

power varies not only with supply voltage but also with temperature. Note

that, C1 in equation (3.13) is a constant independent of supply voltage levels,

e.g. i. Therefore, the leakage power consumption estimated based on equation

(3.13) increases at the same rate with respect to temperature, regardless of the

processor running mode.

• Model 5 also assumes that the leakage power consumption varies with both

temperature and supply voltage, as formulated in equation (3.14):

Pleak(i) = (C0(i) + C1(i)T)vi. (3.14)

This model is first proposed in [90]. The difference between Model 4 and Model

5 is that Model 5 assumes the leakage power varies at different rates with tem-

perature based on different supply voltages, while Model 4 assumes a uniform

rate.

• Model 6 uses a piece-wise linear function rather than a single linear function

to approximate the leakage/temperature relationship, as formulated in equation

(3.15),

Pleak(i) =

 (C00(i) + C10(i)T)vi, T ≤ Tz

(C01(i) + C11(i)T)vi T > Tz

(3.15)

Specifically, equation (3.15) adopts a piece-wise linear function consisting of two

linear functions, with Tz as the conjunction point. When the temperature is

36

lower than Tz, the first linear function is used to estimate the leakage power

consumption, or the second one otherwise.

For the sake of comparison, we call the leakage model described by equation (2.2)

as Model 0. Table 3.1 summarizes all seven leakage models. It is not difficult to see

from Table 3.1 that, while different leakage models (i.e. Model 1 to Model 6) have dif-

ferent complexities, they all have greatly simplified the complex leakage/temperature

relationship as described in Model 0 and hence more suitable for system-level analysis.

The question now becomes how accurate these models are when used for leakage

power estimation at the system-level, and how effective they can be in system-level

design of power and thermal management techniques. It is difficult to compare the

accuracy of these models since the constants in Table 3.1 are obtained through curve-

fitting methods rather than from certain analytical formulas. In the next section, we

launched a series of experiments to answer these questions.

37

T
ab

le
3.

1:
L

ea
ka

ge
m

o
d
el

d
efi

n
it

io
n

M
o
d
el

#
F

or
m

u
la

D
es

cr
ip

ti
on

M
o
d
el

0
P
le
a
k

=
V
d
d
·(
I s
·(
A
·T

2
·e

((
α
·V
d
d
+
β

)/
T

)
+
B
·e

(γ
·V
d
d
+
δ
))

)
N

on
-l

in
ea

r
le

ak
ag

e
m

o
d
el

M
o
d
el

1
P
le
a
k
(i

)
=
C

0
C

on
st

an
t

le
ak

ag
e

m
o
d
el

M
o
d
el

2
P
le
a
k
(i

)
=
C

0
+
C

1
T

L
ea

ka
ge

d
ep

en
d
s

on
te

m
p

er
at

u
re

on
ly

M
o
d
el

3
P
le
a
k
(i

)
=
C

0
(i

)v
i

L
ea

ka
ge

d
ep

en
d
s

on
su

p
p
ly

vo
lt

-
ag

e
on

ly
M

o
d
el

4
P
le
a
k
(i

)
=
C

0
(i

)v
i
+
C

1
T

L
ea

ka
ge

d
ep

en
d
s

on
b

ot
h

su
p
-

p
ly

vo
lt

ag
e

an
d

te
m

p
er

at
u
re

,
b
u
t

le
ak

ag
e

in
cr

ea
se

s
w

it
h

te
m

p
er

a-
tu

re
u
n
if

or
m

ly
.

M
o
d
el

5
P
le
a
k
(i

)
=

(C
0
(i

)
+
C

1
(i

)T
)v
i

L
ea

ka
ge

va
ri

es
w

it
h

su
p
p
ly

vo
lt

ag
e

an
d

te
m

p
er

at
u
re

n
on

-
u
n
if

or
m

ly
.

M
o
d
el

6
P
le
a
k
(i

)
=

{ (C
0
0
(i

)
+
C

1
0
(i

)T
)v
i,

T
≤
T
z

(C
0
1
(i

)
+
C

1
1
(i

)T
)v
i

T
>
T
z

T
w

o-
se

gm
en

t
p
ie

ce
-w

is
e

li
n
ea

r
m

o
d
el

.
E

ac
h

se
gm

en
t

is
ob

ta
in

ed
b
y

th
e

sa
m

e
m

et
h
o
d

w
it

h
M

o
d
el

5

38

3.3 Performance Evaluation of Different Leakage Models

We conducted two sets of experiments to validate the leakage models introduced

above. In the first set of experiments, we compared the leakage power consumptions

at different temperatures and different supply voltages by using different models, i.e.

Model 1 to Model 6. By using Model 0 as the baseline model, we compared the

average and maximal estimation errors achieved by different linear leakage models.

This set of experiments help to identify the accuracy of each linear leakage model.

To study how a proposed leakage model may impact on the system-level power and

thermal analysis, we launched the second set of experiments, in which we compared

the peak temperature estimated by different leakage models for a processor running

with a single processor speed.

3.3.1 Experiment Setup

In our experiments, we built our processor model based on the technical parameters

drawn from the 65nm IC technology [65]. We assume that the supply voltage can

change from 0.6v to 1.3v with step size of 0.05v, and thus the processor can work in

total k = 15 modes.

We set the frequency for each mode according to the formula [65]

f =
1

delay
=

(Vdd − vt)µ

VddT η
× 4.2824× 1014, (3.16)

with µ = 1.19, η = 1.2 and T is set to the highest temperature as 100oC, and then

normalize the frequency to the highest one. The number of gates, i.e. NGate in

equation (3.8), is set to 1× 106.

For the thermal constants, we selected Rth = 0.8K/W , Cth = 340J/K, and the

ambient temperature was set to 25oC [102].

39

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 1
Model 0

(a) Model 1

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 1
Model 0

(a) Model 1

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 2
Model 0

(b) Model 2

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 3

(c) Model 3

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperatue (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 4

(d) Model 4

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 5

(e) Model 5

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 6

(f) Model 6

Fig. 1. Estimated Leakage power consumption by different leakage models under different temperature and supply voltage.

TABLE III
THE ABSOLUTE (AEE) AND RELATIVE (REE) ESTIMATION ERRORS OF

PEAK TEMPERATURE BY DIFFERENT LEAKAGE MODELS.

Model # M 1 M 2 M 3 M 4 M 5 M 6

AEE(Avg) 15oC 14oC 9oC 3.6oC 1.19 oC 0.57oC

AEE(Max) 59oC 47oC 16oC 6oC 1.8 oC 0.9oC

REE(Avg) 18% 27% 6.6% 3.4% 2.9% 1.5%

REE(Max) 50% 40% 16% 11% 4.8% 2.4%

C. Peak temperature estimations

To study how different leakage models may affect the ther-
mal aware system level analysis, we conducted the second set
of experiments. We simulated the scenario when the processor
runs at a constant speed long enough until its temperature
becomes stable (i.e. temperature variance within 0.0010C).
We collected the peak temperatures estimated based on each
model for different supply voltages. The results are depicted in
Figure 2. Similarly, we collected the absolute estimation error
(AEE) and relative estimation error (REE) for each model
and filled in Table III.

As we can see in Figure 2, the peak temperature calculated
based on different leakage models demonstrates dramatic
differences. When modeling the leakage as a constant, Model
1 can lead to a temperature discrepancy of 15oC in average,
and as much as 59oC. Even though Model 2 and Model 3
take into account the leakage/temperature and leakage/supply
voltage, respectively, the peak temperature discrepancies are

still 14oC and 9oC in average, and can be as higher as 47oC

and 16oC, respectively. It is reported that 10oC increase in
temperature can result in 50% reduction in the component’s
life span [7]. Therefore, the large error margins by Model 1,
Model 2, and Model 3, seem to make them inappropriate in
system level thermal analysis. On the other hand, the estimated
peak temperatures based on Model 4, 5, and 6 match that by
Model 0 much closer, as shown in Figure 2. The absolute error
by Model 4 is 3.6oC in average, and 6oC at most. The results
by Model 5 and Model 6 are very close to Model 0, with
less than 1.8oC of absolute error. Our experimental results
strengthen the critical role that the leakage power plays in
the system level analysis. These results also highlight the fact
that, in deep sub micron domain, it is not only important but
necessary to take the leakage/temperature and leakage/supply
voltage dependency into considerations for high level power
and thermal aware system level design.

V. CONCLUSIONS

The exponentially increased power consumption has im-
posed tremendous challenges on both power conservation
and heat management problems. When dealing with both
problems, the leakage power plays a critical role as the
transistor size continues to decrease. High power consumption
causes high temperature, which increases leakage power and
subsequently the overall power consumption. This positive
feedback loop between the leakage and temperature must be
addressed properly in high quality electronic system design.

(b) Model 2

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 1
Model 0

(a) Model 1

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 2
Model 0

(b) Model 2

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 3

(c) Model 3

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperatue (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 4

(d) Model 4

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 5

(e) Model 5

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 6

(f) Model 6

Fig. 1. Estimated Leakage power consumption by different leakage models under different temperature and supply voltage.

TABLE III
THE ABSOLUTE (AEE) AND RELATIVE (REE) ESTIMATION ERRORS OF

PEAK TEMPERATURE BY DIFFERENT LEAKAGE MODELS.

Model # M 1 M 2 M 3 M 4 M 5 M 6

AEE(Avg) 15oC 14oC 9oC 3.6oC 1.19 oC 0.57oC

AEE(Max) 59oC 47oC 16oC 6oC 1.8 oC 0.9oC

REE(Avg) 18% 27% 6.6% 3.4% 2.9% 1.5%

REE(Max) 50% 40% 16% 11% 4.8% 2.4%

C. Peak temperature estimations

To study how different leakage models may affect the ther-
mal aware system level analysis, we conducted the second set
of experiments. We simulated the scenario when the processor
runs at a constant speed long enough until its temperature
becomes stable (i.e. temperature variance within 0.0010C).
We collected the peak temperatures estimated based on each
model for different supply voltages. The results are depicted in
Figure 2. Similarly, we collected the absolute estimation error
(AEE) and relative estimation error (REE) for each model
and filled in Table III.

As we can see in Figure 2, the peak temperature calculated
based on different leakage models demonstrates dramatic
differences. When modeling the leakage as a constant, Model
1 can lead to a temperature discrepancy of 15oC in average,
and as much as 59oC. Even though Model 2 and Model 3
take into account the leakage/temperature and leakage/supply
voltage, respectively, the peak temperature discrepancies are

still 14oC and 9oC in average, and can be as higher as 47oC

and 16oC, respectively. It is reported that 10oC increase in
temperature can result in 50% reduction in the component’s
life span [7]. Therefore, the large error margins by Model 1,
Model 2, and Model 3, seem to make them inappropriate in
system level thermal analysis. On the other hand, the estimated
peak temperatures based on Model 4, 5, and 6 match that by
Model 0 much closer, as shown in Figure 2. The absolute error
by Model 4 is 3.6oC in average, and 6oC at most. The results
by Model 5 and Model 6 are very close to Model 0, with
less than 1.8oC of absolute error. Our experimental results
strengthen the critical role that the leakage power plays in
the system level analysis. These results also highlight the fact
that, in deep sub micron domain, it is not only important but
necessary to take the leakage/temperature and leakage/supply
voltage dependency into considerations for high level power
and thermal aware system level design.

V. CONCLUSIONS

The exponentially increased power consumption has im-
posed tremendous challenges on both power conservation
and heat management problems. When dealing with both
problems, the leakage power plays a critical role as the
transistor size continues to decrease. High power consumption
causes high temperature, which increases leakage power and
subsequently the overall power consumption. This positive
feedback loop between the leakage and temperature must be
addressed properly in high quality electronic system design.

(c) Model 3

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 1
Model 0

(a) Model 1

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 2
Model 0

(b) Model 2

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 3

(c) Model 3

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperatue (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 4

(d) Model 4

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 5

(e) Model 5

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 6

(f) Model 6

Fig. 1. Estimated Leakage power consumption by different leakage models under different temperature and supply voltage.

TABLE III
THE ABSOLUTE (AEE) AND RELATIVE (REE) ESTIMATION ERRORS OF

PEAK TEMPERATURE BY DIFFERENT LEAKAGE MODELS.

Model # M 1 M 2 M 3 M 4 M 5 M 6

AEE(Avg) 15oC 14oC 9oC 3.6oC 1.19 oC 0.57oC

AEE(Max) 59oC 47oC 16oC 6oC 1.8 oC 0.9oC

REE(Avg) 18% 27% 6.6% 3.4% 2.9% 1.5%

REE(Max) 50% 40% 16% 11% 4.8% 2.4%

C. Peak temperature estimations

To study how different leakage models may affect the ther-
mal aware system level analysis, we conducted the second set
of experiments. We simulated the scenario when the processor
runs at a constant speed long enough until its temperature
becomes stable (i.e. temperature variance within 0.0010C).
We collected the peak temperatures estimated based on each
model for different supply voltages. The results are depicted in
Figure 2. Similarly, we collected the absolute estimation error
(AEE) and relative estimation error (REE) for each model
and filled in Table III.

As we can see in Figure 2, the peak temperature calculated
based on different leakage models demonstrates dramatic
differences. When modeling the leakage as a constant, Model
1 can lead to a temperature discrepancy of 15oC in average,
and as much as 59oC. Even though Model 2 and Model 3
take into account the leakage/temperature and leakage/supply
voltage, respectively, the peak temperature discrepancies are

still 14oC and 9oC in average, and can be as higher as 47oC

and 16oC, respectively. It is reported that 10oC increase in
temperature can result in 50% reduction in the component’s
life span [7]. Therefore, the large error margins by Model 1,
Model 2, and Model 3, seem to make them inappropriate in
system level thermal analysis. On the other hand, the estimated
peak temperatures based on Model 4, 5, and 6 match that by
Model 0 much closer, as shown in Figure 2. The absolute error
by Model 4 is 3.6oC in average, and 6oC at most. The results
by Model 5 and Model 6 are very close to Model 0, with
less than 1.8oC of absolute error. Our experimental results
strengthen the critical role that the leakage power plays in
the system level analysis. These results also highlight the fact
that, in deep sub micron domain, it is not only important but
necessary to take the leakage/temperature and leakage/supply
voltage dependency into considerations for high level power
and thermal aware system level design.

V. CONCLUSIONS

The exponentially increased power consumption has im-
posed tremendous challenges on both power conservation
and heat management problems. When dealing with both
problems, the leakage power plays a critical role as the
transistor size continues to decrease. High power consumption
causes high temperature, which increases leakage power and
subsequently the overall power consumption. This positive
feedback loop between the leakage and temperature must be
addressed properly in high quality electronic system design.

(d) Model 4

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 1
Model 0

(a) Model 1

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 2
Model 0

(b) Model 2

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 3

(c) Model 3

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperatue (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 4

(d) Model 4

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 5

(e) Model 5

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 6

(f) Model 6

Fig. 1. Estimated Leakage power consumption by different leakage models under different temperature and supply voltage.

TABLE III
THE ABSOLUTE (AEE) AND RELATIVE (REE) ESTIMATION ERRORS OF

PEAK TEMPERATURE BY DIFFERENT LEAKAGE MODELS.

Model # M 1 M 2 M 3 M 4 M 5 M 6

AEE(Avg) 15oC 14oC 9oC 3.6oC 1.19 oC 0.57oC

AEE(Max) 59oC 47oC 16oC 6oC 1.8 oC 0.9oC

REE(Avg) 18% 27% 6.6% 3.4% 2.9% 1.5%

REE(Max) 50% 40% 16% 11% 4.8% 2.4%

C. Peak temperature estimations

To study how different leakage models may affect the ther-
mal aware system level analysis, we conducted the second set
of experiments. We simulated the scenario when the processor
runs at a constant speed long enough until its temperature
becomes stable (i.e. temperature variance within 0.0010C).
We collected the peak temperatures estimated based on each
model for different supply voltages. The results are depicted in
Figure 2. Similarly, we collected the absolute estimation error
(AEE) and relative estimation error (REE) for each model
and filled in Table III.

As we can see in Figure 2, the peak temperature calculated
based on different leakage models demonstrates dramatic
differences. When modeling the leakage as a constant, Model
1 can lead to a temperature discrepancy of 15oC in average,
and as much as 59oC. Even though Model 2 and Model 3
take into account the leakage/temperature and leakage/supply
voltage, respectively, the peak temperature discrepancies are

still 14oC and 9oC in average, and can be as higher as 47oC

and 16oC, respectively. It is reported that 10oC increase in
temperature can result in 50% reduction in the component’s
life span [7]. Therefore, the large error margins by Model 1,
Model 2, and Model 3, seem to make them inappropriate in
system level thermal analysis. On the other hand, the estimated
peak temperatures based on Model 4, 5, and 6 match that by
Model 0 much closer, as shown in Figure 2. The absolute error
by Model 4 is 3.6oC in average, and 6oC at most. The results
by Model 5 and Model 6 are very close to Model 0, with
less than 1.8oC of absolute error. Our experimental results
strengthen the critical role that the leakage power plays in
the system level analysis. These results also highlight the fact
that, in deep sub micron domain, it is not only important but
necessary to take the leakage/temperature and leakage/supply
voltage dependency into considerations for high level power
and thermal aware system level design.

V. CONCLUSIONS

The exponentially increased power consumption has im-
posed tremendous challenges on both power conservation
and heat management problems. When dealing with both
problems, the leakage power plays a critical role as the
transistor size continues to decrease. High power consumption
causes high temperature, which increases leakage power and
subsequently the overall power consumption. This positive
feedback loop between the leakage and temperature must be
addressed properly in high quality electronic system design.

(e) Model 5

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 1
Model 0

(a) Model 1

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 2
Model 0

(b) Model 2

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 3

(c) Model 3

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperatue (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 4

(d) Model 4

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 5

(e) Model 5

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
0

10

20

30

40

50

60

70

80

90

100

Temperature (oC)

Le
ak

ag
e

P
ow

er
 (W

)

Model 0
Model 6

(f) Model 6

Fig. 1. Estimated Leakage power consumption by different leakage models under different temperature and supply voltage.

TABLE III
THE ABSOLUTE (AEE) AND RELATIVE (REE) ESTIMATION ERRORS OF

PEAK TEMPERATURE BY DIFFERENT LEAKAGE MODELS.

Model # M 1 M 2 M 3 M 4 M 5 M 6

AEE(Avg) 15oC 14oC 9oC 3.6oC 1.19 oC 0.57oC

AEE(Max) 59oC 47oC 16oC 6oC 1.8 oC 0.9oC

REE(Avg) 18% 27% 6.6% 3.4% 2.9% 1.5%

REE(Max) 50% 40% 16% 11% 4.8% 2.4%

C. Peak temperature estimations

To study how different leakage models may affect the ther-
mal aware system level analysis, we conducted the second set
of experiments. We simulated the scenario when the processor
runs at a constant speed long enough until its temperature
becomes stable (i.e. temperature variance within 0.0010C).
We collected the peak temperatures estimated based on each
model for different supply voltages. The results are depicted in
Figure 2. Similarly, we collected the absolute estimation error
(AEE) and relative estimation error (REE) for each model
and filled in Table III.

As we can see in Figure 2, the peak temperature calculated
based on different leakage models demonstrates dramatic
differences. When modeling the leakage as a constant, Model
1 can lead to a temperature discrepancy of 15oC in average,
and as much as 59oC. Even though Model 2 and Model 3
take into account the leakage/temperature and leakage/supply
voltage, respectively, the peak temperature discrepancies are

still 14oC and 9oC in average, and can be as higher as 47oC

and 16oC, respectively. It is reported that 10oC increase in
temperature can result in 50% reduction in the component’s
life span [7]. Therefore, the large error margins by Model 1,
Model 2, and Model 3, seem to make them inappropriate in
system level thermal analysis. On the other hand, the estimated
peak temperatures based on Model 4, 5, and 6 match that by
Model 0 much closer, as shown in Figure 2. The absolute error
by Model 4 is 3.6oC in average, and 6oC at most. The results
by Model 5 and Model 6 are very close to Model 0, with
less than 1.8oC of absolute error. Our experimental results
strengthen the critical role that the leakage power plays in
the system level analysis. These results also highlight the fact
that, in deep sub micron domain, it is not only important but
necessary to take the leakage/temperature and leakage/supply
voltage dependency into considerations for high level power
and thermal aware system level design.

V. CONCLUSIONS

The exponentially increased power consumption has im-
posed tremendous challenges on both power conservation
and heat management problems. When dealing with both
problems, the leakage power plays a critical role as the
transistor size continues to decrease. High power consumption
causes high temperature, which increases leakage power and
subsequently the overall power consumption. This positive
feedback loop between the leakage and temperature must be
addressed properly in high quality electronic system design.

(f) Model 6

Figure 3.2: Estimated leakage power consumption by different leakage models under
different temperature and supply voltage.

40

Table 3.2: Technical parameters of the circuit-level leakage model based on the 65nm
IC technology

Ileak = Is · (A · T 2 · e((α·Vdd+β)/T) + B · e(γ·Vdd+δ))
A 1.1432e-12
B 1.0126e-14
α 466.4029
β -1224.74
γ 6.28153
δ 6.9094

The six leakage power models discussed in Section 3 were constructed. The con-

stants in each models were determined based on the leakage power consumption cal-

culated by using Model 0, at different temperatures (from 40 oC to 110 oC with step

size of 5oC) and supply voltage levels. The parameters we used in Model 0 is based

on the data reported in [65] (as shown in Table 3.2). In Model 1, the constant C0 is

set as the leakage power at the ambient temperature. To obtain the constants C0 and

C1 in Model 2, we first used linear approximation for leakage power consumption at

each supply voltage vi and obtained a pair of parameters of C0(i) and C1(i). We then

took the average value as the C0 and C1. The constants in Model 3, 4 and 5 were de-

termined by linear approximation methods based on the leakage power consumption

at different temperature values and different supply voltage levels. In Model 7, we

picked the middle point, Tz = 75oC, as the conjunction temperature. We then used

curve-fitting to determine the corresponding constants in equation (3.15).

