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ABSTRACT OF THE DISSERTATION 

THE ROLE OF REDOX SIGNALING IN THE MOLECULAR MECHANISM OF 

TAMOXIFEN RESISTANCE IN BREAST CANCER. 

by 

Nana Aisha Garba 

Florida International University, 2011 

Miami, Florida 

Professor Deodutta Roy, Major Professor 

The emergence of tamoxifen or aromatase inhibitor resistance is a major problem in the 

treatment of breast cancer. The molecular signaling mechanism of antiestrogen resistance 

is not clear. Understanding the mechanisms by which resistance to these agents arise 

could have major clinical implications for preventing or circumventing it. Therefore, in 

this dissertation we have investigated the molecular mechanisms underlying antiestrogen 

resistance by studying the contributions of reactive oxygen species (ROS)-induced redox 

signaling pathways in antiestrogen resistant breast cancer cells. Our hypothesis is that the 

conversion of breast tumors to a tamoxifen-resistant phenotype is associated with a 

progressive shift towards a pro-oxidant environment of cells as a result of oxidative 

stress. The hypothesis of this dissertation  was tested in an in vitro 2-D cell culture model 

employing state of the art biochemical and molecular techniques, including gene 

overexpression, immunoprecipitation, Western blotting, confocal imaging, ChIP, Real-

Time RT-PCR, and anchorage-independent cell growth assays.  We observed that 

tamoxifen (TAM) acts like both an oxidant and an antioxidant. Exposure of tamoxifen 

resistant LCC2 cell to TAM or 17 beta-estradiol (E2) induced the formation of reactive 
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oxidant species (ROS). The formation of E2-induced ROS was inhibited by co-treatment 

with TAM, similar to cells pretreated with antioxidants. In LCC2 cells, treatments with 

either E2 or TAM were capable of inducing cell proliferation which was then inhibited by 

biological and chemical antioxidants. Exposure of LCC2 cells to tamoxifen resulted in a 

decrease in p27 expression. The LCC2 cells exposed to TAM showed an increase in p27 

phosphorylation on T157 and T187. Conversely, antioxidant treatment showed an 

increase in p27 expression and a decrease in p27 phosphorylation on T157 and T187 in 

TAM exposed cells which were similar to the effects of Fulvestrant. In line with previous 

studies, we showed an increase in the binding of cyclin E–Cdk2 and in the level of p27 in 

TAM exposed cells that overexpressed biological antioxidants. Together these findings 

highly suggest that lowering the oxidant state of antiestrogen resistant LCC2 cells, 

increases LCC2 susceptibility to tamoxifen via the cyclin dependent kinase inhibitor p27. 
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I. INTRODUCTION 

The fact that a majority of breast cancer express estrogen receptor alpha (ERα), has 

informed the use of antiestrogens as one of the drugs of choice for ER+ breast cancers. 

Anti-estrogens which act by inhibiting the function of ERs include tamoxifen, raloxifen 

and fulvestrant1. Tamoxifen is the most commonly used treatment for patients with ER+ 

breast cancer and its use as a breast cancer preventative agent and an adjuvant therapy in 

early cancer has been shown to improve the overall survival2, 3. Furthermore, the 

extensive use of tamoxifen has made a significant contribution to the reduction in breast 

cancer mortality seen over the last two decades.  

 

However, in spite of the obvious benefits of tamoxifen in breast cancer treatment, almost 

all patients with metastatic breast disease and as many as 40% of patients receiving 

adjuvant tamoxifen eventually develop resistance and die from their disease1. Hence the 

issue of tamoxifen resistance has been a major setback in an otherwise successful 

treatment of ER+ breast cancer.  

  

Though a number of pathways have been proposed and explored, to date there has been 

no clear mechanism implicated in the development of anti-estrogen resistance. A hitherto 

unexplored mechanism involves the role of reactive oxygen species (ROS) in the 

mechanism of tamoxifen resistance. (ROS) comprise of either partially reduced 

metabolites of oxygen such as superoxide anions (O2
− •); peroxyl radicals (LOO.) and 

hydroxyl radicals (OH·) or non-radical molecules  like hydrogen peroxide (H2O2)  and  

singlet oxygen (1O2); which have a higher reactivity than molecular oxygen4.  They are 
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products of cellular metabolism which have been shown to induce oxidative stress. An 

excessive and/or sustained increase in ROS production has been implicated in the 

pathogenesis of cancer5, 6. Furthermore, ROS induced oxidative stress has been shown to 

initiate a number of different responses including cell proliferation and transformation; 

alteration of intracellular redox state and the oxidative modification of certain signaling 

proteins resulting in the post translational modification7 of their downstream targets. 

Interestingly, like estrogen, tamoxifen has been shown to induce ROS formation, making 

it probable that tamoxifen induced ROS generated as a result of prolong tamoxifen 

treatment of breast cancer patients may play a vital role in the development of tamoxifen 

resistance.  

 

As protection against oxidative stress, cells have several enzymic and nonenzymic 

antioxidants or reductants that maintain the intracellular redox environment in a 

principally reduced state. Typically the enzyme superoxide dismutase (SOD) catalyses 

the conversion of O2
− to H2O2, and then the H2O2 generated is degraded to H2O by 

several cellular enzymes, usually Catalase or glutathione peroxidase coupled with 

glutathione reductase8, 9. It is however interesting to note that in most cancer  tissue  the 

levels/ activity of manganese superoxide dismutase and  Catalase have been found to be 

almost always low. Making a case for the existance of a  pro-oxidative environment in 

cancer cells that may result in an oxidative stress surge and redox signaling culminating 

in uninhibited cell proliferation.  

 

 



 

3 

Hypothesis and Specific Aims  

We hypothesize that the conversion of breast tumors to a tamoxifen-resistant phenotype 

is associated with a progressive shift towards a pro-oxidant environment, as a result of 

chronic oxidative stress. We further postulate that an increase in reactive oxygen species 

(ROS) levels promotes either the loss of p27 inhibitory function or NRF-1 activation 

through the inactivation of protein tyrosine phosphates (PTPs) with consequent changes 

in p27 and/or NRF-1 phosphorylation.  

     

To test this hypothesis, we explored the following Specific Aims: 

Aim 1. To investigate whether anti-estrogens prevent estrogen-mediated progression of 

cell cycle by counteracting estrogen-induced ROS signaling. To further investigate if 

reducing the oxidative environment of anti-estrogen-resistant breast cancer cells restores 

the anti-proliferative action of tamoxifen.  

 

Aim 2. To determine mechanisms by which a pro-oxidative state may promote p27 

inactivation, and thus cell cycle progression. 

  

Aim 3. To determine mechanisms whereby a pro-oxidative state may promote oxidation 

of protein tyrosine phosphatase PTEN, NRF-1 activation and cell cycle progression. 

 

Findings of this study will elucidate the roles of the cellular redox state, redox signaling 

pathways, PTPs and p27 in anti-estrogen resistance, and may lead to new therapeutic 

strategies to delay or even prevent this important clinical problem. This is a new line of 
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research that may lay the groundwork for clinical trials of anti-estrogens plus antioxidant-

based drugs for the prevention and treatment of estrogen-dependent breast cancer.  

 

II. LITERATURE REVIEW: 

THE ROLE OF REDOX SIGNALING IN THE MOLECULAR MECHANISM OF 

TAMOXIFEN REISTANCE IN BREAST CANCER TREATMENT 

 

Abstract 

Anti-estrogens are one of the classes of drugs used to treat ER+ breast cancer. Since their 

discovery they have been the drugs of choice in breast cancer treatment; prevention and 

adjuvant therapy for early breast cancer cases. Although anti-estrogens have been 

beneficial to a large number of patients, unfortunately about 40% of breast cancer 

patients and a majority of patients with metastatic breast disease who were initially 

responsive to the drugs will relapse and die of the disease. In spite of the current break-

through in our knowledge of the molecular mechanisms that contribute to resistance, anti-

estrogen resistance remains a major setback in the treatment of ER+ breast cancer. In this 

review we examine the previously unexplored role of reactive oxygen species (ROS) and 

redox signaling in the molecular mechanism that contribute to breast cancer resistance to 

anti-estrogens. 

 

Introduction 

In the majority of invasive breast tumors estrogen receptor alpha (ERα) is often up-

regulated while ERβ is down-regulated. This finding is the basis for the therapeutic use of 
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antiestrogens, which are drugs that disrupt the actions of estrogen and ERα1. The types of 

antiestrogens used include those that inhibit the function of estrogen receptors such as 

tamoxifen, raloxifene, and ICI 182,780 (fulvestrant), or the aromatase inhibitors such as 

letrozole and exemestane which block the conversion of androgens into biologically 

active estrogens.Over the years the successful use of these groups of drugs has been 

plagued by the emergence of drug resistance, which to date remains a major problem in 

the treatment of breast cancer. 

 

Herein, we reviewed the role of estrogen and its receptors in the development of breast 

cancer and the function of tamoxifen as an antiestrogen. We also examined the role of 

reactive oxygen species (ROS) as signaling molecules and how they may induce 

antiestrogen resistance by altering the post-translational status of certain signaling 

proteins which are key players in the cell cycle.  

 

 An overview of Estrogen and ER action 

The human breast like that of other mammalian species contains both epithelial and 

mesenchymal components and a vast majority of  malignant tumors are epithelial in 

origin1.  

 

In normal breast cells, estrogen and estrogen receptors are critical regulators which 

enable the mammary epithelial cells to undergo proliferation, differentiation, apoptosis 

and remodeling in the course of the mammalian reproductive lifespan1, 10, 11.  
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Studies have shown that estrogens initiate different growth responses in tissues 

depending on the cell type, the dose and the timing of exposure 12. Moreover, it is now 

generally accepted that, in addition to its role in the promotion of breast tumors, estrogen 

also supports the growth of pre-neoplastic and malignant cells through ER-mediated 

signaling pathways13.  

 

The conventional model of estrogen action is based on its binding to ERα/β receptors, 

which initiates transcription either directly by binding to estrogen response elements 

(EREs) in the promoter region of target genes or indirectly through the phosphorylation 

of signaling proteins involved in cell cycle progression 14, 15. Overall, estrogen regulates 

the expression of many genes important for normal cell physiology and growth of some 

breast tumors 16. 

 

Both experimental and epidemiologic data suggest that estrogen plays a significant role in 

carcinogenesis17 , 15. In malignant breast tissue, the action of estrogen and its steroid 

receptors is dysregulated, resulting in a shift to proliferation without differentiation and 

apoptosis, and an increase in the percentage of epithelial cells expressing ERα. 

Additionally, cell proliferation makes a change from paracrine to autocrine growth 18 . It 

is noteworthy that the risk of breast cancer is, in part, due to the duration of proliferation 

without differentiation.  
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Estrogen Receptors (ER) 

Normal human breast cells contain two types of E2 receptors, namely ERα and ERβ, 

which are the products of separate genes. ERα is expressed in 15 – 30% of the luminal 

epithelial cells (so called estrogen receptor positive cells) while ERβ is more widely 

expressed in the mammary tissue1;19, 20. ERβ is co-expressed with ERα in the luminal 

epithelial cells, but can also be found in the myoepithelial cells as well as in the stromal 

cells. In the normal luminal epithelial breast cells, estrogen-dependent proliferation 

occurs in a paracrine manner with ERα containing cells producing growth factors that 

induce proliferation in adjacent estrogen-negative cells. 

 

Deletion of both ERα and ERβ genes has revealed the significance of E2 for normal 

female sex organ development and function 20;21. Both in vivo and in vitro studies in 

mammals have postulated that E2 plays a considerable role in the maintenance of bone22 , 

vascular integrity, and brain function. Estrogen has also been shown to be a significant 

growth and survival factor for human breast cancer cells 23, 24. ERs act principally as 

nuclear transcription factors, an event that is enhanced by ligand binding. Though a 

separate pool of receptors for E2 in the cytoplasm and plasma membrane have been 

identified, the mechanisms of action and cellular functions of these proteins are just 

beginning to be unraveled.  

 

Estrogen Receptors: Nuclear/genomic pathway 

The ‘genomic action’ of E2 occurs after a time-lag of at least 2 h following E2 

stimulation. This action accounts for some hormone functions in physiological and 
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pathological situations 25, 26.The nuclear ER contains domains lettered A through F, with 

activation function (AF)-1 (ligand independent) and AF-2 (ligand dependent) facilitating 

the transactivation of target genes27. 

 

In the so called ligand dependent pathway, ER functions in the nucleus as a 

transcriptional regulator of specific genes. The receptor protein has a ligand-binding 

domain (AF-2), several transcription activation domains, and a DNA-binding domain that 

interacts with specific regions in the promoter of target genes, including sites known as 

estrogen-responsive elements (ERE) 28-30. The binding of estrogen to ER induces 

phosphorylation of the receptor, alters its conformation, and triggers receptor 

dimerization. 

 

The ER protein in the nucleus can also modify transcription of genes through protein-

protein interactions. In this way, ER can function much like a coactivator protein itself by 

binding to other transcription factors and recruiting acetyltransferases to complexes 

bound to activator protein or SP-1 sites on DNA31. This is how estrogen helps to regulate 

genes encoding proteins such as cyclin D1, insulin-like growth factor I receptor (IGF-IR), 

and collagenase. ER has also been to be able to decrease the expression of many genes32. 

 

In the ligand-independent pathway, the estrogen receptor translocates to the nuclear 

membrane from the cytosol and can activate transcription in a ligand-independent 

fashion33. These transcriptional activities of ER have been called its classical or genomic 
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activity. From a functional perspective, a more appropriate term is nuclear-initiated 

steroid signaling. 

 

Membrane-initiated Estrogen signaling 

In contrast to the nuclear effects, ER functions that can occur very rapidly in the cell 

before new gene transcription takes place have been identified. This membrane-initiated 

steroid signaling could occur outside the nucleus or even in the cell membrane 34. A 

number of studies based on endothelial and breast cancer cells have been able to show 

that a small group of ER is positioned outside the nucleus in the cytoplasm or bound to 

the plasma membrane35, 36 37, 38. It is thought that the presence of a membrane-bound ER 

may explain the previously identified short-term effects of estrogen (occurring within 

minutes) in cultured cells39, 40. Further investigations have indicated that E2 rapidly 

activates signaling, such as calcium flux,41 phospholipase C activation 42 and inositol 

trisphosphate (IP3) generation. Most studies suggest that these actions necessitates E2 

binding to ERs. In neural cells, ERs can activate protein kinase C and protein kinase A. 

They can also uncouple opioidergic and gabanergic receptors from their effector 

signaling molecules40. These signaling events are likely to be as a result of E2 activation 

of G proteins. Therefore, ERs appear to be part of the large family of G-protein-coupled 

receptors (GPCR). After several G proteins are activated, E2-ER can then trigger 

signaling cascades that terminate in a cell biological function. 
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Antiestrogen (Tamoxifen) Action 

Tamoxifen belongs to a class of therapeutic agents called the selective estrogen receptor 

modulators (SERMs). These drug function as estrogen receptor (ER) antagonists in breast 

tissue and  as ER agonists in the endometrium, heart and bones43. 4-hydroxy-tamoxifen is 

an active metabolite of tamoxifen, which has been shown to compete for binding with 

natural estrogen to the ERα with high affinity44, 45. 

 

Subsequent to the antagonist binding to ERα, a different 3-dimensional structure is 

elicited in the receptor, which renders it unable to enhance specific gene expression. 

Therefore antiestrogens interrupt the estrogen-induced signals, which can result in the 

inhibition of cell proliferation, tumor growth arrest, and induction of apoptosis46; 47, 48. 

 

In vitro tamoxifen has been shown to induce G1 phase cell cycle arrest in ER-positive 

breast cancer cells exposed to estrogens. 1; 49, 50;51 creating an avenue by which genes that 

control cell cycle progression could significantly impact drug sensitivity and resistance. 

Furthermore, tamoxifen has the capacity to indirectly decrease levels of cyclin D152 .  

 

In vivo, tamoxifen inhibits estrogen-stimulated growth of MCF7 xenografts in mice and 

prevents development of breast cancer in the NMU and DMBA rodent models53, 54. 

Similar to estrogens, tamoxifen increases the expression of IGF-I and vascular 

endothelial cell growth factor in the uterus.55, 56 In clinical specimens acquired 

sequentially from patients with breast cancer, administration of tamoxifen has been 
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shown to reduce proliferation, upregulate ER expression, downregulate TGFα and induce 

stromal TGFβ157-60.  

 

Other classes of therapeutic agents are the selective estrogen receptor down regulators 

(SERDs) and aromatase inhibitors (AI). SERDs include ICI182780 (Fulvestrant), which 

is a pure estrogen antagonist with a 100-fold greater affinity for ER than tamoxifen. By 

binding ER it inhibits receptor dimerization and abrogates estrogen signaling17. 

Aromatase inhibitors are a second line therapy for post–menopausal patients who have 

progressed after tamoxifen treatment. They act by inhibiting the action of aromatase 

which is an enzyme necessary for the conversion of androgens to estrogens. 

It is interesting to note that the majority of tumors that develop resistance over time 

continue to express ERα10;11 . Furthermore, many of the tamoxifen-resistant tumors still 

respond to fulvestrant and AIs, indicating that estrogen remains an important regulator of 

tumor growth under these circumstances10. These data provide support for the idea that 

endocrine targeted therapies can lead to the activation of novel signaling pathways that 

evade the effects of antiestrogens.  

 

Redox signaling 

Redox Signaling is process whereby activated or free radicals and reactive oxygen 

species act as messengers in the biological system. It involves a vital and continuous 

process by which human cells communicate with each other and carry out essential 

functions in the body. Redox signaling often entails oxidation-reduction specific 

reactions. 
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Unlike signal transduction which usually involves both reversible and irreversible 

modifications of second messengers and proteins, redox signaling entails at least one 

reversible reaction involving the oxidation of a signaling molecule by a reactive species. 

It may therefore be inferred that the reaction of reactive oxygen or nitrogen species with 

their target is akin to the on-off signaling associated with phosphorylation than it is to the 

nonenzymatic lipid peroxidation.  

 

According to Forman et al., 61 redox signaling occurs when at least one step in a signaling 

pathway involves one of its components being specifically modified by a reactive species 

through a reaction that is chemically reversible under physiological conditionsand/or 

enzymatically catalyzed. 

 

Signaling molecules: Reactive Oxygen or Nitrogen species 

Both reactive oxygen and nitrogen species are known redox signaling molecules. 

Reactive nitrogen species (RNS) are molecules having nitrogen atoms, which because of 

their chemistry, are regarded as being highly reactive towards other cellular components. 

These molecules may or may not have unpaired electrons. Examples of RNS include 

radicals like Nitric Oxide (NO.), Nitrogen dioxide (NO2
.) and non rasicals like 

Peroxynitrite (ONOO-). On the other hand, Reactive oxygen species (ROS) constitutes 

either partially reduced metabolites of oxygen such as superoxide anions (O2
− •); peroxyl 

radicals (LOO.) and hydroxyl radicals (OH·) or non-radical molecules  like hydrogen 

peroxide (H2O2)  and  singlet oxygen (1O2); which have a higher reactivity than molecular 
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oxygen. ROS are by-products of normal cellular aerobic metabolism and the exposure of 

cells to certain forms of stress results in an increase in the level of ROS generated. It is 

note worthy that high level of reactive oxygen species are injurious to cells because of 

their tendency to react with a number of intracellular targets, such as proteins, lipids, and 

DNA. Conversely, quite a number of studies have shown that reactive oxygen species 

posses a variety of physiologic functions at low concentrations. These functions include 

but are not limited to: the  regulation  of  gene transcription 62, signal  transduction 

pathways 63-66 mitosis 67,  apoptosis 67, 68, and senescence 68, 69. Additionally, it has been 

shown that the stimulated production of oxidants plays a vital role in the mitogenic 

response to many growth factors 63, 66, 70 For example, ROS  have been shown to play a 

vital role in cell growth mediated by 17β-estradiol (E2),71 peptide growth factors and 

cytokines including PDGF 66, vascular endothelial growth factor, insulin, and tumor 

necrosis factor72.  

