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ABSTRACT OF THE THESIS 

EVALUATION OF WIND LOADS ON SOLAR PANELS 

by 

Johnn Barata 

Florida International University, 2012 

Miami, Florida 

Professor Dr. Girma Tsegaye Bitsuamlak, Major Professor 

 The current impetus for alternative energy sources is increasing the 

demand for solar energy technologies in Florida – the Sunshine State. Florida’s 

energy production from solar, thermal or photovoltaic sources accounts for only 

0.005% of the state total energy generation. The existing types of technologies, 

methods of installation, and mounting locations for solar panels vary 

significantly, and are consequently affected by wind loads in different ways. The 

fact that Florida is frequently under hurricane risk and the lack of information 

related with design wind loads on solar panels result in a limited use of solar 

panels for generating energy in the “Sunshine State” Florida. By using Boundary 

Layer Wind Tunnel testing techniques, the present study evaluates the effects of 

wind on solar panels, and provides explicit and reliable information on design 

wind loads in the form of pressure coefficient value. The study considered two 

different types of solar panel arrangements, (1) isolated solar panel and (2) 

arrays, and two different mounting locations, (1) ground mounted and (2) roof 

mounted. Detailed wind load information was produced as part of this study for 

isolated and arrayed solar panels. Two main conclusions from this study are the 
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following:(1) for isolated solar panel with high slopes the wind load for wind 

angle of attack (AoA) perpendicular to the main axis exhibited the largest wind 

loads; (2) for arrays, while the outer rows and column were subjected to high 

wind loads for AoA perpendicular to the main axis, the interior solar panels were 

subjected to higher loads for oblique AoA. 
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1. INTRODUCTION 

In the last few years, the price of electricity generation has increased 

dramatically, especially in the state of Florida. Electricity in Florida has been for 

many years around 16 percent higher than the national average. Over half of the 

state’s electricity is generated from natural gas, and 25 percent of it comes from 

coal. In general, Florida generates more electricity from petroleum than any 

other state. Florida also produces electricity from municipal solid waste and 

landfill gas, though the contribution from these sources to the overall state’s 

electricity production is insignificant. In 2009, a 25-megawat solar photovoltaic 

plant was constructed in the state, which influenced the planning of several other 

solar plants statewide (Florida Energy facts). Yet, the state of Florida’s energy 

production from solar thermal, or photovoltaic, accounts for only a 0.005% of 

the state’s total energy generation. 

The current impetus for alternative energy sources is increasing the 

demand for solar energy technologies in Florida and around the United States. 

The existing types of technologies, methods of installation, and mounting 

locations (ground, roof, or integrated with the building envelope) vary 

significantly, and are consequently affected by wind loads in different ways.  

Most cities in Florida tend base construction on Chapter 16 of the Florida 

Building Code (FBC- 2007) for structural mounting, attachments and design of 

photovoltaic equipment. However, Chapter 16 of the FBC does not explicitly 

provide a dedicated section regarding photovoltaic installation. This lack of 

information related with design wind loads on photovoltaic technology results in 
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two kinds of oversight: (1) more of the systems are consequently over-designed, 

resulting in a direct increase of installation costs, and (2) the photovoltaic 

systems are under designed, resulting in the total destruction of equipment after 

an extreme wind event. The lack of prescriptive requirements as part of the FBC 

diminishes the opportunity for the solar panel industry to further develop. 

Uncertainty about what constitutes a safe and secure installation for a given 

wind load can complicate the approval process for a solar panel installation, thus 

hindering the progress of solar panel technology. 

2. RESEARCH HYPOTHESIS 

The effects of wind loads on solar panels could be accurately measured 

by using Wind Tunnel Testing techniques. It is consequently hypothesized by 

both developing wind tunnel tests and analyzing the data that more accurate and 

reliable information about wind loads on solar panels can be obtained, thus, 

reducing the uncertainty. 

3. RESEARCH OBJECTIVES 

The research objectives are to: 

(i) Evaluate wind loads on a single ground mounted solar panel and  

(ii) Evaluate wind loads on a ground and roof mounted arrayed solar panel 

using industry accepted boundary layer wind tunnel experimentation. 

(iii) Assess effects of solar panel slopes on pressure coefficients. 

(iv)  Assess effects of solar panel terrain exposure on pressure coefficients. 

(v) Assess effects of solar panel support highs on pressure coefficients. 
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(vi) Assess effects of spacing between arrays on pressure coefficients in solar 

panel arrays. 

4. LITERATURE REVIEW 

Considering the high demand for solar power and the variations among 

solar technologies available, only a limited number of wind tunnel and 

numerical studies exist regarding solar panel aerodynamics. Chevalien et al. 

(1979) performed a wind tunnel study investigating the sheltering effect on a 

row of solar panels mounted on a building model. Kopp et al. (2002) conducted 

experimental studies on the evaluation of wind-induced torque on solar arrays 

arranged in a parallel scheme, and demonstrated that for a separation close to the 

critical value where the onset of wake buffeting was anticipated, the peak 

aerodynamically-induced system torque was observed at a 2700 wind angle of 

attack due to the formation of vortex shedding from the upstream modules. 

