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ABSTRACT OF THE DISSERTATION 

THE POTENTIAL ROLE OF ENVIRONMENTAL EXPOSURES AND GENOMIC 

SIGNALING IN DEVELOPMENT OF CENTRAL NERVOUS SYSTEM TUMORS 

by 

Brian William Kunkle 

Florida International University, 2011 

Miami, FL 

Professor Deodutta Roy, Major Professor 

The etiology of central nervous system tumors (CNSTs) is mainly unknown. Aside 

from extremely rare genetic conditions, such as neurofibromatosis and tuberous sclerosis, 

the only unequivocally identified risk factor is exposure to ionizing radiation, and this 

explains only a very small fraction of cases.   Using meta-analysis, gene networking and 

bioinformatics methods, this dissertation explored the hypothesis that environmental 

exposures produce genetic and epigenetic alterations that may be involved in the etiology 

of CNSTs. 

A meta-analysis of epidemiological studies of pesticides and pediatric brain tumors 

revealed a significantly increased risk of brain tumors among children whose mothers had 

farm-related exposures during pregnancy. A dose response was recognized when this risk 

estimate was compared to those for risk of brain tumors from maternal exposure to non-

agricultural pesticides during pregnancy, and risk of brain tumors among children 

exposed to agricultural activities. Through meta-analysis of several microarray studies 

which compared normal tissue to astrocytomas, we were able to identify a list of 554 

genes which were differentially expressed in the majority of astrocytomas.  Many of 
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these genes have in fact been implicated in development of astrocytoma, including 

EGFR, HIF-1α, c-Myc, WNT5A, and IDH3A.  Reverse engineering of these 554 genes 

using Bayesian network analysis produced a gene network for each grade of astrocytoma 

(Grade I-IV), and ‘key genes’ within each grade were identified.  Genes found to be most 

influential to development of the highest grade of astrocytoma, Glioblastoma multiforme 

(GBM) were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, 

and SERBP1.  Lastly, bioinformatics analysis of environmental databases and curated 

published results on GBM was able to identify numerous potential pathways and gene-

environment interactions that may play key roles in astrocytoma development.   

Findings from this research have strong potential to advance our understanding of the 

etiology and susceptibility to CNSTs.  Validation of our 'key genes' and pathways could 

potentially lead to useful tools for early detection and novel therapeutic options for these 

tumors. 
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INTRODUCTION 

Pediatric brain tumors (pBT), which may occur in the brain or the spinal cord, are the 

second most common malignancy among children less than 20 years of age and the most 

common solid tumor of childhood. Malignant brain tumors rank second in both incidence 

and mortality by cancer in children, and they are the leading cause of cancer death in 

children. Approximately 3,200 pBTs are diagnosed each year in U.S. children under the 

age of 20, with roughly 800 of these classified as benign. The incidence of these tumors 

has been steadily increasing since the early 1980s [1;2].  

The etiology of pBTs is largely unknown, though several genetic disorders are known 

risk factors for their development including neurofibromatosis type 1, Li-Fraumeni 

syndrome, basal cell nevus (Gorlin’s) syndrome, Turcot syndrome, and ataxia 

telangiectasia.  Epidemiological evidence supports a genetic component to pBT etiology.  

Having a sibling or parent with brain cancer has been found to increase risk of pBTs from 

3-9 times, while siblings of children with brain tumors have a greater risk of developing 

other cancers such as leukemia.  While the above factors are thought to play a part in less 

than 5% of all pBTs, evidence for some combination of genetic and epigenetic changes 

along with environmental factors in their etiology is accumulating.  Although only 

approximately 1% of childhood brain tumors are present at birth or diagnosed within the 

first few months of life, the majority of pBTs occur before the age of five, suggesting that 

prenatal as well as postnatal insults may be potential etiologic factors.  It is becoming 

more evident that not only can drugs and environmental stressors interfere with normal 

fetal development by causing structural malformations, but that exposure to 

environmental stressor during development can also cause biochemical and functional 
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abnormalities. In utero exposure to several drugs and environmental toxicants has been 

proposed to be a primary cause for the increased incidence of childhood brain cancers, 

which poses a significant clinical problem. Some suspected in utero carcinogens include 

benzene, pesticides, trichloroethylene, ethanol, arsenic, cigarette smoke, and infectious 

biological agents.  Early childhood exposures may also influence both aBT and pBT 

development and evidence that pesticides can influence glial development and 

differentiation well into childhood support this view [3].  Furthermore, many substances, 

such as 1,3-Butadiene and N-Nitrosomethylurea, have been shown to induce neurogenic 

tumors in animals, with both the fetus and neonatal animals being at dramatically 

increased susceptibility to CNST development compared to adults [4]. 

Aside from the extremely rare genetic conditions mentioned above, the only 

unequivocally identified risk factor is exposure to ionizing radiation, and this explains 

only a very small fraction of cases. The most consistent link between exposures and pBT 

development aside from radiation is that for maternal consumption of cured meats, but 

whether a dietary component is responsible has not yet been revealed. A majority of 

epidemiological studies investing pesticides and cancer risk have reported positive 

associations, with the risks for children generally higher than adults. While the 

consistency of results may be affected by type of pesticides being evaluated, exposure 

circumstances, and tumor classification standards, there is a considerable amount of 

epidemiological evidence that supports a link between pesticide exposure and pCNSTs.  

Several viruses have been investigated as causative agents in brain tumors.  For instance, 

JC virus, a type of polyoma virus, and T-protein, an oncogenic virus product, have been 

detected at significant levels in PNETs and other tumors [5], though these results are 
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challenged by negative results in other studies [6-10].  The ability of MBs to be induced 

by JC virus in mice models has also been demonstrated however [11;12].  Parental 

exposure to heat and electromagnetic fields, parental occupational exposure to chemicals, 

tobacco exposure, maternal hair dye use, and exposure to several medications and 

vitamins have also been investigated as potential etiologic factors, with equivocal results 

being found.  Many of these exposures could certainly play a role in the etiology of pBT 

however, as the high rates of cell proliferation and differentiation during development 

and childhood increases susceptibility of cells to mutagenic and epigenetic alteration.  In 

addition, the blood-brain barrier, which acts as a barrier to potentially harmful 

substances, is not fully developed in the fetus and can allow harmful substances to reach 

sensitive organs such as the brain.  In fact, in utero DNA damage resulting from 

environmental pollution has been associated with somatic gene mutation in newborns 

[13].  Thus, exposure to environmental factors may be involved in the development of 

pBTs, and they likely interact with a genetic component and differ based on type of 

tumor.  
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I.  INTRODUCTION 

Pediatric brain tumors (pBT) are a genetically, biochemically, and clinically 

heterogeneous group of tumors located in both the central and peripheral nervous system.  

Collectively, they are the most common solid tumor of childhood, and rank second to 

leukemia in both incidence and mortality for childhood cancers.  Approximately 2,200 

intracranial pBTs, or 16.6% of all childhood cancers are diagnosed each year in U.S. 

children under the age of 20, with 78% of these neoplasms being classified as malignant 

in nature and the remaining classified as benign or of unspecified behavior [1;2].  

Astrocytomas comprise 52% of these malignancies, primitive neuroectodermal tumor 

(PNET) comprise 21%, other gliomas 15%, and ependymomas an additional 9% [1].  

Neuroblastomas (NB), the most common solid extracranial nervous system tumor, arise 

in the adrenal medulla and sympathetic ganglia and account for another 6-10% of all 

childhood cancers, with approximately 650 new cases occurring in U.S. children each 
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year [3].  Nearly 50% of  these extracranial tumors occur in children under the age of two 

years old [3].  Given the early age of onset of a majority of pBTs, and the current dogma 

that most cancers have at least a 10 year period of formation, it appears these tumors may 

have an etiology that contrasts with some of the traditionally accepted ideas on tumor 

formation.  In fact, recent research is beginning to suggest an etiology focused on early 

life environmental factors interacting with dysregulated developmental mechanisms (e.g. 

signaling pathways and stem cell/progenitor cell growth and differentiation) and 

mitochondrial-nuclear signaling in pBTs.   

