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ABSTRACT OF THE THESIS 
 

HURRICANE LOSS MODELING AND EXTREME QUANTILE ESTIMATION 

by 

Fan Yang 

Florida International University, 2012 

Miami, Florida 

Professor B. M. Golam Kibria, Co-Major Professor 

Professor Sneh Gulati, Co-Major Professor 

                 This thesis reviewed various heavy tailed distributions and Extreme Value 

Theory (EVT) to estimate the catastrophic losses simulated from Florida Public 

Hurricane Loss Projection Model (FPHLPM). We have compared risk measures such as 

Probable Maximum Loss (PML) and Tail Value at Risk (TVaR) of the selected 

distributions with empirical estimation to capture the characteristics of the loss data as 

well as its tail distribution. Generalized Pareto Distribution (GPD) is the main focus for 

modeling the tail losses in this application. We found that the hurricane loss data 

generated from FPHLPM were consistent with historical losses and were not as heavy as 

expected. The tail of the stochastic annual maximum losses can be explained by an 

exponential distribution.  

 This thesis also touched on the philosophical implication of small probability, 

high impact events such as Black Swan and discussed the limitations of quantifying 

catastrophic losses for future inference using statistical methods. 
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Chapter 1 

INTRODUCTION 

 
Over the last few decades, the study of extreme values has gained importance for 

prediction and risk management purposes in various fields. In finance and insurance, 

extreme losses are a primary focus because of their impact on firms’ solvency and 

sustainability. Insurers are particularly concerned with a sudden surge of large claims 

caused by natural disasters, also referred to as catastrophic (cat) events such as a major 

earthquake or a hurricane, resulting in loss of life and serious damage to buildings and 

their contents. Potential risks inherent in the low frequency but high severity event, have 

necessitated the development of proper risk quantification through cat modeling.  

Cat model is a mathematical tool that quantifies risks from cat events including 

hurricanes, earthquakes, and terrorism in terms of loss severity and frequency. 

Commercial modeling companies such as AIR, RMS and EQECAT have developed such 

models that insurers use to estimate and evaluate the potential cat risks based on the 

business exposure. Many companies turn to these models for various operational and 

strategic decision making including underwriting, pricing, reinsurance purchase and 

capital allocation. Consequently, in the property and casualty insurance business, it has 

become an industry standard to calculate and disclose extreme measures including VaR 

(Value-at-Risk) and TVaR (Tail Value-at-Risk) for quantifying losses.  

Given the complexity of modeling cat event losses, a good estimation model relies on 

interdisciplinary collaboration of scientists, actuaries and software-developers.  The 

computer-based models utilize historical records as well as current scientific research on 
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natural hazards to assess the cat risks. With the help of advanced computer power and 

Geographic Information System (GIS) software, nowadays the models can map losses at 

the street level (Gilli and Evis, 2003).  

The International Hurricane Research Center (IHRC) is a multidisciplinary hurricane 

research facility within the State of Florida University System. The Florida Public 

Hurricane Loss Model (FPHLM) developed at IHRC uses an Oracle database and is 

available to the public. The model consists of three modules: meteorology, engineering 

and finance/insurance. Stochastic event catalogs produce probabilities and intensities of 

wind events that produce losses. Damage matrices are established by engineers to assess 

the damage to properties caused by these events. In the insurance module, losses are 

calculated for a variety of policy features. The model generates hurricane losses through a 

54,000 year-run stochastic hurricane set. For more information on the model we refer the 

readers to Hamid et al. (2008, 2010) and references therein. My thesis compares the 

simulated losses with those produced by the modeling of historical landfalls for Probable 

Maximum Loss (PML) calculations.  

PML statistically corresponds to a high quantile of the loss distribution and is equivalent 

to VaR in the financial industry. There are three types of PML: per event (losses incurred 

in one cat event), per occurrence (the largest event loss within a year) or per aggregate 

(the total annual loss). The latter two are commonly used. Per occurrence PML gives 

various quantiles for possible maximum losses in a year, while per aggregate PML 

provides quantiles for annual aggregate losses. The FPHLM has traditionally used a 

nonparametric method for PML estimation, whereas this thesis examines the parametric 
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method. Both assume that the simulated losses are a reasonable representation of the 

population of hurricane losses.  

The probabilistic framework for modeling cat losses builds on heavy tail distributions as 

well as Extreme Value Theory (EVT). Generalized Pareto Distribution (GPD) is the main 

focus for modeling the tail losses in this research. Extreme losses from hurricanes make 

classical statistical analysis based on normality assumptions inappropriate. One challenge 

of extreme value modeling is to balance the bias and variance. The asymptotic result, 

which is a large sample property, poses applicability constraints and the small sample 

issue creates problems when it comes to statistical inference. For example, GPD relies on 

limit theorems; to be able to correctly use the limit theory and make an inference, a 

certain threshold must be surpassed. Yet, in general there is less data above this cutoff 

point, making the estimators more variable. Lowering the threshold would provide more 

data and reduce the variance but also inevitably induce larger bias. However, this was not 

a major concern in my study since the simulated losses from the cat model contained 

54,000 data points.  

For the parametric method, the data was fitted to several distributions commonly used by 

practitioners in the insurance industry to calculate the quantiles. The obtained results 

were compared with those from the empirical method and also with historical losses for 

model validation. The organization of the thesis is as follows: Chapter 2 deals with the 

theoretical foundations of extreme value analysis and detailed mathematical descriptions 

can be found in the Appendix. Chapter 3 discusses parameter estimation and Chapter 4 

discloses findings from the application of FPHLM data. Model limitations are discussed 

in Chapter 5. Finally some conclusions are presented in Chapter 6.  
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                                         Chapter 2 

                 STATISTICAL METHODOLOGY 

2.1 Distributions 

Because the historical catastrophic data is limited and extreme quantile levels are 

required, finding an appropriate probabilistic model for hurricane losses is a challenge. 

The FPHLM solves the small sample problem by projecting the available historical data 

into a larger stochastic set of a long time horizon to conduct the risk analysis. The model 

is updated biannually to use current exposure to represent the latest population, building 

codes and replacement costs and incorporate other improvements as necessary.  

The losses generated from FPHLM were presumed to be highly right skewed, requiring 

the usage of heavy-tailed distributions. The candidate models can be categorized into two 

groups, non-GPD for modeling the entire loss data and GPD for the exceedances above a 

chosen threshold. 

2.1.1 Non-GPD—Distribution for the Whole Data Range 

Quantification of risk is distribution-based and cat losses can be modeled by a heavy-

tailed distribution in which the tail decays as a power function: p(X>x) � x-α1 (Resnick, 

2007). The tail behavior of the underlying model is essential in studying high quantile 

estimation. The quality of high quantile estimation largely depends on the second order 

behavior of the underlying slowly varying function L of the tail structure (Degen and 

Embrechts, 2007). Concepts of slowly varying function and regular variation which 

provide regularity conditions for this mathematical structure can be found in Appendix A. 

