
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-30-2012

Estimating the Parameters of the Three-Parameter
Lognormal Distribution
Rodrigo J. Aristizabal
Florida International University, rodrigojr55@hotmail.com

DOI: 10.25148/etd.FI12042308
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Aristizabal, Rodrigo J., "Estimating the Parameters of the Three-Parameter Lognormal Distribution" (2012). FIU Electronic Theses and
Dissertations. 575.
https://digitalcommons.fiu.edu/etd/575

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/575?utm_source=digitalcommons.fiu.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

 

 

 

ESTIMATING THE PARAMETERS OF THE  

THREE-PARAMETER LOGNORMAL DISTRIBUTION 

 

 

A thesis proposal submitted in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

in 

 STATISTICS 

by 

Rodrigo J. Aristizabal 

 

 

2012 



ii 
 

To: Dean Kenneth Furton 
       College of Art and Sciences 
 

This thesis, written by Rodrigo J. Aristizabal, and entitled Estimating the Parameters of 
the Three-Parameter Lognormal Distribution, having been approved in respect to style 
and intellectual content, is referred to you for judgment. 

We have read this thesis and recommend that it be approved. 

 

      ___________________________________ 
                           Florence George 
 
 
 
      ___________________________________ 
                                Gauri L. Ghai 
 
 
 
      ___________________________________ 
              Zhenmin Chen, Major Professor 
 

Date of defense: March 30, 2012 

The Thesis of Rodrigo J. Aristizabal is approved. 

 

               _____________________________________ 
                    Dean Kenneth Furton 
                                                                                                College of Arts and Sciences 
      
 

         _____________________________________ 
                          Dean Lakshmi N. Reddi 
                                                                                                  University Graduate School 
 

       Florida International University, 2012 



iii 
 

DEDICATION 

I dedicate this thesis to my wife, Lilyana, and my two children, Rodrigo and Katherin; 

they have inspired me to serve others. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGMENTS 

I thank God, who gave me the strength and settled everything to accomplish this thesis. 

To him, be the glory forever.  I would like to thank the members of my committee, Dr. 

Zhenmin Chen, Dr. Florence George, and Dr. Gauri Ghai for their support and patience. I 

am especially thankful to my Major Professor, Dr. Zhenmin Chen, for his guidance and 

encouragement. 

I would like to express my gratitude to all other professors in the Department of 

Mathematics and Statistics who have taught me about this wonderful field of science and 

inspired me to teach it.  

I wish to thank to all my friends at FIU for their encouragement and unconditional 

support, especially to my friend Zeyi Wang. 

Finally, I am very grateful to my wonderful wife who has been my companion 

during countless long nights in this journey. 

 

 

 

 

 

 

 

 

 

 



v 
 

ABSTRACT OF THE THESIS 

ESTIMATING THE PARAMETERS OF THE  

THREE-PARAMETER LOGNORMAL DISTRIBUTION 

by 

Rodrigo J. Aristizabal 

Florida International University, 2012 

Miami, Florida 

Professor Zhenmin Chen, Major Professor 

The three-parameter lognormal distribution is widely used in many areas of science. 

Some modifications have been proposed to improve the maximum likelihood estimator. 

In some cases, however, the modified maximum likelihood estimates do not exist or the 

procedure encounters multiple estimates. 

The purpose of this research is focused on estimating the threshold or location parameter

γ , because when γ̂  is known, then the other two estimated parameters are obtained from 

the first two MLE equations. In this research, a method for constructing confidence 

intervals, confidence limits, and point estimator for the threshold parameter γ  is 

proposed. Monte-Carlo simulation, bisection method, and SAS/IML were used to 

accomplish this objective. The bias of the point estimator and mean square error (MSE) 

criteria were used throughout extensive simulation to evaluate the performance of the 

proposed method. The result shows that the proposed method can provide quite accurate 

estimates. 
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1. INTRODUCTION AND BACKGROUD 

1.1 Introduction 

The three-parameter lognormal distribution is a skewed distribution that is useful for 

modeling continuous positive random variables with support set [ߛ,∞ሻ for some ߛ ൒ 0.  
Limpert, Stahel and Abbt (2001) illustrated how the log-normal distributions are 

widespread through the science. In this article they presented a table which summarizes 

some fields where the lognormal distribution is applied: in Geology (Concentration of 

elements Co, Cu, Cr, ,226Ra  Au, and U),  in medicine (latency periods of infectious 

diseases, survival times after cancer diagnosis), in environmental science (rainfall, air 

pollution, the distribution of particles, chemicals and organism in the environment), food 

technology (size of unit), ecology (species abundance), linguistics (length of spoken 

words in phone conversations, length of sentences), social sciences (age of marriage, 

farm size in England and Wales, Incomes), in operation research (time distribution in 

queuing applications), in finance (a long term discount factor), and it has been used in 

other diverse areas of the sciences. They concluded: “We feel that doing so would lead to 

a general preference for the log-normal or multiplicative normal, distribution over the 

Gaussian distribution when describing original data.” 

 Although the lognormal distribution is used for modeling positively skewed data, 

depending on the values of its parameters, the lognormal distribution can have various 

shapes including a bell-curve similar to the normal distribution. The maximum likelihood 

method is the most popular estimation technique for many distributions because it selects 

the values of the distribution’s parameters that give the observed data the greatest 
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probability, and it has been used for estimating the parameters ߤ	݀݊ܽ	ߪ  of the two-

parameter lognormal distribution. The maximum likelihood estimator of the location or 

threshold parameter ߛ for the three-parameter lognormal distribution is the smallest order 

statistic		 ሺܺଵሻ, which is always greater than	ߛ. The inclusion of the third parameter, the 

location parameter  ߛ , may create some trouble in the estimation of the three-parameter 

lognormal distribution.  Some modification has been proposed to improve the maximum 

likelihood estimator, but the iterative procedure that they suggest, for some samples the 

estimates did not exist. This research proposes a new approach for constructing exact 

confidence intervals of the location or threshold parameter	ߛ. 

1.2 Background 

The probability density function of the three-parameter lognormal distribution is  
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where x<≤ γ0 ,   ∞<<∞− μ ,  0>σ .  σμ ,  and γ   are the parameters of the 

distribution. The distribution becomes the two-parameter lognormal distribution when

0=γ . 

The three-parameter lognormal distribution has been studied extensively by Yuan 

(1933), Cohen (1951), Hill (1963), Harter and Moore (1966), Munro and Wixley (1970), 

Giesbrecht and Kempthome (1976), Kane (1978, 1982), Cohen and Whitten (1980, 

1981), Wingo (1984), and Cohen and White and Ding (1985), and by others. In 1933 

Yuan obtained moment estimators of the three parameters of the lognormal distribution 
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by equating the first three sample moments to corresponding population moments and 

used iterative procedure. In 1963 Hill demonstrated that the global maximum likelihood 

led to the inadmissible estimates ߛො=ݔሺଵሻ , ̂ߤ=െ∞ , ߪො=൅∞, regardless of the sample.  The 

solution of the likelihood equation led to local-maximum-likelihood estimates, but in 

some cases the local maximums do not exist. Harter and Moore (1966) proposed an 

interactive procedure for obtaining maximum-likelihood estimates of the parameters 

based on complete, singly censored, and doubly censored samples. Munro and Wixley 

(1970) examined the estimator based on order statistics of small samples from a three-

parameter lognormal distribution. Wingo (1984) suggested an improve algorithm for 

computing local-maximum likelihood estimators (LMLE), which involves only a single 

numerical maximization of a suitably transformed conditional log-likelihood function 

(LLF).  Cohen, Whitten and Ding ( 1985) presented modification of the moment 

estimators (MME)  and modification of the maximum likelihood estimators (MMLE) in 

which the third moment  and the third local maximum likelihood estimating equations 

were respectively replaced by functions of the first order statistic.   

