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ABSTRACT OF THE DISSERTATION 

OPTIMUM WIRELESS POWER TRANSMISSION FOR SENSORS  

EMBEDDED IN CONCRETE 

By 

Shan Jiang 

Florida International University, 2011 

Miami, Florida 

Professor Stavros. V. Georgakopoulos, Major Professor 

Various nondestructive testing (NDT) technologies for construction and 

performance monitoring have been studied for decades. Recently, the rapid evolution of 

wireless sensor network (WSN) technologies has enabled the development of sensors that 

can be embedded in concrete to monitor the structural health of infrastructure. Such 

sensors can be buried inside concrete and they can collect and report valuable volumetric 

data related to the health of a structure during and/or after construction. Wireless 

embedded sensors monitoring system is also a promising solution for decreasing the high 

installation and maintenance cost of the conventional wire based monitoring systems. 

Wireless monitoring sensors need to operate for long time.  However, sensor batteries 

have finite life-time. Therefore, in order to enable long operational life of wireless 

sensors, novel wireless powering methods, which can charge the sensors’ rechargeable 

batteries wirelessly, need to be developed. 

The optimization of RF wireless powering of sensors embedded in concrete is 

studied here. First, our analytical results focus on calculating the transmission loss and 

propagation loss of electromagnetic waves penetrating into plain concrete at different 
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humidity conditions for various frequencies. This analysis specifically leads to the 

identification of an optimum frequency range within 20-80 MHz that is validated through 

full-wave electromagnetic simulations. Second, the effects of various reinforced bar 

configurations on the efficiency of wireless powering are investigated. Specifically, 

effects of the following factors are studied: rebar types, rebar period, rebar radius, depth 

inside concrete, and offset placement. This analysis leads to the identification of the 902-

928 MHz ISM band as the optimum power transmission frequency range for sensors 

embedded in reinforced concrete, since antennas working in this band are less sensitive to 

the effects of varying humidity as well as rebar configurations. Finally, optimized 

rectennas are designed for receiving and/or harvesting power in order to charge the 

rechargeable batteries of the embedded sensors. Such optimized wireless powering 

systems exhibit significantly larger efficiencies than the efficiencies of conventional RF 

wireless powering systems for sensors embedded in plain or reinforced concrete. 
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CHAPTER 1 
 

1 INTRODUCTION 

1.1 Problem Statement 

Various nondestructive testing (NDT) technologies for construction and 

performance monitoring have been studied for decades with increasing interest. However, 

NDT technologies that are based on wireless solutions, only recently become the subject 

of industry and research work in the context of concrete structural health monitoring 

(SHM). The increased interest stems from both current society safety expectations, and 

recent technological developments in the industries of concrete, sensors, microelectronics, 

and wireless communications.  Especially, in the past few years there have been several 

incidents of large structures, buildings, dams, bridges and airport infrastructures 

collapsing without warning that have caused significant financial losses and great loss of 

life. For example, Minnesota’s fifth busiest bridge, I-35W Mississippi River Bridge 

suddenly collapsed during the evening rush hour in 2007, killing 13 people and injuring 

145 people. These events unfortunately have happened without any warning and without 

an opportunity for engineers to intervene and attempt to correct each situation. Such 

events have raised the public’s awareness regarding the safety of large public 

infrastructure. Also, our society has realized that we need technologies that can predict 

tragic events before they have catastrophic consequences. One way to predict such events 

is through constant monitoring of structures. One promising solution relies on sensors 

that can measure and report certain physical quantities of the structures, such as humidity, 

force, stress, displacement, etc [1]. However, the majority of mature technologies rely on 

sensors that are connected through wires to a central station that provides power to the 
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sensors and collects their data. The installation of such sensor systems is expensive and 

labor intensive. In fact, the installation of wires represents up to  25% of the total system 

cost with over 75% of the installation time [2]. Also, if the wires connected to sensors get 

corroded then these sensors become inoperative. Therefore, it is imperative that new 

technologies are developed for monitoring the health of structures while providing 

minimal installation costs and reliable operation. 

A promising solution is based on the use of wireless sensors that communicate 

wirelessly as well as receive their power remotely without being connected to any wires, 

so the installation time and cost can be significantly reduced. The tasks of wireless SHM 

can be classified into the following two groups. The first group involves monitoring 

structures based on data that can be obtained from sensors that are placed or mounted on 

the surface of the structures. These sensors can read: surface temperature, vibration, 

displacement, noise, etc. The second group involves structural monitoring based on data 

obtained from sensors embedded inside concrete, that can read volumetric data, such as 

temperature, pH, strain, rebar corrosion, crack, pressure, etc. It should be pointed out that 

volumetric characteristics can describe the health of a structure more accurately. 

Therefore, wireless embedded sensors are more suitable for SHM applications. 

Furthermore, wireless embedded sensors will enable monitoring of building materials and 

processes during the construction period, so that structures are built with greater quality 

controls thereby ensuring greater reliability for structures. For example, when building 

hi-rises with high strength concrete, it is crucial that concrete is properly cured before 

construction proceeds to the next floor to ensure full and proper strength of the concrete. 

However, there is no deterministic way to decide when the concrete has cured unless we 
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can directly monitor the concrete properties, such as, pH and moisture content. In such 

situations, sensors can be buried inside concrete in order to provide the required data. 

Wireless embedded sensors monitoring system has many merits. Both industry 

and society can benefit from the development of this novel SHM technology that reduce 

the reliance on slow and unreliable traditional structure fatigue/damage testing methods. 

Moreover, SHM technologies can be incorporated by construction processes in order to 

inform contractors and inspectors of critical changes and/or deficiencies of concrete 

structures. Further, SHM technologies will also allow industry and government to use the 

collected data for long-term construction management and evaluation. Therefore, the 

development of novel SHM methods for construction and long term performance 

monitoring will provide significant benefits including reliability and cost effectiveness. 

The impact that these systems can have to society is very significant since they can 

provide necessary data for analysis of infrastructure’s health after events such as 

earthquakes, floods, hurricanes, etc. Also, such systems can warn authorities if alarming 

data are detected indicating critical fatigue of structures, such as, hi-rises and bridges.  In 

summary, wireless sensors embedded in concrete can make our society safer by saving 

lives as well as minimizing the financial impact that failed structures can have. 

Wireless embedded sensor monitoring systems present a promising solution for 

SHM that can benefit our society and improve the construction industry. However, the 

powering of wireless concrete sensors, which must perform their tasks over a long period 

of time (years), represents an important and challenging problem. This problem is caused 

by the limited life-time of sensor batteries. Conventional batteries have finite life-time, 

and their replacement is difficult or impossible when sensors are buried inside the 
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concrete structures. Therefore, in order to enable longer operational life of wireless 

embedded sensors, novel wireless powering methods, which can charge the sensor’s 

rechargeable batteries wirelessly, need to be developed. The problem of transmitting 

power wirelessly to sensors embedded in concrete is not a trivial one and should be 

rigorously analyzed to develop the needed technologies. This problem is critical to the 

performance of embedded sensors, and it is due to the large attenuation of radio-

frequency waves due to high losses of concrete and reflection from the air-to-concrete 

interface. The solutions developed for air-to-air wireless power transmission do not have 

the same performance for air-to-concrete case. Therefore, the power channel for air-to-

concrete transmission needs to be rigorously analyzed and characterized, in order to 

develop optimal and cost effective designs. 

 

1.2 Research Objectives and Contributions 

 Rigorous analysis of wireless power transmission systems for sensors embedded 

in concrete will facilitate the development of novel and efficient NDT solutions in terms 

of cost and performance for constructions and monitoring of concrete structures. Also, 

such analysis will revolutionize the way wireless communication systems are applied to 

concrete, and it will solve practical and important problems of the concrete and 

construction industries. Our research will first produce the needed analysis for the 

development of wireless sensors embedded in concrete and then provide optimal 

solutions/designs for sensors, which perform SHM of concrete during the construction 

process and long-term monitoring of concrete structures. Specifically, this research 

performs the following tasks: 
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(i) Develop reliable and accurate models calculating power transmission loss level for 

sensors embedded in plain/reinforced concrete, including the power loss occurring 

at the air-to-concrete interface and inside the lossy concrete media.  

(ii) Perform comparative analysis of different SHM, RFID and wireless standards 

using our developed models. Identify frequency bands and RF polarizations of 

minimal attenuation based on the available data of concrete’s electrical properties, 

as well as the reinforced bars’ effects.  

(iii) Design miniaturized and low cost prototypes of antennas that can be integrated 

with the sensing units at the sensor node level. The developed RF front-end 

designs will be optimized for the electrical properties of concrete including 

concrete’s high losses and significant variations of its electrical parameters 

depending on the concrete type, humidity, curing stage and the reinforced bars’ 

configurations inside concrete.  

(iv) Develop optimum antenna matching circuits and rectification circuits in order to 

maximize the power delivered to the rechargeable batteries of the embedded 

sensors. The amount of energy received shall be sufficient to power the wireless 

sensors under certain duty time, and the recharging time needs to be minimized.  

(v) Develop novel wireless energy harvesting techniques for sensors embedded in 

concrete. Perform spectrum analysis for identifying the optimum frequency range 

for harvesting of electromagnetic waves with least power loss inside concrete. 

Enable charging sensors by ambient RF waves, thus decrease the restriction of 

providing fixed power source. 
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Our work is shown to exhibit larger wireless power transmission efficiency for sensors 

embedded in concrete structures than other proposed systems. Furthermore, our work is 

expected to have significant impact to applications that strongly rely on nondestructive 

testing of concrete volumetric characteristics using wireless embedded sensors. These 

applications include but are not limited to the following: (a) monitoring of temperature 

and moisture content of concrete for concrete placement and early age monitoring, (b) 

determining the air content after paving, and (c) collecting real-time data, such as, 

temperature and moisture through and beneath the plain/reinforced concrete slab, traffic 

loads on concrete pavements and displacement, strain, stress, etc. Such monitoring 

systems can be applied to various concrete structures, such as, motorways/roads, airstrips, 

bridges/overpasses, concrete walls, poles, dams, parking structures and footing for gates. 

Such systems will improve the quality of structure by enhancing the construction 

processes, and will warn authorities if alarming data are detected, thereby saving lives as 

well as minimizing the financial impact that failed structures can have. Additionally, the 

outcomes of this work will enable the development of efficient sensing equipment, 

embedded electronics, and network designs for testing lossy and frequency dependent 

materials, such as, concrete, soil, gravel, water, human body, etc.  

 

1.3 Methodology 

This dissertation addresses the problem of optimizing wireless powering of 

sensors embedded in concrete structures. This work demonstrates that rigorous analysis 

of the air-to-concrete model is critical for identifying the optimum conditions for wireless 

power transmission, such as, operation frequency, antenna type, position of antenna 
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inside concrete, etc. These conditions will contribute to the optimum design of wireless 

power transmission systems. 

In this work, analytical as well as computational methods are used to identify 

optimal conditions for wireless powering of sensors embedded in concrete. Two types of 

loss mechanisms are analyzed to describe the air-to-plain concrete power loss model: (a) 

the transmission loss and (b) the propagation loss, which are caused by the reflected and 

transmitted parts of electromagnetic waves propagating from air to concrete. The accurate 

modeling of the electromagnetic properties of concrete is critical for formulating and 

analyzing the air-to-concrete power transmission .The extended Debye model is used by 

our work. This model is frequency dependent, and it models concrete’s properties more 

accurately than fixed permittivity models used in previous work. Also, the Debye model 

used here can accurately represent the relative permittivity of concrete for six distinct 

humidity conditions. 

When reinforced bars are added in the concrete to increase the tension of 

structures, the electromagnetic shielding performance of reinforced concrete is 

dramatically changed. Limited work has been previously done on wireless power 

transmission through reinforced concrete. However, reinforced bars are widely used for 

most concrete structures. In this research work, plane wave models are used to investigate 

the impact of various reinforced bars configurations (i.e., mesh period, rebar radius, rebar 

position inside concrete slab, rebar type, etc.) on the power transmission. Furthermore, 

the optimum conditions identified are validated through antenna coupling simulations.  

Based on the optimum transmission conditions identified by our analysis, 

practical powering systems are developed. Rectenna is the fundamental component for 
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receiving or harvesting wireless power inside concrete structure and converting it to DC 

power in order to charge the rechargeable batteries of wireless embedded sensors. 

Optimum stripline antennas are designed for sensors embedded in concrete. They are 

proven to be less sensitive to the variation of concrete humidity conditions and rebar 

configurations. Various rectification circuits are also compared. Matched rectification 

circuits are developed to maximize the RF to DC power conversion efficiency. 

Our theoretical EM research is obtained by our custom Matlab programs. Also, 

Ansoft HFSS and Ansoft Designer are used for the EM simulation analysis. Finally, 

Ansoft Nexxim is used for the design of rectification circuits and simulation of the entire 

wireless powering systems. 

 

1.4 Dissertation Outline 

The following chapters are organized as follows. Chapter 2 surveys the related 

work. In Chapter 3 plane wave analytical models for power transmission into concrete 

half-space and concrete slab cases are formulated. Both transmission loss and 

propagation loss are considered in order to identify the optimum frequencies that exhibit 

the least power transmission loss. Chapter 4 describes the geometrical setup of our 

reinforced concrete slab model. Also, in Chapter 4, conditions for optimum power 

transmission through reinforced concrete are identified. Various reinforced bars 

configurations and concrete humidity conditions are considered. In Chapter 5, 

computational methods are utilized to validate the optimum frequencies identified in 

previous chapters. Also, in Chapter 5, complete wireless powering systems are developed 



9 
 

for power transmission through plain and reinforced concrete. Chapter 6 provides the 

conclusions of our research and identifies future research directions. 
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CHAPTER 2 

2 RELATED WORK 

This chapter provides the literature review for our research. It begins with the 

introduction of structural health monitoring, followed by the description of wireless 

sensor network technologies for SHM applications. Also, wireless powering methods 

such as mechanical vibration harvesting, resonant coupling, strong resonant coupling and 

electromagnetic radiation, are presented and compared. 

 

2.1 Structural Health Monitoring 

The process of implementing a damage identification strategy for infrastructure is 

referred to as structural heath monitoring (SHM). The SHM process involves the 

observation of a structure over time using periodically spaced measurements, extraction 

of damage-sensitive features from the measurement data and implementation of  

statistical analysis of the extracted features [3]. 

For concrete structures, various methods and systems have been applied to 

perform the measurements and data acquisition. In [2], active acoustic transducers are 

used to detect the corrosion of reinforced concrete girders, while in [4] inverse synthetic 

aperture radar (ISAR) method is applied. Digital image correlation (DIC) [5] process 

involves a digital camera with specific resolution, and the whole displacement field can 

be measured with one picture. Vehicle with ground penetrating radar (GPR) is applied in 

[6] to implement the non-destructive testing for bridge decks. Optical sensors [7-8] are 

widely used for monitoring reinforced concrete structures, but the cost of such 

monitoring systems is large. Measurements of various quantities, such as strain, 
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temperature, moisture, rebar corrosion, etc., are performed by such systems. The 

observation and measurement is the first stage of SHM applications.  

Feature extraction is the process of identifying damage and fatigue of structures 

after the stage of measurement and data acquisition. Data fusion and compression are 

usually performed during this process to present the statistical distribution of the 

dynamically measured data, which lead to the determination of structures’ damage or 

fatigue.   Principal component analysis (PCA) is used in [9] to reduce the amount of data 

collected from 39 measurement points on a bridge column. Wavelet transform as a time-

frequency analysis method is used in [10-11] to detect the damage position in structural 

components.  Feature extraction transforms the measured data into damage-related 

information, which could lead to the damage/fatigue group classification or regression 

analysis. 