 

Regarding their role as signaling molecules, some reactive oxygen species such as H2O2 , 

are considered key signaling molecules, while others appear to be particularly harmful to 

living systems73. In higher organisms, low to moderate concentrations of NO and ROS 

are utilized as signaling molecules for other normal cellular  functions like: their 

physiological roles in the cellular responses to oxygenation, as in the defense against 

infectious agents; the initiation of a number of cellular signaling systems and the 

induction of a mitogenic response 72, 74, 75. Furthermore, exposure to a variety of non-

physiologically significant concentrations of ROS or RNS that induce oxidative stress but 

do not kill cells can stimulate responses such as repair, adaptation, or transformation76. 
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On the other hand, excessive and/or sustained increase in ROS production has been 

implicated in the pathogenesis of cancer 5, 5, 6.  as well as other metabolic diseases like 

diabetes mellitus72. Tumor cells have been shown to have a high and persistent oxidative 

stress 77. Free radicals are involved in initiation 78 as well as promotion/ progression 

stages of tumorigenesis 79, 80 while inhibitors and scavengers of ROS inhibit these stages 

of tumor development 81, 82.  

 

Based on work done on the release of ROS by non phagocytic cells, and on cells where 

ROS have no apparent role, ROS has been shown to be key signaling molecules, even 

though their exact mode of action was relatively unknown. Currently several studies have 

shown the ability of ROS to induce necrosis at high concentrations, as well as its role in 

the induction/inhibition of cell proliferation, and in the activation/inhibition of 

apoptosis83, 84.  

 

Sources of reactive oxygen species 

ROS (usually O2
− •) can be generated intracellularly by a number of enzymes including 

NADPH oxidase which upon stimulation undergo a respiratory burst, with the release of 

superoxide into the phagosome85, 86 the endoplasmic reticulum which is another site of 

electron transport, where O2
− • is generated by the leakage of electrons from NADPH 

cytochrome P450 reductase87 cytosolic oxidases; xanthine oxidase and lipoxygenase, and 

the mitochondrion. In the mitochondria, reactive oxygen species like O2
− • and H2O2 are 

often generated as by-products of electron transfer reactions that occur during the 

operation of the mitochondrial electron transport chain. ROS is generated in the 
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mitochondrial electron transport chain as a result of “leakage”88 of electrons from 

electron carriers that are passed directly to oxygen, reducing it to O2
−. An evidence of 

this mode of ROS generation is substantiated by the fact that the mitochondria contain 

their own superoxide dismutase, an inducible Mn2+-dependent enzyme 89, for rapid 

elimination of such reactive species and from a study by Felty et al.90 which identified the 

mitochondrion as a major source of estrogen-induced ROS in breast cancer cells. 

 

ROS is also generated by the metabolism of arachidonic acid by the enzymes 

cyclooxygenases and lipoxygenases. Prostaglandin H synthase is a major enzyme in the 

biosynthesis of prostaglandins, prostacyclins, and thromboxanes. Prostaglandin H 

synthase possesses both cyclooxygenase and hydroperoxidase activity91, hence it has the 

capacity to generate ROS as oxidizing equivalents via side-chain reactions that are 

dependent upon the presence of a suitable reducing substrate such as NADH or NADPH . 

 

Nitric oxide (NO  ) is generated from the conversion of the amino acid l-arginine to l-

citrulline by NOS. NO  is an important reactive species containing both nitrogen and 

oxygen. Production of NO  by neutrophils is well documented, but there are important 

interspecies differences in the amount of NO  produced: rodent neutrophils produce 

substantially more ROS than human cells 92;93. 

 

17β-estradiol (Estrogen) induces ROS formation 

Presently there are several postulates that E2-induced mitochondrial ROS is involved in 

the growth and proliferation of estrogen-dependent cells. Felty et al.94 reported that 
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physiological concentrations of E2 stimulate a rapid generation of intracellular ROS and 

intracellular ROS have been implicated in the promotion of rapid cell cycle activity in 

neoplastic cells. 

 

One attribute of rapidly dividing cancer cells is their ability to generate significant 

quantities of intracellular ROS. Studies have shown that estrogen-induced stimulation of 

both MCF-7 and macrophage cells is partly due to the effect of ROS95, 96. In an 

unpublished data by Singh et al., it was observed that scavengers of ROS such as N-

acetylcysteine, ebselen, and catalase inhibited the estrogen-induced growth of MCF-7 

cells, lending credence to the proposed role of ROS as an autocrine growth signal in 

estrogen-induced cell proliferation97. Based on a study by Taylor et al.98, which 

established that oxidative stress modifies mitochondrial matrix protein thiols, Felty and 

Roy 97 extrapolated that an estrogen-mediated cell growth through mitochondrial-

generated ROS signaling molecules may exist. This was based on the reasoning that since 

exposure to estrogen can generate mitochondrial ROS, the oxidation of thiols in response 

to estrogen converts the oxidative stress to a change in protein function that is involved in 

cell growth.  

 

In a study of E2-induced ROS generation in MCF-7 and other cells, the measurable 

events occurred earlier than a regular ER-mediated genomic action. This lead to the belief 

that E2-stimulated ROS production does not depend solely on the presence of the ER in 

breast cancer cells. Further more, because the ER-negative cell line MDA-MB 468 upon 

E2 stimulation was able to produce ROS equal in amount to that of ER-positive cell lines 
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such as MCF7, T47D, and ZR75, it was inferred that, ROS formation upon E2 exposure 

might explain oxidative damage to hormone-dependent tumors and ensuing genetic 

alterations 99, 100. A few studies have also revealed that E2-induced production of ROS 

also provides systematic support for the generation of mutations by physiological 

concentrations of estrogens101, 102. 

 

In 2006, Felty103 showed that estrogen exposure of human umblical vein and endothelial 

cells (HUVECs) stimulated a rapid production of intracellular ROS that is involved in 

signaling endothelial cell growth. He also showed that the early E2 signaling did not 

require ER-mediated genomic signaling, because E2-induced growth could be inhibited 

by antioxidants. The functional outcomes of E2-induced ROS formation include an 

increase in phosphorylation of the signaling proteins C-jun and CREB, as well as the 

activation of the binding of three oxidant-sensitive transcription factors AP-1, CREB, and  

possibly nuclear respiratory factor 1(NRF-1)90. 

 

Additional findings by Felty et al. suggest that E2-induced mitochondrial ROS modulate 

G1 to S transition and some of the early G1 genes through a nongenomic, ER-

independent signaling pathway resulting in the conclusion that estrogen-induced 

mitochondrial oxidants control the early stage of cell cycle progression, which could 

provides the basis for the discovery of novel antioxidant-based drugs or antioxidant gene 

therapies for the prevention and treatment of estrogen-dependent breast cancer 104. 
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Tamoxifen induces ROS formation  

In addition to its role in inhibiting the growth of ER-positive breast cancer cells through 

its antiestrogenic properties 105, tamoxifen also appears to have effects on many ER-

negative cancer cells106-109. Though the mechanism of this action is not known, as in the 

case of E2, studies have found the effect of tamoxifen on ER-negative cells to be related 

to its non-genomic actions.  

 

It has been reported that tamoxifen-induced apoptosis in ER-negative HepG2 human 

hepatoma cells is mediated by increased intracellular Ca2+ 110 and a consequent 

generation of ROS 111. In the study by Lee et al.111, ROS appeared to be a downstream 

signal of elevated intracellular Ca2+ , given that their generation was temporally preceded 

by elevation of intracellular Ca2+  within a time frame, and completely inhibited by 

intracellular and extracellular Ca2+ chelating agents. Another study by Kallio et al 112 

showed that at high doses tamoxifen was able to induce apoptosis through the production 

of ROS in MCF 7 cells. 

 

Tamoxifen-induced ROS generation has been shown to be produced by membrane bound 

NADPH oxidase113 and not to the activation of enzymes like microsomal enzyme, 

cytochrome P-450, and numerous catalytic cytosolic enzymes, including cyclooxygenase. 

The is because ROS production was not altered by treatment with specific inhibitors of 

these enzymes111. NADPH oxidase has also been functionally active in nonphagocytic 

cells, including endothelial cells114, vascular smooth muscle cells,115 neuroepithelial 

bodies of the lung 116 and type I cells of the carotid body117. The components of the 
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NADPH oxidase have been expressed in HepG2 cells118, 119 and the enzyme appears to be 

a major source of ROS produced by hypoxia118.  Lee et al 111. also reported that the 

NADPH oxidase acts as a major site of the tamoxifen-induced ROS production.  

 

Tamoxifen as a scavenger of ROS 

Several studies including a study by Kuo et al 120 have shown that 4-OHT (an active 

metabolite of Tamoxifen) possesses a potent superoxide anion radical-scavenging 

tendency. The presence of phenolic groups in tamoxifen, (much like raloxifen and E2) 

confers its antioxidant action chiefly because phenolic structures have the capacity to 

bind iron, in addition to reducing peroxyl or alkoxyl radicals 121. In addition, several 

studies 239;122, 123;124;125 including one by Arteaga et al.126, 127 have shown that tamoxifen is 

a scavenger of ROS. 

 

The role of ROS in oxidative stress and redox signaling 

The harmful effect of free reactive oxygen and/or nitrogen species resulting in possible 

biological damage is called oxidative stress and nitrosative stress respectively128-130. 

Oxidative and nitrosative stress occur in biological systems following an over production 

of ROS/RNS as well as an accompanying insufficiency of enzymatic and non-enzymatic 

antioxidants. Simply put, oxidative stress refers to a disturbance in the balance between 

pro-oxidant/antioxidant reactions in living organisms. As mentioned previously in this 

review, excess ROS can damage cellular lipids, proteins, or DNA by hindering their 

natural function. Hence it comes as no surprise that oxidative stress has been implicated 

in a number of human diseases as well as in the ageing process131.  
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Redox regulation, on the other hand, is a very important system responsible for the fairly 

fragile balance between the beneficial and the harmful effects of ROS/RNS. According to 

Droge 72, the redox regulation process protects living organisms from a variety of 

oxidative stresses and maintains the so-called “redox homeostasis” by controlling the 

redox status in the living system132. 

 

Redox balance, which is the ratio between oxidizing and reducing species within the cell, 

plays a significant role in the regulation of signaling pathways, including kinase and 

phosphatase activity as well as gene expression through regulation of the function of 

transcription factors 7, 133, 134, 134 

 

As protection against oxidative radical stress, cells have several enzymic and nonenzymic 

anti-oxidants or reductants that maintain the intracellular redox environment in an 

especially reduced state. Typically the enzyme superoxide dismutase (SOD) catalyses the 

conversion of O2
− to H2O2, and then the H2O2 generated is degraded to H2O by several 

cellular enzymes, usually catalase or glutathione peroxidase coupled with glutathione 

reductase 135, 136 (see eqn 1).  

O2 + e− → O2
-•        SOD          H2O2    

Catalase 
          H2O (eqn1)  

                                                  GSH peroxidase              

 
 

Other relevant scavengers include thioredoxin coupled with thioredoxin reductase, and 

glutaredoxin, which uses GSH as a substrate. GSH plays a central role in maintaining 

redox homeostasis.The GSH to oxidized glutathione ratio (2GSH/GSSG) provides an 

estimate of cellular redox buffering ability137. Forman et al.138 have argued that in 
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contrast to oxidative stress which is induced as a response to damaged molecules, redox 

signaling always involves responses that are specific to oxidation reduction reactions. 

  

Oxidative stress often initiates a number of varied responses ranging from cell 

proliferation and transformation to apoptosis and senescence. The type of effect induced 

depends on the types and amounts of ROS and reactive nitrogen species (RNS) that are 

generated, the duration of the oxidative burst, the cellular antioxidant defense systems, 

and the cellular context in which oxidative stress occurs. For example, low concentration 

exposure of cells to hydrogen peroxide (H2O2) have been shown to mediate platelet-

derived growth factor (PDGF)-induced vascular smooth muscle proliferation 139, whereas 

moderate concentrations of H2O2 induce growth arrest while high concentrations induce 

apoptosis and/or necrosis140. Enzymes that are involved in oxidant generation or oxidant 

scavenging are also critically involved in the regulation of cell growth141-144. It has also 

been documented in several biochemical studies that, in most cancer  tissue  the levels/ 

activity of manganese superoxide dismutase and  catalase are almost always low while 

that of  copper, zinc superoxide dismutase is usually low. Conversely, the activity of 

glutathione peroxidase in  tumor  tissue is variable if measured with biochemical methods 

using tissue  homogenates145-148.These findings show an association between low 

antioxidant levels vis a viz oxidative stress and cancer.  

 

Chemistry of ROS 

Presently, there are two main models of ROS signaling namely: (i) alteration of 

intracellular redox state and (ii) oxidative modification of proteins7. In the alteration of 
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intracellular redox state, the cytosol is usually maintained in strong reducing conditions 

often achieved by the redox balancing action of intracellular thiols like glutathione (GSH) 

and thioredoxin (TRX).  

 

Studies have shown that depending on their local environment, thiolates (S-) react with 

H2O2 a lot faster than thiols (SH)149. It has also been established that in the active sites of 

proteins like TRX and Prx one cysteine exists in the thiolate form making it more 

amenable to reacting with H2O2. In the following redox reactions involving H2O2 and a 

thiolate (RS-)61 (see fig. 1A), the sulfenate (RSO-) that is formed then reacts with a thiol 

to form a disulphide bond (see fig.1B). Then the original thiolate is restored by exchange 

with another thiolate (see fig 1C). 

 

Oxidative modification of proteins 

ROS can change the structure and function of proteins by modifying certain critical 

amino acid residues, thereby inducing protein dimerization, and interaction with Fe-S 

moieties or other metal complexes7. The most recognized oxidative modifications of 

critical amino acids within the functional domain of proteins involve cysteine residues. 

The sulfhydryl group (-SH) of a single cysteine residue may be oxidized to form sulfenic 

(-SOH), sulfinic (-SO2H), sulfonic (-SO3H), or S-glutathionylated (-SSG) derivatives7, 150. 

When the critical cysteine is located within its catalytic domain, an alteration of this 

nature could vary the enzyme activity151. On the other hand, when the critical protein is 

within the DNA-binding motif of a transcription factor, the ability of the transcription 

factor to bind DNA is affected152. For example, the active site of all but one of the protein 
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peroxiredoxin (Prx) contains cysteines out of which one is a thiolate (S-). Prx will react 

with ROS to form sulfenic acid (see fig. 2A). A second thiol then reacts with the 

sulfenate to form an intramolecular disulphide (see fig 2B). In the third and final step, all 

but one Prx use TRX to restore the original thiolate (see fig 2C). 

 

Redox signaling and its effect on signaling pathways  

Oxidative and reductive stress can induce redox surges with a resultant change in the 

thiol status of the proteins. Post-translational modifications of proteins or changes in the 

thiol status of proteins due to changes in the redox environment of the cell are two of the 

major pathways for signaling in cells. Characteristically, changes in the cellular redox 

environment could result in modification of signal transduction, DNA and RNA 

synthesis, protein synthesis, enzyme activation, as well as regulation of the cell cycle153-

155;156;157;137, 158, 159. 

 

A number of studies have shown that ROS and RNS have the ability to change or modify 

several signaling pathways72, 160-165, 165. Among these pathways are the mitogen-activated 

protein kinases (MAPK), which has been shown to be activated by both exogenous, and 

receptor stimulated H2O2
166

; Protein tyrosine phosphatases (PTPs) and  thioredoxin 

(TRX). Modification of signaling pathways is possible because certain key proteins such 

as PTPs and TRX contain essential cysteines which serve as targets for ROS and RNS167, 

168. Transcription factors like  AP-1 and NF-kB, and Caspases  are considered redox 

sensitive because it has been biochemically demonstrated that their critical cysteines are 
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in the thiolate form accounting for the ease with which they are oxidized and reduced by 

oxidants and enzymes169-171. 

 

The first evidence of reversibility of thiols oxidized by ROS and RNS was demonstrated 

with PTPs at a time when PTPs were first recognized as important players in signaling. 

Over the years, redox-mediated regulation of PTPs has been supported by several in vivo 

studies. The following PTPs are known targets for ROS and RNS, PTP1B, SHP-2, 

LMW-PTP, PTEN as well as CDC25172. 

 

ROS induces the oxidative modification of Protein tyrosine phosphatases (PTPs)  

Protein tyrosine phosphatases (PTPs) are important enzymes in the control of cell cycles 

and signal transduction. They act in conjunction with protein tyrosine kinases to regulate 

the phosphorylation of protein tyrosine in response to cellular signals173, 174. Many studies 

have revealed that PTKs may be directly activated by the inhibition of PTPs by ROS 167, 

175, 176. Reversible inactivation of PTPs by ROS (especially H2O2) plays an important role 

in redox control and cell signaling132. Based on the work done by Rhee’s laboratory, we 

now know that stimulation of A431 cells with epidermal growth factor (EGF) leads to the 

generation of H2O2 and a consequent inhibition of PTP1B70. Other biochemical studies 

also showed that an increase in the production of intracellular oxidants could contribute 

to enhanced tyrosine phosphorylation-dependent signaling, such as signaling in response 

to growth factors70;66, by transiently stemming the enzymatic activity of members of the 

PTP family, and promoting a burst of PTK activity177, 178. However, it is unclear if this 

phenomenon is the same for every member of the PTP family. 
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ROS and the cellular redox state are able to regulate the activity of PTPs. PTPs have a 

functional motif that contains a constant cysteine residue, which acts as an electron donor 

in catalysis179, 180. As a result of its unsually low pKa, the functional cysteine residue is 

prone to oxidation and thus inactivation. Only oxidations that do not advance beyond 

sulfenic acid (S–OH) are reversible181, 182. A vital requirement for regulating the activity 

of PTPs (or any regulating molecule) is that the modification be specific and reversible. 

However, the cysteine sulfenic acid formed at the active site of phosphatases can be 

oxidized further to non-reversible cysteine-sulfinic acid and cysteine-sulfonic acid, within 

the cell 183. This effect is believed to be countered by glutathionylation184.  

 

Glutathionylation is a reaction of either cysteine or cysteine sulfenate with GSH within 

the cell to form a mixed disulfide bond. The formation of a mixed disulfide between 

PTP1B and GSH (or GSSG) would prevent irreversible oxidation of the active site 

cysteine and provide for the reversible reduction either chemically or enzymatically. 