1.3 Research Hypothesis 

In this research, all parameters ( ,μ ,σ and γ ) are assumed to be unknown. Let 

ଵܺ, ܺଶ, ܺଷ, … , ܺ௡  be the observations of a sample from the three-parameter lognormal 

distribution and ሺܺଵሻ, ܺሺଶሻ, ሺܺଷሻ, … , ܺሺ௡ሻ  the corresponding order statistics. Let X = 

( ሺܺଵሻ, ሺܺଶሻ, ܺሺଷሻ, … , ܺሺ௡ሻ  )  a vector that represents a sample from the three-parameter 

lognormal distribution. 
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Our attention is focused on estimating parameter		ߛ, because when ߛො is known, 

then it follows from the first two maximum likelihood estimation equations that 

ߤ̂                ൌ ଵ௡∑ ݈݊ሺ ௜ܺ െ ොሻ௡ଵߛ ,                                                           (1.3.1) 

and                                                    

ොଶߪ                          ൌ ଵ௡∑ ݈݊ଶሺ ௜ܺ െ ොሻߛ െ ቂଵ௡ ∑ ሺ ௜ܺ െ ොሻ௡ଵߛ ቃଶ௡ଵ .                                       (1.3.2) 

In order to find a 1 െ ,ࢄሺߦ ,a pivotal quantity ,ߛ confident interval for the parameter ߙ    ሻ, is defined asߛ
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where ሾ݊ 3⁄ ሿ	  represents the integer part of  ݊ 3⁄ ,ࢄሺߦ  .     ሻ can be rewritten asߛ

                  

( )

[ ]

[ ]

[ ]

( )
[ ]

[ ]
( )

[ ]

[ ]

( )

[ ]

[ ]

[ ]32

)ln(

3

)ln(
3

)ln(

32

)ln(

),( 3

1313

3

1

3

13

nn

x

n

x
n

x

nn

x

nn

ni

i
n

nni

i

n

i

i
nn

ni

i

−

−−

−

−−

−−

−
−

−−

=





−

+=+−=

=

−

+=

σ
μγ

σ
μγ

σ
μγ

σ
μγ

γξ X      .               (1.3.4)    

 



5 
 

Since  ( )
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The pivotal quantity ,ࢄሺߦ		 ሻߛ , as a mathematical function, is strict monotonic 

function of 	ߛ, and as a random variable, the probability distribution of ߦሺࢄ,  ሻ does notߛ

depend on any parameters of the population. Then  ߦሺࢄ,  ሻ has the same probabilityߛ

distribution for all values of	ߛ, ,μ and .σ  

Monte Carlo simulation can be used to find quantiles of  ߦሺࢄ,  ሻ. For fixed valueߛ

of n and		ߙ, we can find numbers  ߦఈ ଶ⁄  and		ߦଵିఈ ଶ⁄  satisfying 

                               ܲ൫ߦఈ ଶ⁄ ൏ ,ࢄሺߦ ሻߛ ൏ ଵିఈߦ ଶ⁄ ൯ ൌ 1 െ  ሺ1.3.6ሻ																																		     ,    ߙ
where 

ఈߦ		 ଶ⁄  represents the empirical ߙ 2⁄  quintile of the random variable ߦሺࢄ,  ሻ.  Theߛ

definition of the		ߙ 2⁄   th quintile of ߦሺࢄ,   ሻ isߛ

                       ܲ൫ߦሺߛሻ ൏ ఈߦ ଶ⁄ ൯ ൌ ߙ 2⁄ 	ܽ݊݀	ܲ൫ߦሺߛሻ ൐ ఈߦ ଶ⁄ ൯ ൌ 1 െ ߙ 2.⁄                ሺ1.3.7ሻ 
               Since 	ߦሺࢄ,  ߛ	 then the confidence interval of ,ߛ	 ሻ is an increasing function ofߛ

can be constructed from the Equations (1.3.8) and (1.3.9), which were obtained from the 

equation (1.3.6).          
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,ࢄሺߦ                                                           ሻߛ ൌ ఈߦ ଶ⁄ 		                                                ሺ1.3.8ሻ 
,܆ሺߦ	                                                        ሻߛ ൌ ଵିఈߦ ଶ⁄       .                                         ሺ1.3.9ሻ 
               Equations (1.3.8) and (1.3.9) can be solved to find  ߛ௅ and  ߛ௎. Both   ߛ௅ and   ߛ௎ must be smaller than ሺܺଵሻ. 

Therefore, the hypothesis for this research is that a table for empirical quantiles of 

the random variable	ߦሺࢄ,  ሻ and the equations (1.3.8) and (1.3.9) can be used to findߛ

confidence interval for the parameter		ߛ. Confidence interval of γ  will be squeezed to 

obtain point estimate of .γ  

1.4 Method and Statistical Analysis 

Monte Carlo simulations will be used to establish the quantiles of the random variable ߦሺࢄ, ሻ for a given sample size n and .αߛ  A large number of pseudo-random samples 

were generated from a normal distribution with parameters 0=μ  and 1=σ .The pseudo 

random sample of size n drawn from the normal distribution N(0,1) will be sorted in 

ascending order, and the value of 	ߦሺࢄ,  ሻ is calculated for each sample using equationߛ

(1.3.5). This procedure is repeated 10,000,000 times for each sample size. Then all 	ߦሺࢄ,   values will be sorted in ascending order to find the percentiles of the pivotal	ሻ	ߛ

quantity for each n. 

In order to use the percentiles or critical values 	ߦఈ ଶ⁄   and ߦଵିఈ ଶ⁄   to find 

confidence interval for 	ߛ	,	it can be shown that ߦሺࢄ,  ሻ is a strictly increasing functionߛ

of	ߛ. 
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 A random sample X  will be drawn from a population that follows a lognormal 

distribution with known parameters	ߛ, and σ	,ߤ  using the following formula in SAS/IML 

γσμ ++= )),0((*exp( nrepeatrannorx . 

The )%1( α−  confidence interval for γ  will be calculated using the critical values  ߦఈ ଶ⁄  

and 	ߦଵିఈ ଶ⁄  for a given n and ߙ using the equations (1.3.8) and (1.3.9). The equations can 

be solved for  ߛ  using the bisection method. 

Statistical simulation will be used to evaluate the performance of the estimation 

method proposed, and the proposed method will be compared with the existing methods 

in the literature.  

 1.5 Two-Parameter Lognormal Distribution Review 

The probability density function (pdf) of the two-parameter lognormal distribution is:  

      ݂ሺݔ; ,ߤ ሻߪ ൌ 	 ଵ௫ఙ√ଶగ ݌ݔ݁ ቄെ ሺ௟௡௫ିఓሻమଶఙమ ቅ ݔ					,	 ൐ 0,					 െ ∞ ൏ ߤ ൏ ߪ				,∞ ൐ 0.								ሺ1.5.1ሻ                      
If X is a random variable that has a log-normal probability distribution, then Y = lnX is 

normally distributed with scale parameters μ  and shape parameter σ , which are the 

mean and standard deviation of the random variable Y = lnX. 

Casella and Berger presented in Statistical Inference (2002) page 81 an interesting 

property of the lognormal distribution that all moments exist and are finite.  The rth 

moment of X about the origin is   

ሺܺ௥ሻܧ                                          ൌ 	 ݁൫௥ఓ	ା	௥మఙమ/ଶ൯																																																												ሺ1.5.2ሻ 
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However, the lognormal distribution does not have a moment generating function. 

The expected value of a random variable X that follows a two-parameter 

lognormal distribution can be calculated using (1.5.2). 

ሺܺሻܧ ൌ ݁൬ఓା	ఙమଶ ൰ 
Using (1.5.2) again to calculate the second moment of X, the variance of X is given by  

ሺܺሻݎܸܽ ൌ ሺܺଶሻܧ െ ሺܧሺܺሻሻଶ 

																											ൌ ݁ଶ൫ఓାఙమ൯ െ ቆ݁൬ఓ	ାఙమଶ ൰ቇଶ 

																		ൌ ݁൫ଶఓାఙమ൯ൣ݁ఙమ െ 1൧. 
 