                                                 
1 f(x) � g(x) stands for 

( )
lim 1

( )x

f x

g x→∞
=  
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Various two-parameter heavy-tailed distributions such as Pareto, Lognormal and 

Loglogistic can be applied to the heavy tailed data. Relatively lighter tailed distributions 

ranging from Exponential, Weibull to Gamma provide nice comparisons to the above 

heavier-tailed distributions.  We refer the reader to Kreps (2000) and Klugman et al. 

(2008) for a comprehensive summary of distributions commonly used to model insurance 

losses. 

A four-parameter general class of distributions, Transform Beta (TB), which is also 

referred as Generalized Beta Distribution of Second Kind (GB2), was considered. The 

benefit of using general class distributions despite their complexity is the fact that they 

could be used to tentatively find out if the distributions under the same family would be a 

good fit (Dutta and Perry, 2006). Furthermore, a general distribution helps to reduce 

model risks from incorrectly specifying a particular distribution. Many heavy-tailed 

distributions can be generated from TB by specifying some parameters. Appendix B 

provides an illustration.  Table 2.1 gives the distributions under consideration in this 

study.  
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Table 2.1 Selected parametric distributions2 

Distribution Density Function f(x) 

Exponential 1 x

e θ

θ
−

 ; 0x > and 0θ >  

Gamma 
( )

( )

xx e

x

α θ
θ

α

−

Γ
; 0x > , 0α > and 0θ >  

Lognormal 21
( )

22
ze

xσ π
− , 

ln x
z

μ
σ

−
=

 

0x > , Rμ ∈  and 2 0σ >  

Pareto 
1( )x

α

α

αθ
θ ++

; 0x > , 0α > and 0θ >  

Loglogistic 

2

( )

[1 ( ) ]

x

xx

γ

γ

γ θ

θ+
0x > , 0α > and 0γ >  

Transform Beta ( )

( , ) [1 ( ) ]

x

xB x

γτ

γ α τ

γ θ
α τ θ

++

( ) ( )
( , )

( )
B

α τα τ
α τ

Γ Γ
=

Γ +  

0x > , 0α > , 0θ > , 0γ >  and 0τ >  

 

 

2.1.2 GEV and GPD—Distribution of the Tail  

                                                 
2 
Location-scale transformation: if X has the df F, then μ+σX has the df Fμ,σ(x)=F((x-μ)/σ). E.g. for 
Loglogistic distribution above, if there is no scaling (θ=1) and shift the loss to the right by u, the density 

function will become 
1

2

( )

[1 ( ) ]

x u

x u

γ

γ
γ −−
+ −
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The (right) tail of a distribution is the portion of the distribution corresponding to the 

large or extreme values of the random variable under study. Because extreme events are 

rare, a probabilistic framework is used, requiring a quantitative estimation of the 

asymptotic behavior of the losses. The extreme events can be treated by the asymptotic 

theory discovered by Fisher and Tippett (1928), Gnedenko (1943) and Gumbel (1958) 

using three extreme-value types of distribution. The work of Embrechts et al. (1997), 

Coles (2001), Kotz and Nadarajah (2000), Beirlant et al. (2004), McNeil et al. (2005) and 

Reiss and Thomas (2008) has been extensively cited as examples of progress in statistical 

modeling of extreme values. The Block Maxima (BM) method and Peak over Thresholds 

(PoT) method are the two primary methods for univariate EVT.  

In the BM method, Generalized Extreme Value (GEV) distribution is used as a limiting 

distribution for the maxima in a given period of time called a “block.” 

It can be written as: 

1

( ) exp 1 ( )
z

G z
γμ

γ
σ

−

+

−
= − +

   
     

  if 1
z μγ

σ
− +  

 
>0 

This formula incorporates Gumbel (shape parameter 0γ → ), Frechet (γ >0) and Weibull 

(γ <0) distributions within. Provided that the proper scaling is performed, the distribution 

of the block maximum losses can be approximated by one of these three distributions. 

GEV distribution can be used for per occurrence PML calculation.  

The PoT method utilizes GPD to model the exceedances over a sufficiently large 

threshold u. GPD is an asymptotically motivated distribution and serves as an 

approximation of Fu =Pr(X<x /X>u) for a broad class of models F. Let y denote the 

exceedance over u, that is, y=x-u. The CDF of the GPD is defined as: 
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1

( ) 1 [1 ( )]
y

W y ξξ
σ

−
= − +  for 0ξ ≠  , ( ) 1

y

W y e σ
−

= −  for 0ξ = .  

GPD posses modeling flexibility and depending on the parameter values, it can be heavy-

tailed or light-tailed. At 0ξ = , GPD becomes an exponential distribution. If 0ξ < , x is 

capped at u
σ
ξ

−  while for 0ξ > , x is potentially unbounded. GPD with 
1

2
ξ ≥ has infinite 

variance and is unusual in statistical applications.  

In a three-parameter form, this can be rewritten as: 

1

( ) 1 [1 ( )]
x u

W x ξξ
σ

−−= − +  for 0ξ ≠  , ( ) 1
x u

W x e σ
−−

= −  for 0ξ =  

The theoretical foundations of PoT method and properties of GPD can be found in 

Appendix C. 

2.2 Risk Measures  

The purpose of cat models is to assess cat risks to facilitate operational and strategic 

decisions. The losses generated by a cat model can be summarized and extracted into risk 

measures to quantify risk exposure. The inferences from a fitted heavy-tailed model are 

usually made by tail-based risk measures such as extreme quantiles and mean tail loss. 

They are usually accompanied by an associated return period, which is defined as

1

1
T

p
=

−
, where (1-p) is the exceedance probability. These risk measures serve as a 

basis for risk assessment and are typical evaluation methods for (re)insurance premiums 

and regulatory capital requirements. For example, both the pricing and the design of layer 

structures of an insurer’s reinsurance programs require PMLs at various attainment and 

exhaustion probabilities. Moreover, investors, regulators and rating agencies are 
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interested in the company’s ability to buffer against adverse events which is expressed as 

the economic capital at a particular (high) probability level.  

My study provided asymptotic tail probabilities that could be used to estimate certain risk 

measures such as PML, another name for VaR, and TVaR. The PMLp of the random 

variable X is p quantile, the 100pth percentile, of the distribution of X, that is, 

p(X<PMLp) = p. In practice, if an insurer holds capital equivalent to PMLp, it is supposed 

to absorb 100p% of the potential outcomes and thus stays possibly solvent under a certain 

adverse event. In this context, when p=99.5%, it means there is a very small chance 

(0.5%) that Florida will encounter hurricane loss of PML0.995 or a one in 200-year event.  