3.3.2 Leakage Power Estimation

In the first set of experiments, we collected the estimated leakage power consumptions

by each model at different supply voltages and temperatures. We used these results to

compare with those achieved by Model 0, as plotted in Figure 3.2. In the meantime,

we also collected the absolute estimation error (AEE) and relative estimation error

(REE) of each model, with the average and maximal values summarized in Table 3.3.

41

Specifically, the absolute error (i.e. AEE(Mi)) and relative error (i.e. REE(Mi)) are

defined as follows:

AEE(Mi) = |Pleak[Mi]− Pleak[M0]| , (3.17)

REE(Mi) =
AEE(Mi)

Pleak[M0]
, (3.18)

where Pleak[Mi] is the leakage power calculated by using Model i. The average and

maximal values in Table 3.3 were obtained among all k different running modes. That

is,

AEE(Avg) =

∑k
i=1AEE(Mi)

k
(3.19)

AEE(Max) =
k

max
i=1

AEE(Mi) (3.20)

Table 3.3: The absolute (AEE) and relative (REE) estimation errors of leakage
power consumption by different leakage models.

Model # M1 M2 M3 M4 M5 M6
AEE(Avg) 28.6 16.1 7.5 1.4 0.24 0.06
AEE(Max) 81 60 27.6 7 0.84 0.2
REE(Avg) 55% 99% 33% 9.5% 1.3% 0.3%
REE(Max) 200% 450% 67% 65% 7.0% 1.5%

From Figure 3.2 and Table 3.3, we can see that leakage models without considering

the leakage/temperature dependency or the leakage/supply voltage dependency can

lead to significant errors. As illustrated in Figure 3.2(a) and 3.2(b), Model 1 and

2 intend to estimate leakage power consumption by using one single line instead

of a group of lines, as other models, and thus cause large estimation errors. Even

though Model 3 takes the leakage/supply voltage dependency into account, it ignores

the leakage/temperature dependency. The estimation errors are still substantial.

Therefore, these three models can be applied only when the supply voltages and

42

temperature vary within a relatively small range. For example, when we limited the

processor supply voltage range between [1.05, 1.1]V , the maximum REE by model 3

can be cut to less than 8%.

When considering both temperature and supply voltage dependency, the accuracy

of leakage models (e.g. Model 4, 5, and 6) can be dramatically improved as shown

in Figure 3.2(d), 3.2(e), 3.2(f) and Table 3.3. Even though at some extreme cases,

the maximum relative estimation error of Model 4 (i.e. 65%) is close to that of

Model 3 (i.e. 67%), Model 4 is still considered as a much more accurate model than

Model 3 for average cases, as shown in Table 3.3 and Figure 3.2(d). When we further

limited the supply voltage level between [0.85-1.05]V, the maximum relative error

is reduced to 16% and average error becomes 4.3%. Model 5 is the most accurate

single linear approximation model according to our experimental results. We found

that the maximal relative estimation error appeared at the lowest supply voltage and

temperature. This is because the absolute values of the leakage power at these points

are small. And a small difference in absolute value can cause a large relative error. To

further improve the accuracy, using the piece-wise linear leakage model (i.e. Model 6)

is a viable solution. As shown in Figure 3.2(f), the 2-segment piece-wise linear model

almost perfectly matches the non-linear leakage power. The average relative error is

0.3% and the maximum relative error is only 1.5%.

3.3.3 Peak Temperature Estimation

To study how different leakage models may affect the thermal-aware system-level anal-

ysis, we conducted the second set of experiments. We simulated the scenario when

the processor runs at a constant speed long enough until its temperature becomes

stable (i.e. temperature variance within 0.0010C). We collected the peak tempera-

tures estimated based on each model under different supply voltages. The results are

43

Table 3.4: The absolute (AEE) and relative (REE) estimation errors of peak tem-
perature by different leakage models.

Model # M 1 M 2 M 3 M 4 M 5 M 6
AEE(Avg) 15 14 9 3.6 1.19 0.57
AEE(Max) 59 47 16 6 1.8 0.9
REE(Avg) 18% 27% 6.6% 3.4% 2.9% 1.5%
REE(Max) 50% 40% 16% 11% 4.8% 2.4%

��

��

��

��

���

���

���

��
�
��

��
�	
��

��

�

	
��
��

	
��
��

	
��
��

	
��
��

	
��
��

	
��
��

	
��
��

��

��

��

��

��

��

��

��

���

���

���

��� ���� ��� ���� ��� ���� ��� ���� � ���� ��� ���� ��� ���� ���

��
�
��

��
�	
��

��

�

�	����
�������
���

	
��
��

	
��
��

	
��
��

	
��
��

	
��
��

	
��
��

	
��
��

Figure 3.3: Estimated peak temperature for different leakage models

depicted in Figure 3.3. Similarly, we collected the absolute estimation error (AEE)

and relative estimation error (REE) of each model and filled in Table 3.4.

As we can see in Figure 3.3, the peak temperature values calculated based on dif-

ferent leakage models demonstrate dramatic differences. When modeling the leakage

as a constant, Model 1 can lead to a temperature discrepancy of 15oC in average,

and as much as 59oC. Even though Model 2 and Model 3 take into account the

leakage/temperature and leakage/supply voltage, respectively, the peak temperature

discrepancies are still 14oC and 9oC in average, and can be as high as 47oC and

16oC, respectively. It is reported that a 10oC increase in temperature can result in as

44

much as 50% reduction in the component’s life span [113]. Therefore, the large error

margins by Model 1, Model 2, and Model 3, seem to make them inappropriate in

system-level thermal analysis. On the other hand, the estimated peak temperatures

from Model 4, 5, and 6 can match those obtained by Model 0 with much less errors,

as shown in Figure 3.3. The absolute error by Model 4 is 3.6oC in average, and 6oC at

most. The results by Model 5 and Model 6 are very close to Model 0, with less than

1.8oC of absolute error. Our experimental results strengthen the critical role that the

leakage power plays in the system-level analysis. These results also highlight the fact

that, in deep sub micron domain, it is not only important but necessary to take the

leakage/temperature and leakage/supply voltage dependency into consideration for

system-level power/thermal-aware design.

3.3.4 Our System-Level Power / Thermal Model

Based on the results of our empirical study, the leakage Model 5 and Model 6 clearly

outperform the rest of the models under test, i.e. Model 1 to Model 4. Although

Model 6 does have some advantages over Model 5 in terms of leakage power and

steady state temperature estimation, the complexity of the piece-wise linear equation

makes it (Model 6) cumbersome to be used in our system-level analysis, especially

when we want to formally establish some theorems. Considering the fact that Model

5 has already captured both the leakage/temperature and leakage/supply voltage

dependencies while still achieves reasonably good accuracy, throughout this research

(unless otherwise specified), we adopt Model 5 as our leakage power model.

Therefore, based on our previous discussion in Section 3.1, the total power con-

sumption of a processor when running at mode k can be formulated as

P (k) = C0(k)vk + C1(k) · Tvk + C2v
3
k. (3.21)

45

Based on equation (3.2) and (3.21), when a processor running in mode k, the tem-

perature dynamic can be formulated as

dT (t)

dt
= A(k)−BT (t), (3.22)

where

A(k) = a(C0(k)vk + C2v
3
k), (3.23)

B(k) = b− aC1(k)vk. (3.24)

Given an interval [t0, te], let the starting temperature be T0, by solving equation

(3.22), the ending temperature can be formulated as below:

Te =
A(k)

B(k)
+ (T0 −

A(k)

B(k)
)e−B(k)(te−t0)

= G(k) + (T0 −G(k))e−B(k)(te−t0), (3.25)

where

G(k) =
A(k)

B(k)
. (3.26)

In equation (3.25), by letting (te − t0) → ∞, we have Te equals G(k), which is

called the steady state temperature of the kth speed level. For an initial temperature

T0, if the steady state temperature of the running processor speed level is greater

than T0, the temperature will increase, or, decrease otherwise.

In what follows, we use Ak, Bk and Gk to denote A(k), B(k) and G(k), respectively

when there is no confusion. Equation (3.21) to equation (3.26) form the basis of our

system-level power and thermal analysis with the leakage/temperature/supply voltage

interdependency taken into account.

46

3.4 Summary

In this chapter, we present the system-level models we used in this research. Specif-

ically, we study a large spectrum of leakage power models that can account for the

leakage/temperature dependency, and in the meantime, greatly simplify the com-

plex non-linear relationship implied by previous circuit-level research. We analyze

and compare the trade-off between the complexity and accuracy for these models

empirically. Our experimental results strengthen the critical role that the leakage

plays in the system-level analysis. More importantly, our results highlight the fact

that it is vital to take the leakage/temperature and leakage/supply voltage depen-

dency into consideration for high-level power and thermal aware design. Based on

our system-level leakage/temperature model, we are able to capture the temperature

dynamic as discussed in Section 3.3. These models and formulations form the basis

of our study on power/thermal-aware scheduling problems, which will be detailed in

following chapters.

47

CHAPTER 4

SCHEDULING FOR PEAK TEMPERATURE MINIMIZATION

In the previous chapter, we have studied how to model the processor’s power con-

sumption, thermal dynamic as well as the crucial leakage/temperature dependency,

at the system-level. Based on these models, in this chapter, we investigate how to

apply real-time scheduling techniques to solve the peak temperature minimization

problem.

The rest of this chapter is organized as follows. Section 4.1 discusses the related

work in the field of temperature-aware scheduling, including a brief introduction to

the M-Oscillating algorithm as proposed in [28], that oscillates high and low processor

speeds to minimize the peak temperature of a processor when executing a periodic

task set. Section 4.2.2 introduces our non-negligible transition overhead model and

how to incorporate the non-negligible overhead into the M-Oscillating scheduling

algorithm. In section 4.3, we present a searching algorithm to find the optimal m that

can lead to the minimized peak temperature. Experimental results are presented in

Section 4.4, and Section 4.5 concludes this chapter.

4.1 Related Work

In this chapter, we study the problem on how to apply the real-time scheduling

technique to minimize the peak operating temperature of a processor when executing

a periodic hard real-time task set. As closely related research, there are large number

of literature published recently on how to optimize the operating temperature of

a processor by using real-time scheduling techniques. Specifically, in [14, 29], the

researchers aim to identify the upper bound of the maximum temperature. While

some others (e.g. [14, 34, 26, 94, 111]) intend to minimize the peak temperature or

to guarantee that the temperature does not exceed a given maximum temperature

48

limit when scheduling a task set or a single copy of a task graph. In [69], a thermal-

aware scheduling algorithm with stochastic workload is presented to effectively avoid

thermal emergencies by reducing peak operating temperature. In [61], Kumar et al.

derive a stop-and-go algorithm to schedule a task graph with just enough idle period

so that the peak temperature is minimized while a given makespan constraint can be

guaranteed. Jayaseelan et al. [56] study how to appropriately arrange the execution

sequence of a task set consisting of tasks with different power and thermal profiles to

minimize the peak temperature.

As we discussed in Chapter 3, the critical leakage/temperature dependency plays

an important role in the study of thermal-aware scheduling problems. Some re-

searchers (e.g. [15, 117]) apply equation (2.2) directly to capture the leakage/temperature

dependency in scheduling algorithm development. There are also a number of other

approaches that formulate a temperature-constrained scheduling problem as a convex

optimization problem [73, 83, 26]. Even though the leakage/temperature dependency

(equation (2.2)) may be incorporated into the convex optimization formulation [73],

its computational complexity is very high. Therefore, these approaches can only work

at system-level when the design solution space is relatively small.

Efforts have been made to simplify the leakage/temperature dependency. Liu

et al. [72] show that using the linear approximation is an effective way to accu-

rately estimate the leakage power over the common operating temperature range of

real-time ICs. A number of exiting works (such as [31, 42, 27]) adopt simple leak-

age/temperature dependency models that assume the leakage current changes linearly

only with temperature. However, as shown in Chapter 3, the leakage models ignoring

the effect of supply voltage can lead to results deviated far away from the actual

values.

By incorporating both the leakage/temperature and leakage/supply voltage de-

49

pendency into analysis. Chaturvedi et al. [28] have proposed a novel scheduling

technique, namely M-Oscillating, that oscillates between the high and low processor

speed to minimize the peak temperature when executing a periodic task set. In this

approach, however, the timing penalty that is associated with a processor’s mode

switching is ignored for simplicity. The apparent discrepancy between this assump-

tion and practical platforms may potentially prevent this method from being useful

in real world computing systems.

In this chapter, we propose to extend the M-Oscillating by incorporating a more

realistic non-negligible transition overhead model into the algorithm.

Based on our system models presented in Chapter 3, the formal problem definition

of our research topic in this chapter can be given as follows:

Problem 4.1.1. Given a hard real-time task set with period p and worst case ex-

ecution time c, develop a feasible schedule such that the peak temperature can be

minimized when the processor reaches the thermal steady state.

4.2 Peak Temperature Minimization

In this section, we first introduce the concept of the original M-Oscillating technique

for a processor with negligible transition overhead. We next present how to incorpo-

rate the non-negligible transition overhead into this approach.

4.2.1 The Concept of M-Oscillating

The key idea of the M-Oscillating algorithm is shown in Figure 4.1. Given a two-speed

schedule (S1 and S2, running for t1 and t2 seconds, respectively), an M-Oscillating

schedule divides the high speed interval and the low speed interval evenly into m

sections and run a processor with the low speed and high speed alternatively. Ap-

parently, an M-Oscillating schedule will complete the same workload as the original

50

Figure 4.1: A two-speed schedule and its corresponding M-Oscillating schedule.

two-speed schedule in one period and thus guarantee the deadline. At the same time,

the maximum temperature can be significantly reduced based on experimental results

provided in [28].

According to [28], by dividing the high speed interval and the low speed interval

each into m equal sections and running them alternatively, an M-Oscillating schedule

can always reduce the maximum temperature when a processor reaches its thermal

steady state. The larger the m is, the lower the maximum temperature becomes.

Simulation results are provided, in Figure 4.2 to validate this conclusion and to

prove the effectiveness of the M-Oscillating algorithm in terms of peak temperature

reduction. In this example, a task with 1000 seconds of execution time are executed

by two supply voltages, i.e. v1 = 0.85V and v2 = 1.15V . The maximal temperature

of the processor under different cooling options was recorded and shown in Figure

4.2. As shown in Figure 4.2, the maximal temperature, indeed, drops monotonically

51

(a) Rth = 0.8

(b) Rth = 0.067

Figure 4.2: In an ideal M-Oscillating schedule, the peak temperature monotonically
decreases with number of divisions

as m increases.

Note that, in [28], the conclusion and its proof are contingent upon several as-

sumptions. One of them assumes that no timing overhead can be incurred during

a processor’s mode switching, which is not true in the real world scenario. When

the overhead is non-negligible, conceivably, there is an optimal value of m to balance

the impact of the transition overhead and the potential of M-Oscillating algorithm

in peak temperature reduction. How to identify this optimal value by incorporating

the non-negligible transition overhead model is an interesting problem and will be

discussed in the following subsection.

52

4.2.2 The M-Oscillating Considering Transition Overhead

In real world scenarios, when a processor switches its speed level, there is a short time

interval (on the order of hundreds of microseconds [27]) during which the clock signal

is halted. As a result, the amount of time a processor spends on useful computation

is reduced. To compensate this performance loss during the clock halting period, one

intuitive way is to increase the speed level of a processor. However, this is not always

feasible (e.g. when the high speed is the maximum processor speed). Therefore,

in this work, we only change the duration of high and low speed level subject to

a workload constraint, i.e. extending the high speed interval and reducing the low

speed interval. By doing the workload compensation, an upper bound of m can be

identified, beyond which the predefined workload cannot be completed.

We assume that the clock signal will be halted for a short time interval τ during

each speed transition. In contrast to the ideal-case two-speed schedule shown in Figure

4.1, the non-ideal-case two-speed schedule is plotted in Figure 4.3 (A). Apparently,

in the non-ideal-case, a performance loss of (S1 + S2) · τ is incurred due to one speed

transition. Thus, in order to counteract this performance loss, one has to extend the

high speed interval while reduce the low speed interval by the same time frame δ, as

shown in Figure 4.3 (B). The amount of time, i.e. δ, that needs to be taken away

from low speed interval can be calculated as

δ =
(S1 + S2) · τ
S2 − S1

. (4.1)

From equation (4.1), one can easily notice that δ is a positive number. There-

fore, the number of transition m cannot be arbitrarily increased since the low speed

duration t1 in the ideal-case two speed schedule has to be sufficiently large to accom-

modate m speed transitions. Thus, the maximum allowable m can be calculated by

letting m · (δ + τ) ≤ t1. Then, we have

53

m ≤ t1
δ + τ

.

Obviously, the term t1/(δ + τ) is not necessarily an integer. Therefore, in order

to ensure the workload constraint, we set the upper bound of m as

mMax = b t1
δ + τ

c.

Based on equation (4.1), the modified non-ideal-case two-speed schedule can be

found and the reduced low speed interval t′1 and extended high speed interval t′2 can

be calculated by

t′1 = t1 − τ − δ,

t′2 = t2 − τ + δ.

By adopting the similar concept, we can find the corresponding non-ideal-case

M-Oscillating schedule for a given ideal-case two-speed schedule. The procedure is

shown the Lemma 4.2.1.

Lemma 4.2.1. Given an ideal-case two speed schedule with low speed S1 and high

speed S2 running for t1 and t2, respectively. For any value of m from 1 to mMax, the

corresponding non-ideal-case M-Oscillating schedule can guarantee the same workload

if the adjusted low speed sub-interval tm1 and high speed sub-interval tm2 are calculated

by equation (4.2) and (4.3).

tm1 =
t1
m
− τ − δ (4.2)

tm2 =
t2
m
− τ + δ (4.3)

54

Figure 4.3: A non-ideal two-speed schedule and its corresponding M-Oscillating

schedule

We next study the thermal characteristic of the non-ideal-case M-Oscillating

schedule. Previous analysis reveals that the nature of our method to deal with

the non-negligible transition overhead is to increase high speed duration while de-

crease low speed duration. Thus, the performance of a non-ideal-case M-Oscillating

55

technique can be degraded in terms of peak temperature reduction. Intuitively, the

maximal temperature of a non-ideal-case M-Oscillating schedule is a unimodal func-

tion of m. The relationship is simple such that when m is small, the schedule works

as expected by running low and high speed intermittently with slightly extended high

speed interval to compensate the performance loss caused by transition overhead.

Before m reaches certain value, e.g. mopt, the maximal temperature will monotoni-

cally decrease until a minimized peak temperature is achieved at mopt, beyond which

the temperature reduction contributed by high-low speed oscillating is amortized by

excessive extension of high speed interval, so that the maximal temperature will start

to escalate.

Now the problem becomes how to identify the optimal value of m that leads to the

lowest peak temperature. Consider the example illustrated in Figure 4.3 (C). Based

on [90], when the temperature reaches the stable status, the maximal temperature

of a non-ideal-case M-Oscillating schedule, i.e. TNImax(S̃(m, t)), can be expressed as

TNImax(S̃(m, t)) = T∞y′ = Ty′ +
Ty′

1−Ky′
Ky′ , (4.4)

where Ty′ can be expressed as a function of m based on equation (3.25) and can be

calculated iteratively once the temperature information of previous speed transition

points, i.e. Ta, Tx′ and Tb, are available. Specifically, we have

Ty′ = G2 + (Tb −G2)e−B2tm2

Tb = G0 + (Tx′ −G0)e−B0τ

Tx′ = G1 + (Ta −G1)e−B1tm1

Ta = G0 + (1− e−B0τ) (4.5)

where tm1 and tm2 are obtained from equation (4.2) and (4.3), respectively. Ky′ can be

56

computed by

Ky′ = e−(B1tm1 +B2tm2 +2B0δ), (4.6)

where δ is defined in equation (4.1).

4.3 Searching Algorithm for the Optimal m

Once the formula of maximal temperature is available, one straightforward way to

find the optimum m is by setting the first-order derivative of equation (4.4) equal to

zero and solving for m. However, it can be a challenging problem not only for the

complexity of the equation, but also because the discrete nature of equation (4.4)

(the solution of the optimum m is not necessarily an integer). Instead, we adopt a

searching algorithm [86] that can locate optimum m in linear time based on equation

(4.4).

A systematic way to reduce the size of the interval of uncertainty, i.e. the interval

that include the optimum point, is to randomly choose two point m1 and m2 (m1 <

m2) between the initial interval of uncertainty, i.e. 1 to mMax, and evaluate the value

of TNImax(S̃(m1, t)) and TNImax(S̃(m2, t)), respectively. Then, three possible scenarios

could happen as illustrated in Figure 4.4. If TNImax(S̃(m1, t)) < TNImax(S̃(m2, t)) (Figure

4.4 (A)), the minimum of the function could lie between 1 and m1 or m1 and m2.

However, the mopt cannot occur between the interval m2 and mMax. Hence, the

interval between m2 and mMax can be eliminated so that we only need to choose two

points between interval 1 and m2 for the next round of evaluation. Similarly, the

interval between 1 and m1 can be removed if the scenario depicted in Figure 4.4 (B)

happens. And if the scenario in Figure 4.4 (C) occurs, both intervals from 1 to m1 and

the one from m2 to mMax can be eliminated from the current interval of uncertainty.