Chung et al. (2008) carried out an experimental study to investigate the wind 

uplift and mean pressure coefficients on a solar collector model installed on the 

roof of buildings under typhoon-type winds. The study found that the uplift 

force could be effectively reduced by using a guide plate normal to the incident 

wind direction, and also, by adopting a lifted model. In addition, this study 

demonstrated that pronounced local effects developed around the front edge, and 

decreased near a distance of one-third from the leading edge.  

              Neffba et al. (2008) at the Colorado State University, made numerical 

calculations of wind loads on solar photovoltaic collectors to estimate drag, lift 

and overturning moments on different collector support systems. These results 
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were compared with direct-force measurement tests obtained during wind tunnel 

experiments. The numerical procedure employed k-epsilon, RNG and k-omega 

turbulence closures to predict loads. The RNG and k-omega model approaches 

produced reasonable agreement with measured loads, whereas the k-epsilon 

model failed to replicate measurements. Numerically generated particle path 

lines about the model collectors strongly resembled wind tunnel smoke 

visualization observations. 

            Steenbergen et al. (2010) did a full-scale measurement of wind loads on 

standoff photovoltaic systems to obtain design data for standoff solar panels 

modules. The results indicate that for these systems, the top and bottom 

pressures are very well correlated. Results are now available, which can be used 

as a first step towards generating guidelines for the installation of standoff solar 

energy panels. 

              Banks et al. (2008) consulted on wind loads for several solar energy 

projects. According to these studies, the author published some articles 

providing guidelines to calculate wind loads on roof-mounted solar panels in the 

US utilizing ASCE 7-05.Uematsu et al, (2008), made several wind tunnel 

testings on freestanding canopy roofs in order to determine the characteristics of 

wind loads on this type of structures. 

            Tan et al. (2009) demonstrated that the wind conditions affect the 

performance of a solid particle solar receiver (SPSR) by convection heat transfer 

through the existing open aperture. The wind effect on the performance of an 

SPSR was investigated numerically with and without the protection of an aero 
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window. The independence of the calculating domain in a wind field was studied 

in order to select a proper domain for the numerical simulation. The cavity 

thermal efficiencies and the existing temperature of the solid particles was 

calculated and analyzed for different wind conditions. The numerical 

investigation of the SPSRs' performance provided a guide in optimizing the 

prototype design, finding out the suitable working condition and proposing 

efficiency enhancing techniques for SPSRs. 

           Hangan et al. (2009) made CFD simulations to estimate the wind loads 

for various wind directions on stand-alone and arrayed solar panels. Simulations 

were carried out for Reynolds number (Re) equal to 2, 10, 6 at different 

azimuthally and inclination angles. They explicitly proved that for the stand-

alone cases, the bottom panels in an array were critical in terms of wind loading. 

          Theoharia et al. (2009) investigated the characteristics of steady-state 

wind loads affecting rectangular, flat solar collectors of two different sizes 

mounted in clusters on the flat roofs of a five-story building by testing in the 

boundary layer wind tunnel. A key conclusion of the study was, in comparison 

with isolated flat plates, that wind loads on solar collectors are significantly 

reduced by the sheltering effects of the first row of collectors and of the building 

itself. Another investigation was performed by Theoharia (2009)  to determine 

the maximum sheltering effect of one set of panels on another set. It was 

observed that at a specific distance between two sets of panels, the drag 

coefficient for the downstream sets of panels reached a minimum.  
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              Kurnik et al. (2010) tested the solar panel’s module temperature and 

performance under different mounting and operational conditions, which 

explicitly proved that the solar panel performance depends strongly on the way 

modules are mounted (open-rack, ventilated or unventilated roof mounting, etc.), 

and the wind speeds they are exposed to. 

             Geurts et al. (2010) studied the effect of wind loads on roof-mounted 

photovoltaic array panels. The results were presented in the format of the new 

Euro Code on wind loads. They concluded that the current wind loading 

standards were not sufficient to include the most common types of active roofs.  

Barkaszi et al. (2010) summarized wind load calculations for solar panel 

arrays using the ASCE Standard 7-05. The study provided examples that 

demonstrated a step-by-step procedure for approximately calculating wind loads 

on solar panel arrays. They also recommended that wind tunnel testing should be 

conducted for the most common rooftop solar panel installation to verify 

methods of installation and calculations.   

Recently, Bitsuamlak et al. (2010) investigated four different test cases to 

determine the wind effects on stand-alone, ground-mounted solar panels, with a 

series of different wind angles of attack, and various numbers of panels. The 

CFD results have been compared and validated with a full-scale experimental 

measurement performed at the Wall of Wind (WoW) testing facility at Florida 

International University (FIU). The numerical results obtained from CFD 

simulations showed similar patterns of pressure coefficient distribution when 

compared to full-scale measurements, but the magnitude of the pressure 
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coefficients was generally underestimated by the numerical calculations when 

compared to the experimental results. The solar panels experienced the highest 

overall wind loads for 1800 wind angle of attack. The study also demonstrated 

that a prominent sheltering effect caused by upwind solar panels substantially 

reduced the wind loads on the adjacent solar panel when they are arranged in 

tandem.   