In the parametric method, PML can be calculated as a function of parameters by the 

inverse method. The return period is the waiting time for the exceedance of the particular 

quantile. The p quantile of F is defined by quantile function: 

1( ) : inf{ : ( ) }F p x F x p− = ≥  , where 0<p<1. 

Take the lognormal distribution for an example: the CDF is
ln

( ) ( )
x

F x
μ

σ
−= Φ ; taking 

the inverse, we get 
11 ( )( ) p

pPML F p eμ σ −− + Φ= = .  

For GPD, a distribution function of the whole data range needs to be developed. 

, ,( ) (1 ( )) ( ) ( )n u nF x F u W x F uξ σ= − + is used to approximate F(x) in which ( )nF u  is the 

empirical cumulative probability of the threshold u using the entire data and is estimated 

as (N-Nu)/N, where N is the sample size and Nu denotes the number of observations 

above the chosen threshold u. The PML for a given exceedance probability q (q=1-p) of 

GPD is given by: 
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[( ) 1]p p
u

N
PML VaR u q

N
ξσ

ξ
−= = + −

. 

The use of PML (VaR) is pervasive in the industry because it is easy to interpret and 

communicate among different users.   However, PML has two main disadvantages: 1) it 

violates the subadditivity property of coherent risk measure3 2) measuring only a single 

quantile, it does not observe capital loss above it and thus could lead to underestimation 

of the potential losses (Klugman et al., 2008). As a coherent measure, Tail-Value-at-Risk 

(TVaR, also referred to as CVaR and expected shortfall) is gaining popularity as it adds 

the expected loss above VaR to the quantile: 

 ( | ) ( | )p p p p pTVaR E X X VaR VaR E X VaR X VaR= > = + − > with associated return 

period 1/q.  

The second term is known as the mean excess function of GPD and for 1ξ <  

( )

1 1 1
p p

p p

VaR u VaR u
TVaR VaR

σ ξ σ ξ
ξ ξ ξ

+ − −= + = +
− − −

 (Brodin and Rootzen, 2009).  

Inferences based on cat models are very sensitive to the largest observed losses and the 

introduction of a new extreme loss to the dataset may have a substantial impact. Hence, it 

is problematic to rely on any one single statistic to summarize the risk contained in the 

data.  In practice, stress testing and worst case scenario are used to supplement PML. 

 

 

                                                 
3 A coherent risk measure is a risk measure ρ(X) that has the following four properties for any two loss 
random variables X and Y: 

1. Subadditivity: ρ(X+Y)≤ρ(X)+ρ(Y). 
2. Monotonicity: If X≤Y for all possible outcomes, then ρ(X)≤ ρ(Y). 
3. Positive homogeneity: For any positive constant c, ρ(cX)= cρ(X). 
4. Translation invariance: For any positive constant c, ρ(X+c)= ρ(X)+c. 
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2.3 Non-parametric Method 

Unlike parametric models discussed in 2.1 and 2.2, non-parametric method assumes the 

empirical loss distribution to be a close substitute for the population loss distribution, free 

from any parametric constrains. PML can be produced non-parametrically through order 

statistics. To estimate PML of the 100pth percentile, the kth order statistic, Xk, is used. K 

is determined by sample size N multiplied by p. If the result is not an integer, the 

smoothed empirical estimate is applied to interpolate two adjacent order statistics through 

PMLp=(1-h)xj+hxj+1 where j=[(N+1)p] and h=(N+1)p-j; here [.] indicates the greatest 

integer function (Klugman et al., 2008). This method, however, is not applicable for 

PMLp where p>N/(N+1).  

The approximate 95% confidence interval for PMLp is given by (Xr, Xs). The large 

sample assumes normal approximation to obtain r and s as 

1.96 (1 )

1.96 (1 )

r Np Np p

s Np Np p

= − −

= + − .

 

In case any value of r and s is not an integer, the smoothed empirical estimate is used. 

The exact confidence interval4 can be calculated which does not rely on the normality 

assumption. The values of r and s can be found through numerical analysis with r<s such 

that 

                                                 
4 Disclosure in Form A11. Reference from Approximate distributions of order statistics with applications to 
nonparametric statistics by R.D. Reiss 
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( ) ( )

( ) ( )

1 1

1 1

1

( )

( ) ( )

(1 ) (1 )

(1 ) 0.95

r p s

p s p r

s r
i N i i N i

i i

s
i N i

i r

p X PML X

p PML X p PML X

N N
p p p p

i i

N
p p

i

− −
− −

= =

−
−

=

< <

= < − <

   
= − − −   

   
 

= − ≈ 
 

 



 

If the solution from the computer search is not unique, the pair of r and s that minimizes 

s-r is selected to give the narrowest interval.  
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Chapter 3 
 

PARAMETERS ESTIMATION 
 
In parametric distribution fitting, the data are assumed to follow some specific parametric 

models. The parameters such as μ, σ and α condense the important information of the 

data that determine the probability distributions. A wide variety of methods can be used 

to estimate the parameters of a distribution. Maximum Likelihood Estimation (MLE) is 

commonly used mainly because of the desirable asymptotic properties of consistency, 

efficiency and normality. Other methods include probability weighted moment estimation, 

L estimation and Bayesian estimation. The advantages and disadvantages of major 

estimation methods for GPD are discussed in details in Bermudez and Kotz (2010).  

For heavy-tailed distributions, the shape parameter α provides an indication of the tail 

heaviness. In EVT, α (the same as ξ  in 2.1.2) is also known as Pareto index or extreme 

value index. Estimating α* of a Pareto law regarding to the regular variation is in essence 

equivalent to calculating the semiparametric estimator derived under the sole condition of 

( )F MDA Hξ∈ , because * 1α
ξ

= (α* is shape parameter, so is ξ  ). Hill, Pickands and QQ 

estimation methods can be used to estimate the asymptotic behavior of a sample on the 

basis of the tail characteristics. The details of these techniques can be found in Resnick 

(2007). They are called semi-parameteric estimators because there is no need to assume a 

probabilistic distribution (Bernardara et al., 2008). Furthermore, covariates in the real 

data can be incorporated into α through tail index regression model, enabling the shape 

parameter to better capture the characteristics of the sample (Wang and Tsai, 2009).  
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Estimators like MLE, Method of Moments (MoM) and probability weighted moment lack 

robustness, making the inference vulnerable to a single extreme (Juarez and Schucany, 

2004). Furthermore, MLE may encounter a convergence problem in optimizing the log 

likelihood function and moment equations may not have closed form in MoM. In recent 

years, Dupuis’ (1998) optimally-based robust estimator, Peng and Welsh’s (2002) 

medians estimator and Juarez and Schucany’s (2004) minimum density power divergence 

estimator were proposed. Moreover, robust estimators based on t-score moments, 

“generalized median”, “trimmed mean” type are developed to avoid subjective 

assumption of a theoretical distribution (Stehlik et al., 2010).  

For simplicity and the purpose of preliminary data analysis, MoM was used in this study. 

