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ABSTRACT OF THE THESIS 

INTERMITTENTLY FORCED VORTEX ROSSBY WAVES 

by 

Amaryllis Cotto 

Florida International University, 2012 

Miami, Florida 

Professor Hugh Willoughby, Major Professor  

Wavelike spiral asymmetries are an intriguing aspect of Tropical Cyclone dynamics. 

Previous work hypothesized that some of them are Vortex Rossby Waves 

propagating on the radial gradient of mean–flow relative vorticity. In the 

Intermittently Forced Vortex Rossby Wave theory, intermittent convection near the 

eyewall wind maximum excites them so that they propagate wave energy outward 

and converge angular momentum inward. The waves’ energy is absorbed as the 

perturbation vorticity becomes filamented near the outer critical radii where their 

Doppler–shifted frequencies and radial group velocities approaches zero. This 

process may initiate outer wind maxima by weakening the mean–flow just inward 

from the critical radius. The waves are confined to a relatively narrow annular 

waveguide because of their slow tangential phase velocity and the narrow interval 

between the Rossby wave cut–off frequency, where the radial wavenumber is locally 

zero, and the zero frequency, where it is locally infinite.  
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INTRODUCTION 

 

Theoretical Vortex Rossby waves (VRWs) resemble observed spiral bands in 

hurricanes. Previous studies were based upon analytical solutions with idealized 

mean flows. This research offers a numerical perspective that is computationally 

and conceptually simpler.  

The solution’s vorticity fields are narrow, relatively tightly wound spirals, 

consistent with earlier works. By contrast, the streamfunction and geopotential form 

broad more-or-less circular gyres. Propagating VRWs exist in an annular waveguide 

bounded by an inner radius where the waves frequency is Doppler shifted to the 

Rossby-wave cut off frequency and an outer radius where it is Doppler shifted to 

zero and the waves are absorbed. They transport vorticity and wave energy outward 

and angular momentum inward.  
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TROPICAL CYCLONES  

 

PHYSICAL PROPERTIES 

Tropical Cyclones are counterclockwise rotating (in the Northern Hemisphere) 

convective vortices formed from pre-existing disturbances (such as African easterly 

waves) over ocean waters warmer than 26° C. They are warm-core systems that 

move as a coherent objects and evolve slowly on times scaled by the orbital period of 

air circulating around the center. The eye contains low central pressure, calm winds 

at its center, and a few low-level clouds. The eyewall encompasses the radius of 

maximum winds (RMW) and is characterized by deep convective clouds that extend 

to the tropopause. Around the eye, spiral rain bands rotate cyclonically at a speed 

slower than the tangential wind (e.g., MacDonald 1968; Willoughby, 1988; 

Montgomery and Kallenbach, 1997).   

 

SPIRAL RAIN BANDS 

Spiral rain bands are elongated strands of precipitating clouds and convection. 

They rotate cyclonically within the hurricane and wrap around the vortex. 

Depending upon the size of the vortex itself, these bands can extend hundreds of 

kilometers from the eyewall (Romine and Wilhelmson 2006). Geometrically they can 

be represented as trailing equiangular spirals (Senn and Hiser 1959). They appear 

to propagate outward as they are advected cyclonically downwind by the axially 

symmetric mean flow with velocities lower than the mean tangential wind. One 
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theory of their genesis is linked to energy released by the exchange of potential 

vorticity anomalies within the symmetric vortex (e.g., Guinn and Schubert 1993). 

Accordingly, spiral bands can be interpreted as Vortex Rossby Waves.  

MacDonald (1968) first suggested that spiral rain bands in hurricanes are 

Rossby waves that propagate upstream upon the negative radial gradient of mean-

vortex relative vorticity. McDonald’s interpretation is analogous to mid-latitude 

Rossby wave propagation on the meridional gradient of planetary vorticity. The 

Rossby wave hypothesis was supported because the spiral bands tilt upstream, move 

more slowly than the mean wind, and convective cells advect through the bands. 

Quantitatively, if Rossby waves are present, then they should transport angular 

momentum inward and wave energy outward. In the beginning of the Vortex Rossby 

Wave theory, these ideas were hard to verify because of poor quality of aircraft data 

and because cells in the spiral bands continuously grew and dissipated.     

Alternatively, Willoughby (1977, 1978) proposed that spiral bands are inward 

propagating inertia-buoyancy (IB) waves. Simulated bands in this model exhibited 

transport of energy towards the center of the vortex and outward transport of 

angular momentum. The wave phase propagation was upstream, against the mean 

flow, slower than the mean flow (like Rossby waves), so that the waves were 

advected downstream. If the cyclone was strong enough (maximum velocity > 50 

msˉ1), IB waves could be Doppler shifted to the Brunt Väisälä (Buoyancy) frequency. 

At the critical radius, where their intrinsic frequency was Doppler shifted to the 

Buoyancy frequency, the horizontal wavenumber became locally infinite and the 

waves were absorbed. Willoughby (personal communication) initially attempted to 
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apply this line of reasoning to VRWs but was unable to simulate narrow trailing 

spirals that extended over substantial radial intervals. Slow intrinsic phase 

propagation was a key obstacle. 

In the Intermittently Forced Vortex Rossby wave analysis, the VRWs’ are 

confined in a waveguide between the cut-off frequency radius and the critical radius, 

where the frequency is Doppler-shifted to zero. The waveguide is the only area 

where the VRWs can propagate and transfer wave energy and angular momentum 

radially. The critical radius phenomenon, which is not clearly discussed in previous 

literature, can be understood by analogy with the IB waves’ critical radius their 

frequencies are Doppler-shifted to the Brunt Väisälä frequency (Willoughby 1977). 

 

DYNAMIC AND THERMODYNAMIC PROPERTIES: SOME THEORIES OF 

INTENSIFICATION AND WEAKENING  

Heat and angular momentum sources influence symmetric vortex behavior. The 

dominant control of TC intensity is the oceanic energy source. The symmetric 

response to convective latent heat release is constrained by thermodynamic stability, 

inertial stability and baroclinicity. Surface frictional convergence of moist enthalpy 

in the boundary layer feeds cumulus clouds that release latent heat into the free 

atmosphere in the vortex core. Convective heating is generally strongest in the 

eyewall where it forces mean ascent, deep convergence in the lower troposphere, and 

outflow in the upper troposphere. The outward flowing air eventually sinks because 

of adiabatic cooling at larger radius. This secondary circulation is characterized by 
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convergence in and just above the boundary layer, upward vertical motion coincident 

with the eyewall heat source, upper divergence, and downward vertical motion far 

from the center.    

The thermodynamic stability is essentially fixed; however, inertial stability and 

baroclinicity vary spatially and temporally as the vortex intensity changes. 

Baroclinicity constricts the motions due to the heat source near the radius of 

maximum winds. It allows inflow to penetrate past the RMW into the strong 

vorticity of the eyewall, leading to vortex intensification. Inertial stability localizes 

the frictional convergence beneath the eyewall, focusing latent heat release inside 

the radius of maximum winds. The eye has the strongest inertial stability because 

the tangential wind increases outward so that the angular momentum has a sharp 

radial gradient. Where the gradient of angular momentum is tight, the vortex is 

very inertially stable. Therefore, the vortex intensifies because latent heat release 

forces vertical motion that, in turn, produces strong radial motions across the tight 

gradients. The high values of inertial stability concentrate vertical motions just 

inside the RMW (Eliassen, 1952; Shapiro and Willoughby, 1982; Schubert and Hack, 

1982; Pendergrass and Willoughby, 2009).    
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PREVIOUS WORKS 

 

INTRODUCTION TO VRW THEORY 

Guinn and Schubert (1993) analyzed Rossby wave characteristics and the 

relationship between spiral bands and the potential vorticity (PV) field. Friction and 

mass sources or sinks were neglected in their f-plane, shallow water PV model. Their 

waves propagated on a circular, piecewise continuous distribution of mean-vortex 

PV, such that PV perturbations appeared as undulations of the boundaries.  By 

analogy with the general circulation, PV contours assumed sinusoidal wave 

patterns; centers of positive and negative PV propagated upwind (westward in the 

general circulation case). In a “Surf Zone,” where the PV gradients were relatively 

weak, the radial group propagation slowed, resulting in accumulation of wave 

energy and wave breaking. There, spiral bands became filamented and transferred 

their PV to the mean flow. In reality, the waves simulated in this model were strictly 

linear, thus, they did not break. Instead, wave energy accumulated in the surf zone 

where both the Doppler-shifted frequency and radial group velocity approached zero. 