While links between specific environmental exposures and pBTs are not yet fully 

established, several aspects of developmental biology increase the likelihood of their 

involvement in pBT etiology, including 1) the increased vulnerability of the 

fetus/neonatal nervous system to exposures, 2) the high rates of cellular proliferation and 

differentiation during development of the nervous system, and 3) the ability of 

environmental factors to produce and/or influence genetic and epigenetic alterations in 

pathways involved in both development and tumorigenesis.  For instance, high rates of 

cell proliferation and differentiation during development and childhood increases 

susceptibility of cells to mutagenic and epigenetic alteration.  In fact, in utero DNA 

damage resulting from environmental pollution has been associated with somatic gene 

mutation in newborns [4].  Furthermore, it is becoming more evident that not only can 

drugs and environmental stressors interfere with normal fetal development by causing 

structural malformations, but that exposure to environmental stressors during 

development can also cause biochemical and functional abnormalities.  Additionally, the 

blood-brain barrier, which acts as a barrier to potentially harmful substances, is not fully 
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developed in the fetus and can allow harmful substances to reach sensitive organs such as 

the brain.  Some suspected in utero carcinogens for pBT include pesticides, N-nitroso 

compounds, tobacco, and infectious biological agents.  While evidence linking several of 

these exposures to pBTs is substantial, the only exposure known to clearly cause pBTs is 

ionizing radiation. However, chemicals such as 1,3-Butadiene and N-Nitrosomethylurea 

have been shown to induce neurogenic tumors in animals, with both the fetus and 

neonatal animals being at dramatically increased susceptibility to BT development 

compared to adults [5].  Furthermore, evidence showing that pesticides can influence 

glial development and differentiation well into childhood suggests that early life 

exposures may influence both pBT and adult BT (aBT) [6].  In fact, evidence from 

several other cancers suggests that susceptibility to adult tumor development may in fact 

be influenced by early life environmental exposures and their interaction with epigenetic 

mechanisms [7].  Given the above factors, it is probable that certain genetic, epigenetic, 

and environmental factors unique a developing fetus/neonate, are part of a multifactorial 

cascade of differing events that lead to pBT development.  It is likely that these factors 

exert influences on the growth and differentiation of neural stem cells/progenitor cells, 

leading to the production of genetic and epigenetic changes that increase an individual’s 

susceptibility to pBTs (Figure 1-1).  

The following is a review of the current state of the research on environmental, 

genetic, and epigenetic factors possibly involved in the development of pBTs.   The first 

section of this review covers epidemiological research on environmental factors that have 

been investigated in relation to pBTs.  Research supporting the involvement of neural 

stem cells, progenitor cells, and developmental pathways in the etiology of pBTs is then 
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summarized.  This section is followed by a review of the genetic and epigenetic 

alterations that have been identified in common pBTs, with the final section focusing on 

how these factors may interact with mitochondrial-nuclear signaling to increase 

individual susceptibility to pBTs.   

 
Figure 1-1. A schematic representation of an early life gene-environment interaction 
model of development of pediatric brain tumors. 

 

II. ENVIRONMENTAL EPIDEMIOLOGY OF PEDIATRIC BRAIN TUMORS 

Links between the environment and traditional epidemiology and risk factors 

While the incidence of pBTs has been steadily increasing since the early 1980s, debate 

exists as to the reason for this rise, with some researchers suggesting diagnostic factors as 

a main cause, while others emphasize the importance of environmental factors [8;9].  In 

the United States the recorded incidence of pBTs increased by 35% from 1973 to 1994 
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[10].  Similar increases for these tumors were noted in Europe [11] and in England 

[12;13].  Considerable debate exists as to how much these large increases are due to an 

etiologic factor or the result of better diagnostic methods, improved reporting, and 

changes in classification (i.e. tumors earlier designated as benign being changed to 

malignant) [14].  Supporting an increase due to better diagnostics and reporting, Smith et 

al.’s (1998) detailed statistical analysis concluded that a statistical model with a ‘jump’ in 

incidence in the mid-1980s fits the incidence data better than a model with a steady 

increase [10].  A critical analysis of pBTs over this same period by Linet et al. (1999) 

also supported this view [15].  However, some researchers remain doubtful that the 

increase is adequately explained with only this type of statistical analysis [14].  Indeed, 

recent reports from Europe on childhood cancer incidence over this time period argue for 

a true increase in incidence over this time period [11;16], suggesting that environmental 

factors have played a role in this rise in incidence.  Researchers have also pointed out that 

while incidence increases in some subgroups of pBTs can be attributed to better 

diagnostics and changes in classification, these changes do not explain increases in other 

pBTs [17].  

Though the etiology of pBTs is largely unknown, several genetic disorders are known 

risk factors for their development including neurofibromatosis type 1, Li-Fraumeni 

syndrome, basal cell nevus (Gorlin’s) syndrome, Turcot syndrome, and ataxia 

telangiectasia.  These single gene disorders are thought to play a part in less than 5% of 

all pBTs however.  Still, epidemiological evidence does point to a genetic component in 

pBTs, as having a sibling or parent with brain cancer has been found to increase risk of 

pBTs from 3-9 times, while siblings of children with brain tumors have a greater risk of 
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developing other cancers such as leukemia.  These family patterns are likely due to 

multigenic inheritance patterns (“soft” but interacting mutations), modifiers that alter 

gene expression or penetrance, or epigenetic gene silencing, rather than the consequence 

of a highly penetrant gene however [18].  It is also probable that common environmental 

factors among these family members contribute to this increased risk profile.  Gender is 

another risk factor, as most pBTs have been found to occur at a higher frequency in males 

than in females, though the reason for this difference is unknown.  This difference varies 

by tumor, as certain tumors including medulloblastoma and ependymoma show incidence 

rates in males 1.5-2 times that of females, while other tumor types such as astrocytoma 

show only small differences between these groups [19-21].  While research on the subject 

is lacking, it is important to consider that these gender-specific differences may in fact be 

related to gender-specific responses to a given toxicant.  Other common risk factors for 

pBTs include race (they occur more often among Caucasians than other races) and age 

(they occur more often in children younger than 8 years old than in older children).  

Geographically, astrocytoma incidence is low in Asia, intermediate in Central and South 

America, and relatively higher in North America, Europe, Australia, and New Zealand.  

Additionally, astrocytoma is most common in Sweden, which has a rate 20% higher than 

any other reported rate. Similar to astrocytoma, PNET, a broad tumor group which 

includes medulloblastoma (MB), has incidence rates that are relatively low in Asia and 

higher in Europe and North America.  Rates for PNET range from 2 to 12 per million per 

year with the highest rates occurring in Hawaiians in Hawaii and Maori in New Zealand 

[22].  Dietary patterns and other differences in environmental factors between these 

geographies could explain some of these patterns, as has been suggested in other cancers.  



11 
 

Incidence patterns among developed and developing countries may not be comparable 

however as all brain tumors in developing countries may not come to medical attention 

and some of the low rates observed might be underestimates.   

Studies in North Carolina, Japan, and Norway have found that seasonally, 

medulloblastoma shows a statistically significant variation in incidence with a peak in 

October [23-25].  Researchers speculate that exposures during the Spring, when major 

fetal development would occur for these births, may be involved, including pesticide 

applications and use of allergic medications.  Other tumor types including astrocytoma 

and ependymoma do not show this seasonal correlation however [26], despite 

astrocytoma being the tumor most often linked with pesticide exposure.  Studies have 

also assessed clinical parameters and their association with risk of pBTs.  Findings on 

birth weight show only weak or null associations to pBTs, for most studies, although one 

study which looked at subtypes of tumors found high birth weight to cause an increased 

OR of 1.71 (95% CI: 1.01-2.90) for astrocytic tumors [27].  Head circumference has also 

been studied in relation to pBTs and is positively associated with their occurrence [OR = 

1.27 (95% CI 1.16-1.38) per 1-cm increase in head circumference] [28]. 