Due to the lack of the literature on estimating parameters of TB, this distribution was 

removed from my analysis. Because the focus of the study was to explore the potential of 

PoT method, GPD was extensively analyzed using MoM and MLE. All the computations 

were done by R.  
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Chapter 4 

APPLICATION 

4.1 Losses Generated from a Stochastic Hurricane Set 

In order to compute per occurrence PML, annual maximum losses were used. Losses of 

the same year were added together for per aggregate PML analysis. Some descriptive 

statistics are given in Table 4.1. 

 

Figure 4.1 Histograms for annual maximum losses (left) and annual aggregate loss (right)  
 
Table 4.1 Selected descriptive statistics  
 

data mean std skewness kurtosis
Occ 3,952,696,011 8,562,466,767 3.193 17.043
Agg 4,596,495,840 9,996,759,996 3.076 15.047

 
Outliers can be seen in the far right tail in Figure 4.1. Both sets of the data have high 

variances accompanying the large means with the corresponding coefficient of variance 

of 2.166 and 2.175 respectively.  Positive skewness implies that the upper tail is more 

pronounced than the lower tail.  Both kurtosis are much larger than 3, an indication of a 

longer and fatter tail than the normal distribution.  

The Skewness-Kurtosis plot in Figure 4.2 shows the range of skewness and kurtosis 

values a distribution can take. It provides a helpful tool for the exploratory data analysis. 
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The simulated data set lies in the beta regime. Beta distribution is known for its flexibility 

in shapes, consequently covering a wide variety of skewness-kurtosis sets in the plot. In 

this sense, it is reasonable to presume Beta as the parent distribution of the underlying 

data. If a distribution fits the data, the parent distribution will at least fit it (Dutta and 

Perry, 2006). The bootstrap samples give a possible range of skewness-kurtosis values, 

some of which are close to Gamma distribution. Overall, it is observed from the location 

of the data that for the same skewness, Gamma has higher kurtosis, heavier tail, than the 

empirical distribution. Additionally, the annual maximum losses have much heavier tail 

than Exponential and lighter tail than Lognormal distribution. 

 

Figure 4.2 Skewness-Kurtosis plot for per occ data with 100 bootstrap samples 
 

Similar conclusions can be drawn for per agg data. The sample skewness-kurtosis and its 

100 bootstrap values lie completely within the Beta region, which is another justification 

for TB to be considered for modeling FPHLM data. GPD is an appealing choice for 
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fitting the hurricane losses because it belongs to TB Family and is frequently used as a 

model for extremes.    

However the threshold selection of GPD possesses great difficulty as a result of bias-and-

variance tradeoff. Ideally, the threshold is selected to extract maximum amount of 

information from the data while remaining in the asymptotic zone (Bernardara et al., 

2008). So far, there has been no well-defined theory in optimizing the choice of threshold.                      

Traditional methods include examining various diagnostic plots such as mean excess 

plots, parameter stability plots, QQ plots and quantile plots. A simple diagnostic tool is to 

look for linearity in the sample mean excess plot since if the data follows GPD and 

provided 1ξ <   , E(X-u/X>u) is a linear function of u.   

 

 

 
Figure 4.3 Mean Excess Plot for per occ data with 95% confidence limits  
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The variability of the mean excess plot of per occurrence data in Figure 4.3 increases 

with the increasing thresholds. Upon closer examination, thresholds from10 billion to 50 

billion were identified as a stable range with less uncertainty.  

 

Figure 4.4 Shape parameter variability plot for per occ data, 0ξ =  (dashed line) 

Figure 4.4 shows that the shape parameters between 10 billion and 30 billion are 

relatively stable with an increasing trend in the point estimates ranging from 0 to 0.04. 

From 25 billion to 45 billion, the estimate varies between 0 and 0.05. Most of the selected 

confidence intervals include zero. Several thresholds were chosen as shown in Table 4.2 

and the MLE shape parameters all yield values near zero, which indicates an exponential 

tail. Thresholds of 40 billon, 35 billion, 30 billion and 20 billion have the smaller 

standard errors with respect to their point estimates. The threshold of 20 billion was 

chosen for including large amount of data in the analysis.  
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Table 4.2 Shape parameter comparison, per occ data 

u shape std error ratio # exceed % exceed  

10,000,000,000 -0.005 0.008 1.38 8272 16.16% 

15,000,000,000 0.006 0.010 1.57 5267 10.29% 

20,000,000,000 0.012 0.012 0.99 3309 6.46% 

25,000,000,000 0.015 0.016 1.05 2056 4.02% 

30,000,000,000 0.043 0.021 0.49 1300 2.54% 

35,000,000,000 0.292 0.037 0.13 792 1.55% 

40,000,000,000 0.302 0.047 0.16 500 0.98% 

45,000,000,000 0.027 0.040 1.46 316 0.62% 

50,000,000,000 -0.015 0.043 2.85 194 0.38% 

 

Figure 4.5 is another way to demonstrate that the confidence intervals of ξ  at different 

thresholds contain zero. The interval width increases to reflect the uncertainty as the 

threshold increases and sample size decreases. For all the thresholds in the range, the 

hypothesis of an underlying exponential distribution was not rejected. Particularly at 

u=20,000,000,000, the likelihood ratio statistic was 0.5614808 which is smaller than 

3.841459, the chi-square critical value. There is sufficient evidence that the exceedances 

resemble an exponential distribution.  

                                                              
Figure 4.5 Shape estimates with 95% confidence limits for a selected threshold range, per occ 
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The standard method for constructing confidence interval is based on asymptotic 

normality of MLE of the parameter. The 95% confidence interval for the shape parameter 

when u= 20,000,000,000 is (-0.0119, 0.03622). The profile likelihood confidence interval 

derived from an asymptotic 2χ distribution of the likelihood-ratio test statistic is 

considered to be more robust in small samples. The 95% profile likelihood confidence 

interval is approximately (-0.01073, 0.03749). Both intervals contain zero.  

The same techniques were applied for the threshold selection of annual aggregate losses.  

The shape parameters are relatively stable at values slightly below zero. 

Table 4.3 Shape parameter comparison, per agg 

u Shape ratio ratio # Exceed % 

10,000,000,000 -0.052 0.007 0.127 9144 16.9% 

15,000,000,000 -0.033 0.008 0.251 6463 12.0% 

20,000,000,000 -0.037 0.010 0.267 4380 8.1% 

25,000,000,000 -0.036 0.012 0.333 2971 5.5% 

30,000,000,000 -0.027 0.015 0.549 2022 3.7% 

35,000,000,000 -0.036 0.017 0.482 1348 2.5% 

40,000,000,000 -0.015 0.022 1.487 914 1.7% 

45,000,000,000 0.201 0.038 0.191 598 1.1% 

50,000,000,000 -0.021 0.032 1.527 390 0.7% 

 

Figure 4.6 Shape estimates with 95% confidence limits for a selected threshold range, per agg 
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The shape parameter ξ  determines the convexity of the relationship between the extreme 

quantile x and the return period T(x). Larger ξ corresponds to a more convex curve in the 

return level plot. The fact that the selected thresholds produced similarξ  indicates that 

there should be no material difference in the generated VaR and TVaR estimates, which 

is validated in Table 4.4.  