Statistical analysis classifies the extracted feature distributions into damaged or 

undamaged category. Statistical analysis is based on two classes of methods: (a) 

supervised learning, and (b) unsupervised learning [12]. Supervised learning includes 

neural network [13], genetic algorithms [14], and support vector machine [15] methods, 

which can be applied to damage presence detections with examples from the damaged 

structure. Unsupervised learning includes control chart analysis [9] and hypothesis testing 

[16], which can be taken to high level detection, such as damage identification and 

classification.  

These three stages of SHM systems mentioned above enable the decision making 

regarding public/commercial structure operation and maintenance, which are of great 

importance for securing lives, protecting infrastructure investments and supporting the 
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vitality of our economy [17]. Several SHM systems have been proposed, for example, 

SHM solutions from 72 companies are reported in [18], including fatigue life indicators, 

fiber optics, digital image correlation and linear potentiometer, etc. The equipment for 

these solutions are expensive, and they also need wires attached, which may disturb the 

normal operation of the structure. Therefore, novel SHM technologies, which can reduce 

the system cost and installation complexity, need to be developed. As mentioned in [19], 

wireless sensors network technology is a very promising solution.  

 

2.2 Wireless Sensor Network for SHM Applications 

Wireless sensor network (WSN) [20] technologies attracted significant interest in 

recent years, and have been deployed in various applications, including habitat 

monitoring [21], medical monitoring [22], battlefield surveillance, and smart environment 

[23], etc.  The conventional applications are based on air-to-air antenna communication, 

and they use various frequency bands from LF (125-134 KHz) to microwave frequencies 

(0.3-300 GHz). Recently, sensors have been developed to be buried inside certain media 

and provide valuable monitoring data. For instance, underwater sensor networks [24] 

have found increasing use in oil-rig maintenance, coastal surveillance systems and 

underwater environment observations for exploration. Also, microstrip antennas and 

sensors were proposed in [25] for simultaneous communication and sensing of the 

moisture in the soil for agriculture investigation. Furthermore, antennas implanted in 

human body were studied in [26], aiming at monitoring various physiological parameters. 

Stimulated by the development of these technologies, WSNs for structural health 

monitoring applications have also been developed, and the wireless monitoring system 
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for large structures can be categorized into the following two configurations [27]: (a) 

health monitoring system with surface mounted wireless sensors, which communicate 

wirelessly with the interrogators, as shown in Figure 2.1(a); and (b) structural health 

monitoring system with wireless embedded sensors and transmitters, as shown in Figure 

2.1(b).  

 

(a) Structure with surface mounted wireless sensors. 

 

(b) Structure with wireless embedded sensors. 

Figure 2.1: Configurations for sensor monitor system. 

Surface mounted wireless sensor monitoring systems have been applied to 

structures for experiments and research in the recent years. For instance, 25 sensors are 

placed on three floors of a medium-sized office building to perform SHM in [28]. 

Another example of an SHM monitoring system, is the one deployed in Stonecutters 

Bridge in Hong Kong, that consist of 1505 sensors including 24 anemometers, 58 fixed 

accelerometers, 388 temperature sensors, 678 dynamic strain gauges, 158 static strain 
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gauges, 20 global positioning systems, 34 displacement transducers, 18 buffer sensors, 12 

bearing sensors, 32 electromagnetic sensors, 28 barometers, rainfall gauges and 

hygrometers, 33 corrosion cells, and 4 weight-in-motion stations. This SHM system 

makes the most rigorously monitored bridge in the world [17].  

Wireless embedded sensors have also been developed for SHM systems. For 

example, a smart brick (i.e., brick with wireless sensors embedded), was implemented in 

[29] to wirelessly transmit the sampled digital and analog data to a data collection 

receiver with a maximum range of 101 m. Also, a wireless embeddable sensors’ 

platform/smart aggregate (WESP/SA) is proposed in [30] to detect the corrosion of 

reinforced bars in concrete bridges. Furthermore, it has been shown in [7] that the 

development of durable, embeddable sensors has encouraged the development of 

corrosion monitoring systems for new and existing reinforced concrete structures. 

 Advantages of wireless sensor networks for SHM applications are as follows: 

(i) They shorten the deployment time and reduce cost since wiring is not needed. 

(ii) They are able to measure various quantities thereby enhancing the quality of data 

acquisition. 

(iii) They can be miniaturized using compact and inexpensive sensors, such as micro-

electro-mechanical systems (MEMS). 

(iv) They utilize sensors that can perform monitoring without disturbing the normal 

operation of the structures. 

(v) They can use wireless embedded sensors that enable SHM during construction 

period, which enhances the quality of construction processes.  
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(vi) They can use wireless embedded sensors that read volumetric data inside concrete 

thereby providing more accurate measurement data. 

Therefore, wireless embedded sensors are ideally suitable for SHM [27]. In fact, WSNs 

are the most promising SHM systems for large structures.  

      

2.3 Wireless Power Transmission for Embedded SHM Sensors 

Even though WSN technologies have many advantages for various applications, 

challenges still exist when they are applied to SHM applications. Such challenges include 

real-time monitoring, time synchronization, inexpensive system, high duty cycle, high 

frequency high fidelity sampling, etc., [19]. Among these challenges, power supply is one 

of the main limitations that restrict the development of WSNs, since most of the wireless 

sensors are powered using small batteries, and the conventional AA batteries could 

supply enough power for a typical wireless sensor working for 1 to 2 years with sleeping 

mode and energy-aware routing algorithm applied [31]. However, wireless sensors for 

SHM systems need to operate for more than 10 years, and throughout the long life-time 

of concrete structures. Replacing the batteries of wireless sensors over such a long period 

is labor intensive and time consuming. Especially, replacing batteries of sensors that are 

buried inside concrete are very difficult if not impossible. In order to guarantee the long 

life-time for wireless embedded sensors, novel wireless powering methods must be 

developed in order to charge sensor batteries wirelessly.  

Various wireless powering methods have been proposed in the past, and could be 

categorized into two types: (a) power scavenging from ambient energy sources, and (b) 

power receiving from certain power sources through wireless power transmission 
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methods. For power scavenging, solar power is collected in [32] to charge a sensor node 

less than 16 mm3, while thermal energy is converted to electrical energy by a low power 

thermoelectric generator to supply sufficient power for micro sensor in [33]. Thermal 

gradients are converted by thermocouples to generate an electrical power of 1.5 μW in 

[34] in order to operate a small preamplifier and sensor control system based on a 

temperature difference of 10 °C.  Human power such as heel-strike energy is converted to 

electrical energy through a flexible piezoelectric foil exerted on a shoe to charge the 

wearable microelectronic devices [35], and 2.45 GHz radio frequency waves is harvested 

in [36] by a rectangular stacked patch array to charge a sensor node. Among these 

methods, the piezoelectric converter and the RF wave harvester are suitable for SHM 

embedded sensors, since the vibration caused by the loads on bridges or the ambient 

commercial RF waves around the commercial buildings can be harvested for charging 

sensors. 

Wireless power transmission is another powering solution that has been widely 

used for charging wireless sensors. Inductive coupling is used in [37] to charge and 

communicate with RFID tags, while strong resonant coupling is presented in [38] to do 

power transmission in mid-range. Also, electromagnetic radiation is used to charge RFID 

tags 44 meters away from a 4W EIRP source in [39]. These methods transmit power from 

fixed sources through electromagnetic/magnetic channel, and utilized either near field, 

mid-range or far field power transmission depending on the system requirement.  

The power harvesting and wireless power transmission techniques mentioned 

above are widely used for air-to-air wireless powering of sensors. However, for sensors 

embedded in concrete, the powering system includes air-to-concrete transmission paths 
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and the power receivers are buried inside lossy media. Designing powering systems for 

embedded sensors is extremely challenging because of the environmental effects, reduced 

power transmission efficiency and compact size required. Due to these reasons, 

mechanical vibration power harvesting and wireless power transmission techniques are 

promising solutions for wirelessly charging of embedded sensors in concrete, and we will 

discuss them in detail in the following sections. 

 

2.3.1 Piezoelectric Converter 

Piezoelectric phenomenon was firstly discovered in 1880s, when some 

researchers observed that certain types of crystalline materials may generate a voltage 

when being compressed. This piezoelectric effect could be implemented for converting 

mechanical vibration or strain variation into electric energy that could be stored in super-

capacitors and rechargeable batteries.  

Piezoelectric converter technologies have been proposed for charging wireless 

SHM sensors. For example, [40] proposed a generator capable of achieving 12.5 mW 

power with 10 mm displacement of the moving mass, which is sufficient to charge a 

wireless sensor on the bridge. Results illustrate that the output of the self-powered 

sensors shows a clear dependency on the traffic pattern which excites the structure, as 

well as the sensors’ deployment positions. Experiments were done on a State Route 11 

bridge in Potsdam, NY, USA, sensors positioned at approximated 1/3 of the span length 

can achieve sufficient displacement energy, however, sensors closer to the supports may 

rely on different mechanism since the vibrations are insufficient there. Also, three 

mechanisms including lead zirconate titanate (PZT) patch, cantilever beam and PZT 
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stacks/slugs are described to be suitable for embedded sensor power scavenging inside 

bridges in [41]. PZT patches can be used to sense the strain changes in bridge girders, and 

the generated power level is approximately 0.5 μW/cm2. Cantilever beam devices can 

generate about 20 μW/cm2 power and their dimensions can be optimized in order to 

maximize the power generated in various vibration environments. PZT stacks and stack 

arrays can achieve 1 mW/cm2, which have the biggest potential among the three schemes.  

Systems above illustrate that SHM sensors are able to achieve energy through 

piezoelectric methods, which free them from the installation of fixed power sources. 

However, the deployment positions of the sensors are greatly restricted by the vibration 

level that could be achieved by the piezoelectric materials for power conversion. For 

example, structures such as high-rises and dams, which may have fewer vibrations than a 

fully loaded hanging bridge, may not be able to provide sufficient power for the 

monitoring sensors embedded inside them. Therefore, novel power harvesting or power 

transmissions solutions are still needed for embedded SHM sensors. 

 

2.3.2 Inductive Coupling 

Inductive coupling is a power transmission method that has been widely used in 

medical [42] and industrial applications [43] for years. The phenomenon of current flow 

through one conductor induces a voltage across the other through electromagnetic 

induction is referred to as inductive coupling. Inductive coupling is applied in [44] to 

charge the SHM sensors embedded in concrete: the reader coil is connected to a power 

source outside of the concrete, and it is used for both powering and interrogating the 

sensor through the magnetic coupling between the reader coil and receiving coils, which 
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are buried inside concrete. Similar design is also proposed in [30], where a power pickup 

coil working at 1 MHz was connected to a voltage doubler for charging the bridge 

corrosion detection sensor, which is attached to the cross reinforced bars inside the bridge 

deck. In [45], a novel WSN architecture for SHM is presented, and the system is based on 

the adoption of contactless sensors using resonant coupling to both sense the 

displacements and deploy local communication network. For inductive coupling systems, 

power transmission and wireless communication can be performed simultaneously.   

Inductive coupling for wireless power transmission was deduced due to the 

perception that powering or communicating though magnetic coupling does not suffer 

from high losses. However, there are no reliable quantitative results available regarding 

levels of the losses. For example, the effects of eddy currents, which are induced in the 

concrete and can lead to attenuation of the delivered power, have not been considered yet. 

Also, inductive coupling is based on near field magnetic coupling, so the distance 

between reader and the receiver coils are limited to only a few centimeters, which are not 

suitable for certain applications where larger distances are required. 

 

2.3.3 Strong Resonant Coupling 

Strong resonant coupling employs strongly coupled magnetic resonance to 

transmit power wirelessly and efficiently over a mid-range distance [46], where adverse 

effects of the low coupling coefficient between the two coils for inductive coupling are 

compensated by the high-quality factor of the four-coil system to achieve the high 

efficiency. It is a wireless non-radiative mid-range power transmission method that has 
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been applied for power transfer in the air.  This method has achieved of 40% in [46] and 

60% in [47] at a distance of 2 m. 

Strongly coupled magnetic resonance (SCMR) method is proposed in [48] for 

powering sensors embedded in concrete. Power transmission efficiency of 60% is 

achieved when the coils in air are 10 cm from the air-to-concrete interface and the ones 

inside concrete are within a 7.5 cm × 7.5 cm air-box at a 10 cm depth. Results show that 

high efficiency can be achieved with SCMR system when powering sensors embedded in 

concrete, but the size of the air-box needs to be reduced, since such large air-gap inside 

concrete structure may reduce the strength of it. Also, since the coils are strongly coupled 

in order to achieve high Q at fixed frequencies, the bandwidth of the system is small. 

Therefore, small changes in setup of this system may dramatically impact the resonance 

and significantly reduce its efficiency.  

 

2.3.4 Electromagnetic Radiation 

Electromagnetic radiation is a form of energy exhibiting wave-like behavior as it 

travels through space. EM power transmission can be implemented using antenna 

coupling in the far field. It has been widely used in modern wireless communication 

systems such as GSM, GPS and RFID systems, etc.  

The RF wireless power transmission system for SHM embedded sensors was 

deployed in field experiments on the Alamosa Canyon Bridge in 2007 [49], and the 

sensor node could be charged to 3.6 V in 27 s when the power source is 1 W and 1.2 m 

away. While in [50], a 14.5 dBi Yagi antenna transmits 1 W power at 2.5 GHz to a 19 

dBi patch antenna 2 m away from it, in order to power the sensors mounted on the 
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surface of Alamosa Canyon Bridge. The typical time for the 0.1 F capacitor to be charged 

to 3.5 V is 95 s. A stacked patch rectenna with 75.8% DC to AC conversion efficiency 

was designed for operation at 5.7 GHz for wireless power transmission to a buried sensor 

in concrete [51]. Dry and wet concrete samples with various cover thicknesses and air-

gaps are considered, and 10.37 mW power was received at 0.6 m for input power of 7 W. 

A circularly polarized microstrip patch antenna is designed for wireless power 

transmission in [52]. It operates as a rectenna working at 5.5 GHz for data telemetry in 

the 5.15-5.35 GHz WLAN band. The band harmonic filter design is also proposed in [53] 

for a circularly polarized rectenna. A Microstrip patch antenna working at 2.45 GHz is 

buried inside concrete for wireless infrastructural health monitoring in [54], and the 

performance of the patch is dependent on the concrete dielectric constant and loss tangent. 

Also, dipole and PIFA antennas working at 915 MHz are buried inside a concrete pier for 

performance comparison in [55], while reinforced bar’s effects are also considered.  

Though several power transmission systems have been proposed, RF power 

communications in the concrete suffer from high losses. This problem is inherent to all 

wireless communications with sensors buried inside concrete, and it stems from the high 

attenuation of RF signals in concrete. Also, it should be pointed out that no model 

describing losses in communication channels for embedded sensors have been derived. 

For instance, no equations that are analogous to either Friis or Radar Equation have been 

formulated. These equations are essential for the analysis and optimization of 

communication channels and wireless powering transmission in heterogeneous media.  

Power harvesting and wireless power transmission for embedded SHM sensors 

are discussed in this section. In summary, limited work has been done on this subject 
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thereby necessitating further research and development in order to meet the current 

requirements of concrete construction as recommended by the Federal Highway 

Administration FHWA [56]. The existing wireless power transmission systems encounter 

the following problems: 

(i) Lack of physical models for the complex permittivity of concrete that can 

accurately describe its behavior for (a) frequencies in the RF spectrum including 

very low frequencies, and (b) different moisture contents, temperatures, etc. 

(ii) Absence of theoretical models that can predict the attenuation in communication 

and powering channels through concrete.  

(iii) Insufficient understanding of SHM in the context of sensors embedded in 

concrete and absence of comparison data of different EM radiation and RFID 

approaches using wireless sensors buried in concrete. 

(iv)  Absence of analysis considering the effects of various reinforced bars types on 

the wireless power transmission. 