If the expected value and the variance of X are known, we can obtain equivalent 

expression for the parameters 		ߤ		݀݊ܽ	ߪଶ 

ߤ ൌ ݈݊ሺܧሺܺሻሻ െ 12 ݈݊ ൬1 ൅  ሺܺሻሻଶ൰ܧሺܺሻሺݎܸܽ

ଶߪ ൌ ݈݊ ቀ1 ൅ ௏௔௥ሺ௑ሻሺாሺ௑ሻሻమቁ  . 

The cumulative distribution function of the log-normal distribution (1.5.1) with two 

parameters is  

;ݔ௑ሺܨ ),σμ ; ൌ Φቀ௟௡௫ିఓఙ ቁ	 . 
Since the median of X is such a point where ܨ௑ሺݔ; =),σμ 0.5, then it is not difficult to 

prove that		݊ܽ݅݀݁ܯ	ሺܺሻ ൌ ݁ఓ.  The mode of  X is the point of global maximum of the 
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probability function (1.5.1) which satisfy the equation    . Then the mode 

of X   is  .  The relationship among the mean, the median and the 

mode is 

 

The geometric mean of the two-parameter log-normal distribution is   . 

 

 = Geometric-Mean(X). 

 

 

Figure 1.5.1 Lognormal Density Plots for 0=μ , 0=γ , and some values of .σ  
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An important property of the log-normal distribution is that, for very small values 

of the shape parameter 	ߪ  ሺߪ ൏ 1 3ሻ⁄ , the shape of the lognormal distribution is nearly 

close to a normal distribution. Figure 1.5.1 shows this property. 

The method of maximum likelihood is the most commonly used technique of 

parameter estimation for the two-parameter lognormal distribution, because it finds the 

parameter estimators that make the data “more likely” than any other value of the 

parameter that would make them. The likelihood function of the two-parameter 

lognormal distribution for a given sample is derived by taking the product of the 

probability densities of the individual observations  Xi. 

,ߤሺܮ                                         ሻࢄ|ଶߪ ൌ 	∏ ሾ݂ሺݔ௜|ߤ, ଶሿ௡௜ୀଵߪ  

                                     																								ൌ ଵඥሺଶగఙమሻ೙ ∏ ଵ௫೔ ݌ݔ݁ ቂ∑ ିሺ୪୬ሺ௫೔ሻିఓሻమଶఙమ௡௜ୀଵ ቃ௡௜ୀଵ  

ࣦሺߤ, ሻࢄ|ଶߪ ൌ ݈݊ሾܮሺߤ, ሻሿࢄ|ଶߪ ൌ ݈݊ ൥ 1ඥሺ2ߪߨଶሻ௡ෑ ௜ݔ1 ݌ݔ݁ ൥෍െሺlnሺݔ௜ሻ െ ଶ௡ߪሻଶ2ߤ
௜ୀଵ ൩௡

௜ୀଵ ൩ 

                                                           ൌ െ௡ଶ ݈݊ሺ2ߪߨଶሻ െ ∑ ݈݊ሺݔ௜ሻ௡௜ୀଵ െ ∑ ௟௡ሺ௫೔ሻమ೙೔సభଶఙమ ൅ ∑ ఓ௟௡ሺ௫೔ሻ೙೔సభఙమ െ ௡ఓమଶఙమ	,	 
The values of  ߤ	 and 2σ  that maximize ܮሺߤ, ,ߤሻ also maximize  ࣦሺࢄ|ଶߪ ଶߪ	݀݊ܽ	ߤ		  the maximum likelihood estimators of		ොଶߪ		݀݊ܽ			ොݔ ሻ  .  To findࢄ|ଶߪ , the gradient of ࣦ with 

respect to ߤ	݀݊ܽ	ߪଶ  is calculated, and equate to 0. 

ߤ߲ࣦ߲ ൌ 	∑ ݈݊ሺݔ௜ሻ௡௜ୀଵߪොଶ െ	݊̂ߪߤොଶ ൌ 0 
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→ ߤ̂ ൌ ∑ ݈݊ሺݔ௜ሻ௡௜ୀଵ݊  

ଶߪ߲ࣦ߲ ൌ 	െ 2݊ ොଶߪ1 െ ∑ ሺ݈݊ሺ ௜ܺሻ െ ሻଶ௡௜ୀଵߤ̂ 2 ሺെߪොଶሻିଶ ൌ 0 

ොଶߪ	→ ൌ ∑ ሺlnሺ ௜ܺሻ െ ሻଶ௡௜ୀଵߤ̂ ݊  

 Then, the maximum likelihood estimators for 	ߤ	݀݊ܽ	ߪଶ   are 

ߤ̂                                                                               ൌ ∑ ௟௡ሺ௫೔ሻ೙೔సభ௡ 																																																															ሺ1.5.3ሻ 

ොଶߪ                                         ൌ ∑ ቆ୪୬ሺ௑೔ሻି∑ ೗೙൫೉೔൯೙೔సభ೙ ቇమ೙೔సభ ௡ 									.																																											ሺ1.5.4ሻ 
To verify that these estimators maximize ࣦሺߤ,  ሻ, the second derivative matrix of ࣦ isࢄ|ଶߪ

calculated. 

߲ଶࣦ߲ߤଶ ൌ ߤ߲߲ ቈ∑ ݈݊ሺݔ௜ሻ௡௜ୀଵߪොଶ െ	݊̂ߪߤොଶ቉ ൌ െ  .ොଶߪ݊
߲ଶࣦ߲ሺߪଶሻଶ ൌ ଶߪ߲ࣦ߲ ቈെ 2݊ ොଶߪ1 െ ∑ ሺ݈݊ሺ ௜ܺሻ െ ሻଶ௡௜ୀଵߤ̂ 2 ሺെߪොଶሻିଶ቉ ൌ െ 12ሺߪොଶሻଷ ൥෍൫݈݊ሺ ௜ܺ െ ሻ൯ଶ௡ߤ̂

௜ୀଵ ൩. 
ߤ߲ࣦ߲ ൤ ଶ൨ߪ߲ࣦ߲ ൌ ߤ߲ࣦ߲ ቈെ 2݊ ොଶߪ1 െ ∑ ሺ݈݊ሺ ௜ܺሻ െ ሻଶ௡௜ୀଵߤ̂ 2 ሺെߪොଶሻିଶ቉ ൌ 0. 

ଶߪ߲ࣦ߲ ൤߲ࣦ߲ߤ൨ ൌ ଶߪ߲ࣦ߲ ቈ∑ ݈݊ሺݔ௜ሻ௡௜ୀଵߪොଶ െ	݊̂ߪߤොଶ቉ ൌ 0. 
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The Hessian or second derivative matrix ࣦ is given by 

ܪ ൌ ێێێۏ
ۍ ߲ଶࣦ߲ߤଶ 										 ଶߪ߲ࣦ߲ ൤߲ࣦ߲ߤ൨߲ࣦ߲ߤ ൤ 							ଶ൨ߪ߲ࣦ߲ ߲ଶࣦ߲ሺߪଶሻଶ							ۑۑۑے

ې ൌ ێێێۏ
ۍ െ ොଶߪ݊ 																																													0																											0											 െ 12ሺߪොଶሻଷ ൥෍൫݈݊ሺ ௜ܺ െ ሻ൯ଶ௡ߤ̂

௜ୀଵ ൩							ۑۑۑے
 .ې

The determinant of the Hessian matrix is  

|ܪ| ൌ ݊2ሺߪොଶሻସ ൥෍൫݈݊ሺ ௜ܺ െ ሻ൯ଶ௡ߤ̂
௜ୀଵ ൩ ൐ 0. 