 

Epidemiologic research on specific environmental exposures and pBT 

Whether specific environmental exposures cause pBTs remains unknown, with only 

high-intensity external ionizing radiation for therapy of childhood leukemia, tinea capitis 

and other malignancies the only exposure clearly associated with development of nervous 

system cancer [29-31]; [19;32].  Diagnostic radiography during pregnancy also appears to 

result in a small but significant increase in risk of pBT to the fetus, although this 
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association is disputed [33].  Neither of these exposures is thought to account for a 

significant number of pBTs today however, as diagnostic radiation has decreased in use 

and dosage, and therapeutic radiation is now used mostly for malignant conditions that do 

not expose the brain [34].  Research over the past few decades does point to the relevancy 

of a few environmental exposures in pBT etiology however.  A number of these 

exposures, including pesticides, N-nitroso compounds, and infection with polyomavirus, 

have been positively linked to pBT, although findings are inconclusive.  While positive 

results have been found, the rarity of the disease, difficulty in assessing exposure during 

pregnancy and other critical time periods, assessment of diverse pBTs as a single type, 

and recall bias, distort and confound results for these investigations.  Several work-

related exposures have been convincingly linked to aBT however, providing support to 

the possibility that environmental exposures to a fetus or young child could produce 

pBTs.  These work-related exposures include nuclear workers exposed to radiation, 

pathologists and embalmers exposed to formaldehyde, plastic workers exposed to vinyl 

chloride, and textile and plastic workers exposed to acrylonitrile [35].  A summary of the 

research of several environmental exposures and their relation to pBT is provided below, 

and Table 1-1 gives an overall ‘risk association level’ for each exposure.   

 

III. ORIGIN AND NEUROBIOLOGY OF PEDIATRIC BRAIN TUMORS 

The majority of pBTs are embryonal in nature, while carcinomas in epithelial tissues, 

the most frequent type of cancer in adults, are rare in children.  A large amount of 

pediatric gliomas, the most frequent pBTs, arise in the cerebellum and brainstem 

(infratentorial) from glia, non-neural cells that provide support and nutrition and  
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Table 1-1. Summary of overall risk evaluation for selected environmental exposures 
in relation to pediatric brain tumors. 

Risk Factors Risk Evaluation Risks for Exposures (OR/RR with 95% CI) 

Ionizing 
Radiation 

Conclusive 

 33.1 (9.4-116.5) for benign nerve sheath tumors of head/neck 
[31] 

 9.5 (3.5-25.7) for meningioma’s [31] 
 2.6 (0.8-8.6) for malignant gliomas [31]   
 21.7-fold increase in CNS neoplasms in a large cohort of 

9720 children who had undergone radiation for leukemia 
[30] 

 Atomic bomb exposure followed a dose-response curve 
[(excess relative risk (ERR) = 1.2 (0.6 to 2.1), with the 
highest ERR found in relation to schwannoma 4.5 (1.9 to 
9.2) [36].   

Pesticides 
 

Suggestive but 
not Conclusive 

 Agricultural pesticide use and pBT risk in children aged 0 to 
14 years [RR = 3.37 (1.63-6.94)] [37].   

 Increased risk of astrocytoma for exposure to herbicides from 
residential use [OR = 1.9 (1.2-3.0)] [38] 

N-nitroso  
 

Suggestive but 
not Conclusive 

 Four of eight studies on cured meat exposure found 2 to 2.5 
times increased risk of pBT [39-42] 

 Mother’s frequent ingestion of hot dogs [(RR = 1.33 (1.08-
1.66)] and sausage [(RR = 1.44 (1.01–2.06)]  during 
pregnancy [43]  

 Meta-analysis of cured meat consumption [RR = 1.68 (1.30- 
2.17)] [43] 

 Use of metronidazole and neuroblastoma (RR = 2.60 (0.89-
7.59)] [44].  

 Use of narcotics [OR = 1.3 (1.0–1.6)] and the anasthic 
penthrane [OR = 1.5 (1.1–2.0)] during delivery [45].       

 Anticonvulsant use during pregnancy [(OR  = 1.4 (0.6–3.2)] 
[46]  

Infectious Agents 
     
 

Inconsistent or 
limited 

 Viral infection during pregnancy [OR = 10.6 (1.1-503.2) [47] 
 Influenza during gestation [OR = 3.15 (CI = 1.13-8.77)] [48]  
 Three siblings, or younger siblings increased risk for 

astrocytoma (RR=1.34), medulloblastoma (RR=2.30), 
ependymoma (RR of 2.61), meningioma (RR=3.71), and 
neuroblastoma (RR=2.31) [49].   

Tobacco 
     
 

Inconsistent or 
limited 

 Meta-analysis of 12 observational studies on maternal 
smoking during pregnancy [RR = 1.05 (0.90-1.21)] [50] 

 Paternal smoking exposure [RR = 1.22 (1.05-1.40)] [50] 
 Second meta-analysis on maternal smoking during 

pregnancy [RR = 1.04 (CI: 0.92-1.18)] [51].   
Electromagnetic 

Frequencies 
Inconsistent or 

limited  
 Electromagetic Frequencies and childhood exposure [OR = 

0.97 (0.46-2.05)] [52].   

Trauma 
Inconsistent or 

limited 
 Medical attention for head injury [OR = 1.4 (1.0 – 1.9)] [53] 

Vitamins 
Inconsistent or 

limited 

 Children of mothers who used multivitamins [OR=0.7 (0.4-
1.0)] and had a diet high in iron and folate [OR for iron, 0.5 
(0.3-0.9); OR for folate, 0.5 (0.3-0.9)] [54]  
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participate in signal transmission in the nervous system.  While childhood gliomas 

originating in the cerebellum (supratentorial) are also fairly common, the majority aBTs 

are supratentorial in nature.  Glial tumors are usually broken down into more specific 

subtypes based on their predicted cell type of origin.  The most common glial tumors in 

patients under 20 years of age are astrocytoma (from astrocytes), oligodendroglioma 

(from oligodendrocytes), brain stem glioma (from brain stem cells), and ependymoma 

(from ependymal cells).  Some pBTs are composed of primitive or undifferentiated cells, 

as would be expected given their origin during early life when the nervous system is still 

developing.  These include the primitive neuroectodermal tumors (PNETs) of the brain, 

notably medulloblastoma (MB), ependymoblastoma, and neuroblastoma (NB).  One other 

common brain tumor in childhood is the germ cell tumor.  Germ cells, which are special 

cells in a developing embryo, can travel to other areas of the body, in this case the brain, 

and become cancerous.  Mixed forms of brain tumors also exist.  For instance, mixed 

gliomas (aka oligoastrocytomas) have both an astrocytic and an oligodendroglial cell 

component.  Additionally, mixed glio-neuronal tumors (tumors displaying a neuronal, as 

well as a glial component, e.g. gangliogliomas, disembryoplastic neuroepithelial tumors) 

and tumors originating from neuronal cells (e.g. gangliocytoma, central gangliocytoma) 

can also develop in the central nervous system (CNS). Other varieties of primary brain 

tumors include: tumors of the pineal parenchyma (e.g. pineocytoma, pineoblastoma), 

choroid plexus tumors, and neuroepithelial tumors of uncertain origin (e.g. gliomatosis 

cerebri, astroblastoma). Additionally, many subtypes of these tumors also exist and are 

often grouped by histological grade (i.e. Astrocytoma grades I-IV).   
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Cellular Origins of pBTs 

One of the critical issues involving NT biology has been the inability to determine a 

definitive cell of origin of each individual tumor type, including the three most prevalent 

tumors of the pediatric CNS: pilocytic astrocytoma, MB, and NB.  Identification of these 

cell types would allow for better comparisons to normal cell counterparts, and a more 

definitive genomic profile of the tumor cells involved.  Currently, tumors are classified 

by the World Health Organization (WHO) according to the cell type that tumor cells 

resemble most in the developing embryo or adult.  The three main cell types from which 

tumor cells are thought to arise are neural stem cells, progenitor cells, or differentiated 

cells, and genetic changes in each cell type have been associated with BT development 

[55].  It is likely these genetic changes, which may be either inherited or somatic in 

nature, deregulate normal proliferation and differentiation, and initiate tumor formation.  