Ultimately, the model’s Newtonian friction absorbed the waves.   

Shapiro and Montgomery (1993) used the asymmetric balance theory (AB) to 

model wave properties in hurricanes. It is the high Rossby number analog to the 

synoptic-scale quasigeostrophic formulation. The AB approximation, in which the 

second time derivative was assumed to be slow compared with the square of inertia 

frequency, allowed for balanced-wind calculations at large Rossby numbers. It also 
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allowed for divergent perturbations, whose radial wavenumber increased with time 

as wave packets propagated across the radially shearing mean flow, and energy 

transferred from the asymmetric flow to the axially symmetric vortex.    

The Eliassen Palm (1960) Theorem (EPT) was originally developed in a 

quasigeostrophic context to describe synoptic-scale flows in geostrophic and 

hydrostatic balance.  As re-derived for the hurricane case, the EPT describes 

variations of radial eddy fluxes of wave energy and angular momentum that interact 

with the mean flow only where the waves are forced or where they experience 

critical-surface absorption (McIntyre 1977, Andrews and McIntyre 1978a, 1978b, 

Boyd 1977).  

Montgomery and Kallenbach (1997) analyzed vorticity-wave structure of spiral 

bands that propagated outward and moved more slowly than that of the mean 

tangential wind. These VRWs exhibited the same characteristics identified by 

MacDonald (1968). The AB theory filtered out gravity and inertial waves. With zero 

heating or friction, wave propagation depended entirely upon conservation of 

potential vorticity. The Wentzel Kramers Brillouin (WKB) theory was used to 

compute the waves’ structure in both Rankine-like and continuous vortices. Energy 

and momentum transferred from asymmetric potential vorticity anomalies to the 

symmetric parts of mean flow could force mean-vortex intensity changes over time 

(Montgomery and Enagonio 1998). In the continuous-vortex wavenumber-one 

version of the problem, the vortex center was displaced and the circulation 

intensified as an initial wavenumber-one PV anomaly became symmetrized. During 
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this process, the asymmetric PV became wrapped around the vortex in increasingly 

tightly-wound spiral filaments. 

Möller and Montgomery (1999, 2000) confirmed intensification through 

incorporation of initial PV anomalies into axially symmetric shallow-water and 

three-dimensional baroclinic vortices. A key common factor in the work of Guinn and 

Schubert (1993) and Montgomery and his coauthors was formulation as an initial 

value problem in which a preexisting PV distribution evolved dynamically. In Guinn 

and Schubert (1993), outward diffusion from the high PV core became filamented 

into spiral bands. In Montgomery and coauthors’ work, the net cyclonic part of 

initial PV distribution became incorporated into the axially symmetric vortex, 

resulting in mean-flow intensification as the asymmetric PV filamented. Subsequent 

analyses (Hendricks et al. 2004 and Montgomery et al. 2006) of full-physics 

numerical simulations extended the latter paradigm to include convective 

generation of the PV anomaly.  

Asymmetric balance is not strictly applicable for wavenumbers less than 1. For 

example, wavenumber 2 instabilities do indeed exist (Terwey and Montgomery 

2002); however, their impact on the vortex is poorly understood. In an alternative to 

WKB or piecewise continuous analyses, Willoughby (1978), treated TC asymmetries 

as continuous trains of forced IB waves that conserved the tangential wavenumber 

and the apparent frequency (with respect to the ground) of the forcing as they 

propagated radially. This research combines these approaches through Fourier 

synthesis of a spectrum of intermittently forced waves.  
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The hypothesis that spiral bands are VRWs that propagate on the radial 

gradient of mean-flow relative vorticity has appealing aspects. They are advected 

downwind as a train of cyclonic and anticyclonic vortices moving around the vortex 

with less than the mean tangential wind speed. VRWs also propagate wave energy 

outward, even though their radial phase velocity is directed inward. Their Doppler-

shifted frequencies lie between the Rossby-wave cutoff frequency and zero. If they 

are excited near the radius of maximum wind, the waves should transport angular 

momentum inward toward the locus of forcing and carry wave energy outward 

toward the critical radius. The wave energy is absorbed as the Doppler-shifted 

frequency approaches zero. There, cyclonic (positive) and anticyclonic (negative) 

vorticity filaments become so elongated that their influences mask each other in 

Poisson-equation inversions to obtain the streamfunction or geopotential. The group 

velocity approaches zero so that the waves cannot propagate past the critical radius.  

 

SPIRAL BANDS AND NUMERICAL MODELING 

Inner and outer spiral rain bands are distinctive features of hurricane imagery. 

Numerical simulations seem to link their properties to Vortex Rossby waves. 

Extending the synthesis of Willoughby et al. (1984b) and Willoughby (1988), Houze 

(2010) studied separate categories of spiral rainbands: Distant rainbands, the 

primary rainband, and secondary rainbands. The distant rainbands form far from 

the storm center outside the vortex core. They are not considered VRWs since the 

mean-flow radial vorticity gradient there is so weak. The primary rainband is within 

the vortex core; however, it does not appear to be a Vortex Rossby wave. Secondary 
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rainbands are spiral bands, smaller than the primary rainband, with Rossby wave-

like radial and azimuthal propagation. Radar observations (Reasor et al 2000 and 

Corbosier et al 2006) confirmed that secondary rainbands have properties consistent 

with Vortex Rossby wave.     

In contrast with the vorticity perturbations considered previously, Nolan and 

Montgomery (2002) and Nolan and Grasso (2003) initialized perturbations on 

symmetric vortices as asymmetric and symmetric initial thermal anomalies. The 

adjustment process occurred in two stages: adjustment to balance and 

axisymmetrization of the resulting vorticity perturbation. Asymmetric thermal 

perturbations weakened the mean vortex in most cases; whereas symmetric thermal 

perturbations strengthened it, but only about as much as would be expected from a 

balanced response to the heat added. 

The airborne dual-Doppler radar data from Hurricane Olivia of 1994 (Figure 1) 

established a connection between asymmetric dynamics and observational data 

(Reasor et al. 2000 and Black et al. 2002). Within Olivia’s vortex, spiral bands of 

vorticity were located near the 20 km radius; deep convection in the eyewall may 

have forced VRWs, leading to outward energy fluxes and inward momentum fluxes 

consistent with the EP Theorem. However, there were many factors, such as local 

vertical shear, that could have contributed to the storms intensity changes and it 

was not apparent that these features alone caused the vortex to spin up. These 

wavenumber 2 barotropic non-divergent VRWs resemble observed spiral bands in 

hurricane Olivia, as discussed in the Appendix. 
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The Pennsylvania State University-National Center for Atmospheric Research 

Model Version 5 (PSU-NCAR MM5) is a non-hydrostatic mesoscale model that can 

simulate TC spiral PV bands on a high-resolution grid (Chen and Yau 2001). A 24hr 

numerical simulation reproduced formation of spiral bands observed during the first 

stage of Hurricane Andrew’s rapid deepening. Analysis of the rain bands, latent heat 

release, and PV anomalies suggested that convectively forced VRWs caused 

acceleration of the mean wind in the lower and middle troposphere both inside and 

outside the eyewall and deceleration in the upper troposphere within the eyewall 

(Chen et al. 2003).  

Hurricane Elena’s (1985) rapid intensification and weakening processes were 

examined in reflectivity data from the Weather Surveillance Radar-1957 (WSR-57) 

at Apalachicola, FL (Corbosiero et al. 2005 and Corbosiero et al. 2006). The data 

comprised 313 radar scans of the TC’s symmetric and asymmetric structure. The 

analysis focused on wavenumber 2 spiral bands. The outer and inner eyewall spiral 

Hurricane Olivia 1994 

 

Figure 1: Vertical and horizontal profiles of Hurricane Olivia 
(1994) on September 24 and 25 (Black et al. 2002).  
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bands that propagated outward while rotating cyclonically more slowly than the 

mean flow were consistent with the VRW theory. The inner spiral bands emerged a 

few hours before the vortex experienced rapid intensification, then disappeared, and 

did not reappear as the storm weakened before landfall. Similarly, Romine and 

Wilhelmson (2006) report small scale spiral band features in a numerical simulation 

of Hurricane Opal (2005). They suggested that these features may have influenced 

hurricane intensity changes through the transport of angular momentum into the 

core.  