(v) Absence of optimum rectenna design for power harvesting and/or receiving in 

concrete. 

The major technological and research gaps above need to be addressed in order to 

develop optimal and cost effective wireless power transmission solutions for the SHM 

sensors embedded in concrete. 

 

2.4 Summary 

In this chapter, the application background related to the wireless embedded SHM 

sensors has been described, followed by the comparison of various wireless power 
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transmission and power harvesting methods proposed for charging embedded sensors 

wirelessly. It could be concluded from this chapter that although many wireless powering 

techniques have been presented, limited work has been done on optimizing the power 

transmission system and maximizing the power transmission efficiency for air-to-

concrete applications. 
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CHAPTER 3 

3 PLANE WAVE MODEL FOR PLAIN CONCRETE 

In this chapter, optimization of wireless powering of sensors embedded in plain 

concrete is investigated. Our analysis relies on plane wave propagation models. 

Specifically, transmission loss and propagation loss of RF waves penetrating into 

concrete are calculated for concrete half-space and concrete slab cases. Also, 

electromagnetic properties of the concrete are modeled using extended Debye model. 

 

3.1 Extended Debye Model  

In order to describe the losses of RF waves penetrate through concrete, 

electromagnetic (EM) properties (i.e., relative permittivity, conductivity, etc.) of concrete 

need to be accurately modeled. Several models regarding the relative permittivity and 

conductivity of concrete at different moisture conditions and frequencies have been 

reported. Specifically, dielectric constant conductivity dispersion of Portland cement-

based binders was measured over the 1 KHz – 1 MHz range in [57]. In [58], dielectric 

constant, loss factor, and the conductivity of concrete was measured and provided 

through 0.1-20 GHz range with four different moisture content values considered, 

including air dried, oven dried, wet and saturated conditions. Furthermore, Jonscher 

model was used in [59] to show that concrete is a dispersive medium in the 1 MHz-1 

GHz range and the validation was carried out through experimental testing. Results have 

shown that the complex permittivity of concrete may vary with frequency and moisture 

content. Therefore, frequency dependent models for the relative permittivity of concrete 

at different humidity conditions are more accurate for our analysis. In this research, 
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frequency dependent extended Debye model [60] is used to accurately describe the EM 

properties of the concrete for six different humidity conditions.  

The relative permittivity of concrete can be written as [60]: 

                                                ( ) ( ) ( )' "
r r rjε ω ε ω ε ω= −                                           (3.1) 

while the real part of the relative permittivity is presented as:  

                                                  ( )'
2 21r

εε ω ε
ω τ∞
Δ= +

+
                                            (3.2) 

where ∆ε stands for the difference between the values of the real part of the relative 

permittivity at low and high frequencies, and τ is the relaxation time. The real part of the 

complex relative permittivity represents the ability of the medium to store electrical 

energy. 

The imaginary part of the complex relative permittivity represents the energy 

losses due to dielectric relaxation as follows: 

 

   ( ) ( )''
2 2

0 0
, 1

effdc
r eff

σ ωωτ ε σε ω
ω τ ωε ωε
Δ= + =

+     
                           (3.3)  

                        
where σdc is the DC electrical conductivity of concrete and σeff(ω) is the effective 

conductivity. This model can be considered as an extension of the Debye model 

(extended Debye model). The Debye model parameter values are available in Table 3.1 

for six different humidity conditions (from 0.2% to 12.0%). The humidity condition 

describes the percentage of water by volume and it is represented here by the symbol, h. 

Relative permittivity of concrete is plot in Figure 3.1 for three humidity 

conditions. Results illustrate that the permittivity value for wet concrete (i.e., 12% 
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humidity) is much larger than the dry concrete (i.e., 0.2% humidity), especially at lower 

frequencies in the 1-400 MHz range. For example, in Figure 3.1(a), when the humidity 

condition of wet concrete is 12%, permittivity of concrete decreases dramatically as 

frequency increases form 1 MHz to 400 MHz, and remains almost constant for 

frequencies larger than 400 MHz. However, permittivity for concrete with 0.2% moisture 

content hardly changes throughout the frequency range. It is approximately 3 to 8 F/m 

less than the corresponding value of the wet concrete. When a plane wave propagates 

from air to lossy media, the reflection and transmission coefficient, together with the 

corresponding average power densities, are closely related to the permittivity of the 

media.  

Table 3.1 Extended Debye model parameter values for concrete [60]. 

 

The effective conductivity of the concrete is plotted in Figure 3.2 for three 

humidity conditions. It can be seen from Figure 3.2 that higher humidity conditions have 

larger effective conductivity value. For example, as the moisture content of concrete 

increases from 0.2% to 12%, effective conductivity of concrete increases almost 20 times 

at 2 GHz. The increase of effective conductivity leads to more power losses. Also, it is 

shown in Figure 3.2 that effective conductivity of concrete increases with frequency. For 

example, the effective conductivity of 6.2% humidity concrete increases dramatically as 

the frequencies increases form 1-600 MHz, but remains almost constant for frequencies 
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larger than 600 MHz. It could be concluded that lower frequencies in our analysis range 

would have less power loss and are more suitable for power transmission inside concrete, 

especially for wet concrete cases. 
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         (a) Real value.                                               
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 (b) Imaginary value. 

Figure 3.1: Permittivity of concrete versus frequency. 
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The electromagnetic properties of concrete at different humidity conditions 

determine the power loss level of the electromagnetic wave and the performance of the 

antenna buried inside it. Therefore, accurate frequency dependent permittivity models of 

concrete are needed for the theoretical analysis of plane wave transmission through plain 

concrete, which will be discussed in following sections. 
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Figure 3.2:  Effective conductivity of concrete versus frequency. 

 

3.2 Concrete Half-space Model 

For a plane wave penetrating through plain concrete, total power loss is the sum 

of transmission loss and propagation loss. Transmission loss is caused by the reflection of 

the electromagnetic wave at the air-to-concrete interface. Propagation loss is generated as 

the wave propagates through the lossy concrete medium. Here, we develop analytical 

formulations that describe both loss mechanisms and then calculate the total losses for the 
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concrete half-space case. Specifically, losses of plane wave impinging on an air-to-

concrete interface at normal incidence are calculated assuming the thickness of concrete 

is infinite, as shown in Figure 3.3.  

                       

 iE


 

        

       tE


         

 iH


      0ε          ( )///
0 rr jεεε −    

d

Concrete Air

 

Figure 3.3: Plane wave penetrating concrete half-space at normal incidence. 

 

3.2.1 Normal Incidence 

First, we formulate analytical equations to calculate the transmission loss and 

propagation loss for the scenario of Figure 3.3 in the case of normal incidence. The 

incident power is written as [61]: 
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where Ei is the incident electric field and 0
0

0

μη
ε

=  stands for the intrinsic impedance of 

air.                              

Similarly, the transmitted power inside concrete is written as: 
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where Et is the transmitted electric field, 1
1

0 r

μη
ε ε

=  is the intrinsic impedance of concrete, 

and ' ''
r r rjε ε ε= −  stands for the relative complex permittivity of concrete [60].  

Furthermore, the transferred power at a propagation depth, d, inside concrete can 

be written as:                       
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where the transmission coefficient T is given by: 
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It is determined by the intrinsic impedances of air and concrete, η1 and η2, respectively. 

The attenuation constant α can be written as [62]: 
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 Based on (3.6), the transmission loss, which describes the power loss caused by 

the air-to-concrete interface, can be calculated in dB as follows: 
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Also, the propagation loss inside concrete can be written as: 

                                    2
1010log ( )d

p e αα −=                                             (3.10) 

It increases with the propagation depth d.  

Therefore, the total loss of the normal incidence is written as: 
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pttotal ααα +=
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and it depends on the complex permittivity of concrete and the depth of propagation. 

Equations (3.6)-(3.11) are used to calculate the transmission, propagation and 

total losses for a plane wave traveling from air to a concrete half-space in the frequency 

range of 1 MHz-1GHz and for three humidity conditions. Transmission losses are plotted 

in Figure 3.4. Figure 3.4 shows that transmission losses decrease rapidly as the frequency 

increases from 1 MHz to 20 MHz, and then remains almost constant for frequencies 

larger than 20 MHz. For example, the transmission loss for 12% humidity at 1 MHz is 

about 8 dB larger than the one at 1 GHz. This is expected since the transmission loss 

increases as the relative permittivity of the concrete increases. As shown in Figure 3.1, 

the relative permittivity of concrete is significantly larger in the 1 MHz to 400 MHz 

range than the one at larger frequencies, which leads to larger transmission losses. 

Therefore, in order to decrease the transmission loss of plane waves travelling from air to 

concrete, frequencies larger than 20 MHz should be used. 

Our results also illustrate that transmission losses increase as the humidity of 

concrete increases. For example, at 1 MHz, the transmission loss for wet concrete (i.e., 

12% humidity) is approximate 7 dB larger than the transmission loss for dry concrete (i.e., 

0.2% humidity) case. This is expected, since as the moisture content increases from 0.2% 

to 12%, the effective conductivity of concrete increases almost 20 times, as shown in 

Figure 3.2, thereby causing more losses. Specifically, we discuss the humidity effects 

because many applications require monitoring the properties of concrete while it is still 
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wet and curing. For example, high strength concrete may take 6 to 60 days to cure 

depending on the structure and the weather conditions. Therefore, high strength concrete 

needs to be closely monitored by sensors while it is curing (it is wet) to ensure that it 

reaches its full strength before any mechanical load is applied to it. Hence, when 

designing wireless powering systems, the concrete’s moisture content should be taken 

into account to maximize the RF power transfer. 
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Figure 3.4: Transmission loss for normal incidence at different humidity conditions. 
 

Then propagation loss is calculated using (3.10) and it is plotted in Figure 3.5. 

These results illustrate that the propagation loss exhibits an opposite trend than the one of 

transmission loss. For example, propagation loss for 12% humidity concrete increases 

slowly for frequencies less than 100 MHz but increases dramatically for frequencies 

larger than that. This is expected, since propagation loss is closely related to the 

conductivity of the lossy media, and it increases when conductivity value increases. 
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Specifically, as shown in Figure 3.2, the effective conductivity of 12% humidity concrete 

increases dramatically and almost keeps constant after 600 MHz, which leads to similar 

trend of the propagation loss. Therefore, when designing wireless powering system, 

frequencies smaller than 100 MHz should be chosen for SHM sensors with medium 

embedded depth (i.e., 4”).   
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Figure 3.5: Propagation loss for normal incidence with d=10.16 cm. 
 

Furthermore, transmission loss and propagation loss are added to obtain the total 

loss for air-to-concrete propagation, as shown in Figure 3.6. As expected, due to the 

reverse variations of the two losses, an optimum frequency range exists, within which 

there is significantly smaller power loss. For example, the total loss in the frequency 

ranges of 20-80 MHz for wet concrete (12% humidity) is about 4-6 dB less than the total 

loss at the lowest or highest frequency in our analysis. This conclusion is particularly 
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useful for powering of and communication with sensors embedded in concrete, where we 

seek to minimize the total power losses in order to deliver maximum power to the sensors.  
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Figure 3.6: Total loss for normal incidence with d=10.16 cm. 
 

So far we have examined the total loss of power transmission through plain 

concrete half-space. Since propagation loss is closely related to the propagation depth, 

total loss versus frequencies and propagation depth is also examined and shown in Figure 

3.7. Figure 3.7 illustrates the changing of optimum frequency range versus propagation 

depth (0-25 cm) for three humidity conditions. 0-25 cm is chosen since sensors may be 

buried in different depths inside the concrete to fulfill different application requirements 

in this range. Results show that when the propagation depth, d, is zero, total loss contains 

only the transmission loss, and frequencies larger than 20 MHz suffer from less power 

loss, as shown in Figure 3.4. As propagation depth increases, the propagation loss also 

increases and the transmission loss remains the same.  These trends provide a total loss 
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that is optimum in a frequency range. This optimum frequency range shifts gradually to 

lower frequencies and falls in the 20-80 MHz band as the propagation depth increases. 

For example, the total loss within the 20-80 MHz frequency range is approximately 4-10 

dB less than the lowest and highest frequencies in our analysis when the propagation 

depth is 25 cm inside 12% humidity concrete.  
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         (a) h=0.2%.                                              (b) h=6.2%. 
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(c) h=12%. 

Figure 3.7: Total loss versus frequency and propagation depth. 
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Also, results illustrate that the optimum frequency range shifts faster for wet 

concrete (i.e., 12% humidity) than dry concrete (i.e., 0.2% humidity). For example, the 

difference of the total losses for 0 cm and 25 cm propagation depths at 1 GHz for wet 

concrete is approximately 13 dB, but the corresponding difference for dry concrete is 

only about 1 dB.  This is expected, as the effective conductivity of wet concrete is much 

larger (about 20 times) than dry concrete, which leads to larger propagation loss as the 

propagation depth increases. It can be concluded that for sensors embedded in concrete at 

medium depth, frequency range of 20-80 MHz provides significantly smaller power loss 

than all other frequencies in the range of 1 MHz to 1 GHz. Therefore, this frequency 

range can be used to increase power transmission efficiency and reduce the battery 

charging time of embedded sensors.  

 So far, we have identified an optimum frequency range within 20-80 MHz for 

wireless power transmission through concrete half-space at normal incidence.  It should 

be pointed out that this frequency range includes the bands of shortwave radio (3-30 MHz) 

and VHF TV (54-72 MHz and 76-88 MHz). Therefore, sensors embedded in concrete 

operating in the optimum frequency range will also be able to efficiently harvest existing 

RF signals in these bands for charging.  

 
 
3.2.2 Oblique Incidence 

We examined the power transmission for normal incidence in the previous section. 

However, in practice electromagnetic waves may be incident into the concrete at an 

oblique angle due to the position of the power source. In order to examine the power loss 

at oblique incidence for a general wave polarization, it is convenient to decompose the 
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electric field into perpendicular and parallel components and analyze them separately. 

The total reflected and transmitted field would be the vector sum from both polarizations 

[62]. Figure 3.8 shows the two polarizations for a plane wave incident into concrete half-

space. When the electric field is parallel to the plane of incidence, as shown in Figure 

3.8(a), the polarization of the wave is referred to as parallel polarization, which is also 

called vertical or H polarization since the electric field is perpendicular to the interface 

and the magnetic field is parallel to the interface.  When the electric field is perpendicular 

to the plane of incidence, as shown in Figure 3.8(b), the polarization of the wave is 

referred to as perpendicular polarization, which is also called horizontal or E polarization, 

since the electric field is parallel to the interface. The analysis of power transmission for 

perpendicular and parallel polarizations will enable the calculation of total power loss at 

oblique incidence.  

       As shown in Figure 3.8, plane wave penetrates through the concrete at an angle of 

incidence θi for both parallel and perpendicular polarizations. Due to the refraction of the 

wave at the air-to-concrete interface, the wave propagations into concrete half-space at an 

angle of θt. This angle of transmission is given by Snell’s law of refraction [62] as: 

2cos 1 sin /t i rθ θ ε= −
                                            

(3.12) 

As illustrated previously by (3.7), the transmission coefficient T depends on intrinsic 

impedances of the air and concrete for normal incidence. For oblique incidence, the angle 

of incidence and transmission should be used for deduction of the electric field’s normal 

components. Therefore, the transmission coefficients for parallel and perpendicular 

polarization are presented by:  
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    (a) Parallel polarization.                       

 
 (b) Perpendicular polarization. 

 Figure 3.8: Plane wave penetrating concrete half-space at oblique incidence. 