Therefore, most pBTs (which are predominantly immature tumors) likely arise from 

neural stem cells (which produce both glial and neuronal cells) or progenitor cells in their 

respective precursor cell type (i.e.  granule cell precursors for MBs), while most adult 

tumors probably form from differentiated cell types (i.e. astrocytes in astrocytoma) that 

have acquired stem cell-like or progenitor cell-like properties [55]. Recent research on 

MBs in mice models does in fact suggest that alterations in either cell type can produce 

MB, with the critical determinant of tumorigenesis being neuronal lineage commitment 

of the cell [56;57].   Additionally, alterations in genes such as Bmi1, an oncogene 

involved in proliferation of differentiated cells and self-renewal of stem cells, likely lead 

to different phenotypic outcomes of BT [58;59].  Also, tumors arising in different regions 

of the brain retain distinct patterns of gene expression, though cells in different parts of 
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the brain carry the same genes. This is a result of factors that have modified the use of 

these genes differently in distinct parts of the brain, suppressing some genes and 

activating others to allow the cells to take on specialized characteristics as the brain 

matures. Extensive debate exists within this framework however, as evidence for 

differing points of view exists in the literature.  For example, MB having a neuronal cell 

of origin as suggested by Wright et al. is currently being opposed by those investigators 

who support a view by Bailey and Cushing that because MBs generate both glial and 

neuronal cells, they may originate from a cell they termed as an embryonic 

neuroepithelial [60;61].  For a complete review of the current information on cell of 

origin in brain tumors the reader is referred a review by Read et al. [55].  While the 

cellular origins of these tumors is still debated, recent research is beginning to elucidate 

how the deregulation of developmental pathways within these cells contributes to pBT 

etiology, and an overview of this research is provided below.  

 

Disruption of developmental pathways, ‘tumor precursor cells’, and pBTs 

   Most pBTs are embryonal tumors that arise from abnormal development of nervous 

system tissue. Embryonal development is marked by organogenesis from stem cell 

populations producing ‘precursor’ cells that give rise to lineage-committed progenitor 

cells.  These progenitor cells then undergo stages of proliferation and differentiation to 

produce tissue.  Several cellular pathways that regulate these developmental processes 

have been implicated in the development of pBT, including the Sonic Hedgehog (SHh) 

pathway, the WNT-wingless (WNT) pathway, Mycn signaling, and the NOTCH 

signaling pathway.  During normal nervous system development, these signaling 
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pathways regulate growth and differentiation of progenitor cells, including granule cell 

precursors (GCPs) in the cerebellum and neural crest cells in the peripheral neural system 

(PNS).  These cell populations ultimately form the cerebellum, peripheral neural crest, 

and other nervous system components.  In cerebellar development, SHh accomplishes 

regulation of GCPs in part via expression of N-myc, a commonly expressed tumor 

suppressor gene thought to be an essential downstream target of SHh signaling in both 

normal and neoplastic cerebellar growth [62].  Mutations that dysregulate the SHh 

pathway can cause excessive growth and failure in cell differentiation, producing ‘tumor 

precursor cells’ that predispose an individual to MB [63].  Note that we use the term 

‘tumor precursor cells’ as a generic term for all forms of stem, precursor, or progenitor 

cells that have acquired tumor producing alterations. Similar to dysregulation of SHh 

pathway in MB, N-myc signaling appears to direct proliferation and differentiation of 

neural crest cells in PNS development, and its dysregulation appears to make a large 

contribution to development of neuroblastoma [64].  Finally, several alterations identified 

in astrocytic tumors are located in genes important for normal differentiation of astroglial 

cells during development, including changes in several SHh pathway proteins [65-67]. 

Figure 1-2 provides a schematic showing commonly mutated genes in these and other 

developmentally regulated pathways thought to be involved in pBT tumorigenesis.  There 

are possible roles for environmental regulation within these pathways.  For instance, 

regulation of N-myc by SHh is thought to occur through activation of phosphoinositide 3-

kinase (PI3K), which, through downstream activation of Akt, and inactivation of 

glycogen synthase kinase-3β  (GSK-3β) leads to stabilization of N-myc.  High levels of 

N-myc, which are linked to cellular transformation and aggressive tumors, lead to 
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proliferation, migration, and cell cycle activation, while reduced levels produce cell cycle 

exit and differentiation.  Thus, when SHh signaling is activated, Akt signaling and 

amplification of N-myc, promotes cell survival and growth, and possibly tumor initiation 

and promotion [68].  Interestingly, the PI3K/Akt pathway is implicated in ROS related 

disorders and has been linked to control of nuclear-receptor factor 1 (NRF-1) signaling in 

mitochondrial biogenesis [69], linking two biological mechanisms thought to be 

important in environmental disease.  

 

 
Figure 1-2. Dysregulation of developmental pathways in pediatric brain tumors 
(pBT). Alterations in pathways important to cellular growth, proliferation and 
differentiation during development appear to be important to pBT etiology.  Cross-talk 
between these pathways has also been shown.  Lightning bolts signify alterations in genes 
linked to development of their respective pBT. 
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IV. GENETIC AND EPIGENETIC ALTERATIONS IN PEDIATRIC BRAIN TUMORS 

The differing demographic profiles and heterogeneity within and between types of 

pBT suggests differing etiology for these tumors, with genetic alterations possibly 

playing a more substantial role in some tumor types than in others, and individual cell 

types perhaps being more vulnerable to toxins at different stages of development [70].  

Additionally, this heterogeneity suggests the probable involvement of epigenetic and 

mitochondrial mechanisms of disease, both of which have been shown to interact with the 

environment to produce heterogeneous disease profiles [7].  Despite these probable 

etiologic differences, the research highlighted above suggests that many pBTs may have 

a common origin through in utero and early life disruption of developmental pathways.  

Alterations in developmental pathways do not currently account for a majority of pBTs 

however, and few other significant genetic changes in these tumors have been 

established.  However, when taken as a whole, the collective alterations identified within 

some of the common pBTs does fit a model where environmental factors interacting with 

numerous genetic and epigenetic changes influences cellular proliferation and function to 

produce tumorigenesis.  As referenced in section II, several genetic disorders have been 

linked to development of pBTs.  Several mutations in genes causing these familial forms 

of pBT have been identified (Table 1-2).  These genes, most of which are tumor 

suppressors, also appear altered in sporadic cases of their respective brain tumor types.  

Moreover, some also function in the developmental processes discussed above.   
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Table 1-2. Disorders and mutations in genes causing familial forms of pediatric 
brain tumors. 

Disorder pBT Type 
Germline 
Mutation 

Locus 
Signaling 
Pathway 

Neurofibromatosis 
Type-1 

Astrocytoma NF1 17q11.2 Ras 

Li-Fraumeni 
Sydrome 

Astrocytoma, PNET p53 17p13 p53 

Basal Cell Nevus 
(Gorlin’s) 
Syndrome 

Medulloblastoma PTCH 9q22.3-q31 SHh 

Turcot Syndrome 
Medulloblastoma 
Malignant Glioma 

APC 5q21 Wnt 

Ataxia 
Telangiectasia 

Medulloblastoma 
Pilocytic Astrocytoma 

ATM 11q22-23 ATM/p53 

 

V. ENVIRONMENT, MITOCHONDRIAL-NUCLEAR INTERACTIONS, AND 

DEVELOPMENT OF PEDIATRIC BRAIN TUMORS  

Given that mutations in mtDNA have been reported in most cancers (reviewed in 

[71]), it appears important to consider their effect on tumorigenesis.  A key argument in 

cancer initiation to date however, has been ‘what comes first, mitochondrial dysfunction 

or tumor formation?’.  Until recently, most reports have suggested that mitochondrial 

dysfunction occurs after tumor formation.  However, research in 2000 and 2001 showing 

that inherited and sporadic cases of brain tumors (paraganglioma and 

pheochromocytoma) are caused by mutation of succinate dehydrogenase, a 

mitochondrial-specific protein of the Krebs cycle, provided support to the idea that 

mitochondria (mt) may control tumorigenesis.  Subsequently, mutations in another 

mitochondrial Krebs cycle protein, fumarase, were associated with the development of 

uterine fibroids, skin leiomyomata and renal cell cancer.  Though the specific 

mechanisms for tumor formation in these instances are yet to be determined, it has been 

suggested that accumulation of these proteins in mitochondria could lead to a decrease in 
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the ROS-scavenging activity of the respiratory chain, causing excess superoxide and 