Table 4.4 Risk measures for different thresholds, per agg (in 000s) 

  VaR TVaR 

p\u 10,000,000 15,000,000 20,000,000 10,000,000 15,000,000 20,000,000 

0.9 17,217,620 17,341,146 17,260,386 29,988,506 29,916,053 29,906,938 

0.95 26,391,866 26,242,848 26,246,177 38,668,021 38,533,383 38,555,438 

0.97 32,924,716 32,673,994 32,714,643 44,848,578 44,759,081 44,781,103 

0.975 35,210,711 34,943,244 34,992,311 47,011,298 46,955,838 46,973,276 

0.99 46,346,474 46,143,319 46,197,106 57,546,552 57,798,118 57,757,487 

0.995 54,392,295 54,393,682 54,411,136 65,158,493 65,784,916 65,663,195 

0.997 60,121,610 60,354,260 60,324,047 70,578,847 71,555,079 71,354,158 

0.999 71,892,503 72,838,032 72,648,545 81,714,981 83,640,047 83,216,043 

 

Value of 20 billion was selected as the threshold for annual aggregate losses. MLE and 

MoM produced close parameter estimates, therefore similar risk measures. 

 

Table 4.5 MLE and MoM comparison of extreme risk measures (in 000s) 

  VaR TVaR difference 

p MLE MoM MLE MoM VaR TVaR 

0.9 17,264,210 17,260,465 29,914,821 29,909,651 0.02% 0.02% 

0.95 26,241,775 26,246,593 38,572,069 38,560,775 -0.02% 0.03% 

0.97 32,712,115 32,716,379 44,811,548 44,789,368 -0.01% 0.05% 

0.975 34,992,026 34,994,730 47,010,112 46,982,782 -0.01% 0.06% 

0.99 46,220,125 46,204,582 57,837,594 57,774,730 0.03% 0.11% 

0.995 54,464,517 54,424,149 65,787,827 65,687,871 0.07% 0.15% 

0.997 60,406,441 60,342,031 71,517,744 71,385,135 0.11% 0.19% 

0.999 72,811,287 72,679,624 83,479,987 83,262,782 0.18% 0.26% 
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Parametric methods have an advantage of producing distributions of risk measures to 

gain computational efficiency. Exponential (noted as exp in the tables below), Gamma, 

Lognormal (lnorm), Pareto, Loglogistic along with Generalized Pareto (GP) were 

selected to fit the data through MoM. Per occurrence PML and TVaR were calculated 

and the results were compared empirically. Table 4.6 and 4.7 show selected points that 

may be of interest to practitioners. 

Table 4.6 Per Occurrence PML (in 000s) 

EP T exp gamma lnorm Pareto loglogistic GP empirical 

0.1 10 9,101,419 11,950,279 8,979,035 8,983,645 6,578,655 14,859,252 14,732,953 

0.05 20 11,841,219 20,025,368 14,497,922 13,710,802 8,237,445 22,145,056 22,246,330 

0.03 33 13,860,357 26,620,631 19,789,601 18,119,353 9,666,663 27,558,670 27,687,021 

0.025 40 14,581,019 29,075,849 21,967,506 19,920,063 10,227,667 29,500,017 29,601,406 

0.01 100 18,202,838 42,032,928 35,614,096 31,211,687 13,537,061 39,329,997 39,020,780 

0.005 200 20,942,638 52,359,682 49,489,024 42,907,992 16,702,136 46,848,076 46,492,754 

0.003 333 22,961,776 60,186,001 62,085,760 53,815,977 19,489,271 52,434,278 53,078,209 

0.001 1000 27,304,257 77,490,560 97,527,236 86,210,060 27,141,761 64,580,880 63,592,927 

  

Table 4.7 Per Occurrence TVaR (in 000s) 

EP T exp gamma lnorm Pareto loglogistic GP empirical 

0.1 10 13,054,115 24,610,074 20,350,288 18,763,717 9,515,855 25,465,429 25,440,556 

0.05 20 15,793,915 33,793,559 29,422,420 26,557,215 11,742,111 32,851,906 32,849,693 

0.03 33 17,813,053 40,985,343 37,820,843 33,825,440 13,653,521 38,340,323 38,280,361 

0.025 40 18,533,715 43,621,017 41,218,604 36,794,206 14,396,976 40,308,496 40,215,680 

0.01 100 22,155,534 57,300,023 61,989,853 55,410,311 18,650,363 50,274,304 50,183,058 

0.005 200 24,895,334 68,026,664 82,505,907 74,693,599 22,416,001 57,896,265 57,984,982 

0.003 333 26,914,472 76,092,669 100,794,948 92,677,212 25,398,399 63,559,655 63,888,704 

0.001 1000 31,256,953 93,802,074 151,159,698 146,084,202 31,346,447 75,874,095 75,252,317 

 

Generally speaking, Gamma and Lognormal are not considered as heavy-tailed 

distributions, yet at the very extreme quantile points, they appear to overestimate the 

empirical quantiles. Both Exponential and Loglogistic underestimate the empirical. This 
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result agrees with the conclusions from Skewness-Kurtosis plot. Among the selected 

distributions, Generalized Pareto (u=20,000,000,000) fits the data the best and Gamma 

ranks the next. Note as the exceedance probability (EP) approaches one, the empirical 

VaR and TVaR converge to the data’s maximum 139,359,000,000. The TVaR value from 

Pareto distribution exceeds the maximum at 891.47 year and that of Lognormal attains it 

sometime between the 333 and the 1000 return period.  

 

Figure 4.7 CDF comparison for modeling annual maximum losses  
 
The five distributions fitted to the whole data are compared with the empirical 

distribution at the full domain in Figure 4.7. Typically, the selected distributions 

underestimate the empirical at the left tail and roughly between 10 billion and 25 billion, 
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all of them overestimate the empirical losses. Exponential and Loglogistic approach one 

much faster than the others, which agrees with the results observed in Table 4.6 and 4.7. 

In estimating PML for the loss distribution, one of the common techniques actuaries use 

is the mixed model where a weighted average of the risk measures produced by different 

models is used to reflect the characteristics of empirical data.  

QQ plot in Figure 4.8 suggests that the GPD (u=20,000,000,000 and ξ =0.0136) fits the 

empirical data well most of the time and overestimates several points in farther tail.  