57

Figure 4.4: Searching for optimum m

Therefore, to obtain the optimum m, we can iteratively eliminate the interval of

uncertainty of mopt. The procedure will be stopped until the bound is narrow enough

to locate a single value of m.

The algorithm is summarized in Algorithm 1. Initially, the interval of uncertainty

is set between 1 and the upper bound of m. We choose two points, i.e. Lb and Ub (in

step 4 and 5, respectively), in a way that they can equally divide the initial interval

into three segments such that after each iteration the interval of uncertainty can be

reduced by at least one third. Thus, new interval of uncertainty boundaries, i.e. L

and R, are updated and new evaluation points are calculated during each iteration.

The loop will stop until the interval of uncertainty is small enough to locate single

integer value which is the best m we choose.

58

Algorithm 1 Searching for optimum m

1: Input: the upper bound of m: mMax;
2: Initialize uncertainty interval: L = 1, R = mMax;
3: while (1) do
4: Lb = bL+ 1/3× (R− L)c;
5: Ub = bL+ 2/3× (R− L)c;
6: if TNImax(S̃(Lb, t)) < TNImax(S̃(Ub, t)); then
7: L = L;
8: R = Ub;
9: else if TNImax(S̃(Lb, t)) < TNImax(S̃(Ub, t)); then

10: L = Lb;
11: R = R;
12: else if TNImax(S̃(Lb, t)) == TNImax(S̃(Ub, t)); then
13: L = L;
14: R = Ub;
15: end if
16: if R− L ≤ 2 then
17: Break;
18: end if
19: end while

4.4 Empirical Studies

In this section, we use experiments to test the effectiveness of the proposed non-

ideal-case M-Oscillating technique. At the same time, we also want to validate our

assumption that the maximal temperature is a unimodal function of m. We generate

an ideal two speed schedule, like the one shown in Figure 4.1. We set t1 = t2 = 1000

seconds, and the two speeds S1 and S2 are 0.8 and 1.0, respectively (normalized).

Here, we conducted three tests by assuming the transition clock halting time τ equals

to 0.1, 1 and 10 seconds, in order to see the thermal characteristics of the non-ideal-

case M-Oscillating schedules when transition overheads are set to different magnitudes

compared with the total duration of the schedules.

By using the method introduced in Chapter 3, we can derive the corresponding

non-ideal-case M-Oscillating schedule and find its maximal temperature as we in-

crease m from 1 to mMax. The results are plotted in Figure 4.5, which clearly show

59

that there indeed exists an optimum m at which the lowest maximal temperature can

be achieved. Generally speaking, when transition overhead is small, a lower maximal

temperature can be achieved because less transition overhead potentially increases

the upper bound of m which in turn lets us fully exploit the advantage of frequent

speed transition, whereas larger transition overhead actually decreases the number of

possible transition and has to significantly extend the high speed duration in order

to compensate large performance loss during transitions.

4.5 Summary

With the continuous scaling of semiconductor technology, the interdependency of

temperature and leakage exacerbates not only the power/energy minimization prob-

lem but also the thermal management problem. In this chapter, we incorporate the

leakage/temperature dependency and non-negligible transition overhead into the real-

time scheduling analysis that aims at minimizing the peak temperature. We present

a novel scheduling technique that can effectively reduce the peak temperature when

executing a hard realtime periodic task set. A fast searching algorithm is adopted to

efficiently find the solution.

60

(a) τ = 0.01s

(b) τ = 0.1s

(c) τ = 1s

Figure 4.5: Maximal temperature of the non-ideal-case M-Oscillating schedules with
different transition overhead and divisions (m)

61

CHAPTER 5

SCHEDULING FOR ENERGY MINIMIZATION

In previous chapter, we present a novel scheduling technique to reduce the peak tem-

perature of a processor when executing a periodic task set under the thermal steady

state. In this chapter, we investigate how to apply real-time scheduling techniques

to solve the problem on how to minimize the overall energy consumption of a hard

real-time system. The complexity of the problem lies in the fact that the leakage

energy consumption depends on both supply voltage level and the temperature. For

instance, two identical speed schedules may consume dramatically different energy

simply because their initial temperatures are different. Therefore, how to accurately

and efficiently estimate the energy consumption of various candidate speed schedules

is the key to solve the energy optimization scheduling problem. To this end, we de-

velop an effective closed-form energy estimation method with the leakage/temperature

dependency taken into consideration.

Based on the proposed energy estimation method, we further develop two schedul-

ing algorithms to minimize the overall energy consumption. The first algorithm is an

off-line algorithm, targeting at real-time systems consisting of a set of periodic tasks

with the same periods and deadlines. The second algorithm is an on-line algorithm,

which is intended for more general real-time systems consisting of multiple sporadic

tasks.

The rest of this chapter is organized as follows. Section 5.1 discusses a number

of related works. Section 5.2 provides several motivational examples. In Section 5.3,

we show how to derive the proposed energy estimation equation, based on which

our overall energy minimization scheduling algorithms are presented in Section 5.4.

Experimental results are discussed in Section 5.5. Section 5.6 concludes this chapter.

62

5.1 Related Work

Recently, there are a number of articles ([16, 15, 50, 110]) published on minimizing

the overall energy consumption with the leakage/temperature dependency taken into

consideration. Specifically, Yang et al. [110] develop a quadratic leakage model to

simplify the leakage/temperature dependency. Based on this model, they propose

the Pattern-based approach to schedule a periodic task and reduce the energy con-

sumption when a processor reaches the thermal steady state. This approach mainly

focuses on a processor without DVS capability. It reduces the energy consumption by

periodically switching a processor between the active and dormant modes. Bao et al.

[16] employ a piece-wise linear (PWL) leakage model to capture the interdependency

between the leakage, temperature and supply voltage. They propose a method to

distribute idle intervals judiciously when schedule a task graph such that the tem-

perature of a processor can be effectively “cooled down” to reduce the leakage energy

consumption.

While a schedule developed off-line may be more effective to provide certain guar-

antee, an on-line schedule can be more effective in saving energy. Moreover, for a

more complicated real-time system, such as a real-time system consisting of multiple

sporadic tasks scheduled by the EDF policy, the temperature rarely reaches the ther-

mal steady state. In such a scenario, an on-line scheduling algorithm becomes more

desirable.

Several works are published to address the on-line energy optimization problems.

For example, Yuan et al. [116] introduce a simple heuristic to turn on or off a processor

based on its workload and temperature. This approach directly employs the circuit-

level leakage model ([65, 8]) to capture the interdependency between the leakage

and the temperature. However, as a result of the complexity from the nonlinear

and high order terms of the leakage model, this approach can only be applied for

63

soft real-time systems. Bao et al. [15] propose an on-line temperature-aware DVS

technique to minimize the energy consumption when scheduling a task graph. This

approach requires extensive off-line static analysis to generate a lookup table (LUT)

for each task under various starting temperature, so that the scheduler can adjust

the processor speed accordingly to minimize energy consumption on-line. There are

also other on-line thermal-aware approaches such as [60, 115, 52, 119, 27]. They focus

more on peak temperature reduction or throughput maximization under a given peak

temperature constraint.

In this chapter, we are interested in the thermal-aware overall energy minimiza-

tion scheduling problem. By incorporating the interdependency between leakage and

temperature, we derive an closed-form energy estimation method to find the potential

energy consumption of a candidate schedule. Then, based on the energy estimation

method, two scheduling algorithms are proposed. The first one is an off-line approach

which is developed to optimize the energy consumption of a single periodic task un-

der the thermal steady state. The second method is an on-line energy minimization

scheduling algorithm for a hard real-time system running multiple sporadic tasks. To

the best of our knowledge, we are not aware of any other thermal-aware scheduling

techniques that can guarantee the hard real-time deadlines for an aperiodic task set.

Based on the system models presented in Chapter 3, the formal problem definitions

of this chapter can be given as follows:

Problem 5.1.1. Given a hard real-time task set with period p and worst-case execu-

tion time c, develop a feasible schedule off-line such that the overall energy consump-

tion is minimized when a processor reaches the thermal steady state while at the same

time ensuring the peak temperature constraint Tmax.

Problem 5.1.2. Given a hard real-time task set Γ consisting of N sporadic tasks

{τ1, τ2, ..., τn}, develop an on-line speed schedule under the EDF policy such that the

64

overall energy consumption is minimized.

5.2 Motivational Examples

In this section, we use an example to illustrate the concepts of different energy calcu-

lation methods. We show why an energy estimation method with low computational

complexity and good accuracy is highly desirable in scheduling algorithm develop-

ment.

5.2.1 M-Oscillating for Overall Energy Reduction

First, we use a simple example to demonstrate the concept of the proposed algorithm

as well as its advantages. Let us consider a sporadic task set 1 consisting of two tasks,

i.e. τ1 ≡ {0, 5, 13, 13} and τ2 ≡ {2, 3, 6, 6}, which are scheduled according to the EDF

policy. A simple naive approach, as shown in Figure 5.1(a), is to execute a task with

the maximal speed and turn to sleep mode when finish execution. Another approach,

i.e. the Online DVS (OLDVS) approach [64], as illustrated in Figure 5.1(b), is to use

two neighboring speeds of the constant speed (dotted lines), i.e. the speed that can

finish the workload exactly at the deadline. The third approach, i.e. the Pattern-

based approach [110], as illustrated in Figure 5.1(c), uses a single speed to run the

task. This approach lets the processor’s active state to be scattered into a number of

intervals so that the processor can have a chance to cool down. The forth approach,

M-Oscillating, as illustrated in Figure 5.1(d), chooses the same speed levels as the

OLDVS approach. It then divides the high speed and the low speed interval each

into m segments and oscillates between the two speeds to execute a task.

Table 5.1 shows the normalized energy consumption (w.r.t. the overall energy

1A sporadic task τi is specified by {ai, ci, di, pi}, where ai represents the arrival time of τi, ci is
the worst-case execution time of τi under the maximum clock frequency, di is the relative deadline
of τi with respect to its arriving time and pi is the minimum inter-arrival time between any two
consecutive job of τi. In this chapter, we refer pi as the period of τi.

65

Figure 5.1: Different speed scheduling approaches under EDF policy

Table 5.1: Normalized energy consumptions of four scheduling approaches
Approach Edyn ↘ Eleak ↘ Etotal ↘
Pattern 0.31 - 0.69 - 1 -
OLDVS 0.28 9.6% 0.66 4% 0.94 6%
M-Osc. 0.28 9.6% 0.55 20% 0.83 17%

Edyn ↗ Eleak ↗ Etotal ↗
Naive 1.38 440% 3.56 510% 4.94 494%

66

of the Pattern-based approach) based on a processor model built based on the 65nm

technology (more details can be found in Section 6.5). We can see that in this example,

the naive approach uses only the maximal speed level for task execution (no DVS),

and as a result, the energy consumption is several times higher than the other three

approaches. As shown in Table 5.1, compared with the Pattern-based approach, the

OLDVS saves 6% of the overall energy consumption. The energy saving comes from

two aspects. First, using two neighboring speeds instead of the single speed reduces

the dynamic energy consumption. Second, the reduced dynamic power consumption

directly translates into a lower temperature which also helps to save the leakage

energy. Also, from Table 5.1 we can see that although both the OLDVS approach and

the M-Oscillating approach consume the same amount of dynamic energy, the leakage

energy consumed by different policies are quite different. Additional 11% energy can

be saved by M-Oscillating approach as a result of the optimized temperature achieved

by speed oscillating.

5.2.2 Fast and Accurate Energy Calculation is Needed

As we can see from the previous example, M-Oscillating is shown to be very effec-

tive to reduce the overall energy consumption. Then, the problem for us is how to

judiciously choose the appropriate number of transitions, with timing and energy tran-

sition overheads in mind, to achieve the best energy efficiency. However, as leakage

varies with temperature, one key challenge in solving this problem is how to calculate

the overall energy consumption for a speed schedule accurately and efficiently.

Let us consider a speed schedule shown in Figure 5.2(a). The speed schedule,

S ≡ [A,B,C,D], consists of four intervals with each characterized by a speed level

(s1 to s4) and a duration ((t1 − t0)...(t4 − t3)).

Since the leakage energy used to take only a small portion of the overall energy

67

consumption, some early works ([64, 112, 30, 57, 89]) simply ignore the leakage or

assume it to be constant. However, as we discussed earlier, these models can result

in significant estimation errors when leakage/temperature dependency is becoming

increasingly prominent.

An alternative method, similar to that in [73], is to divide a interval into small

sub-intervals (as shown in Figure 5.2(b)). Within each sub-interval, one can assume

the temperature (and thus the leakage) remains constant. Based on this concept,

to calculate the energy consumption of S, we can divide each interval into multiple

sub-intervals with equal length, i.e. ρ. Then, the energy consumption of the first

sub-interval, i.e. from t0 to t0 + ρ, can be calculated in the following steps,

Edyn = C2 · S3
3 · ρ,

Eleak = s3 · ρ · Is · (A · T 2
0 · e((α·s3+β)/T0) + B · e(γ·s3+δ)),

Etotal = Edyn + Eleak. (5.1)

The dynamic energy component, which is independent to the temperature, can

be calculated based on our dynamic power model introduced in Chapter 3, while the

leakage energy consumption is obtained by using circuit-level model (equation (2.2)).

The temperature within this sub-interval is assumed to be constant, which is the initial

temperature T0. By adding the dynamic and leakage energy, we can obtain the overall

energy consumption of the first sub-interval. Then, by applying equation (3.25), the

ending temperature of the first sub-interval, i.e. the temperature at (t0 + ρ), can

be updated and then used to calculate the leakage energy consumption of the next

sub-interval. Note that in this example, (t4−t1)
ρ

rounds of calculation are required to

get the overall energy consumption of the speed schedule S. With equation (2.2), this

68

method can achieve relatively accurate energy estimation as long as the sub-interval

(ρ) is sufficiently small. However, the computational cost can be very sensitive to the

accuracy of this approach.

Assume that we want to compare the energy consumption of the schedule S with

another schedule S ′ ≡ [D,C,B,A], and find the better one in terms of energy reduc-

tion. Even though S and S ′ have identical dynamic energy consumption, the leakage

energy consumptions are totally different simply because the temperature curve pro-

duced by running S and S ′ are dramatically different. Note that, the overall energy

consumptions are different even for the same schedule starting with different initial

temperatures. Therefore, we have to again, go through (t4−t1)
ρ

steps to find the corre-

sponding energy consumption of S ′. Using this method can be very time consuming

if the interval of the schedule being evaluated is relatively long. It is computationally

expensive even for an off-line approach, not to mention incorporating it into the de-

velopment of on-line scheduling algorithms. Evidently, an accurate energy estimation

method with low computation cost is highly desirable.

By observing equation (3.2), we notice that the relationship between the overall

power consumption and the corresponding system temperature can be described by

a differential equation. Intuitively, if the temperature information of a given schedule

interval is obtained, the time varying power consumption and thus (by calculating

the integral) the overall energy consumption can be calculated analytically. Based on

this concept, the energy consumption of a given interval can be obtained conveniently

in one step if the initial temperature is provided.

In the sections that follow, we first introduce our method to calculate the en-

ergy consumption for a given schedule. We then present an off-line and an on-line

scheduling method to minimize the energy consumption.

69

Figure 5.2: A speed schedule and its temperature curve

Figure 5.3: A periodic schedule and its temperature curve

5.3 Energy Estimation Equation

From the motivational example above, we can see that it is critical to develop a

method that can rapidly and accurately estimate the energy consumption of a can-

didate schedule. As one of the major components of overall energy consumption, the

leakage energy, as well as its strong dependency with temperature, have made the

energy estimation a non-trivial task. In this section, we first discuss how to calculate

the energy consumption of a single speed interval. Then, we discuss how to calculate

the energy consumption of a periodic schedule.

70

5.3.1 Energy Calculation for Single Speed Interval

Without losing of generality, let us consider running a processor in mode k, i.e.

applying the kth speed level, during the interval [t0, te]. Based on our system model,

the temperature change is described by equation (3.2). By integrating both sides of

equation (3.2), we have

∫ te

t0

dT (t)

dt
· dt = a ·

∫ te

t0

P (t)dt− b ·
∫ te

t0

T (t)dt,

T (te)− T (t0) = a · E(t0, te)− b ·
∫ te

t0

T (t)dt,

E(t0, te) = 1/a · (T (te)− T (t0) + b ·
∫ te

t0

T (t)dt), (5.2)

where T (t0) and T (te) denote the starting and ending temperature of interval [t0, te]

and E(t0, te) represents the energy consumed during this interval. Note that in equa-

tion (5.2), T (te) can be analytically calculated from equation (3.25) that

T (te) = G(k) + (T (t0)−G(k))e−B(k)(te−t0). (5.3)

Also, the integral term
∫ te
t0
T (t)dt can be expressed as,

∫ te

t0

T (t)dt =

∫ te

t0

G(k)dt+

∫ te

t0

(T0 −G(k)) · e−B(k)(t−t0)dt

= G(k) · (te − t0) + 1/B(k) · (G(k)− T0)(e−B(k)(te−t0) − 1). (5.4)

Replacing T (te) and the integral term
∫ te
t0
T (t)dt in equation (5.2) with equa-

tion (5.3) and (5.4), the overall energy consumed within the interval [t0, te] can be

71

formulated by a closed-form equation

E(t0, te) = 1/a · (G(k) + (T (t0)−G(k))e−B(k)(te−t0)

− T0 + b · (G(k) · (te − t0)

+ 1/B(k) · (G(k)− T (t0))(e−B(k)(te−t0) − 1))). (5.5)

From equation (5.5), we can see that in order to obtain the energy consumption of

a given speed interval, we only need to know the duration of the interval (te− t0), the

initial temperature (T (t0)) and the current processor speed level (k), which determines

the value of G(k) and B(k), according to our system models.

With equation (5.5), we can quickly calculate the energy consumption of a given

speed schedule. Recall the example shown in Figure 5.2. Now, by applying equa-

tion (5.5), the overall energy consumption of the schedule S can be formulated as

Etotal = E(t0, t1) + E(t1, t2) + E(t2, t3) + E(t3, t4). (5.6)

It is not difficult to see that by applying equation (5.5), the proposed energy cal-

culation method (Figure 5.2(c)/equation (5.6)) has significantly lower computational

cost than the energy estimation method in [73] (Figure 5.2(b)/equation (5.1)). The

number of steps required to calculate the energy consumption of a given schedule

is equal to the number of intervals a schedule has, i.e. 4, in this example. The

computational overhead reduction is achieved from two aspects. First, by using the

proposed closed-form energy equation, there is no need to divide one speed interval

into several small sub-intervals. Second, for each interval being evaluated, instead

of calculating the dynamic and leakage energy separately, we can obtain the overall

energy consumption in one step.

72

5.3.2 Energy Calculation for Periodic Schedule

Let us consider a periodic schedule (as shown in Figure 5.3) and we want to calculate

the energy consumption when running this schedule for N periods. Unless reaching

the thermal steady state, the temperature curves of different periods are different. As

a result, the (leakage) energy consumption within each period is also different. We

can certainly employ the closed-form equation introduced above to calculate the total

energy consumption, which is far more efficient than using the approach proposed in

[73]. However, even if the closed-form energy equation is applied, we still have to find

the starting/ending temperature at each of the 4N intervals and calculate the corre-

sponding energy consumption within each interval individually. The computational

cost can still be very high if N is large. In what follows, we introduce another energy

estimation method that works more efficiently to deal with a periodic schedule.

Consider the example shown in Figure 5.3 that a periodic schedule S̃ ≡ [A,B,C,D]

is running with an arbitrary starting temperature. Without losing of generality, we

assume that the schedule S̃ repeats for a total number of N periods (or copies). We

use T (tαβ) to denote the starting temperature of the βth interval in the αth copy of the

periodic schedule S̃. Also, in this example, we assume that for the interval A,B,C

and D, the processor runs in the speed level S3, S1, S4 and S2, respectively and we

have S4 > S3 > S2 > S1.

To obtain the overall energy consumption of S̃, we apply equation (5.2) to each

73

speed segment. Then, we have

E(t00, t
0
1) =

1

a
(T (t01)− T (t00) + b

∫ t01

t00

T (t)dt),

E(t01, t
0
2) =

1

a
(T (t02)− T (t01) + b

∫ t02

t01

T (t)dt),

E(t02, t
0
3) =

1

a
(T (t03)− T (t02) + b

∫ t03

t02

T (t)dt),

E(t03, t
1
0) =

1

a
(T (t10)− T (t03) + b

∫ t10

t03

T (t)dt),

. . .

E(tN−1
2 , tN−1

3) =
1

a
(T (tN−1

3)− T (tN−1
2) + b

∫ tN−1
3

tN−1
2

T (t)dt),

E(tN−1
3 , tN0) =

1

a
(T (tN0)− T (tN−1

3) + b

∫ tN0

tN−1
3

T (t)dt).

(5.7)

By summing up the above 4N equations we get

Esum = 1/a · (T (tN0)− T (t10) + b · (
N−1∑
x=0

∫ tx1

tx0

T (t)dt

+
N−1∑
x=0

∫ tx2

tx1

T (t)dt+
N−1∑
x=0

∫ tx3

tx2

T (t)dt+
N−1∑
x=0

∫ tx+1
0

tx3

T (t)dt)),

(5.8)

where Esum is the total energy consumption that we want to find. T (tN0) and T (t00)

are the final and starting temperature of the periodic schedule S̃, respectively. Each

of the summation term is corresponding to the summation of all N integral terms for

interval A,B,C and D.