 
In order to study dependency of the transmission coefficient on different humidity 

conditions of concrete, we calculate the transmission coefficients for parallel and 

perpendicular polarizations for a plane wave at 50 MHz. Results are presented in Figure 

3.9 for incidence angles ranging from 0 to 89 degrees (normal incidence corresponds to 0 

degree).  It is shown in Figure 3.9 that the transmission coefficient for dry concrete (i.e., 
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0.2% humidity) is larger than the one for wet concrete (i.e., 12% humidity) through all 

incidence angles for both polarizations. This is expected since the transmission 

coefficient increases as the relative permittivity of the lossy media decreases. 
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(a) Parallel polarization.                               
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 (b) Perpendicular polarization. 

Figure 3.9: Transmission coefficient for oblique incidence at 50 MHz. 
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Figure 3.9 also illustrates that transmission coefficient decreases as the incidence 

angle increases in both parallel and perpendicular polarizations. In fact the transmission 

coefficient for perpendicular polarization decreases more rapidly than the one for parallel 

polarization as the incidence angle increases. For example, the transmission coefficient 

for parallel polarization at 6.2% humidity remains almost constant up to angle of 

incidence of 80 degrees and then rapidly decreases for larger angles of incidence [see 

Figure 3.9(a)]. However, as illustrated in Figure 3.9(b), the transmission coefficient for 

perpendicular polarization gradually decreases as the angle of incidence increases from 0 

to 90 degrees. It can be concluded that larger transmission coefficient is achieved at 

normal incidence. Furthermore, for oblique incidence cases, parallel polarization provides 

larger power transmission through concrete. When designing wireless powering systems 

for sensors embedded in concrete, the angle of incidence and polarizations must be 

carefully considered as they can significantly affect the performance of system. 

The power loss for plane wave propagation into concrete half-space in oblique 

incidence cases can be calculated based on the transmission coefficient values. The 

transmission loss for oblique incidence can be calculated in similar fashion with (3.9): 

2 0
// 10 //

1
*

10 log Ret

ηα
η

  
= Τ  

  
                                       (3.15) 

2 0
10

1
*

10 log Ret

ηα
η⊥ ⊥

  
= Τ  

  
                                      (3.16) 

It is seen that the power loss depends on the transmission coefficients for parallel and 

perpendicular polarizations as well as the intrinsic impedances of air and concrete. 

The propagation loss for oblique incidence can be written as follows:  
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        ( )2 /cos( )
// 1010 log td

p p e α θα α −
⊥= =                                 (3.17) 

It is seen that the wave propagation distance to certain propagation depth inside concrete 

is increased by the factor which depends on the transmission angle.  

Accordingly, the total loss for the oblique incidence can be written as:  

/ / / / / /total t pα α α= +                                            (3.18)                        

total t pα α α⊥ ⊥ ⊥= +                                               (3.19) 

Following similar steps as the ones for normal incidence case, the average total 

loss across all incidence angles ranging from 0 to 89 degrees is calculated for frequencies 

from 1 MHz to 1 GHz (normal incidence corresponds to 0 degree). Figure 3.10 plots the 

average total loss versus frequency for both polarizations. Based on Figure 3.10, it can be 

concluded that the average total loss for an oblique incident plane wave is larger than the 

normal incidence case (see Figure 3.6), as expected, but both cases exhibit similar 

variation. For example, the average total loss for perpendicular polarization in the 20-80 

MHz frequency range is approximately 5 dB larger than the total loss for normal 

incidence in the case of 12% humidity [see Figure 3.6 and 3.10(b)]. Therefore, when a 

plane wave is normally incident at a frequency in the range 20–80 MHz, an embedded 

sensor will receive significantly larger power than the other angles and frequencies. Also, 

for the case of oblique incidence we see that the optimum frequency range still matches 

the optimum range that we identified for the normal incidence (20-80 MHz). 
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           (a) Parallel polarization.                               
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 (b) Perpendicular polarization. 

Figure 3.10 Total loss for oblique incidence at a depth d=10.16 cm. 
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3.3 Concrete Slab Model 

In the previous section, we examined wireless power transmission through 

concrete half-space and identified an optimum frequency range of 20-80 MHz that 

provides minimum power losses. In this section, power transmission through concrete 

slabs (with finite thickness) is investigated. Concrete slabs are typical building materials 

which are widely used for construction, i.e., concrete brick, footing block, etc. Therefore, 

studying power loss for concrete slab may contribute to the development of optimum 

powering system for SHM sensors that are embedded inside them. 

The air-to-concrete slab model is shown in Figure 3.11, where the plane wave is 

impinging on the concrete slab at normal incidence assuming that the thickness of 

concrete is finite. Figure 3.11 also illustrates that the electric field induced at certain 

depth d1 inside the concrete combines the electric field of the transmitted wave (from air-

to-concrete interface) and the reflected wave (from the concrete-to-air interface). The 

transmission and reflection coefficients for a plane wave incident on a concrete slab are 

shown in Figure 3.12. 
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Figure 3.11: Plane wave penetrating concrete slab at normal incidence. 
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Figure 3.12: Transmission and reflection coefficients for plane wave penetrating a 
concrete slab at normal incidence. 

 

It is illustrated in Figure 3.12 that at d1 depth inside the concrete slab, the initial 

electric field is the sum of two different direction components 1j de γ−Τ and ( )2sj d de γ− +ΤΓ , 

where T and Γ stand for the transmission coefficient and reflection coefficient, 

respectively, and γ is the complex propagation constant. Since plane wave may be 

reflected to and fro inside the concrete slab at the air-to-concrete and concrete-to-air 

interfaces, reflected waves would be decreased with the common ratio of 22 sj de γ−Γ , 

which includes the reflection coefficient and the total thickness of the concrete slab. 

Therefore, the electric field can be expressed as the geometric series. The summation of 

geometric series with initial value a and common ratio r is given by: 
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when 1r < ,  n → ∞ , the summation could be calculated as: 

0 1 1
k

k

a ar a
ar

r r

∞∞

=

−= =
− −                                              (3.21)                         

       
When calculating the electric field at depth d1 inside the concrete slab, the 

corresponding common ratio r is 22 sj de γ−Γ , which is smaller than 1 and fits the 

requirement of (3.21). The corresponding initial value a  is 1 2sj dj d j de e eγγ γ−− −Τ + Τ Γ (see 

Figure 3.12). Therefore, the electric field at depth d1 can be written as: 
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where the reflection and transmission coefficients, Γ and T, respectively, depend on the 

permittivity of concrete, and can be expressed in terms of intrinsic impedance of air and 

concrete as follows:  
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η0 and η1 stand for the intrinsic impedances of the air and concrete, respectively, and εr 

is the relative permittivity of the concrete.  

Also, as defined in [62], γ in (3.22) is the complex propagation constant, and is 

defined as: 
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where α is the propagation constant, β presents the phase constant and ε stands for the 

real permittivity value of the material.  

If we define 1 0 1rr j dω με ε= −
 
and 2 0 2rr j dω με ε=

 

, (3.22) can be written as: 
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The total loss for the concrete slab scenario of Figure 3.11 can be deduced 

following a similar procedure to the one presented in [63] as: 
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It should be pointed out that the total loss given by (3.28) for d2 →∞, i.e., for a 

very thick concrete slab (i.e., concrete half-space), becomes equal to the total loss given 

by (3.11).       

The total loss of plane waves penetrate through a 12% humidity concrete slab is 

calculated here based on the above formulations. Figure 3.13 illustrates this loss for a 

propagation depth of 10.16 cm and for three different concrete thicknesses, i.e., 2 m, 5 m 

and 10 m. Results indicate that an optimum frequency range still exists for power 

transmission through concrete slab. For example, total losses in the 20-80 MHz range are 

4-7 dB smaller than the losses at the lowest or highest frequencies of our analysis when 

the thickness of the concrete slab is 5 m, as shown in Figure 3.13. Therefore, working 

inside the optimum frequency range may lead to larger wireless power transmission 

efficiencies. 
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Figure 3.13: Total loss for normal incidence with d1=10.16 cm, h=12%. 
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Also, the oscillatory behavior of the total loss for the case of a 2 m thick concrete 

slab (see Figure 3.13) is expected due to the superposition of primary and reflected waves. 

This phenomenon can be reduced as the moisture content or thickness of concrete 

increases. For example, as shown in Figure 3.13, when the thickness of concrete is 

increased to 10 m, the corresponding total loss is approximately the same as the total loss 

for the concrete half-space (see Figure 3.6). However, when the concrete slab is thinner 

(less than half meter) and dryer, the oscillatory behavior would be more pronounced, and 

this will be discussed in detail in Chapter 4. 

 
 
3.4 Model for Other Lossy Media 

In previous sections we examined the optimum frequency ranges for plane waves 

penetrating concrete half-space and concrete slabs. Following similar steps, optimum 

conditions for communication with or powering of sensors embedded in other lossy 

media (i.e., seawater, fresh water, soil, human-body, etc.) can be investigated. Monitoring 

sensors embedded in certain lossy media involves various applications. For instance, 

microstrip sensors were proposed in [25] for simultaneous sensing and reporting moisture 

contents of soil for agriculture investigation. Furthermore, antennas implanted in human 

body were studied in [64] and [65], aiming at monitoring of various physiological 

parameters. In addition, underwater sensors networks (UWSN) in [66] were developed 

for various applications, such as, costal surveillance, underwater environment 

observations for exploration, oil-fig maintenance, etc. Minimizing EM power loss is 

critical for embedded sensor monitoring systems.   
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First, the total loss for EM waves propagating from air to fresh water is analyzed 

in the frequency range of 23 KHz to 1 GHz at normal incidence. This frequency range 

includes frequencies from the VLF (used in submarine communications) to the UHF band. 

Various propagation depths are considered since sensors or submarines may work at 

different depth inside fresh water.  

The complex frequency dependent dielectric permittivity ( )r fε  of water is 

commonly described by the Debye model in [67] as: 
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+

−
= + −

                                   (3.29) 

where εs and ε∞ are the real relative permittivity at low and high frequencies, respectively, 

fref is the relaxation frequency, σ is the conductivity of water, and ε0 is the dielectric 

permittivity of free space. Table 3.2 shows the Debye parameters of water reported in 

[67].  

Table 3.2 Debye model parameter values for fresh water [67]. 

 
 

  The total loss is calculated by substituting (3.29) into (3.11). Specifically, the total 

loss for plane wave propagating from air to fresh water is plotted in Figure 3.14 for 

shallow as well as deep propagation depths. The results of Figure 3.14(a) illustrate the 

existence of an optimum frequency for shallow propagation depth conditions. For 

example, the total loss in 3-100 MHz frequency range for shallow propagation condition 

(0.5 m depth) is about 10 dB to 30 dB smaller than the total loss at the lowest and highest 

frequencies of the analyzed frequency range. The existence of an optimum frequency 
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range is particularly useful for improving RF communications with underwater vehicles 

or devices. Potential applications that can benefit from operating in the optimum 

frequency range include the following: 1) communications with underwater robots [68], 2) 

RFID based shore erosion detection [69], 3) water quality monitoring of bodies of fresh 

water (i.e., temperature, pH, etc.), such as, artificial lakes, swimming pools and water 

tanks, using wireless underwater sensors. 

  Figure 3.14(b) also illustrates that the total loss monotonically increases when the 

propagation depth is larger than 10 m, thereby providing no optimum frequency range. 

This happens because the transmission loss is the same for different propagation depths 

whereas the propagation loss increases as the propagation depth becomes larger. 

Therefore, as propagation depth increases it reaches a value for which the propagation 

loss becomes larger than the transmission loss. Therefore, the optimum frequency range 

exists only for small propagation depths (less than 5 m). 

 In this optimum frequency range, the waves experience significantly smaller 

losses than the losses at the lowest and highest frequencies of our analysis. Specifically, 

this frequency range includes the bands of short-wave radio (3-30 MHz), VHF TV (54-72 

MHz, 76-88 MHz), parts of FM (88-108 MHz) and US military VHF- FM band (30-88 

MHz). Therefore, various communications systems can benefit from using the optimum 

operation frequencies that we identified. Also, wireless power harvesting by wireless 

sensors can be significantly enhanced if it is performed inside the 3-100 MHz range.  

It should also be pointed out that practical compact antenna designs can be 

developed in the optimum frequency range of 3-100 MHz for underwater devices due to 

the large permittivity of water (εr=81). For example, a half-wavelength loop antenna 
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operating at 100 MHz inside fresh water has a diameter of only 5.3 cm. Therefore, the 

optimum frequency range can be used in practical underwater communication systems 

and it will provide minimum losses for shallow propagation depths. 
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Figure 3.14: Total loss for plane wave propagating from air to fresh water. 



52 
 

Second, we analyze EM waves that propagate from air to soil for wireless 

underground sensors networks (WUSNs) applications. The realization of WUSNs is 

challenging since the communications are directly impacted by the characteristics of soil 

[70]. Variations of soil moisture, temperature and depth can have a significant impact on 

the attenuation of RF waves traveling to underground sensors. Several analytical and 

empirical investigations have been performed for improving the performance of 

aboveground-to-underground (AG2UG) links and underground-to-aboveground (UG2AG) 

links [71]. Specifically, a maximum communication range of 62 m was achieved in [72]. 

However, underground RF communications still suffer from high losses.  

The analytical methods presented in section 3.2 can be used to identify optimum 

conditions for wireless power transmission and communication with underground sensors. 

The four-component volumetric mixing model [73] describing the frequency-dependent 

complex permittivity of soil is written as: 
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                                 (3.30) 

where ε* 
s , ε* 

fw, ε * 
bw, and ε* 

a  are the complex dielectric permittivity of soil solids, free water, 

bound water and air. ε * 
fw  and ε * 

bw  are calculated by (3.29). Table 3.3 describes the 

parameters in the volumetric mixing model presented in [73]. It can be seen from Table 

3.3 that six parameters, θ, ρd, Aes, σfw, σbw and α determine the dielectric dispersion of soil 

in the volumetric mixing equation. 
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Table 3.3 Parameters in the volumetric mixing model for soil [73]. 

 

Total losses are plotted in Figure 3.15(a) for three different volumetric water 

contents of soil at a propagation depth of 0.15 m. Our results illustrate that the total loss 

increases as the volumetric water content in the soil increases, thereby causing larger 

power loss. Since the humidity condition of soil can be changed by the weather (i.e., rain 

or sun exposure, etc.), volumetric water content should be carefully considered for 

optimum antenna design. Furthermore, Figure 3.15(a) shows the existence of an optimum 

frequency range. In this optimum range waves experience significantly smaller total loss 

than in other frequencies. For example, total loss in the frequency range of 10 MHz to 

100 MHz for saturated soil with volumetric water content of 40% is approximately 5-8 

dB less than the total loss at lowest or highest frequencies in our analysis. This 

observation is particularly useful for wireless powering underground sensors, where we 
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seek to minimize the power transmission loss in order to maximize the power 

transmission efficiency. 
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(a) Volumetric water content. 
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Figure 3.15: Total loss for plane wave penetrates through air to soil. 
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Sensor installation depths in soil vary for different applications. Therefore, three 

propagation depths are considered. Figure 3.15(b) illustrates that an optimum frequency 

range exists when a wave propagates from air to certain depth inside soil. For example, 

when propagation depth is 0.3 m, the total loss in the 10-30 MHz frequency range is 

approximately 3 dB to 15 dB smaller than the loss at the lowest and highest frequencies 

of our frequency range. Also, as shown in Figure 3.15(b), the optimum frequency for 

0.15 m depth is around 100 MHz, while the one for 0.4 m is around 10 MHz. This shift of 

the optimum frequency range happens because the propagation loss increases as the depth 

is increasing while the transmission loss remains the same.  

When EM waves propagate from air to soil, power loss is closely related to the 

electromagnetic properties of soil, operational frequency and wave incident angle. An 

optimum frequency range of 10-100 MHz was identified for wireless power transmission 

of underground sensors. 