Barrett et al. 185 have reported that PTP1B is inactivated by the formation of a mixed 

disulfide with glutathione and that this inactivation is reversed not only by DTT but also 

more importantly by thioltransferase, a thiol-disulfide oxidoreductase that is specific for 

glutathionyl mixed disulfide substrates186, 187 and specifically utilizes GSH as co-

substrate188. The glutathionylation occurs on Cys215, the active site cysteine. This 

mechanism suggests an alternative modification to the redox regulation of cysteine in 

PTP1B and suggests a possible in vivo mechanism in the regulation of phosphatase 
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activity. Also, reversible S-glutathionylation also appears to form the basis for redox 

regulation of c-Jun DNA binding169.  

 

PTP-1B is directly inactivated by ROS-induced reversible oxidation of its catalytic site, 

Cys215, and this has been proposed as a mechanism for EGF-mediated mitogenic 

signaling151; 189. Studies on B lymphocytes reveal that, following B cell receptor 

activation, the ROS produced by DUOX1 enhance prompt generation of a signal by 

reversible inhibition of SHP1, which then results in enhanced tyrosine phosphorylation 

and activation of Lyn kinase 190. Superoxide radical has been shown to regulate the 

activity of PTPs (especially PTP1B) very efficiently, again through cysteine residues 132.  

 

Phosphatase and Tensin Homologue (PTEN) and Reactive Oxygen Species 

The tumor suppressor PTEN (phosphatase and tensed homologue) regulates cell growth, 

survival and migration by the removal of the 3’-phosphate of phosphoinositides. It has 

been reported that the exposure of cells or purified PTEN to H2O2 resulted in inactivation 

of PTEN in a time- and H2O2 concentration-dependent manner 167, 189, 191. As with other 

phosphatases, H2O2 induces the reversible inactivation of PTEN through oxidation of the 

essential Cys124 167; 192. This forms cysteine-sulfenic acid, which reacts with the so-

called backdoor cysteine (Cys71 substrate) to form a disulfide. The disulfide formed is 

then further reduced to its active form by thioredoxin (TRX)193. 

 

Though the stimulation of various receptors induces H2O2 production, Lee et al.194 

proposed that the receptor-mediated activation of phosphoinositide 3-kinase (PI3K) alone 
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does not does not account for the accumulation of 3'-phosphorylated phosphoinositides, 

and that the simultaneous inactivation of PTEN by H2O2
 produced in response to receptor 

stimulation might also be essential for this event195. A high frequency of PTEN mutations 

and subsequent loss of function has been reported in several tumor types like endometrial 

carcinoma, brain, and breast cancer196. It is documented the loss of PTEN function results 

in an increased Akt activity and, subsequently, cell survival197. Evidence exists that 

inactivation of PTEN by oxidation might be a physiological mechanism for regulation of 

this enzyme, not only by oxidative stress, but by ROS produced in other circumstances 

such as the stimulation of cells by growth factors 198, 199.  

 

The cyclin-dependent kinase inhibitor p27Kip1, a target of Akt, has been proposed as a 

downstream mediator through which PTEN may positively regulate cell cycle 

progression200. In prostate cancer, 16–68% of the cases show an association between the 

low grade expression or loss of p27 protein with either adverse or impaired prognosis201-

204;205.  

 

CDC25 Phosphatases and Reactive Oxygen Species 

Cdc25 phosphatases also known as the dual-specificity phosphatases, are key activators 

of the CDK/cyclin complex, hence they serve as regulators of normal cell division. There 

are three isoforms of Cdc25, namely Cdc25A, Cdc25B, and Cdc25C. These three 

phosphatases function to dephosphorylate the CDK/cyclin complex on pThr14 and/or 

pTyr15 residues, counteracting the phosphorylating effect of the Weel and Myt1 kinase. 

This dephosphorylation prompts the ultimate activation of CDK/cyclin activity during 
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normal cell cycle progression206, 207. Cdc25A controls both the G1-to-S and G2-to-M 

transitions, whereas Cdc25B and Cdc25C are regulators of the G2-to-M transition.  

 

The Cdc25 phosphatases also play an important role in the checkpoint response that 

prevents CDK/cyclin activation following DNA damage208, 209. Confirming an important 

role for the Cdc25 phosphatases in cancer, Cdc25A and Cdc25B, but not Cdc25C, are 

over expressed in many different primary human cancers210.  

 

Like all other PTPs Cdc25 phosphatases have two cysteine molecules in their functional 

site. One of the cysteines exists in the very reactive thiolate (S-) form while the other one 

exists as a less reactive thiol. The thiolate in Cdc25’s functional motif has been shown to 

be oxidized by low concentrations of ROS resulting in the formation of a reversible 

cyseine-sulfenic acid (see eqn 13). The resultant sulfenic acid then forms a mixed 

disulfide bond with the second thiol to prevent further oxidation by ROS to an 

irreversible sulfinic acid. The reduction of the disulphide bond to the original thiolate is 

carried out by either TRX or GSH. H2O2 causes oxidation of the active site cysteine 

residue in Cdc25- PTP, with a subsequent binding to 14-3-3 proteins for nuclear export 

and subsequent degradation211; 212, 213.  Oxidative stress has also been shown to induce the 

nuclear export of Cdc25B through protein kinase B/Akt-dependent phosphorylation on 

Ser353 214. 

 

An association between mitogenic signaling and the cell cycle mechanism has been 

suggested by studies which showed that the tyrosine phosphatase Cdc25A, among others, 
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could have an effect on Raf-1, a key component of the MAPK pathway215, 216. In 1995, 

Conklin et al. showed that Raf-1, which is known to bind 14-3-3 proteins, appeared to 

associate with Cdc25A and stimulate its phosphatase activity217. Galaktionov et al. 218 

also showed an association between the Cdc25 phosphatase and Raf-l in somatic 

mammalian cells and in meiotic frog oocytes. These authors also suggested that 

activation of the cell cycle by the Ras/Raf-l pathways might partially be mediated by 

Cdc25. Another study also showed that dephosphorylation of Raf-1on tyrosine by 

Cdc25A resulted in a significant decrease in the kinase activity of Raf-1219, and 

consequently of ERK. On the flip side, this implies that inactivation of CDC25A could 

lead to an increase in the kinase activity of Raf-1 and thus the phosphorylation and 

activation of ERK. 

 

Recently, a study by Vogt et al.220 showed that overexpression of Cdc25A in whole cells 

resulted in the dephosphorylation of ERK, which was reversible by an inhibitor of 

Cdc25A (2-mercaptoethanol)-3-methyl- 1,4-naphthoquinone  (compound 5). The high 

point in this study is that a Cdc25 inhibitor increased phosphorylation and nuclear 

accumulation of ERK thereby underscoring the proposition that Cdc25A regulates the 

phosphorylation state of ERK. More recently, in addition to showing a physical 

interaction between Raf-1 and Cdc25A, Nemoto et al. 221 were also able to show that the 

phosphatase Cdc25A regulates Raf-1/MEK/ERK kinase activation in human prostate 

cancer cells. Additional work done by Wang et al.222 suggested that phospho-ERK is 

possibly another substrate of Cdc25A. Based on the above studies, one can infer that the 

oxidation (downregulation) of CDC25A by ROS (which renders Cdc25A inactive) may 
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also result in the phosphorylation of ERK that could ultimately phosphorylate a number 

of transcription factors, as well as the CDK inhibitor p27. 

 

Mitogen Activated Protein Kinase- Phosphatase (MKPs) and Reactive Oxygen 

Species 

These are dual specificity phosphatases which have the ability to inhibit the mitogen 

activated protein kinases (MAPKs) in several cell types223-229. Like other dual specificity 

phoshatases, mitogen activated protein kinase phosphatases (MKPs) have recently been 

added to the redox sensitive phosphatases list. Seth and Rudolf 230  showed that, like 

other PTPs, MKPs are able to form cysteine-sulfenic acid upon oxidation by ROS. Unlike 

other PTPs, however, the sulfenic acid formed does not form a disulfide with proximate 

cysteine or sulfenyl amide bond species with neighboring residue, but rather utilizes 

various cysteines distributed in both the N-terminal substrate-binding domain (Cys147 in 

particular) and the C-terminal catalytic domain (Cys218) to protect its active site from 

further oxidation. 

 

MAPKs play a central role in mediating intracellular signaling events triggered by 

mitogens, growth factors, and stress231, 232. The MAPKs are activated by specific 

upstream dual specificity kinases (MAPK kinases, MKKs) through phosphorylation on 

both threonine and tyrosine residues in the TXY motif. Extracellular stimuli activate 

MAPKs leading to the phosphorylation of an array of cellular substrates and nuclear 

transcription factors.  
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In mammals, three distinct MAPK families have been studied extensively. The 

extracellular signal-regulated kinase (ERK) family is activated by growth and 

differentiation factors and by phorbol esters 233. The c-Jun NH2-terminal kinase (JNK) 

family (or stress-activated protein kinase (SAPK) and p38 MAPK families are activated 

by pro-inflammatory cytokines and environmental stress. It is noteworthy that the three 

aforementioned subgroups of MAPKs have been implicated in both cell growth and cell 

death, hence the need to tightly regulate these pathways is principal in determining cell 

fate234. Therefore the injurious effect of non-stop activation of MAPK pathways may 

include excessive production of MAPK-regulated genes, uncontrolled proliferation, and 

unscheduled cell death 235. 

  

A number of cellular stimuli that induce ROS production are also capable of activating 

MAPK pathways concurrently, in multiple cell types. This was established by studies 

which showed that prevention of ROS accumulation by antioxidants blocks MAPK 

activation after cell stimulation with cellular stimuli235-237. Additionally, it has been 

documented that direct exposure of cells to exogenous H2O2, to imitate oxidative stress, 

resulted in the activation of MAPK pathways238, 239. Though the mechanism(s) by which 

ROS can activate the MAPK pathways, is still not well defined and because ROS can 

change protein structure and function by modifying critical amino acid residues of 

proteins7, 238, 239, we could therefore infer that the oxidative modification of signaling 

proteins by ROS may a probable mechanism for the activation and or inactivation of 

MAPK pathways. 
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The Effect of ROS on Transcription Factors 

AP-1 and NFκB  

The tumor progression stage of carcinogenesis has been shown to be modulated by 

transcription factors such as activator protein-1 (AP-1) and nuclear factor-kappaB 

(NFκB). A causal relation has been well documented between neoplastic transformation 

and transcription factor AP-1 transactivation 240-243. Infact, a constitutive increase of AP-1 

activity has been associated with the malignant conversion of papillomas to carcinomas 

244. There is an increase in NFκB transactivation during tumor progression 245.This NFκB 

transactivation is also increased by agents that elevate AP-1 activity during tumor 

progression while its inhibitors also attenuate AP-1 activity 246, 247 suggestive of common 

upstream signaling cascades that mediate elevated AP-1 in addition to NFκB 

transactivation during tumor progression. 

 

ROS have been shown to act as activators of transcription factors which modulate their 

activity either directly or indirectly by activating other signaling cascades. NFκB 

transactivation is considered redox sensitive because (i) The phosphorylation of its 

inhibitor I-κB is mediated by oxidation; and (ii) the Ref/thioredoxin-dependent binding of 

the p50 subunit to the DNA is controlled by the reduction of an essential cysteine group 

248 (cite article). NFκB activation can be be induced by several activators/oxidants in the 

absence of any physiological stimulus and is inhibited by a wide range of antioxidants 249-

251. On the other hand AP-1 DNA binding activity has also been shown to be modulated 

by Ref/thioredoxin-dependent reduction of cysteines in c-Jun and c-Fos 252.  
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Persistently high ROS levels activate redox-sensitive transcription factors, such as 

nuclear factor-kappaB (NF-κB) and activator protein-1 (AP-1), which may then act as 

molecular switches that convert normal cells into premalignant cells, with ensuing clonal 

expansion to form solid tumor253. Hence, abnormal activation of NF-κB and AP-1, which 

results in the transcriptional activation of genes involved in inflammation, cellular 

proliferation, and growth, has been implicated in pathophysiology of various 

malignancies 253, 254.  

 

Mitogen-activated protein kinases (MAPKs) have been shown to modulate transcription 

factor activities in addition to being part of kinase cascades that serves as transmitters 

connecting extracellular stimuli to specific transcription factors thus allowing these 

signals to regulate specific gene expression. Studies have shown that JNKs and p38 

MAPK are a part of the stress response pathways activated by cellular stress induced by 

agents like heat, UV and ionizing radiation and inflammatory cytokines mediating 

inhibition of cell proliferation or cell death 255, 256. AP-1 activity has been shown to be 

modulated by MAPKs in response to various stimuli257. NFκB activation has been 

reported to be modulated by MEKK1, a kinase upstream of JNKs 258 as well as p38 

MAPK 259. There is evidence that antioxidants can attenuate MAPK activation 6, 255, 260, 

thereby suggesting that MAPK signaling cascades are additional targets affected by ROS 

levels in cells. 

 NRF-1  

Nuclear respiratory factor 1(NRF-1) is a protein that encodes genes that code for a 

phosphorylated nuclear protein with a bZIP domain. The encoded protein forms a homo- 
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or heterodimer, which functions as a transcription factor that activates the expression of 

some key metabolic genes. These key metabolic genes regulate cellular growth and 

nuclear genes required for respiration, heme biosynthesis, mitochondrial DNA 

transcription and replication261, 262 Initially, NRF-1 was described as an activator of 

cytochrome c expression and afterwards was found to act on many nuclear genes essential 

for mitochondrial respiratory function263, 264 such as genes encoding respiratory subunits 

265, the rate-limiting heme biosynthetic enzyme266 as well as mtDNA transcription and 

replication factors267, 268. 

 

NRF-1 binds to the antioxidant response element (ARE) in the promoters of genes which 

are involved in response to cellular stress269 to induce the expression of phase II 

detoxifying enzymes and oxidative stress-inducible proteins, like NADPH, quinone 

oxidoreductase, and glutathione S-transferaseA2 270, 271. Studies have shown that NRF-1’s 

ability to regulate the ARE of stress-related genes and TNFα is based on its interaction 

with transcription factors such as AP1 proteins (c-Jun, JunB, and JunD)272, 273. In 

addition, NRF-1 has been shown to play an important role in cellular growth and 

differentiation274, 275.  A biochemical study by Chang et al276. implicated NRF-1 protein 

with the regulation of neurite outgrowth.  

 

Studies have shown that NRF-1 is phosphorylated both in vivo and in vitro on serine 

residues within a concise amino-terminal domain277. The phosphorylation of these sites in 

vitro augments NRF-1 DNA binding action, surmising the capacity of such modifications 

to regulate NRF-1 function. Herzig et al.278 showed that the activity of NRF-1 is 
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enhanced by phosphorylation, which occurs in cells that have been stimulated with 

serum. It is assumed that a phosphorylation such as this allows the nuclear transcriptional 

apparatus to respond both to extracellular signals and intracellular ATP concentrations in 

controlling the expression of the respiratory chain278. The post-transcriptional 

modification of the N-terminus of NRF-1 has been shown to play an important role in 

controlling DNA-binding activity277. It has been established that P/CAF, which is a 

p300/CBP (cAMP response-element-binding protein (CREB)-binding protein)-associated 

factor, can interact directly with the N-terminal domain of NRF-1 and modify it by 

acetylation. The ensuing modification significantly stimulates the DNA-binding activity 

of NRF-1279. A study by Cho et al.280 showed that the methylation on the NRF-1 sites 

may be a means of silencing the Tfam promoter with an ensuing decrease of 

mitochondrial biogenesis281. According to Narayanan et al.282 NRF-1 often exists as a 

complex with Keap1 (inhibitor) but as a result of stress, NRF-1 separates from Keap1 and 

becomes active. 

 

NRF-1 and 17 β-Estradiol (E2) 

Estrogen increases the transcription of NRF-1283, 284. Results of work done by Rodríguez-

Cuenca et al.285 show that E2 appears to affect the mitochondrial biogenic program in two 

ways. The first is inhibiting it through the downregulation of NRF-1, gabpa, and tfam 

mRNA286; or second, downregulating PTEN mRNA levels in cell-cultured brown 

adipocytes, implying an activation of the PI3K-Akt pathway and therefore a 

mitochondrial recruitment-stimulatory signal. E2 has been shown to inactivate PTEN 

activity by phosphorylation and, hence, influence PTEN activity, suggesting both a 
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chronic and an acute control mechanism of PTEN by estrogens 287. Felty et al. 288 showed 

that E2-induced oxidants increase the transcriptional activity or binding of AP-1, CREB, 

and NRF-1 to their individual DNA response elements. The study actually showed that at 

physiological concentrations E2 stimulates a rapid production of intracellular ROS 

resulting in the phosphorylation of c-jun and CREB as well as increased activity of 

redox-sensitive transcription factors NRF-1, c-jun, and CREB, which are known to be 

involved in the regulation of cell cycle genes289. 

 

NRF-1 and Cancer 

Xu et al. 290 have been able to demonstrate a connection between cancer and NRF-1, 

based on the result of a study which observed changes in NRF-1LKO (NRF-1 liver 

knock-out ) livers. The livers were characterized initially by cell death, proliferation, and 

inflammation, followed by the appearance of dysplastic cells and eventually cancer. The 

X gene of hepatitis B virus (HBV) which is one of the chief factors in HBV-induced 

hepatocarcinogenesis is necessary to achieve a productive HBV replication in vivo. 

Recently, Tokosumi and others291 showed that NRF-1 exclusively binds the 21-bp 

minimal promoter and contributes to transcription of the X gene. They also suggested that 

concurrent activation of the X gene and mitochondrial genes by NRF-1 may allow the X 

protein to target mitochondria most efficiently292. A study by Auf dem Keller et al. 293 

showed that NRF-mediated gene expression in keratinocytes is dispensable for wound 

healing but crucial for skin tumor prevention. 
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NRF-1 and cell cycle 

The transition of cells from quiescence (G0) to proliferation (G1) increases the cellular 

energy (ATP) demand. The cell responds to this increase in demand for ATP by 

modulating the activity of the respiratory chain components, and it is the duty of NRF-1 

to regulate the expression of a number of genes required for mitochondrial respiratory 

function 264.  

 

A recent study demonstrated that NRF-1 activity is enhanced by phosphorylation upon 

serum-induced proliferation, leading to transcriptional induction of cytochrome c, a major 

component of the respiratory apparatus294. The induction of cytochrome c was associated 

295 with enhanced energy production by the mitochondria in preparation for entry to the 

cell cycle. 

 

Results from work done by Herzig et al. 296 show that NRF-1 functions to induce gene 

expression and maintain the level of cytochrome c in actively dividing cells. Additionally, 

the results also suggested the possibility that activated NRF-1 may contribute to the 

synthesis of other respiratory chain constituents later in the cell cycle. It can therefore be 

inferred that the phosphorylation of NRF-1 may be a significant regulatory event in the 

transition from quiescence to active cell division. 