On the other hand for all non-zero vector ܼ ൌ ൤ܼଵܼଶ൨ 
ܼܪ்ܼ                                     ൌ ሾܼଵ			ܼଶሿ ቎ െ ௡ఙෝమ 																																						0																											0				 െ ଵଶሺఙෝమሻయ ቂ∑ ൫݈݊ሺ ௜ܺ െ ሻ൯ଶ௡௜ୀଵߤ̂ ቃ							቏ ൤ܼଵܼଶ൨ 

ܼܪ்ܼ ൌ 	െܼ݊ଵଶߪොଶ െ ܼଶଶ2ሺߪොଶሻଷ ൥෍൫݈݊ሺ ௜ܺ െ ሻ൯ଶ௡ߤ̂
௜ୀଵ ൩ ൏ 0 

ܼܪ்ܼ ൏ 0   because 		݊, ܼଵଶ, ܼଶଶ ∑	݀݊ܽ	ොଶߪ , ൫݈݊ሺ ௜ܺ െ ሻ൯ଶ௡௜ୀଵߤ̂  are all positive .   Since 

|H|>0 and the Hessian is negative-definite, the log-likelihood function ࣦ  and the 

likelihood function L have a local maximum when  ߤ	݀݊ܽ	ߪଶ take the values in equation 

(1.5.3) and (1.5.4) respectively. 
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1.6 Three-Parameter Lognormal Distribution Review 

The probability density function (pdf) of the three-parameter lognormal distribution is:  

                      
( )[ ]

,
2

ln
exp

2)(

1
),,;(

2

2







 −−−

−
=

σ
μγ

πσγ
γσμ x

x
xf                    (1.6.1) 

where 0≥> γx ,   ∞<<∞− μ ,  0>σ ,  and  γ  is the threshold parameter or location 

parameter that defines the point where the support set of the distribution begins; μ is the 

scale parameter that stretch or shrink the distribution and σ  is the shape parameter that 

affects the shape of the distribution. If X is a random variable that has a three-parameter 

log-normal probability distribution, then  )ln( γ−= XY  has a normal distribution with 

mean μ  and variance 2σ . The two-parameter lognormal distribution is a special case of 

the three-parameter lognormal distribution when 0=γ .   

In 1933, Yuan derived the mean, variance, third standard moment (skewness), and 

forth standard moment (kurtosis) of the lognormal distribution as a function of μ , σ  and

γ . 

                                           Mean (X) = E(X) = 







++

2
exp

2σμγ                         (1.6.2) 

                                 Var(X) = ( )( )1)exp(2exp 22 −+ σσμ .                         (1.6.3) 

                               )2)(exp(*1)exp( 22
3 +−= σσα                               (1.6.4) 

                         3)2exp(3)3exp(2)4exp( 222
4 −++= σσσα .                 (1.6.5) 
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 If the expected value and the variance of X are known, we can solve these two equations 

to obtain equivalent expression for the parameters μ 	and 2σ . 

( )( ) ( )
( )( ) 








+−=

2
1ln

2

1
ln

XE
XVarXEμ  

( )
( )( ) 








+=

2
2 1ln

XE
XVarσ  

The cumulative distribution function of the three-parameter log-normal distribution is  

                                              
( ) ( )







 −−Φ=

σ
μγγσμ xxFX

ln
,,;

.
 

The median of X is a value that satisfies the equation ( ) 5.0,,; =γσμxFX  , then  

       0
)ln( =−−

σ
μγx

 

μγ eXMedian +=→ )( . 

The mode of X is the point of global maximum of the probability function (1.6.1) which 

satisfies the equation ( ) .0,,;' =γσμxf  

( ).)(
2σμγ −+= eXMode     

 The relationship among the mean, the median and the mode is 

                                              )()()( XEXMedianXMode << . 
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Estimating the parameters of the three-parameter lognormal distribution is more 

complicated than estimating the parameters of the two-parameter lognormal distribution.  

The likelihood function of the three-parameter lognormal distribution for a given sample 

{ }nxxx ,..., 21=X  is derived by taking the product of the probability densities of the 

individual observations Xi. 

        

[ ]∏
=

=
n

i
ixfXL

1

),,|()|,,( γσμλσμ  

    

( )
( )( )

γσ

μγ
γ

πσ
γσμ >

=

=−∏



















−−

−−






= },...,min{
1

2
1

2

1 .
2

ln

exp..
2

1
)|,,(

ni xx

n

i

n

i
i

i

n

I
x

xXL       (1.6.6) 

If ( ) )|,,(ln(|,, XX γσμγσμ L=L , the values of ,,σμ  and γ   that maximize 

)|,,( XγσμL  also maximize ( )X|,, γσμL . Cohen (1951) obtained local maximum 

likelihood estimators (LMLE) equating the partial derivatives of the log-likelihood to 

zero. Differentiating the log-likelihood function and equating to zero, we obtain the local 

maximum likelihood estimating equations. 

  

( )( )



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=
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−−−−−=

n

i

n

i
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xnnL

1
2

1

2

2
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)ln(2lnln)|,,(ln
σ

μγ
γπσγσμ X  

i)    [ ] 0)ln(
1ln

1
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=−−=
∂
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ix

L μγ
μσμ
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n

x
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i
i

=

−
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)ˆln(
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)7.6.1(  

                

)ii ( )[ ]
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=−−+−=
∂
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0ln
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( )
2

1

2 ˆ)ˆln(
1

ˆ 
=

−−=→
n

i
ixn

μγσ                                                            )8.6.1(                                         

           )iii 0
)ln(11ln

1
2

1

=
−

−−
+

−
=

∂
∂ 

==

n

i i

i
n

i i x
x

x
L

γ
μγ

σγγ              
)9.6.1(  

It can be seen that the maximum likelihood estimator (MLE) of γ  is 

( ).},...,min{ 11 xxx n = Hill (1963) demonstrated the existence of paths along which the 

likelihood function of any ordered sample, ( ) ( ) ,,...,.1 nxx   tends to ∞  as ,(γ  ,μ )2σ  

approach ( ( ) ,1x ,∞− ∞ ). This global maximum thereby leads to the inadmissible 

estimates ( ) ,1X=γ ,αμ −=  and ,2 ασ +=
 regardless of the sample. See Cohen and 

Whitten (1980). However, Cohen found a local maximum likelihood estimate for γ   by 

replacing (1.6.7) and (1.6.8) in the last equation (1.6.9) to obtain an equation inγ . 

( ) ( )( ) ( ) ( )
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
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
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






−  

== ===

n

i i

i
n

i

n

i
i

n

i
ii

n

i i x
xnx

n
xx

x γ
γγγγ

γ
               

                  )10.6.1(  

Equation (1.6.10) can be solved iteratively to obtain the local maximum 

likelihood estimator of γ . Cohen and Whitten (1980) presented a modified maximum 
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likelihood estimator by replacing the third equation (1.6.10) for another equation of  γ  a 

little less complicated; however, when multiple admissible roots occur, Cohen and 

Whitten suggest choosing as LMLE for γ , the root which results in the closest agreement 

between the sample mean x  and )2
ˆˆexp(ˆˆ)(

2σμγμ ++== xXE . 

           In this research, all the parameters σμ ,  and γ , are assumed to be unknown. Our 

attention will be focused on estimating parameter γ  because when γ  is known,  

equations (1.6.7) and (1.6.3) can be used to estimate μ  andσ . The objective of this 

research is to replace the third equation of the maximum likelihood with another equation 

which has only one root for γ . Confidence intervals and one-side confidence limits can 

also be obtained. 

           To find a good estimator and to construct a confidence interval of  γ   is a difficult 

problem. The log-normal pdf’s shape varies from almost symmetric, as an upturned T, to 

highly skewed, as an L. Figure 1.6 shows the diversity of shape of the three-parameter 

log-normal distribution. The shape parameter σ affects the skewness and peakedness of 

the pdf. Equation (1.6.4) and (1.6.5) confirm that the skewnees ( 3α ) and peakedness ( 4α ) 

only depend on σ . On the other hand, when the scale parameter μ  is increased to 8, the 

dispersion of the random variable also increases, but the shape of the pdf does not vary. 

The last two graphs show the same pdf, but with a different scale in the vertical axis. The 

pdf is very close to the horizontal axis, and the value of this pdf function is 0.0022 when 

x=mode. The larger the scale parameter μ , the more spread out the distribution. The 

threshold parameter λ basically shifts the pdf.  
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Figure 1.6 Different shapes of the Three-Parameters Log-Normal Distribution. 
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2. INTERVAL AND POINT ESTIMATION FOR γ  

Let nxxxx ,...,,, 321 be the observations of a sample from a three-parameter lognormal 

distribution and ( ) ( ) ( ) ( )nxxxx ,...,,, 321  the corresponding order statistics. Let 

( ) ( ) ( ) ( )( )nxxxxX ,...,,, 321=  be a vector that represents a sample point of a lognormal 

distributed population. 