In 2005, data were collected from three research aircraft flights into Hurricane 

Rita and Katrina during the Hurricane Rainband and Intensity Change Experiment 

(RAINEX, Judt and Chen 2010). Vortex Rossby waves appeared as the intense 

tropical cyclones experienced secondary eyewall replacement cycles. Potential 

vorticity changes within the hurricanes’ core seem to have initiated the eyewall 

replacement cycles. Only Rita experienced an unambiguous eyewall replacement 

cycles. It was evident that the secondary PV maximum generated by convective 

forcing in the outer eyewall became pronounced as the eyewall contracted and the 

secondary wind maximum developed.   

In this interpretation, wave energy was created by convection, radially 

transported by spiral bands, and then deposited back into the mean flow. 

Nonetheless, the amount of energy was often small. Furthermore, wave momentum 

fluxes may have weakened the vortex (e.g. Nolan et al. 2007). The result illustrated 

how small the effect of energy transfer from the asymmetric to symmetric flow can 

be. Most of the energy that allowed for vortex spin up was derived from symmetric 
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latent heat release. Although the vortex was somewhat affected by asymmetric 

processes, the dominant role of convection was forcing of the symmetric secondary 

flow (e.g., Schubert and Hack 1982) to intensify the primary vortex.  

Qiu et al. (2010) analyzed secondary eyewall formation and Vortex Rossby 

waves. The simulated vortex contained inward propagating spiral rainbands and 

outward propagating Vortex Rossby waves. Convection in the spiral bands excited 

perturbations that moved PV toward the inner core of the vortex, while VRWs 

became elongated tangentially and compressed radially as they moved toward the 

outer vortex. Simultaneously, the primary eyewall shrank gradually, outer spiral 

bands shifted inward, and the vortex formed an intensifying secondary eyewall. The 

secondary eyewall ultimately became the new primary eyewall, which intensified 

rapidly, as a result of the VRW filamentation. According to Qiu et al. (2010), VRWs 

accelerate the mean flow in two ways. The first process implicated the theory 

projected by Montgomery and Kallenbach (1997) and the second method involved 

the interaction between the enhancement of convection and PV near the stagnation 

radius, i.e., the critical radius.   

Nguyen et al. (2010) suggested that development of tropical cyclones proceeds in 

alternating symmetric and asymmetric episodes. They simulated Hurricane Katrina 

of 2005, with the high-resolution version of the Australian Bureau of Meteorology 

operational model for tropical-cyclone prediction (TCLAPS). The first stage is 

symmetric. In response to circularly symmetric heating, the mean flow developed a 

ring-like PV structure in the eyewall. Then, barotropic-convective instability 

developed leading to the formation of asymmetric Vortical Hot Towers (VHTs). For 
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that reason, VHT’s may be interpreted as VRWs forced by asymmetric convection. 

The VHTs role was to redistribute potential vorticity and equivalent potential 

temperature as the vortex transitioned from a symmetric to an asymmetric state 

and the central pressure fell coincident with some weakening of the maximum wind. 

The wave momentum transports removed the eyewall PV maximum, setting the 

stage for renewed symmetric intensification.  
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VORTEX ROSSBY WAVES 

 

GENERAL STRUCTURE AND PROPAGATION 

While the symmetric response to heating is the dominant factor of TC intensity 

change, asymmetric motion that results from interaction with shearing 

environmental flows or internal dynamics, 

including VRWs, may also be important 

(Willoughby et al. 2007).  Asymmetric 

convection can excite Rossby waves that 

affect vortex development through eddy 

fluxes of angular momentum. The vorticity 

structure near the eyewall may generate 

disturbances that lead to the development 

of the Rossby waves. For example, a 

reversal of the vorticity gradient inside the 

RMW satisfies the necessary condition for 

barotropic instability (Kossin et al. 2000).         

 In this study we examine nondivergent VRWs forced by imposed vorticity 

sources and sinks that model the effect of convection in the eyewall. Vortex Rossby 

Waves’ phase and group velocities can be directed either outward or inward 

(Montgomery et al. 1995), but, as shown above, their tangential phase velocity is 

always directed upstream in a vortex with outwardly decreasing mean vorticity. The 

 

 

 

Figure 2: Simulation of Cyclonic and 
Anticyclonic Vortices in Tropical Cyclones. 
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waves propagate because upstream of the cyclonic eddies, outflow advects mean 

cyclonic vorticity outward from the vortex core, and upstream of the anticyclonic 

eddies inflow advects anticyclonic mean vorticity inward from the periphery. As a 

result, the wavetrain propagates upstream relative to the mean-flow (Figure 2).  

Although VRWs propagate upstream, their group and phase velocities are 

relatively slow (<10 msˉ1) in comparison to the (~20-50 msˉ1) mean-flow wind. Thus, 

they are advected around the vortex as a train (hereafter, wavetrain) of cyclonic and 

anticyclonic vortices that move downstream with somewhat less than the mean-flow 

speed. The simplest physical system that embodies VRWs’ rotational dynamics is a 

barotropic non-divergent model, as described in the next section.   
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Figure 3: Cylindrical coordinate 
diagram. 

DYNAMICS OF THE VRW BAROTROPIC NON-DIVERGENT MODEL  

 

VORTICITY  

The analysis begins with the linearized 

momentum equations in cylindrical coordinates 

(Figure 3). The variables used are ( )0V r , the mean 

tangential wind; r , radius; λ , azimuth angle 

(reckoned cyclonically from north);  u , radial 

perturbation wind component; v , tangential 

perturbation wind component; φ , perturbation 

geopotential; and 0f , Coriolis parameter.  

In equations (1.1) and (1.2), 0V
t r λ
∂ ∂
+

∂ ∂
represents the linearized individual 

(Lagrangian) derivatives; 0
0 0

2V f
r

ξ = +
 
is the inertial parameter; 0 0

0
V V f
r r

ζ ∂
= + +

∂  

is the mean-flow vorticity; and rF and Fλ are the imposed forcing derived from a 

vector forcing potential, A, such that 1
r

AF
r λ
∂

=
∂   

and AF
rλ

∂
=
∂

 . The formulation 

means that the forcing affects only the rotational part of perturbations, and not the 

divergent part. As shown in Figure 3, u  is positive outward, v  is positive 

cyclonically.  

 



18 
 

The linearized momentum equations are:     

0 0
0

2
r

u V u V f v F
t r r r

φ
λ

∂ ∂ ∂ + − + + = ∂ ∂ ∂ 
      (1.1), 

0 0 0
0

1v V v V V f u F
t r r r r λ

φ
λ λ

∂ ∂ ∂ ∂ + + + + + = ∂ ∂ ∂ ∂ 
     (1.2), 

1 0u u v
r r r t
∂ ∂

+ + =
∂ ∂

         (1.3). 

We form a vorticity equation by taking 1
r λ
∂
∂

 of (1.1) and 1
r r
∂
+

∂
 of (1.2) and 

simplifying,  

2
0 01 1 1

r
V u v F

t r r r r r r
ξ φ

λ λ λ λ λ
∂ ∂ ∂ ∂ ∂ ∂ + − + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

     (2.1), 

2
0 0 0 0

0
1 1

1  

V v v v V V u u u
t r r r r r r r r r r r

F
r r λ

ζ φζ
λ λ λ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      + + − − + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
∂ = + ∂ 

 
(2.2). 

We eliminate the geopotential terms by subtracting equation (2.1) from (2.3) and 

simplifying: 

0 0 0 0

0
0

1 1

1 1 r

V v v u v V V v
t r r r r r r r r

u u u F F
r r r r r rλ

ξ
λ λ λ λ

ζζ
λ

∂ ∂ ∂ ∂ ∂ ∂ ∂    + + − − − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∂ ∂ ∂ ∂     + + + = + −     ∂ ∂ ∂ ∂     

   (3). 
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The first term on the left is the Lagrangian derivative of the perturbation 

vorticity. To simplify, represent the difference between the vorticity and the inertial 

parameter as, 0 0 0 0 0
0 0 0 0

2V V V V Vf f
r r r r r

ζ ξ ∂ ∂     − = + + − + = −     ∂ ∂     
. So that,  

0 0
0

1 1

1 1 r

V v v u u u v u
t r r r r r r r r

F F
r r rλ

ζζ
λ λ λ

λ

∂ ∂ ∂ ∂ ∂ ∂ ∂    + + − + + − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∂ ∂   = + −   ∂ ∂   

   
(4).  