Recall that in equation (5.4), if the kth speed level is applied during an interval,

the corresponding integral term can be analytically expressed. G(k) and B(k) are

74

known a priori when a processor model is given. T (t0) is the initial temperature of

the segment being evaluated. Similarly, from equation (5.8), it is not difficult to see

that the overall energy consumption Esum depends upon the starting temperature of

each speed interval, i.e. T (t00), T (t01), T (t02), T (t03), ... ,T (tN−1
2) and T (tN−1

3).

To obtain these values, one straightforward way is to keep track of the entire

schedule S̃ and calculate the temperature at those specific time instants. However,

the complexity of this method can be extremely high if there are too many number of

intervals. A more computationally efficient method is to formulate the temperature

values analytically. According to [90], the differences between the ending temperature

and the starting temperature of each single copy of the schedule form a geometric

series. Specifically, we have

T (t20)− T (1
0) = (T (t10)− T (0

0)) ·K0,

T (t30)− T (2
0) = (T (t20)− T (1

0)) ·K0,

. . .

T (tN0)− T (N−1
0) = (T (tN−1

0)− T (N−2
0)) ·K0,

(5.9)

where K0 = exp(−B(3)(t01 − t00)−B(1)(t02 − t01)−B(4)(t03 − t02)−B(2)(t10 − t03)).

The significance of this observation is that we can obtain the temperature infor-

mation within the qth period of the periodic schedule S̃ based on those within the

first copy. For example, the starting temperature of the qth period of the schedule,

i.e. T (tq0), can be effectively calculated by

T (tq0) = T (t00) +
(T (t10)− T (t00)) · (1−Kq

0)

1−K0

. (5.10)

75

Similarly, other temperature information within the qth period can also be formulated

as2:

T (tq1) = T (t01) +
(T (t10)− T (t00))(1−Kq

0)K1

1−K0

,

T (tq2) = T (t02) +
(T (t10)− T (t00))(1−Kq

0)K2

1−K0

,

T (tq3) = T (t03) +
(T (t10)− T (t00))(1−Kq

0)K3

1−K0

, (5.11)

where

K1 = exp(−B(1)(t01 − t00),

K2 = exp(−B(4)(t01 − t00)−B(1)(t02 − t01),

K3 = exp(−B(2)(t01 − t00)−B(1)(t02 − t01)−B(2)(t03 − t02)).

(5.12)

By applying equation (5.10) and (5.11), we can see that the temperature of all

speed transition instants can be obtained analytically after we get the temperature

information within the first period of S̃, i.e. T (t00), T (t01), T (t02), T (t03) and T (t10) .

Now let us first consider all “A” intervals in Figure 5.3. The starting temperature

of the qth “A” interval has already been formulated in equation (5.10). Therefore,

the summation of the initial temperature of all “A” intervals can be expressed as

N−1∑
q=0

T (tq0) = N · T (t00) +
T (t10)− T (t00)

1−K0

· (N − 1−KN
0

1−K0

). (5.13)

Once the initial temperature of all “A” intervals are available, the summation

2The details regarding how to derive equation (5.10) and (5.11) can be found in [90].

76

term of the total N corresponding integrals (in equation (5.8)) can be formulated as

N−1∑
x=0

∫ tx1

tx0

T (t)dt = N ·G(3) · ((t01 − t00) + βA)− βA ·
N−1∑
q=0

T (tq0), (5.14)

where βA = 1/B(3) · exp(−B(3)(t01 − t00)− 1).

Similarly, based on the equation group (5.11), the summations of the initial tem-

perature of all “B” intervals, “C” intervals and “D” intervals are

N−1∑
q=0

T (tq1) = NT (t01) +
T (t10)− T (t00)

1−K0

K1(N − 1−KN
0

1−K0

),

N−1∑
q=0

T (tq2) = NT (t02) +
T (t10)− T (t00)

1−K0

K2(N − 1−KN
0

1−K0

),

N−1∑
q=0

T (tq3) = NT (t03) +
T (t10)− T (t00)

1−K0

K3(N − 1−KN
0

1−K0

).

(5.15)

Correspondingly, the summation of the integral terms of all “B” intervals, “C”

intervals and “D” intervals are

N−1∑
x=0

∫ tx2

tx1

T (t)dt = NG(1)((t02 − t01) + βB)− βB ·
N−1∑
q=0

T (tq1),

N−1∑
x=0

∫ tx3

tx2

T (t)dt = NG(4)((t03 − t02) + βC)− βC ·
N−1∑
q=0

T (tq2),

N−1∑
x=0

∫ tx+1
0

tx3

T (t)dt = NG(2)((t10 − t03) + βD)− βD ·
N−1∑
q=0

T (tq3),

(5.16)

where βB = 1/B(1) · exp(−B(1)(t02 − t01)− 1); βC = 1/B(4) · exp(−B(4)(t03 − t02)− 1)

and βD = 1/B(2) · exp(−B(2)(t10 − t03)− 1).

Therefore, the overall energy consumption of the periodic schedule S̃ after running

77

for N copies can be formulated as

Ẽtotal = 1/a · ((T (t10)− T (t00)) · (1−KN
0)

1−K0

+ b · (
N−1∑
x=0

∫ tx1

tx0

T (t)dt+
N−1∑
x=0

∫ tx2

tx1

T (t)dt

+
N−1∑
x=0

∫ tx3

tx2

T (t)dt+
N−1∑
x=0

∫ tx+1
0

tx3

T (t)dt)). (5.17)

Note that, in equation (5.17), given an initial temperature, i.e. T (t00), we only

need to calculate the temperature of those speed transition points within the first

period of S̃ to get the entire temperature information of the schedule. As a result,

the overall energy consumption can be calculated efficiently. It is worth to mention

that the accuracy of employing equation (5.17) to estimate energy consumption is

contingent upon the accuracy of using linear approximated leakage model. In Section

6.5, we use experiments to quantitatively evaluate the accuracy and efficiency of our

proposed energy estimation methods.

In the next section, we apply the proposed energy estimation methods to solve

the overall energy minimization scheduling problems.

5.4 Our Energy Minimization Scheduling Algorithms

In the previous section, we have proposed a simple yet effective energy estimation

method to calculate the overall energy consumption of a single speed interval. Then,

by formulating the difference between the ending and the starting temperature of

each consecutive copy of a periodic schedule as a geometric series, we further propose

an efficient method to estimate the the overall energy consumption of a given periodic

schedule.

In this section, based on the proposed energy estimation methods and the pro-

78

Figure 5.4: M-Oscillating and the corresponding temperature curve at thermal steady
state

posed non-ideal-case M-Oscillating technique, two energy minimization scheduling

algorithms are presented. The first one is targeting at reducing the overall energy

consumption of a real-time system that consists of only one periodic task, while the

second one can be applied for a more general case that a real-time system consisting

of multiple sporadic tasks scheduled under the EDF policy.

5.4.1 Energy Minimization for Single Task under Thermal Steady State

In this sub-section, we propose an off-line scheduling approach to minimize the overall

energy consumption of a hard real-time system under the thermal steady state. We

assume that the task set consists of a set of periodic tasks with equal periods and

deadlines. We can further assume such a system consists of only one periodic task

with its deadline equal to its period.

Consider an M-Oscillating schedule and the corresponding temperature curve,

which are depicted in Figure 5.4(b) and (c). Without losing of generality, we assume

there are total m divisions and correspondingly, 2m times of mode switchings within

one task period.

The processor is assumed to be turned into idle mode between each speed transi-

tion for a small time frame τ . To ease the presentation, we denote that the processor

79

is in mode µ during each low-high transition and in mode ν during each high-low

transition even though they represent the same idle mode. Similar to the example

we showed in Figure 5.3, in an M-Oscillating schedule, T (tαM) denotes the starting

temperature of the processor mode M in the αth division.

As we start to run the processor with the M-Oscillating schedule from certain

initial temperature, i.e. Tamb, in this case, the temperature will gradually increase.

Eventually, when the heat generated by the processor matches the heat that can be

removed by the heat sink, the processor is said to be in its thermal steady state,

during which, the temperature will follow a periodic pattern instead of increasing

indefinitely. Our first goal is to minimize the overall energy consumption at the

thermal steady state.

From Figure 5.4(b) and (c), it is not difficult to see that under the thermal steady

state, the processor reaches its peak temperature (Tpeak) at the end of each high

speed interval and then drops to a so-called equilibrium temperature, i.e. Teq, after

each idle period immediately following the low speed interval (µ interval). Note that,

based on the previous proposed energy equation, the overall energy consumption

of the M-Oscillating schedule under thermal steady state can be formulated once

the temperature information at the mode switching instants are available. Then,

for all possible value of m, we choose the one that results in the minimum overall

energy consumption as our solution. One straightforward way to calculate the peak

temperature for a given m is to trace the temperature change by using equation (3.25)

from the Tamb until the temperature saturated at certain time instant and pick the

highest one as the Tpeak. However, this method can be very time consuming if the

number of mode switchings, i.e. m, is large. One better solution is to treat the

M-Oscillating schedule as a periodic schedule and formulate the temperature change

analytically. Similar to equation (5.10), the temperature at time instant tLν can be

80

formulated as

T (tLν) = T (t0ν) +
(T (t1ν)− T (t0ν)) · (1−KL

0)

1−K0

, (5.18)

where K0 = exp(−B(j)tjm − B(i)tim − 2Bidleτ) and Bidle = B(µ) = B(ν). Then,

the peak temperature of a given m can be obtained by setting L → ∞. Since K0 is

always less than 1 [90], we have

lim
L→∞

T (tLν) = T (t0ν) +
T (t1ν)− T (t0ν)

1−K0

. (5.19)

Note that once Tpeak is found, other temperature values at the mode transition points

within the same segment are readily available based on equation (3.25). Therefore,

the overall energy consumption in one period at the steady state can be formulated

as

Ẽ(m)steady = m · (E(tL−1
ν , tL−1

i) + E(tL−1
i , tL−1

µ)

+ E(tL−1
µ , tL−1

j) + E(tL−1
j , tLν)) + 2m · Esw,

(5.20)

where E(tL−1
i , tL−1

µ) and E(tL−1
j , tLν) denote the energy consumption of the low and

high speed interval, respectively. E(tL−1
ν , tL−1

i) and E(tL−1
µ , tL−1

j) correspond to the

energy consumption of the idle period, and Esw is the switching energy overhead and

there are a total number of 2m transitions taking place.

Then, our problem is to minimize Ẽ(m)steady subject to m ≤ mMax. Because of the

simplicity of both our energy estimation technique as well as the peak/equilibrium

temperature calculation method, we can use simple exhaustive search to find the

optimal value of m. The complete algorithm is shown in Algorithm 2.

81

Algorithm 2 Off-line M-Oscillating algorithm
1: Input: p, c, Esw, Si, Sj, τ ,Tmax;
2: Output: Emin and mopt;
3: Emin =∞ and mopt = 0;
4: mMax = b ti

δ+τ
c;

5: for m=1:1:mMax do
6: tmi = ti

m
− τ − δ;

7: tmj =
tj
m
− τ + δ;

8: Calculate Tpeak(m);
9: if Tpeak(m) ≤ Tmax then

10: Calculate Teq(m) and Ẽ(m);
11: if Ẽ(m)steady(m) < Emin then
12: Emin ← Ẽ(m)steady(m)
13: mopt ← m
14: end if
15: end if
16: end for
17: Return: Emin and mopt

5.4.2 Energy Minimization of Multiple Sporadic Tasks under the EDF

Policy

In Section 5.4.1, we have introduced an effective energy minimization speed scheduling

approach targeting at the thermal steady state. This approach is off-line in nature

since we assume the task always takes its WCET and the processor reaches the

thermal steady state. However, in real world applications, the actual execution time

of a task can be only a small fraction of its WCET. A schedule developed off-line may

provide certain guarantee, but an on-line schedule can be more effective in saving

energy. Moreover, for a more complicated real-time system, such as a real-time system

consisting of multiple sporadic tasks scheduled by the EDF policy, a processor rarely

reaches the thermal steady state. In such a scenario, the off-line algorithms simply

become not effective at all.

In this sub-section, we extend our method and develop an on-line scheduling

algorithm for task sets with multiple tasks scheduled by the EDF policy.

82

Figure 5.5: M-Oscillating and the corresponding temperature curve at transient stage

We still apply the proposed non-ideal-case M-Oscillating technique in our on-line

scheduling method. One of the key challenges for the on-line scheduling algorithm

development is to rapidly calculate the energy consumption of a candidate schedule

during run-time. Therefore, in what follows, we first introduce how to formulate the

energy consumption of an M-Oscillating schedule at the transient stage, i.e. before

reaching the thermal steady state. Then, we discuss how to combine the M-Oscillating

with the existing EDF policy to schedule multiple sporadic tasks.

Online M-Oscillating Energy Calculation without Steady State Tempera-

ture Information

The energy consumption of an M-Oscillating schedule during the transient stage

can be formulated by using the same methodology as we proposed in Section 5.3.2.

Consider an M-Oscillating schedule and the corresponding temperature curve in Fig-

ure 5.5. The M-Oscillating schedule can be considered as a periodic speed schedule

83

with one period consists of four speed intervals, namely, µ, j, ν and i. Therefore, the

equations we derived in Section 5.3.2, i.e. equation (5.17), can be effectively applied

to formulate the energy consumption of an M-Oscillating schedule during transient

stage.

Assuming at certain scheduling point, there are a total number of m divisions and

the current temperature is T (t0µ). Then, the overall energy consumption is

Ẽ(m) = 1/a · (
(T (t1µ)− T (t0µ)) · (1−Km

0)

1−K0

+ b · (
m−1∑
x=0

∫ txj

txµ

T (t)dt+
m−1∑
x=0

∫ txν

txj

T (t)dt

+
m−1∑
x=0

∫ txi

txν

T (t)dt+
m−1∑
x=0

∫ tx+1
µ

txi

T (t)dt)), (5.21)

where the four summation terms can be expressed as

m−1∑
x=0

∫ txj

txµ

T (t)dt = m ·Gidle · (τ + βµ)− βµ ·
m−1∑
q=0

T (tqµ),

m−1∑
x=0

∫ txν

txj

T (t)dt = m ·G(j) · (tjm + βj)− βj ·
m−1∑
q=0

T (tqj),

m−1∑
x=0

∫ txi

txν

T (t)dt = m ·Gidle · (τ + βν)− βν ·
m−1∑
q=0

T (tqν),

m−1∑
x=0

∫ tx+1
µ

txi

T (t)dt = m ·G(i) · (tim + βi)− βi ·
m−1∑
q=0

T (tqi),

where βj = 1/B(j) · exp(−B(j)tjm − 1); βi = 1/B(i) · exp(−B(i)tim − 1); βµ = βν =

1/Bidle · exp(−Bidleτ − 1) and Gidle = G(µ) = G(ν).

Similarly, each of the summation terms (summation of the initial temperatures)

on the right-hand-side of the above equations can be further calculated as

84

m−1∑
q=0

T (tqµ) = m · T (t0µ) +
T (t1µ)− T (t0µ)

1−K0

(m− 1−Km
0

1−K0

),

m−1∑
q=0

T (tqj) = m · T (t0j) +
T (t1µ)− T (t0µ)

1−K0

K1(m− 1−Km
0

1−K0

),

m−1∑
q=0

T (tqν) = m · T (t0ν) +
T (t1µ)− T (t0µ)

1−K0

K2(m− 1−Km
0

1−K0

),

m−1∑
q=0

T (tqi) = m · T (t0i) +
T (t1µ)− T (t0µ)

1−K0

K3(m− 1−Km
0

1−K0

),

where

K0 = exp(−B(j)tjm −B(i)tim − 2Bidleτ),

K1 = exp(−Bidleτ),

K2 = exp(−B(j)tjm −Bidleτ),

K3 = exp(−B(j)tjm − 2Bidleτ).

Note that, in equation (5.21), given an initial temperature, i.e. t0µ, we only need

to calculate the temperature at the time instants within the first sub-interval, e.g. t0j ,

t0ν , t
0
i and t1µ, to get the entire temperature information and as a result, the overall

energy consumption of an M-Oscillating schedule with m divisions can be calculated

efficiently.

Combining M-Oscillating with Online EDF

In this subsection, based on the proposed energy estimation method, we present our

on-line energy minimization scheduling algorithm: “On-line M-Oscillating” (OLMO).

85

To guarantee the real-time constraint, we adopt the method in [64] to calculate

the constant speed. According to [64], for the arriving task τi (either new arrival or

resumed after preemption), at time instant t, the constant speed can be determined

as follows.

We first calculate the worst-case completion time (WCCT) and worst-case re-

maining time (WCRT) for each arrived (but not finished) task. Three cases are

considered:

• τi resumes after τk

WCCT i = t+ ci

WCRT i = ci

WCRT i = WCRT j − sj(t− l) /*l:previous context switch time*/

• τi preempts τj

WCCT i = WCCT i +WCCT k − tp /* τi is preempted at tp*/

• otherwise

WCRT i = ci

if(dk > di or WCCT i < t), WCCT i = t+WCRT i

else WCCT i = WCCT k + ci

The required constant speed of τi can thus be calculated as

scon =
WCRT i

WCCT i − t
. (5.22)

Now the two neighboring speeds (Si and Sj) are found based on the calculated

Scon and the given processor model. To guarantee the same workload during the

86

period tp, the low speed duration ti and high speed duration tj can be formulated as

tj = tp × Scon−Si
Sj−Si and ti = tp − tj.

To incorporate the non-negligible transition overhead, we use equation (4.2) and

(4.2), derived in Chapter 4, to find the duration of the adjusted high speed (tjm) and

low speed (tim) interval with respect to different m values.

At each scheduling point, given the initial temperature T (t00), the overall energy

consumption, i.e. Ẽ(m), can thus be formulated as a function of m (equation (5.21)).

Our problem is therefore to minimize Ẽ(m). We can use a sequential search to find

the optimal value of m during the run-time. The detailed algorithm is presented in

Algorithm 3.

As an on-line scheduling algorithm, the complexity of the proposed OLMO is a

crucial factor to be considered. In our approach, the most time consuming process

is the searching step for the optimum m. The complexity of the searching algorithm

is O(mMax), where mMax is the theoretical upper bound of m, i.e. mMax = b ti
δ+τ
c.

The upper bound of m depends on the low speed duration of a given task, i.e. ti,

and the transition overhead τ . Based on the task and processor model used in this

chapter, in most cases, the optimal m can be found within 20 iterations which would

pose negligible computational overhead as evidenced later in Section 5.5.1.

In the next section, we use experiments to validate the accuracy of the proposed

energy estimation methods and the performance of our scheduling algorithms.

5.5 Experimental Results

In this section, we use experiments to evaluate our methods. We first examine the

accuracy and efficiency of the proposed energy estimation equation. Then, the perfor-

mance of the proposed energy minimization scheduling algorithms will be evaluated

and discussed.

87

Algorithm 3 On-Line M-Oscillating (OLMO) Algorithm

1: while context switch to task τi at time t do
2: Calculate the constant speed Scon by Eq. (5.22);
3: Find two nearest neighboring speeds Si and Sj of the constant speed;
4: Calculate ideal low/high speed duration ti and tj
5: Identify upper bound of m:
6: if Si 6= idle then
7: mMax = b ti

δ+τ
c

8: else
9: mMax = b ti

2τ
c

10: end if
11: Assign: Emin =∞ and mopt = 0
12: for m=1:mMax do
13: if Si 6= idle then
14: tim = ti

m
− τ − δ;

15: tjm =
tj
m
− τ + δ;

16: else
17: tim = ti

m

18: tjm =
tj
m

19: end if
20: Calculate Ẽ(m); Eq. (5.17)
21: if Ẽ(m) < Emin then
22: Emin ← Ẽ(m)
23: mopt ← m
24: end if
25: end for
26: Return: {Si, Sj, tim, tjm,mopt}
27: end while

88

5.5.1 Accuracy and Efficiency of Energy Estimation Technique

In this subsection, we study the accuracy and efficiency of our energy estimation

methods. We adopted the processor model which is detailed in Chapter 3. The

ambient temperature is set to 25oC. The timing penalty of speed transition τ is set

to be 5ms and the transition energy overhead Esw is 0.01J [110].

First, we tested the performance of our energy estimation method for a single

speed interval, e.g. equation (5.5). We let the processor running in intervals with

different lengths and by using different modes. We then compared the overall en-

ergy consumption and computational costs achieved by using equation (5.5) with the

method proposed in [73]. To ensure the accuracy of energy calculation, we used a

very small time interval, e.g. 0.01s, as the step size of the method in [73]. The energy

consumption of each test case and the corresponding CPU time are summarized in

Table 5.2. The results obtained by using the method in [73] are labeled as “REAL”,

while ours are labeled as “PROPOSED”. The relative errors and speedups of our

approach under different test cases are also listed in the table.

Our experimental results clearly show that the proposed energy estimation method

(for single speed interval) is very accurate and computationally efficient. As can be

seen in Table 5.2, the energy consumption calculated by using our proposed method

closely matches the one obtained by using the approach in [73], with the maximum

relative error no more than 2.7% among all test cases. The computational cost, on

the other hand, is significantly reduced, i.e. up to 177X or over 57X of speedup in

average for our test cases. We can also see from Table 5.2 that the longer the interval

is, the more efficient our method can be. The reason is that the computational cost

of our method is independent to the length of the interval, whereas for the method in

[73], the CPU time is very sensitive to the interval length since it needs to divide the

entire speed interval into many small sub-intervals. Moreover, Table 5.2 also indicates

89

that in general, the relative estimation errors of our method decrease as we increase

the supply voltage levels. This is because for the same interval length, higher supply

voltage level results in larger absolute value of energy consumption, which increases

the denominator when we calculated the relative errors.