2.1 Pivotal Quantity 

As mentioned in Chapter 1, a pivotal quantity ξ can be defined in order to estimate 

parameterγ .                                       
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where [ ]3n represents the integer part of  3n . A random variable 

),,...,,(),( 21 θθ nXXXQQ =X is said to be a pivotal quantity (or pivot) if the distribution 

of ),( θXQ is independent of all parameters. That is, if )|(~ θxX F , then   ),( θXQ has 

the same distribution for all values of  .θ   See G. Casella and R. Berger, Statistical 

Inference (2002). The expression of  ( )γξ ,X  in (2.1.1) can be rewritten as 
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Since  ),(~)ln( 2σμγ Nxi −   then  i
i Zx
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i Z
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=
−−

σ
μγ

 The pivotal quantity ξ can also be express as a function of the 

order statistics,  
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 The pdf of the order statistics ( )iZ  is 

                             ( ) [ ] [ ] in
Z

i
ZZiZ zFzFzf

ini
nzf −− −

−−
= )(1)()(

)!()!1(

!
)( 1                   )3.1.2(  

where  )(zfZ  and )(zFZ  are the pdf and cdf respectively of the standard normal 

distribution which are independent of all parameters. The probability distribution of the 

pivot ξ  does not depend on σμ ,  orγ . 
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Another important property of the pivotal quantity ),( γξ X  is that, for a fix 

sample X , the pivotal quantity ξ  is a strictly increasing function ofγ . This property of 

the pivotal quantity allows us to construct a confident interval forγ . Theoretical proof of 

this property can be obtained, but we will discuss this property in the Section 2.4 using a 

fix sample. 

2.2 Critical Values of ξ  for Any Sample Size n 

It has been shown above that ξ  satisfy the definition of pivotal quantity. Monte Carlo 

simulation method is used to find the critical values of the pivotal quantityξ   for different 

sample sizes from n=5 to n=150. To accomplish this objective, 10,000,000 pseudo-

samples of size n were generated each time from a log-normal distributed population. 

Since the critical values of ξ   and its probability distribution does not depend on any 

parameters, the following parameter combination ,0=μ  ,1=σ and 0=γ  was used in 

order to simplify the computation. Each pseudo-sample was sorted in ascending order, 

and ),( γξ X was calculated for each sample using Equation (2.1.1). Then, 10,000,000 

pivotal quantities ξ  were obtained and sorted in ascending order. The following 

percentiles of ξ were calculated  

    .,,,,,,,,,,,, 99.0975.095.090.075.070.050.030.025.010.005.0025.001.0 ξξξξξξξξξξξξξ  
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The critical values of ξ  were calculated as 

                
( ) ( )

[ ]( ) [ ]( )

2

2 2 2 1

if 2  is an integer

otherwise
2
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m m
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α α ε

ξ α
ξ ξ ξ+ +
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= 
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  
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(1 2)

1 2 (1 2) (1 2) 1
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otherwise
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−
= 



 

  This procedure was repeated for each size n of samples. Table (2.2.) shows the critical 

values of ξ  for sample sizes from n = 5 to n = 150. 

Table 2.2  Critical Values for the Pivotal Quantity .ξ  

n 
 

005.0ξ  01.0ξ  025.0ξ  05.0ξ  50.0ξ  95.0ξ  975.0ξ  99.0ξ  995.0ξ  

5 0.122 0.156 0.219 0.288 1.000 3.471 4.562 6.410 8.210

6 0.119 0.153 0.216 0.286 1.000 3.498 4.621 6.540 8.435

7 0.176 0.215 0.283 0.353 1.000 2.834 3.539 4.656 5.677

8 0.222 0.262 0.330 0.399 1.000 2.502 3.027 3.818 4.506

9 0.218 0.258 0.326 0.396 1.000 2.524 3.063 3.877 4.593

10 0.258 0.298 0.366 0.435 1.000 2.297 2.724 3.347 3.876

11 0.290 0.330 0.399 0.466 1.000 2.147 2.508 3.020 3.446

12 0.287 0.327 0.396 0.463 1.000 2.162 2.528 3.054 3.488

13 0.315 0.356 0.424 0.490 1.000 2.043 2.360 2.802 3.162

14 0.341 0.382 0.448 0.512 1.000 1.954 2.234 2.621 2.930

15 0.338 0.378 0.444 0.509 1.000 1.964 2.249 2.643 2.958

16 0.361 0.401 0.466 0.529 1.000 1.889 2.145 2.495 2.776

17 0.381 0.420 0.485 0.547 1.000 1.829 2.061 2.378 2.627

18 0.378 0.418 0.482 0.544 1.000 1.838 2.075 2.395 2.646
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Table 2.2  Critical Values for the Pivotal Quantity .ξ  

n 
 

005.0ξ  01.0ξ  025.0ξ  05.0ξ  50.0ξ  95.0ξ  975.0ξ  99.0ξ  995.0ξ  

19 0.396 0.436 0.499 0.560 1.000 1.785 2.002 2.295 2.521

20 0.413 0.452 0.515 0.574 1.000 1.741 1.943 2.211 2.419

21 0.411 0.450 0.512 0.572 1.000 1.748 1.952 2.225 2.436

22 0.426 0.464 0.526 0.585 1.000 1.709 1.900 2.152 2.348

23 0.440 0.478 0.539 0.597 1.000 1.676 1.855 2.091 2.273

24 0.438 0.476 0.537 0.595 1.000 1.681 1.861 2.100 2.281

25 0.451 0.489 0.549 0.606 1.000 1.650 1.821 2.045 2.217

26 0.464 0.501 0.560 0.616 1.000 1.623 1.785 1.996 2.157

27 0.461 0.499 0.558 0.614 1.000 1.628 1.791 2.004 2.165

28 0.473 0.510 0.569 0.624 1.000 1.603 1.758 1.962 2.115

29 0.484 0.520 0.578 0.632 1.000 1.580 1.729 1.920 2.066

30 0.482 0.518 0.577 0.631 1.000 1.585 1.735 1.928 2.074

31 0.493 0.529 0.586 0.639 1.000 1.565 1.707 1.892 2.031

32 0.502 0.537 0.594 0.647 1.000 1.546 1.683 1.860 1.993

33 0.500 0.536 0.593 0.645 1.000 1.550 1.688 1.867 2.001

34 0.509 0.545 0.601 0.653 1.000 1.532 1.665 1.836 1.964

35 0.518 0.553 0.608 0.660 1.000 1.517 1.645 1.809 1.932

36 0.515 0.551 0.607 0.658 1.000 1.519 1.648 1.814 1.938

37 0.524 0.559 0.614 0.665 1.000 1.505 1.629 1.789 1.907

38 0.532 0.567 0.621 0.671 1.000 1.491 1.611 1.765 1.881

39 0.531 0.565 0.619 0.669 1.000 1.493 1.614 1.769 1.885

40 0.538 0.572 0.626 0.676 1.000 1.481 1.598 1.748 1.858

41 0.545 0.579 0.632 0.681 1.000 1.468 1.582 1.727 1.834

42 0.544 0.577 0.631 0.680 1.000 1.471 1.586 1.732 1.840

43 0.550 0.584 0.637 0.685 1.000 1.460 1.571 1.712 1.815

44 0.557 0.590 0.642 0.690 1.000 1.449 1.557 1.695 1.796

45 0.556 0.589 0.641 0.689 1.000 1.451 1.560 1.699 1.799

46 0.562 0.595 0.647 0.694 1.000 1.441 1.547 1.682 1.780
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Table 2.2  Critical Values for the Pivotal Quantity .ξ  