5. METHODOLOGY 

5.1. Boundary layer wind tunnel setup and flow characteristics. 

         For the present study, the aerodynamic characteristics of solar panel 

modules under atmospheric boundary layer flow conditions were investigated. 

The lower part of atmospheric boundary layer was simulated in the boundary 

layer wind tunnel at a length, velocity and time scales of 1:20, 1:4, and 1:5, 

respectively. The boundary layer wind tunnel facility was used to simulate a 

mean speed and various turbulence profiles of the natural wind approaching a 

building model. The facility has a long working section with a roughened floor, 

and turbulence-generating spires were installed at the upwind end. In the present 

study, floor roughness and spires have been selected to simulate open and 

suburban wind profiles. Open wind profiles were generated by a combined effect 

of 15in x 19in (38.1cm x 48.3cm) spire and 1.5in (3.81cm) triangular-floor 

roughness elements, while suburban wind profiles were generated by a 

combination of 18in x 18in (45.72cm x 45.72cm) spires with 4in (10.16cm) floor 

roughness elements. Figure 1 shows the wind velocity and turbulence intensity 

profiles as well as the spectra examples for open terrain exposure.   
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Figure 1   

Trapezoidal planks and triangular floor roughness elements used to develop open exposure 

for the bottom 30 m, mean wind speed profile, turbulence intensity profile, and longitudinal 

turbulence spectrum at 1.5in (3.81cm)  height in the mode. 
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5.2. Isolated solar panel: study wind tunnel model and instrumentation. 

The isolated solar panel model was constructed in a scale of 1:20 to represent 

a 30ft x 4.4ft (9.14m x 1.34m) at full-scale and tested at RWDI’s 7ft x 8.1ft (2.13m x 

2.46m) boundary layer wind tunnel facility in Miramar, Florida. The model was 

tested in the absence of surroundings. The models were cut out from Plexiglas 

acrylic sheets using a high precision laser cutting machine, and the pressure tubes 

were glued with fast setting solvent cement. They were placed at 43.5ft (13.3m) 

down-stream of the tunnel entrance at the center of a 7.5ft (2.3m) diameter turn-

table. Figure 2 shows the wind tunnel model for isolated solar panel. 

 

Figure 2  

Isolated solar panel model in a boundary layer wind tunnel in a testing position. 
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Solar panels with five different slopes (i.e. 0o, 10o, 20o, 25o, 30o, and 40o) 

expected to cover optimal orientations for different locations (latitudes) and three 

different leg heights, i.e. 12 in (30.48 cm), 24 in (60.96 cm) and 32 in (81.28 cm); 

short legs were considered in the study. Figure 3 summarizes the tested slope and 

support height cases. Each combination of slope and leg height was tested for wind 

angle of attacks (AoA) ranging from 0o to 350o at 10o intervals. In addition, 45 o and 

135 o AoA have been tested for all cases. The following nomenclature where slopes 

and short leg heights will be designated by the prefixes ‘S’ and ‘H’ followed by their 

corresponding values has been adopted. For instance, S25H12 is 250 slope and 12 

inches short leg height. Each combination of slope and leg height was tested also for 

both open and suburban profile. 
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Figure 3 

Isolated solar panel slopes and support heights considered in the study. 



12 
 

Pressure distribution on the panel surface was obtained from 80 taps installed 

at 40 points on the panel surface for the Single Ground mounted solar panel, (two at 

each point, one on the top and the other on the bottom surface) as shown in Fig. 4.  

 

 

Pressure readings were taken by connecting the pressure taps to Scani-Valve 

(intelligent pressure and temperature measuring module) with 0.053in (1.34mm) 

solar panels C tubes for a duration of a 90-second period, at a sampling frequency of 

512Hz. Consequently, a total of 46,080 measurement points were collected for each 

angle, providing enough information for each particular case tested. The data 

collected is low-pass filtered to reduce resonant effects resulting from the tubes using 

a transfer function developed specifically for the tubes used.  

The Scani-Valve equipment consisted of eight coupling input connections, 

each with a 64-channel capacity. Since it had 80 taps installed, for the Single Ground 

Mounted solar panel, 80 channels of the Scani-Valve where connected to the model. 

Each channel generated a column of data, and the pressure was measured in psi 

46,080 times for each angle following the frequency that has been explained above. 

Figure 4. Pressure tap distribution used for Single PV model.  Figure 4 

Pressure taps distribution used for Single PV model. 
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A similar procedure was use for both Ground Mounted Arrayed solar panels 

and Roof Mounted solar panels. As it was mentioned above, the model used for 

testing Ground Mounted Arrayed solar panel and Roof Mounted solar panel had 48 

taps. In this case, a total of ten instrumented panels were placed in the wind tunnel. 