tumor initiation [72].  Importantly, it appears mutations in either the mitochondrial or 

nuclear genomes could lead to tumorigenesis, as alterations in both genomes have been 

shown to lead to mitochondrial diseases [73;74].   Alterations in the epigenome of both 

the nucleus and mitochondria may also play a role in tumorigenesis, as recent research 

demonstrating that depletion of mtDNA can regulate epigenetic modification in the 

nucleus suggests [75].  These tumorigenic scenarios described above fit well with a 

model where both cell death and proliferation are in large part controlled by the 

functioning state of the mitochondria.  In this model, the redox state of the cell would be 

of ultimate importance to development of disease.  While a low level of ROS would 

allow for normal cellular function, increasing ROS amounts would signal increased cell 

proliferation, and an overwhelming excess of ROS would trigger apoptosis.  Importantly, 

research showing that mtDNA-depleted cells increased antioxidant levels (MnSOD) and 

resisted apoptosis even in an elevated ROS environment, suggest that mitochondrial 

apoptosis pathways may often be blocked even in dysregulated mitochondria, allowing 

for cellular transformation to occur [76].  Given that interaction between mitochondrial 

and nuclear genomes is essential for normal cellular function, variations in the 

mitochondrial redox state could be of tremendous importance for the fate of the cell, and 

ROS signaling could have a central role in communication between mitochondria and the 

nucleus.  

Because mitochondria play a large part in brain development [77] and are abundant in 

brain tissue [78], their health is critical to the wellbeing of the pediatric brain.  The 

pediatric brain is at high risk of oxidative stress and very susceptible to free radical 
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oxidative damage [79].  The electron transport chain (ETC) found in brain mitochondria 

can be impaired by both inherited and acquired mutations (Stewart et al. 2000).  An 

impaired ETC leads to decreased ATP production, increased ROS formation, and altered 

calcium homeostasis.   Thus, mutations in mitochondrial DNA (mtDNA) and nuclear 

DNA (nDNA) could affect cellular energy levels, increase oxidative stress, cause ROS-

mediated damage to both the mitochondrial and nuclear genome, affect cellular 

differentiation, and alter the cellular response to apoptosis [80-83].  Figure 1-3 provides a 

schematic overview of how environmental factors could interact with dysfunction in 

mitochondrial-nuclear signaling pathways and developmental pathways to produce pBTs. 

 
Figure 1-3. Interaction of environmental factors, dysregulation of mt-nuclear 
signaling and developmental pathways, and development of pediatric brain tumors. 
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Effects of early life exposures on mitochondria and the pediatric brain 

There is a growing body of evidence suggesting that there are critical periods of time 

extending from conception to puberty when the reproductive [84], immune [85], nervous 

[84], and endocrine [86] systems in children may be more affected by chemical 

exposures.  In fact, a consensus group has concluded that there is sufficient evidence to 

support the hypothesis that in utero and early life exposures can lead to cancer in both 

children and adults [87].  Evidence supporting this conclusion includes experimental 

findings that suggest tumors initiated in utero can be promoted postnatally, resulting in 

cancerous growths [88].  Additionally, the ability of environmental exposures to cause 

micronuclei, chromosomal aberrations, sister chromatic exchanges, DNA adducts, DNA 

single-strand breaks, and somatic mutations in the DNA of a fetus has been demonstrated 

(reviewed in [89;90]).   

Several characteristics of the developing brain in pediatrics may make agents normally 

thought not to target the central nervous system harmful to the brain during these critical 

time periods.  These include the blood-brain barrier of the fetus being incompletely 

developed, the immune system being compromised due to its immaturity, and the 

increased vulnerability of the developing nervous system to carcinogenesis [91].  

Furthermore, several factors including high rates of cell division, lowered detoxification 

capabilities, and clonal expansion of initiated cells are thought to explain the increased 

sensitivity of embryos, fetuses, and newborns to chemical carcinogens (reviewed in [92]).  

Many carcinogens, including ENU, cadmium, and monosodium glutamate, have been 

shown to freely traverse the blood-brain barrier of a developing fetus in experimental 

animals, while being blocked from entering the mature brain [93;94].  Furthermore, 
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numerous agents including rubella virus, lead, methylmercury, retinoids and thalidomide 

have been shown to be neurotoxic when exposure occurs during gestation.  These same 

agents show no neurotoxicity after adult exposures [94].  Though few quantitative studies 

on this topic have been completed, one study assessing the blood-brain barrier of sheep 

during the last two months of gestation and the first month of neonatal compared to adult 

animals found that the influx of radioactive compounds in all regions of the brain 

decreased significantly with maturation (p < 0.0001).  A more in depth review on this 

topic has been published by Adinolfi 1985. [95] 

 

Experimental evidence linking early life exposures to mitochondrial dysfunction and pBT 

development 

The effects of environmental exposures on BT development have been studied both in 

vitro and in animal models.  Several studies have investigated manganese toxicity in 

brain tumor cell lines.  Manganese (Mn) exposure in humans is rare but can occur 

through occupational pathways.  Mn targets brain mitochondria and interferes with 

energy metabolism in both astrocytoma and neuroblastoma cells through reduction of 

activity of glycolytic and TCA enzymes such as hexokinase, pyruvate kinase, lactate 

dehydrogenase, citrate synthase, and malate dehydrogenase [96].  As a result of this 

metabolic change, Mn exposure may increase oxidative stress via activation of the 

mitochondrial permeability transition pore (mPTP), a result found in Mn exposed 

astrocytes [97].  Manganese-induced cell death in both astrocytoma and neuroblastoma 

cells is primarily necrotic in nature and is enhanced by glutathione depletion [98].  

Interestingly, neuroblastoma cells are more susceptible to Mn toxicity than GBM cells, 
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possibly because of Mn treatments effects on apoptosis in GBM cells.  On treatment in 

GBM cells, Mn increases apoptosis and has differential effects on proliferation pathways 

as it induces down-regulation of MAPK pathway, but does not significantly affect the 

AKT pathway.  Furthermore, Mn reduces levels of c-Jun, c-Fos, and MMP-2 (an 

extracellular matrix degrading enzyme), which are all associated with invasiveness of 

GBM [96]. 

An in vitro study investigating the effect of chlorpyrifos exposure on glioma cells 

found that the cell signaling interference produced by chlorpyrifos exposure was greater 

in undifferentiated cells compared to differentiating cells, though effects were still 

noticed on this cell type as well.  However, differentiation enhanced reactive oxygen 

species (ROS) production from chlorpyrifos exposure and provoked shortage of the 

nuclear transcription factor Sp1, an essential molecule in differentiation [6].  Other in 

vitro studies include a report which found selenium levels in the cerebrospinal fluid of 

patients with malignant brain tumors to be lower than those with benign tumors.  

Furthermore, selenium’s anticancer effects are seen in its ability to preferentially target 

human glioma cells for cell death through induction of superoxide and its subsequent 

disruption of mitochondria [99].   In vivo studies showing environmental exposure effects 

on BT have been performed on several animal species.   Studies in rats and mice showing 

transplacental induction of BT from chemical exposures have mainly produced glial 

tumors (most commonly oligodendrogliomas), with some meningeal tumors being 

induced as well, and peripheral nervous tumors only rare occurrences.  Significant 

incidences of BTs in rats using long-term bioassays have also been produced through 

exposure to acrylonitrile, acrylamide, 1,3-butadiene, ethylene oxide, glycidol, and 
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isoprene; the alkylating agents1,3-propane sultone and 2-methylaziridine; and a several 

hydrazine derivatives including 1,2-diethylhydrazine [5].  Studies in mice show increased 

susceptibility to brain mutations for prenatal and neonatal (N-ethyl-N-nitrosourea) ENU-

exposed mice over adult ENU-exposed mice [100].  It should be noted that while 

numerous tumor types have been produced from transplacental exposure of rodents, most 

tumors are not of embryonal origin, but instead are of glial origin and only become 

clinically evident in adult rats.  Other in vivo studies have found that phenothiazine 

chlorpromazine can cause CNS abnormalities in the fetus (Kovacic and Jacintho 2001b), 

while cadmium has been shown to be toxic to sensory ganglia in many animal species 

(Habeebu et al. 2001).   