n 
 

005.0ξ  01.0ξ  025.0ξ  05.0ξ  50.0ξ  95.0ξ  975.0ξ  99.0ξ  995.0ξ  

47 0.568 0.601 0.652 0.699 1.000 1.432 1.535 1.665 1.761

48 0.567 0.599 0.650 0.698 1.000 1.433 1.537 1.668 1.765

49 0.572 0.605 0.656 0.702 1.000 1.424 1.526 1.653 1.747

50 0.578 0.610 0.660 0.706 1.000 1.416 1.515 1.639 1.730

55 0.591 0.623 0.672 0.716 1.000 1.396 1.489 1.606 1.691

60 0.603 0.634 0.682 0.725 1.000 1.378 1.466 1.577 1.657

65 0.619 0.649 0.695 0.737 1.000 1.356 1.439 1.542 1.617

70 0.629 0.658 0.703 0.745 1.000 1.343 1.422 1.520 1.591

75 0.638 0.667 0.711 0.751 1.000 1.331 1.407 1.501 1.569

80 0.650 0.678 0.721 0.760 1.000 1.316 1.388 1.477 1.541

85 0.657 0.685 0.727 0.765 1.000 1.307 1.376 1.462 1.524

90 0.664 0.691 0.733 0.771 1.000 1.298 1.365 1.448 1.508

95 0.674 0.700 0.741 0.777 1.000 1.287 1.351 1.430 1.487

100 0.680 0.706 0.746 0.782 1.000 1.280 1.342 1.419 1.474

110 0.693 0.718 0.757 0.792 1.000 1.264 1.322 1.394 1.446

120 0.702 0.727 0.765 0.798 1.000 1.253 1.309 1.377 1.425

130 0.713 0.737 0.773 0.806 1.000 1.241 1.294 1.358 1.404

140 0.723 0.746 0.781 0.813 1.000 1.231 1.281 1.342 1.386

150 0.730 0.752 0.787 0.818 1.000 1.223 1.272 1.331 1.372

 

2.3 ),( γξ X As an Increasing Function of γ  

The method of finding confident interval for γ  using a pivotal quantity is possible only if 

the pivotal quantity ),( γξ X  is a strictly monotonic function of .γ  It can be shown that 

the pivotal quantity function  
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is a strictly increasing function of γ  when we fix the sample X .  

Pivotal quantity ξ  increase infinitely when γ  approaches from the left to the first 

order statistic ( )1X . In fact, the numerator of ),( γξ X  contains a term that has the form 

( ) )][ln( 1 γ−− X
   

then  
( )

( )
1

lim ,
X

X
γ

ξ γ
−→

= ∞  .                  

On the other hand, the pivotal quantity ),( γξ X  reaches its minimum value when 

γ  approaches from the right to its minimum value 0 ( )( )10 X<< γ . 
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Since ),( γξ X  is independent of all parameters, we can select the fix sampleX  

from a lognormal distributed population with any combination of parameters μ ,σ  and .γ  

A sample of 30 observations was generated from a lognormal distribution with 

parameters ,4=μ ,2=σ and 100=γ , and its data are listed below. 

 Table 2.3.1 Sample from a Lognormal Distribution ,4( =μ ,2=σ and ).100=γ  

 

 

The first order statistic of the sample is ( ) 207.1001 =X  and the 30th order statistic 

is ( ) 333.125030 =X . The minimum value for ),( γξ X  is              
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 We can graph the pivotal quantity ),( γξ X  versus γ  using the data of this 

example. The results are presented in Table 2.3.2 and in Figure 2.3. 

 

 

100.207 116.143 153.838 239.768 566.972 

102.256 118.922 162.861 287.369 629.204 

103.724 120.047 164.751 326.786 643.492 

105.271 128.778 165.674 425.179 692.266 

105.358 136.122 166.460 548.583 1063.562 

110.966 144.123 201.961 551.102 1250.333 
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Table 2.3.2 Values of ξ  for a fix sample when γ  increase from 0 to ( ).1X   

γ   ξ      γ        ξ     γ        ξ             γ        ξ  
0 0.375 36 0.443 72 0.593 100.15000 1.324 
3 0.377 39 0.451 75 0.616 100.20000 1.436 
6 0.382 42 0.460 78 0.641 100.20300 1.467 
9 0.387 45 0.469 81 0.670 100.20600 1.555 
12 0.392 48 0.479 84 0.704 100.20660 1.697 
15 0.397 51 0.489 87 0.744 100.20663 1.767 
18 0.402 54 0.500 90 0.795 100.206639 1.885 
21 0.408 57 0.512 93 0.860 100.2066399 2.002 
24 0.414 60 0.526 96 0.951 100.20663999 2.120 
27 0.420 63 0.540 99 1.112 

30 0.427 66 0.556 100 1.246 

33 0.434 69 0.574 100.1 1.289 

 

 

Figure 2.3 Graphic of ξ  as a strictly increasing function of γ . 
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 We can find through Table 2.3.1 and Figure 2.3 that ),( γξ X  is  a strictly  

increasing function of γ . Additionally we can verify the tendency of ),( γξ X  when γ  

approaches to its boundaries 0  and ( ) 20664.1001 =X  

                 3751.0),(lim min
0

==
+→

ξγξγ X       and     
( )

∞=
−→

),(lim
1

γξ
γ

X
X

               . 

When γ  is very close to the first order statistic ( )1X , the graph of the pivotal quantity 

),( γξ X  is almost a vertical line. 

 Since pivotal quantity ),( γξ X is a strictly increasing function of γ , we can 

construct the confident interval for γ  . 

2.4 Confidence Interval for the Parameter γ  

For a given sample size n and confidence level α−1  we can find corresponding critical 

values 2αξ  and 21 αξ −  .  

αξγξξ αα −=<< − 1)),(( 212 XP . 

We are %100)1( α−  confident that the true value of ),( γξ X  is at least 2αξ but not 

greater than 21 αξ − .  Since ),( γξ X  is a strictly increasing function of γ , we can obtain a 

%100)1( α−  confident interval for γ ,which has the form 

                                               ).,(),( 212 αα ξγξ −<< XX UL
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 Here LL γξα =),( 2X  and UU γξ α =− ),( 21X  are the lower and upper confident limits for 

γ  . In fact, Lγ  and  Uγ  are the solutions of the equations 
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and 
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               Equations (2.4.1) and (2.4.2) can be solved to find  Lγ  and Uγ . Both, the lower 

and upper confident limits of γ  must be smaller than	 ሺܺଵሻ, since the first order statistic of 

the random variable X is greater than the threshold parameterγ .  

 Now, we can calculate the confidence interval of γ  for the random sample 

presented in Section 2.3 using the Equations 2.4.1 and 2.4.2. To solve these equations, 

the bisection method and SAS/IML was used. We can solve the Equations 2.4.1 and 2.4.2 

because minξ  is smaller than the critical values of ξ .  



34 
 

                   025.0min 577.03751.0 ξξ =<=     and   975.0min 735.13751.0 ξξ =<= . 

 The 95% confident interval for γ , obtained using SAS/IML and the bisection method, is 

                 (69.5083 , 100.2066). 

If  minξ  (2.3.1) is greater than 2αξ  or 21 αξ − , then Equations (2.4.1) or (2.4.2) 

cannot be solved, and two-side confidence interval for γ cannot be constructed in those 

cases.  

2.5 Upper Confidence Limit for the Parameter γ  

It was mentioned above that if minξ  is greater than 2αξ  or 21 αξ − , then Equations (2.4.1) 

or (2.4.2) have no solution in the interval ( ) ),0[ 1X . Monte Carlo simulation and 

SAS/IML were used to estimate the percentage of samples for which we cannot calculate 

the upper and lower confidence limits. For several sample sizes n, 1,000,000 samples 

were generated from a lognormal distribution with parameters ( ,2=μ ,4=σ and 10=γ ). 

 It was found that the lower confidence limit cannot be calculated for more than 

1% of the samples when n is smaller than 30; in contrast, the upper confidence limit can 

be calculated for more than  99% %)99.01( − of the sample when n is greater than 7. The 

results were tabulated in Table 2.5.1. 