90

T
ab

le
5.

2:
A

cc
u
ra

cy
an

d
effi

ci
en

cy
of

en
er

gy
es

ti
m

at
io

n
eq

u
at

io
n

fo
r

si
n
gl

e
in

te
rv

al
P

E
R

IO
D

(s
)

V
d
d

(v
)

R
E

A
L

(J
)

P
R

O
P

O
S
E

D
(J

)
E

R
R

O
R

A
ve

.T
IM

E
-R

E
A

L
(s

)
A

ve
.T

IM
E

-P
R

O
P

(s
)

A
ve

.S
P

E
E

D
U

P
(X

)

5

0.
6

29
.6

6
28
.8

6
2.

7%

0.
02

8
0.

00
25

11
X

0.
8

68
.3

9
68
.2

3
2.

3%
1.

0
15

2.
75

15
4.

74
1.

3%
1.

2
38

7.
49

39
2.

73
1.

3%

10

0.
6

59
.3

7
57
.7

9
2.

6%

0.
03

8
0.

00
27

14
X

0.
8

13
9.

13
13

6.
10

2.
1%

1.
0

30
6.

45
31

0.
56

1.
2%

1.
2

78
0.

20
79

0.
68

1.
3%

20

0.
6

11
8.

79
11

5.
66

2.
6%

0.
06

4
0.

00
26

24
X

0.
8

27
8.

49
27

3.
53

2.
0%

1.
0

62
3.

74
63

1.
80

1.
3%

1.
2

1.
57
×

10
3

1.
59
×

10
3

1.
3%

50

0.
6

29
7.

04
28

9.
26

2.
7%

0.
17

0.
00

28
60

X
0.

8
69

6.
56

68
1.

83
2.

1%
1.

0
1.

56
×

10
3

1.
58
×

10
3

1.
2%

1.
2

3.
92
×

10
3

3.
97
×

10
3

1.
3%

10
0

0.
6

59
4.

13
57

8.
60

2.
7%

0.
48

0.
00

27
17

7X
0.

8
1.

39
×

10
3

1.
36
×

10
3

2.
1%

1.
0

3.
16
×

10
3

3.
12
×

10
3

1.
3%

1.
2

7.
84
×

10
3

7.
95
×

10
3

1.
3%

91

T
ab

le
5.

3:
T

ra
n
si

en
t

st
at

e
en

er
gy

ca
lc

u
la

ti
on

eq
u
at

io
n

ev
al

u
at

io
n

D
ea

d
li
n
e(

s)
A

ve
.m

m
a
x

A
.C

.T
.(

[7
3]

)
A

.C
.T

.(
S
IE

)
A

.C
.T

(P
S
E

)
A

ve
.S

p
ee

d
u
p

(P
S
E

v
s.

S
IE

)
A

.R
.E

(P
S
E

v
s.

[7
3]

)

5
63

4.
68

s
0.

03
4s

0.
00

09
2s

36
X

4.
1%

10
11

7
9.

63
s

0.
09

3s
0.

00
19

s
49

X
3.

4%
20

24
8

18
.3

8s
0.

30
s

0.
00

37
s

81
X

2.
8%

50
62

5
46

.2
s

1.
81

s
0.

01
4s

12
9X

1.
9%

10
0

11
80

10
8s

6.
03

s
0.

03
s

21
0X

1.
1%

92

We next used experiments to examine the performance of the proposed on-line

energy estimation method, i.e. equation (5.21). We generated five groups of tasks with

different deadlines (D), e.g. 5s, 10s, 20s, 50s and 100s. Each group consists of 1000

tasks with randomly generated WCET varying from 0.5D to 0.95D. For each task, we

calculated the energy consumption of an M-Oscillating schedule with m increasing

from 1 to mMax. We assume that the initial temperature is equal to the ambient

temperature. Three approaches were used to obtain the energy consumptions.

• The proposed online periodic schedule energy estimation method, i.e. equation

(5.21) in Section 5.4.2. We refer this method as the PSE method.

• The single interval based energy calculation method. Specifically, we use equa-

tion (5.5) derived in section 5.4.1 to calculate the energy consumption of each

interval and apply equation (3.25) to trace the temperature. We call it the SIE

method.

• The energy calculation method similar to the one proposed in [73].

Based on previous discussion, for a single interval, calculating the energy by using

equation (5.5) has already demonstrated significant speedup over the method in [73],

while the latter one has better performance in terms of accuracy (as shown in Table

5.2). Therefore, in this experiment, to evaluate the accuracy of the PSE method,

we compared the energy consumption calculated by the PSE method with the ones

obtained by the method in [73]. The SIE method is considered as the baseline ap-

proach to show the additional speedup achieved by the PSE method. The average

CPU time (A.C.T.) of each task group achieved by using different approaches as well

as the average relative error (A.R.E) and speedup of the PSE method were recorded

and summarized in Table 5.3

93

As can be seen from Table 5.3, our experimental results show the superiority

of the PSE method. On one hand, the energy consumption calculated by using

the PSE method well matches the one obtained by the approach in [73] with the

relative error kept less than 4.1%. The CPU time, on the other hand, is significantly

reduced compared with the SIE method, i.e. up to 210X or over 94X of speedup

in average for different task groups. The speedup of the PSE method over the SIE

method comes from the following facts. For each valid m, the PSE method can

efficiently obtain the potential energy consumption based on the current temperature

reading and four simple temperature calculations, i.e. the ending temperatures of the

4 intervals within the first period of an M-Oscillating schedule. The SIE method, on

the other hand, needs to calculate the energy consumption of a schedule interval by

interval. Therefore, 4×m times of energy calculation are required to find the overall

energy consumption. As m becomes larger, the computational overhead increases

significantly. Moreover, the SIE method needs the temperature information at every

speed transition point as the input. Thus, a complete calculation of temperature

information is required for the entire schedule under each m, which can be extremely

time consuming. This experiment shows the fact that the accuracy of the PSE method

is guaranteed while the computational overhead is significantly reduced, which is

crucial for our on-line scheduling algorithm.

5.5.2 Energy Minimization under Thermal Steady State

To study the energy saving performance of our off-line scheduling algorithm targeting

at a processor when reaching the thermal steady state, we compared our approach

with two existing methods,

• A simple naive approach that executes the task with the maximal speed and

turns to sleep mode when finish execution.

94

• The Pattern-based approach [110] that uses a single speed to run the task.

This approach lets the processor’s active state to be scattered into a number of

intervals so that the processor can have a chance to cool down.

The periods of the tasks are set to 100s. The worst-case execution times are

randomly generated with workload density (c/p) varying from 55% to 95% with 5%

increment. The reason we do not further reduce the workload density is that when

c/p < 55%, the low speed mode used by the Pattern-based approach and the proposed

technique becomes the same. The temperature constraint is set to be Tmax = 85oC.

The energy consumption of each task is calculated and plotted in Figure 5.6(a).

From Figure 5.6(a), we can see that while both the Pattern-based approach and

the proposed technique can achieve significant energy reduction (compared with naive

approach), the proposed method consistently outperforms the Pattern-based approach

under different test scenarios. Compared with the naive approach, on average, 26.5%

energy can be saved by using our method versus 13.2% by applying the Pattern-based

approach. Compared with the Pattern-based approach, the energy reduction of our

method achieves from two aspects. (i) By using the speed oscillating, the leakage

energy is reduced as the result of the reduced temperature. (ii) By applying the two

neighboring speeds instead of the maximum speed combined with the idle mode, the

dynamic energy consumption can be saved as well.

We also compared the peak temperature of each test case and plotted in Fig-

ure 5.6(b). The peak temperature achieved by the proposed approach can be at most

21.8oC and 11.4oC (or 6.4oC and 2.1oC in average) lower than the naive approach

and the Pattern-based approach, respectively. That means our approach can be even

more effective when the peak temperature constraint becomes tighter.

95

(a) Energy Vs. Workload

(b) Temperature Vs. Workload

Figure 5.6: Performance comparison of three different scheduling approaches in terms

of energy minimization and peak temperature reduction

5.5.3 Online Energy Minimization under the EDF Policy

We next evaluated the performance of our proposed OLMO algorithm by comparing

with the Pattern-based approach [110] and the OLDVS approach [64].

The task model used in this experiment is set as follows. The utilization (ui) of

each task (τi) is uniformly distributed between [0.02, 1.00]. The minimum inter-arrival

96

time (Pi) of τi also has a uniform distribution, with a range of [50, 500]. To simulate

the actual execution time (ei), we define the actual-to-worst ratio (e2E ratio), as the

ratio of ei over Ei, which is generated randomly for each job with uniform distribution

between [0, 1]. Then, for each job of τi, ei can be obtained by ei = e2E ratio · Ei.

The system utilization (workload density) is set between [0.5,1.0] with 5% increment.

For each test case, 1, 000 tasks are generated and bounded by the corresponding

system utilization. The overall energy consumed by the three different approaches

are collected and then normalized to the energy consumption of the Pattern-based

approach.

Figure 5.7: Normalized energy consumption of three scheduling approaches

The results are plotted in Figure 5.7, which clearly show that the OLMO signif-

icantly outperforms the other two existing approaches. Compared with the Pattern-

based approach, the OLMO can save more than 10% energy on average at low system

utilization range, while up to 20% energy can be saved when system utilization is high

(11% and 23% energy saving when system utilization equal to 0.5 and 1.0, respec-

tively and 14% energy saving on average). Compared with OLDVS, OLMO achieves

97

10% energy saving on average, and the energy saving also increases with the incre-

ment of system utilization. Compared with both the Pattern-based approach and the

OLDVS, the proposed OLMO can significantly reduce the overall energy consump-

tion, particularly under high system utilization range. This is because the processor

tends to choose higher speed levels when the system utilization is high. As a result,

the absolute values of the energy consumption as well as the temperature are high.

The M-Oscillating can achieve significant temperature reduction, especially when the

system stays in high utilization range. The minimized temperature curve directly

translates into a reduced leakage energy consumption which is another contributor of

our energy saving.

5.6 Summary

In this chapter, we investigate how to apply scheduling techniques to reduce the overall

energy consumption of a hard real-time system. With the inter-dependency between

leakage, temperature and supply voltage taken into consideration, two approaches

are proposed in this chapter. The first one is an off-line approach that focuses on

how to minimize the energy of a single periodic task under the thermal steady state.

Next, we develop an on-line approach to reduce the overall energy consumption of

a hard real-time system scheduled according to the EDF policy. Our experimental

results demonstrate that the proposed energy estimation method can achieve signif-

icant speedup compared with existing approaches while maintaining good accuracy.

In addition, the results from large number of test cases show that, both the on-line

and the off-line approaches we proposed in this chapter outperform the existing works

consistently.

98

CHAPTER 6

SCHEDULING FOR THROUGHPUT MAXIMIZATION

In Chapter 4 and 5, we investigate how to apply the M-Oscillating concept to solve

the peak temperature reduction and the energy minimization problem, respectively.

In this chapter, we are interested in studying how to maximize the throughput of a

periodic real-time system under a given peak temperature constraint. We assume that

different tasks, in our system, may have different power and thermal characteristics.

Two scheduling approaches are presented in this chapter. The first one is built upon

processors that can be either in active or sleep mode. By judiciously selecting tasks

with different thermal characteristics as well as alternating between a processor’s

active and sleep mode, the sleep period required to cool down a processor is kept

at a minimum level and as the result, the throughput is maximized. We further

extend this approach for processors with dynamic voltage/frequency scaling (DVS)

capability.

The rest of this chapter is organized as follows. Section 6.2 introduces the system

models followed by the motivational examples in Section 6.3. Our proposed scheduling

algorithms are discussed in Section 6.4. Experimental results are presented in Section

6.5. And Section 6.6 concludes this chapter.

6.1 Related Work

The desire of high-performance computing system together with the awareness of

negative effects of high system temperature have driven researchers into the study of

the thermal-aware throughput maximization problem. Significant efforts have been

spent to solve the thermal-constrained throughput maximization problem for single

processor platforms, e.g. [108, 91, 27, 118, 119], as well as multi-processor platforms,

e.g. [47, 48, 71, 121, 75, 122, 104, 35].

99

For single processor platforms, Wang et al. [108] introduce an effective two-speed

reactive scheme that runs the processor at the maximum speed until it reaches the

temperature threshold, then uses an equilibrium speed to maintain the temperature.

Quan et al. [91] propose a closed-form formula for feasibility analysis for a given

peak temperature threshold. For multi-processor platforms, Liu et al. [71] propose a

thermal-aware job allocation algorithm, which assigns hot tasks to cores close to the

heat sink by taking advantage of its better heat removing capability. And cool tasks

are assigned to cores far away from heat sink. By doing so, better thermal condition

can be achieved such as low peak temperature and less temperature variations. In

[121], Zhou et al. present a task scheduling technique based on the observation

that the vertically adjacent cores have strong thermal correlation. This method then

jointly considers vertically adjacent cores and forms them into super cores. Lung et

al. [75] introduce a fast thermal simulation method, based on which, a task allocation

algorithm is proposed by assigning a given task to a core that can result in a minimized

peak temperature. In [35], Coskun et al. present a thermal-aware scheduling method

called Adapt3D, which takes the thermal history into account to reduce the number of

hot spot occurrences. Most of these works do not consider the leakage/temperature

dependency in the analysis. They either ignore the leakage power consumption or

simply treat it as constant.

In this chapter, we are interested in the problem of how to apply the scheduling

technique to maximize the throughput of a real-time system under a given peak tem-

perature constraint. There are some closely related works that have considered the

leakage/temperature dependency when solving throughput maximization problems,

e.g. [27, 118, 119]. Specifically, Chantem et al. [27] propose to run real-time tasks

by frequently switching between the two speeds which are neighboring to a constant

speed. This work, however, targets only at the scenario when the processor reaches

100

its thermal steady state. Zhang and Chatha [118] present a pseudo-polynomial time

speed assignment algorithm (based on the dynamic programming approach), followed

by a scheme to minimize the total execution latency. To guarantee the peak temper-

ature constraint, this approach requires that the ending temperature of each period

not exceeding the starting temperature, which can be very pessimistic. In addition,

the two approaches mentioned above assume that all tasks have the same power char-

acteristics, i.e. tasks consume the same amount of power as long as they run at the

same processor speed, which might not be true in real-world scenario. As shown

in [56], the power and thus the thermal characteristics of different real-time tasks can

be significantly different. With this fact in mind, Jayaseelan and Mitra [56] introduce

a method to arrange the task execution sequence to minimize the peak temperature.

Zhang and Chatha [119] further develop several algorithms to maximize the through-

put of a real-time system by sequencing the task execution of processors with and

without dynamic voltage/frequency scaling (DVS) capability. Both works ([56] and

[119]) assume that the processor can only change its speed at the boundary of task

execution.

In what follows, we first introduce the system models we used in this chapter.

Then, we present our scheduling algorithms for processors without and with DVS

feature, respectively.

6.2 Preliminaries

In this section, we briefly introduce the system models used in this chapter, followed

by the problem definition. We use the same processor model and thermal model as

we introduced earlier in Chapter 3. The task and power consumption, however, are

modeled in a more practical fashion, which are detailed below.

Real-Time Tasks: The task model considered in this chapter is a periodic task

101

set consisting of independent heterogeneous tasks. The heterogeneous nature of the

tasks are manifested in a way that the power consumption of different tasks vary

significantly even running under the same speed level and at the same temperature.

This is because the power consumptions are strongly depending on the circuit activi-

ties [73] and the usage patterns of different functional units when executing different

tasks. Specifically, we introduce a parameter µ, called activity factor, to capture

different switching activities of different tasks. For a given task, the activity fac-

tor µ (ranging between (0, 1]) defines how intensively the functional units have been

used. For common benchmark tasks, the activity factors can be obtained by using

architectural-level power analysis tools such as Wattch [23]. Similarly, we also define

a leakage factor δ, which can be used as the scaling factor of the leakage power of a

processor when running different tasks.

Power Model: With the activity factor taken into consideration, the dynamic

power consumption of a processor when executing a task τi at the kth speed level can

be formulated as

Pdyn(i, k) = µiC2v
3
k, (6.1)

where vk is the supply voltage level, C2 is a constant and µi is the activity factor of

the task τi.

Similarly, if we consider the leakage factor, the leakage power of a processor when

executing the task τi can be effectively estimated as

Pleak(i, k) = δi(C0(k)vk + C1(k)Tvk), (6.2)

where δi is the leakage factor, C0(k) and C1(k) are constants. Therefore, the overall

power consumption when executing the task τi at the kth speed level can be modeled

102

as

P (i, k) = δi(C0(k)vk + C1(k)Tvk) + µiC2v
3
k. (6.3)

Accordingly, the temperature dynamic when executing the task τi can be formulated

as

dT (t)

dt
= A(i, k)−B(i, k)T (t), (6.4)

where A(i, k) = a(δiC0(k)vk + µC2v
3
k) and B(i, k) = b − aδiC1(k)vk (we use Bs for

B(sleep)). Hence, for a given time interval [t0, te], if the initial temperature is T0,

by solving equation (6.4), the ending temperature after executing the task τi can be

formulated as:

Te =
A(i, k)

B(i, k)
+ (T0 −

A(i, k)

B(i, k)
)e−B(i,k)(te−t0)

= Tss(i, k) + (T0 − Tss(i, k))e−B(i,k)(te−t0), (6.5)

where Tss(i, k) is the steady state temperature of the task τi at the kth speed level.

For a given task, if Tss(i, k) > Tmax (the maximal temperature limit), we call it a hot

task, or cool task otherwise. Apparently, for the sleep mode, we have Tss = Tamb.

Based on the models introduced above, the throughput of a real-time system can

be maximized when the latency of executing a task in one period is minimized. Then,

our research problem can be formulated as follows.

Problem 6.2.1. Given a tasks set Γ = {τ1(t1, µ1, δ1), τ2(t2, µ2, δ2), ..., τn(tn, µn, δn)},

where ti, µi and δi are the execution time, activity factor and the leakage factor of

the task τi, respectively. Develop a feasible schedule such that the latency of executing

one iteration of Γ is minimized under the thermal steady state while ensuring a given

peak temperature constraint Tmax.

103

Figure 6.1: Improve the throughput by distribute sleep period between task execu-
tions

Figure 6.2: Improve the throughput by switching between hot and cool tasks

6.3 Motivational Examples

Consider a task τ with execution time t of 500ms and a steady state temperature

Tss of 115oC. Let the peak temperature limit Tmax to be 100oC. Assume that the

processor has already reached this temperature threshold before task τ starts to run.

Then, the temperature constraint will definitely be violated if the execution of τ starts

immediately.

To prevent the temperature from exceeding Tmax, we can turn the processor into

the sleep mode and let the processor cool down, as illustrated in Figure 6.1(a). Based

on the calculation from our system model, the processor has to stay in the sleep mode

for 418ms to make sure its temperature dropped to a safe temperature. With this

safe temperature, if we continue to execute τ , the peak temperature constraint, i.e.

104

Tmax, will not be violated.

Alternatively, as shown is Figure 6.1(b), we can divide the execution of τ equally

into 5 sections and distribute the sleep periods before each of them. In this case, only

12.6ms is required for the processor to stay in the sleep mode to cool down to the

safe temperature (i.e. 94.8oC in this case) for each sub-interval. Consequently, the

processor only needs to spend a total of 12.6× 5 = 63ms in the sleep mode to ensure

the same maximal temperature constraint. Shorter idle time implies that the latency

of the tasks can be reduced and therefore helps to improve the system throughput.

This example indicates that it is more effective to insert multiple idle intervals inside

the task than only at the task boundary to improve the throughput under the same

peak temperature constraint.

Now consider another example as shown in Figure 6.2 with a cool task τ1 (Tss =

68oC) and a hot task τ2 (Tss = 115oC). Let us assume that both tasks have the same

execution time (400ms). Both the initial temperature and the peak temperature con-

straint are assumed to be 100oC. To reduce the execution latency without violating

the peak temperature constraint, one intuitive approach is to run the cool task τ1

first followed by the hot task. However, in this example, running the cool task alone

cannot bring the temperature low enough such that τ2 can immediately start to run

without exceeding the peak temperature limit. Therefore, a sleep period of 73.4ms

has to be inserted before τ2 to further cool down the processor which results in a total

latency of 873.4ms as shown in Figure 6.2(a).

In contrast, one can also divide the execution of τ1 and τ2 into 4 sub-intervals and

run them alternatively. The schedule and the corresponding temperature curve are

shown in Figure 6.2(b). Note that, both τ1 and τ2 are successfully executed under

the peak temperature limit without inserting any idle interval at all. Moreover, the

temperature at the end of the execution is reduced to 96.1oC . This saved temperature

105

budget (i.e. 3.9oC) could be used to further improve the throughput [119] of the

ensuing tasks.

It is worth to mention that in the above examples as well as the following dis-

cussions, the mode switching overhead is only considered in timing analysis whereas

omitted in thermal analysis for simplicity. The reason is that the tsw is sufficiently

small so that the temperature variation during tsw is negligible. Moreover, during

the mode switching, the processor clock is halted that no workload can be executed.

Thus, in fact, the chip temperature during tsw is slightly decreasing, if not ignored.

Therefore, if one method can guarantee the temperature constraint without consid-

ering the temperature variation in tsw, it is bound to be feasible if we incorporate tsw

into the thermal analysis.

The above example clearly shows that, by splitting tasks with different power

and thermal characteristics into multiple sections and execute them alternatively,

the throughput can be significantly improved. Several questions immediately rise.