Accordingly, a total of 480 channels where connected to the Scani-Valve, and each 

channel generated a column of data of pressure measured in psi. 

 

5.3. Solar Panel Array: Wind Tunnel Study Model and Instrumentation 

5.3.1. Ground-Mounted Arrayed Solar Panel: 

For the ground-mounted arrayed solar panel, ten solar panel models were 

constructed at a 1:30 scale to represent a 30ft x 4.4ft (9.14m x 1.34m) panel at full-

scale and tested at RWDI’s 7ft x 8.1ft (2.13m x 2.46m) in the boundary layer wind 

tunnel facility in Miramar, Florida. Several dummy models, i.e. without 

instrumentation but having similar geometry with the instrumented ones, were used 

to create “arrayed” surrounding conditions. The height of the shortest leg of the 

support was fixed in order to represent a 32 inch high full scale, and the slope of the 

solar panel was set to 25 degrees. The models were cut out from Plexiglas acrylic 

sheets using high a precision laser cutting machine, and the pressure tubes were 

glued with fast setting solvent cement. They were placed at 43.5ft (13.3m) down-

stream of the tunnel entrance at the center of a 7.5ft (2.3m) diameter turn-table. 

Figure 5 shows the ground-mounted array considered in the present study.  
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Figure 5 

Ground-mounted arrayed solar panel model in a boundary layer wind tunnel in a testing 

position. 
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Pressure distribution on the panel surface was obtained from 48 taps 

installed at 24 points on the panel surface for the ground mounted arrayed solar 

panel (two at each point, one on the top and the other on the bottom surface) as 

shown in Fig. 6.  

 

           A pressure measurement procedure similar with the one described for the 

isolated solar panel was used for ground-mounted arrayed solar panel. As it was 

mentioned above, the model used for testing the Ground Mounted Arrayed solar 

panel and Roof Mounted solar panel had 48 taps. In this case, a total of ten 

instrumented panels were placed in the wind tunnel. Accordingly, a total of 480 

channels were connected to the Scani-Valve, and each channel generated a column of 

data of pressure measured in psi. 

Longitudinal distance between the solar panel: Three different longitudinal 

distances between each panel to represent 24, 48 and 72 inches (61,122 and183 cm) 

Figure 6 

Pressure-taps distribution used for both, ground and roof-mounted model.  

Note: For arrayed case a total of ten PV panels were instrumented simultaneously with
this tap distribution for each test case. 
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at full scale were investigated (refer Fig. 7). During the wind tunnel testing, the 

center of the footprint area of the ten panels was placed in the center of the 7.5ft 

(2.3m) diameter turn-table.  

 

 

Figure 7 

Ground-mounted solar panel: Longitudinal distances investigated in the wind tunnel. 

Lateral gap between the solar panel: Three different lateral gaps between each ground 

–mounted solar panel to represent 0 inches, 36 inches(91.44 cm) and 72 inches (183 

cm)at full scale were investigated (refer Fig. 8).  
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Figure 8 

Ground-mounted solar panels: Lateral gaps investigated in the wind tunnel. 

 

Test configuration: The ground-mounted array considered in the present study is 

shown in Fig 9. The critically loaded solar panels would be the ones located at 

the corners. Due to symmetry, only the north-east and south-east corners were 

investigated in the present study, i.e. regions I and II shown in Figure 9 

respectively. Due to the enormous array size, it was not possible to instrument 

all the three columns in the north-east test at the same time. At the time of 

testing the Scani-Valve capacity was limited to 500 channels, sufficient only for 

connecting 10 solar panels at a time. Also it was necessary to test the array in 

parts as described below due to the lack of enough room in the boundary layer 

wind tunnel for testing all arrays together. 

           However by systematically testing configuration 1, 2 and 3 separately as 

shown in Fig 10 a, b and c respectively and putting the test result together, the 
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North–east corner could be covered. Similarly, by systematically testing 

configuration 4, 5 and 6 separately as shown in Fig 10 d, e and f respectively 

and putting the test result together, the South–east corner was covered. The ten-

instrumented panels were tested together with other dummy panels (non-

instrumented panels) for six different configurations as it is shown in Fig. 10. 

             Each configuration is further described in detail below. Each 

combination of longitudinal distances and lateral gaps were tested in six 

different configurations, and each one was tested for different wind angles of 

attack (AoA). 

 

Figure 9 

Ground-mounted arrays considered in the present study. 
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Figure 10 

Ground-mounted array test configuration definition. 

 

Configuration C3 was a result of setting the ten-instrumented panels between 

two equal and symmetrically distributed groups of non-instrumented panels. Each 

group consisted of 26 non-instrumented panels. The short leg height of the 

instrumented panel faces south (1800 wind direction). This configuration was tested 

from 0 degrees to 90 degrees.  

Configuration C2 was a result of setting the ten-instrumented panels (marked 

in red in the figure) between two groups that were not instrumented panels. The 

western group consisted of 26 non-instrumented panels as it is shown in figure 10. 
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The eastern group consisted of 13 non-instrumented panels as it is shown in figure 10 

.The short leg height of the instrumented panel faced south (180 degree wind 

direction). This configuration was tested from 270 degrees to 0 degrees. 