 

Virbasius et al. 297 showed that NRF-1 sites are found in genes that may be directly 

involved in cell cycle regulation (like cdc2, RCC1) or are regulated by cell growth (like 

omithine decarboxylase, DNA polymerase-a, and GADD153). Their study concluded that 
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even though the most current and best defined biological role for NRF-1 is in the nuclear 

control of mitochondrial function, the NRF-1 protein or related proteins having the NRF-

1 DNA-binding domain may possess the ability to integrate various functions required for 

cell maintenance, growth, and proliferation.298 

 

NRF-1 has been shown to mediate the apoptotic function of c-myc in a study which also 

shows that cytochrome c and other nuclear-encoded mitochondrial genes are also 

regulated by NRF-1 and provides evidence of a link between the induction of NRF-1 

target genes and sensitization to apoptosis on serum depletion299. The finding by Felty et 

al. 300 that E2-induced mitochondrial ROS control the expression of early G1 phase genes 

(Felty and Roy, unpublished results), imply that E2-induced ROS increase the 

transcriptional activity or binding of AP-1, CREB, and NRF-1 to their respective DNA 

response elements responsible for the expression of early cell cycle genes. Based on 

previous studies (already mentioned in this review) which showed that redox-sensitive 

transcription factors c-jun, CREB, and NRF-1 regulate cell cycle genes262, 301, 302, Felty et 

al.’s finding could be a pointer that E2-induced ROS may play a role in cell cycle 

progression of estrogen-dependent cells 303. 

 

NRFI and ROS 

A study by Suliman et al.262 showed that ROS signaling is necessary for hepatic 

mitochondrial biogenesis accompanying cell proliferation, which is linked to activation of 

pro-survival PI3K-Akt pathways. The PI3K-Akt pathway in turn leads to NRF-1 

activation and subsequent DNA binding. Furthermore, ROS originating in mitochondria, 
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cytoplasm, or outside the cell could activate Akt and promote NRF-1 translocation. 

Hence, PI3K-Akt activation may regulate both mitochondrial biogenesis and cell 

proliferation after oxidative stress.  

 

Already mentioned in this review is the fact that cysteine-dependent phosphatases, like 

PTEN, which are reciprocal regulators of PI3K, are sensitive to inactivation by oxidants. 

This is substantiated in a recent study by Piantadosi and Suliman 304, which provided 

evidence that the stimulation of PI3K by extracellular oxidants activate Akt and promote 

NRF-1 phosphorylation as well as nuclear translocation. NRF-1 phosphorylation 

increases its ability to stimulate transcription of Tfam, a downstream nuclear-encoded 

gene for a mitochondrial protein required for mtDNA transcription and replication. 

  

Based on work done on HeLa cells, Miranda et al.305 have been able to show that cells 

depleted of mitochondrial DNA (ρ0) have an increased amount of intracellular ROS, and 

that under these conditions, NRF-1 and Tfam are up regulated, further supporting the 

postulated role of ROS in mitochondrial signaling to the nucleus. NRF-1 has also been 

found to play a role in the regulation of genes involved in glutathione synthesis, therefore 

signifying a basis for an equally low GSH concentration and reduced stress response in a 

study which also found that interference with the NRF-1 gene results in hypersensitivity 

of fibroblasts to the noxious effects of various oxidizing agents306. Work done by Chen et 

al. 307 showed that NRF-1 may be required to protect fetal liver cells from endogenous 

TNF-induced apoptosis. The study concluded that NRF-1 plays an important role in 

maintaining redox balance in the fetal liver cells signifying a cell-specific and 
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developmental stage-specific function of NRF-1 in protecting liver cells from apoptosis 

during development. 

 

Cell Cycle 

Cell cycle control 

Simply put, a cell cycle refers to a programmed life cycle of a dividing cell. The process 

of cell-cycle transition can be divided into four phases: the G1 phase, where mRNA and 

proteins are synthesized in preparation for DNA synthesis; the S phase where DNA 

synthesis occurs; the G2 phase, where mRNA is synthesized in preparation for the fourth 

phase, mitosis (M phase). Quiescent cells are found in the G0 phase and exhibit minimal 

mRNA and protein synthesis. Stimulation of quiescent cells (G0) results in their entry 

into the G1 phase which in turn induces a number of proteins that regulate and control 

cell growth and proliferation 229;308.  

 

In addition to the four cell cycle phases, there are two main checkpoints that regulate cell-

cycle progression. The G1/S checkpoint prevents the replication of damaged DNA. This 

checkpoint is regulated by a balance between growth-stimulating and growth-inhibitory 

responses. The second checkpoint, which is G1/S to G2/M checkpoints control the 

sequence and timing of cell-cycle transitions, enabling the assimilation of cell division 

with environmental stimuli as well as the monitoring of DNA damage to maintain 

genomic integrity. An additional spindle assembly checkpoint functions to delay mitosis 

until the mitotic spindle is correctly formed 309.  
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The cell cycle process is controlled by the following proteins: The cyclins, namely 

cyclins A, D, and E; the cyclin dependent kinases CDK2, 4, and 6; the cyclin kinase 

inhibitors (CKIs), namely p16INK4a (p16), p21CIP1/WAF1(p21), and p27; and other negative 

regulators such as the retinoblastoma protein (Rb) and p53, which regulate the effects of 

both CKI p21 and cyclin A protein310. During the G1phase, cyclins D1 and E are rapidly 

synthesized and bind to CDK4 and CDK2, respectively. The resulting cyclinD-CDK4/6 

complex then phoshorylates the retinoblastoma protein (Rb). Phosphorylation of Rb 

releases E2F which mediates gene expression and the induction and the formation of 

cyclin E- CDK2 complex.  

 

The cyclin E- CDK2 complex phosphorylates a broad variety of proteins, including Rb 

with a consequent release of E2F, which promotes cell-cycle progression to late G1, 

leading to the induction and formation of the cyclin A/CDK2 complex.  

 

The cyclin A/CDK2 complex functions to advance cell-cycle progression through the 

G1/S phase, into S, as well as late S and S/G2 interphase (cyclin A/CDK1). Cyclin 

A/CDK1 collaborates with Cyclin B/CDK1 to regulate G2 to M phase transition. In its 

phosphorylated state, cyclin B complex is inactive and requires dephosphorylation on Tyr 

15 by CDC25 to activate it. The active cyclin B complex promotes cell division (M 

phase)229. 

 

The active cyclin D complex is inhibited by CDK inhibitor p16 to induce early G1 arrest 

and prevent the phosphorylation of Rb. It has also been shown that •NO has the potential 
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to induce p21, leading to the inhibition of the action of cyclin E complex. Proliferating 

cell nuclear antigen (PCNA), a cofactor for DNA polymerase is negatively regulated by 

p21 311. Inhibition of CDK2 activity by p27 can prevent the phosphorylation of 

transcription factors critical for entry into the S phase 312. In G2, p53 can induce late G2 

arrest (inhibition of active cyclin B action) or mediate early G2 arrest via p21 inhibition 

of Cdc25.  

 

The role of p27 in cell cycle control 

The CDK inhibitor p27 has a negative effect on the activity of CDK2-cyclin complexes 

during G1 phase and CDK1 (Cdc2) complexes during G2 phase. In breast cancer, cyclins 

D1 and E, in addition to the cyclin-dependent kinase inhibitors p21 and p27, play very 

important roles in cell-cycle control and as potential oncogenes or tumor suppressor 

genes. Reduced expression of p27 has been associated with the poor survival of cancer 

patients313. 

In breast cancer cells, CDK inhibitors are regulated following mitogenic stimuli such as 

activation of receptor tyrosine kinases and steroid hormone receptors. Their deregulation 

frequently impacts on breast cancer outcome, including response to therapy314. The 

expression of p27 is regulated through transcriptional and translational control 

mechanisms, by modulation of both protein stability and changes in subcellular 

localization. 

 

According to Medema et al. 315, even though the transcription of the p27 gene is regulated 

by factors like AFX-like Forkhead transcription factors, the abundance of p27 during the 
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cell cycle is mostly mediated post-transcriptionally. As cells exit quiescence and progress 

into S phase, the levels of p27 protein decline as a result of decreased translation of p27 

mRNA and targeted proteolysis316. 

 

In the G1 and S phase, degradation of p27 is regulated by two RING-finger E3 ubiquitin 

ligase-containing complexes with contrasting subcellular locations. These complexes 

respectively ubiquitylate p27 and target it for proteosomal degradation. In addition to 

promoting p27 degradation, phosphorylation also regulates p27 subcellular localization. 

Following mitogen stimulation, this p27 is likely to be phosphorylated on serine 10 by 

human kinase-interacting stathmin (hKis), which promotes nuclear export317. According 

to work done by Liang and Slingerland, 318 p27 is also phosphorylated on two threonine 

residues, Thr157 and Thr198, by Akt, which results in the cytoplasmic retention of p27 . 

The resultant cytoplasmic localization following the phosphorylation of p27 at Thr157 is 

due to inhibition of its nuclear import. Overall, this suggests a model in which mitogenic 

signaling pathways promote cytoplasmic localization of p27 and its subsequent 

degradation by the Kip1 ubiquitination-promoting complex (KPC). This will increase the 

activity of nuclear cyclin E-CDK2 resulting in p27 Thr187 phosphorylation and 

degradation of p27, leading to a positive feedback loop for enhancement of cyclin E-

CDK2 activity. 

 

Sakakibara et al. showed that the ERK subfamily of MAPK is both essential and 

adequate in the regulation of p27 and a number of other studies have also established that 

ERK activity also contributes to the down-regulation of p27 319; 320-324. 



 

44 

The effects of ROS on regulators cell cycle  

There is increasing evidence suggesting that ROS and RNS play a part in the regulation 

of cell proliferation and cell-cycle control. Studies have shown that there is a significant 

similarity between the pathway that regulates cell cycle progression and the one that 

regulates the induction of apoptosis. These similar pathways are intimately 

interconnected by critical regulatory molecules and signal transduction cascades325.  

 

Reactive oxygen and nitrogen species have a wide range of effects on cell-cycle 

advancement. The growth-inducing actions of ROS/RNS may be exerted via the 

activation of kinase signaling cascades, redox regulation of tyrosine phosphatases, and 

direct activation of transcription factors144. 

 

Low concentrations of H2O2 increase cell proliferation through increased cyclin D 

expression and G1/S transition in fibroblasts326 and by means of decreased expression of 

p27 in prostate tumor spheroids327. Arnold et al. 328 have also shown that H2O2 mediates 

cell growth and cell-cycle regulation caused by targeted overexpression of the Nox1 

subunit of the NADPH oxidase328. The ability of ROS to promote the G1/S transition is 

further substantiated by the finding that treatment with antioxidants will repeatedly block 

proliferation and cell-cycle progression. This can be corroborated by the work of Menon 

et al. 329, which showed that the antioxidant N-acetyl-L-cysteine induces G1 arrest by 

decreasing cyclin D1, increasing p27 protein levels, and leading to hypophosphorylation 

of Rb329. It is also noteworthy that low to moderate ROS can induce MAPK pathways 



 

45 

that lead to cell growth and proliferation, whereas high ROS induce DNA damage and/or 

MAPK pathways that activate p53, cell arrest, and apoptosis326. 

 

Growth arrest associated with higher, sustained levels of ROS and RNS appears to 

involve the induction of inhibitory cell-cycle control proteins, especially p21, and the 

repression of cyclins330. More recently, the redox-sensitive family of Forkhead box class 

O (FOXO) transcription factors has been shown to promote cell-cycle arrest in G1 by 

transcriptional up-regulation of the CDK inhibitor p27 and down-regulation of cyclin 

D1331. 

 

Very little is known about the redox control of the spindle assembly checkpoint. It has 

recently been suggested that mitotic spindle pole formation is an important component of 

H2O2 -induced mitosis in type II pneumocytes 332. Cdc2 and other mitotic protein kinases 

have also been shown to play a role in spindle regulation,333 suggesting a possible role of 

redox control of Cdc2 activation by Cdc25C in the spindle checkpoint. The MAPK 

pathways, especially p38 and ERK1/2 ,334 which are regulated by ROS appear to play a 

key role in mitotic spindle assembly. 

 The role of Redox signaling in Anti estrogen Resistance   

Based on the above review, we may therefore infer that redox signaling could contribute 

to anti-estrogen resistance by the following biological processes: induction of ROS by 

anti-estrogens and a subsequent inactivation of PTPs or MKPs resulting in the activation 

and hyper-stimulation of either the MAPK pathway or the PI3K/Akt pathway, which 

could either affect the cell cycle through the activation of transcription factors or the 
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CDKI leading to a change from the tamoxifen sensitive phonotype to a tamoxifen 

resistant one. 

 

Cancer cells are characterized by uncontrolled proliferation and altered energy 

metabolism. In response to the activation of many oncogenes, continuous mitogenic 

signaling augments the production of ROS. Additionally, mitogens like estrogen and anti-

estrogens such as tamoxifen have been shown lead to ROS production when they are 

exposed to cancer cells both in vitro and in vivo. The ROS and redox signaling that ensue 

result in the induction of replication stress and DNA damage response, which in 

conjunction with the functional checkpoint, induces senescenes, often considered a 

barrier to tumorigenesis 335, 336.  Interestingly, once cancer cells have escaped the 

mechanisms that counteract mitogenic signaling, they advance to a pro-oxidative state 

typified by unbridled proliferation and altered energy metabolism, including defects in 

mitochondrial respiration. 

 

Defects in mitochondrial respiration cause inactivation of PTEN in a redox-dependent 

manner and activation of the pro-survival factor Akt 337. Akt is one of the kinases that 

phosphorylate p27 on the threonine 157 position resulting in cytoplamic sequestration of 

p27 with an ensuing loss in its cyclin kinase inhibitory function; a consequent 

unrestrained cell proliferation and a change from a tamoxifen sensitive to a tamoxifen 

resistant phenotype. Futhermore, activated Akt has been shown to phosphorylate the 

redox sensitive transcription factor NFR-1 thereby activating it and leading to its binding 

to the promoter region of  cell cycle genes338. 
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It is also probable that NRF-1 could be part of a pathway that connects the mitogen-

activated signaling cascade (either the MAP kinase or the PI3K Akt pathway) to cell 

cycle progression. Following ROS production and the induction of a pro-oxidative state 

in cancer cells, PTPs are oxidized in a redox dependent manner, rendering them unable to 

carry out their usual function. In the case of Cdc25A this function is to inactivate the 

MAPKKK Raf-1, with which it has been shown to have an on/off switch like 

relationship339. The inability of oxidized Cdc25A to inactivate Raf-1 results in a 

continuous activation of the MAP kinase pathway, with a consequent upregulation and 

nuclear translocation of ERK. The nuclear translocation of ERK enables it to 

phosphorylate NRF-1 protein causing it to bind to the promoter of certain cell cycle genes 

(unpublished work done in Dr Roy’s lab) inducing their transcription and promoting cell 

proliferation.  

 

Tumor suppressor genes also play an important role in linking metabolism to cell growth. 

A central regulator of metabolism is the PI3K/AKT pathway, which controls metabolism 

through several mechanisms, including enhancement of protein translation through 

mTOR340. The c-Myc oncoprotein also plays a vital role in regulating metabolic changes 

required for cell division341. Furthermore, the pro-oxidative state of cancer cells is 

typified by adjustive responses that include changes in the expression of antioxidant 

enzymes and increased production of GSH. Together the interconnected disturbance in 

metabolism and oxidant production common to most tumor cells provide therapeutic 
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opportunities that do not depend on targeting a single oncogene or tumor suppressor 

gene. 
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Figures and Legend 

Figure1-R 

 

Redox reactions involving hydrogen peroxide (H2O2 ) and a thiolate (RS-). Thiolate 

reacts easily with H2O2 forming a sulfenate (RSO-) (see 1A), the sulfenate that is formed 

then reacts with a thiol to form a disulphide bond (see 1B). Then the original thiolate is 

restored by exchange with another thiolate (see 1C). 

 

Figure 2-R 
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The oxidation of Prx by H2O2.  Prx reacts with H2O2 to form a sulfenate (fig.2A). A 

second thiol then reacts with the sulfenate to form an intra-molecular disulphide (fig.2 B). 

In the third and final step, TRX used to restore the original thiolate (fig. 2C). 

 

 
Figure 3-R 

 

Reversible PTP inactivation by H2O2. In step 1, an active PTP containing a thiolate 

reacts with H2O2 to form an inactive but reversible PTP-sulfenate (SO-). In step 2, the 

PTP-sulfenate reacts with GSH within the cell to form a mixed disulfide bond which 

would prevent irreversible oxidation of the active site cysteine and allow for the 

reversible reduction. In step 3, the mixed disulfide bond on the inactive PTP is reversed 

back to a thiolate and PTP becomes active again. 
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Figure 4-R 

 

 

The effect of E2-induced ROS on regular mitogenic signaling. E2 crosses the cell 

membrane and goes to the mitochondrium where it induces ROS formation. The oxidants 

formed inhibit PTEN rendering it unable to inhibit the PI3K/Akt pathway resulting in the 

hyper-stimulation of the pathway and a continuous phosphorylation of Akt. 

Phosphorylated Akt then activates NRF-1 by phosphorylation enabling the now active 

protein to binds to the promoter region of certain cell cycle genes. 
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Figure 5-R 

 

 

The effect of tamoxifen-induced ROS on regular mitogenic signaling. Tamoxifen-

induced oxidants inhibit PTEN rendering it unable to inhibit the PI3K/Akt pathway 

resulting in the hyper-stimulation of the pathway and a continuous phosphorylation of 

Akt. Phosphorylated Akt then activates NRF-1 by phosphorylation enabling the now 

active protein to binds to the promoter region of certain cell cycle genes. 

 

III  REDOX SIGNALING CONRIBUTES TO THE DEVELOPMENT OF 

TAMOXIFEN RESISTANCE IN BREAST CANCER TREATMENT 

Abstract 

Tamoxifen is a selective estrogen receptor modulator (SERM) which is used to treat 

estrogen receptor positive (ER+) breast cancer. It is also used in breast cancer prevention 
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and as an adjuvant in early breast cancer cases. Only about 70% of breast cancer patients 

will initially respond to tamoxifen treatment. About 40% of patients who were initially 

responsive to the drug and majority of the patients with metastatic breast disease will 

develop resistance over time. Therefore the problem of tamoxifen resistance has been a 

major setback in the otherwise successful treatment of ER+ breast cancer patients. 

Although there has been an improvement in our current understanding of the molecular 

mechanism(s) that result in the development of tamoxifen resistance, there is still a lot of 

ground to cover on the subject. In this study we explored the role of Reactive oxygen 

species (ROS) in the evolution of tamoxifen sensitive breast cancer to tamoxifen resistant 

breast cancer. ROS are products of cellular metabolism which have been shown to induce 

oxidative stress. An excessive and/or sustained increase in ROS production has been 

implicated in the pathogenesis of cancer. Furthermore, ROS induced oxidative stress has 

been shown to initiate various cellular responses including cell proliferation and 

transformation; alteration of intracellular redox state and the oxidative modification of 

certain signaling proteins resulting in the post translational modification of their 

downstream targets. Interestingly, like estrogen, tamoxifen has been shown to induce  

ROS formation, making it probable that tamoxifen induced ROS generated as a result of 

prolong tamoxifen treatment of breast cancer patients may play a vital role in the 

development of its resistance. Using tamoxifen resistant LCC2 cell and standard 

laboratory techniques, we examined the role of ROS in the evolution of breast cancer 

from a tamoxifen sensitive phenotype to a resistant one. We were interested in finding 

out how and if ROS induces the post translational modification of p27 resulting in the 

loss of its inhibitory function and if this process can be reversed by pre-exposing the cells 
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to biological or chemical antioxidants. We discovered that, as a result of tamoxifen 

exposure, an increasingly pro-oxidant environment induced cell proliferation by 

diminishing p27 expression and increasing its phosphorylation on Threonine157 and 

Threonine187. This is accompanied by an ensuing reduction of p27 binding to Cyclin 

E/Cdk2 complex and loss of p27 stability culminating in the loss of sensitivity to 

tamoxifen. We also found that Pre-exposing cells to either biological or chemical anti-

oxidants, restored tamoxifen sensitivity by reversing the previous expression and 

phosphorylation of p27.  