First, how effective this approach can be, especially when considering the switching

overhead between task executions? Second, how can we appropriately choose the

number of sections that a task needs to be split to achieve the best performance, i.e.

throughput? We answer these questions in the next section.

6.4 Our Approach

In this section, we discuss our approach in detail and present our scheduling algo-

rithms. We first consider a processor with only one active mode, i.e. N = 1, and

assume all tasks are hot tasks with respect to a given peak temperature constraint.

We then consider a task set consisting of both hot and cool tasks. Finally, we intro-

duce our approach for a processor with multiple active modes, i.e. N > 1.

106

6.4.1 Sleep Mode Distribution for Hot Tasks

We begin our discussion by assuming that a processor has only one active mode and

one sleep mode. We further assume that all tasks in Γ have Tss > Tmax (i.e. hot

tasks). When Tss ≤ Tmax, the problem becomes trivial since no temperature limit

violation can occur. Because Γ is a periodic task set and it is shown [27, 119] that

the throughput of Γ is maximized when the temperature at the end of each period

equals Tmax, we can conveniently make the initial temperature of Γ to be the same

as the ending temperature of each iteration, and set them to be Tmax.

Since all tasks are hot, starting at Tmax, we can only bring down the temperature

by inserting idle intervals. The question is how long we should insert the interval.

The shorter the total length of all idle intervals is, the smaller the overall latency is

and thus the larger the throughput can be. To quantify the effectiveness of different

choices, we use a metric called the idle ratio (Θ) which is defined as the ratio between

the time that the processor stays in sleep mode and the active mode within one

period. It is not difficult to see that the smaller the Θ, the larger the throughput.

From the first motivational example above, we can see that the length of overall

idle interval can be reduced by splitting each task into multiple—i.e. m(m > 1)—

sections, and inserting idle intervals in between. In fact, we find that, when the

switching overhead is negligible, the larger the m is, the smaller the overall idle

interval time is needed. The observation is formulated in the following theorem.

Theorem 6.4.1. Given a task τi, a processor with only one active and one sleep

mode, and a maximal temperature constraint Tmax, assume that Tss(i) > Tmax. Let

Θ(m) represents the idle ratio of a feasible schedule when τi is evenly split into m

sections. Then,

• The idle ratio Θ(m) is a monotonically decreasing function of m.

107

• The lower bound of the idle ratio Θmin exists as m approaches to infinity such

that

lim
m−>∞

Θ(m) =
B(i)

Bs

Tss(i)− Tmax
Tmax

. (6.6)

Proof: Assume that when m = 1, to cool down the processor, ts seconds of sleep

period has to be added before τi. To find ts, we first need to find the safe temperature,

i.e. Tsafe(i), of the hot task given the peak temperature limit Tmax. For a given hot

task, the safe temperature is defined such that if the starting temperature is Tsafe,

the ending temperature of the task execution reaches exactly at Tmax. From the

temperature dynamic described in equation (6.5), by letting the ending temperature

Te equal to Tmax, we can solve for T0 to obtain the corresponding safe temperature

of a given task τi,

Tsafe(i) = Tss(i)−
Tss(i)− Tmax

e−B(i)ti
. (6.7)

Once the safe temperature is available, we can calculate how long it takes to stay in

the idle mode to cool down the temperature from Tmax to Tsafe(i). Again, we can

use equation (6.5). This time, the initial and ending temperature are given, the sleep

period ts is the length of the interval that we want to solve,

ts = − 1

Bs

· ln(
Tsafe(i)

Tmax
)

= − 1

Bs

· ln(
Tss(i)− Tss(i)−Tmax

e−B(i)ti

Tmax
). (6.8)

Therefore, the idle ratio of the original task, i.e. when m = 1, can be expressed as

Θ(1) =
ts
ti

= − 1

Bsti
· ln(

Tss(i)− Tss(i)−Tmax
e−B(i)ti

Tmax
). (6.9)

Now, if the execution of τi is evenly split into m sections, we have ti/m seconds

of active period associated with a safe temperature of Tsafe(i,m), which can be

108

calculated as

Tsafe(i,m) = Tss(i)−
Tss(i)− Tmax
e−B(i)

ti
m

. (6.10)

Based on this safe temperature, we only need to insert ts(m) seconds of sleep

period before each active period. Specifically, we have

ts(m) = − 1

Bs

· ln(
Tsafe(i,m)

Tmax
). (6.11)

Now we can formulate the idle ratio Θ as a function of m that

Θ(m) =
ts(m)

ti/m

= − m

Bsti
· ln(

Tsafe(i,m)

Tmax
)

=
1

Bsti
· ln(

Tmax
Tsafe(i,m)

)m. (6.12)

To prove Theorem 6.4.1, we only need to show that the first order derivative of

θ(m) is always less than zero, i.e. dΘ(m)
dm

< 0. Therefore, we have

dΘ(m)

dm
=

1

Bsti
· (Tsafe(i,m)

Tmax
)m

· m(
Tmax

Tsafe(i,m)
)m−1 ·

(−1) · Tmax · dTsafe(i,m)

dm

Tsafe(i,m)2 . (6.13)

On the right-hand-side of equation (6.13), the parameter Bs, ti, m, Tmax, Tsafe are

all greater than zero, therefore the sign of dΘ(m)
dm

depends upon the term
dTsafe(i,m)

dm
.

By observing equation (6.10), it is not difficult to see that the function Tsafe(i,m) is

monotonically increasing with m. The physical meaning of this equation is that with

a larger m (smaller active period), the required safe temperature becomes higher to

109

guarantee the same peak temperature limit. Therefore, we have
dTsafe(i,m)

dm
> 0, thus

dΘ(m)
dm

< 0 and that Θ(m) monotonically decreases with m is proved.

We next find the lower bound of θ(m). As m → ∞, we denote the active time

and sleep time in each division as t′i and t′s, respectively. The corresponding safe

temperature is represented as T ′safe(i). Then, based on equation (6.5), we obtain the

following relationship:

t′s = − 1

Bs

ln(
T ′safe(i)− 0

Tmax − 0
), (6.14)

t′a = − 1

B(i)
ln(

Tmax − Tss(i)
T ′safe(i)− Tss(i)

). (6.15)

Because a shorter active period requires a higher safe temperature, in the extreme

case when m → ∞, we have T ′safe(i) → Tmax . Then, the lower bound of Θ can be

calculated as

Θmin = lim
T ′safe→Tmax

(
1

Bs

ln(
T ′safe(i)

Tmax
))/(

1

B(i)
ln(

Tmax − Tss(i)
T ′safe(i)− Tss(i)

)). (6.16)

Apparently, when T ′safe → Tmax, the above limit calculation involves an indeter-

minate term (0
0

type). Therefore, we apply the l’Hopital’s rule [2] to find the first

order derivative of the numerator and denominator of equation (6.16), respectively.

Then, we have

Θmin = lim
T ′safe→Tmax

(
dt′s

dT ′safe
)/(

dt′a
dT ′safe

)

=
B(i)

Bs

Tss(i)− Tmax
Tmax

. (6.17)

110

Figure 6.3: Illustrate the procedure to find the appropriate number of m for our sleep
time distribution method by considering the non-negligible transition overhead

Hence, Theorem 6.4.1 is proved. 2

Theorem 6.4.1 implies that the smaller we divide a task, the shorter the idle

interval is needed. However, the impact of distributing idle intervals between task

executions eventually can be saturated as we increase the number of m.

Based on the above discussion, in order to maximize the throughput of a processor,

we should divide the execution of task τi into as many sub-intervals as possible.

However, since there exists a lower bound of Θ(m), the benefit of dividing the task

becomes saturated as m increases. Furthermore, as m → ∞, the context switching

overhead cannot be ignored anymore, no matter how small it can be. The question

then becomes how to determine the optimal “m” for each hot task.

Assuming the timing overhead of each context switching is tsw, we derive a method,

i.e. Algorithm 4, to find the optimal sleep distribution pattern. Specifically, we want

to find the optimal number of sub-intervalsmopt and the sleep time in each sub-interval

topts . The procedure is illustrated in Figure 6.3.

Starting from Tmax, the corresponding ending temperature of the sleep period can

be obtained from equation (6.5),

T ′e = Tamb + (Tmax − Tamb)e−Bstsw . (6.18)

111

Based on T ′e, the duration of the subsequent active mode is

t′i = − 1

B(i)
ln(

Tmax − Tss(i)
T ′e − Tss(i)

). (6.19)

Accordingly, we have mopt = b ti
t′i
c (using the floor function to make sure mopt is

an integer). Once mopt is available, the duration of each active sub-interval can be

determined, i.e. ti
mopt

. The ending temperature of the corresponding sleep period can

also be obtained as

Te = Tss(i)−
Tss(i)− Tmax
e
−B(i)

ti
mopt

. (6.20)

Finally, the minimized sleep time per sub-interval topts can be solved from equa-

tion (6.8) by replacing Tsafe(i) with Te in equation (6.20):

topts (i) = − 1

Bs

ln(
Tss(i)(e

−B(i)
ti

mopt − 1)

e
−B(i)

ti
mopt

− 1). (6.21)

The final schedule generated by our method will be topts seconds of sleep period

followed by ti
mopt

seconds of task execution. By repeating this pattern by mopt times,

the latency of task τi can be minimized while the given peak temperature limit Tmax

is guaranteed.

Although Algorithm 4 is targeting at a single task, it is applicable to a task set

consisting of multiple hot tasks, since the optimization procedure can be conducted

on each individual task separately. For a special case that a task set consisting of hot

tasks with homogeneous power, the task set can be considered as a single task with

the execution time texe =
∑
ti, (τi ∈ Γ). The optimal sleep distribution pattern can

be found conveniently by using Algorithm 4.

112

Algorithm 4 Sleep mode distribution for single hot task

1: SleepDistribution(TASK τi)
2: //Set initial value of topts = tsw
3: topts = tsw;
4: //Find the ending temperature of sleep mode
5: T ′e(tsw) = Tamb + (Tmax − Tamb)e−Bstsw ;
6: //Find the execution time of the ensuing active period

7: t′a = − 1
B(i)

ln(Tmax−Tss(i)
T ′e(tsw)−Tss(i));

8: //Find optimum m
9: mopt = b ti

t′a
c;

10: //Find the minimal idle interval per division

11: topts = − 1
Bs
· ln(T ′e

Tmax
);

12: latency = m · topts + ti;
13: return (latency);

6.4.2 Improving Throughput by Task Switching

In this subsection, we extend our discussion to a task set consisting of both hot

and cool tasks. First, let us consider only two tasks, one hot task and one cool

task. Recall that as implied by the second motivational example, dividing both

tasks into m (m > 1) sections, and alternating the execution of both tasks helps

to improve the throughput. However, this method cannot always guarantee that

the entire temperature curve can stay below the temperature threshold. Whether

this task switching scheme work or not depends on the power consumption and the

duration of the cool task and the hot task, respectively. Therefore, in this subsection,

we develop a systematic way to determine whether the task switching scheme can be

applied to a hot/cool task pair, and if yes, how to find the optimal number of task

switching to achieve the maximum throughput.

Given a task pair, i.e. τi and τj (Tss(i) < Tmax < Tss(j)), both τi and τj are equally

divided into m divisions and alternatively executed (with τi first). In this scenario, if

the initial temperature is Tmax, the temperature is first cooled down to certain point

by the cool task. Then it goes up by running the hot task. Note that even we apply

113

the task switching scheme, the peak temperature may still have chance to either stay

below or go above the predefined temperature limit.

In order to determine whether the peak temperature constraint can be satisfied,

we define a term called critical temperature, i.e. Tc, which is the temperature when

completing the first division of τj, i.e. hot task. To determine whether the task pairing

can guarantee the temperature constraint for an arbitrary m, we only need to check

the critical temperature. If Tc > Tmax, then apparently we have temperature limit

violation. In contrast, if Tc ≤ Tmax, we can guarantee that the entire temperature

curve can stay below Tmax for the remaining part of the task execution. This is

because if the initial temperature of the second cool task division, i.e. Tc, is less than

the previous initial temperature Tmax, it results in an even lower starting temperature

for the second hot task division. By repeating this pattern, the entire temperature

curve continues to decrease from Tmax.

In fact, a similar theorem as Theorem 6.4.1 can be established for a task set

consisting both hot and cool tasks.

Theorem 6.4.2. Given

• a task pair, i.e. τi and τj,

• a processor with only one active and one sleep mode,

• a maximal temperature constraint Tmax,

if Tss(i) < Tmax < Tss(j) and both τi and τj are equally divided into m sections and

alternatively executed (with τi first). Then the critical temperature w.r.t different m,

i.e. Tc(i, j,m), is a monotonically decreasing function of m if

m <
B(i)ti

ln(K1

K2
· Tmax−Tss(i)
Tss(j)−Tss(i))

, (6.22)

114

where K1 = B(i)ti +B(j)tj and K2 = B(j)tj.

Proof: To prove Theorem 6.4.2, we need to find the range of m that makes the first

order derivative of Tj(i, j,m) less than zero. Given the initial temperature Tmax, based

on equation (6.5), the ending temperature of task τi after ti
m

seconds of execution can

be expressed as

Ti(i, j,m) = Tss(i) + (Tmax − Tss(i))e−B(i)
ti
m . (6.23)

Similarly, the ending temperature of task τj after
tj
m

seconds can be formulated as

Tc(i, j,m) = Tss(j) + (Ti(i, j,m)− Tss(j))e−B(j)
tj
m . (6.24)

After substituting Ti(i, j,m) with equation (6.23), we have

Tc(i, j,m) = Tss(j) + (Tss(i)− Tss(j))e
−K2
m

+ (Tmax − Tss(i))e
−K1
m . (6.25)

By solving the first order derivative of Tc(i, j,m), we have

dTc(i, j,m)

dm
=

K2

m2
· (Tss(i)− Tss(j))e

−K2
m

+
K1

m2
· (Tmax − Tss(i))e

−K1
m . (6.26)

If we let dTc(i,j,m)
dm

< 0 and solve the inequality, then

115

dTc(i, j,m)

dm
< 0,

K1(Tmax − Tss(i))e
−K1
m < K2(Tss(j)− Tss(i))e

−K2
m ,

K1

K2

· Tmax − Tss(i)
Tss(j)− Tss(i)

< e
B(i)ti
m ,

m <
B(i)ti

ln(K1

K2
· Tmax−Tss(i)
Tss(j)−Tss(i))

. (6.27)

Hence, Theorem 6.4.2 is proved. 2

Theorem 6.4.2 implies that given a cool/hot task pair, one can always try to find

a feasible schedule by increasing m within the bound specified by equation (6.27), or

m1
bound = b B(i)ti

ln(K1

K2
· Tmax−Tss(i)
Tss(j)−Tss(i))

c. (6.28)

Now the problem becomes how to judiciously choose the appropriate m to maxi-

mize the throughput, when the context switching overhead is considered. Note that,

the non-negligible switching overhead also imposes a bound to the choice of m. The

total amount of switching time associated with m task switchings is m · tsw. If the

original idle interval required to cool down a hot task from Tmax to Tsafe is ts, we must

have m · tsw < ts in order to further reduce the latency. Therefore, we set another

bound for m that

m2
bound = b ts

tsw
c. (6.29)

Then, the upper bound of m is defined as

mmax = MIN (m1
bound, m

2
bound). (6.30)

The hot/cool task pairing algorithm is depicted in Algorithm 5. The optimal m

116

can be found by sequentially search from 1 to mmax (among the positive integers). The

searching is stopped as soon as we find an m so that Tc(i, j,m) ≤ Tmax. Note that, if

the ending temperature at m = mmax still cannot satisfy the temperature constraint,

the task switching scheme fails. Thus, we first test if Tc(i, j,mmax) < Tmax, and the

searching process starts only if the result is true.

Algorithm 5 Pairing hot/cool task

1: TaskParing(TASK τi, TASK τj)
2: //Find the upper bound of m
3: mmax = MIN (m1

bound, m
2
bound);

4: //Find the Tc at m = mmax, check constraint
5: if (Tc(i, j,mmax)) ≤ Tmax
6: //Find mopt by sequential search from m = 1
7: for k = 1; k < mmax; k + +
8: if (Tc(i, j, k)) ≤ Tmax
9: //If constraint satisfied, get m

10: mopt = k;
11: Latency = mopt · tsw + ti + tj;
12: return (Latency);
13: endif
14: endfor
15: else return 0

We present the proposed throughput maximization algorithm in Algorithm 6, for

processors with one active and one sleep mode. Our algorithm works as follows:

First, tasks are classified into cool tasks and hot tasks based on their power/thermal

characteristics and the given peak temperature constraint. Then, we put cool tasks

in a queue Qc and sort them in a decreasing order based on the ending temperature

(assuming the execution starts at temperature Tmax). The hot tasks are put in Qh

and sorted in an increasing order based on their safe temperatures. Starting from

the initial temperature Tmax, the task at the beginning of Qh attempts to pair with

the head task in Qc. If this task pairing is feasible, the mopt can be obtained by a

sequential search. The latency of the hot/cool task pair is calculated by TaskParing()

defined in Algorithm 5. Then, both tasks are marked as scheduled and their ending

117

Algorithm 6 Throughput maximization without DVS

1: Input: Γ = {τ1, τ2, ...τn}
2: Initialization: classify all tasks into cool/hot tasks based on Tss;
3: Find Tend for all cool tasks;
4: Find Tsafe for all hot tasks;
5: Sort cool tasks into Qc in decreasing order of Tend;
6: Sort hot tasks into Qh in increasing order of Tsafe;
7: Tini = Tmax;
8: for i=1:length(Qh)
9: for j=1:length(Qc)

10: if (tasks NOT ’scheduled’) && (pairing is feasible)
11: Latency = Latency +TaskParing(Qc[j], Qh[i]);
12: Mark Qc[j] and Qh[i] as ’scheduled’;
13: Update initial temperature: Tini = Tend(i, j,mopt);
14: endif
15: endfor
16: endfor
17: for i=1:length(Qh)
18: if (Qh[i] is not ’scheduled’)
19: Latency = Latency + SleepDistribution(Qh[i]);
20: Mark Qh[i] as ’scheduled’;
21: endfor
22: for i=1:length(Qc)
23: if (Qc[i] is not ’scheduled’)
24: Latency = Latency + tQc[i];
25: Mark Qc[i] as ’scheduled’;
26: endfor
27: Return: (Latency);

118

temperature after mopt times of switching needs to be updated as the new initial

temperature of the next attempted pairing.

To find the ending temperature, we derive a closed-form formula based on [88]. If

there exists mopt times of task switching between τi and τj, the ending temperature

of the schedule can be formulated as

Tend(i, j,m) = Tini +
(Tc(i, j,m)− Tini) · (1−Km

3)

1−K3

, (6.31)

where K3 = e−B(i)
ti
m
−B(j)

tj
m and Tini is the initial temperature of the task pairing

between task i and j. Based on the above equation, the ending temperature after

mopt times of task switching can be obtained by replacing m with mopt.

For a given hot task Qh[i], if the attempted task pairing fails with the pth cool task,

i.e. Qc[p], it is still possible to make a feasible combination with the qth (p 6= q) cool

task, i.e. Qc[q]. Therefore, the hot task is left in the Qh until the end of the iteration

to get chances to be matched with all cool tasks. Finally, after the attempted task

pairing procedure, if there are still tasks left in Qc or Qh, the hot tasks are executed

with SleepDistribution() introduced in Section 6.4.1 and the cool tasks are simply

attached at the end of the final schedule.

6.4.3 Improving Throughput by DVS

In previous discussion, we assume that a processor has only one active mode. In

this subsection, we consider a more complex processor model, i.e. the processor with

N(N > 1) different active modes, and the processor can change its working mode

dynamically. Employing DVS is a double-edged sword in terms of throughput max-

imization. On one hand, reducing the supply voltage slows down the task execution

and reduces the throughput. On the other hand, reducing the supply voltage helps

to reduce the power consumption and thus the thermal pressure. How to make an

119

appropriate trade-off needs careful analysis.

Given a hot task τi, if the execution time at the highest speed level k is ti(k), then

the corresponding execution time at (k − l)th mode is calculated by

ti(k − l) =
fk
fk−l

ti(k), (6.32)

where fk and fk−l are the clock frequencies associated with Vdd level k and k − l,

respectively. From equation (6.8), the required sleep time of task τi under the supply

voltage level k − l can be obtained and expressed as

ts(i, k − l) = − 1

Bs

ln(
Tss(i, k − l)(e−B(i,k−l)·ti(k−l) − 1)

e−B(i,k−l)·ti(k−l)
− 1). (6.33)

Note that if the steady state temperature of task τi at the (k− l)th speed level is

equal to or less than Tmax, then it becomes a cool task and thus ts(i, k − l) = 0.

By combining the actual execution time and the required cooling period, the

overall latency of τi when executed at the speed level k − l is formulated as

t(i, k − l) = ts(i, k − l) + ti(k − l). (6.34)

One straightforward way to determine the optimal speed level of a given task is

to calculate the overall latency of the task under all supply voltage levels. Then, the

speed level that leads to the least latency will be selected as the optimal speed kopt.

In fact, we should also take advantage of the proposed sleep distribution option to

see if we can further improve the throughput. Given a task, we apply Algorithm 7 to

find the optimal speed level in terms of the latency minimization.