Because the model is non-divergent we can eliminate the vorticity stretching term, 

0
1u u v

r r r
ζ

λ
∂ ∂ + − ∂ ∂ 

, thus, 

0 01 1 1 r
V v v u u F F Q

t r r r r r r r rλ
ζ

λ λ λ
∂∂ ∂ ∂ ∂ ∂ ∂      + + − + = + − =      ∂ ∂ ∂ ∂ ∂ ∂ ∂      

  (5). 

 

STREAMFUNCTION 

Given that the flow is strictly nondivergent, it can be represented using a 

streamfunction ψ , such that 1u
r

ψ
λ

∂
= −

∂  
and v

r
ψ∂

=
∂

. Equation (5) becomes: 

2 2
0 0

2 2 2

1 1 1V Q
t r r r r r r r

ζψ ψ ψ ψ
λ λ λ

  ∂∂ ∂ ∂ ∂ ∂ ∂ + + + − =  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
    (6). 
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VORTICITY WAVE SOLUTION 

Sinusoidal wave solutions with tangential wavenumber n and frequency ω  are 

represented in terms of the complex exponentials and a radial structure function 

( ) ( ) ( ), , i t nr t r e ω λψ λ −= Ψ , where Ψ  is a function of r  alone. The unforced left side of 

equation (6) simplifies to obtain the dispersion relation for free waves. 

2 2
0 0

2 2 2

1 1 0nV d d d n
r dr r dr r d r r

ζω
λ

  ∂Ψ Ψ Ψ   − + + − Ψ =    ∂    
    (7), 

Which may be solved for the Doppler shifted frequency Ω and rearranged to get the 

apparent frequency with respect to the ground. 

0

0
2 2

2 2 2

=
1 1

n
nV r r

r d d d
dr r dr r d

ζ

ω

λ

∂ Ψ ∂   Ω = − −   Ψ Ψ Ψ  + + 
 

, or    (8), 

0

0
2 2

2 2 2
1 1

n
nV r r

r d d d
dr r dr r d

ζ

ω

λ

∂ Ψ ∂ = −
 Ψ Ψ Ψ

+ + 
 

      (9). 

By assuming a convenient functional form for ( )rΨ , we can then solve for the 

apparent frequency ω  (10) with respect to the ground and the Doppler shifted 

frequency Ω  (11). Writing Ψ  in terms of zero order Hankel functions ( )0 rH k rΨ = , 

where rk  represents the radial wavenumber, yields a locally valid dispersion 



21 
 

relation. It is not universally valid because 0 rζ∂ ∂  and 0V  are functions of r  so that 

rk must be a slowly varying function of radius. 

 

0

0
2

2
2r r

n
nV r r

r nk k
r

ζ

ω

∂ 
 ∂ = −
 

+ 
 

        (10),

 

 

0

0
2

2
2

=

r

n
nV r r

r nk
r

ζ

ω

∂ 
 ∂   Ω = − −     + 
 

       (11). 

The radial group velocity and phase velocities respectively are: 

0

0
2

2
2

r
r r

r

n
nV r rC

k k r nk r
r

ζ
ω

∂ 
 ∂ = = −

 
+ 

 

           (12),               

2
20

2

22
2

2

2 ζ
ω

 ∂  +  ∂∂   = =
∂  

+ 
 

r r

gr
r

r

n nk k r
r r r

C
k nk r

r

     (13).

 

 

Since the Doppler shifted frequency is always < 0 , when > 0rk , < 0rC  (inward) and 

> 0grC ; when < 0rk , > 0rC  (outward) and < 0grC , consistent with Figure 4.  
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LINDZEN-KUO SOLUTION 

Here, we obtain linear solutions with the Lindzen and Kuo (1969) for second-

order partial differential equations with boundary conditions imposed at both ends 

of the domain. The algorithm solves the second-order ordinary differential equation 

for ( )rΨ  subject to boundary conditions at both ends of the radial domain. Since the 

boundary points at the vortex center and r = 4000 km lie far outside the waveguide, 

0Ψ =  is appropriate.  

The differential equation 
2

2 ( ) ( )d dg r h r Q
dr dr
Ψ Ψ
+ + Ψ =

 
can be written in finite 

difference form as, 

1 1 1 1
2

2
( ) 2

n n n n n
ng h Q

r rδ δ
+ − + −Ψ +Ψ − Ψ Ψ −Ψ

+ + Ψ =           (14).  

 

Figure 4: Rossby Wave Dispersion Relation. 
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1 12 2 2

1 2 1
( ) 2 ( ) ( ) 2n n n

g gh Q
r r r r rδ δ δ δ δ− +

     
− Ψ + − + Ψ + + Ψ =     

     
  (15).  

If, 2

1 ( )
( ) 2

n
n

g rA
r rδ δ

= − , 2

2 ( )
( )n nB h r

rδ
= − + , and 2

1 ( )
( ) 2

n
n

g rC
r rδ δ

= +  the radial 

structure equation in finite difference form becomes,  

1 1n n n n n nA B C Qψ ψ ψ− ++ + =         (16). 

The solution for equation (16) is: 

1n n n nα β+Ψ = Ψ + , or, 1 1 1n n n nα β− − −Ψ = Ψ +  for 1,2,3,...n N=     (17). 

Substitution into equation (16) produces: 

[ ]
[ ]

1 1 1

1 1 1

n n n n n n n n

n n n n n n n n n

A B C

A B A C Q

α β

α β ψ
− − +

− − +

Ψ + + Ψ + Ψ

+ Ψ + + =
      (18), 

[ ]
[ ]
[ ]

1
1

1 1

n n nn
n n

n n n n n n

Q AC
A B A B

β
α α

−
+

− −

−−
Ψ = Ψ +

+ +
      (19), 

such that, [ ] 1
1n n n n nC A Bα α −
−= − +  and [ ][ ] 1

1 1n n n n n nQ A A Bβ β α −
− −= − +   (20). 

Since both the inner and outer boundaries lie outside the waveguides and  1 0Ψ = , 

0NΨ = , then 1 0α = , 1 0β = . The arrays of 1 2 1, ,... Nα α α −  and 1 2, ,... Nβ β β  are computed 

using (20) in an outward pass from 0...n N= , and then (16) is applied on an inward 

pass to compute 1 2 1, ,...N N− −Ψ Ψ Ψ .     
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GEOPOTENTIAL 

Once we know ( )rΨ , it is possible to calculate the geopotential from the 

divergence equation. The derivation is analogous to the vorticity equation, but with 

reversed order of differentiation. Take 1
r r
∂
+

∂  
of (1.1) and 1

r λ
∂
∂  

of (1.2). 

0 0 0
0

2

2

1 r r

V Vu u u v vv
t r r r r r r r r

F F
r r r r r

ξ ξ
λ λ

φ φ

∂∂ ∂ ∂ ∂ ∂ ∂      + + + − − +      ∂ ∂ ∂ ∂ ∂ ∂ ∂      
∂∂ ∂

+ + = +
∂ ∂ ∂   

 (21.1), 

2
0

0 2 2

1 1 1 1V v u F
t r r r r r

λφζ
λ λ λ λ λ

∂ ∂ ∂ ∂ ∂ ∂ + + + = ∂ ∂ ∂ ∂ ∂ ∂ 
     (21.2). 

Here, the radial gradient of the inertia parameter 0

r
ξ∂
∂

 can be written as 

0 0
0

2 2V Vf
r r r r
∂ ∂   + =   ∂ ∂   

. Adding (21.1, 21.2), collecting similar terms, substituting 

and, simplifying yields:   

0 0 0

2 2

0 0 2 2 2

1 2

1 1 1 1  r r

V u u v V u V v
t r r r r r r r r

v v u F F F
r r r r r r r r r r

λ

λ λ λ

φ φ φξ ζ
λ λ λ

∂ ∂ ∂ ∂ ∂ ∂ ∂      + + + + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂      
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   − + + + + + = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 (22). 