 

3.5 Summary 

Plain concrete is widely used for bricks, footing blocks, deck blocks, 

motorways/roads and airstrips, etc. Developing structural health monitoring systems for 

plain concrete is of great importance for the protection of lives and infrastructure 

investments. In this chapter, an optimum frequency range was identified for powering 

sensors embedded in concrete. Theoretical air-to-concrete plane wave model was used to 

calculate the transmission loss, propagation loss and total loss for normal incidence and 

oblique incidence. These losses are closely related to the electromagnetic properties of 

concrete, operational frequency, and incidence angle. For sensors that are embedded in 
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medium depths, maximum power is received when the transmitted wave is normally 

incident at the air-to-concrete interface and the operational frequency is between 20-80 

MHz. This optimum frequency range includes the bands of shortwave radio (3-30 MHz) 

and VHF TV (54-72 MHz and 76-88 MHz), therefore, embedded sensors operating in the 

optimum frequency range will be able to efficiently harvest signals in these bands for 

charging. Also, power transmission through fresh water and soil was investigated as an 

extension of the theoretical plane wave model. For air-to-water communications, an 

optimum frequency range between 3-100 MHz was identified when plane wave 

propagates to depths less than 5 m. For air-to-soil communications, an optimum 

frequency range exists between 10-100 MHz when EM waves propagate to depths less 

than 1 foot in soil. The identified optimum frequency ranges can lead to significant 

improvement of the wireless powering and/or communication performance of sensors 

embedded in concrete, fresh water and soil.  
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CHAPTER 4 

4 PLANE WAVE MODEL FOR REINFORCED CONCRETE 

In this chapter, we study the wireless power transmission through reinforced 

concrete structures. Computational methods are applied to investigate the transmission 

and reflection coefficients for reinforced concrete slabs as a function of concrete slab 

thickness and rebar configurations at different frequencies. The electric field induced 

inside reinforced concrete is also examined. Our results lead to the identification of 

optimum conditions for wireless power transmission to sensors embedded in reinforced 

concrete structures. 

 

4.1  Reinforced Concrete Structure 

 In Chapter 3, we presented results involving the wireless power transmission 

through homogeneous concrete media. In reality and in most applications, reinforced bars 

are embedded in concrete to improve its mechanical stability, and the applications 

include bridges/overpasses, architectural structures, concrete walls, footing for gates, 

poles, dams and parking structures.  

A typical reinforced concrete slab is shown in Figure 4.1. It consists of two rebar 

layers inside the concrete slab, and it is widely used in concrete structures, such as, 

reinforced concrete walls and bridge decks. Power transmission through this typical 

reinforced structure is examined in this chapter. Reinforced bars are metallic periodic 

structures that are expected to significantly affect the propagation of EM waves when 

they are inserted into concrete structures. Therefore, rigorous analysis of rebar effects is 

necessary for the development of optimum wireless powering systems.  In this chapter, 
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the propagation of EM waves through rebar layers, concrete slabs and reinforced concrete 

slabs is investigated using computational methods. 

 

Figure 4.1: Reinforced concrete structure. 
 
 

4.2  HFSS Simulation Model    

The propagation of EM waves into reinforced concrete has been studied before 

using finite-difference time-domain (FDTD) technique, finite-element method (FEM) and 

the method of moments (MoM). For example, FDTD was used in [74] to examine the 

reflection and transmission coefficients for reinforced concrete with cross bars in the 

frequency range of 100-6000 MHz. Various concrete thicknesses and rebar 

configurations conditions were considered. Scattering from reinforced concrete walls 

with vertical and crossed bars was analyzed in [75] using FDTD in the frequency range 

of 0.5-2.0 GHz. The propagation losses in brick and concrete walls were studied at 900 

MHz band using measurements and MoM simulations in [76]. The effects of oblique 

incidence angels were particularly studied by this work. FEM simulations along with an 

expansion of EM fields in Floquet modes are used in [77] to study the propagation of EM 

waves through building walls at 900 MHz and 1.8 GHz for various concrete thicknesses, 
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rebar diameters and incidence angles. This work focused on studying the reflection and 

transmission coefficients for reinforced concrete walls. Specifically, the results of [77] 

illustrated that plane waves penetrating through reinforced concrete slabs exhibit 

complicated series of resonances and nulls; the existence of which depends on the 

permittivity of concrete, concrete slab thickness, rebar period, rebar diameter and 

incidence angle.  

 The objective of this chapter is to identify the optimum conditions for wireless 

powering of sensors embedded in reinforced concrete. Our analysis using EM waves is 

performed using Ansoft HFSS (High Frequency Structure Simulator). Ansoft HFSS [78] 

is an industry-standard software for 3D full-wave electromagnetic field simulation and is 

essential for the design of high frequency and high-speed components based on FEM 

formulation. Ansoft HFSS is chosen because it includes the necessary functions for our 

analysis, such as, direct and iterative matrix solvers as well as Floquet ports for periodic 

structures. 

Plane wave penetrating through plain concrete slab, rebar layers and reinforced 

concrete slab will be examined using Ansoft HFSS simulations in this chapter. Similar 

geometrical setups are used for all these three cases.  Initially, simulation analysis of 

plain concrete slabs is performed, and the geometry is shown in Figure 4.2. The concrete 

slab is 8” thick, 12” wide and it is placed in the center of the model. Vacuum boxes are 

added above and below the slab.  The thicknesses of them are quarter wavelength at the 

lowest frequency of our simulation range (i.e., 300 MHz). Notice that a typical thickness 

of a concrete slab is between 7” and 9”. Therefore, a 8” thick slab is analyzed here. 

Moreover, the width of the slab is 12”, which corresponds to the length of the largest 
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rebar period (4”-12” as the normal range) that we will analyze. Previous work in [74-77] 

has used fixed concrete permittivity and conductivity values. Our work implements the 

extended Debye model into our simulations in order to accurately describe the EM 

properties of concrete at different humidity conditions. 

    
 

Figure 4.2: Plain concrete slab geometry setup in HFSS. 
 

Both the concrete slab and rebar layers can be considered as periodic structures, 

so master and slave boundaries are chosen for simulation in HFSS as shown in Figure 4.3. 

In HFSS, master and slave boundaries are used to model planes of periodicity where the 

electric field on one surface matches the electric field on another with a phase difference. 

Specifically, the electric field at each point on the slave boundary is forced to match the 

corresponding one on the master boundary only with a phase difference. The two 

boundaries must have the same magnitude, while the direction could be same or opposite. 

Therefore, it is required that the master and slave boundaries must match with the same 

geometry, mesh, coordinate system and be assigned to planar surfaces. The setup in 
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Figure 4.3 follows these guidelines and it equivalently extends the unit concrete slab to 

infinity. 

      
                    (a)Master and slave 1.                              (b) Master and slave 2.       

 
Figure 4.3: Plain concrete boundary condition setup in HFSS. 

 
Floquet ports are used for the excitation of the plain concrete slab model, as 

shown in Figure 4.4. A Floquet port in HFSS is exclusively used in planar-periodic 

structures that are assumed to be infinite in extent. A Floquet port is closely related to a 

wave port for which a set of modes is used to represent the fields on the port boundary, 

and these Floquet modes are fundamentally plane waves with propagation direction set 

by the frequency, phasing, and geometry of the periodic structure. When Floquet ports 

are used, HFSS solutions include model decompositions that give additional information 

on the performance of the radiating structure. As shown in Figure 4.4(a), Floquet port 1 is 

on the top side of the simulation model, with vector a and b along the direction of x and y 

axis. Floquet port 2 corresponds to port 1 and is on the bottom side of the model. Each 
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port with two basic modes: TE00 and TM00, and the port fields of the two models are 

shown in Figure 4.4(b).  

 
 

(a) Floquet port. 
 

                         
    

(b) Port modes. 
 

Figure 4.4: Plain concrete excitation setup in HFSS. 
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Also, mesh enhancement methods are used to improve the simulation accuracy. 

One method is to increase the solution frequency, as shown in Figure 4.5(a). For 

example, when simulating power transmission through concrete slab with 6.2% humidity, 

the highest frequency of interest is 1.8 GHz. However, when waves penetrate into 

concrete, the wavelength inside concrete will be smaller than the one in the air, and the 

FEM mesh must be fine enough in both air and concrete.  Therefore, the solution 

frequency for this simulation setup is increased to 3 GHz in this case to improve the mesh 

inside concrete, as shown in Figure 4.5(a). Specifically, by increasing the solution 

frequency we make the mesh finer, thereby improving our simulation accuracy at higher 

frequencies. The tradeoff of this method is that the FEM matrix size increases, thereby 

requiring longer simulation time.  

Another way to enhance our simulation accuracy is by increasing the number of 

adaptive passes, as shown in Figure 4.5(b). The convergence criteria in HFSS are based 

on the S-matrix, and it typically converges prior to field quantities. Therefore, when the 

absolute field values are of interest, more adaptive passes are needed in order to reach the 

same convergence as the one obtained for the S-matrix [79]. This means that accurate S 

parameters do not ensure the accurate values for the electric and magnetic fields.  

Therefore, the minimum converged passes number is increased to three, as shown in 

Figure 4.5(b).  Also, HFSS solves for the electric fields directly, and then derives the 

magnetic field from them. Therefore, electric field data are considered to be more 

accurate than magnetic fields. 
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(a) General solution setup. 

 

(b) Solution options setup. 
 

Figure 4.5: Plain concrete solution setup in HFSS. 
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Besides the methods presented in Figure 4.5, other mesh operations can be used to 

increase the accuracy of simulations. For example, surface approximations can be used to 

improve the mesh of curved objects, such as, the round rebars. Also, the model resolution 

method can also be used to reduce the number of tetrahedrons, using less memory 

resources while keeping the same accuracy as before.  

Using the simulation setup described above, the electric field inside an infinite 

concrete slab (6.2% humidity and 8” thickness) at certain points is initially calculated in 

HFSS. The results are shown and compared to analytical results in Figure 4.6. This 

comparison is essential to validate the accuracy of our simulation results. The results 

shown in Figure 4.6 include the electric field at four different positions: (a) center of the 

slab, (b) top of the slab in the center, (c) side of the slab 5 cm away from the center and 

(d) bottom of the slab in the center. The electric fields are plotted versus the thickness of 

the concrete slab, D=8”, normalized by the wavelength inside the concrete (λc). This is 

done because the maximum and minimum values of the electric field inside concrete, as 

well as the reflection and transmission coefficients of the concrete slab are closely related 

to the electrical thickness of concrete at a specific frequency.  

These results illustrate that the accuracy of our simulation is excellent. For 

example, the largest difference between simulation and theory is only 0.02 V/m, as 

shown in Figure 4.6(b). This occurs when the thickness of concrete (i.e., 8”) is 

approximately 2.75 wavelengths, which is electrically very long. Therefore, our 

simulation model for the concrete slab can be used to accurately calculate the electric 

field inside concrete slab as well as its transmission and reflection coefficients. 
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      (a) Center (0,0,0) cm                                   (b) Top (0,0,10.32) cm 
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       (c) Side (0,15.24,5) cm                              (d) Bottom (0,0,-10.32) cm 

Figure 4.6: Comparison of simulated and theoretical results. 
  

Using the same simulation setup in HFSS as shown in Figures 4.2-4.5, reflection 

and transmission coefficients of an 8” thick concrete slab at 0.2% and 6.2% humidity 

conditions are calculated. The results are illustrated in Figure 4.7. These parameters are 

important as they describe the effect of the concrete slab on EM waves and they are 

closely related to the maximum electric field induced inside the slab. Figure 4.7 

illustrates that when the concrete slab thickness is integer multiples of half-wavelength 

(i.e., , 1,2,3,...
2

cD n n
λ= ⋅ = ), maximum transmission occurs through the slab. Also, 
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maximum reflection of the slab occurs when the slab’s thickness is odd multiples of a 

quarter wavelength (i.e., , 1,3,5,...
4

cD n n
λ= ⋅ = ). Also, Figure 4.7 shows that the humidity 

of concrete affects the amplitude of the reflection and transmission coefficients, but does 

not affect the occurrence of resonances and nulls at certain wavelengths. For example, as 

shown in Figure 4.7(b), when the thickness of the concrete is 2.5 times the wavelength 

inside 0.2% humidity concrete, the transmission coefficient is about 6 dB larger than the 

corresponding value for 6.2% humidity concrete, due to the larger conductivity of wet 

concrete that causes larger propagation loss. However, the resonances for both cases still 

occur at integer multiples of half wavelength (λc  is different in dry and wet concrete). 
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                          (a) Reflection.                                                (b) Transmission. 

Figure 4.7: Reflection and transmission coefficients for plain concrete slab. 
 

 The electric field inside the concrete slab is plotted in Figure 4.8 versus its 

normalized thickness (D/λc) and normalized propagation depth (d1/D) with the 

wavelength for two humidity conditions. The thickness of concrete slab, D, is 8” and the 

propagation depth d1 increases from 0” to 8” to present the variation of the electric field 

inside the concrete slab. Our results illustrate that the electric field peaks inside the 
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concrete slab would occur at certain wavelengths for which the resonances would occur 

for plane wave penetrating concrete slab. Therefore, when designing wireless power 

transmission systems for sensors embedded in concrete slabs, the operation frequency 

and the sensors’ depth should be carefully picked to maximize their efficiency. 
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                          (a) h=0.2%.                                                      (b) h=6.2%. 

Figure 4.8: Electric field inside an 8” thick concrete slab. 
 
 
4.3 Rebar Layers 

In this section, we focus on investigating the effects of rebar layers on EM wave 

propagation. Reinforced bars are made of steel and they have high strength in tension. 

Conventional concrete is strong in compression, but weak in tension. Its microscopic 

rigid lattice will be damaged by appreciable tension (i.e., bending), resulting in cracking 

and separation. The addition of reinforced bars into concrete helps strengthen the 

concrete in tension, provides good anchorage to it, thereby increasing the durability of the 

concrete structure. 

Since the invention of reinforced concrete in 1849, various types of reinforced 

bars are used for construction, such as vertical bars, bonded-junction bars, cross bars, etc. 
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Here, we focus on investigating the effects of two layers of cross bars on EM wave 

propagation. Cross bars are widely used for concrete wall and bridge deck applications as 

illustrated in Figure 4.1 . The geometry of the cross bars is shown in Figure 4.9, where 

two longitudinal bars (parallel to the travel path of bridge decks or to the upright 

direction of concrete walls) are bonded with the transverse bars (perpendicular to the 

travel path of bridge decks or to the upright direction of concrete walls) to form a 

mesh/lattice layer structure. The geometric parameters of the cross bars’ layout include 

the reinforced bar’s diameter, mesh period, and the gap between two layers. These 

parameters vary in different building structural applications but are generally within the 

range shown in Figure 4.9.  

In our HFSS simulations we choose the following values: mesh period of 6”, 

rebar diameter of (5/8)” and gap between two rebar layers of 3.5” (see Figure 4.10). The 

material of the reinforced bars is set to be stainless steel in HFSS and their geometry is 

drawn as cylinders with 12 segments. Also, in order to reduce the mesh number and 

increase the accuracy, a 2 mm overlap between the longitudinal and transverse bars of the 

two layers is implemented in our model.  

 

Figure 4.9: Geometry of rebar layers. 

4”-12” 1”-3.5” 

5" 6"

8 8
−  
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Figure 4.10: Two layers of cross rebars in HFSS. 
 

The reflection and transmission coefficients for an EM wave impinging on the 

two rebar layers are calculated using HFSS. The results are plotted versus the mesh 

period, g, normalized with the wavelength in Figure 4.11. The effects of rebars on EM 

waves are first examined without the presence of concrete in order to separate them from 

the effects of the concrete slab. The results in Figure 4.11 illustrate that the resonances 

occur when 0 , 1,2,3,...
2

g n n
λ≈ ⋅ = , where λ0 is the wavelength in free space and g is the 

mesh period. It should be pointed out that the first resonance occurs when the mesh 

period is close to half wavelength. Also, Figure 4.11 shows that when mesh period g is 

less than a half wavelength, EM waves are dramatically shielded by two layers cross 

rebar structure. Typically, the mesh period, g, takes values in the range of 4”-12”. 