Experiments on mitochondrial function in the nervous system point to their 

involvement in environmentally-induced BTs.  Because mitochondria are the main source 

of superoxide in physiologic conditions, the detoxification of superoxide by 

mitochondrial MnSOD plays an important role in neuroprotection and ROS homeostasis 

[101].  Even a modest increase in endogenous ROS could damage both mtDNA and 

nDNA, leading to cancer development, genetic instability, and disease progression.  

MnSOD has been shown to have high activity in mice brain when compared to other 

tissues such as lungs [102].  Because the MnSOD by-product H2O2 is itself a ROS, it is 

interesting to note that overexpression of MnSOD in rat glioma cells increased risk for 

oxidative damage [103].  However, loss of MnSOD also produces neurodegeneration, 

DNA oxidative damage and mitochondrial respiratory chain abnormalities, indicating that 

both overexpression and underexpression of MnSOD can be harmful [104]. A more 
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focused discussion on mitochondrial ROS production and its effects on the pediatric 

nervous system is provided below. 

 

Mitochondrial ROS, electron transport chain defects, and pediatric susceptibility 

Mitochondrial ETC disorders are believed to occur with an incidence of 1/10,000 live 

births and research correlates increases in mitochondrial ROS production with both 

neurodegenerative disease and cancer in animal models [105;106].  In fact, the 

importance of ROS levels and pBT development can be seen in the fact that numerous 

genes and signal transduction pathways important to normal fetal brain development (i.e. 

myc) can be influenced by ROS [107;108].  While, no studies to date have been 

published on age-dependent differences in brain mitochondrial ROS production in 

immature animals, research has documented developmental disparities in antioxidant 

defense systems.  Both Mavelli et al. [109] and Khan et al. [110] reported increases in 

mitochondrial MnSOD in the first weeks of life in mice.  Mavelli et al. reported no 

significant changes with age were noted for Cu, Zn-SOD or GPX activity, while catalase 

activities were inconclusive.  On the contrary, Khan et al. did report an increase in GPX 

activity near birth.   One report also noted a developmental lag in SOD-1 and SOD-2 

when compared with GPX and catalase levels present in prenatal telecephalic white 

matter [111].  On the whole, the above studies describe a profile where a newborn brain 

must be protected from oxidative stress through increased activity of antioxidant enzymes 

in utero and around birth.  

The large transmembrane protein cytochrome c oxidase (aka complex IV or COX) is 

the last enzyme in the ETC of mitochondria.  This complex catalyzes the transfer of 
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electrons from reduced COX to molecular oxygen to form water, and ultimately, ATP 

through the coupled process of oxidative phosphorylation. The importance of COX to 

neurons is seen in this enzyme’s reduced expression in neurodegenerative diseases, such 

as Alzheimer disease [112].  This is because neurons, which are highly dependent upon 

ATP for their activity and functions [113], receive roughly 90% of their ATP from 

mitochondria via oxidative phosphorylation [114].  MtDNA diseases exhibit low COX 

activity and evidence points to clonal expansion of individual mtDNA deletions within 

single cells as a reason for this decreased action [115].  Moreover, COX deficiency most 

often manifests in high energy demand organs, such as the brain [78], and is the most 

prominent ETC defect in infancy and early childhood [116]. Finally, genotype of Tfam, a 

key regulator of mtDNA copy number and mitochondrial transcription, is associated with 

a moderate risk for Alzheimer’s disease [117].  Evidence suggests that Tfam may protect 

against mtDNA damage by preventing a decrease in mtDNA copy number and ETC 

function, an action that ultimately may protect against oxidative stress and its effects on 

lipid peroxidation, apoptosis, and mtDNA [118].  Importantly, Tfam, appears to 

accomplish much of these actions through interaction with NRF-1 and other nuclear 

genes controlling mitochondrial biogenesis and function [119-121].  Furthermore, while 

nuclear proteins contribute to mitochondrial regulation, mitochondria can also modulate 

the expression of nuclear cell cycle genes [119], suggesting the importance of cross-talk 

between the cell nucleus and mitochondria in the apoptosis, proliferation, and 

differentiation of both normal and malignant cells.  We now discuss possible implications 

of this cross-talk on pBT development. 
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Evidence of mitochondrial-nuclear interactions and mitochondrial dysfunction in pBTs 

Recent evidence is beginning to provide a foundation which does in fact support a 

model of mitochondrial-nuclear signaling dysfunction in formation of tumors, including 

pBTs.  Studies in yeast models and human cancer cell models showed that depletion of 

mtDNA increased oxidative stress which then produced extensive damage to the nuclear 

genome [81;122].  Additionally, it appears that expression of certain nuclear genes may 

play a key role in mitochondrial mediated tumorigenesis.  In fact, APE1, a nuclear 

encoded gene involved in redox regulation, apoptosis, and DNA repair (both 

independently and through interaction with p53), may be one such gene, as it was shown 

to underexpressed in 68% (13 of 19) of CNS tumors [123].  It appears mitochondrial 

defects can lead to down regulation of APE1 to produce tumors.  Restoration of 

expression of APE1 in mtDNA depleted cells reversed the tumorigenic feature of 

anchorage independence, suggesting that restoration of mtDNA could reverse 

tumorigenesis in these cells.  Significantly, DNA binding activity of genes regulated by 

APE1 is sensitive to reduction-oxidation (redox).  Proteins for which APE1 functions as a 

transcriptional cofactor include AP-1 (Fos, Jun) proteins, nuclear factor-κB (NF-κB), 

polyoma virus enhancer-binding protein, early growth response-1, Myb members of the 

ATF/CREB family, HIF-1α, HIF-like factor, Oak5 and Pax-8 [123;124].  Interestingly, 

AP1 and NF-κB have been shown to mediate the expression of proteins involved in 

neuronal function and survival [124;125], and APE1 itself has been shown to promote 

survival of neurons after oxidative stress [126] and to be essential for proper embryonic 

development [125]. Additionally, APE1 has been shown to repair DNA, influence 
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apoptosis, and interact with p53, a protein found upregulated in many cancers, including 

many pBTs. 

The above evidence highlights a nuclear protein and its links to redox signaling in 

pBT development.  We now present other evidence of mitochondrial dysfunction in pBT, 

first on mitochondrial genome alterations, and then on mitochondrial apoptotic pathways.   

Identified alterations in the mitochondrial genome of BTs:  Several features 

distinguish the mitochondrial and nuclear genomes, some of which allow mtDNA to be 

far more vulnerable to mutations than nDNA.  mtDNA’s lack of histone protection, 

limited repair capacity, and close proximity to the electron transport chain (and hence 

superoxide radicals), are a few major reasons for this increased susceptibility to damage.  

While mtDNA is more vulnerable to damage, the fact that only a small percentage of its 

proteins are coded by mtDNA increases the chances that a mutation that affects 

mitochondrial function will occur in chromosomal DNA.  In fact, of over 3000 

mitochondrial proteins, mtDNA only encodes (1) 13 subunits of respiratory chain 

complexes: seven subunits (ND 1–6 and 4L) of complex I, cytochrome b (Cyt b) of 

complex III, the COX I–III subunits of cytochrome oxidase or complex IV, ATPase 6 and 

8 subunits of FOF1 ATP synthase; (2) the 12S and 16S rRNA genes; and (3) 22 tRNA 

genes.  The remainder of the proteins are encoded by nuclear DNA and imported into the 

mitochondria by chaperones.  Still, somatic mtDNA mutations have been linked to 

several cancers, and while their contribution to tumorigenesis has been debated, recent 

studies have concluded that mutant mitochondria positively and directly contribute to 

tumorigenesis by preventing apoptosis [127].  Additionally, novel research showing 

depletion of mtDNA encoded OXPHOS genes plays a role in tumor cell transformation 
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supports the involvement of mtDNA alterations and depletion in tumorigenesis [128].  

Here we review alterations in mtDNA that have been observed in the mitochondrial 

genome of both pediatric and adult BTs.   