Adding and subtracting 0
1 u
r

ξ
λ
∂ −  ∂ 

, and recalling that ( ) 0
0 0

1 V
r r r
ζ ξ ∂  − =  ∂  

, 
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( )0
0 0 0

2 2

2 2 2

1 2 1

1 1 1  r r

V u u v u v v uv
t r r r r r r r r

F F F
r r r r r r r

λ

ζ ξ ξ
λ λ λ λ

φ φ φ
λ λ

∂ ∂ ∂ ∂ ∂ ∂ ∂      + + + + − − − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂      
 ∂ ∂ ∂ ∂ ∂ + + + = + +   ∂ ∂ ∂ ∂ ∂  

 (23). 

Since the flow is rotational and the forcing is derived from a vector potential, 

0v∇ = and 0F∇ = . We rearrange the remaining terms to get a Poisson equation 

for the geopotential: 

( )
2 2

0 0 02 2 2

1 1 2 1u v v uv
r r r r r r r r
φ φ φ ζ ξ ξ

λ λ λ
 ∂ ∂ ∂ ∂ ∂ ∂   + + = − − − + + −     ∂ ∂ ∂ ∂ ∂ ∂    

    (24),  

or, 

  
( )

2 2 2

0 02 2 2 2

2 2

0 2 2 2

1 1 2 1

1 1

r r r r r r r

r r r r

φ φ φ ψ ψζ ξ
λ λ

ψ ψ ψξ
λ

   ∂ ∂ ∂ ∂ ∂
+ + = − − − −   ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
+ + + ∂ ∂ ∂ 

   (25). 

By analogy with the streamfunction, the solution for the geopotential takes the form 

( ) ( )i t nr e ω λφ − −= Φ , 

( )
2 2 2

0 02 2

2 2

0 2 2

1 2

1

d d n n d
dr r dr r r r dr

d d n
dr r dr r

ζ ξ

ξ

   Φ Φ Φ Ψ
+ − = − − Ψ −   

   
 Ψ Ψ

+ + − Ψ 
 

     (26), 

which can be solved for φ  with the Lindzen-Kuo algorithm, as above.      
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ELIASSEN PALM RELATION 

The Eliassen Palm relation provides insight into eddy wave energy and angular 

momentum fluxes as well as wave-mean-flow interactions (Painemal 2004). It is an 

excellent tool for better understanding of eddy dynamics and propagation of energy 

and angular momentum. The derivation begins with the linearized tangential 

momentum equation:  

0
0

1 0V v u
t r x r

φζ
λ

∂ ∂ ∂ + + + = ∂ ∂ ∂ 
       (27). 

Equation (27) can be written as 0
0

1 0nVi v u
r r

φω ζ
λ
∂ − + + =  ∂ 

; where, the 

Doppler-shifted frequency is 0nV
r

ωΩ = − . Next, we factor out n
r  

from the mean 

flow: 

0 0
1 0in r V v u

r n r
ω φζ

λ
∂ − + + =  ∂ 

       (28). 

Here,
 

0
rC

n
ω

=  so that the equation becomes ( )0 0 0
1 0invC V u

r r
φζ
λ
∂

− + + =
∂

. Since, 

1inv v
r r λ

∂
→ −

∂
, the equation becomes: 

( )0 0 0
1 1 0vC V u
r r

φζ
λ λ
∂ ∂

− + + + =
∂ ∂

       (29). 

Multiplying (29) by ( )0 0C V v φ− + +  and simplifying,   
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( ) ( ) ( )

( )

2
2

0 0 0 0 0 0 0

2

0 0 0

1 1
2

1 1 0
2

vC V C V uv C V v
r r

vC V u
r r

φζ
λ λ

φφ ζ φ
λ λ

 ∂ ∂
− + + − + + − + ∂ ∂ 

∂ ∂
+ − + + + =

∂ ∂

   (30), 

( ) ( )

( )

2
2

0 0 0 0 0

2

0 0

1
2

1 1 0
2

vC V C V uv u
r

C V v
r r

ζ φ
λ

φφ
λ λ

 ∂
− + + − + +    ∂  

∂ ∂
+ − + + =

∂ ∂

     (31). 

By integrating around a circle at fixed radius, 
2

0

() ()d
π

λ〈 〉 = ∫ , all exact 
λ
∂
∂  

derivatives integrate to zero, eliminating the vorticity terms, so that 

( )0 0 0C V uv uφ− + 〈 〉 + 〈 〉 = .  Next we multiply n r
r n

 and substitute for Ω :  

0r uv u
n

φΩ
− 〈 〉 + 〈 〉 = , or  r uv n uφΩ 〈 〉 = 〈 〉      (32). 

In (32), the product of the Doppler-shifted frequency with the eddy angular 

momentum flux equals the eddy geopotential flux. Since for VRWs 0Ω < , this 

relation shows that outward propagating wave energy, 0uφ〈 〉 > , requires that 

angular momentum must propagate inward, 0r uvΩ 〈 〉 < . 

 The propagation of wave-energy packets is naturally away from the source. For 

forcing in the eyewall, energy from the locus of the forcing propagates both inward 

toward the cut-off radius and outward toward the critical radius. Near the critical 

radius, at the outer edge of the waveguide, the group velocity is almost zero; here, 

the wave-energy packets stagnate and are eventually absorbed. At the inner edge of 

the waveguide, the frequency is Doppler shifted to the cut-off frequency, the energy 
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is reflected, travels outward, back across the RMW to the outer boundary of the 

waveguide where it, too, is absorbed near the critical radius.  

The initially inward propagating energy packets support an outward angular 

momentum flux that is balanced by angular momentum carried by the waves 

reflected from the inner boundary of the waveguide where Ω  equals the cut-off 

frequency. The initially outward propagating packets carry energy towards the 

critical radius and angular momentum toward the locus of forcing. Thus, there is a 

divergence of wave energy from the source, a convergence of wave energy around the 

critical radius, a divergence of angular momentum from the neighborhood of the 

critical radius, and a convergence of angular momentum where the waves are forced 

near the RMW, which in turn intensifies the strongest winds. The present 

wavenumber 2, barotropic, non-divergent model is the simplest one that represents 

the rotational dynamics of this process.        
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Figure 5: The forcing time series calculated 
from the Fourier series. 

 

 

 
 

Figure 6: The forcing spectrum. The squares 
and circles are the real and imaginary values 
and the dashed lines represent the 
magnitude of forcing. 

WAVENUMBER 2 FORCING 

 

FORCING 

The forcing used here is cyclic with 

alternating active and quiescent intervals. 

While the forcing is active, it rotates with 

frequencyω  that corresponds to a period of 

2206 s. At the initial startup time, the 

forcing turns on and remains on for 4412 s, 

or ¼ of the total period. This is the Active 

time in Figure 5. The remaining ¾ of the 

period is quiescent. The forcing is 

turned off until the beginning of the 

next period. In this representation, the 

forcing rises to a maximum and 

subsides. Subsequently, the waves 

propagate and ultimately dissipate, 

returning to the initial startup 

configuration by the end of the period at 

17646 s.  

The forcing is represented as a superposition of sinusoidal Fourier components 

(e.g. Churchill 1963). The harmonics of the complex forcing interfere constructively 
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during the active phase and interfere destructively during the quiescent phase. Each 

harmonic has a constant amplitude and relative phase determined by its complex 

Fourier coefficient. The frequency of the thn harmonic is n times the frequency of the 

fundamental. A spectrum of 28 harmonics is adequate to represent the forcing with 

minimal Gibbs phenomenon.  

The forcing spectrum (Figure 6) shows the distribution of the amplitude and 

phase for harmonics −6 to 22. The green squares correspond to the imaginary parts; 

the blue circles represent real parts; and the dashed curve is the magnitude of the 

forcing. Peak spectral amplitude corresponds to the 8th harmonic, which is also the 

rotation frequency of the forcing while it is active. In this case, the frequency at the 

peak amplitude is 0.6 of the rotation frequency of air moving with the wind at the 

radius where the forcing is applied. The choice of 0.6V/r produces the widest 

waveguide for the 8th harmonic and is consistent with the observed rotation of 

eyewall convection (e.g., Black et al. 2002 and Figures A4 and A5). Only harmonics 4 

through 12 contained power levels that contributed significantly to the wave energy.  