In Algorithm 7, given a hot task, we first calculate the overall latency by applying

our sleep distribution method proposed in Section 6.4.1 and the optimal speed level

120

Algorithm 7 Find the optimal speed level for task

1: Calculate-Speed-Opt(TASK τ)
2: //Find total latency by sleep distribution at the Max.Spd
3: Latency[SpdMax− 1]=SleepDistribution(τ);
4: //Optimum speed initially set as the Max.Spd
5: SpdOpt = SpdMax− 1;
6: for L = SpdMax− 2; L >= 0; L−−
7: if Tss > Tmax
8: Latency[L] = SleepDistribution(τ);
9: else

10: Latency[L] = t(τ, L); Eq. 6.34
11: endif
12: if Latency[L] < Latency[L+ 1]
13: SpdOpt = L;
14: endif
15: endfor
16: return (SpOpt);

is initially set as the maximum speed. Then we reduce the speed level one by one

and check if there are improvement in terms of overall latency. Finally, the optimal

speed level is returned after we iterate through all available speed levels. It is worth

to mention that, each time we reduce the speed level, the corresponding steady state

temperature of a given task is evaluated because a hot task might transform into a

cool task. If that is the case, no sleep time is needed and instead, we only need to set

the latency as the actually execution time of the task at that speed level.

6.5 Experimental Results

In this section, we validate the theorems and show the performance of the proposed

approaches through a set of simulations. We again use the processor model introduced

in Chapter 3. The mode switching overhead is assumed to be 5ms [110]. We let the

ambient temperature and the maximal temperature limit to be 25oC and 100oC [119],

respectively unless otherwise specified. Also, for simplicity reason, we assume that

for a given task, the activity factor is equal to its leakage factor.

121

(a) Theorem validation: The execution latency of a task is monotonically
decreased as we increase the number that we divide the task, i.e. m.

(b) Theorem validation: The critical temperature is a monotonically decreas-
ing function of m when m < mbound.

Figure 6.4: Theorem validation

122

(a) Processor without DVS

(b) Processor with DVS

Figure 6.5: Latency comparisons for synthetic task sets of different scheduling ap-
proaches

6.5.1 Theorem Validation

To validate the conclusion drawn in Theorem 6.4.1, we run a hot task τ1 (ti = 300ms,

Tss = 138oC @Vdd = 1.2v). The idle ratio Θ as well as the total sleep time are

plotted in Figure 6.4(a), as we increase m from 1 to mmax. The result conforms

to the conclusion in Theorem 6.4.1 that Θ monotonically decreases with m. When

m = 1 the schedule is identical to the one proposed in [119] that 322ms sleep time

is required to cool down the processor before τ1 starts to run (thus Θ = 1.07). As m

increases, the total sleep time and thus the idle ratio is decreasing and reaches the

minimal at m = mmax = 21. The final latency is 310ms compared with 622ms by

the approach in [119], a 50% reduction is achieved in this example.

123

We next validate Theorem 6.4.2 by running a cool task τ2 (Tss = 81.7oC) followed

by a hot task τ3 (Tss = 115.9oC) without introducing any sleep interval in between.

The execution time of the cool task and hot task are 700ms and 400ms, respectively.

By using the proposed task switching method, the critical temperature, i.e. Tc, is

plotted in Figure 6.4(b). We can see that as m increases from 1 to 30 (an arbitrarily

chosen large number), the critical temperature first drops and then increases steadily.

The upper bound of Tc’s decreasing region is calculated by using equation (6.22), i.e.

7, in this case. Again, the result conforms to Theorem 6.4.2 that Tc is monotonically

decreasing with m when m is less then the bound. From Figure 6.4(b), we can also

see that Tc(2, 3,m) drops drastically at the first a few steps and becomes relatively

stable when m is further increased. It implies that, in this particular case, mopt can

be found within 3 rounds of evaluation (since Tmax = 100oC and Tc(2, 3, 3) < 100oC

).

6.5.2 Latency Minimization for Synthetic Task Sets

In this subsection, we evaluate the performance of the proposed method in terms

of latency minimization. We created 10 representative task sets each consisting of

20 randomly generated tasks with execution time and utility factor µ uniformly dis-

tributed within [100, 1000ms] and [0.4, 1], respectively. Based on our thermal model,

the steady state temperature of these tasks are ranging from 62oC to 145oC. For each

task set, we specify the ratio of the number of cool tasks versus the total number of

tasks (i.e. 20), and vary this ratio from 0 to 0.9 with 0.1 increment.

For a processor without DVS, we compare our approach with a heuristic similar

to the one proposed in [119], i.e. the SEQs method. In this case, we set the processor

to the highest available speed level. We recorded the average total latency achieved

by both methods in each test case and plotted in Figure 6.5(a). We also provide the

124

actual time that the processor spends in task execution as references. As shown in

Figure 6.5(a), the proposed method consistently outperforms the SEQs method in

all test cases. Compared with the SEQs method, on average our method reduces

the latency by 23.3% (up to 35.7%). From Figure 6.5(a), we can see that, in terms

of overall latency reduction, the performance of the proposed approach is relatively

stable compared with the SEQs method, which is sensitive to the amount of cool

tasks available in a given task set. Since in the SEQs method, if the number of cool

tasks are small, one has to insert a large sleep period before each hot task to reduce

the temperature. Under the same circumstance, in contrast, the proposed approach

can rely on sleep distribution to reduce the latency even without cool tasks.

Next, we repeat the entire procedure for a DVS enabled processor and compare

our DVS scheduling approach with the one similar to the SEQd method [119] (a DVS

approach as well). As shown in Figure 6.5(a), the proposed method still achieves much

better performance. Specifically, compared with the SEQd method, on average, our

method reduces the latency and idle time by 5.3% and 46.9%, respectively. We notice

that, given a processor with the DVS capability, the margins of the performance

differences between our approach and the SEQd method are significantly reduced

compared with non-DVS cases. The reason is that, with the support of speed scaling,

the original hot tasks (at the maximal speed) have a great chance to become cool

tasks after speed reduction. As a result, for the SEQd method, instead of inserting

large chunk of sleep period, only a linear increase of overall latency is incurred.

6.5.3 Latency Minimization for Real Benchmarks

In this subsection, we evaluate the performance of the proposed scheduling algorithms

in terms of latency minimization by using real benchmark programs. Specifically, we

choose 12 different benchmark programs (shown in Table 6.1) from MediaBench [3]

125

Table 6.1: Selected benchmark programs and their parameters
Benchmarks Avg.Power(w) Exe.Time(s) Stead State Temp. (oC) Hot or Cool

galgel 52.2 0.046 80.2 Cool
bzip2 52.7 0.037 80.2 Cool
crafty 52.1 0.028 79.1 Cool
gap 55.5 0.04 84.6 Cool
gcc 55.1 0.043 83.5 Cool
mcf 53.5 0.028 81.3 Cool
crc 84.3 0.214 127.9 Hot
dijksstra 76.5 0.136 115.4 Hot
ffti 74.9 0.41 102.7 Hot
gsm 77.8 0.373 116.7 Hot
qsort 76.7 0.475 115.4 Hot

and SPEC2000 benchmark suites [7]. The total execution time of the benchmark are

individually obtained by Simplescalar 1 [6] (at 1.2GHz). We use Wattch [23] to get

the averaged power consumption of each program and then normalize to the highest

one to get the activity factor µ of each task. Then, based on these tasks’ parameters

as well as our system model, we can calculate the steady state temperature of each

individual task and divide them into hot and cool tasks (the temperature limit is

100oC in this experiment).

In our experiment, 6 representative task sets, i.e. T1 − T6, were tested. Specifi-

cally, Task set T1 includes all 12 tasks we selected. Task set T6 contains only the hot

tasks. Task set T2− T5 each consists of 8 tasks with different hot/cool task ratios.

For each task set, the overall latency achieved by using the proposed methods

and the approaches in [119] were collected for a processor with and without DVS

capability. We normalized the overall latency obtained by different methods to the

actual execution time of each individual task set and plotted the results in Figure.

6.5.3.

From Figure 6.5.3, we can see that, the results obtained from real benchmark

1Default configuration was used to setup the processor in our experiment.

126

Table 6.2: Representative task sets consisting of real benchmark programs
Task Set Benchmarks

T1 galgel,bzip2,crafty,gap,gcc,mcf,twolf,crc,dijkstra,ffti,gsm,qsort
T2 bzip2,crafty,gap,crc,dijkstra,ffti,gsm,qsort
T3 galgel,bzip2,crafty,gap,dijkstra,ffti,gsm,qsort
T4 qsort,ffti,dijkstra,bzip2,galgel,gcc,twolf,mcf
T5 ffti,qsort,bzip2,crafty,gap,gcc,mcf,twolf
T6 crc,dijkstra,ffti,gsm,qsort

programs are similar to those of synthetic benchmarks with and without consider-

ing DVS. The proposed algorithms again consistently outperform the base line ap-

proaches, i.e. the SEQs and SEQd method. For non-DVS case, compared with THE

SEQS method, our method reduces the overall latency by 14.4% on average (up to

21% for T6 consisting of all hot tasks). On the other hand, for processor with DVS

capability, our method achieves 3% latency reduction on average.

6.5.4 Feasibility Improvement

We next investigate the performance of the proposed method in terms of feasibility

improvement for a processor without DVS capability. Recall that a task is defined as

infeasible if the required safe temperature is below the ambient temperature. We use

the same parameters to randomly generate task sets without specifying the number

of cool tasks in each task set. Instead, we set the ambient temperature as a variable

and change it from 25oC to 65oC with a step size of 10oC. Under each ambient

temperature condition, we generated 10 task sets each including 100 tasks. The

average feasibility ratio (the number of feasible tasks divided by 100) achieved by the

proposed method and the SEQs method were recorded and plotted in Figure 6.7.

The proposed method completes all tasks without infeasible task and thus improves

the feasibility ratio by 21% on average compared with the SEQs method.

127

(a) Processor without DVS

(b) Processor with DVS

Figure 6.6: Latency comparisons for real benchmarks of different scheduling ap-
proaches

128

Figure 6.7: Feasibility comparisons of different scheduling approaches

6.6 Summary

In this chapter, we study the problem on how to maximize the throughput of a pe-

riodic real-time system under a given peak temperature constraint. We incorporate

the interdependency between the leakage, temperature and supply voltage into anal-

ysis and assume that different tasks in our system may have different power and

thermal characteristics. Two algorithms are presented in this chapter. The first one

is built upon processors that can be either in active or sleep mode. By judiciously

selecting tasks with different thermal characteristics as well as alternating the pro-

cessor active/sleep mode, the sleep period required to cool down a processor is kept

at a near optimum level and as the result, the throughput is maximized. We further

extend this approach for processors with dynamic voltage/frequency scaling (DVS)

capability. Our experiments on large amount of synthetic as well as real benchmark

programs show that the proposed methods not only consistently outperform the ex-

isting approaches in terms of throughput maximization, but also significantly improve

the feasibility of a task set when more stringent temperature constraints are imposed.

129

CHAPTER 7

CONCLUSIONS

In this chapter, we summarize our research presented in this dissertation and discuss

possible future work of this research.

7.1 Concluding Remarks

The continuous shrinking of the semiconductor transistor feature size together with

the increasingly complicated circuit architecture, have resulted in the exponential

increase of power density, which has imposed enormous challenges and threatens

to slow down this progress. The soaring power consumption has posed immediate

challenges for system designers on how to extend the battery life of portable devices

and reduce the energy bills of power-rich systems, respectively.

Moreover, the elevated power consumption directly translates into high system

temperature, which not only increases the packaging and cooling cost, adversely af-

fects the performance but also reduces the lifespan of a system. More importantly, it

increases the temperature-dependent leakage power consumption, which is becoming

one of the major components of the overall power in DSM domain digital integrated

circuits. A vicious circle exists that high power converts to high temperature and

high temperature in turn increases the leakage power. Apparently, power/thermal-

aware design techniques are urgently needed at each design abstraction level. And

the crucial leakage/temperature dependency has to be incorporated into the study.

In this dissertation, we present our research efforts on how to apply the real-

time scheduling techniques to solve various system-level, resource-constrained, design-

optimization problems. We first introduce a set of simple yet effective system-level

models to capture the processor’s thermal dynamic as well as the leakage/temperature

dependency. The linear-approximation leakage power model developed in this re-

130

search helps to greatly simplify the complexity of temperature calculation while

achieves reasonably good accuracy, e.g. 1.3% average relative error for leakage cal-

culation and less than 4.8% relative error when calculating the temperature. Then,

based on these models, we focus on three closely related, but distinctly different prob-

lems: (i) temperature minimization under timing constraint, (ii) energy minimization

under peak temperature constraint, and (iii) throughput maximization under peak

temperature constraint.

Specifically, we first present a novel real-time scheduling scheme, based on an ex-

isting algorithm, the M-Oscillating, that oscillates between the high and low processor

speeds to minimize the peak temperature of a processor when executing a periodic

task set. Different from the original algorithm proposed in [28], in this research, we

incorporate the non-negligible processor mode switching overhead into analysis and

present a fast searching algorithm that can be used to efficiently find the appropriate

number of mode switchings that can lead to the minimized peak temperature.

We next solve the energy minimization scheduling problem based on the M-

Oscillating concept. Specifically, We derived a novel, closed-form energy estimation

method that can be used to accurately and efficiently calculate the energy consump-

tion of a candidate schedule at both the transient and the thermal steady state. Based

on the proposed energy calculation method, we then developed two scheduling tech-

niques, i.e. an off-line method for a periodic task set and an on-line method targeting

at an aperiodic task set, to minimize the overall energy consumption of real-time

systems. Our experimental results show that the proposed energy estimation method

can achieve up to 177X speedup compared with an existing approach [73] while still

maintaining high accuracy (with relative error no more than 4.1%). With a large

number of different test cases, the proposed off-line energy minimization scheduling

method consistently outperforms two existing approaches, e.g. the Naive approach

131

and the Pattern-based approach [110], by 26.5% and 15.3%, respectively. Our on-

line approach, on the other hand, also shows superior performance in terms of over

energy reduction. Compared with the Pattern-based approach and the On-line DVS

approach [64], on average, our method gains 14% and 10% additional energy savings,

respectively. To the best of our knowledge, this is the first thermal-aware scheduling

technique that can guarantee the hard real-time deadlines for an aperiodic task set.

Finally, we study the problem on how to maximize the throughput for a periodic

real-time system under a given peak temperature constraint. We observe that the

overall latency when running a task can be reduced if we split the task execution

and insert the cooling periods in between. Moreover, we notice that by frequently

switching between the execution of tasks with different thermal characteristics, e.g.

hot and cool tasks, the entire temperature curve can be maintained under a predefined

threshold without introducing any cooling period. Based on these observations, we

formally establish and successfully prove two important theorems, which are used to

guide the development of our scheduling algorithms, i.e. one for processors without

DVS capability and the other one for processors with DVS feature. Our experimental

results, based on parameters drawn from the 65nm technology, show that on average

our methods outperform the existing approaches [119] by over 23.3% and 5.3%, for a

processor without and with DVS capability, respectively. Moreover, under different

ambient temperature conditions, the proposed method can guarantee that all task can

be completed without a single occurrence of peak temperature constraint violation.

It is a 21% feasibility improvement over the existing approach [119].

To summarize, in this research, the proposed system-level leakage model and the

energy estimation method are reasonably accurate while achieving significant compu-

tational overhead reduction. Moreover, the performance of the proposed scheduling

techniques consistently outperform a number of recently published existing works.

132

Furthermore, the theoretical study in this dissertation lays a solid foundation for the

guidance of the power/thermal-aware scheduling algorithms development in practical

single and multi-processor platforms.

7.2 Future Work

Our research in this dissertation focuses on a single-core-processor platform. However,

considering the fact that multi-processor architectures are becoming more popular,

especially when the three-dimensional integrated circuit (3D-IC) emerged as a novel

technology [40, 62, 43, 63], it is worth to extend our existing work into the 3D multi-

processor arena.

Advantages of a 3D multi-processor Recently, 3D-IC [71, 121, 75, 122, 104, 35,

105] is emerging as a novel technology that vertically integrates multiple dies with

through-silicon vias (TSVs). The benefits of 3D-IC come from several aspects. 1) Due

to the significantly reduced interconnect length, higher performance can be achieved

with less delay and lower power consumption. 2) The device density is increased with

a smaller footprint/form factor which may also help to improve the manufacturing

yield and devise more cost effective packaging methods. 3) 3D-IC enables hetero-

geneous integration which allows us to integrate components processed by different

technologies into a single system, i.e. integrate a RF die manufactured by low cost

130nm technology with a fast but expensive 45nm logic chip. Considering these ad-

vantages, how to effectively implement 3D-IC is becoming a research hot spot for

both industry and academia.

Challenges in designing a 3D multi-processor As an immediate consequence

of vertically stacking multiple silicon dies, the power density increases by a factor of

133

the number of layers, e.g. the heat fluxes up to 250W/cm2[103]. As we mentioned

before, the high power consumption directly translates into high temperature, which

has many negative effects on a system, e.g. high packaging and cooling cost, reduced

performance, system life span and reliability. In 3D-IC, the temperature issue can

only become worse. It is reported in [74] that for a commercial 65nm dual-core pro-

cessor, the peak temperature of a two-die 3D design can be 18 oC higher than its

2D counterpart. Besides the high power density, the heterogeneity of heat-removing

efficiency at different layers and locations on a 3D-IC also makes the problem com-

plicated. In fact, the layer that is close to the heat sink can remove heat off the

chip more efficiently. Moreover, the unbalanced heat-transfer efficiency also causes

the temperature variation across the chip, which in turn results in thermal stress, hot

spot and reliability degradation.

Evidently, power and thermal issue is one of the major hurdles of implementing

3D-ICs. Therefore, power and thermal-aware design techniques are needed. The OS

level scheduling method, given the fact that it knows the characteristics of both hard-

ware and software, is one of the most effective methods to alleviate the power and

thermal-stress and is worth to be further explored. Despite that there are various

techniques proposed for 2D processors to address the power and thermal issue, e.g.

[52, 27, 119, 38], the heterogeneous cooling efficiency and the heat transfer in the

additional dimension have simply made the existing thermal management techniques

less effective.

Extending our research into 3D To extend our existing work on single-core

platform, the first and most important step is to develop appropriate system models,

especially the thermal and power models, to capture the three dimensional heat flow

and the crucial leakage/temperature dependency. More importantly, the model is

134

required to be simple enough for system-level analysis.

One straightforward way to derive a 3D thermal model is to use our existing results

on single-core platforms. Specifically, we use a pair of RC to model the temperature

dynamic of each individual core and then add the lateral and vertical thermal resis-

tance between processor cores to capture the horizontal and vertical heat transfer.

By doing so, a single linear differential equation (required to describe the thermal dy-

namic of a single-core platform) becomes a group of linear differential equations. The

computational overhead of using this model can be prohibitively expensive when the

number of cores we are trying to model is large, not to mention analytically formu-

lating the temperature change or establishing some theorems to guide the scheduling

algorithm development. Apparently, additional effort must be and worth to be spent

to find efficient ways to model the power consumption and the thermal dynamic of a

3D multi-processor.

This dissertation has built a theoretical foundation to study power/thermal-aware

scheduling problem for single-processor platform. Although 3D multi-processor schedul-

ing is a much more complicated task than its single-core counterpart, we still feel

there are ways to extend our existing work into the 3D arena. For example, the M-

Oscillating in time horizon may be extended to both temporal and spatial oscillation.

135

REFERENCES

[1] Engadget. page http://www.engadget.com.

[2] L’hopital’s rule, http://en.wikipedia.org/wiki/l’h

[3] Mediabench, http://euler.slu.edu/ fritts/mediabench/.

[4] Moore’s law. pages http://en.wikipedia.org/wiki/Moore’s–law.

[5] Round-robin, http://en.wikipedia.org/wiki/round-robin.

[6] Simplescalar, http://www.simplescalar.com.

[7] Spec2000 benchmarks, http://www.spec.org.

[8] Hotspot 4.2 temperature modeling tool. University of Virgina, page
http://lava.cs.virginia.edu/HotSpot, 2009.

[9] Deloitte TMT predictions. page http://www.deloitte.com, 2011.

[10] A. Abdollahi, F. Fallah, and Massoud. Runtime mechanisms for leakage current
reduction in cmos vlsi circuits. In Low Power Electronics and Design, 2002.
ISLPED ’02. Proceedings of the 2002 International Symposium on, pages 213 –
218, 2002.

[11] E. P. Agency. Report to congress on server and data center energy efficiency.
page http://www.energystart.gov, 2006.

[12] AMD. Power and cooling in the data center. page http://enterprise.amd.com,
2007.

[13] F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. Ko, and C. Hu. Dynamic
threshold-voltage mosfet (dtmos) for ultra-low voltage vlsi. IEEE Trans. on
Elec. Dev., 44(3):414–422, Mar 1997.

[14] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and
temperature. Journal of the ACM, 54(1):1–39, 2007.

[15] M. Bao, A. Andrei, P. Eles, and Z. Peng. On-line thermal aware dynamic
voltage scaling for energy optimization with frequency/temperature dependency
consideration. In Design Automation Conference, pages 490–495, 2009.

[16] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware idle time distri-
bution for energy optimization with dynamic voltage scaling. In DATE, pages
21 – 27, 2010.

[17] C. Belady. In the data center, power and cooling costs more than the it equip-
ment it supports. Electronics Cooling, 23(1), 2007.

136

[18] U. Berkley. Bsim3/bsim4. Device Research Group, UC Berkeley, 2008.

[19] S. Borkar. Design challenges of technology scaling. Micro, IEEE, 19(4):23 –29,
jul-aug 1999.

[20] S. Borkar. Thousand core chips: a technology perspective. In DAC, pages
746–749, 2007.

[21] K. G. Brill. The invisible crisis in the data center: The economic meltdown of
moores law. Uptime Institute, 2007.

[22] D. Brooks and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. In HPCA ’01: Proceedings of the 7th Inter-
national Symposium on High-Performance Computer Architecture, page 171,
2001.