Configuration C1 was a result of setting the ten instrumented panels together 

with 26 non-instrumented panels as it is shown. The short leg height of the 

instrumented panel faces south (1800 wind direction). This configuration was tested 

form 0 degrees to 270 degrees. It should be mentioned that for each of the three 

above described configurations C1, C2, and C3, a set of three non-instrumented 

panels were placed behind the 10 instrumented panels as it is shown. 

Configuration C6 was a result of setting the ten-instrumented panels between 

two groups equals and symmetrically distributed not-instrumented panels. Each 

group consisted of 26 non-instrumented panels as it is shown. The short leg height of 

the instrumented panel faces south (1800 wind direction). This configuration was 

tested from 180 degrees to 270 degrees. 

Configuration C5 was result of setting the ten-instrumented panels between 

two groups of non-instrumented panels. The western group consisted of 26 non-

instrumented panels as it is shown. The eastern group consisted of 13 non-

instrumented panels as it is shown. The short leg height of the instrumented panel 

faces south (1800 wind direction). This configuration was tested from 180 degrees to 

270 degrees. 

Configuration C4 was a result of setting the ten instrumented together with 26 

non-instrumented panels as it is shown. The short leg height of the instrumented 
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panel faces south (180 degree wind direction). This configuration was tested from 

180 degrees to 270 degrees. 

  

5.4. Roof-mounted arrayed solar panel 

For the Roof Mounted solar panel; ten solar panel models were constructed at 

a 1:30 scale. The panels were separated to represent 48 inches longitudinal distance 

at full scale between them. The height of the panel’s supports was fixed to represent 

32 inches (91.44 cm) at full scale short legs. The center of the footprint area of the 

ten panels was placed in the center of the 7.5ft (2.3m) diameter turn-table. They were 

mounted on a building model cutout from Plexiglas acrylic sheet to represent a width 

of 90ft, a length of 117ft, and 18.5ft high building (see Fig. 11). A number of 35 

(non-instrumented) 30ft x 4.4ft (9.14m x 1.34m) model panels were used in order to 

simulate the surrounded solar panels. They were also mounted on a similar building 

model.   
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Figure 11 

Roof-mounted arrayed solar panel model in a boundary layer wind tunnel in a testing 

position. 

Pressure distribution on the panel surface was obtained from 48 taps installed 

at 24 points on the panel surface for the roof-mounted arrayed solar panels (see Fig. 

6). A pressure measurement procedure similar with the one described for isolated 

solar panel and for ground-mounted arrayed solar panels was used here as well. 

Test configuration: The roof-mounted array considered in the present study is 

shown in Fig 11. Due to symmetry, only half of the roof area needs to be tested. 

Again, due to the enormous array size, it was not possible to instrument all three 

columns at the same time. Hence test configurations 1, 2, 3 and 4 described in Fig 12 

were adopted. The configurations were set by modifying the position of the non-

instrumented panels in relation with the ten instrumented panels (see Figure 12).  
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Figure 12 

Roof-mounted arrays basic test configuration definition. 

Another parameter considered for the roof-mounted solar panels array was the “roof 

perimeter gap”. Three different roof perimeter gaps, referred here after simply as “perimeter 

gaps”, representing 0, 36 and 72 inches ( 0,92 and 183 cm )  at full scale between them were 

considered as shown in Fig. 13. Adding a walking area to the building perimeter modified 

each configuration. The walking area modified the distance between the solar panels and the 

building perimeter.  The walking areas were made to represent both 36 inches and 72 inches 

(92cm and 183 cm) at full scale. The modification described previously resulted in a total of 

eight test-configurations as it is shown at Fig. 14, where each combination of roof 

perimeter-gaps were tested in four different configurations and each one was tested for 

different AoA. 
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Figure 13 

Perimeter gaps considered for roof-mounted solar panel array. 
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Figure 14 

Total roof-mounted array test configurations. 

Configurations c2a, c2b, c2c, were the result of setting the ten instrumented 

panels (marked in red in the figure) between two groups of equals and symmetrically 

distributed non-instrumented panels. Each group consisted of 15 non-instrumented 

panels. 5 non-instrumented panels more were added in order to keep the 

configuration symmetrical, in order to cover the northern windward side as it is 

shown. The short leg height of the instrumented panel faces south (1800 wind 

direction). This configuration was tested from 90 degrees to one 180 degrees, and 

also the one 135 degree angle was tested. 

Configurations c1a,c1b,c1c  were the  result of setting the ten instrumented 

panels (marked in red in the figure) beside one group of 15 non-instrumented panels 
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covering the western windward; 5 more not instrumented panels were added in order 

to keep the configuration symmetrical, and in order to cover the northern windward 

side as it is shown. The short leg height of the instrumented panel faces south (180 

degree wind direction). This configuration was tested from 90 degrees to 180 

degrees, and also the 135 degree angle was tested. 