   

Introduction 

Tamoxifen resistance has remained a major setback in an otherwise successful treatment 

of estrogen receptor positive (ER+) breast cancer. Most breast cancers are estrogen-

receptor positive (ER+). Approximately 70% of patients with ER+ cancer will respond to 

anti-estrogen therapy, such as tamoxifen1. In addition, a significant number of tumors that 

initially respond to tamoxifen treatment often progress into a resistant phenotype over 

time, in spite of sustained expression of ERα 2, 3. 

 

Over the years, several pathways and postulates have been proposed and examined as 

possible mechanisms of breast cancer resistance to tamoxifen. While some of these have 

translated into beneficial therapies to a large number of patients, tamoxifen resistance still 

remains a significant problem. In addition, though studies have examined the roles of 

ERα and β, and their co-regulatory proteins; growth factor receptors and the activity of 

their downstream kinases; Cas/c-Src/BCAR3 and cell cycle regulators like Cyclins D/E 



 

82 

and p27, currently there is no study investigating the effect of Reactive oxygen species 

(ROS) on p27 in tamoxifen resistance.  

 

Cancers have been shown to be under persistent oxidative stress 4. Oxidative stress, 

which is triggered by an imbalance between the production and detoxification of ROS, 5 

has been implicated in the therapeutic resistance to tamoxifen 6. Tamoxifen, a selective 

estrogen receptor modulator (SERM), has been reported to possess both pro- and anti-

oxidant properties. Among its antioxidant actions are: its cardio-protective effect in the 

prevention of atherosclerosis 7, 8; its inhibition of lipid peroxidation 9 and its ability to 

protect low density lipoproteins (LDL) against copper ion-mediated oxidative damage 10 

in humans. Conversely, its pro-oxidant effects include its ability to induce oxidative liver 

damage 11 and its explication as a hepato-carcinogen in rodents due to ROS over-

production that occurs during its metabolism 12, 13. Additionally, it has been suggested 

that oxidative stress might trigger the pathogenesis of tamoxifen-induced toxicity 14. 

Though it has not been ascertained whether the elevated oxidative state of tamoxifen 

resistant breast cancer is due to prolong tamoxifen exposure, the possibility that the pro-

oxidant property of prolonged tamoxifen exposure may play a role in breast cancer 

resistance cannot be ignored. 

 

Reactive oxygen species consist of a number of partially reduced metabolites of oxygen 

such as superoxide anions (O2
− •), hydrogen peroxide (H2O2), and hydroxyl radicals 

(OH·), characterized by higher reactivity than molecular oxygen. These reactive species 

are known to play a vital role in cell growth mediated by 17β estradiol (E2) 15. Oxidative 
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stress has been shown to instigate a number of varied responses including cell 

proliferation and transformation. Furthermore, an excessive and/or sustained increase in 

ROS production has been implicated in the pathogenesis of cancer 16. Redox balance is 

achieved by various enzymatic and non enzymatic antioxidant systems that counteract the 

harmful effect of ROS. For example, superoxide dismutase (SOD) catalyses the 

dismutation of the superoxide anion into H2O2, while Catalase and glutathione peroxidase 

(GPx) metabolize H2O2 into water and molecular oxygen 17, 18. It is interesting to note 

that physiological ROS play a significant role in the regulation of signaling pathways 

such as kinase and phosphatase activation/inactivation.  

 

Oxidative stress-induced redox surges could bring about changes in the thiol status of 

signaling proteins with alterations in their Phosphorylation/dephosphorylations functions. 

These modifications could lead to changes in cellular signaling transduction pathways, 

DNA and RNA syntheses, protein syntheses, enzyme activation and cell cycle regulations 

19-27. Signaling proteins such as mitogen-activated protein kinases (MAPK) 27 and protein 

tyrosine phosphatases (PTPs) like PTEN (Phosphatase and tensin homolog deleted on 

chromosome ten) and CDC25 28 have been shown to be susceptible to oxidation because 

they contain essential cysteines which serve as possible targets for ROS in different 

pathways 30, 31.  

   

Protein tyrosine phosphatases (PTPs) are important enzymes in cell cycle control and 

signal transduction. In conjunction with protein tyrosine kinases (PTKs), PTPs regulate 

levels of protein tyrosine phosphorylation in response to cellular signals 32, 33. Many 



 

84 

studies have shown that PTKs may be directly activated through the inhibition of PTPs 

by ROS 34, 35. For example, PTEN is a redox sensitive phosphatase which has been shown 

to be inactivated by ROS. The inactivation of PTEN leads to the sustained phosporylation 

and activation of AKT. AKT has been shown to phosphorylate p27 on threonine 157 with 

a resultant cytoplasmic sequestration and a consequent inhibition of its nuclear function. 

 

p27 is a Cyclin-kinase inhibitor (CKI) which was originally discovered as a protein 

whose expression was induced by different growth inhibitory conditions/agents such as 

serum starvation, contact inhibition, transforming growth factor-α or by lovastatin 36. Its 

expression is reduced by mitogens like epidermal growth factors and estrogens. Mice 

with p27 knockout develop multiorgan hyperplasia and pituitary tumors, thus 

underscoring a role for p27 in both proliferation and differentiation 37. p27 is also well-

known for its ability to inhibit G1 Cyclin/CDK complexes. It is noteworthy that its 

activity is regulated by its post-translational modification 38, 39. Hence one may infer that 

because of their capacity to oxidize and inactivate PTEN, ROS may be able to regulate 

p27 function by modulating its post-translational modification. 

 

We therefore hypothesized that (i) in addition to its known action at the ER, tamoxifen 

also prevents estrogen-mediated progression of cell cycle by counteracting estrogen-

induced reactive oxygen species signaling, and (ii) as a result of chronic oxidative stress, 

and the conversion of estrogen-sensitive breast tumors to a tamoxifen-resistant phenotype 

is associated with a progressive shift towards a pro-oxidant environment. Therefore, an 

increase in ROS levels promotes the loss of p27 inhibitory function through the 
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inactivation of protein tyrosine phosphates (PTPs) and a consequent change in p27 

phosphorylation.     

 

To test these hypotheses, we conducted experiments to i) determine the relationship 

between tamoxifen and oxidative stress, ii) determine the effect of ROS on p27 

expression and its phoshorylation in tamoxifen resistant LCC2 cells, iii) determine if pre-

treatment of LCC2 cells with biological or chemical antioxidants can restore tamoxifen 

sensitivity by re-establishing redox balance within the cells, and iv) determine the effect 

of antioxidants on p27 stability and its inhibitory function. 

 

Materials and methods 

Materials  

Antibodies to p27, Cyclin E, CDK2 and Phosphorylated p27 on Threonine187 were 

purchased from Santa Cruz Biotechnology. T157 Phosphorylated p27 antibody was 

purchased from Abcam. Beta Actin, 2', 7’-dichlorodihydrofluorescein diacetate (DCFH-

DA), DMSO, Ebselen and cyclohexamide were purchased from Sigma Aldrich. 

Exactacruz immune- precipitation kit was purchased from Santa Cruz Biotechnology.  

BrdU kit was purchased from ROCHE. Protein A Agarose was purchased from 

Invitrogen. The adenoviruses AdEmpty (EV), AdMnSOD (SOD), and AdCatalase (CAT) 

were purchased from ViraQuest, Inc. (North Liberty, IA, USA).  
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Cell culture 

LCC2 cells were provided by Dr Slingerland (Braman Family Breast Cancer Institute, 

Miami)). Cells were cultured in DMEM (Gibco) containing 5% Fetal bovine serum 

(FBS), 25,000 units of penicillin (base) and 25,000 µg of Streptomycin at 37°C in a fully 

humidified atmosphere of 5% CO2 in air. For experiments, 40% Confluent cells were 

further cultured in DMEM containing 5% Charcoal Stripped FBS for 24hours to 

minimize the effect of serum and synchronize the cells in G1.  Synchronized cells were 

always treated with 0.01% DMSO, 1uM Tamoxifen (TAM), 100pg E2 or 1uM 

fulvestrant.  

 

Adenoviral Transduction 

The adenoviruses AdEmpty (EV), AdMnSOD (SOD), and AdCatalase (CAT) were 

manufactured at ViraQuest, Inc. (North Liberty, IA, USA) by inserting either Ad5 

E1/partial E3-deleted replication-deficient adenoviral vector only (EV) or the vector 

containing MnSOD (SOD) or Catalase (CAT) gene in the E1 region of the vector.  

 

LCC2 cells were seeded in 100-mm dishes at a density of 1 × 106 cells/dish in the 

medium containing charcoal stripped FBS for 24hrs. The medium was then aspirated and 

replaced with 5 ml of serum-free medium containing 50pfu of SOD, CAT or EV 

adenovirus. After 2 hours of incubation, 10% of charcoal stripped serum was added to the 

medium making it 5% charcoal stripped medium. Medium was changed after 24 hours of 

adenoviral exposure and treatment(s) were added to pre-designated plates and incubated 

for another 48 hours.  
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Ebselen Pre-treatment 

1x106 LCC2 cells were seeded per 100mm dish in medium with 5% Charcoal stripped 

serum. 21 hours post seeding 20μM of Ebselen was added to the culture and incubated 

for 3hours.  Desired treatments were then added to the culture and incubated for 48 hours. 

 

BrdU Incorporation Assay 

For BrdU incorporation, LCC2 cells were seeded in 96-well plates at a density of 

2500/well and incubated in 5% CO2 incubator at 37oC. 24 hours after seeding, cells were 

either infected with EV, CAT or SOD at a multiplicity of infection (m.o.i) of 50pfu/cell 

as described above or pre-treated with 20 μM of Ebselen. After exposure to antioxidants 

cells were then stimulated with either 0.01% DMSO, E2 (100pg), TAM (1uM) or E2 + 

TAM for 48hours. Following the above treatment, BrdU incorporation assay was carried 

out using Cell Proliferation ELISA, BrdU labeling Kit (Roche Molecular Biochemical) in 

accordance with manufacturer’s recommendation. Colorimetric changes were acquired at 

370 nm with a Tecan Genios microplate reader. 

 

2′, 7′-dichlorofluorescin diacetate (DCFH-DA)  

To carry out the DCFH-DA Assay, 10,000/well of LCC2 cells were seeded in a 96-well 

plate and cultured in 10% growth medium for 24 hours. After 24 hours growth medium 

was aspirated and replaced with serum free medium for another 24 hours after which the 

starvation media was aspirated and replaced with 100uL/well of HBSS containing 10 μM 

DCFDA pre-diluted with Pluronic F-127 and incubated at 37oC for 20 mins. At the end of 

the incubation, DCFH-DA solution was gently aspirated and pre-designated wells were 
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then stimulated with 100ul of HBSS containing either 0.01% DMSO (vehicle control), E2 

(100pg), TAM (1uM) or E2 + TAM. Cells were further incubated for 5mins after which 

fluorescence readings were taken using 485 nm and 535 nm as excitation and emission 

filters, at intervals of 5 mins. Optical density readings were obtained using a Tecan 

Genios microplate reader. 

 

 Western blot  

1 x 106 LCC2 cells per 100mm dish were initially exposed to antioxidants as described 

above and then stimulated with either 0.01% DMSO, 1μM TAM, or 1μM fulvestrant for 

48hours. Post treatment, cells were harvested and lysed in radioimmunoprecipitation 

assay (RIPA) buffer [25 mM Tris HCl (pH 7.4), 25 mM NaCl, 1 mM sodium 

orthovanadate,10 mM sodium  pyrophosphate, 10 mM NaF, 0.5 mM EGTA, 1.0% Triton 

X-100, 1 mM PMSF, and 10 mM okadaic acid] for 15 min on ice. Samples were then 

briefly sonicated and centrifuged at 10,000 rpm for 10 min at 4°C. The total protein 

concentration of the resulting supernatant was determined by Pierce BCA quantification 

kit. Equal amount of protein extracts (50 μg) were separated by SDS-PAGE, transferred 

to a polyvinylidene difluoride membrane (PVDF), blocked in 1% BSA and fat free milk 

solution containing 50 mM NAF for 1hour and blotted with antibodies. Labeled proteins 

are visualized with an ECL system (Amersham Biosciences). Band intensity was 

determined using densitometric analysis (NIH ImageJ software). The level of p27 was 

expressed as its ratio to β-actin. 
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For chronic exposure, after exposing cells to antioxidants cells were stimulated with 

either DMSO, TAM, or fulvestrant for 21 days after which the cells were harvested for 

lysate preparation and Immunoblotting as described above. 

 

Co-immunoprecipitation  

For co-immunopreipitation to determine Cyclin E complexes, the Exactacruz protocol 

was followed according to the manufacturer’s recommendation. Briefly, after stimulation, 

lysate was prepared using ice-cold Nonidet P-40 lysis buffer (0.1% Nonidet P-40, 50 mM 

Tris [pH 7.5], 150 mM NaCl, 1 mM phenylmethylsulfonyl fluoride, and 0.02 mg each of 

aprotinin, leupeptin, and pepstatin per ml). The lysate was then sonicated briefly and 

centrifuged at 10,000 rpm for 10 mins. Supernatant was saved and then pre-cleared using 

30 μl of Exactacruz pre-clearing matrix for 30minutes at 4oC while rotating. Matrix was 

pelleted by microcentrifugation at maximum speed for 30 seconds at 4°C and the 

supernatant (cell lysate) was transferred to a new micro centrifuge tube and BCA assay 

performed. 

 

IP antibody-IP matrix complex was formed by adding 2 μg of Cyclin E antibody to be 

immunoprecipitated to 40 μl of suspended IP matrix and 500 μl PBS and incubating at 4° 

C on a rotator overnight. After overnight incubation, matrix was pelleted, supernatant 

discarded and pelleted matrix was washed two times with 500 µl of PBS, each time while 

repeating the above centrifugation and aspiration steps. After the second wash and micro-

centrifugation, 300 μg of pre-cleared lysate was added to the IP antibody-IP matrix 

complex, and incubated overnight at 4° C after which samples were microcentrifuged at 
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maximum speed for 30 seconds at 4° C to pellet IP matrix and the pelleted matrix washed 

2-4 times with NP40 lysis buffer and pelleted. After the final wash, 40 µl of 2X reducing 

electrophoresis buffer was added to the pellet, boiled for 3 mins, quick-spinned and equal 

volumes loaded onto gel, resolved, transferred, and blotted with Cyclin E, Cdk2, and p27 

antibodies. Antibody alone, and whole cell lysate controls were run alongside 

immunoprecipitates. The same was done for CDK2 and p27. Western blot anti-body was 

probed using the appropriate HRP conjugated ExactaCruz reagent.  

 

Soft Agar Colony Formation Assay.  

To assess the effect of antioxidants on anchorage-independent cell growth, a soft agar 

colony formation assay using either plain or antioxidant pretreated (Ebselen, Catalase or 

MnSOD) LCC2 cells was performed. LCC2 cells (1000/well) were suspended in 0.2ml of  

charcoal stripped culture  medium containing 0.25% agar and appropriate treatment 

(0.01% DMSO or 1μM Tamoxifen or fulvestrant) and poured over a pre-hardened feeder  

layer of agarose comprising 0.2 ml of the charcoal stripped medium, containing 0.5% 

agar, in a 48 well plate. Cells were fed every 4 days and allowed to incubate for 30 days. 

After 14 days of incubation at 37°C in a humidified CO2 incubator, colonies were 

counted excluding any colonies with a diameter ≤ 60 μ meter. 

 

P27 protein stability 

To determine the effect of antioxidants on p27 stability, 1 x 106 LCC2 cells were seeded 

in 100 mm plates in medium with charcoal stripped FBS for 24hours and then some cells 

were exposed to either Ebselen or 50 pfu of CAT, SOD or EV. After 24 hours media was 
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replaced with fresh medium with charcoal stripped FBS alone for 40 hours.  After which 

50 μM of cycloheximide was added to media for the indicated period spanning the next 8 

hours. Cells were lysed in RIPA buffer for 60 min at 4°C. Samples were then centrifuged 

at 10,000g for 10 min at 4°C. The total protein concentration of the resulting supernatant 

was determined by BCA quantification. Equal amount of protein extracts (50 μg) were 

separated by SDS-PAGE, transferred to a PVDF membrane, blocked in 1% BSA and fat 

free milk solution containing 50 mM NAF for 1 hour and blotted with antibodies. 

Labeled proteins are visualized with an ECL system (Amersham Biosciences). Band 

intensity was determined using densitometric analysis (NIH ImageJ software). The level 

of p27kip was expressed as its ratio to β-actin. 

 

Results 

Antioxidants mitigate ROS formation in TAM resistant LCC2 cells 

To determine the effect of antioxidants on TAM-induced ROS in LCC2 cells, a DCFH-

DA assay was performed using cells with or without antioxidants. Data reveals that 

LCC2 cells generate ROS when exposed to TAM and E2 respectively and the ROS 

generated was significantly inhibited by the co-treatment of TAM with E2 (Figs. 1A). 

This observation implies that while individual treatment of LCC2 cells with E2 and TAM 

are pro-oxidant, TAM possesses an anti-oxidant effect in the presence of E2. Co-

treatments of cells with either TAM or E2 and ROS modulators (biological or chemical) 

also inhibited TAM-induced ROS (Figs. 1B, C). 
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Antioxidants inhibits BrdU incorporation in TAM resistant cells 

A BrdU incorporation assay was carried out to determine the effect of antioxidants on 

ROS induced DNA synthesis in LCC2 cells. Experimental outcomes show that E2 and 

TAM-induced cell proliferation in LCC2 cells is significantly inhibited by the co-

treatment of TAM with E2 (Fig. 2A) and by co-treatment of TAM or E2 with Biological 

(CAT or SOD) or chemical (Ebselen) ROS modulators (Figs. 2B, C). The ability of ROS 

modulators to inhibit TAM or E2 induced DNA synthesis points to the pro-oxidant effect 

of TAM or E2 on LCC2 cells and the inherent capacity of this pro-oxidant environment 

to promote cell proliferation. 

  

Antioxidants mitigate anchorage independent growth in TAM resistant LCC2 cells.  

To determine the effect of antioxidants on anchorage-independent growth in TAM 

resistant cells, a colony assay was performed using LCC2 cells. Anchorage independent 

growth was significantly inhibited by fulvestrant but not by TAM or DMSO (Fig.3A). 

fulvestrant was included in this experiment as a positive control because LCC2 cells are 

sensitive to it. Ebselen pretreatment or the over expression of CAT or SOD in TAM 

resistant LCC2 cells significantly inhibited anchorage independent growth compared to 

EV infected or uninfected cells (Figs. 3B, C). This result further substantiates the pro-

oxidant, growth inducing effect of TAM. 

  

Antioxidants increased p27 expression in TAM resistant cells 

Western blotting was carried out to determine the effect of antioxidants on TAM resistant 

cells. Fig. 4A reveals that the treatment of LCC2 cells with fulvestrant significantly 
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increased p27 expression compared to TAM. Ebselen pretreatment or the over expression 

of CAT or SOD in LCC2 cells also resulted in a significant increase in p27 expression 

when treated with TAM compared to EV infected cells and uninfected cells (Fig.4B, C). 