                                

                           

Figure 4.8 QQ plot for per occurrence loss using GPD 
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Figure 4.9 95% confidence intervals for 99th percentile with varying threshold, per occ  

High quantile such as a 100-year return level as shown in Figure 4.9 is insensitive to the 

threshold choices, which indicates low threshold risk in this dataset. However, the large 

interval width suggests greater uncertainty in the estimation. The decrease in the 

confidence width can be partly explained by the better satisfied condition for EVT 

application.  

For the aggregate data set, a threshold of 20 billion was chosen after considering sample 

size and shape parameter stability.  The MLE for shape parameter was -0.037 with 

standard error of 0.0524 compared with a point estimate of -0.039 using MoM. The 95% 

profile likelihood confidence interval is (-0.05564,-0.01688).  
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Figure 4.10 QQ plot for per aggregate loss using GPD 

 
The QQ plot indicates that GPD tends to overestimate higher quantiles produced by the 

simulated annual loss data. A comparison of results for PML and TVaR is made in Table 

4.8 and 4.9 respectively.  

Table 4.8 Per Aggregate PML (in 000s) 

EP T exp gamma lnorm Pareto loglogistic GP empirical 

0.1 10 10,583,823 13,898,523 10,440,507 10,443,985 7,910,185 17,260,386 17,358,318 

0.05 20 13,769,871 23,337,359 16,872,901 15,945,795 10,150,511 26,246,177 26,270,450 

0.03 33 16,117,879 31,052,794 23,044,945 21,079,365 12,121,228 32,714,643 32,560,173 

0.025 40 16,955,919 33,925,918 25,586,143 23,176,814 12,903,797 34,992,311 34,996,373 

0.01 100 21,167,646 49,093,615 41,518,476 36,335,584 17,609,114 46,197,106 46,295,394 

0.005 200 24,353,694 61,186,311 57,729,473 49,975,077 22,229,640 54,411,136 54,471,278 

0.003 333 26,701,702 70,352,522 72,454,653 62,701,669 26,379,254 60,324,047 60,502,133 

0.001 1000 31,751,468 90,622,841 113,912,076 100,523,240 38,087,792 72,648,545 72,411,820 
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Table 4.9 Per Aggregate TVaR (in 000s) 

EP T exp gamma lnorm Pareto loglogistic GP empirical 

0.1 10 15,180,319 28,706,210 23,710,398 21,839,121 12,129,685 29,906,938 29,920,672 

0.05 20 18,366,367 39,451,462 34,301,080 30,922,402 15,393,515 38,555,438 38,554,621 

0.03 33 20,714,375 47,869,927 44,110,745 39,397,732 18,304,676 44,781,103 44,783,624 

0.025 40 21,552,415 50,955,705 48,080,648 42,860,541 19,466,234 46,973,276 46,998,387 

0.01 100 25,764,141 66,973,996 72,361,148 64,585,175 26,482,970 57,757,487 57,724,831 

0.005 200 28,950,190 79,537,701 96,358,362 87,103,463 33,398,130 65,663,195 65,617,208 

0.003 333 31,298,197 88,986,141 117,760,152 108,114,586 39,616,591 71,354,158 70,994,528 

0.001 1000 36,347,964 109,732,831 176,731,007 170,556,574 57,177,474 83,216,043 82,869,083 

 

The GPD performed the best for both per agg and per occ data for both VaR and TVaR 

estimation. Thus POT, focusing on tail structure, proves to be the most efficient method 

among other heavy-tailed distributions to estimate the tail-based risk measures.  

4.2 Losses Generated from Historical Landfalls 

The historical dataset contains annual losses generated from historical landfalls between 

1900 and 2007 in Florida. The meteorological component uses the actual tracks derived 

from Hurricane Database (HURDAT) in National Hurricane Center (NHC) that contains 

hurricanes occurred in the state of Florida during that period. 

The historical dataset consists of 108 data points, of which 50 are zeros. This sample size 

makes the empirical estimation of quantiles above 99% (107/108=0.9907) impossible. 

FPHLM is developed to extrapolate losses in a scientific manner to solve such a problem. 

The distribution from historical landfalls is right skewed with a cluster of losses near 20 

billion as it can be seen in Figure 4.11. In fitting GPD, thresholds between 5 billion and 7 

billion have relatively stable shape parameters with values around -0.5 by MLE. In 

general, there are fewer losses above the selected thresholds.  
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Figure 4.11 Histogram of losses generated by historical land falling and by-passing storms 

The simulated annual losses (per aggregate data) have mean relatively closer to the 

historical average while including 949 losses larger than the historical maximum to 

incorporate future uncertainty unrepresented in the data. The stochastic loss data was 

simulated for 54,000 years and produced 31,927 zero losses. This offsets the impact of 

data points populating the extremes on the mean. Extreme losses in the data set are 

responsible for the high kurtosis.  

Table 4.10 Descriptive statistics for historical data and per agg data 

data mean std skewness kurtosis Max 
Hist 4,948,355,340 9,161,389,501 2.060 6.780 39,506,704,205
Agg 4,596,495,840 9,996,759,996 3.076 15.047 139,359,000,000
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Table 4.11 Historical VaR (in 000s) 

T Exp Gamma Lnorm Pareto Loglogis GP Historical Modeled 

10 14,642,038 14,642,038 11,227,150 11,372,412 9,047,777 19,531,175 20,360,744 17,358,318 

20 22,838,979 22,838,979 17,487,487 17,047,239 12,240,692 26,831,013 24,937,237 26,270,450 

33 29,342,899 29,342,899 23,319,310 22,217,176 15,177,607 31,010,150 33,553,918 32,560,173 

40 31,737,124 31,737,124 25,683,600 24,300,879 16,373,260 32,298,970 36,485,015 34,996,373 

100 44,216,497 44,216,497 40,155,622 37,075,279 23,866,194 37,480,676 39,495,880 46,295,394 

 

Table 4.12 Historical TVaR (in 000s) 

T Exp Gamma Lnorm Pareto Loglogis GP Historical Modeled 

10 16,342,365 15,897,407 23,523,225 22,556,224 15,610,488 28,089,609 27,674,752 29,920,672 

20 19,772,303 23,506,607 33,192,929 31,342,539 20,825,032 33,241,723 33,761,441 38,554,621 

33 22,300,050 29,756,424 41,946,151 39,347,137 25,683,428 36,191,294 38,092,539 44,783,624 

40 23,202,242 32,085,004 45,444,881 42,573,327 27,670,066 37,100,923 39,446,570 46,998,387 

100 27,736,374 44,360,921 66,427,521 62,351,888 40,173,543 40,758,092 39,506,704 57,724,831 

 

The GPD estimated the historical PML better than other distributions as it is shown in 

Table 4.11 and 4.12. The modeled losses tend to overestimate risk measures for including 

additional speculative losses. 