Configurations c3a, c3b, c3c were the result of setting the ten instrumented 

panels (marked in red in the figure) between two groups of equal and symmetrically 

distributed non-instrumented panels; each group consisted of 15 non-instrumented 

panels; 5 more non-instrumented panels were added in order to keep the 

configuration symmetrical and in order to cover the southern windward side as it is 

shown. The short leg height of the instrumented panel faces south (1800 wind 

direction). This configuration was tested form 0 degrees 90 degrees, and also the 45 

degree angle was tested.  

Configurations c4a,c4b,c4c were the result of setting the ten instrumented 

panels (marked in red in the figure) beside one group of 15 non-instrumented panels 

covering the western windward; 5 more non-instrumented panels were added in order 

to keep the configuration symmetrical, and in order to cover the southern windward 

side as it is shown. The short leg height of the instrumented panel faces south (1800 

wind direction). This configuration was tested from 90 degrees to 180 degrees, and 

also the 135 degree angle was tested. As it has been mentioned previously, each of 

the four configurations above was briefly modified by adding a walking area to the 

building perimeter. The walking area modified the distance between the solar panel 

and the building perimeter.  
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6. RESULTS AND DISCUSSIONS 

6.1. Wind pressure coefficient.  

As it has been mentioned above the pressure readings were taken by 

connecting the pressure taps to the Scani-Valve, and each tap generated a column of 

data. The pressure was measured in psi 46,080 times for each angle following the 

frequency that has been explained above. The data was analyzed in order to evaluate 

the wind pressure coefficients. The pressure coefficients were referenced to the 

middle height h of the model panel (see Fig. 15). Once the velocity was gotten the q 

reference was calculated by using the equation q reference = ½ρV². The q reference 

value was used in order to calculate the pressure coefficients (Cp) value for each 

pressure measured; it was done by simply dividing the pressure measured by the q 

reference value. 

 

 

 

 

 

 

 

Figure 15 

Wind profile, and reference height definition. 
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Once the Cp values were calculated for each tap a net Cp value was calculated 

by adding both the Cp value for the tap on the top, and the Cp value for the tap on the 

bottom surface. A statistical analysis was performed after. The statistical analysis 

resulted in valuable information that explicitly shows the maximum Cp, the minimum 

Cp, and the mean Cp   for each pressure measurement point (taps) on the solar panel. 

6.2. Single Ground Mounted Solar Panel 

As it has been previously mentioned, the data obtained for the Single Ground 

Mounted solar panel included the four variables: Wind Profile (Open or Sub), height 

of the support, slope of the panel, the wind direction (AoA); also three main 

statistical analyses were done with the CP value obtained from the pressure analysis: 

Maximum (Net), Minimum (Net), and Average Net CP value. The net value was 

obtained by adding the top and bottom tap measurement (vector   addition) at each 

measuring points as defined in Fig. 4. 

Parametric analysis of the wind load on the single ground mounted solar panel 

was made by fixing one of the variables, and performing a comparative analysis on 

the others. Comparative analysis of the wind load on the single ground mounted solar 

panel includes: different AoA; the same AoA (worst cases) but for different heights 

of the support (H); the same AoA (worst cases) but for different slopes (S); and the 

same AoA (worst cases) but for different Wind Profiles (Open, Suburban). 

6.2.1. Variation of wind pressure coefficients with wind angle of attack (AoA) 

A solar panel with a slope of 25 degrees, and H = 32in was selected to show 

the variation of the pressure coefficients for different wind AoA. This slope was 

selected as it is more representative for South Florida’s latitude. Figures 15 and 16 
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show the net Cp three dimensional plots for the solar panels with 250 slope and for 

wind AoAs of 00 to AoA of 3600 at 450 steps. These figures (i.e. Figs 16a to h) are 

explicitly showing the effect of the variation of the AoA on the solar panels’ CP 

value. The worst wind AoAs appears to be 450, and 1800. Wind AoA of 1350 which 

is symmetrical with 450 is also critical.  

 

AoA 00  and AoA 450 

 

AoA 900  and AoA 1350 
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AoA 1800  and AoA 2250 

 

 

Figure 16 

Maximum Cp Plots for (a) 0o (b) 45 o (c) 90 o (d) 1350 (e) 1800 (f) 2250 (g) 270 o, and 

(h) 315o wind AoAs. 
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AoA 2700  and AoA 3150 
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Figure 17 

Minimum Cp Plots for (a) 0o (b) 45 o (c) 90 o (d) 1350 (e) 1800 (f) 2250 (g) 270 o, and 

(h) 315o wind AoAs. 

6.2.2. Effects of support heights (H) on wind pressure coefficients 

To study the effects of support height the worst wind AoAs, 1800 and 450 for 

the three different support heights (H=12, 24, and 32 in) were considered. Figures 

18a and 18b show both the mean and the maximum CP value for an AoA of 1800, the 

slope of the panel was 25 degrees and the wind profile was open. Figures 19a and 



33 
 

19b show both the mean and the maximum CP value for an AOA of 450, the slope of 

the panel was 25 degrees and the wind profile was open. The three dimensional 

contour comparison both for 450 and 1800 wind AoAs clearly shows no major 

variations for the different heights of the support. Thus it can be concluded that the 

support height does not have significant effect on wind loads for support height 

variations similar to the present case.   