The D-loop region of mitochondria is a region important for replication and mt 

nucleoid organization found mutated in many cancers.  Several BTs, including 

meningiomas, schwannomas, gliomatosis cerebri, neurofibroma, astrocytoma and GBMs 

have been shown to have mitochondrial genome instability in the hypervariable regions 

of the D-loop.  Somatic mtDNA mutations of this region have been found in tumors of 

NF1, a familial disease which predisposes to development of pilocytic astrocytoma [129].  

Astrocytic tumors themselves, in fact contain mutations in this region, as a recent study 

of 42 cases of malignant astrocytomas (39 GBMs, two anaplastic astrocytomas, and one 

anaplastic oligoastrocytoma) showed alterations in 36% of the cases in the D-loop region, 

including 16 different somatic alterations [three in the hypervariable 1 region (HV1) and 

thirteen in the D310 region] [130].  This frequency is comparable to other reports of 

mtDNA instability in malignant gliomas [131;132].  These alterations do not appear to be 

associated with increased aggressiveness however [130].  Furthermore, somatic mtDNA 

mutations have been observed in a series of chemically induced and spontaneous mouse 

brain tumors in regions that correspond to the hypervariable regions of human mtDNA, 

though they do not appear to alter the amino acid sequence however, and therefore may 

not affect disease status [133].   

Studies have also found mitochondrial mutations in other regions of the mitochondria 

as well.  One study, which analyzed the entire mitochondrial genome of 15 cases of MB 

and the cerebrospinal fluid (CSF) of eight of these 15 cases, found that 40% (6 of 15) of 
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the tumors and 87.5% (7 of 8) of the CSF samples had at least one mtDNA mutation. The 

somatic mutations identified in this study, which were located primarily in regions of 

mononucleotide repeats but also in respiratory chain related genes, include: three coding 

region mutations 1) G7521A mutation in tRNA aspartate that changes a GT base pairing 

to AT base pairing at the amino acyl stem region,  2) the T15904C mutation in tRNA 

threonine at the loop region, and 3) the A15937G mutation at the first bp next to the loop, 

all of which may affect tRNA structure and stability;  two missense mutations that can 

alter mt structure and function: 1) Y496H in cytochrome c oxidase and 2) L96P in 

NADH subunit 4, which are involved in the substitution of the hydrophobic aromatic 

tyrosine with positively charged histidine, and the hydrophobic leucine residue with  

helix destabilizing secondary amino acid proline; and several noncoding region mutations 

in areas such as transcription factor binding sites and replication primer sites that can 

affect mtDNA replication, transcription, and expression.  5 (29.4%) mutations were 

located in the np 303-315 polyC tract region and 11 (61%) were in the previously 

discussed D-loop region. 

 Studies have also identified other alterations in BTs, with the most frequent 

observation involving changes in the copy number of mtDNA.  A study that examined 45 

glioma specimens found that mtDNA was highly amplified in 87% of the cases.  In 

comparison, a nuclear-encoded reference gene (erb-b) that is frequently amplified in 

human cancers, increased in only 18% of the tumor specimens, indicating that mtDNA 

alterations may be much more frequent in gliomas than nuclear-encoded gene alterations. 

In addition, a high frequency of mtDNA copy number changes has been found in 

comparison to normal control tissue in both low and high grade gliomas.  Furthermore, 
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the mt content of gliomas is significantly lower than normal rat brain tissue, as is activity 

levels of cytochrome c oxidase and citrate synthase.  Differential hybridization 

experiments have also revealed decreased expression of seven mt genes in GBM tumors.  

Genes downregulated were mt NADH dehydrogenase subunits 1 and 4 (ND1; ND4); mt 

cytochrome oxidase subunits I, II, and III (COXI; COXII; COXIII); mt ATP synthase 

subunit 6 (ATP6); and mt 12S rRNA. Regardless of their functional significance, the 

above studies clearly show that mtDNA alterations are a frequent event in the 

development and progression of brain disease pathologies and warrant further 

investigation.   

Mitochondrial-directed apoptosis and pBTs:  Defects in the regulation of apoptosis 

(programmed cell death) can contribute to development of cancer by a failure to 

eliminate harmful cells.  The mitochondria’s link to control of apoptosis could play an 

important role in pBT etiology, as most tumors are often relatively resistant to the 

induction of the mPTP, the rate-limiting step of the intrinsic pathway of apoptosis.  

Mitochondria play a large role in apoptosis, with their intermembrane space acting as a 

storage site for numerous pro-apoptotic proteins, including cytochrome c and apoptosis-

inducing factor (AIF).  Both oxidative stress and mitochondrial calcium (Ca2+) overload 

can favor activation of the mPTP (Crompton 2004), leading to release of cytochrome c 

and the induction of caspase-mediated apoptosis [134].  In addition, as mentioned above, 

a more specific pathway to apoptosis exists in which Bcl-2 family proteins (e.g. Bax, 

Bid) regulate cytochrome c release through binding to the outer mitochondrial membrane.  

Other proteins involved in apoptosis, such as AIF, endonuclease G, and Smac/Diablo are 

also released in this process [135].   It appears environmental factors may be important in 
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determining which apoptotic pathway is chosen as research on the ERK signaling 

pathway, shows that H2O2-induced apoptosis in glioma cells may be initiated upstream of 

the mitochondria [136].  In contrast, a study investigating exposure of neuroblastoma 

cells to thimerosal, an organomercury compound used in vaccines, found that apoptosis 

was induced through the cytochrome c/caspase mitochondrial cascade described above 

[137].  Additionally, experiments on the proapoptotic Apoptosis Related Protein in TGF 

beta Signaling Pathway (ARTS) using astrocytic tumors also point to mitochondrial-

mediated apoptosis in brain tumors [138]. 

Selective programmed apoptosis is an important part of normal brain development.  In 

fact, more than 50% of some neuronal populations actually die during the pre- and 

postnatal period [139].  Several major apoptotic pathways, working through the 

mitochondria, play a major part in these early developmental processes, and their 

dysregulation may affect risk of pBT development.  The Bcl-2/Bax, cytochrome c 

complex governs apoptosis through control of the cytochrome c levels via the 

mitochondrial permeability transition pore (mPTP) of the mitochondria.  The anti-

apoptotic Bcl-2 protein strongly protects against free radical-mediated cell death by 

preventing release of cytochrome c, while other members of the bcl family (i.e. Bax) 

promote apoptosis [140].  Studies have shown Bcl-2 expression levels in the neocortex 

and hippocampus of the developing rat to be extremely elevated during development and 

the first week of life.  These levels then show a rapid decrease to low levels in childhood 

and relatively non-existent levels in adulthood [141].  Caspases, which can be activated 

by the Bcl-2/cytochrome c complex, also regulate many aspects of apoptosis during 

development.  It appears the interplay between these systems during development may be 
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important in the etiology of brain-related disorders as deletion of caspase-3, -9 or Apaf-1 

in mice results in gross malformations specific to brain because of defective apoptosis 

and hyperplasia [142].  Furthermore, recent evidence shows that SHh signaling promotes 

survival of medulloblastoma cells via up-regulation of Bcl-2, linking a developmental 

pathway and mitochondrial-mediated apoptosis to pBT development [143]. 

 

VI. POPULATION STUDIES ON GENE-ENVIRONMENT INTERACTIONS IN 

PEDIATRIC BRAIN TUMORS 

Very few epidemiological studies to date have investigated GEI in relation to BT 

development, especially in pediatric populations (see Table 1-3 for a summary of current 

research).  To date, only one epidemiologic study has assessed the effect of 

environmental interactions with gene mutations on development of pBT.   In this study, 

two frequent polymorphisms in Paraoxonase (PON1), a gene that metabolizes two 

residentially used insecticides (chlorpyrifos and diazinon), were investigated in relation 

to BT [n = astrocytoma (37), PNET (15), other (14)]. A non-significantly increased risk 

of pBT in relation to the inefficient PON1 promoter allele (PON1-108T allele, relative to 

PON1-108CC: odds ratio (OR) = 1.4; 95% confidence interval (CI), 1.0–2.2; p-value for 

trend = 0.07] was found.  However, this association was strongest and reached statistical 

significance among children whose mothers reported chemical treatment of the home for 

pests during pregnancy or childhood (PON1-108T allele: among exposed, OR = 2.6; 95% 

CI, 1.2–5.5; among unexposed, OR = 0.9; 95% CI, 0.5–1.6) and when primitive 

neuroectodermal tumors were assessed alone (per PON1-108T allele: OR = 2.4; 95% CI, 

1.1–5.4) [144].   