Therefore, only waves with wavelengths smaller than approximately 8” are able to 

efficiently propagate through cross rebars.  In fact, rebar layers perform as frequency 
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selective surfaces (FSS) that allow the wave penetration of certain frequencies and 

incident angles and block others. 

Moreover, Figure 4.11 shows that the transmission and reflection properties of the 

rebar layers become quite complex when mesh period is longer than one wavelength (i.e., 

g >λ0). For example, when the mesh period, g, is between 2 and 2.5 wavelengths, more 

than ten resonances and nulls occur in the transmission and reflection coefficient. It can 

be concluded that wave propagation is dramatically affected by rebar mesh layers. 
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Figure 4.11: Reflection and transmission coefficients for two layers cross rebars. 
 

The electric field distribution inside and around the two rebar layers is also 

plotted in Figure 4.12. Specifically, two frequencies are considered: 1.07 GHz and 600 

MHz, which correspond to g/λ0=0.54 and g/λ0=0.30. The results of Figure 4.12 illustrate 

that the frequency of 1.07 GHz (i.e., g/λ0=0.54) corresponds to the first resonance in 

Figure 4.11, where the transmission coefficient exhibit a peak. Therefore, at this 
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frequency the wave penetrates efficiently through the rebar layers. On the contrary the 

second frequency of 600 MHz (i.e., g/λ0=0.30) corresponds to a null of the reflection 

coefficient.  Therefore, at this frequency the wave is blocked by the rebar layers. Figure 

4.12 confirms our expectations, as it clearly illustrates that at 1.07 GHz the waves 

efficiently penetrate through the rebars whereas at 600 MHz the waves are blocked by 

them. The results in Figure 4.12 also illustrate that the longitudinal bars of the two layers 

perform the significant shielding of the incident wave, while the transverse bars below 

them have less effects on the wave propagation. For example, the smallest electric field in 

Figure 4.12(b) is around the longitudinal bars. This is expected, since as the wavelength 

increases, the longitudinal bars of the upper layer shield the waves and allow less 

penetrating. Therefore, in order to optimize wireless powering systems, the polarization 

of antennas should be parallel to the direction of the longitudinal bars. 

Furthermore, at the resonant frequency of 1.07 GHz, the strongest field is induced 

between the two rebar layers [see Figure 4.12(a)]. Therefore, the positions between the 

rebar layers are more suitable for the placement of SHM sensors, since more power can 

be received at these positions. Also, sensors buried between the two rebar layers can be 

protected from damage when concrete is poured. For example, if sensors are installed on 

top of the rebar layers, they can be potentially damaged by workers stepping on them 

when they are pouring the concrete.  

 In conclusion, the propagation of EM wave through rebar layers is affected by the 

mesh period, diameter of the bars and the gaps between the rebar layers. The mesh period 

is the dominant parameter. In fact, when the mesh period, g, is less than a half 
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wavelength, the rebars form a very effective EM shield that can dramatically reduce the 

power transmission efficiency. 

 

                                                          
 
(a) yz-plane view for 1.07 GHz (g/λ0=0.54). (b) xz-plane view for 1.07 GHz (g/λ0=0.54). 
 

                                                           
 
(c) yz-plane view for 0.6 GHz (g/λ0=0.30) .    (d) xz-plane view for 0.6 GHz (g/λ0=0.30). 

Figure 4.12: Electric field distribution for two layers cross rebars. 
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4.4 Reinforced Concrete Slab  

Based on the discussions of EM waves penetrating through plain concrete slab 

and two layers of cross rebars, the reinforced concrete slab model is analyzed in this 

section. The geometry of a typical reinforced concrete slab is shown in Figure 4.13, 

corresponding to the bridge deck/reinforced concrete wall shown in Figure 4.1. In Figure 

4.13, r refers to the diameter of the reinforced bars, g presents the mesh period, D is the 

thickness of the concrete slab and l refers to the depth of the upper and lower mesh 

layers’ depths inside the slab. The geometry parameters of the reinforced concrete slab 

vary for different applications. Typical values of the parameter are as follows: D ranges 

between 7” and 9”, r ranges between (5/8)” and (6/8)”, g ranges between 4” and 12”, l 

ranges between 1.5” and 2”. 

 

Figure 4.13: Geometry of reinforced concrete slab. 
 
 
4.4.1  Simulation Model 

       The simulation setup of the reinforced concrete slab is shown in Figure 4.14. This 

geometry is the combination of the concrete slab and the two layers cross rebars’ 

simulation models, as shown in Figure 4.2 and 4.10. In Figure 4.14(a), the concrete slab 

thickness D is 8”, the mesh period g is 6”, the diameter of the rebar r is (5/8)”, and the 

mesh layers’ depths l  is 1.5”. The width of the concrete slab is 12”, two times the period 

      D g

r l 

l 
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of the lattice. Two Floquet ports are set on top and bottom sides of the simulation model 

as excitations. Master/slave boundaries are applied to extend this periodic structure to 

infinity. In Figure 4.14(b), all parameters are kept the same except the mesh period, g, 

which is increased to 12” in order to examine the effects of various mesh periods on 

power transmission.  

                                   

    (a) Rebar period is 6”.                      (b) Rebar period is 12” . 

Figure 4.14: Reinforced concrete simulation setup in HFSS. 
 
 
4.4.2  Effects of Concrete Slab 

The reflection and transmission coefficients of EM waves impinging on the 

reinforced concrete slab of Figure 4.14 are calculated using Ansoft HFSS. The results are 

shown in Figure 4.15. In order to compare these results with the ones obtained before for 

the two rebar layers in free space, the reflection and transmission coefficients for 

reinforced bars with mesh period of 6” in free space are also plotted in Figure 4.15. In the 

plots of Figure 4.15, the concrete thickness D (8”) is normalized with the wavelength. 
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The results of Figure 4.15 illustrate that when EM waves penetrating a reinforced 

concrete slab they are affected by the combination of concrete slab and rebar layers. 

Specifically, for the plain concrete slab case, resonance (maximum transmission) occurs 

when D is integer multiple of half-wavelength ( , 1,2,3,...
2

cD n n
λ= ⋅ = ), as shown in 

Figure 4.7. However, in Figure 4.15(a), the resonance at 
2

cD
λ= does not occur for either 

dry or wet concrete because the rebar layers inside the concrete slab shield the wave at 

that wavelength, as shown in Figure 4.15(c). Also, even though a resonance does not 

occur when D=λc in the case of rebar layers in free space, a resonance occurs for the 

reinforced concrete slab [see Figure 4.15(a)]. This resonance is caused by the effects of 

plain concrete slab [see Figure 4.7(a)]. Therefore, it can be concluded that when 

analyzing power transmission through reinforced concrete, the effects of both concrete 

slab and reinforced bars must be carefully considered. 

Furthermore, even though both the concrete slab and the rebar layers affect the 

power transmission, Figure 4.15 illustrates that for 0.2% humidity reinforced concrete, 

the effects of the mesh layers dominate the EM wave propagation. In addition, for 6.2% 

humidity reinforced concrete, the concrete slab dominates the EM wave propagation. For 

example, the reflection coefficient for 6.2% humidity reinforced concrete [see Figure 

4.15(a)] closely resembles the one for 6.2% humidity concrete slab [see Figure 4.7(a)] 

with resonances occurring at , 1,2,3,...
2

cD n n
λ= ⋅ = However, the reflection coefficient 

for 0.2% humidity reinforced concrete [see Figure 4.15(a)] closely resembles the one for 
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the two layers of cross rebars in free space [see Figure 4.15(c)], exhibiting complex 

resonances and nulls as D/λc increases.  
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(a) Reflection for reinforced concrete slab.   (b) Transmission for reinforced concrete slab. 
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(c) Reflection for rebar layers in free space.(d) Transmission for rebar layers in free space. 

Figure 4.15: Reflection and transmission coefficients. 
 

Figure 4.15(a) and (b) also illustrate that the power transmission is significantly 

affected by the conductivity of concrete. For instance, the transmission coefficient for 

reinforced concrete slab with 6.2% humidity is approximately 6 dB less than the one for 

0.2% humidity reinforced concrete slab [see Figure 4.15(b)]. Therefore, our study will 

focus on analyzing EM wave propagation from air into wet reinforced concrete slab with 
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6.2% humidity. This is done because in most cases, EM waves will propagate more 

efficiently through dry concrete than through wet concrete. However, optimum power 

transmission conditions for dry concrete may not ensure optimum performance for wet 

concrete conditions. Also, as described in Chapter 3, the SHM sensors are buried inside 

concrete during the construction period, and may need to perform monitoring even when 

the concrete is still wet. Therefore, the study of EM wave propagation in wet reinforced 

concrete is necessary.  

The maximum electric field induced inside a 6.2% humidity reinforced concrete 

versus the thickness of the slab, D, normalized with wavelength is shown in Figure 4.16. 

These results illustrate that when concrete slab thickness D is approximately 1.4 to 1.7 

wavelengths in wet concrete, the electric field inside the slab peaks. In this range, 

resonances occur for both rebar layers and concrete slab [see Figure 4.15 and 4.7], 

therefore peak electric field is induced inside the reinforced concrete slab. It should be 

pointed out that the resonances and nulls in Figure 4.7 and Figure 4.15(c) and (d) are not 

perfectly match the ones in Figure 4.15(a) and (b), since the rebar layers are with depth l 

of 1.5” inside concrete slab, as shown in Figure 4.13. Waves suffer from transmission and 

propagation losses at the air-to-concrete interface and depth l before they reach the rebar 

layers inside concrete slab, thereby causing the mismatch.  

From the analysis above, we can expect an optimum frequency range for power 

transmission through reinforced concrete slab with following information considered: (a) 

resonances occur for plain concrete slab when concrete thickness , 1,2,3,...
2

cD n n
λ= ⋅ = , 

(b) resonances occur for rebar layers when  mesh period , 1,2
2

cg n n
λ≈ ⋅ = , (c) peak 
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electric field induced inside reinforced concrete slab when / ( / 2) / ( / 2)c cg Dλ λ≈ =1,2,3, 

(d) concrete slab thickness D ranges between 7” and 9”, mesh period g ranges between 4” 

and 12”, and (e) EM waves are dramatically shielded by two layers cross rebar structure 

when mesh period g is less than a half wavelength. It can be calculated from the 

conditions above that electric field peaks inside reinforced concrete slab would occur 

when the wavelength inside concrete λc varies in the 3.5”-8” range, approximately 

corresponds to 600 MHz-1.3 GHz frequency range in free space. It should be pointed out 

that this frequency range includes the 902-928 MHz ISM band, so antennas working in 

this ISM band can be used for power transmission. Antennas operating within this 

frequency range can achieve larger power transmission efficiency than other frequencies 

we have examined. Also, antenna’s performances are not sensitive to changes of the 

geometrical configurations of the reinforced concrete slab when operating in this 

frequency range.  
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Figure 4.16: Maximum electric field induced inside reinforced concrete slab. 
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4.4.3  Effects of the Configuration of Rebars 

In practice, the diameter, mesh period, and positions of rebars inside a concrete 

slab can vary significantly. In this section the effects of rebar layers’ configurations on 

the performance of wave propagation are examined. The simulation setup of this case is 

shown in Figure 4.14 as reference. In this reference case, the mesh period g is 6”, rebar 

diameter r equals to (5/8)”, mesh depth inside concrete slab l equals to 1.5”, moisture 

content of the concrete is 6.2%. Here, the configuration of the rebars is changed by 

varying one geometrical parameter at a time. Our simulation results will be compared 

with the results of the reference case. Our study aims to identify which configuration 

parameters dominate the effects of wave propagation through reinforced concrete. 

Investigating the effects of these parameters will lead to optimum design of wireless 

powering systems for SHM embedded sensors. 

The reflection and transmission coefficients are calculated for varying 

geometrical parameters and the results are shown in Figure 4.17. First, the reflection and 

transmission coefficients of reinforced concrete slab for two mesh period g are shown in 

Figure 4.17(a). Our results illustrate that when mesh period is varied to 12”, the reflection 

coefficient of the reinforced concrete slab closely resembles the one for 6.2% humidity 

concrete slab [see Figure 4.7(a)] with resonances occurring at , 1,2,3,...
2

cD n n
λ= ⋅ = This 

is expected, since the first two resonances of rebar layers with 12” mesh period would 

occur when 2 4
,

2 3 3
cD n n and

λ≈ ⋅ = (expected from , 1,2
2

cg n n
λ≈ ⋅ = ) , and there will not 

be co-resonance for rebar layers and concrete slab. Therefore, effects of concrete slab 

dominate the EM wave propagation. 
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(a) Rebar period g. 
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(b) Rebar diameter r. 
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(c) Rebar depth l. 

Figure 4.17: Reflection and transmission coefficients for reinforced concrete slab with 
various rebar configurations. 
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Furthermore, the rebar diameter r is varied to (6/8)” and the reflection and 

transmission coefficients of the reinforced concrete slab are shown in Figure 4.17(b) for 

two values of r, namely, (5/8)” and (6/8)”. Results illustrate that the diameters of rebars 

has little effect on the wave propagation. In fact, the difference between the two cases is 

within 2 dB for the reflection coefficient. 

The effects of the rebar layers depth l inside concrete slab are also considered here. 

The reflection and transmission coefficients of reinforced concrete slab for two values of 

depth l are shown in Figure 4.17(c). Our results illustrate that the variation of rebar depth 

may lead to shifting of the resonances occur at certain wavelengths. This is expected, 

since the variation of rebar depth inside concrete ma affect the combination effects of 

concrete slab and rebar layers on wave propagation. However, since typical value of 

rebar depth l is within the range of 1.5” and 2”, the variation of rebar depth may not 

dramatically affect the wave propagation as variation of mesh period does. 

 Besides varying the geometrical parameters of g, r and l, we also analyze the 

effects of different mesh configurations. We consider the case where the upper and lower 

layers of the rebar lattice are not perfectly parallel to each other, which happen often in 

practice. An offset between the rebar layers is shown in Figure 4.18, and it is described 

by the offset parameter o. Since the mesh period g inside reinforced concrete slab varies 

from 4” to 12”, it can lead to the variation of the offset parameter between 0” and 6”. The 

effects of the offset on the reflection and transmission coefficients for reinforced concrete 

slab are shown in Figure 4.19, for offset of 0 cm and 3 cm. The mesh period is fixed to 6” 

for both cases. Figure 4.19 illustrates that the offset of the lower mesh layer has minor 

effects on the wave propagation. This is expected, since the upper mesh layer would be 
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firstly reached by the incident wave, and it primarily affects the propagation of EM 

waves through the reinforced concrete slab. Especially, when waves are shielded by the 

upper layer, waves with very small intensity will reach the lower layer. Therefore, in such 

case the effects of lower layer can be ignored. However, when waves penetrate efficiently 

through the first rebar layer, waves with increased intensity reach the lower layer, but the 

co-resonance of both layers is disturbed by the existence of a misalignment offset 

between the two rebar layers, thereby leading to smaller transmission coefficient. This 

phenomenon is more obvious for waves with shorter wavelengths, since they are more 

sensitive to the variation of geometrical configurations of rebar layers. 

 
 

Figure 4.18: Offset between the two mesh layers inside reinforced concrete slab. 
 

0.5 1 1.5 2 2.5 3
-30

-25

-20

-15

-10

-5

0

D / λc

R
ef

le
ct

io
n 

(d
B

)

o=0 cm

o=3 cm

0.5 1 1.5 2 2.5 3
-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

D / λc

T
ra

ns
m

is
si

on
 (

dB
)

o=0 cm

o=3 cm

 
                          (a) Reflection.                                              (b) Transmission. 
 