 

                                   (a)                                                                 (b) 

 

 

Figure 18 

(a) Mean Cp for H12, H24, and H32 and wind AoA 1800 and (b) maximum Cp for H12, 

H24, and H32 and wind AoA 1800. 
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                         (a)                                                              (b) 

Figure 19 

(a) Mean Cp for H12, H24, and H32 and wind AoA 450 and (b) Maximum Cp for H12, H24, 

and H32 and wind AoA 450. 

 

6.2.3. Effects of Solar Panel Slope (S10, 20, 25, 30 And 40) On Wind Pressure 

Coefficients 

To study the effects of solar panel slope, the worst wind AoAs, 450 and 1800 

for a case with support height H=32in were considered. Figures 20 and 21 show both 

the mean and the maximum CP value for an AOA of 450 and 1800, respectively. The 

slope of the solar panels was 25 degrees and the wind profile was open.  
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                             (a)                                                                (b)  

Figure 20 

(a) Mean Cp for S10, S20, S25, S30 and S40 and wind AoA 1800 (open terrain), and 

(b)Maximum Cp for S10, S20, S25, S30 and S40 and wind AoA 1800 (open terrain). 

 

 

 

 

 

 

 

(a)                                                                  (b)  

Figure 21 

(a) Mean Cp for S10, S20, S25, S30 and S40 and wind AoA 450(open terrain) and (b) 

maximum Cp for S10, S20, S25, S30 and S40 and wind AoA 450.It was clearly shown an 

increase in the Cp values from the slope 0 to the slope 40. 
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6.2.4. Effects of upstream exposure (open vs. suburban) on wind pressure 

coefficients 

To study the effects of upstream exposure the worst wind AoAs, 450 and 1800 

for a case with support height H=32 in and a slope of 250 were considered. Figures 

22a and 22b show comparisons between open and suburban maximum and minimum 

CP value for an AoA of 450and 1800, respectively.  

 

 

 

(a)                                                                  (b) 

Figure 22 

Variation of the average CP for different open and suburban profiles (a) 450 and (b) 180 

0 AoA. 

Within the figures above the suburban profile shown higher CP values. 

6.3. Solar panel array:  study wind tunnel model and instrumentation 
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6.3.1. Ground- mounted solar pane array 

As it has been previously mentioned the data obtained for the Ground 

Mounted solar panel arrays included three variables: (i) the wind direction 

(AoA), (ii) Longitudinal distance between the solar panel, and (iii) lateral gap 

between the solar panel. 

6.3.1.1. Variation of wind pressure coefficients with wind angle of attack (AOA) 

A solar panel with a slope of 250, and H = 32in and zero longitudinal 

distance between the solar arrays was selected to show the variation of the 

pressure coefficients for four different wind AoA (00, 1800, 2250 and 3150). As 

mentioned before, this slope was selected as it is more representative for South 

Florida’s latitude. Figures 23a, 23b, 23c and 23d show the net Cp contours for 

wind AOAs 00 to AOA 3200, 2200 and 1800.  
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(a) 
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(b) 
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(c) 
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(d) 

Figure 23 

Net Cp contours for wind AOAs (a) 00 (b) 3150, (c) 2250 and (d) 1800. 

 

6.3.1.2. Effects of longitudinal distance between the arrays on Cp values 

A solar panel with a slope of 250, and H = 32in was selected to show the 

effect of longitudinal distance on the pressure coefficients for four different wind 

AoA (00, 1800, 2250 and 3150). Three different longitudinal distances between each 

panel to represent 24, 48 and 72 inches at full scale were investigated (refer Fig. 7). 

Figures 24a, 24b, 23c show the net Cp contours for longitudinal gap of 24, 48 and 72 
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respectively for AoA 00. Figures 25a to c show the same Cp contours but for to AOA 

3150. Figures 26a to c show the same Cp contours but for AoA 2250.From figures 26a 

to figure c the same Cp contours but for AoA 1800.  

(a) 

 

 

Figures 24 

Ground-mounted arrays: net Cp contours for longitudinal gap (a) 24 in, (b) 48 in 

and (c) 72 and AoA 00. 
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(a) 

 

 

 

Figures 25  

Ground-mounted arrays: Net Cp contours for longitudinal gap (a) 24 in, (b) 48 in 

and (c) 72 and AoA 3150. 
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(b) 

Figures 26  

Ground-mounted arrays: Net Cp contours for longitudinal gap (a) 24 in, (b) 48 in 

and (c) 72 and AoA 1800. 
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(b) 

Figures 27  

Ground-mounted array: net Cp contours for longitudinal gap (a) 24 in, (b) 48 in 

and (c) 72 and AoA 2150. 