 

FREQUENCY VARIATION AND ANGULAR MOMENTUM TRANSPORT 

 Vortex Rossby waves can propagate only when their Doppler shifted frequency is 

between the critical frequency, 0Ω = , and the cut-off frequency, r
n r

ζ∂
Ω = −

∂
 . These 

frequencies define the VRW passband, and the radii where the Doppler-shifted 

frequencies equal the cut-off frequency and zero define an annular waveguide within 

which VRWs can propagate. The latter frequency is the most negative frequency 
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that can sustain sinusoidal vorticity waves. The radial wavenumber rk  goes to zero 

as the waves approach the Rossby wave cut-off frequency (Figure 7).  

Initially, the forcing will generate some inward propagating waves. Once these 

waves’ frequencies reach the cut-off frequency, their tangential propagation is like 

one dimensional Rossby waves and their energy is reflected outward. Conversely, rk  

goes to infinity as the Doppler shifted frequencies of outward propagating waves 

approach zero frequency at the critical radius. The wave phase lines become more 

tightly packed with increasing radius and the wave energy is absorbed. Some of the 

wave energy may leak past the critical radius if there is an outer waveguide where 

the waves can propagate. Nevertheless, the overall energy propagation past the 

critical radius is small.  

 

Figure 7: Wave Propagation. The left diagram displays the Doppler 
shifted frequencies (blue line) and the apparent frequency (green line). 
The forcing (black dot) is placed at r = 25km. The shaded area defines the 
waveguide where Rossby waves can propagate. The upper right diagram 
shows the propagation as the waves approach the Rossby wave critical 
radius. Here, the waves are tightly filamented and absorbed. The lower 
right diagram illustrates the propagation as the waves approach the 
Rossby Waves cut-off frequency where they are reflected. 



32 
 

 

Figure 8:  Wavenumber 2 Doppler Shifted Frequency of Harmonic 
Numbers 4, 6, 8, 10, and 12. 

 

WAVEGUIDES 

Harmonics 4, 6, 8, 10, and 12 with tangential wavenumber 2 forcing propagate in 

a set of waveguides that extends from a minimum of 14 km radius for the 4th 

harmonic to a maximum of 40 km for the 10th harmonic. Locations of the cut-off and 

critical radius are different for each harmonic (Figure 8). The waveguide for the 8th 

harmonic extends from 17 km to 33 km, and the 12th harmonic has an additional 

outer waveguide from 44 km to 50 km. Because the fundamental frequency is 

multiplied by the harmonic index, the negative frequency of the 4th harmonic 

number is less negative than the frequency of the 12thharmonic. Therefore, the 

critical radius and cut-off frequency are located farther from the center for higher 

harmonics.  
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The waveguides are widest for harmonics 6, 8, and 10. These forced waves can 

easily transport energy between the cut-off and the critical radii. The 8th harmonic 

can propagate from 17 km to 35 km for a total width of about 18 km. The low 

frequency of the 4th harmonic moves the cut-off radius to 15 km but it also causes 

the critical radius to lie at 25 km. Thus, this wave can propagate in a waveguide 

only 10 km wide. 

 The solution for the 12th harmonic is different. Here, the high frequency places 

the cut-off frequency farther away from the center, at about 20 km. The waves 

quickly encounter another cut-off boundary before they reach the critical radius. 

Thus, the waves are potentially trapped between two cut-off radii at 20 km and 28 

km radius and between yet another cut-off at 45 km and the critical radius at 50 km. 

The waves can “tunnel” only a small amount of energy into the outer waveguide. 

Consequently, the 12th harmonic presents a complicated structure and does not 

sustain strong radial VRW energy propagation. Since harmonics smaller than 4 

have negative frequencies that are too low and harmonics larger than 12 have 

negative frequencies that are too high, they do not sustain propagating waves. 
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WAVENUMBER 2 SOLUTIONS 

 

The wavenumber 2 phases of the forcing, streamfunction, vorticity, and 

geopotential span 135 degrees of azimuth relative to the 8th harmonic. The forcing is 

near strongest at time t = 2400 s (Figure 9) while the amplitude continues to 

increase through t = 3600 s (Figure 11a). The vorticity fields in this model behave 

much like those in previous studies (e.g., Montgomery and Kallenbach, 1997). The 

streamfunction and geopotential reveal VRW dynamics and the relationship among 

the forcing, vorticity, and wind fields. Because the vorticity is the Laplacian of the 

streamfunction, the streamfunction and vorticity tend to be 180 degrees out of 

phase. Since solving the Poisson equations for streamfunction or vorticity is a 

powerful smoother, streamfunction and geopotential are much less noisy fields than 

vorticity. 
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 The radial geopotential flux represents energy propagating with the radial 

group velocity of each harmonic. Moreover, the energy transports and momentum 

are connected through the Sawyer-Eliassen relation so that wave energy and 

momentum propagate in opposite directions for 0Ω < . The geopotential’s radial 

structure is similar but not identical to the streamfunction’s solutions. 

 

HARMONICS 4, 6, 8, 10, AND 12 

The wavenumber 2 model yields forcing, streamfunction, vorticity, and 

geopotential for harmonics 4, 6, 8, 10, and 12, which are the basis for analysis of the 

wave properties. In Figures 10a-e, the upper four diagrams display the nth harmonic 

radial structure and eddy fluxes as functions of radius, while the lower four 

diagrams are fields of the two dimensional solutions. In the upper group, the upper 

 
Figure 9: Complete Forcing, Streamfunction, 
Vorticity, and Geopotential fields at time t = 
2400 seconds. 
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left panel shows the real and imaginary parts of the streamfunction; the lower left is 

the real and imaginary vorticity; the upper right is the eddy momentum flux; and 

the lower right is the eddy geopotential flux. The blue lines in the streamfunction 

and vorticity plot represent the real parts of the solutions and the green lines 

represent the imaginary parts. In the lower group, the upper left contour plot is the 

forcing; the upper right is the streamfunction; the lower left is the vorticity; and the 

lower right is the geopotential. It is important to keep in mind that the only time 

variation that these components exhibit is rotation with their specified frequencies.  

The 4th harmonic is weakly forced and has correspondingly small streamfunction, 

vorticity, and geopotential. The vorticity exhibits some filamentation near the 

critical radius and the streamfunction and geopotential gyres are more or less 

elliptical and relatively broad. The vorticity radial structure has two maxima: one 

near the base of the inner teardrop-shaped anomaly and the second defining the 

outer gyre. The maxima of the angular momentum and geopotential fluxes are more 

or less centered in the waveguide. As expected from the Eliassen-Palm relation for

0Ω < , 0uφ >  and 0r uv < .     

Harmonics 6, 8, and 10 display similar results for all wave properties. In the 6th 

harmonic, the streamfunction gyres begins to exhibit trailing-spiral structures and 

lag about 2π  behind the forcing center and have opposite signs. The vorticity 

anomalies are stronger with sheared edges, exhibiting tail-like filaments that wrap 

around the center near the critical radius. The filamented anomalies are located at 

approximately r = 30 km. Although the evanescent end of the geopotential flux 

extends beyond the critical radius, the magnitudes of the angular momentum and 
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geopotential fluxes within the waveguide are stronger than those of the lower 

harmonic numbers. 

The 8th harmonic is the most strongly forced and has the largest streamfunction 

and geopotential values. The streamfunction exhibits more pronounced trailing 

spiral structures and stronger gradients at 18-35 km radius. The 8th harmonic 

vorticity is filamented and tightly wound in the neighborhood of the critical radius 

at approximately 35 km. The radial structure of the vorticity exhibits three extrema: 

the first is at the inner boundary of the waveguide, and the second and third are in 

the region where the filamented spirals become tightly wound.  

The streamfunction for 10th harmonic is weaker. Vorticity anomalies are smaller, 

confined within the narrower waveguide, and even more tightly wound at the critical 

radius.  

The 12th harmonic is near the high-frequency end of the propagating part of the 

spectrum. The forcing is much like the forcing seen in the 4th harmonic. Even though 

the streamfunction and geopotential amplitudes are much smaller, the trailing 

spirals structure remains. The vorticity filamentation is evident at the critical 

radius but over a smaller radial interval.  
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Harmonic 4, 6, 8, 10, and 12 Wavenumber 2 Solutions 

 
Figure 10a: Wavenumber 2, 4th harmonic. 
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Figure 10b: Wavenumber 2, 6th harmonic. 
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Figure 10c: Wavenumber 2, 8th harmonic. 
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Figure 10d: Wavenumber 2, 10th harmonic. 
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Figure 10e: Wavenumber 2, 12th harmonic. 