Since the two-side confidence cannot always be constructed, a one-side upper 

confidence limit of  γ  is recommended. In fact, the proposed method is good for finding 

upper confidence limits of γ , not for lower confidence limits. 
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Table 2.5.1 Percentage of Samples from a Lognormal Distribution for which the 

Confidence Limits cannot be calculated. 

 N Replications   μ  σ    γ  %No Low %No Up 
50 1000000 2 4 10 0.11% 0.00% 
40 1000000 2 4 10 0.34% 0.00% 
33 1000000 2 4 10 0.77% 0.00% 
30 1000000 2 4 10 1.08% 0.00% 
20 1000000 2 4 10 2.83% 0.00% 
15 1000000 2 4 10 6.05% 0.03% 
10 1000000 2 4 10 10.89% 0.20% 
8 1000000 2 4 10 14.00% 0.39% 
7 1000000 2 4 10 17.10% 0.99% 
6 1000000 2 4 10 21.42% 2.15% 
5 1000000 2 4 10 24.52% 2.56% 

 

2.6 Point Estimator of the Parameter  γ  

The point estimator of the threshold or location parameter γ  can be obtained by 

squeezing the confidence interval described in the Section 2.4. A significance level 

%100=α  produces 0% confidence interval which is a point estimator of the median of 

γ  because 50.0212 γγγ αα == − . 

The pivotal quantity ),( γξ X can be calculated as a function of γ  using (2.1.1) for 

each sample. The critical value 50.0ξ  corresponding to the sample size n can be found in 

Table 2.3.1. Then, the threshold parameter γ  can be estimated by solving the Equation  
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)1.6.2(  

    

The proposed method can be illustrated using the example considered in a 

previous study by Cohen and Whitten (1980). The data set consists of 20 observations 

from a population with ),50ln(=μ   ,40.0=σ and 100=γ . The sample data are listed in 

the Table 2.6.1. 

Table 2.6.1 Random Sample from a Lognormal Distribution ( ),50ln(=μ   ,40.0=σ and

100=γ ). 

148.290 144.328 174.800 1687.554 

184.101 166.475 131.375 145.788 

135.880 137.338 164.304 155.369 

127.211 132.971 128.709 201.415 

133.143 155.680 153.070 157.238 

 

Summary statistics of this data set are: 302.152=x , 954.19=s , median=150.68 , 

( ) 2112.1271 =x , ( ) 4125.20120 =x , 781.0min =ξ . The critical values of the pivotal 

quantity when n=20 are 515.0025.0 =ξ  , 00.150.0 =ξ , and 943.1975.0 =ξ .  
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Using SAS/IML and the bisection method, Equations 2.4.1, 2.4.2 and 2.6.1 can be 

solved. In this case, the lower confidence limit cannot be found because Equation 2.4.1 

has no solution in the interval [0, 127.211). The upper confidence limit of γ  is 125.427 

and the point estimate of γ  is 758.94=γ . 

Table 2.6.2 summarizes the point estimates obtained for 14 different methods 

mentioned by Cohen and Witten in their article. The estimate, obtained by the proposed 

method, is among the three best estimates. 

Table 2.6.2 Summary of Estimates of 14 different methods 

Method Estimator γ̂  Bias of γ̂  

Maximum Likelihood Estimator 127.2112 27.2112 

Local Maximum Likelihood Estimator 117.7206 17.7206 

Modified Maximum Likelihood Estimator I1 107.0445 7.0445 

Modified Maximum Likelihood Estimator I2 19.1641 -80.8359 

Modified Maximum Likelihood Estimator I3 126.477 26.4777 

Modified Maximum Likelihood Estimator II1 118.0314 18.0314 

Modified Maximum Likelihood Estimator II2 86.8243 -13.1757 

Modified Maximum Likelihood Estimator II3 125.9937 25.9937 

Moment Estimator 70.70367 -29.2933 

Modified Moment Estimator I1 105.1667 5.1667 

Modified Moment Estimator I2 75.9154 -24.0846 

Modified Moment Estimator I3 -0.7037 -100.7037 

Modified Moment Estimator II1 112.5581 12.5581 

Modified Moment Estimator II2 96.0955 -3.9045 

Modified Moment Estimator II3 82.2976 -17.7024 

Pivotal Quantity Method (Proposed) 94.7580 -5.2420 

Population 100  



38 
 

3. SIMULATION RESULTS AND DISCUSSION 

The performance of the proposed method to estimate the threshold parameter γ  is 

evaluated using the Mean Square Error (MSE) criteria. Monte Carlo simulation was used 

to generate r samples from a three-parameter lognormal distribution and γ  was estimated 

for each sample using the procedure described above.  

If kγγγ 
,...,, 21  are point estimates of γ  obtained from the k samples, the estimates 

of the mean, the variance, and the MSE of the random variable γ are 
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where γ  is the true value of the threshold parameter and k is the number of samples with 

size n taken from the population. The bias of the point estimator γ is the difference 

between the expected value of  γ  and the parameter .γ  
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Statistical simulation was conducted to investigate the effect of different sample 

sizes on the performance of the method proposed in this research, and it was compared 

with the performance of the MLE method. It was mentioned, in Section 1.6, that the MLE 

estimator of γ  is the first order statistic ( )1x . Monte Carlo simulation and SAS/IML were 

used to generate 1,000,000 samples for each sample size n considered from a population 

with parameters ,1=μ ,1=σ and 10=γ . The pdf of this population is presented in Figure 

3.1. 

Figure 3.1 Pdf of the Population with Parameters ,1=μ ,1=σ and 10=γ . 

mu  sig gam mode median mean Skewness Kurtosis 
1 1 10 11 12.72 1.45E+01 6.18 113.94 

 

 The mean, the variance, the MSE, and the bias for γ̂  were calculated for 

several sample sizes n using both methods. The proposed method has smaller bias, even 

for small samples. When n is 200 or bigger, the MSE of the proposed method is better 

than MLE method. Table 3.1 shows the results. 
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Table 3.1 Effect of n on the Performance of MLE Method and Proposed Method 
 

PARAMETERS MLE PROPOSED 

N K μ  σ  γ      γμ ˆˆ  
BIAS  
( )γ̂  

MSE  

( γ̂ )     γμ ˆˆ  
BIAS     
( )γ̂  

MSE  

( γ̂ ) 

500 1000000 1 1 10 10.14 0.14 0.02 9.98 -0.01 0.01 
200 1000000 1 1 10 10.19 0.19 0.04 9.96 -0.04 0.04 
100 1000000 1 1 10 10.24 0.24 0.07 9.93 -0.07 0.09 

50 1000000 1 1 10 10.32 0.32 0.12 9.87 -0.13 0.30 

40 1000000 1 1 10 10.35 0.35 0.14 9.82 -0.18 0.48 

30 1000000 1 1 10 10.39 0.39 0.19 9.75 -0.25 0.90 

20 1000000 1 1 10 10.48 0.48 0.28 9.66 -0.34 1.56 

15 1000000 1 1 10 10.55 0.55 0.39 9.56 -0.44 2.44 

10 1000000 1 1 10 10.69 0.69 0.62 9.53 -0.47 3.22 

7 1000000 1 1 10 10.84 0.84 0.98 9.60 -0.40 3.81 

5 1000000 1 1 10 11.05 1.05 1.60 9.79 -0.21 4.24 

 

When the shape parameter  σ  increases, the skewness and the kurtosis of the distribution 

also increase. The skewness measures the lack of symmetry of the pdf and the kurtosis 

measures the peakedness and heaviness of the tail of the pdf. The proposed method 

performs better than MLE method when the data shows low skew and no heavy tail; this 

occurs when the pdf looks more like a normal distribution. However, the MLE method 

performs better when the data shows high skewness and heavy tail or the pdf looks like 

an L-shape. Table 3.2 shows the effect of σ (shape parameter) on the performance of the 

two methods. 