 

6.3.1.3. Effects of Lateral gap between the solar panel on Cp values 

A solar panel with a slope of 250, and H = 32 in was selected to show the 

effect of longitudinal distance on the pressure coefficients for four different wind 

AoA (00, 1800, 2250 and 3150). Three different longitudinal distances between each 
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panel to represent 0, 32 and 72 inches at full scale were investigated (refer Fig. 7). 

Figures 28a, 28b, 28c show the net Cp contours for lateral gaps of 0, 32 and 72 

respectively for AoA 00. Figures 29a to c show the same Cp contours but for to AOA 

3150. Figures 30a to c show the same Cp contours but for AoA 2250. From figure 

31(a) to figure (c) the same Cp contours but for AoA 1800 are shown. 

(a) 

Figures 28  

Ground-mounted array: net Cp contours for lateral gap (a) 0 in, (b) 32 in and (c) 

72 and AoA 00. 
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(a) 

Figure 29 

Ground-mounted array: net Cp contours for lateral gap (a) 0 in, (b) 32 in and (c) 72 and 

AoA 3150. 
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(a) 

Figures 30  

Ground-mounted array: net Cp contours for lateral gap (a) 0 in, (b) 32 in and (c) 

72 and AoA 1800. 
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(a) 
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(a) 

Figure 31 

Ground-mounted arrays: net Cp contours for lateral gap (a) 0 in, (b) 32 in and (c) 72 

and AoA 2150. 
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6.3.2. Roof Mounted solar panels array 

As it has been previously mentioned, the data obtained for the roof-

mounted solar panel arrays included two variables: (i) the wind AoA, (ii) roof 

perimeter gap.  

6.3.2.1. Variation of wind pressure coefficients with wind angle of attack (AoA) 

A solar panel with a slope of 250, and H = 32 in and zero roof perimeter 

gap was selected to show the variation of the pressure coefficients for four 

different wind AoA (00, 1800, 2250 and 3150).  
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Figure 24 

32a, 32b, 32c and 32d show the net Cp contours for wind AOAs 00 to AOA 3150, 2250 and 

1800 and zero perimeter gap. 

 

6.3.2.2. Effects of roof perimeter gap on Cp values 

A solar panel with a slope of 250, and H = 32 in was selected to show the 

effect of longitudinal distance on the pressure coefficients for four different wind 

AoA (00, 1800, 2250 and 3150). Three different roof perimeter gaps to represent 0, 36 

and 72 inches at full scale were investigated (refer Fig. 7). Figures 33a, 33b, 33c 

show the net Cp contours for lateral gaps of 0, 36 and 72 respectively for AOA 00. 

Figures 34a to c show the same Cp contours but for to AOA 3150. Figures 35a to c 

show the same Cp contours but for AoA 2250.From figures 36a to figure c the same 

Cp contours but for AoA 1800.  
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(a) 
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(b) 
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(c) 

(c) 

Figure 33 Roof-mounted arrays: net Cp contours for roof perimeter (a) 0 in, (b) 36 in 

and (c) 72 and AoA 00. 
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 a)(a)  
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(b) 

(c) 

Figure 34 Roof-mounted arrays: net Cp contours for roof perimeter (a) 0 in, (b) 36 in 

and (c) 72 and AoA 3150. 
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(a) 

Figure 35 

Roof-mounted arrays: net Cp contours for roof perimeter (a) 0 in, (b) 36 in and (c) 72 

and AoA 1800. 
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(b) 
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(c) 
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(a) 

Figures 36  

Roof-mounted arrays: net Cp contours for roof perimeter (a) 0 in, (b) 36 in and 

(c) 72 and AoA 2150. 

 

CONCLUSIONS AND RECOMMENDATIONS  

By using Boundary Layer Wind Tunnel testing techniques, the present 

study evaluates the effects of wind on solar panels, and provides explicit and 

reliable information on design wind loads in the forms of pressure coefficient 

value. The study considered both, two different types of solar panels 

arrangements, isolated solar panel and arrays, and two different mounting 

locations, ground mounted and roof mounted. Detailed design wind load 
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information was produced as part of this study for isolated and arrayed solar 

panels. Some of the observations include the following: 

  For isolated solar panels, the wind load on high sloped ones for wind 

AoA perpendicular to the main axis exhibited the largest wind loads. For arrays, 

while the outer rows and column were subjected to high wind loads for AoA 

perpendicular to the main axis, the interior solar panels were subjected to higher 

loads for oblique AoA. 

            For the isolated solar panels a major variations were found in Cp values  

as a result of both, the different AoA, and different slopes of the panel. A 

considerable variation in the Cp values was also observed as a result of the solar 

panel terrain exposure. However no major variation was found as a result of the 

solar panel support height.    

For the ground mounted arrays, the solar panels major variations were found in 

Cp values as a result of the different AoA. A considerable variation in the Cp 

values was also observed as a result of both; the longitudinal distance between 

the arrays, and the lateral gap between the solar panels.     

 

For the roof mounted arrays, the solar panels major variations were found in Cp 

values as a result of the different AoA. A considerable variation in the Cp values 

was also observed as a result of the perimeter gap around the solar panels.        
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