[23] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-
level power analysis and optimizations. In ISCA, pages 83–94, 2000.

[24] J. Cadenas, R. Sherratt, P. Huerta, and W.-C. Kao. Parallel pipelined array ar-
chitectures for real-time histogram computation in consumer devices. Consumer
Electronics, IEEE Transactions on, 57(4):1460 –1464, november 2011.

[25] B. H. Calhoun, F. A. Honore, and A. Chandrakasan. Design methodology for
fine-grained leakage control in mtcmos. ISLPED, pages 104–109, 2003.

[26] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling and
assignment for hard real-time applications on mpsocs. In DATE, pages 288–
293, 2008.

[27] T. Chantem, X. S. Hu, and R. Dick. Online work maximization under a peak
temperature constraint. In ISLPED, pages 105–110, 2009.

[28] V. Chaturvedi, H. Huang, and G. Quan. Leakage aware scheduling on maximal
temperature minimization for periodic hard real-time systems. In ICESS, pages
1802–1809.

[29] J. Chen, C. Hung, and T. Kuo. On the minimization fo the instantaneous
temperature for periodic real-time tasks. RTAS, pages 236–248, 2007.

[30] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient schedul-
ing of real-time tasks in multiprocessor systems. In RTAS, pages 408–417, 2006.

[31] J.-J. Chen, S. Wang, and L. Thiele. Proactive speed scheduling for real-time
tasks under thermal constraints. RTAS, 0:141–150, 2009.

[32] M.-S. Chen, K. Shin, and D. Kandlur. Addressing, routing, and broadcasting in
hexagonal mesh multiprocessors. Computers, IEEE Transactions on, 39(1):10
–18, jan 1990.

137

[33] J.-Y. Chung, J. Liu, and K.-J. Lin. Scheduling periodic jobs that allow imprecise
results. Computers, IEEE Transactions on, 39(9):1156 –1174, sep 1990.

[34] A. Cohen, F. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy. On estimat-
ing optimal performance of cpu dynamic thermal management. IEEE Computer
Architecture Letter, 2(1):6–9, 2003.

[35] A. Coskun, J. Ayala, D. Atienza, T. Rosing, and Y. Leblebici. Dynamic thermal
management in 3d multicore architectures. In Design, Automation Test in
Europe Conference Exhibition, 2009. DATE ’09., pages 1410 –1415, april 2009.

[36] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca, R. Chec-
cozzo, and F. Rusina. A real-time service-oriented architecture for industrial
automation. Industrial Informatics, IEEE Transactions on, 5(3):267 –277, aug.
2009.

[37] S. Dash and T. Srikanthan. Modeling rtos components for instruction cache hit
rate estimation. In Circuits and Systems, 2009. ISCAS 2009. IEEE Interna-
tional Symposium on, pages 2978 –2981, may 2009.

[38] J. Donald and M. Martonosi. Techniques for multicore thermal management:
Classification and new exploration. SIGARCH Comput. Archit. News, 34(2):78–
88, 2006.

[39] S. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin. Evaluating run-time tech-
niques for leakage power reduction. VLSID’02, 2002.

[40] P. Falkenstern, Y. Xie, Y.-W. Chang, and Y. Wang. Three-dimensional in-
tegrated circuits (3d ic) floorplan and power/ground network co-synthesis. In
Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific,
pages 169 –174, jan. 2010.

[41] S. Fischmeister, O. Sokolsky, and I. Lee. A verifiable language for program-
ming real-time communication schedules. Computers, IEEE Transactions on,
56(11):1505 –1519, nov. 2007.

[42] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele. Thermal-aware global real-time
scheduling on multicore systems. RTAS, 0:131–140, 2009.

[43] S. Fujita, K. Abe, K. Nomura, S. Yasuda, and T. Tanamoto. Perspectives and
issues in 3d-ic from designers’ point of view. In Circuits and Systems, 2009.
ISCAS 2009. IEEE International Symposium on, pages 73 –76, may 2009.

[44] F. Gao and J. P. Hayes. Exact and heuristic approaches to input vector con-
trol for leakage power reduction. In ICCAD ’04: Proceedings of the 2004
IEEE/ACM International conference on Computer-aided design, pages 527–
532, 2004.

138

[45] A. Gerstlauer, H. Yu, and D. Gajski. Rtos modeling for system level design.
In Design, Automation and Test in Europe Conference and Exhibition, 2003,
pages 130 – 135, 2003.

[46] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Managing the impact of
increasing microprocessor power consumption. Intel Technology Journal, 5(1),
2001.

[47] V. Hanumaiah, R. Rao, S. Vrudhula, and K. S. Chatha. Throughput optimal
task allocation under thermal constraints for multi-core processors. In Pro-
ceedings of the 46th Annual Design Automation Conference, DAC ’09, pages
776–781, New York, NY, USA, 2009. ACM.

[48] V. Hanumaiah, S. Vrudhula, and K. Chatha. Maximizing performance of ther-
mally constrained multi-core processors by dynamic voltage and frequency con-
trol. In Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD
2009. IEEE/ACM International Conference on, pages 310 –313, nov. 2009.

[49] H. Huang and J. Fan. Multicore processor cluster based sleep transistor siz-
ing considering delay profile. In IEEE 8th International Conference on ASIC
(ASICON), 2009.

[50] H. Huang and G. Quan. Leakage aware energy minimization for real-time sys-
tems under the maximum temperature constraint. In DATE, 2011.

[51] H. Huang, G. Quan, and J. Fan. Leakage temperature dependency modeling in
system level analysis. In ISQED, pages 447–452, 2010.

[52] H. Huang, G. Quan, J. Fan, and M. Qiu. Throughput maximization for periodic
real-time systems under the maximal temperature constraint. In DAC, pages
363–368, 2011.

[53] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and
S. Velusam. Compact thermal modeling for temperature-aware design. In DAC,
pages 878–883, 2004.

[54] Y. Hwang, G. Schirner, S. Abdi, and D. Gajski. Accurate timed rtos model for
transaction level modeling. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, pages 1333 –1336, march 2010.

[55] ITRS. International Technology Roadmap for Semiconductors. International
SEMATECH, Austin, TX., http://public.itrs.net/.

[56] R. Jayaseelan and T. Mitra. Temperature aware task sequencing and voltage
scaling. In ICCAD, pages 618 – 623, 2008.

139

[57] R. Jejurikar, C. Pereira, and R. Gupta. Dynamic slack reclamation with pro-
crastination scheduling in real-time embedded systems. DAC, pages 111 – 116,
2005.

[58] S.-O. Jung, K.-W. Kim, and S.-M. Kang. Noise constrained transistor sizing and
power optimization for dual v/sub t/ domino logic. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 10(5):532 –541, oct. 2002.

[59] C. Kim and K. Roy. Dynamic vth scaling scheme for active leakage power
reduction. DATE, pages 163–167, 2002.

[60] P. Kumar and L. Thiele. Cool shapers: Shaping real-time tasks for improved
thermal guarantees. In DAC, pages 468–473, 2011.

[61] P. Kumar and L. Thiele. Thermally optimal stop-go scheduling of task graphs
with real-time constraints. In ASP-DAC, pages 123–128, 2011.

[62] J. Lau. Evolution, challenge, and outlook of tsv, 3d ic integration and 3d sili-
con integration. In Advanced Packaging Materials (APM), 2011 International
Symposium on, pages 462 –488, oct. 2011.

[63] J. H. Lau. Tsv manufacturing yield and hidden costs for 3d ic integration. In
Electronic Components and Technology Conference (ECTC), 2010 Proceedings
60th, pages 1031 –1042, june 2010.

[64] C.-H. Lee and K. Shin. On-line dynamic voltage scaling for hard real-time
systems using the edf algorithm. In Real-Time Systems Symposium, 2004. Pro-
ceedings. 25th IEEE International, pages 319 – 335, 2004.

[65] W. Liao, L. He, and K. Lepak. Temperature and supply voltage aware perfor-
mance and power modeling at microarchitecture level. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(7):1042 – 1053,
2005.

[66] W. Liao, L. He, and K. Lepak. Temperature and supply voltage aware perfor-
mance and power modeling at microarchitecture level. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(7):1042 – 1053,
2005.

[67] C. H. Lim, W. Daasch, and G. Cai. A thermal-aware superscalar microprocessor.
In Quality Electronic Design, 2002. Proceedings. International Symposium on,
pages 517 – 522, 2002.

[68] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20:46–61, January 1973.

[69] S. Liu and M. Qiu. Thermal aware scheduling for peak temperature reduction
with stochastic workloads. RTAS(WiP), 0:53–56, 2010.

140

[70] S. Liu, M. Qiu, W. Gao, X.-J. Tang, and B. Guo. Hybrid of job sequencing and
DVFS for peak temperature reduction with nondeterministic applications. In
ICESS, pages 1780–1787, 2010.

[71] S. Liu, J. Zhang, Q. Wu, and Q. Qiu. Thermal-aware job allocation and schedul-
ing for three dimensional chip multiprocessor. In Quality Electronic Design
(ISQED), 2010 11th International Symposium on, pages 390 –398, march 2010.

[72] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-dependent
integrated circuit leakage power estimation is easy. In DATE, pages 1526–1531,
2007.

[73] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang. Thermal vs energy
optimization for dvfs-enabled processors in embedded systems. In ISQED, pages
204–209, 2007.

[74] G. H. Loh, Y. Xie, and B. Black. Processor design in 3d die-stacking technolo-
gies. Micro, IEEE, 27(3):31 –48, may-june 2007.

[75] C.-L. Lung, Y.-L. Ho, D.-M. Kwai, and S.-C. Chang. Thermal-aware on-line
task allocation for 3d multi-core processor throughput optimization. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, pages 1 –6,
march 2011.

[76] A. Mahajan and D. Teneketzis. Optimal design of sequential real-time com-
munication systems. Information Theory, IEEE Transactions on, 55(11):5317
–5338, nov. 2009.

[77] H. Mahmoodi, V. Tirumalashetty, M. Cooke, and K. Roy. Ultra low-power
clocking scheme using energy recovery and clock gating. Very Large Scale In-
tegration (VLSI) Systems, IEEE Transactions on, 17(1):33 –44, jan. 2009.

[78] J. Markoff. Intel’s big shift after hitting technical wall. New York Times, 2004.

[79] H. Mitra and P. Ramanathan. A genetic approach for scheduling non-
preemptive tasks with precedence and deadline constraints. In System Sci-
ences, 1993, Proceeding of the Twenty-Sixth Hawaii International Conference
on, volume ii, pages 556 –564 vol.2, jan 1993.

[80] K. Mohanram and N. Touba. Lowering power consumption in concurrent check-
ers via input ordering. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 12(11):1234 –1243, nov. 2004.

[81] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling ”cool”:
Temperature-aware resource assignment in data centers. Usenix Annual Tech-
nical Conference, 2005.

141

[82] R. Moraes, F. Vasques, P. Portugal, and J. Fonseca. Vtp-csma: A virtual token
passing approach for real-time communication in ieee 802.11 wireless networks.
Industrial Informatics, IEEE Transactions on, 3(3):215 –224, aug. 2007.

[83] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G. D. Micheli.
Temperature-aware processor frequency assignment for mpsocs using convex
optimization. In CODES+ISSS, pages 111–116, 2007.

[84] M. Pedram and J. M. Rabaey. Power Aware Design Methodolodies. Kluwer
Academic Publishers, 2002.

[85] D.-T. Peng and K. Shin. Static allocation of periodic tasks with precedence
constraints in distributed real-time systems. In Distributed Computing Systems,
1989., 9th International Conference on, pages 190 –198, jun 1989.

[86] R. W. Pike. Optimization for Engineering Systems. Van Nostrand Reinhold
Company, 2001.

[87] R. Prasher, J. Chang, I. Sauciuc, S. Narasimhan, D. chau, G. Chrysler, A. My-
ers, S. Prstic, and C. Hu. Nano and micro technology-based next-generation
package-level cooling solutions. Intel Technology Journal, 9(4), 2005.

[88] G. Quan and V. Chaturvedi. Feasibility analysis for temperature-constraint
hard real-time periodic tasks. IEEE Transaction on Industrial Informatics,
6(3):329–339, 2010.

[89] G. Quan, L. Niu, B. Mochocki, and X. S. Hu. Fixed-priority scheduling for
reducing both the dynamic and leakage energy on variable voltage processors.
International Journal of Embedded Systems, 2008.

[90] G. Quan and Y. Zhang. Leakage aware feasibility analysis for temperature-
constrained hard real-time periodic tasks. ECRTS, pages 207–216, 2009.

[91] G. Quan, Y. Zhang, W. Wiles, and P. Pei. Guaranteed scheduling for repetitive
hard real-time tasks under the maximal temperature constraint. ISSS+CODES,
2008.

[92] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective. Prentice Hall, 2003.

[93] K. Ramamritham, J. Stankovic, and W. Zhao. Distributed scheduling of tasks
with deadlines and resource requirements. Computers, IEEE Transactions on,
38(8):1110 –1123, aug 1989.

[94] R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang. An optimal analytical
solution for processor speed control with thermal constraints. In ISLPED, pages
292–297, 2006.

142

[95] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-meimand. Leakage current mech-
anisms and leakage reduction techniques in deep-submicometer cmos circuits.
Proceedings of the IEEE, 19(2):305–327, February 2003.

[96] M. Santarini. Thermal integrity: A must for low-power ic digital design. EDN,
pages 37–42, 2005.

[97] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst. System
level performance analysis for real-time automotive multicore and network ar-
chitectures. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 28(7):979 –992, july 2009.

[98] K. Shin and P. Ramanathan. Real-time computing: a new discipline of com-
puter science and engineering. Proceedings of the IEEE, 82(1):6 –24, jan 1994.

[99] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw. Duet: An
accurate leakage estimation and optimization tool for dual-vt circuits. IEEE
Trans. on VLSI, 10(2):79–90, April 2002.

[100] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware computer systems: opportunities and challenges.
IEEE Micro, 23(6):52–61, 2003.

[101] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture. ICSA, pages 2–13, 2003.

[102] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture. ICSA, pages 2–13, 2003.

[103] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza. 3d-
ice: Fast compact transient thermal modeling for 3d ics with inter-tier liquid
cooling. In Computer-Aided Design (ICCAD), 2010 IEEE/ACM International
Conference on, pages 463 –470, nov. 2010.

[104] C. Sun, L. Shang, and R. Dick. Three-dimensional multiprocessor system-on-
chip thermal optimization. In Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS), 2007 5th IEEE/ACM/IFIP International Conference on,
pages 117 –122, 30 2007-oct. 3 2007.

[105] K. Torki. Design platform and tools for 3d ic integration. In 3D Systems
Integration Conference (3DIC), 2010 IEEE International, pages 1 –25, nov.
2010.

[106] T.-H. Tsai and Y.-N. Pan. High efficiency architecture design of real-time qfhd
for h.264/avc fast block motion estimation. Circuits and Systems for Video
Technology, IEEE Transactions on, 21(11):1646 –1658, nov. 2011.

143

[107] V. Venkatachalam and M. Franz. Power reduction techniques for microprocessor
systems. ACM Computing Surveys, 37(3):195–237, Sep 2005.

[108] S. Wang and R. Bettati. Reactive speed control in temperature-constrained
real-time systems. ECRTS, pages 161–170, 2006.

[109] P. Weiler, R. Kopp, and R. Dorman. A real-time operating system for manned
spaceflight. Computers, IEEE Transactions on, C-19(5):388 – 398, may 1970.

[110] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo. Energy-efficient real-time
task scheduling with temperature-dependent leakage. In DATE, pages 9–14,
2010.

[111] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin. Dynamic thermal man-
agement through task scheduling. In International Symposium on Performance
Analysis of Systems and Software, pages 191–201, 2008.

[112] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU
energy. In FOCS, pages 374–382, 1995.

[113] L.-T. Yeh and R. C. Chu. Thermal Management of Microelectronic Equipment:
Heat Transfer Theory, Analysis Methods, and Design Practices. ASME Press,
New York, NY, 2002.

[114] I. Yeo, C. C. Liu, and E. J. Kim. Predictive dynamic thermal management for
multicore systems. In DAC, pages 734–739, 2008.

[115] H. Yu, B. Veeravalli, and Y. Ha. Leakage-aware dynamic scheduling for real-
time adaptive applications on multiprocessor systems. In DAC, pages 493–498,
2010.

[116] L. Yuan, S. Leventhal, and G. Qu. Temperature-aware leakage minimization
technique for real-time systems. In ICCAD, pages 761–764, 2006.

[117] L. Yuan and G. Qu. Alt-dvs: Dynamic voltage scaling with awareness of leak-
age and temperature for real-time systems. Adaptive Hardware and Systems,
NASA/ESA Conference on, 0:660–670, 2007.

[118] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature-
aware scheduling problem. In ICCAD, pages 281–288, 2007.

[119] S. Zhang and K. S. Chatha. Thermal aware task sequencing on embedded
processors. In DAC, pages 585 – 590, 2010.

[120] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. Hotleak-
age: a temperature-aware model of subthreshold and gate leakage for architects.
University of Virginia Dept. of Computer Science Technical Report, 2003.

144

[121] X. Zhou, Y. Xu, Y. Du, Y. Zhang, and J. Yang. Thermal management for 3d
processors via task scheduling. In Parallel Processing, 2008. ICPP ’08. 37th
International Conference on, pages 115 –122, sept. 2008.

[122] C. Zhu, Z. Gu, L. Shang, R. Dick, and R. Joseph. Three-dimensional chip-
multiprocessor run-time thermal management. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, 27(8):1479 –1492, aug.
2008.

[123] X. Zhu, S. Han, P.-C. Huang, A. Mok, and D. Chen. Mbstar: A real-time
communication protocol for wireless body area networks. In Real-Time Systems
(ECRTS), 2011 23rd Euromicro Conference on, pages 57 –66, july 2011.

145

VITA

HUANG HUANG

EDUCATION

Ph.D. Candidate in Electrical Engineering 08/2007-Present
Florida International University, Miami, FL
Advisor: Dr. Gang Quan

Bachelor of Science in Electrical Engineering 08/2003-07/2007
Northwest University, Xi’an, China

TEACHING EXPERIENCES

Teaching Assistant Spring 2011
EEE3396 Solid State Devices
Instructor Fall 2010
EEL3712L Logic Design Lab
Lecturer Summer 2009, Fall2009
EEL3003 Electrical Engineering I
Instructor Fall 2007, Spring 2008, Spring 2009
EEL3111L Circuit I Lab

PUBLICATIONS

Journals

J5. H. Huang M. Fan, G. Quan, “Leakage and Temperature Aware Energy Minimization
Scheduling for Hard Real-Time Systems”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems. (under review)

J4. H. Huang, V. Chatervedi, G. Quan, J. Fan, “Throughput Maximization for Periodic
Real-Time Systems under the Maximal Temperature Constraint”, IEEE Transaction on
Very Large Scaled Integrated Circuit. (under review)

J3. H. Huang, V. Chaturvedi, G. Quan, “Leakage Aware Scheduling On Maximum Tem-
perature Minimization For Periodic Hard Real-Time Systems”, Journal of Low Power Elec-
tronics. (under review)

J2. V. Chaturvedi, H. Huang G. Qua, “On the Fundamentals of Leakage Aware Real-Time
DVS Scheduling for Peak Temperature Minimization ” , IEEE Transaction on Industrial
Informatics. (under review)

J1. A. Mullaguru, H. Huang, X. Yuan, J. Fan, “Model Order Reduction via Eigen Decom-
position Analysis”, International Journal of Modeling, Identification and Control (IJMIC),
2009.

146

Refereed Conferences

C7. H. Huang, M. Fan, G. Quan, “On-Line Leakage-Aware Energy Minimization Schedul-
ing for Hard Real-Time Systems”, 17th IEEE Asia and South Pacific Design Automation
Conference (ASP-DAC), pp.677-682, 30 January - 2 February, 2012

C6. H. Huang, G. Quan, J. Fan, M. Qiu, “Throughput Maximization for Periodic Real-
Time Systems under the Maximal Temperature Constraint”, Design Automation Confer-
ence (DAC), 2011 48th ACM/EDAC/IEEE, pp.363-368, 5-9 June, 2011

C5. H. Huang and G. Quan, “Leakage Aware Energy Minimization for Real-Time System
under the Maximal Temperature Constraints”, Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp.1-6, 14-18 March, 2011

C4. V. Chaturvedi, H. Huang, G. Quan, “Leakage Aware Scheduling On Maximal Tem-
perature Minimization For Periodic Hard Real-Time Systems”, Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on, pp.1802-1809, June 29
2010-July 1, 2010

C3. H. Huang, G. Quan, J. Fan, “Leakage Temperature Dependency Modeling in System
Level Analysis”, 2010 11th International Symposium on Quality Electronic Design (ISQED),
pp.447-452, 22-24 March, 2010

C2. H. Huang, J. Fan, “Multi-core Processor Cluster Based Sleep Transistor Sizing Consid-
ering Delay Profile”, IEEE 8th International Conference on ASIC (ASICON), Changsha,
China, October 20-23, 2009.

C1. C. Liu, R. Chen, H. Huang, J. Fan, “Parameterized Interconnect Modeling and Sim-
ulation in VLSI Design Considering Variations”, IEEE 40th Southeastern Symposium on
System Theory (SSST), pp. 225-229, March 17-18, 2008.

147

	Florida International University
	FIU Digital Commons
	3-9-2012

	Power and Thermal Aware Scheduling for Real-time Computing Systems
	Huang Huang
	Recommended Citation

	Power and Thermal Aware Scheduling for Real-time Computing Systems