43 
 

The results for all the harmonics are comparable with Figure 8. The forcing, 

streamfunction, vorticity, and geopotential characteristics fall within the 

waveguides for harmonic numbers 4, 6, 8, 10, and 12. By design, the 8th harmonic 

number has the widest radial interval.  

 

FORCING, STREAMFUNCTION, VORTICITY, AND GEOPOTENTIAL IN THE 

COMPLETE SOLUTION 

Figure 11 displays Fourier Synthesis of the total forcing, streamfunction, 

vorticity, and geopotential for the complete solution at two selected times during a 

complete cycle of 17,646 seconds. The forcing is active at the first of these times, t = 

3600 s and inactive at the second time t = 4800 s.   

At time t = 3600 s, the largest amplitudes occur. Somewhat after the time peak 

forcing, streamfunction and geopotential trailing spirals with vorticity masking are 

prevalent. Cool colors represent positive (anticyclonic) streamfunction values and 

warm colors represent negative (cyclonic) values. The gyres rotate counterclockwise 

following the centers of forcing with about 180 degrees phase lag. Because the 

streamfunction takes on the opposite sign from vorticity, the positive forcing and 

negative streamfunction gyre corresponds to cyclonic circulations while the negative 

forcing and positive streamfunction corresponds to anticyclonic circulations. The 

physical structure of these trailing spirals, however, differs from those documented 

in previous studies (e.g., Montgomery and Kallenbach, 1997).  
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At 4800 s, the model clearly depicts vorticity filamentation near the critical 

radius. Its characteristics are much like the features seen in previous studies—

sheared anomalies that wrap around the vortex and become increasingly tightly 

wound together near the critical radius. Late in the period (not shown here), the 

positive and negative vorticity filaments cancel to produce zero net local vorticity. 

The model’s streamfunction and geopotential, however, do not behave in the same 

way. Even though vorticity masking persists, the gyres of both dissipate once the 

forcing turns off.  

 

Wavenumber 2 Forcing, Streamfunction, 
Vorticity, and Geopotential 
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At the earlier time, the forcing has spun up positive (cyclonic) and negative 

(anticyclonic) streamfunction and geopotential gyres. During the interval between 

snapshots, the forcing, streamfunction, vorticity, and geopotential rotated almost 

180 degrees cyclonically. From time t = 0 up to time t = 4406 s (between the times 

illustrated), they complete two full rotations and the forcing has increased to its 

maximum and then decreased to zero. By the end of the first 3600 s, the model 

clearly depicts vorticity filamentation near the critical radius.  

After the forcing subsides, represented at time t = 4800 s, the spirals weaken 

slowly and ultimately decay almost completely before the next cycle begins. The 

vorticity, however, continues to stretch and wrap around the vortex. Because the 

vorticity pattern becomes strongly filamented by the end of the period, the net 

vorticity is near zero throughout the vortex. 

 

 
 

Figure 11: Wavenumber 2 solutions at times t 
= 3600 s and t = 4800 s. 
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STREAMFUNCTION AND VORTICITY OF THE COMPLETE SOLUTION 

This segment, illustrates Fourier synthesis of the complete wavenumber 2 

streamfunction (Figure 12, left panels) and vorticity (Figure 12, right panels). The 

images represent a complete cycle at intervals of 600 seconds, as before. Initially, 

the forcing has just turned on and the streamfunction is essentially zero, but, the 

vorticity plot contains some of the residual vorticity from the previous cycle (Figure 

12a). The residual is, however, small and does not significantly change the general 

structure of the field. The Newtonian dissipation parameter was adjusted to improve 

the appearance of the vorticity results by reducing the residual.  

By time t = 600 s, the streamfunction develops elliptical gyres that line up with 

tear-drop shaped vorticity anomalies of opposite sign (Figure 12b). After 

approximately 1800 s, trailing-spiral streamfunction structure and some vorticity 

masking becomes evident (Figure 12d).  

The vorticity and streamfunction reach maximum amplitude near 3600 seconds 

(Figure 12f, see also Figure 11a). The strongest streamfunction gradient is near the 

8th harmonic’s critical radius at ~ 20-25 km. The vorticity maximum is located at 

approximately r = 20 km, nearly the same radius. In the vorticity radial structure 

plot (Figure 10c), the components change sign near 30 km radius.  In Figure 12f, 

filamentation begins in the same region. Once the forcing weakens and finally stops, 

the streamfunction around the vortex center weakens as the wave energy 

propagates outward and the vorticity continues to filament more tightly near the 

critical radius (Figure 12i-l). Eventually, after 7200 s, the streamfunction amplitude 

dies away but highly filamented vorticity remains (Figures 12m-q). Near the end of 
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the cycle, the vorticity anomalies are very elongated and tightly wound. Thus, it 

implies that the net vorticity in the neighborhood of any point near the critical 

radius is virtually zero, so that net forcing in the Poisson solution for the 

streamfunction is weak, resulting in small streamfunction amplitude. As the next 

cycle begins, new vorticity is generated and entwined with the residual vorticity 

from the last cycle.     

The Wavenumber 2 results illustrate the relationship between the forcing, 

streamfunction, geopotential, and vorticity for the complete Fourier wavetrain. The 

results describe the evolution of streamfunction from elliptical gyres to trailing 

spirals and finally to vorticity damped filaments during the course of one complete 

cycle.  

(b)  

 

Streamfunction and Vorticity 
 

(a)   
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(q)  

Figure 12a-q: The streamfunction (left) and 
vorticity (right) for a complete solution in 600 
second intervals. 
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WAVENUMBER 3 AND WAVENUMBER 4 FORCING IN THE COMPLETE 

SOLUTION 

 

The wavenumbers 3 and 4 are modeled to evaluate the representativeness of 

wavenumber 2. In order to obtain the widest possible waveguide for the 

wavenumber 3 solution, the frequency at peak amplitude was increased to 0.85. As a 

result, only harmonic number 6, 8, and 10 fall within the Rossby-wave passband 

(Figure 13). The numbers of streamfunction and geopotential gyres, as well as the 

vorticity anomalies, increase and are confined to a radially narrower waveguide.  

As before, the solutions for (Figures 14a-e) harmonics 6 and 8 exhibit trailing 

streamfunction spirals and vorticity filamentation near the critical radius. Although 

within the VRW propagation range, the 10th harmonic is weakly forced and exhibits 

streamfunction spirals with distorted vorticity structure. To provide a more complete 

overview, the forcing, streamfunction, vorticity, and geopotential of the complete 

wavenumber 3 solution appear in Figure 15.  
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Figure 13: The Wavenumber 3 Doppler-Shifted frequency for 
harmonics 4, 6, 8, 10, and 12. 
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Harmonic 4, 6, 8, 10, and 12 Wavenumber 3 Solutions 

 

 
Figure 14a: Wavenumber 3, 4th harmonic. 
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Figure 14b: Wavenumber 3, 6th harmonic. 
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Figure 14c: Wavenumber 3, 8th harmonic. 
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Figure 14d: Wavenumber 3, 10th harmonic. 
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Figure 14e: Wavenumber 3, 12th harmonic. 
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(b) 

Wavenumber 3 Forcing, Streamfunction, Vorticity, 
and Geopotential 

 

 
(a) 
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In the wavenumber 4 solution (Figure 16) the ratio of the wave frequency to the 

wind’s orbital frequency was raised to 0.90. Here, the maximum width of the 

waveguide is 10 km and only harmonics 8 and 10 fall within the frequency passband 

(Figures 17a-e). The 8th harmonic exhibits well-defined trailing spirals and vorticity 

filaments near the critical radius. The geopotential shows trailing spirals as well. 

The 6th harmonic has similar streamfunction and vorticity results; however, the 

frequency does not fall within the passband.  