Figure 4.19: Reflection and transmission coefficients for reinforced concrete slab with 
offset of rebar layers (g=6” and h=6.2%). 
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It could be concluded that the mesh period, g, dominates the wave propagation, 

since it determines the resonances of wave penetrating through mesh layers. Furthermore, 

the maximum electric field induced inside the reinforced concrete slab is calculated 

according to the conditions of Figure 4.17 and Figure 4.19, and the results are shown in 

Figure 4.20. 
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(a) Rebar period g.                                   (b) Rebar diameter r. 
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         (c) Rebar depth l.                               (d) Mesh layers offset o. 

Figure 4.20: Maximum electric field induced inside reinforced concrete slab for various 
rebar and mesh configurations. 

 

Results of Figure 4.20(a) and (c) illustrate that varying mesh period and rebar 

depth may impact the electric field induced inside reinforced concrete slab. For example, 
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when mesh period g is varied to 12”, the peak value of electric field is reduced [see 

Figure 4.20(a)], since there is no co-resonance of rebar layers and concrete slab. The 

variation of induced maximum electric field corresponds to the variation of reflection and 

transmission coefficients of the reinforced concrete slab (see Figure 4.17 and 4.19). 

Furthermore, results of Figure 4.20(b) and (d) illustrate that varying the rebar 

diameter and the offset between rebar layers have little effects on the electric field 

induced inside the reinforced concrete slab. 

 
4.5  Summary 

Full wave electromagnetic simulations are used in this chapter to analyze the EM 

power transmission through plain concrete slabs, rebar layers and reinforced concrete 

slabs. The slab’s thickness and humidity conditions, as well as the rebar mesh 

configuration parameters, including mesh period, rebar diameter, mesh depth inside 

concrete and offset between the two layers were considered. Our results illustrated that 

the slab’s thickness, humidity condition and mesh period of the rebar layers are the 

dominant parameters that control the EM wave propagation through reinforced concrete 

slabs. Also, antennas operating at 902-928 MHz ISM range were proven to be suitable for 

power transmission, since their performances are not sensitive to changes of the 

geometrical configurations of the reinforced concrete slab. Also, such antennas should be 

buried between the two rebar layers, since more power can be received at these positions. 
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CHAPTER 5 

5 RECTENNA DESIGN  

In previous chapters, the optimum conditions for wireless power transmission 

through plain and reinforced concrete are investigated, including operational frequencies, 

position inside concrete, incidence angle, polarization, etc. In this chapter, some practical 

considerations for embedded sensor power transmission and harvesting systems are 

discussed. Specifically, antenna coupling is analyzed in order to validate our findings. 

Also, designs of rectification circuits for our antenna are developed in order to convert 

the received electromagnetic power to DC power and charge the batteries of SHM 

sensors.  

5.1 Plain Concrete 

In Chapter 3 plane wave models were used to examine the power loss level of 

wireless power transmission through plain concrete. In this section, optimum conditions 

identified by the plane wave model will be validated through antenna coupling 

simulations. Also, optimum rectenna designs will be developed for powering sensors 

embedded in concrete. All simulations are performed with either Ansoft Designer or 

Ansoft HFSS. Also, all simulations use the extended Debye model for concrete 

permittivity [60]. 

5.1.1 Antenna Type 

 
In order to implement a wireless powering system and maximize the power 

transmission between a transmitting antenna in air and a receiving antenna buried inside 
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concrete, a proper antenna type should be used. Various antennas are presented in [61] 

and [81] as wire antennas, aperture antennas, microstrip antennas, reflector antennas, 

array antennas, etc. Each antenna type can take different forms to achieve the desired 

radiation characteristics for a particular application.  Since low cost, directional and 

compact antennas are highly desired for power transmission through reinforced concrete 

structure, wire and stripline antennas are very well suited for such applications.  

In our scenario, two typical antennas (dipoles or patches) are analyzed in order to 

determine the proper antenna type for wireless power transmission through concrete slabs. 

Initially, two half-wavelength dipole antennas (one residing is air and the other one 

residing inside concrete slab) are designed to resonate at 915 MHz. The experimental 

setup is shown in Figure 5.1. The first dipole is one wavelength away from the interface 

in the air, and the second one is embedded at a depth d of 4” inside a typical concrete slab, 

which has a thickness D of 8”. Both dipoles are also tuned to be resonant at 915 MHz. 

 
 

Figure 5.1: Simulation setup for two dipoles coupling in air-concrete slab model. 
 

      The return loss and coupling of the two dipoles are shown in Figure 5.2 for three 

cases: (a) free space (without the concrete slab in Figure 5.1), (b) dry concrete (0.2% 

humidity) and (c) saturated concrete (6.2% humidity).  
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(a) Return loss. 
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(b) Transmission loss. 

 
Figure 5.2: Computed S-parameters of two dipoles coupling in free space, dry concrete 
and wet concrete. 
 
 In Figure 5.2(a), the -10 dB return loss bandwidth for the antenna in air, dry 

concrete and wet concrete is 10.5%, 38.0% and 44.6%, respectively. The dipole in the 
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wet concrete has the widest bandwidth, which is due to the larger conductivity of the 

embedded media [80]. It can be seen from Figure 5.2(a) that a dipoles’ performance is 

dramatically affected when it is embedded in the concrete. The coupling between the two 

dipoles is also analyzed and shown in Figure 5.2(b). It is seen that as the conductivity 

increases as the media changes from air to dry and wet concrete, the transmission loss 

between two dipoles also increases. For example, as shown in Figure 5.2(b), the coupling 

between two dipoles in air is approximately 6 dB larger than the coupling between two 

dipoles in air-to-dry concrete slab. This reduction is caused by the reflection of the 

electromagnetic wave at the air-to-concrete interface, the propagation loss in the dry 

concrete, and the decreasing gain of the dipole in the concrete. 

Also, two pairs of probe-fed patch antennas (one for air and one for concrete) are 

designed at 915 MHz. Each patch is designed on a λ0/100 thick Rogers TMM 4 (εr=4.5) 

substrate and fed by a coaxial probe [81]. Two patches are designed at 915 MHz with 

length of 0
0.49 rλ ε  in air and 0

0.46 rλ ε  in concrete. The geometry configuration of 

the patch antennas is shown in Figure 5.3.  

 

Figure 5.3: Simulation setup for two patches coupling in air-concrete slab model. 
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(a) Return loss. 
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(b) Transmission loss. 

 
Figure 5.4: Computed S-parameters of two patches coupling in free space, dry concrete 
and wet concrete. 
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The return loss and transmission loss are plotted in Figure 5.4. Our results show 

that the patch antenna’s performance is less sensitive to changes of concrete’s material 

than the dipole’s performance. For example, in Figure 5.4(a), the -10 dB return loss 

bandwidth for the patch in air, dry concrete (0.2% humidity) and wet concrete (6.2% 

humidity) is 0.22%, 1.91% and 4.37%, respectively. The differences between them are 

much smaller than the corresponding values obtained in our dipole analysis. The patch 

antenna is less sensitive than dipole because it is already on a substrate. Also, the patch is 

on a substrate with εr=4.5, which is similar to the permittivity of the dry concrete. 

Therefore, when the patch antenna is embedded into concrete it is essentially covered by 

a lossy dielectric [82] which causes the resonant frequency to decrease as the concrete’s 

thickness above it increases. Finally, the half-power bandwidth only changes slightly 

when the thickness of covering material increases [83].  

Furthermore, the coupling between the patches is plotted in Figure 5.4(b) for air, 

dry and saturate concrete. Figure 5.4(b) illustrates that the coupling between patches is 

greater than the one between the dipoles. For example, coupling between patches in air 

and wet concrete slab is about 10 dB larger than the one between the dipoles. When 

wirelessly powered sensors are embedded in concrete, the coupling between the sensor 

antennas should be maximized in order to achieve optimum performance. Therefore, our 

coupling results illustrate that patch antennas are more suitable for such applications. 

 

5.1.2 Patches Coupling 

In Chapter 3 we identified an optimum frequency of 20-80 MHz corresponding to 

minimum transmission losses for power transmission through plain concrete. In this 
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section, patch antenna analysis is performed in order to validate and confirm this 

important finding. Specifically, the coupling between two probe-fed patch antennas is 

analyzed using Ansoft Designer. One patch resides in air with length of 0
0.49 rλ ε ,  and 

the other patch resides inside concrete is tuned to be resonant at the same frequency, as 

shown in Figure 5.5. λ0 is the wavelength in free space and εr is the relative permittivity 

of concrete. In Figure 5.5, thickness of the air and concrete, H, is 4 m. Patch in the air is 

one wavelength (λ0) away from the air-to-concrete interface at the patch resonant 

frequency, and the patch buried inside concrete is buried at a depth, d, of 0.1032 m. 

Figure 5.6 illustrates the results of our analysis where the frequency range is 

normalized with the resonant frequency of the patch antenna (patch in the air and the one 

in concrete). Specifically, Figure 5.6 illustrates the coupling (S12) difference between 

various humidity conditions and the dry concrete (humidity 0.2%) for a resonant 

frequency of 1 GHz. It should be pointed out that in our analysis we need to maximize 

the coupling (minimize the power loss) between the two patches in order to obtain 

optimized wireless communication between the two antennas. Also, we need to maximize 

the wireless power transfer between the two patches in order to charge the battery of 

embedded sensors inside the concrete. As expected, the power loss for higher humidity 

conditions is larger than the one for low humidity conditions, as shown in Figure 5.6. For 

example, the coupling of two patches for 12% humidity condition is approximately 8.5 

dB smaller than the coupling of two patches for dry concrete (i.e., 0.2% humidity). The 

plane wave analysis predicts a 5.9 dB difference between the same corresponding 

humidity conditions, which is shown in Figure 3.6. The difference between plane wave 

analysis and patches’ simulation results is due to the pattern and gain of the patch 



93 
 

antennas. Therefore, in order to design a transmitting-receiving power system for the air-

to-plain concrete interface and maximize the power transfer between the two patches, we 

must take into account the humidity conditions of the concrete since they have a 

significant and detrimental effect to the coupling between the two patches. 

                                                             

Figure 5.5: Simulation setup of two patches in the air-concrete model. 
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Figure 5.6: Patches coupling for different concrete humidity conditions. 
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Also, a pair of patches (one in air and one residing inside the concrete, see Figure 

5.5) with matching resonant frequencies is designed for various resonant frequencies, i.e., 

70 MHz, 200 MHz and 1 GHz, etc. This was done because 70 MHz resides in the 

optimum operation frequency range as per the results of Chapter 3. It can be seen from 

Figure 5.7 that the coupling of the patches resonating at 70 MHz is larger than the 

coupling of the patches with other resonant frequencies. For example, the coupling of the 

two patches resonating at 1 GHz is about 2.5 dB smaller than the coupling of the patches 

resonating at 70 MHz. This indeed validates our findings in the previous sections and 

indicates the existence of an optimum frequency range at 20-80 MHz. 

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
-40

-38

-36

-34

-32

-30

-28

-26

-24

-22

Reference frequency

S
12

 (
dB

)

70 MHz
200 MHz
1 GHz

 

Figure 5.7: Patches coupling for different resonant frequencies. 
 

5.1.3 Rectification Circuit  

In order to charge the sensor’s rechargeable battery, a rectifying circuit must be 

connected to the receiving antenna to achieve the RF to DC power transmission. 
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Rectifying circuits are similar to AC/DC converters; such AC/DC converter circuits are 

complex and include protective circuitry to reduce noise. However, such complex circuit 

may require more power than what is available in the case of embedded sensors. 

Therefore, simpler rectification circuit designs are necessary for SHM sensors. 

The simplest rectify circuit design is a peak detector, which requires only a diode 

and a capacitor to function [84]. As shown in Figure 5.8(a), on the positive half of the AC 

wave, the diode turns on and current flows to charge the capacitor. While on the negative 

half of the AC wave, the diode turns off, and the voltage in the capacitor remains the 

peak of the AC wave. When a load is added, the output voltage decreases during the 

negative cycle of the AC input, and the rate of decrease is determined by the resistance of 

the load and the capacitance of the capacitor. This type of rectifying circuit is widely used 

for semi-passive RFID tags. Because only one half of the input waves are rectified, peak 

detector is inefficient for power conversion. In order to improve the efficiency, full-wave 

rectification solutions, which can convert both polarities of the input waves to DC, were 

developed. Voltage doubler is a typical full-wave rectification circuit, as shown in Figure 

5.8(b), where its output voltage is expected to be twice that of the input. In the positive 

half of the AC, current is rectified by D2 and C2, while in the negative half by D1 and C1. 

During the positive cycle, the voltage stored on C1 from the negative cycle is transferred 

to C2. Therefore, C2 is roughly twice the peak voltage of the power source minus the turn-

on voltage of the diode. When connecting voltage doubler stages in series, as shown in 

Figure 5.8(c), the output is an AC signal with a DC offset. The number of stages is 

directly proportional to the amount of voltage obtained at the output of the system.  
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(a) Peak detector. 

 

(b) Voltage doubler. 

 
(c) Stages of voltage doubler. 

 
Figure 5.8: Rectification circuit types. 
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To optimize the rectification efficiency, three types of rectifying circuits are used 

for comparison, and the analysis is performed in Ansoft Nexxim. Diodes are the main 

elements of a rectification circuit, and the Agilent HSMS-282x series Schottky diodes are 

chosen for our design. HSMS-282x series are used for detector applications with input 

power levels greater than -20 dBm, and frequencies below 4.0 GHz [85], which meet the 

requirements of the sensor charging system. 

The modeling parameters for HSMS-282x diodes are given by Agilent data sheets, 

and the SPICE parameters are shown in Table 5.1.  SPICE parameters can also be applied 

in Ansoft Nexxim for simulation modeling since both of them perform simulation using 

Netlists [86]. In Table 5.1, RS is the series resistance and CJ0 is the junction capacitance. 

These two factors have the most effect on the diode by determining the turn-on voltage 

and rise time. Lower series resistance leads to lower voltage needed to turn on the diode, 

and lower junction capacitance raises voltage faster. BV is the reverse breakdown voltage, 

EG presents the band-gap energy. IBV is the current breakdown voltage, and IS is the 

saturation current. N is the emission coefficient, while M is the grading coefficient. These 

parameters are used in our simulation setups in Nexxim. 

                                    Table 5.1: HSMS-282x SPICE parameters. 
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5.1.4 Rectifier Design 

In order to charge the sensor battery, we must use a rectification circuit along with 

the antenna (rectenna) to convert the received electromagnetic power to DC power. 

Specifically, we simulate a wireless power transfer system consisting of two stripline 

antennas operating at 70 MHz, one is buried at a depth d=4” inside concrete with 0.2% 

humidity, while the transmitting antenna is placed 2.14 m above the air-to-concrete 

interface, as shown in Figure 5.5. Then the equivalent two-port network of two patches 

coupling is exported from Ansoft Designer and imported to Ansoft Nexxim, which 

enables the co-simulation of circuits. In Nexxim, the patch antenna located in air is 

connected to a 1 W power source, and the one that is embedded in concrete is connected 

to a rectification circuit. Three rectification circuits mentioned in the previous section are 

calculated, including the peak detector, voltage doubler, and stages of voltage doubler. 

Our results illustrate that the voltage doubler is more suitable for our wireless powering 

systems, since it provides larger amount of power to the load. Our system setup is shown 

in Figure 5.9, where the power source is 1 W with 50 Ohm internal resistance, two 

capacitors Cr1 and Cr2 are 6 nF, Dr1 and Dr2 are HSMS-2820 Schottky detector diodes, 

and the load is 100 Ohm. The power delivered to the load is 55.2 mW, which is 

equivalent to a wireless power transfer efficiency of 5.52%. 