When scale parameter μ  increases, the dispersion of three-parameter lognormal 

random variable increases. The proposed method performs better than MLE when the 

data is more dispersed. When 8=μ , the MSE of MLE method is 12,439,494 and the 
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estimate of γ  is 3,210, which is 321 times bigger than the real parameter. Table 3.3 

shows the results. 

Table 3.2 Effect of the Shape Parameter σ on the Performance of the MLE and 
Proposed Method. 
 

PARAMETERS MLE PROPOSED 

N k μ  σ  γ  γμ ˆ  
BIAS 

  ( )γ̂  
MSE 

( γ̂ ) γμ ˆˆ  
BIAS 

( )γ̂  
MSE 

( γ̂ ) 

30 1000000 1 0.1 10 12.22 2.22 4.93 10.62 0.62 4.69 

30 1000000 1 0.5 10 11.01 1.01 1.07 9.51 -0.49 3.33 

30 1000000 1 1 10 10.39 0.39 0.19 9.75 -0.25 0.90 

30 1000000 1 2 10 10.07 0.07 0.01 9.90 -0.10 0.12 

30 1000000 1 4 10 10.00 0.00 0.00 9.97 -0.03 0.02 

30 1000000 1 8 10 10.00 0.00 0.00 9.99 -0.01 0.01 

30 1000000 1 10 10 10.00 0.00 0.00 10.00 0.00 0.01 

 

Table 3.3 Effect of the Scale Parameter μ on the Performance of the Two Methods. 
 

PARAMETERS MLE PROPOSED 

n k μ  σ  γ      γμ ˆˆ  
BIAS  
( )γ̂  

MSE  

( γ̂ ) 
    γμ ˆˆ  

BIAS    
 ( )γ̂  

MSE  

( γ̂ ) 

30 1000000 0 1 10 10.15 0.15 0.03 9.90 -0.10 0.19 

30 1000000 0.5 1 10 10.24 0.24 0.07 9.83 -0.17 0.42 

30 1000000 1 1 10 10.39 0.39 0.19 9.75 -0.25 0.90 

30 1000000 1.5 1 10 10.65 0.65 0.51 9.63 -0.37 1.88 

30 1000000 2 1 10 11.07 1.07 1.40 9.50 -0.50 5.18 

30 1000000 4 1 10 17.92 7.92 76.31 11.99 1.99 36.29 

30 1000000 6 1 10 442.99 432.99 227765.42 45.10 35.10 2076.18 

30 1000000 8 1 10 3209.83 3199.83 12439494.6 296.73 286.73 123341.6 

 

Variations in the threshold parameter γ  do not significantly affect the performance of 

both methods. Table 3.4 shows the results. The MSE of the proposed method could be 

improved if we solve Equation (2.6.1) for γ̂  starting the bisection method at a value 

closer to the data. The samples of Table 3.4 were selected from a population with 
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parameters 1=μ  and 1=σ  , and 99% of the values of this population are in the interval 

( γ+− 5758.1e , γ+5758.3e ). When 1000=γ ,  99% of the values of this population are in the 

interval (1000.21, 1035.72). It does not make sense to start the bisection method from 0. 

When 1,000,000 samples with n=30 are generated, we expect about 150,000 observations 

less than 1000.21 and some of these samples could have smaller skewness than the 

population. For this kind of sample, the bisection method obtains estimates very far from 

1,000. Only one of these estimates increases the mean square error significantly. 

Table3.4 Effect of the threshold parameter γ  on the performance of the two methods. 
PARAMETERS MLE PROPOSED 

n k μ  σ  γ      γμ ˆˆ  
BIAS 

 ( )γ̂  

MSE  

( γ̂ ) 
    γμ ˆˆ  

BIAS   

   ( )γ̂  

MSE  

( γ̂ ) 

30 1000000 1 1 0 0.39 0.39 0.19 0.27 0.27 0.10 

30 1000000 1 1 10 10.39 0.39 0.19 9.75 -0.25 0.90 

30 1000000 1 1 20 20.39 0.39 0.19 19.72 -0.28 1.22 

30 1000000 1 1 100 100.39 0.39 0.19 99.70 -0.30 2.48 

30 1000000 1 1 200 200.39 0.39 0.19 199.69 -0.31 3.64 

30 1000000 1 1 1000 1000.39 0.39 0.19 999.67 -0.33 10.25 

           

 

Table 3.5 Performance of the modified method. 

n K μ  σ  γ      γμ ˆˆ  
BIAS 

 ( )γ̂  

MSE  

( γ̂ ) 
% NO     

γ̂  
% NO 

Uγ̂  

Start 
Bisection 

30 1000000 1 1 1000 999.72 -0.28 1.42 0.001 0.000 ( ) )(31 rangex −  

30 1000000 1 1 1000 999.72 -0.28 1.25 0.002 0.000 ( ) )(21 rangex −  

30 1000000 1 1 1000 999.74 -0.25 0.94 0.001 0.000 ( ) )(11 rangex −  
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The proposed method could be improved if we start the bisection method at a point 

equivalent to ( ) −1x (three, two or one time the data range). Simulations were performed 

with this modification and the MSE was reduced significantly. If we start bisection 

method for each sample at ( ) −1x 1(1000.72 - 1035.21), the MSE is 0.94 and it is possible 

to estimate γ  for almost all random samples as you can see in the column %NO γ̂  in 

Table 3.5. 
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4. CONCLUSION 

The three-parameter lognormal distribution is widely used in many areas of science. 

Some statisticians have manifested their preference for this distribution when describing 

original data.  Finding a good estimator and constructing a confidence interval of this 

distribution is a difficult problem. Some modifications have been proposed to improve 

the maximum likelihood estimator. In some cases, however, the modified maximum 

likelihood estimates do not exist or the procedure encounters multiple estimates. The 

three-parameter lognormal pdf’s shape varies from almost symmetric, as an upturned T, 

to highly skewed, as an L.  The purpose of this research is focused on estimating the 

threshold parameterγ , because when ߛො is known, then the estimation of the other two 

parameters  can be obtained from the first two maximum likelihood estimation equations. 

Consequently, better estimate of γ  leads to a better estimate of the other two parameters. 

 In this research a method for constructing confidence intervals, confidence limits, 

and point estimators for the threshold or location parameter γ  is proposed. In order to 

find a 1 െ ),( ,a pivotal quantity ,ߛ confident interval for the parameter ߙ γξ X , was 

defined. Two important properties of  ),( γξ X  were shown. The first one is that the 

probability distribution of  ),( γξ X  is independent of all parameters, which allows us to 

construct a table for critical values of the pivotal quantity. The second one is that the 

pivotal quantity function )(γξ  is  a strictly increasing function of γ , which allows us to 

construct confident intervals for γ . Monte-Carlo simulation was used to find the critical 

values 2αξ  and 21 αξ − .  Equations 2),( αξγξ =X  and 21),( αξγξ −=X were solved using 
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the bisection method in order to find the confidence interval of γ . The proposed method 

is good for finding upper confidence limits ofγ , not for lower confidence limits. The 

point estimator of the threshold or location parameter γ  can be obtained by squeezing the 

confidence interval and using the critical value 50.0ξ . 

 The bias of the point estimator and mean square error (MSE) criteria were used 

throughout extensive simulation to evaluate the performance of the proposed method. 

Compared with other methods, the pivotal quantity method performs quite well obtaining 

point estimators of γ  with lower bias than most of them, even in cases where other 

methods confront difficulties such as small samples and population with low skewness. 

In fact, the proposed method produces a lower bias of γ̂  than the maximum likelihood 

estimator (MLE) method does in all simulations summarized in Table 3.1 through 3.5, 

where a wide combination of the three parameters was considered. Using the MSE 

criteria, the proposed method shows better performance than the MLE method when the 

population skewness is low and the spread of the distribution is high. The MSE of the 

proposed method can be improved if we do not consider the few atypical samples, which 

are much less than 1% of the samples, for which the bisection method produces a big 

bias. Moreover, the pivotal quantity could be slightly modified in order to get better 

MSE.  

The method introduced in this research provides a more accurate estimate of the 

location parameter in most of the original data, especially when the population skewness 

is low and the spread of the distribution is high. 
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