  

 
(c) 

Figure 15: Wavenumber 3 forcing, 
streamfunction, vorticity, and geopotential for 
the complete solution at time (a) t = 0 s, (b) t = 
3000 s  and (c) t = 4800 s  
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Figure 16: Wavenumber 4 Doppler-Shifted frequency for harmonics 
4, 6, 8, 10, and 12. 
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Harmonic 4, 6, 8, 10, and 12 Wavenumber 4 Solutions 

 

 

Figure 17a: Wavenumber 4, 4th harmonic. 
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Figure 17b: Wavenumber 4, 6th harmonic. 



64 
 

  

 

Figure 17c: Wavenumber 4, 8th harmonic. 
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Figure 17d: Wavenumber 4, 10th harmonic. 
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Figure 17e: Wavenumber 4, 12th harmonic. 



67 
 

 

 

 

 

 

(d)  

(c)  

(b)  

Wavenumber 4 Forcing, Streamfunction, 
Vorticity and Geopotential 

(a)  
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(h)  
Figure 18: The forcing, streamfunction, vorticity, 
and geopotential for the complete solution of the 
wavenumber 4 forcing at time t = 0, 600, 1800, 
3000 s.  

 

(g)  

 

(f)  

(e)  
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The results in the wavenumbers 3 and 4 differ slightly in structure. The 

frequency needed to attain the widest possible waveguide becomes a larger fraction 

of the winds’ orbital frequency and the width of the waveguides decrease with 

increasing tangential wavenumber. Of course, the numbers of distinct 

streamfunction and geopotential gyres increase even as the waveguide width 

decreases for higher wavenumbers.  

In general, of the solutions, wavenumber 2 provides the most information and 

exhibits the most realistic properties. The wavenumber 2 has the strongest and best 

organized streamfunction and geopotential spirals and transports wave energy and 

angular momentum most effectively. The best simulation of the vorticity 

filamentation process was presented in the wavenumber 2 forcing as well.  
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CONCLUSIONS 

 

Previous analysis of Vortex Rossby Waves (VRWs) used analytical solutions on 

idealized mean flows. The present results offer a straightforward numerical 

approach. The solutions are spiral-band like features that behave much like those 

observed in Tropical Cyclones, for example in Eastern Pacific Hurricane Olivia 1994.  

The VRWs modeled here are vorticity waves induced by crudely modeled 

convection localized near the radius of maximum winds in a barotropic 

nondivergent, but otherwise hurricane-like vortex. They are advected downstream 

as a train of cyclonic and anticyclonic trailing spirals. Physically, they apparently 

correspond to observed spiral rain bands that rotate cyclonically around tropical 

cyclones with a speed slower than the mean swirling flow.  

The Wavenumber 2 Non-divergent Barotropic Model captures much of the 

rotational dynamics of these bands when they are interpreted as Vortex Rossby 

waves.  The present Fourier-series solutions, in contrast with previous models, 

simulate intermittent forcing, resulting in a more realistic solution that reveals the 

evolution of the waves as they propagate radially and their harmonics interfere 

constructively or destructively. The forcing includes no net symmetric forcing and, 

since the forcing is sinusoidal in time and azimuth, there is no net cyclonic vorticity 

induced. The forcing in the model is purely rotational consistent with barotropic, 

nondivergent dynamics. 
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Propagating waves can exist only in a frequency passband between the Rossby 

wave cut-off frequency and zero Doppler shifted frequency. Geometrically, this 

passband defines an annular waveguide with the forcing localized near its inner 

boundary. A fraction of the waves initially propagates inwards toward the center of 

the vortex. As it approaches the Rossby wave cut-off frequency, it is reflected and 

subsequently propagates outward. Both these waves and those that initially 

propagated outward are become filamented and are ultimately absorbed at the outer 

critical radius.  

The wave momentum and geopotential fluxes are consistent with the Eliassen-

Palm relation. Since the Doppler-shifted frequency is negative, they are oppositely 

directed. The waves transport net angular momentum inward and net wave energy 

outward. Angular momentum flux divergence near the critical radius decelerates the 

mean flow there and angular momentum convergence from the cut-off frequency 

radius to the locus of forcing accelerates the mean flow. The vorticity perturbations 

that accumulate near the critical radius stretch into narrow cyclonic and 

anticyclonic bands that become filamented as they wrap around the vortex. The 

structures of the corresponding streamfunction and geopotential gyres, however, are 

predominantly relatively broad trailing spirals and show less evident filamentation 

than the vorticity.  

It is important to understand the relationship between VRWs and radial 

transports of angular momentum. This is the mechanism that determines how 

VRWs may cause vortex intensity changes. The Eliassen Palm theorem relates wave 

energy uφ  and angular momentum transports r uv , where ()  denotes 
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azimuthal integration (Eliassen and Palm 1960). Vortex Rossby waves, propagating 

in their passband of negative frequencies, generally transport energy outward and 

angular momentum inward toward areas with large vorticity at and inside the 

radius of maximum winds. This mechanism in turn can lead to contraction of the 

eyewall and intensification. However, at the outer end of the waveguide where the 

Doppler shifted frequency approaches zero, filamentation and the vorticity masking 

of tightly wound spirals means that there is small net vorticity in the neighborhood 

of points in this region. Although VRW’s can apparently influence intensity change 

for wavenumbers ≥ 2, their slow phase velocity limits their effect to a narrow radial 

interval generally outward from the locus of forcing.  
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APPENDIX 

 

Comparison with Observed Spiral Bands 

 

NOAA’s WP-3D research aircraft, N42RF and N43RF, observed Hurricane Olivia 

on 24 and 25 of September 1994. The evolution of Olivia’s vortex was controlled by 

shear, abortive formation of a concentric outer eyewall, and motion over decreasing 

ocean surface temperatures.  

Convectively induced spiral bands in and just outside Olivia’s eyewall had a gret 

deal in common with the VRWs simulated here. Radar echoes and updrafts rotated 

around the vortex within 60-80% of the tangential mean wind (Figures A4 and A5). 

Convection was organized as axisymmetric rings during times of weak shear. In 

stronger shear, asymmetric convection was localized in convergence on the 

downshear side of the eye and subsequently rotated cyclonically around it. Since the 

cells’ intensity fluctuated, they were relatively short lived. The updrafts rotating 

near the eye reached their maximum reflectivity on the left side of the shear 

direction and dissipated up-shear of the center.  

The Intermittently Forced Vortex Rossby waves’ wavenumber 2 forcing was 

designed to simulate these features. As shown in Figures A4 and A5, the forcing 

rotates at 60% of the mean tangential wind speed of 50 ms-1, similar to the speed of 

the spiral rain bands in Olivia. The locus of the forcing is at and inward from the 

wind maximum. This geometry is parallel that of Olivia’s strong convective updrafts. 
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Figure A1: Hurricane Olivia on 24 Sep 1994; (a) Doppler-determined relative-
wind holograph, storm motion, and earth-relative vertically averaged wind at 
1946 UTC. (b) A 240 X 240 km PPI composite for 1934-1956 UTC. (c) A profile 
of flight-level observations by N42RF on an east-northeast-to-west pass across 
the center at 600 hPa, 1923-1955 UTC (Black et al. 2002). 
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Figure A2: Hurricane Olivia on 25 Sep 1994; (a) Doppler-determined relative-
wind holograph, storm motion, and earth-relative vertically averaged wind at 
2106 UTC. (b) A 240 X 240 km PPI composite for 2054-2117 UTC. (c) A profile 
of flight-level observations by N42RF on south-to-northwest pass across the 
center at 700 hPa, 2054-2118 UTC (Black et al. 2002). 
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Figure A3: Hurricane Olivia on 25 Sep 1994; (a) Doppler-determined relative-
wind holograph, storm motion, and earth-relative vertically averaged wind at 
2349 UTC. (b) A 240 X 240 km PPI composite for 2338-2359 UTC. (c) A profile 
of flight-level observations by N42RF on an east-to-west pass across the center 
at 700 hPa, 2338-0000 UTC (Black et al. 2002). 
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Figure A5: Hurricane Olivia on 25 Sep 1994; Time-azimuth plots 
of individual convective cells in Olivia’s eyewall from 2023-0024 
UTC on 25 Sept 1994 (Black et al. 2002).  

 

Figure A4: Hurricane Olivia on 24 Sep 1994; Time-azimuth plots 
of individual convective cells in Olivia’s eyewall from 1935-2304 
UTC on 24 Sept 1994 (Black et al. 2002).  
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