This is similar to the effect observed following exposure to fulvestrant in Fig.4A. It may 

thus be inferred that the TAM induced pro-oxidant environment may promote LCC2 cell 

proliferation by decreasing p27 expression. 

    

Antioxidants decreased p27 phosphorylation in TAM resistant cells 

Western blotting was also carried out to determine the effect of antioxidants on p27 

phosphorylation. Panel I. Results obtained from this experiment show that treatment of 

uninfected LCC2 cells with fulvestrant resulted in significantly reduced phosphorylation 

of p27 on Threonine 157(T157) relative to TAM treated cells which showed a 

phosphorylation level that was ≥ T157 phosphorylation in cells exposed to DMSO 

control (Fig.5A). Over expression of CAT or SOD or Ebselen pretreatment in LCC2 cells 

leads to a significant decrease in T157 phosphorylation when treated with TAM 

compared to either EV infected control or uninfected cells. (Figs.5B, C). Once again the 

cells exposed to ROS modulators acted like those exposed to fulvestrant by showing a 

decrease in p27 phosphorylation on T157 unlike the unexposed cells which showed an 

increase in T157 phosphorylation. It is noteworthy that phosphorylation of p27 on T157 

results in increased cytoplasmic sequestration of p27 and vice versa.  

 

Panel II. In Fig.5A Experimental outcome reveals a significant reduction of p27 

phosphorylation on Threonine 187 (T187) in LCC2 cells exposed to fulvestrant compared 
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to TAM. (B) LCC2 cells over expressing CAT or SOD or pretreated with Ebselen also 

shows a significant reduction in the level of p27 phosphorylation on T187 when treated 

with TAM compared to either EV control or uninfected cells. 

A result similar to the one obtained for T157. 

 

Prolonged exposure of LCC2 cells to antioxidants and TAM treatment increased 

p27 expression 

Immunoblotting was carried out to determine the effect of chronic antioxidant and TAM 

exposure on p27 expression. Results obtained show that prolonged (21 days) exposure of 

LCC2 cells to fulvestrant significantly increased p27 expression compared to TAM (Fig. 

6A). Over expression of CAT or SOD in LCC2 cells also resulted in a significant 

increase in p27 expression when treated with TAM compared to EV infected cells and 

uninfected cells (Fig.6B). This shows that chronic exposure to antioxidants and TAM 

have the same outcome as short term (48hrs) exposure.  

 

Prolonged exposure of LCC2 cells to antioxidants and TAM treatment reduced p27 

phosphorylation 

The following are results from Immunoblotting to determine the effect of antioxidants on 

p27 phosphorylation. Panel I. Chronic treatment of uninfected LCC2 cells with 

fulvestrant resulted in a significant reduction in the phosphorylation of p27 on Threonine 

157(T157) compared to TAM treated cells which showed an increase in the level of p27 

phosphorylation on T157(Fig.7A). Treatment of LCC2 cells over expressing CAT or 
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SOD also resulted in a reduction in phosphorylation when compared to either EV control 

or uninfected cells exposed TAM (Fig.7B).  

 

Panel II. Fig.8A shows that chronic exposure of LCC2 cells to fulvestrant resulted in a 

significant reduction in the level of p27 phosphorylation on Threonine 187 (T187) 

compared to TAM. LCC2 cells over expressing CAT or SOD upon treatment with TAM 

showed a significant reduction in phosphorylation when compared to either EV control or 

uninfected cells exposed to TAM. 

 

Antioxidants increased p27 binding to CylinE and CDK2 in TAM resistant cells 

To determine the effect of Antioxidants on p27 binding to CDK2 and or CyclinE a co- 

immunoprecipitation was performed. Treatment of LCC2 cells with fulvestrant resulted 

in an increase in p27 binding to CDK2 and CyclinE compared to TAM treatment (Fig. 

8A). Ebselen pretreatment or the Over expression of CAT or SOD in LCC2 also resulted 

in increased binding of p27 to CDK2 and CyclinE when treated with TAM compared to 

either EV infected controls or uninfected cells exposed to TAM (Fig.8B, C). 

 

Antioxidants increased CDK2 binding to P27 and CyclinE in TAM resistant cells To 

determine the effect of Antioxidants on p27 binding to CDK2 and or CyclinE a co- 

immunoprecipitation was performed. Treatment of LCC2 cells with fulvestrant resulted 

in an increase in CDK2 binding to p27 and CyclinE compared to TAM treatment (Fig. 

9A). Ebselen pretreatment or the Over expression of CAT or SOD in LCC2 also resulted 
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in increased binding of CDK2 to p27 and CyclinE when treated with TAM compared to 

either EV infected controls or uninfected cells exposed to TAM (Fig.9B, C). 

  

Antioxidant Increased CylinE binding to CDK2 and p27 in TAM resistant cells 

To determine the effect of antioxidants on CyclinE binding to CDK2 and or p27 a co- 

immunoprecipitation was performed. In (Fig. 10A), treatment of LCC2 cells with 

fulvestrant resulted in an increase in CyclinE binding to CDK2 and p27 compared to 

TAM while data from (Fig.10B, C) also showed increased CyclinE binding to CDK2 and 

p27 in LCC2 cells over expressing CAT or SOD compared to either EV infected cells or 

uninfected cells exposed to TAM.  

  

P27 expression is less in LCC2 cells compared to MCF7 when synchronized  

Pursuant to the finding in Figures 4 and 5 Immunoblotting was performed to compare the 

levels of p27 in TAM resistant LCC2 cells to its parent MCF7 cells. Results obtained 

showed the level of p27 expression in LCC2 to be about 40% less than that in MCF7 

cells of equal protein concentration, exposed to the same experimental conditions. 

 

Antioxidants Increased p27 stability in TAM resistant cells 

To determine p27 stability a stability assay was performed using cycloheximide. LCC2 

cells not pre-exposed to antioxidants had a shorter half life (2.42hours) compared to CAT 

or SOD over expressing cells. 
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Discussion 

In this study, we hypothesized that, (i) In addition to its known action at the ER, TAM 

also prevents estrogen-mediated progression of cell cycle by counteracting estrogen-

induced ROS signaling, and (ii) As a result of chronic oxidative stress, the conversion of 

estrogen-sensitive breast tumors to a Tamoxifen-resistant phenotype is associated with a 

progressive shift towards a pro-oxidant environment. We therefore propose that an 

increase in ROS levels promotes the loss of p27 inhibitory function through the 

inactivation of protein tyrosine phosphates (PTPs) and a consequent change in p27 

phosphorylation. 

 

TAM, a known selective estrogen receptor modulator (SERM), has been widely shown to 

possess either pro- or antioxidant properties 7-13. Our results show that TAM possesses 

the capacity to act like both an oxidant and an antioxidant. Exposure of LCC2 cells to 

TAM or E2 induced the formation of reactive oxidants (Fig.1A). These reactive oxidants 

were then inhibited by the co-treatment of E2 with TAM, much like the ROS inhibition 

observed in cells pre-treated with antioxidants (Figs.1B & C). We further demonstrated 

that E2 and TAM induced ROS in LCC2 cells were capable of inducing cell proliferation 

which was then inhibited by pre-exposure of the cells to biological or chemical 

antioxidants or the co-treatment of TAM with E2 (see Figs.2 & 3). These findings make a 

case for the dual role of TAM as both a pro- and an antioxidant. Based on these results, it 

appears that the antioxidant effect of TAM is observed in the presence of E2.  

Exposure of TAM resistant LCC2 cells to TAM resulted in a decrease in p27 expression 

in contrast to the increase in p27 expression observed when the same cells were treated 
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with fulvestrant (see Fig.4A). Fulvestrant is an anti-estrogen to which LCC2 cells are 

known to be sensitive. We also observed that the exposure of these cells to TAM 

increased p27 phosphorylation on T157 and T187 while exposure to fulvestrant appeared 

to have the opposite effect (Fig5. Panels 1& IIA). 

 

Conversely, following the antioxidant pre-treatment/over expression, a fulvestrant-like 

effect i.e., an increase in p27 expression (see Figs. 4B &C) and a decrease in p27 

phosphorylation on T157 and T187 was observed in TAM treated cells compared to cells 

which were not pre-exposed to antioxidants (Figs. 5 Panels I & II B & C). It can thus be 

inferred that the over expression of antioxidant in LCC2 cells leads to an increase in p27 

expression and a decrease in its phosphorylation on T157 and T187. This is in line with 

other previous studies 40 - 42, which showed that treatment with anti-estrogen drugs like 

TAM or fulvestrant caused cell cycle arrest, with up-regulation of p21 and p27 levels, an 

increase in their binding to Cyclin E–Cdk2, and kinase inhibition 40. Additionally, results 

from our comparison of p27 expression between Tamoxifen sensitive parental MCF7 and 

Tamoxifen resistant LCC2 cells showed a 40% decrease in p27 expression in LCC2 cells 

compared to MCF7 (Fig.11). This implies that TAM resistance could be associated with a 

decrease in p27 expression rather than the loss p27 function in which case, an increase in 

p27 expression following antioxidant pre-treatment is a significant finding.  

 

Though the observed experimental outcomes imitate the effect of fulvestrant on LCC2 

cells, we cannot yet interpret this to either denote an increase in TAM sensitivity or the 

growth inhibitory function of p27. This is because previous studies have indicated that 
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p27 potentially has dual role(s) in tumor – suppression and promotion 43-46 depending on 

its subcellular redistribution and its binding to the Cyclin-Cdk complex. The binding of 

p27 to the Cyclin E/Cdk2 complex in the nucleus promotes its function as a CKI while 

cytoplasmic sequestration takes it away from its nuclear Cyclin/Cdk target to the growth 

promoting interaction with Cyclin D/Cdk4/6 complex 47.  

 

In line with previous studies 40, we also found an increase in the binding of Cyclin E–

Cdk2 and p27 in TAM treated cells over expressing antioxidant (CAT and SOD) 

compared to control cells not exposed to antioxidants (see Figs. 8, 9 & 10). In the context 

of our initial finding of increased p27 expression and decreased phosphorylation, these 

results of increased binding of p27 to Cyclin E–Cdk2 and increased p27 stability in cells 

over expressing antioxidants (Fig. 12), are highly suggestive of an increase in the TAM 

sensitivity, most likely due to p27 inhibitory function in antioxidant over expressing 

LCC2 cells. 

 

In summary, we demonstrate that TAM has the capacity to induce ROS formation and act 

as an antioxidant in the presence of E2. Following prolonged exposure to TAM and an 

increasingly pro-oxidant environment, the oxidants formed are able to promote cell 

proliferation. This could be by decreasing p27 expression and regulation of its activity by 

post-translational modification involving an increase in p27 phosphorylation on T157 and 

T187. This is accompanied by a resultant cytoplasmic sequestration, decreased binding to 

Cyclin E/Cdk2 complex and loss of p27 stability resulting in the loss of sensitivity to 

TAM. Clearly, these events are oxidant driven, therefore they can be reversed by 
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antioxidant over expression or pre-treatment, with a resultant growth inhibitory effect and 

increased TAM sensitivity.  
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Figures and Legend 

Fig 1-LCC2.  

 

Antioxidants mitigate ROS formation in TAM resistant LCC2 cells. To determine the 

effect of antioxidants on TAM induced ROS in LCC2 cells, 1 x104cells/well were seeded 

in a 96-well plate overnight and serum starved for 24 hrs. Post-starvation 100 μL/well of 

HBSS containing 10 μM DCFH-DA pre-diluted with Pluronic F-127 was added to each 

well and incubated at 37oC for 20 mins.  DCFH-DA solution was then aspirated and 

replaced with 100 μL of HBSS containing the desired treatments. Cells were further 

incubated for 5 mins and fluorescence readings were taken using 485 nm and 535 nm as 

excitation and emission filters, at intervals of 5mins. A) LCC2 cells treated with TAM, 

E2 or TAM/E2; B) TAM resistant cells over expressing Catalase (CAT) and MnSOD 

(SOD) were treated with TAM, E2 or TAM/E2; C) LCC2 cells co-treated with Ebselen 

and TAM, E2 or TAM/E2. Assay was performed 3x and data is expressed as mean 

percentage change from control +/- SE, (p 0.05).  (*) denotes significance when treatment 

is compared to DMSO control, (**) indicates significance when compared to EV/DMSO 
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control while (***) indicates significance when treatment is compared to DMSO and 

each individual treatment.  

 

Fig 2-LCC2 

 

Antioxidants inhibit BrdU incorporation in TAM resistant cells. To determine the 

effect of antioxidants on ROS induced DNA synthesis in LCC2 cells, 2.5 x 103 cells/well 

were seeded in a 96-well plate overnight and exposed to chemical or biological 

antioxidants as described in methods. After exposure to antioxidants, cells were then 

stimulated with E2, TAM or fulvestrant for 46 hrs and pulsed labeled with BrdU for 2 

hrs. BrdU assay was then carried out as recommended by manufacturer. Colorimetric 

changes were acquired at 370 nm with a Tecan Genios microplate reader at 5 mins 

interval. A) LCC2 cells treated with TAM, E2 or TAM/E2; B) TAM resistant cells over 

expressing CAT and SOD and treated with TAM, E2 or TAM/E2; C) LCC2 cells co-

treated with Ebselen and TAM, E2 or TAM/E2. Assay was performed 3x and data is 

expressed as mean percentage change from control +/- SE, (p 0.05). (*) denotes 

significance when treatment is compared to DMSO control, (**) indicates significance 
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when compared to EV/DMSO control while (***) indicates significance when treatment 

is compared to DMSO and each individual treatment. 

 

Fig 3-LCC2 

 

Antioxidants mitigate anchorage independent growth in TAM resistant LCC2 cells. 

To determine the effect of antioxidants on anchorage-independent growth in TAM 

resistant cells, LCC2 cells were incubated on soft agar with or without antioxidants 

exposure for 21 days and colonies ≥60 microns in diameter were enumerated. A) 

Anchorage independent growth of TAM resistant cells; B) LCC2 cells over expressing 

Catalase (CAT) or MnSOD (SOD); C) LCC2 cells pretreated with chemical antioxidant.  

Assay performed 3x and data is expressed as mean percentage change from control +/- 

SE, (p 0.05).  (*) denote significance when treatment is compared to DMSO control 

while (**) indicates significance when compared to EV/DMSO control. 
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Fig 4-LCC2 

 

Antioxidants Increased p27 expression in TAM Resistant cells. LCC2 cells were 

exposed to antioxidants as described in methods and treated with TAM and fulvestrant 

respectively. After 48 hrs incubations, cells were harvested with lysis buffer and 50 ug 

whole cell lysate (WCL) were fractionated on 12% SDS-PAGE gel. Immunoblots were 

probed with p27 or β actin antibodies respectively. A) LCC2 cells treated with TAM or 

fulvestrant, B) LCC2 cells over expressing CAT or SOD, then treated with TAM and 

Fulv, C) LCC2 cells co-treated with chemical antioxidant and TAM or Fulv. Assay was 

performed 3x. P27 protein level was determined by densitometric analysis and expressed 

as the percentage mean of its ratio with β actin relative to control +/- SE, (p 0.05).  (*) 

denotes significance when treatment is compared to DMSO control while (**) indicates 

significance when compared to EV/DMSO control. 
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Fig 5-LCC2 

 

Antioxidants decreased p27 phosphorylation in TAM Resistant cells. (Panel I) A) 

LCC2 cells treated with TAM or Fulv and probed with p27 or p27 phosphorylated on 

Threonine 157 (T157); B) LCC2 cells over expressing CAT or SOD were treated with 

TAM and Fulv, then probed with p27 or T157; C) LCC2 cells co-treated with chemical 

antioxidant and TAM or Fulv,  then probed with p27 or T157. (Panel 2) A) LCC2 cells 

treated with TAM or Fulv and probed with p27 or p27 phosphorylated on Threonine 187 

(T187); B) LCC2 cells over expressing CAT or SOD were treated with TAM and Fulv, 

then probed with p27 or T187; C) LCC2 cells co-treated with chemical antioxidant and 

TAM or Fulv, then probed with p27 or T187. Assay was performed 3x. Phosphorylated 

p27 levels were determined by densitometric analysis and expressed as the percentage 

mean of their ratios to the ratio of p27 with β actin relative to control +/- SE, (p 0.05).  (*) 

is denotes significance when compared to DMSO control while (**) indicates 

significance when compared to EV/DMSO control. 



 

109 

Fig. 6-LCC2 

 

Prolonged antioxidant treatments increased p27 expression in LCC2 cells. LCC2 

cells over expressing CAT or SOD were exposed to either TAM or Fulv for 21 days. A) 

Uninfected cells were treated with TAM or Fulv and probed for p27 and actin; B) CAT or 

SOD infected cells treated with TAM or Fulv and probed for p27 and β actin. Assay was 

performed 3x. P27 protein level was determined by densitometric analysis and expressed 

as the percentage mean of its ratio with β actin relative to control +/- SE, (p 0.05).  (*) 

denotes significance when treatment is compared to DMSO control while (**) indicates 

significance when compared to EV/DMSO control. 
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Fig 7-LCC2 

 

Prolonged exposure of LCC2 cells to Antioxidants decreased p27 phosphorylation in 

LCC2. (Panel I) A) LCC2 cells treated with TAM or Fulv for 21 days and probed with 

p27 or T157; B) LCC2 cells over expressing CAT or SOD were treated with TAM and 

Fulv for 21 days, and then probed with p27 or T157. (Panel II) A) LCC2 cells treated 

with TAM or Fulv for 21 days and probed with p27 or T187; B) LCC2 cells over 

expressing CAT or SOD were treated with TAM and Fulv for 21 days, and then probed 

with p27 or T187. Assay was performed 3x. Phosphorylated p27 levels were determined 

by densitometric analysis and expressed as the percentage mean of their ratios to the ratio 

of p27 with β actin relative to control +/- SE, (p 0.05).  (*) denotes significance when 

compared to DMSO control while (**) indicates significance when compared to 

EV/DMSO control. 
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Fig 8-LCC2. 

 

  

Antioxidant Increased p27 binding to CylinE and CDK2 in TAM resistant cells. 

LCC2 were exposed to antioxidants as described in methods and treated with TAM and 

fulvestrant respectively. After 48 hrs incubations, cells were harvested with lysis buffer 

and 350 ug WCL was immunoprecipitated (IP) with p27 antibody using Exactacruz kit as 

recommended. Eluent was fractionated on 12% SDS-PAGE gel. Immunoblots were 

probed with p27, CDK2 or CyclinE antibodies respectively. A) LCC2 cells treated with 

TAM or Fulv, B) LCC2 cells over expressing CAT or SOD, then treated with TAM and 

Fulv, C) LCC2 cells co-treated with chemical antioxidant and TAM or Fulv. 
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Fig 9- LCC2 

 

 

Antioxidants Increased CDK2 binding to CylinE and p27 in TAM resistant cells. 

LCC2 were exposed to antioxidants as described in methods and treated with TAM and 

fulvestrant respectively. After 48 hrs incubations, cells were harvested with lysis buffer 

and 350 ug WCL was immunoprecipitated (IP) with CDK2 antibody using Exactacruz kit 

as recommended. Eluent was fractionated on 12% SDS-PAGE gel. Immunoblot were 

probed with, CDK2, p27 or CyclinE antibodies. A) LCC2 cells treated with TAM or 

Fulv, B) LCC2 cells over expressing CAT or SOD, then treated with TAM and Fulv, C) 

LCC2 cells co-treated with chemical antioxidant and TAM or Fulv.  
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Fig10-LCC2 

 

 

Antioxidant Increased CylinE binding to CDK2 and p27 in TAM resistant cells. 