In order to optimize the efficiency of the wireless powering system we design 

matching circuits for the antennas and the rectifier. Figure 5.10 illustrates the complete 

circuit layout, where the two antennas are matched to 50 Ohm using matching networks. 

Inductor L1 is 200 nH, L2 is 100 nH, Lm is 300 nH, and capacitor C1 is 50 pF, C2 is 45 pF, 

Cm is 6 nF, Cr2 is 15 nF. Also, the rectification circuit is matched to 50 Ohms. The 
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matched system provides an improved wireless power transfer efficiency of 6.4% 

corresponding to a delivered power to the load of 64 mW.  

 
Figure 5.9: Wireless powering system setup with voltage doubler. 

 

 
 

Figure 5.10: Wireless powering system setup with matched voltage doubler. 
 

5.1.5 Energy Budget 

In previous sections the wireless power transmission system for powering sensors 

embedded in reinforced concrete was designed. In this section, the energy budget for 

wireless sensors is analyzed, and the sensor battery charging times are calculated.  

 A common problem for energy harvesting devices is that the amount of energy 

harvested must be sufficient to power the electronic device of interest [87]. For our 

application, approximately a power of 50 mW is required to run commercial sensor nodes 

[88] and we will use a rechargeable battery as a power source.  
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The 80 mAh Nickel-metal hydride button cell battery [89] is specifically chosen 

to power the wireless sensor node embedded in concrete since it can withstand more 

harsh environments and it offers more energy per unit volume than the nickel-cadmium 

type [90]. It should be noted that neither a charge controller nor voltage regulator need to 

be incorporated into the circuit for this type of battery [89]. Also, the size of this battery 

is suitable for nodes embedded in the concrete.  

Assuming that we use the same nodes as the ones described in [ 91 ], the 

rechargeable button cell battery consumes 1.25 mAh per day and can work 64 days 

without charging while in sleep mode. In working days, this battery consumes 6.9 mAh 

per day and can work for only 11 days with 5.8% duty cycle. This battery can be fully 

charged using our wireless powering system of Figure 5.10, which has 25.3 mA output 

current, in 3.2 hours. 

5.2 Reinforced Concrete 

An optimum frequency range of 902-928 MHz was identified in Chapter 4 for 

powering sensors embedded in reinforced concrete slabs. In this section, optimum 

rectenna will be designed for charging the batteries of embedded sensors in reinforced 

concrete. Both far field and near field coupling between patch antennas are considered 

and all simulations are performed with either Ansoft Designer or Ansoft Nexxim. 

5.2.1 Rectenna Design 

Based on the optimum conditions we have identified for minimizing the power 

transmission loss, a stripline antenna resonant at 915 MHz is designed for receiving 

power inside reinforced concrete slab for the embedded sensors. Geometry of the antenna 
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is shown in Figure 5.11, the dielectric layers on both sides of the radiator can protect it, 

and can also be used to adjust the resonant frequency. The superstrate above the radiator 

is Rogers TMM 4 (εr=4.5), which is close to the permittivity of dry concrete at 915 MHz, 

while the substrate is Rogers TMM 6 (εr=6),which is close to the permittivity of wet 

concrete at 915 MHz [60]. This design aims at mitigating the effects of varying concrete 

humidity (from wet to dry) to the antenna’s resonant frequency. The stripline’s thickness 

is 6.56 mm, and the radiator size is 62 mm × 62 mm. The transmitting antenna in the air 

is a probe-feed square patch antenna with the Rogers TMM 4 substrate, a thickness of 

3.28 mm and a radiator size of 76 mm × 76 mm. For the setup in Figure 5.11, the air 

thickness, H, is 0.5 m, while the concrete slab thickness, D, is 20.32 cm. The patch 

antenna is placed at a height, h1, of 0.3 m in the air, and the receiving stripline antenna is 

placed at a depth, d1, of 8 cm inside concrete. The configuration of the rebars has a depth 

inside concrete, l, of 3.81 cm, mesh period, g, of 15.24 cm, and diameter of the rebar, r, 

of 1.59 cm. 

               
          (a) Top view.                              (b) Side view. 
 

Figure 5.11: Simulation setup for two antennas in the air-reinforced concrete model. 
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(b) Transmission loss. 

 
Figure 5.12: Computed S-parameters of two antennas coupling. 

 

The return loss and transmission loss for this antenna are plotted in Figure 5.12 

for different concrete humidity conditions (0.2% and 6.2%) and rebar configurations 
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(with and without rebars). Figure 5.12(a) illustrates that the stripline antenna is resonant 

at 915 MHz in the dry concrete slab. When the concrete is wet, the central resonant 

frequency shifts to 903 MHz. However, the -10 dB return loss bandwidth still includes 

915 MHz. Also, adding rebar grid has little effects on the central resonant frequency of 

the stripline antenna.  

The coupling between the two antennas is shown in Figure 5.12(b). Figure 5.12(b) 

shows that the coupling for the wet concrete (6.2% humidity) is approximately 4 dB less 

than the coupling for dry concrete (0.2% humidity). When rebar grid is added, the 

coupling between the two antennas for both wet concrete and dry concrete conditions 

increased.  

When adding the 1 W power source to the transmitting antenna and a voltage 

doubler to the receiving antenna, as shown in Figure 5.9 (two capacitors Cr1 and Cr2 are 

varied to 80 pF), the power delivered to the load for the reinforced dry concrete (0.2% 

humidity) is 35.3 mW, which is equivalent to a wireless power transfer efficiency of 

3.53%. The power delivered to the load for the reinforced wet concrete (6.2% humidity) 

is 13.2 mW, which is equivalent to a wireless power transfer efficiency of 1.32%. 

 

5.2.2  Near Field Coupling Solutions 

      In previous sections, we concluded that patch antennas are more suitable for 

wireless power transmission, since they provide significantly smaller transmission loss 

(i.e., larger coupling) than dipoles. In this section, the performance of patch antennas in 

near field coupling is analyzed at three typical ISM frequencies (i.e., 433 MHz, 915 MHz, 

and 2.45 GHz, etc.), and the effects of three typical configurations of rebar layers (i.e., 
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cross bars, bonded-junction bars and vertical bars) are considered. This study is 

performed in order to determine the optimum antenna operational frequency for 

maximum wireless power transmission from air to reinforced concrete structures in near 

field, where the transmitting antenna is touching the surface of the concrete slab (i.e., 

external antenna touches the reinforced concrete wall for powering and communicating 

with embedded SHM sensors, etc.). 

Two pairs of probe-fed patch antennas (one for air and one for reinforced concrete 

slab) are designed for three typical ISM resonant frequencies and the geometrical setup is 

shown in Figure 5.13. The transmitting antenna in air is touching the air-to-concrete 

surface as we assume that the transmitting antenna will be installed on the outside surface 

of the reinforced concrete slab. The receiving antenna is installed between the two mesh 

layers. Three typical rebar configurations are considered: vertical bars, bonded-junction 

bars and cross bars, as shown in Figure 5.13. The polarization of patches is parallel to the 

direction of vertical bars in Figure 5.13(a). Also, for cross bars in Figure 5.13(c), the 

polarization of patches is parallel to the direction of longitudinal bars. This is done to 

increase the power transmission efficiency because vertical bars and longitudinal bars 

perform significant shielding for the power transmission.  

For the simulation setup, same configuration parameters are chosen for these three 

cases. Specifically, the patch antenna is buried at 9 cm depth d inside the concrete slab, 

the rebar diameter, r, is (5/8)” and the mesh depth, l, is 1.5”. Since the mesh period, g, 

dominates the impact of rebar layers on the antenna performance, only the mesh period is 

varied (4”-12”) in our simulations.  
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 (a) Vertical bars.      

         
 

 (b) Bonded-junction bars.                                                                          

              ` 
 

   (c) Cross bars.                                         

Figure 5.13: Simulation setup for three rebar types.  
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Figure 5.14 illustrates the effects of rebar layers on the coupling between patch 

antennas at three frequencies, and the mesh period is normalized with the wavelength 

inside concrete. The coupling between antennas working at 433 MHz is shown in Figure 

5.14 (a). These results illustrate that when mesh period is larger than the wavelength 

(32.44 cm inside concrete), all these three types of rebar configurations have limited 

effects on antennas’ performance and antennas’ coupling. However, when the mesh 

period is smaller than one wavelength, especially when it is less than 0.6 times the 

wavelength, the antenna coupling is dramatically reduced. For example, as shown in 

Figure 5.14 (a), the coupling at g/λc of 0.6 (corresponds to g=7.7”) is approximately 13 

dB less than the corresponding value for plain concrete slab case. Similar trend can also 

be observed for antennas coupling at 915 MHz and 2.45 GHz, as shown in Figure 5.14(b) 

and (c). However, since λc for 915 MHz and 2.45 GHz are smaller (15.42 cm and 5.77 cm, 

respectively), they would not be dramatically shielded by rebars with the smallest mesh 

period (10.16cm), and are more suitable for power transmission. 

Furthermore, Figure 5.14(b) and (c) illustrate that different rebar types have 

similar impacts on patches coupling. Also, 915 MHz is more suitable for powering 

sensors embedded in reinforced concrete slab through near field coupling method, since 

antenna coupling at 915 MHz is stronger than at 2.45 GHz. For example, the average 

level for antenna coupling at 915 MHz is approximately -4 dB, and the corresponding 

value for 2.45 GHz is approximately -10 dB. When powering sensors embedded in 

reinforced concrete, the coupling between antennas should be maximized in order to 

achieve optimum performance. Therefore, 915 MHz is more suitable for power 

transmission through near field coupling.  
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(c) 2.45 GHz. 

 
Figure 5.14: Patches coupling for three rebar types. 

 

5.3 Summary 

Optimum rectennas were designed in this chapter for wireless power transmission 

to sensors embedded in plain and reinforced concrete structures. The performances of 

various antenna types were analyzed in free space, dry concrete, saturated concrete and 

reinforced concrete. Embedded patch antennas are proven to be more suitable for 

powering sensors embedded in plain and reinforced concrete since they offer larger 

coupling and they are less sensitive to the changes of concrete’s humidity conditions and 
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rebars’ configurations.  Stripline antennas working at 915 MHz were developed for 

operation in reinforced concrete with different humidity conditions. Matched rectification 

circuits were also designed to improve the power conversion efficiency. Finally, it can be 

concluded that in order to design optimum wirelessly powered sensors for plain and 

reinforced concrete, the operational frequency, antenna type, antenna’s position inside 

concrete, and rectification circuit type should be carefully considered. 
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CHAPTER 6 

6 CONCLUSIONS AND FUTURE WORK  

6.1  Conclusions 

This dissertation presented a comprehensive analysis of wireless power 

transmission of sensors embedded in plain and reinforced concrete structures for SHM 

applications.  An air-to-concrete plane wave formulation was developed to calculate the 

transmission loss, propagation loss and total loss of normal incidence and oblique 

incidence of electromagnetic wave penetrating through plain concrete half-space and slab. 

An extended Debye model was also used to describe the electromagnetic properties of 

concrete. Our results illustrated that the power loss is closely related to the humidity 

conditions of concrete, operational frequency and incidence angle of the electromagnetic 

waves. When an EM wave is normally incident into plain concrete at frequencies 

between 20 and 80 MHz, sensors embedded in medium depths inside concrete will 

receive significantly larger power than other cases we examined. Therefore, sensors 

embedded in plain concrete in this optimum frequency range will be able to efficiently 

harvest signals in the bands of shortwave radio and VHF TV. 

The propagation from air to reinforced concrete model was also investigated in 

Ansoft HFSS to characterize the reflection and transmission properties of reinforced 

concrete slab, which both depend on the geometry of the concrete slab and the 

configuration of the rabars. The effects of the humidity condition and thickness of the 

concrete slab were analyzed. Four configuration parameters of the rebars were considered, 

including the mesh period, the rebar diameter, the rebar depth and the mesh layer offset. 
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Our results illustrated that when EM waves are normally incident into a reinforced 

concrete slab in the frequency range of 902-928 MHz, which corresponds to the ISM 

band, maximum power transmission is achieved. Also, it was shown that in this ISM 

band, wireless power transmission to sensors embedded in reinforced concrete is less 

sensitive to variations of the rebar configurations and concrete humidity conditions. 

Furthermore, the performance of the dipole and patch antennas was investigated 

in free space, dry concrete, wet concrete and reinforced concrete. Patch antennas 

exhibited better efficiency for both wireless power transmission and harvesting. Our 

simulation results illustrated that patch antennas operating at 70 MHz inside plain 

concrete can harvest the maximum amount of power. Also, stripline antennas were 

designed at 915 MHz for sensors embedded in reinforced concrete structures. These 

antennas were proven to be less sensitive to variations of concrete’s humidity conditions 

and rebar configurations. The coupling between two patch antennas at three typical ISM 

frequencies, i.e. 433 MHz, 915 MHz and 2.45 GHz were also studied for power 

transmission through reinforced concrete. It was found that the antenna coupling at 915 

MHz was strongest and therefore, most appropriate for power transmission of sensors 

embedded inside reinforced concrete. 

Various rectification circuits were also simulated in Ansoft NEXXIM including 

peak detectors, voltage doublers and multi-stage rectifiers. Matching circuits were also 

designed to improve the wireless powering efficiency of our system. Moreover, the 

charging times for typical sensors based on the efficiencies of our systems were 

calculated.  
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In conclusion, the wireless power transmission/harvesting systems that we 

developed exhibited larger efficiencies than existing solutions. For plain concrete 

applications, such as sensor monitoring systems for motorways/roads and airstrips, 

existing wireless recharging systems rely on fixed power supply sources. However, our 

design focuses on RF power harvesting. Since our systems do not require the installation 

of sources, significant saving in both time and cost can be achieved.  Furthermore, for 

reinforced concrete applications, such as sensor monitoring systems for 

bridges/overpasses, concrete walls, dams and parking structures, few inductive coupling 

solutions were proposed by previous work. On the contrary, our designs are based on 

antenna coupling at 915 MHz, which is suitable for both far-field and near-field wireless 

power transmission applications. Our work also showed that antennas working in the 

902-928 MHz ISM band have less power transmission loss and are less sensitive to 

variations in concrete’s humidity and the configurations of the rabars than other 

frequencies that were examined.  

 

6.2  Future Work 

This research was focused on optimization of wireless powering of sensors 

embedded in concrete for SHM applications.  However, our work can be expanded by 

further research. 

Our work focused on applications with basic reinforced structures, such as 

concrete walls and bridge decks, for which two layers cross/vertical bars are used. This 

research can be extended to other applications where more complex reinforced concrete 

structures are involved, such as dams or foundations.  
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When designing wireless power transmission and/or harvesting systems for 

embedded sensors, other types of antennas and rectification circuits can be investigated 

based on our analysis approach to further maximize the power delivered to the sensors’ 

rechargeable batteries. For example, intelligent reconfigurable antennas could be 

developed to self-adapt to different applications (such as, concrete monitoring during 

construction/curing, and health monitoring of structures after they are built) and different 

concrete environments (various concrete types in terms of humidity, consistency and 

rebar configuration). Also, CMOS based multi-stage rectifiers could be utilized to 

increase the RF to DC conversion efficiency and decrease the rectenna size.  

Our work focused on analytical and computational methods. Experimental work 

could be done based on our approach to implement the wireless powering systems for 

SHM sensors. For example, RF power harvesting systems can be investigated within the 

20-80 MHz band for sensors embedded in plain concrete. Wireless power transmission 

systems can also be implemented within the 902-928 MHz ISM band for sensors 

embedded in reinforced concrete structures.  

Our work focused on maximizing the power transmission efficiency and 

minimizing the battery charging time of embedded SHM sensors. This research can be 

extended to the optimization of systems involve communication with totally passive 

sensors without batteries (i.e., embedded RFID tags with sensory functions for concrete 

panel’s life cycle evolution monitoring).  
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