The QQ plot for using GPD (u= 6,000,000,000) in Figure 4.12  is approximately linear, 

implying a reasonable fit. At higher quantiles close to the 100 year PML, GPD tends to 

underestimate the impact.  The return level plot gives a way to estimate the expected 

return level, the magnitude of losses that is expected to be exceeded on an average for a 

given return period. The points in the plot are empirically estimated return levels from the 

losses generated from historical landfalls. For example, one would expect annual losses 

in Florida from a hurricane to exceed $ 39,506,704,205 (the maximum in historical data 

set) on an average of every 80 years. The curve produced by GPD is expected to  
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asymptotically level off at the upper bound of u
σ
ξ

− because of the negative shape 

parameter. 

 

Figure 4.12 Diagnostic plots for GPD modeling historical losses 

Simple model validation can be done by QQ plot. The linear trend in Figure 4.13 

indicates that the model reasonably captures the characteristics of historical losses.  

                                                                                   
                                                                                     
Figure 4.13 QQ plot for historical losses and stochastic losses (per agg) 
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                                           Chapter 5 
 

                             DISCUSSION ON MODEL LIMITATIONS 
 
The purpose of this research was to estimate the annual PML from FPHLM data. The 

accuracy of the results depends highly on the loss-generating model and good 

understanding of assumptions in every component of FPHLM is critical. My study 

attempted to extract loss distributions of simulated wind storm events to calculate risk 

measures. The smaller the exceedance probability, the larger the sample size needed to 

make inferences. The benefit of using cat models such as FPHLM lies in their ability to 

produce a large loss dataset that mimics the historical losses to make extreme quantile 

estimation possible.   

In reality, the small sample size of extreme data is insufficient to provide an empirical 

basis for extrapolation beyond the available data and this leads to the extreme value 

paradigm to base tail structures on asymptotic models. As in any kind of parametric 

method, modeling risks exist due to the discrepancy between the model and reality. EVT 

has been proven to be a potentially good tool for modeling rare phenomena as it can be 

seen in Chapter 4 using GPD. However, full understanding of the characteristics of the 

loss data and awareness of model limitations become more crucial in extreme loss 

analysis as we substitute real data with theories (Dutta and Perry, 2006).  

In historical data, the risk analysis completely depends on the historical incidents and an 

unverifiable assumption that the past is representative of the future. As McNeil (1997) 

points out “Extreme value methods based on rigorous mathematical theory do not predict 

the future with certainty, but they do offer good models for explaining the extreme events 

we have seen in the past”, inferring future from the properties of the past sample requires 
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caution. Possibility of losses that are not in the sample of the past realizations needs to be 

considered. The loss model constructed at IHRC seemed to follow the traits of the 

historical data while including speculation on the unknown future through additional 

extreme losses. The improvement of hurricane model is necessary and made possible by 

incorporating the most recent scientific knowledge on natural hazards in the meteorology 

component and advancing the understanding of secondary uncertainty in engineering 

component. Accordingly, statistics plays a significant role in such an endeavor.   

The nature of extreme events is featured by its diminishing probabilities attaching to 

rapidly increasing damages. It is impossible to incorporate all the low occurrence high-

impact events into a model, making overreliance on any modeled estimates vulnerable to 

“Black Swan” (Taleb, 2010).  A Black Swan is an extreme event that is hard to predict 

but has significant consequences. It creates instability in averages and can ruin prediction. 

One of the main purposes of statistics is to provide a basis for decision making and 

strategic planning. Whatever model is selected, the uncertainty in the estimates needs to 

be understood and possibly measured in terms of confidence intervals and error rates. 

Since a model is an approximation of the reality and can cause costly estimation errors, a 

critical attitude towards modeling is required when translating information of data 

properties into decision making. The interaction of mathematics of randomness and 

human decision process needs to be further explored.  

An evaluation of the estimated risk measures in this study was conducted.  Table 5.1 

suggests variability inherent in the stochastic data and Table 5.2 reveals variability of the 

parameter estimates. The extreme quantile estimation is generally volatile. The more 

extreme it gets, the wider the confidence interval width grows, reflecting that there is 
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much less information available in the data about the behavior of the high return level 

compared with lower levels where data are relatively abundant. At the 20 year return 

period, the width exceeds $1 billion as shown in Table 5.1. Thus as a generalized best 

guess, one single PML cannot provide an adequate representation of loss exposure due to 

large confidence interval width.  

Table 5.1 Empirical PML estimation with 95 % confidence bonds and interval width (in 000s) 

 

T Lower PML Upper Width 

10 16,975,760 17,358,318 17,708,673 732,914 

20 25,672,326 26,270,450 26,797,422 1,125,095 

33 31,972,117 32,560,173 33,215,071 1,242,954 

40 34,296,239 34,996,373 35,669,216 1,372,977 

100 45,236,194 46,295,394 47,254,760 2,018,566 

200 53,235,023 54,471,278 56,504,772 3,269,749 

333 59,032,322 60,502,133 62,330,823 3,298,501 

1000 68,924,089 72,411,820 74,245,942 5,321,854 

 
Table 5.2 Risk measure comparison for per aggregate data using GPD (u=20,000,000,000) 
 
 

  PML TVaR 

     n \ xi -0.05564 -0.01688 -0.05564 -0.01688 

10 17,255,602 17,266,728 29,746,244 30,128,679 

20 26,221,181 26,279,612 38,239,271 38,991,951 

33 32,610,679 32,854,628 44,291,995 45,457,823 

40 34,847,569 35,187,658 46,410,985 47,752,125 

100 45,752,216 46,804,626 56,740,877 59,176,254 

200 53,639,697 55,473,921 64,212,630 67,701,641 

1000 59,260,868 61,798,284 69,537,523 73,921,021 

2000 70,822,155 75,216,481 80,489,445 87,116,478 

 

Even if the right model is chosen, parameter risks are not reducible. The 95% profile-

likelihood confidence interval for the shape parameter of GPD modeling annual 



34 
 

aggregate losses is (-0.05564, -0.0168). The risk measures differ noticeably at higher 

return periods, highlighting the parameter risks. From Table 5.2, the VaR estimation can 

go up by as much as 6.2% ($4.4 billion) and TVaR by 8.2% (approximately $6.6 billion). 

The sensitivity of PML over various shape parameters near zero would not cause material 

changes in quantile estimation. However, a small change in shape estimate (especially 

when
1

2
ξ ≥ ) could result in a dramatic difference in the estimation of risk measures. 

Because of this property, sensitivity of ξ   , also referred to as extreme value index and 

Pareto index α in Chapter 3 can be used in designing stress tests to incorporate effect of 

the unseen (Taleb, 2007). By varying α in the power laws, possible effects of inflation, 

climate changes and the cost of building can be included.  

In general, theories allow for the building of a certain model to transform raw data into 

decision-assisting information, but a model built upon these theories usually possesses 

hidden weakness in terms of robustness and accuracy. The fundamental challenges of 

uncertainty in the tail, small sample statistics or low probability ultimately cannot be 

overcome in the mathematical and statistical domain; rather help may be sought in the 

realms of philosophy. Theories and other scientific methods are not black swan resistant 

as they tend to inaccurately generalize and simplify the reality.  