LCC2 were exposed to antioxidants as described in methods and treated with TAM and 

fulvestrant respectively. After 48 hrs incubations, cells were harvested with lysis buffer 

and 350 ug WCL was immunoprecipitated (IP) with CDK2 antibody using Exactacruz kit 

as recommended. Eluent was fractionated on 12% SDS-PAGE gel. Immunoblots were 

probed with, CyclinE, p27 or CDK2, antibodies respectively. A) LCC2 cells treated with 

TAM or Fulv, B) LCC2 cells over expressing CAT or SOD, then treated with TAM and 

Fulv, C) LCC2 cells co-treated with chemical antioxidant and TAM or Fulv. 
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Fig11-LCC2 

 

P27 expression is less in LCC2 cells compared to MCF7. 1million LCC2 and MCF7 

cells were seed and serum starved for 48 hours after which cells were harvested with lysis 

buffer and 50 ug whole cell lysate (WCL) were fractionated on 12% SDS-PAGE gel. 

Immunoblot were probed with p27 or beta actin antibodies respectively. Figure shows 

p27 and Actin expression in LCC2 and MCF7 cells. Assay was performed 3x. P27 

protein level was determined by densitometric analysis and expressed as the percentage 

mean of its ratio with β actin relative to control +/- SE, (p 0.05 (*) is indicates 

significance when p27 expression in LCC2 cells is compared to that of MCF7 cells. 
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Fig12-LCC2 

 

 

Antioxidants increased p27 stability. Uninfected LCC2 cells (A) and LCC2 cells over 

expressing CAT(B), SOD(C) or EV(D) were treated with 50uM cycloheximide (CHX) 

for the time periods indicated, and p27 protein levels were determined by 

immunoblotting and densitometry with β actin as internal control.  

 

IV ESTROGEN INDUCED ROS MEDIATES IN VITRO CELL 

PROLIFERATION AND GROWTH THROUGH PTEN OXIDATION AND AKT-

NRF-1 PHOSPHORYLATION 

 

Abstract 

Tamoxifen resistance is still a significant problem in the treatment of estrogen receptor 

positive breast cancer.  Due to de novo resistance, only about 70% of breast cancer 

patients will initially respond to tamoxifen treatment. About 40% of patients who were 

initially responsive to the drug and majority of the patients with metastatic breast disease 



 

116 

will develop an acquired resistance to the drug over time. Although there has been an 

improvement in our understanding of the subject, the molecular mechanism(s) that result 

in the evolution of tamoxifen resistant breast cancer is still unclear. In this study we 

explored the role of reactive oxygen species (ROS) in the advancement of breast cancer 

from a tamoxifen-sensitive to a tamoxifen-resistant phenotype. ROS are products of 

cellular metabolism and an excessive and/or sustained increase in their production has 

been implicated in the pathogenesis of cancer. Furthermore, ROS induces oxidative stress 

which has been shown to initiate various cellular responses including alteration of 

intracellular redox state and the oxidative modification of certain signaling proteins 

resulting in the post translational modification of their downstream targets. Interestingly, 

tamoxifen like estrogen, has been shown to induce ROS formation, making it probable 

that tamoxifen induced ROS generated as a result of prolong tamoxifen treatment of 

breast cancer patients may play a critical role in the development of its resistance. Using 

MCF7 breast cancer cells and standard laboratory techniques, we explored the role of 

ROS and redox signaling in development of tamoxifen resistance in breast cancer cells. 

We were interested in finding out how and if ROS, through the oxidation of Phosphatase 

and tensin homolog (PTEN) induces the phosphorylation and activation of nuclear 

respiratory factor 1(NRF-1) resulting in its binding to the promoter region of certain cell 

cycle genes, thereby promoting cell proliferation and a transformation of the cells to a 

resistant phenotype. We also wanted to find out if this process can be reversed by pre-

exposing the cells to biological or chemical antioxidants. Our finding was that, 

tamoxifen-induced ROS oxidizes PTEN resulting to the hyper-stimulation of the 

Akt/PI3K pathway and a consequent NRF-1phophorylation/activation. Activated NRF-1 
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then binds to the promoter region of some cell cycle genes inducing cell proliferation. We 

also found that pre-treating the cell with anti-oxidants restored sensitivity to tamoxifen.  

 

Introduction 

PTEN (phosphatase and tensin homologue deleted from chromosome 10) is a redox 

sensitive dual specificity phosphatase 1. It is a known tumor suppressor because of its 

ability to regulate the cell cycle either by preventing cells from dividing too fast or 

dividing in an uncontrolled manner 2 such as that seen in cancer cells. The protein which 

is a negative-regulator of the phosphatidylinositol 3-Kinase (PI3K)/Akt pathway acts by 

dephosphorylating  phosphatidyl-inositol3,4,5-trisphosphate (PI(3,4,5)P3) at the 3’ 

position of the inositol ring, thereby counteracting the effect of PI3K and inactivating this 

key player in the survival pathway 3. 

 

The tumor suppressor aspect of PTEN function is pertinent in the context of human 

disease since a number of studies have found PTEN deficiency, which could arise either 

by polymorphic mutation or gene deletion, to be a cause of cancer 4, 5. Indeed one of the 

reasons for the activation of Akt signaling in cancers is the mutation or inactivation of 

PTEN 6. However, PTEN inactivation and the resulting PI3K/Akt pathway hyper-

activation could occur through mechanisms other than those that target the integrity of 

the gene 7.  

 

Alternate mechanisms of the down regulation of PTEN activity by posttranslational 

modifications such as phosphorylation and oxidation, though not directly implicated in 
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cancer, have been documented 8-11. Furthermore, reactive oxygen species (ROS) have 

been shown to oxidize PTEN at its active site ensuing in the formation of a disulphide 

bond and a subsequent PTEN inactivation. Several studies have demonstrated the ability 

of reactive oxygen species to reversibly oxidize PTEN and other dual specificity 

phosphatases, leading to their temporary inactivation 12 -13. Indeed a number of studies 

have looked into the temporary inactivation of PTEN by ROS and its effect on 

downstream molecules like Akt and its substrates. For example Connor et al and others 

have shown that PTEN oxidation enables PtdIns(3,4,5)P3 to directly activate Akt, which 

in turn activates p70 S6 kinase and inhibits the Akt substrate,  glycogen synthase kinase-3 

thereby  regulating cellular metabolism and the cell cycle 13,14. 

 

A less well known Akt substrate is NFF1 (nuclear respiratory factor-1/α-palindrome-

binding protein) 15 which is a redox sensitive transcription factor 16 that has been shown 

to regulate metabolism and cell proliferation 17-20. A study by Piatandosi and Suliman 

(2006), has demonstrated how stimulation of PI3K by exogenous oxidants activate Akt 

and promotes NRF1 phosphorylation and nuclear translocation 15. Additionally, it has 

been shown that exposure of breast cancer cells to estrogen (E2) induces cell growth 21 

and an increase in NRF1 expression 22. Since estrogen has been shown to promote ROS 

formation 23, we considered it pertinent to examine a hitherto unexplored possibility that 

E2-induced ROS could result in PTEN inactivation, a consequent increase in NRF1 

expression and phosphorylation and an effect on the cell cycle. In the event of this 

concept being cogent, we also wanted to determine the effect of antioxidants on our 

proposed pathway.  
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In this study, we show how estrogen induced PTEN oxidation in MCF7 results in the 

hyper-activation of the PI3K/Akt signaling pathway with a consequent increase in the 

expression and phosphorylation of NRF1 and a resultant binding of NRF1 to the 

promoter region of cell cycle genes. We also show how pre-exposing MCF7 cells to 

antioxidants is able to reverse the PTEN oxidation and its downstream effects.  

 

Materials and methods  

Cell culture and Materials 

MCF7 cells were obtained from Gainsville. Cells were cultured in DMEM (Gibco) 

containing 10% fetal bovine serum, 25,000 units of penicillin (base) and 25,000 µg of 

Streptomycin at 37°C in a fully humidified atmosphere of 5% CO2 in air. For 

experiments, 70% Confluent cells were further cultured in serum free DMEM to 

minimize the effect of serum and synchronize the cells in G0.  Synchronized cells were 

always stimulated with 0.01% DMSO or 100pg E2. 

 

Antibodies to NRF1 was obtained from Rockland, PTEN was obtained from cell 

signaling while p27, AKT and PAKT ser 473 were purchased from Santa Cruz 

biotechnology. T157 Phosphorylated p27 antibody was purchased from Abcam. Beta 

Actin, 2', 7’-dichlorodihydrofluorescein diacetate (DCFH-DA), DMSO and Ebselen were 

purchased from Sigma Aldrich.  BrdU kit was purchased from ROCHE. Protein A 

Agarose was purchased from Invitrogen. The adenoviruses AdEmpty (EV), AdMnSOD 

(SOD), and AdCatalase (CAT) were manufactured at ViraQuest, Inc. (North Liberty, IA, 

USA). Primers for CyclinB1, CDC2, CDC25C, PRC1and PCNA where purchased from 
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Applied Biosystems. The Upstate kit for ChIP assay was purchased from upstate 

biotechnology. 

 

Adenoviral Transduction 

The adenoviruses AdEmpty (EV), AdMnSOD (SOD), and AdCatalase (CAT) were 

manufactured at ViraQuest, Inc. (North Liberty, IA, USA) by inserting either nothing 

(EV) or the MnSOD or  Catalase gene into the E1 region of an Ad5 E1/partial E3-deleted 

replication-deficient adenoviral vector. 

 

MCF7 cells were plated in 100-mm dishes at a density of 1 × 106 cells/dish in charcoal 

stripped medium. The following day, the medium was aspirated and replaced with 5 ml 

of serum-free medium containing 200pfu of SOD, CAT or EV adenovirus for 24hours 

after which cells were stimulated with required treatments for the desired amount of time. 

 

Ebselen Pre-treatment 

1million MCF7 cells were plated per 100mm dish in 10% serum medium. 21hours post 

seeding 20uM of Ebselen was added to the medium for 3hours after which cells were 

stimulated with the desired treatments for 24 hours. 
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BrdU Incorporation Assay 

For BrdU incorporation, MCF7 cells were seeded in 96-well plates at a density of 

2500/well and incubated in 5% CO2 incubator at 37oC. 24 hours after seeding, cells were 

either infected with AdCatalase, AdMnSOD or AdEV at a multiplicity of infection 

(m.o.i) of 290pfu/cell as described above or pre-treated with 40uM of Ebselen. After 

exposure to antioxidants cells were then stimulated with either 0.01% DMSO or E2 

(100pg) for 24hours. After stimulation, BrdU incorporation was carried out using Roche 

Bioscience (Cell Proliferation ELISA, BrdU Kit; Roche Molecular Biochemical, 

Indianapolis, IN) labeling kit in accordance with manufacturer’s recommendation. 

Colorimetric changes acquired at 370 nm with a Tecan Genios microplate reader. 

 

2′, 7′-dichlorofluorescin diacetate (DCFH-DA)  

To carry out the DCFH-DA Assay, 10,000/well of MCF7 cells were seeded in a 96-well 

plate and cultured in 10% growth medium for 24hours. After 24hours growth medium 

was aspirated and replaced with starvation medium for another 24hours after which the 

starvation media was aspirated and replaced with 100uL/well of HBSS containing 10uM 

DCFDA pre-diluted with Pluronic F-127 and incubated at 37oC for 20mins. At the end of 

the incubation, DCFH-DA solution was gently aspirated and pre-designated wells were 

then stimulated with 100ul of HBSS containing either 0.01% DMSO (vehicle control) or 

E2 (100pg). Cells were further incubated for 5mins after which fluorescence readings 

were taken using 485 nm and 535 nm as excitation and emission filters, at intervals of 

5mins. Optical density readings were obtained using a Tecan Genios microplate reader. 
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Westernblot  

1 million MCF7 cells per 100mm dish were initially exposed to antioxidants as described 

above and then stimulated with either 0.01% DMSO, or E2 30mins. Post treatment, cells 

were harvested and lysed in radioimmunoprecipitation assay buffer [25 mM Tris HCl (pH 

7.4), 25 mM NaCl, 1 mM sodium orthovanadate,10 mM sodium  pyrophosphate, 10 mM 

NaF, 0.5 mM EGTA, 1.0% Triton X-100, 1 mM PMSF, and 10 mM okadaic acid] for 15 

min on ice. Samples were then briefly sonicated and centrifuged at 10,000rpm for 10 min 

at 4°C. The total protein concentration of the resulting supernatant was determined by 

BCA quantification. Equal amount of protein extracts (50ug) were separated by SDS-

PAGE, transferred to a polyvinylidene difluoride membrane, blocked in 1% BSA and fat 

free milk solution containing 50mM NAF for 1hour and blotted with antibodies. Labeled 

proteins are visualized with an ECL system (Amersham Biosciences). Band intensity was 

determined using densitometric analysis (NIH ImageJ software). The level of protein 

level was expressed as its ratio to βactin. 

 

Soft Agar Colony Formation Assay.  

To assess the effect of antioxidants on anchorage-independent cell growth, a soft agar 

colony formation assay using either plain or Ebselen pretreated MCF7 cells was 

performed. MCF7 cells (1000/well) were suspended in 0.2ml of  charcoal stripped culture  

medium containing 0.25% agar  and appropriate treatment (0.01%DMSO, 100pg E2, 

1uM Tamoxifen, or co-treatment of TAM with E2 ) and poured over a pre-hardened 

feeder  layer of agarose comprising 0.2 ml of the charcoal stripped medium, containing 

0.5% agar, in a 48 well plate. Cells were fed every 4 days and allowed to incubate for 
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30days. After 14 days of incubation at 37°C in a humidified CO2 incubator, colonies 

counted excluding any colonies with a diameter ≤ 60. 

 

Identification of Reduced and Oxidized Forms of PTEN by Immunoblot Analysis. 

After stimulation, I million/100mm dish of MCF7 cells in 1 ml of HBSS were scraped 

into 0.2 ml of ice-cold 50% trichloroacetic acid and transferred to microfuge tubes. The 

cell suspensions were sonicated briefly and then centrifuged at 2000g for 5 min. The 

supernatants were removed, and the pellets were washed with acetone and then 

solubilized in 0.2 ml of 100 mM Tris-HCl (pH 6.8) buffer containing 2% SDS and 40 

mM NEM. 5ul of the solubilized pellets were subjected to SDS-PAGE under 

nonreducing conditions, and the separated proteins were transferred electrophoretically to 

a polyvinylidene difluoride membrane. 

 

The membrane was then subjected to immunoblot analysis with either rabbit antibodies to 

PTEN or   monoclonal antibody to Beta Actin. Immune complexes were detected with 

horseradish peroxidase-conjugated secondary antibodies and enhanced 

chemiluminescence reagents (Amersham Biosciences). The intensity of PTEN bands was 

quantitated with NIH ImageJ. 

 

Chromatin Immunoprecipitation (ChIP) Assay  

This assay was carried out using the upstate protocol that came with the kit. Briefly, after 

stimulation, protein complex was cross-linked to DNA by adding formaldehyde directly 

to culture medium to a final concentration of 1% and incubate for 10 minutes at 37C. 

Cells were washed twice with ice cold PBS containing protease inhibitors scraped into 
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conical tube and Pelleted for 4 minutes at 2000 rpm at 4ºC. Cell pellet was then lysed in 

SDS Lysis buffer for 10 minutes on ice. Lysate was sonicated (5 x 15pulses) and 

centrifuged for 10 minutes at 13,000 rpm at 4°C. 150 ul of the sonicated cell pellet 

suspension was transferred to a new 1.5 ml eppendorf tube and diluted 10times in ChIP 

Dilution buffer containing protease inhibitors.  1% (~15 ul) was kept aside as 

input/starting material. 1.5 ml diluted cell pellet suspension was pre-cleared with 60 ul of 

Salmon Sperm DNA/Protein A Agarose-50% slurry for 2 hours at 4ºC with agitation. 

Agarose was pelleted by brief centrfugation (1min @ 1000rpm). The supernatant fraction 

was collected and the immunoprecipitating antibody added to the 1.5 ml supernatant 

fraction and incubate overnight at 4ºC with rotation. A non-specific antibody for 

immunoprecipitation as negative control. 40 ul of Salmon Sperm DNA/Protein A 

Agarose Slurry was added for another two hour at 4ºC with rotation to collect the 

antibody/protein complex. Agarose was then pelleted, supernatant was discarded and 

washed with different wash buffers for 3-5minutes per wash. The histone complex was 

then eluted from the antibody and  all samples including the input were reverse cross-

linked by heating at 65ºC for 6 hours. DNA was then recovered by ethanol precipitation 

and PCR analysis performed. 

 

Immunofluorescence Labeling  

Cells were seeded (1.0x104 cells/chamber) and stimulated in chamber slides as indicated 

in the legends of the figures. After treatment, cells were fixed with ice cold methanol for 

15mins, and permeabilized with 0.5% Triton X-100 for 30min. Then the cells were 

blocked with 1% normal goat sera for 1 hr after which they were probed simultaneously 
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with antibodies diluted 1: 500 for NRF1; or 1:1500 for phosphor serine. Alexa Fluor 

labeled secondary antibodies directed against primary antibodies was diluted 1:1000. The 

confocal fluorescence images were scanned on a Nikon TE2000U inverted fluorescence 

microscope equipped with a Nikon D-Eclipse C1 laser scanning confocal microscope 

system (Nikon Corp., USA). The z-series scanning were done at every 1 μm up to a z-

depth of 10 μm by using a Nikon 40 x 1.30 NA DIC H/N2 Plan Fluor oil immersion 

objective. The built-in Nikon EZ-C1 software was used for confocal image acquisition 

and analyses.  

 

Results 

Estrogen induces ROS in MCF-7. To determine whether E2 induces ROS in breast 

cancer cells, MCF-7 cells were treated with either E2 or E2 with ROS modulators as 

described in methods. Results showed that cells exposed to E2 induced ROS formations 

(Fig.1A). However, co-treatment of cells with E2 and ROS modulators (CAT or Eb) 

inhibited estrogen’s ability to induce ROS formations (Fig.1B).  

 

Estrogen induced ROS mediates in vitro proliferation and growth of MCF-7 cells. 

To ascertain whether E2 induced ROS facilitates in vitro proliferation and growth of 

breast cancer cells, MCF-7 cells were seeded for BrdU and soft agar assay as described in 

methods. Cells were subsequently treated with E2 or E2 and ROS modulators. BrdU 

incorporation, which is a marker of cells proliferation and soft agar colony formation, 

which is a hallmark of anchorage independent cancer growth, were analyzed and 

enumerated as described in methods and legends. Data indicate that E2 induced 
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proliferation of MCF-7 cells were abrogated by ROS modulators (Fig 2). Similarly, E2 

induced anchorage independent growth of breast cancer cells were abolished by ROS 

modulators (Fig 3). These findings indicate that estrogen induced proliferation and 

growth of breast cancer cells are redox dependent.  

  

Estrogen induced ROS oxidizes PTEN in MCF-7 cells. Oxidation of PTEN by ROS 

has been demonstrated to promote carcinogenesis and growth of cancer cells (PMID: 

15534200). We investigated whether E2 induced ROS also oxidizes PTEN thereby 

promoting E2 induced proliferation and growth of breast cancer cells. Western blot 

analysis indicates that while H2O2 are potent oxidizers of PTEN (Fig. 4), E2 induced 

ROS can similarly oxidize PTEN albeit to a lesser extent compared to H2O2 (Fig. 5A).  

However, when cells were co-treated with either Catalase or Ebselen, E2 induced PTEN 

oxidation were significantly reversed (Figs. 5B & C). These findings indicates that E2 

induced ROS can lead to PTEN oxidation which could alter downstream signaling 

process that favors breast cancer proliferation and growth in response to estrogens.  

    

Estrogen induced PTEN oxidation activates Akt phosphorylation in MCF7 cells. 

Western blot analysis were carried out to determine whether E2 induced PTEN oxidation 

would lead to increased Akt activation and whether ROS modulators would attenuate Akt 

activation in E2 treated breast cancer cell. Our study showed that E2 induced significant 

Akt phosphorylation compared to vehicle treated cells (Fig. 6A).  When cells were co-

treated with E2 and ROS modulators, Akt activations were significantly reduced 

(Figs.6B&C). This data indicates that E2 induced PTEN inactivation and activation of 
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Akt signaling cascade in breast cancer cells are redox dependent. Activated Akt can in 

turn phosphorylate downstream substrates such as transcription factors that favor survival 

and growth of breast cancer cells.  

 

Estrogen induces NRF1 expression and phosphorylation in MCF7 cells. To 

determine the effect of Estrogen induced PTEN oxidation on downstream Akt signaling 

substrates, Immunohistochemistry assays were carried out to determine how E2 induced 

ROS affect NRF1 expression and phosphorylation.  Results show an increase in NRF1 

expression and phosphorylation in E2 treated cells compared to DMSO control (Fig.7). 

 

Estrogen induced ROS mediates NFR-1 binding to promoter regions of cell cycle 

genes in MCF7 cells. A chromatin immunoprecipitation assay was carried out to 

determine the effect of E2 on NRF1 binding as described in methods. Result obtained 

shows an E2 induced increase in NRF1 binding to the promoter region of the following 

cell cycle genes: CyclinB1, CDC2, PCNA, CDC25C and PRC1 (Fig. 8, Panels I &IIA). 

Conversely, Antioxidant pre-treatment significantly inhibited the E2 induced NRF1 

binding to the promoter region of the same genes (Fig. 8, Panels I &IIB).  

 

Estrogen induced ROS mediates transcription of Cell cycle genes. RT-PCR was 

carried out to determine the effect of E2 induced ROS on the transcription of cell cycle 

genes as shown in methods. Result obtained show an up-regulation in the transcription of 

CyclinB1, PCNA, CDC25C and PRC1 (Fig.9, Panels I&IIA). However, when cells were 
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co-treated with either CAT or Eb, there was a significant inhibition of E2 induced 

transcription upregulation of the same genes (Fig.9, Panels I&IIB). 

 

Discussion 

The results of our study show that estrogen-induced reactive oxidants have the capacity 

to stimulate cell proliferation in MCF7 breast cancer cells through the oxidation of 

PTEN, and the post translational modification of its downstream target.  

 

In line with previous work done 23, we are able to show here that estrogen-induced 

reactive oxygen species (ROS) is capable of promoting DNA synthesis and cell 

proliferation, which can be inhibited by exposure of the same cells to either biological or 

chemical antioxidants, Catalase or Ebselen (See figs. 1, 2 and 3).  

 

In this study, we have been able to show for the first time in MCF7 cells that estrogen-

induced ROS oxidizes PTEN within 30 minutes of exposure. In addition, we reveal here-

in the ability of either Catalase or Ebselen to reverse the oxidizing effect of estrogen-

induced ROS. See figs.4 and 5. We also show here that estrogen-induced PTEN 

inactivation in MCF7 cells results in an increase in the phosphorylation of one of its 

downstream target kinases, Akt. This is in line with previous studies which showed an 

increase in Akt phosphorylation following PTEN inactivation by agents other than 

estrogen 13, 24, 25. Moreover, we have also been able show that the pre-exposure of MCF7 

cells to either Catalase or Ebselen significantly reverses the E2-induced effect. See fig.6. 

Also demonstrated in this study is a corresponding increase in both the expression and 
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phosphorylation of NRF1, which is a known Akt substrate that has been implicated in 

cell growth and proliferation 18-20. (See figure 7). 

 

Based on the work done by Cam et al. 18, which showed NRF1 could collaborate with 

E2F family members to regulate the expression of genes that are involved in cellular 

proliferation, we explored the possibility of phosphorylated (active) NRF1 binding to the 

promoter region of cell cycle genes. Evident in our study for the first time in MCF7 cells, 

is an increase in the binding of Akt phosphorylated NRF1 to the promoter region of the 

following cell cycle genes: CyclinB1; CDC25A; CDC2; PCNA and PRC1. It is also 

worthy of mention that this promoter binding was significantly inhibited by the pre-

exposure of MCF7 cells to either Catalase or manganese superoxide dismutase 

(MnSOD). See fig. 8.  We were further able to reveal a consequent increase, in the 

transcription of these gene, which was also inhibited by pre-exposure to Catalase and 

MnSOD (See fig. 9). 

 

In summary we have been able to show for the first time in MCF7 cells, that estrogen-

induced ROS inactivates PTEN with an ensuing increase in Akt phosphorylation. This 

Increase in Akt phosphorylation results in an increase in NRF1 expression and 

phosphorylation leading to the activation and binding of NRF1 to the promoter region of 

some cell cycle genes, namely CyclinB1, CDC25A, CDC2, PCNA and PRC1 leading to 

cell proliferation. We also show a corresponding increase in the transcription of these 

genes. Additionally, we show for the first time that that pre-exposure of MCF7 cells to 
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either biological or chemical antioxidants significantly inhibited the effect of estrogen-

induced ROS on PTEN and its downstream substrates (See fig. 10). 
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Figures and Legend 
 
Fig 1-MCF7 
  

 

Antioxidants inhibit E2 induced ROS in MCF7 cells. 1 x104cells/well were seeded in a 

96-well plate overnight and serum starved for 24 hrs. Post-starvation 100uL/well of 

HBSS containing 10uM DCFH-DA pre-diluted with Pluronic F-127 was added to each 

well and incubated at 37oC for 20mins.  DCFH-DA solution was then aspirated and 

replaced with 100ul of HBSS containing the desired treatments. Cells were further 

incubated for 5mins and fluorescence readings were taken using 485 nm and 535 nm as 

excitation and emission filters, at intervals of 5mins. A) MCF7 cells treated with E2.  B) 

MCF7 cells over expressing Catalase (CAT) or pre-treated with Ebselen were exposed to 

either E2 or DMSO. Assay was performed 3x and data is expressed as mean percentage 
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change from control +/- SE, (p 0.05).  (*) denotes significance when treatment is 

compared to DMSO control.  

 

Fig 2-MCF7 

 
 

Antioxidants inhibit DNA synthesis in MCF7 cells. 2.5 x 103 cells/well were seeded in 

a 96-well plate overnight and exposed to chemical or biological antioxidants as described 

in methods. After exposure to antioxidants, cells were then stimulated with E2 for 22 hrs 

and pulsed labeled with BrdU for 2 hrs. BrdU assay was then carried out as 

recommended by manufacturer. Colorimetric changes were acquired at 370 nm with a 

Tecan Genios microplate reader at 5 mins interval. A) MCF7 cells treated with either E2 

or DMSO B) MCF7 cells over expressing Catalase (CAT) or pre-treated with Ebselen 

were treated with either E2 or DMSO. Assay was performed 3x and data is expressed as 

mean percentage change from control +/- SE, (p 0.05). (*) denotes significance when 

treatment is compared to DMSO control. 
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Fig 3-MCF7 

 

Antioxidants inhibit E2-induced anchorage independent growth in MCF7 cells. 

Cells were incubated on soft agar with or without antioxidants exposure for 21 days and 

colonies ≥60 microns in diameter were enumerated. A) Anchorage independent growth of 

MCF7 cells exposed to either DMSO or E2 B) MCF7 cells pretreated with chemical 

antioxidant.  Assay performed 3x and data is expressed as mean percentage change from 

control. 
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Fig 4-MCF7 

 
 
 

Hydrogen Peroxide (H2O2) oxidizes PTEN in a dose dependent manner in MCF7 

cells. MCF7 cells were seeded and stimulated with different doses of H2O2 for 30min and 

then harvested. Cellular protein extracts were then alkylated with NEM and subjected to 

non-reducing SDS-PAGE followed by immunoblot analysis with antibodies to PTEN. 

Assay was performed 3x and data is expressed as mean percentage change from control. 
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Fig 5-MCF7 

 

 
Antioxidants inhibit the E2-induced PTEN oxidation in MCF7 cells. Cells were pre-

treated with Ebselen for 3hrs and stimulated with either DMSO or E2 for 30mins. 

Cellular protein extracts were then alkylated with NEM and subjected to nonreducing 

SDS-PAGE followed by immunoblot analysis with antibodies to PTEN.  A) MCF7 cells 

treated with either E2 or DMSO.  B) MCF7 cells over-expressing Catalase (CAT) or 

Empty Vector (EV) treated with DMSO or E2. C)  MCF7 cells pre-treated with Ebselen 

were treated with either DMSO or E2. Assay was performed 3x and data is expressed as 

mean percentage change from control +/- SE, (p 0.05). (*) denotes significance when 

treatment is compared to DMSO control while (**) denotes significance when treatment 

is compared EV control. 
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Fig 6-MCF7 

 
 

E2-induced PTEN oxidation activates Akt phosphorylation in MCF7 cells. Akt and 

phospho-Akt levels were determined post PTEN oxidation by immunoblotting using 

MCF7 cells pre-exposed with either biological (CAT) or chemical (Ebselen) antioxidants 

and then treated with E2 for 30min to induce PTEN oxidation. A) MCF7 cells treated 

with either E2 or DMSO B) MCF7 cells over-expressing Catalase (CAT) or Empty 

Vector (EV) treated with DMSO or E2. C)  MCF7 cells pre-treated with Ebselen were 

treated with either DMSO or E2. Assay was performed 3x and data is expressed as mean 

percentage change from control +/- SE, (p 0.05). (*) denotes significance when treatment 

is compared to DMSO control while (**) denotes significance when treatment is 

compared EV control. 
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Fig7-MCF7. 

 
 
 
E2 induces NRF1 expression and phosphorylation in MCF7 cells. 1.0 x104 

cells/chamber were treated for 45mins with E2.  Cells were then fixed with ice cold 

methanol for 15mins, and permeabilized with 0.5% Triton X-100 for 30mins after which 

they were blocked with 1% normal goat serum for 1hr and then probed simultaneously 

with antibodies for NRF1 (red) phosphoserine (blue).The merged  phosphorylated NRF1 

is in pink. 
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Fig 8-MCF7 

 
 

E2-induced ROS mediates NFR-1 binding to the promoter region of cell cycle genes. 

MCF7 cells were seeded, serum starved for 24 hrs and either infected with Adenovirus 

over- expressing MnSOD (SOD) or Catalase (CAT) at m.o.i of 200pfu as shown in the 

methods section. Cells were then exposed to either DMSO or E2 for 16hrs and harvested 

for ChIP assay as described in methods. PCR were run on ABI Biosystem 7300 

thermocycler with the following cycle conditions: 95 ºC, 10 min; 40 cycles of (95 ºC, 15 

sec; 60 ºC, 60 sec). PANEL I: PCR were run with primers for PRC1 and CDC2. A) 

MCF7 cells were treated with either E2 or DMSO B) MCF7cells over expressing CAT or 

SOD were treated with either DMSO or E2. Assay was performed 3x and data is 

expressed as mean percentage change from control. PANELII: PCR were run with 

primers for PCNA, CyclinB1 and CDC25C. A) MCF7 cells were treated with either E2 

or DMSO B) MCF7 cells over expressing CAT or SOD were treated with either DMSO 
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or E2. Assays was performed 3x and data is expressed as mean percentage change from 

control. 

 

Fig 9-MCF7 

 

 
E2-induced ROS mediates transcription of cell cycle genes. MCF7 cells were seeded, 

serum starved for 24 hrs and either infected with Adenovirus over- expressing MnSOD 

(SOD) or Catalase (CAT) at m.o.i of 200pfu as shown in the methods section. Cells were 

then exposed to either DMSO or E2 for 24hrs and harvested for RT-PCR as described in 

methods. RT- PCR were run on ABI Biosystem 7300 thermocycler with the following 

cycle conditions: initial initiation Step set at 48oC for 30mins; and 95 oC  for 10min (1 

cycle) and the PCR step at 95oC for 15sec and 60sec for 1min (40 cycle). PANEL I: RT-

PCR were run with primers for CyclinB1. A) MCF7 cells were treated with either E2 or 

DMSO B) MCF7cells over expressing CAT or SOD were treated with either DMSO or 

E2. Assay was performed 3x and data is expressed as mean percentage change from 
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control. PANELII: RT-PCR was run with primers for PCNA, PRC1 and CDC25C. A) 

MCF7 cells were treated with either E2 or DMSO B) MCF7cells over expressing CAT or 

SOD were treated with either DMSO or E2. Assays was performed 3x and data is 

expressed as mean percentage change from control. 

 

Fig 10-MCF7 
 

 
 
A schematic showing our hypothesized pathway. Estrogen-induced ROS inactivates 

PTEN with an ensuing increase in Akt phosphorylation. This Increase in Akt 

phosphorylation results in an increase in NRF1 expression and phosphorylation leading 

to the activation and binding of NRF1 to the promoter region of some cell cycle genes. 

                 

V    CONCLUSION 

The goal of this dissertation was to investigate and hopefully reveal the role of ROS in 

the conversion of tamoxifen sensitive breast tumors to a tamoxifen-resistant phenotype. 
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Our research was based on the working hypothesis that excess ROS oxidizes protein 

tyrosine phosphatases (PTPs), thereby changing the phosphorylation state and altering the 

functions of certain key signaling proteins such as p27 (a Cyclin dependent kinase 

inhibitor) and nuclear respiratory factor 1(NRF-1) (a transcription factor).We further 

postulated that if ROS/redox signaling has a role in the development of tamoxifen 

resistance, then we may be able to restore sensitivity to tamoxifen by pre-exposing 

resistant breast cancer cells to antioxidants.  

  

In the course of our research, using tamoxifen resistant LCC2 breast cancer cells, we 

found tamoxifen to be highly pro-oxidant, based on its ability to induce ROS formation 

when it is used to stimulate LCC2 cells. We further discovered that tamoxifen acts as an 

ROS scavenger (antioxidant) in the presence of estrogen. Upon further investigation we 

found that stimulating LCC2 cells with tamoxifen resulted in a reduction in the 

expression of p27 protein and an increase in its phosphorylation on threoning 157 and 

187 respectively which correlated with an increase in cell proliferation. Interestingly, we 

were able to reverse these findings using biological (MnSOD and Catalase) and chemical 

(Ebselen) antioxidants. Meaning that LCC2cells which were pre-exposed to antioxidants 

showed a significant increase in p27 expression and a reduction in the phosphorylation of 

p27 implying a possible growth inhibitory effect.  

 

Our findings then raised a question about what aspect of p27 was really affected in the 

development of tamoxifen resistance. Was it a decrease in p27 expression or just the 

inability of the protein to carry out its growth inhibitory function? So we compared the 
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level of p27 in tamoxifen sensitive MCF7 breast cancer cells to that in tamoxifen resistant 

breast cancer cells and found that the level of p27 in LCC2 cells was significantly less 

than in MCF7 demonstrating that if tamoxifen resistance is as a result of a reduction in 

p27 expression, then our finding that pre-exposure to anti-oxidants t increases p27 

expression was a significant one. We then conducted a p27 stability assay comparing 

cells pre- exposed to anti-oxidant to those which were not. Again we found that those 

cells pre-exposed to anti-oxidants showed more p27 stability compared to those which 

were not. We also conducted a functional assay to determine the effect of our findings on 

the function of p27, again we found that cells which were pre-exposed to anti-oxidants 

were more functional because they exhibited more binding capacity of p27 to CyclinE 

and Cdk2 compared to cells which were not exposed to anti-oxidants. As mentioned 

previously in this dissertation, the growth inhibitory effect of p27 is based on its ability to 

bind to the CylinE-Cdk2 complex.  

 

Putting all our findings together we may therefore infer that, the development of 

tamoxifen resistance is due to the ability of tamoxifen to produce a sustained increase in 

ROS which results in a pro-oxidative environment. In a pro-oxidative environment the 

expression and stability of p27 is diminished resulting in loss of its inhibitory function 

because there is not enough p27 to bind and inhibit the growth promoting CyclinE-CDK2 

complex. Therefore our findings that anti-oxidants increased p27 expression, stability and 

binding are very significant. 
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To determine the mechanism of tamoxifen resistance, we used Tamoxifen sensitive 

MCF7 cells to determine the effect of ROS on the loss of tamoxifen sensitivity and 

demonstrated that in a pro-oxidant environment, the sustained increase in ROS level 

leads to the oxidation and inhibition of the phosphatase PTEN with a consequent increase 

in the phosphorylation of Akt. An increase in Akt phosphorylation then results in the 

phosphorylation and activation of NRF-1. We then demonstrated that activated NRF-1 

then binds to the promoter region of the following cell cycle genes: PCNA, cyclinB1, 

CDC25A and PRC1 leading to their transcription and culminating in a sustained cell 

proliferation. This finding could also be used to explain what happens in the case of p27 

because Akt has been shown to phosphorylate p27 on T157 resulting in the cytoplasmic 

sequestration of p27 and loss of its inhibitory function. 

 

In a nutshell, we have been able to experimentally demonstrate that ROS/redox signaling 

contributes to the evolution of breast cancer from a tamoxifen sensitive to a tamoxifen 

resistant phenotype. The Findings of this study will elucidate the roles of the cellular 

redox state, redox signaling pathways, PTPs and p27 in anti-estrogen resistance, and may 

lead to new therapeutic strategies to delay or even prevent this important clinical 

problem. This is a new line of research that may lay the groundwork for clinical trials of  

anti-estrogens plus antioxidant-based drugs for the prevention and treatment of estrogen-

dependent breast 
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Directions for future research 

As mentioned in the conclusion part of this dissertation, using MCF 7 cells we could also 

demonstrate the effect of Akt phosphorylation on T157 and subsequently p27 function. 

We have conducted preliminary studies in our lab and the results are encouraging. 

 

Since our current research was done in vitro, another area for further research would be a 

test of our hypothesis in vivo. Xenografted tumors in nude mice will be used to determine 

if ROS inhibitors or glutathione or thioredoxin modifiers can cooperate with anti-

estrogens to inhibit the proliferation of anti-estrogen-resistant breast cancer cells. 

Findings of this study will reveal the roles of the cellular redox state, redox signaling 

pathways and p27/NRF-1 in anti-estrogen resistance, and may lead to new therapeutic 

strategies to delay or even to prevent this important clinical problem. This is a new line of 

research that may lay the groundwork for clinical trials of anti-estrogens plus antioxidant-

based drugs for the prevention and treatment of estrogen-dependent breast cancer. 
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