Statistics can help unveil the sample properties and expose areas where knowledge is 

deemed fragile, but because of the variability in the extreme risk measure, it may fall 

short of providing a credible decision basis. In the banking and insurance sectors, taking 

extreme risks into consideration regulatory capital requirement is usually set at the 99% 

or 99.5% return level. Since the regulatory control is based only on a single quantile, 
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PML has been long criticized for failing to be a robust tool to quantify the risks. There is 

a prolonged heated discussion on what risk measure to base the operational and strategic 

decisions on in the industry. Besides quantification through cat models, a systematic and 

serious effort to identify and evaluate risks underrepresented in the data is equally 

important. Decision making on uncertainty needs to balance the quantitative aspects and 

qualitative aspects of risk management. The study of judgment errors and cognitive 

limitations in modeling and data interpretation may help efficient decision making.  
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                                                         Chapter 6 
 
                                                   CONCLUSIONS  
 
Cat events are hard to predict and hence hard to protect against, yet their economic and 

social consequences are enormous, making the development of reliable prediction 

methods valuable. Risk measures quantify the losses. They help risk assessment and 

support decisions on risk mitigation and prevention in both private and public sectors. 

Statistical methodologies used to get risk measures for catastrophe losses can be 

nonparametric and parametric. Parametric methods use curve fitting and calculate 

quantiles as a function of distribution parameters. This can be accomplished by 

distributions fitting the whole data range or the POT method to use a high threshold to 

divide a distribution into a body and a tail. Extreme value theory provides simple 

techniques for estimating the probability of extremes. POT may be the best parameter 

method available for this estimation problem. The results indicate that the hurricane loss 

data generated from FPHLM were not as heavy tailed as expected and an exponential 

distribution seemed to explain the characteristics of the tail in per occurrence data. PMLs 

estimated using GPD were generally robust in this study. Interpretation of modeled 

results needs broad-minded thinking due to the uncertainty in the estimates of risk 

measures.  The limitations and uncertainties of the model should be taken fully into 

consideration before basing any strategies on its inference. 

One critical assumption made in the study is that the losses are identically and 

independently distributed. However, in situations where one hurricane follows another 

and losses in certain regions correlate with each other, EVT cannot model such 

dependency sufficiently. This study solely focuses on univariate distributions. 
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Practitioners who are interested in hurricane losses associated with flood losses or 

aggregated losses from different lines of business in a disaster may want to explore 

bivariate and multivariate models to address these issues. The studies may want to 

approach the dependence structure of risks through copula models. The suitable copula 

models for catastrophe risks still need to be identified. This thesis mentioned an 

advantage of using flexible general class distributions such as Transformed Beta. The 

follow-up research may focus on this distribution to accommodate a wider variety of 

underlying data. 
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                                                      APPENDIX 
 

A. Tail properties 
 

A standard theory for describing heavy-tailed behavior of statistical models is Karamata’s 

theory of regular variation; see Bingham et.al (1987) and Embrechts et.al (1997). 

For a measureable function L: (0, )→ ∞ is slowing varying ( L SV∈ ) if for t>0: 

( )
lim 1

( )x

L tx

L x→∞
=

 

Slowly varying functions are functions which, in comparison with power functions, 

change relatively slowly for large x, an example being the logarithm L(x)=In(x). 

Regularly varying functions (regularly varying at ∞ with index α ∈ ( f RVα∈ ) ) are 

functions which can be represented by power functions multiplied by slowly varying 

functions: ( )f x L xα= .  

For heavy-tail analysis, we assume ( ) ( ) ( )p X x F x x L xα−> = = , that is ( )F x RV α−∈ , and 

focus on the problem of estimating the index of regular variation α , which is one of the 

primary parameters of rare events.  
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B. Distributional Relationships and Characteristics 
 
The following graphs are cited from Klugman et al. (2008).  
 

 
 
 
Figure B.1 Relationship between TB and others by setting specific values to parameters 
 
 

 
 
Figure B.2 Distributional relationships and characteristics 
 
Straight line denotes special case and dot line represents limiting case.  
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C. Foundations of Peak-Over-Threshold Method 
 
 
C1. Maximum Domain of Attraction  

Define {X1, X2, X3, X4….} as a sequence of i.i.d random variables from an unknown 

distribution F and Mn =max(X1,… ,Xn). The sequence of normalized maxima, 
( )n n

n

M b

a

−
, 

converges in distribution: 

( ) ( ) ( )nn n
n n

n

M b
p x F a x b H x

a

− ≤ = + → , H(x) is some non-degenerate df.  

If this conditions satisfy, we call F is in the maximum domain of attraction of H and write 

as ( )F MDA H∈ . Fisher-Tippett (1928) theorem states that H(x) belongs to extreme value 

distribution family, denoting Hξ .  

For most applications it is sufficient to note that essentially all the common continuous 

distributions are in ( )MDA H ξ for some ξ .  

C2. Balkema-de Haan-Pickands (1974) Theorem 

If ( )F MDA H∈ , 

[ ]
, , ( )u
uF W xξ σ→ as sup{ : ( ) 1}u x F x→ <  

Where [ ] ( ) ( )
( / )

1 ( )
u F x F u

F p X x X u
F u

−= ≤ > =
−

, x u≥ . , , ( )uW xξ σ is GPD.  

This theorem describes the limit distribution of excess loss over a sufficiently high 

threshold. This limiting result can be used as a general approximation to the true 

distribution of an exceedance without specifying the underlying distribution that 

generates the whole data.    
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C3. GPD Properties 

1. Let Y=X-u/X>u denote the conditional excess random variable. The conditional 

distribution of the excess over a threshold, Z=Y-v/Y>v is also GPD. Note v is an 

increase in threshold and the new threshold becomes v+u. 

,( )p Y y Wξ σ≤ =  

1

1

1

,

( ) ( / )

( )
1

( )

1 ( )
1 ( )

1 ( )

( )
1 ( )

1 (1 )

Y

Y

v

p Z z p Y v z Y v

S v z

S v

v z

v

v z

v

z

v

W

ξ

ξ

ξ

ξ σ ξ

ξ
σ

ξ
σ

σ ξ
σ ξ

ξ
σ ξ

−

−

−

+

≤ = ≤ + >
+= −

++
= −

+

+ += −
+

= − +
+

=

 

As shown above, excesses over a higher level u+v also has a GP d.f. with the same shape 

ξ  and scale parameter u v u vσ σ ξ+ = + . The property that shape parameter stays the same 

with increasing threshold describes the stability of GPD.  

2. [ ]kE X = ∞ for 1k ξ≥ ; GPD has infinite mean if 1ξ ≥  
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