36 
 

In addition to the above GEI study on pBT, two studies have assessed GEI in adult 

glioma.  A case-control study on lead exposure, the lead toxicity associated gene δ-

aminolevulinic acid dehydratase (ALAD), and risk of brain tumors found increased risk 

of meningioma with occupational lead exposure.  Risk of meningioma, a tumor present 

mainly in later life, was markedly increased in individuals with the ALAD2 variant allele, 

for whom risks increased in a dose dependent fashion from 1.1 (0.3-4.5) to 5.6 (0.7-45.5) 

and 12.8 (1.4-120.8) compared to unexposed persons.  Risk for glioma was not associated 

with occupational lead exposure [145].  A second adult GEI study on glutathione 

transferases (GST) polymorphisms, cigarette smoke exposure, and development of adult 

glioma failed to find any significant GEI [146].  Several other studies have investigated 

genes involved in detoxification of carcinogens, and their relation to both pBT and aBT 

development, though no exposure was considered in these studies.  Polymorphisms in the 

carcinogen metabolizing genes GSTM1, GSTP1, and GSTT1 have been investigated for 

their effect on risk of pBT.  The frequency of the GSTM1 null allele was found to be 

significantly lower in high-grade pediatric astrocytomas (p < 0.002).  Additionally, a 

significant increase in the frequency of the rare GSTP1 variant Val114/Val114 was found 

in all pediatric astrocytomas combined (p < 0.002) and all pediatric brain tumor types that 

displayed microsatellite instability (MSI) from mismatch repair (MMR) defects (0.003), 

suggesting this genotype may define a population susceptible to pBT development.  This 

same study assessed these polymorphisms in relation to aBT and found no relation of 

GST polymorphisms to tumor development [147].  Another study found the relative risk 

of pBT to be increased 4.9-fold for patients carrying one non-null (GSTM1*A) allele of 

GSTM1 compared to patients with two null alleles (95% confidence interval 1.5–16, P = 
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0.009) [148].  Finally, a meta-analysis on GST polymorphisms and adult brain tumor risk 

also failed to find any association between GST and tumor development, though the 

GSTT1 null genotype was associated with meningioma development (OR=1.95; 95% CI, 

1.02-3.76) [149].    

Population studies on folate involvement in BT development have also been 

performed.  Folate is an important micronutrient molecule involved in DNA synthesis 

and methylation.  Studies have linked folate deficiency with both pediatric cancer 

[150;151] and genomic damage [152].  Disturbances in DNA synthesis, methylation, and 

repair of this pathway may be involved in BT development [153].  An investigation of 

single nucleotide polymorphisms (SNPs) in the folate pathway 

[methylenetetrahydrofolate reductase (MTHFR) C677Tand A1298C, methionine 

synthase (MTR) A2756G, thymidylate synthase (TS) 28-bp tandem repeat, and reduced 

folate carrier (RFC) G80A] and their relation to NT susceptibility in pediatrics found that 

the homozygous CC allele of MTHFR A1298C, which reduces MTHFR activity, 

conferred an increased risk of BT (medulloblastoma, pineaoblastoma, and PNETs) (OR: 

3.9; 95% CI: 1.3–11.4, p = 0.02).   SNPs in glial tumors (astrocytoma, 

oligodendroglioma, and ependymoma) were not related to development of disease [154].  

A recent report on folate pathway SNPs in adult meningioma and high grade glioma 

found that MTHFR C677T and A1298C genotypes associated with increased 5,10 

methylenetetrahydrofolate levels elevated disease risk while another report on these 

tumors failed to associate the MTHFR 677T SNP with tumor development [155].  

Dietary influence on brain tumors also find support in animal models as incidence and 

degree of aggressiveness of gliomas has been shown to be influenced by dietary  
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Table 1-3. Summary of gene-environment interaction studies conducted on pediatric 
and adult brain tumors. 

Study 
Reference 

Tumor Type (n) Population 
Results (risk estimate; 95% Confidence 

Interval) 

Searles 2005 
[144] 

Glioma (37); 
PNET (15); 
Other (14) 

Children 0-20 yrs 
old from Seattle, 

WA area 

PON1 interaction with insecticide 
(chlorpyrifos, diazinon) found non-significant 
risk increase in inefficient promoter allele (1.4; 
1.0-2.2); children whose mothers treated home 
for pests during pregnancy or childhood (2.6; 
1.2-5.5) and PNET alone (2.4; 1.1-5.4) reached 
significance in inefficient allele however 

Rajaraman 
2006 [145] 

Glioma(382); 
Meningioma 

(158) 

Adults from 
Phoenix, AZ, 

Boston, MA, and 
Pittsburgh, PA 

Lead exposure and ALAD gene found 
significant increased risk for meningioma and 
ALAD2 variant allele in a dose dependent 
fashion (1.1; 0.3-4.5 to 5.6; 0.7-45.5 to 12.8; 
1.4-120.8) 

Schwarzbaum 
2007 [146] 

Glioblastoma 
(329); 

Meningioma 
(546) 

Adults from 
Sweden, southeast 

England, 
Denmark, and 

Finland. 

No associations between the GSTM3, GSTP1,
NQO1, CYP1A1, GSTM1, or GSTT1 
polymorphisms and adult brain tumor risk with 
the possible exception of a weak association 

between the G-C (Val-Ala) GSTP1 105/114 
haplotype and glioma [odds ratio (OR), 0.73; 
95% confidence interval (95% CI), 0.54, 0.99], 
nor was there an interaction between the effects 
of the GSTM3 or GSTP1 polymorphisms and 
cigarette smoking. 

Barnette 2004 
[148] 

Glioma (32); 
Medulloblastoma 

(20); 
Neuroblastoma 

(18) 

Children 0-18 yrs 
old from Utah 

SNP’s in GSTM1, GSTM3, GSTP1, and 
GSTT1 were analyzed. The relative risk of glial 
brain tumors was 4.9-fold higher for subjects 
carrying one non-null (GSTM1*A) allele of 
GSTM1 in comparison to subjects with two null 
alleles (95% confidence interval 1.5–16, P = 
0.009). 

Ezer 2002 
[147] 

394 brain tumors 
(221 adult and 
173 pediatric 

cases consisting 
of 197 astrocytic 

and 197 non-
astrocytic 
tumors) 

Children and 
adults 

SNP’s in GSTM1, GSTT1, and GSTP1 were 
analyzed.  Significant increases in the 
frequencies of the functional GSTM1 allele in 
high-grade pediatric astrocytomas (p < 0.002), 
the rare GSTP1 variant Val114/Val114 in 
pediatric astrocytomas (p < 0.002), and the rare 
GSTP1 Val114/Val114 genotype among 
pediatric tumors showing microsatellite 
instability (MSI) due to defects in mismatch 
repair (MMR) proteins (p = 0.003). 

Lai 2005 [149] 
Glioma (1,630); 

Meningioma 
(245) 

Meta-analysis of 8 
studies on adults, 
5 of which were 
from the United 

States 

No association between any of the GST variants 
and the risk of glioma ( 1.08; 0.95-1.22).  
Subgroups of glioma also showed no 
association.  The T1 null genotype was 
significantly associated with a risk of 
meningioma (1.95; 1.02-3.76) 

Sirachainan 
2008 [154] 

Gliomas (31); 
Embryonal (28); 
Germ cell (13); 
Meningioma (1) 

Children from 
Thailand 

Increased risk of embryonal CNS tumors for 
homozygous CC allele of MTHFR A1298C 
(OR: 3.9; 95% CI: 1.3–11.4, p = 0.02) 
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Study 
Reference 

Tumor Type (n) Population 
Results (risk estimate; 95% Confidence 

Interval) 

Kafadar 2006 
[155] 

74 tumors total 
(Glioma; 

Meningioma) 

Adults from 
Turkey 

Though not significant (p =0. 194), the 
homozygous MTHFR TT genotype was found 
at a higher frequency in glioma patients 
compared to controls (15.4% and 7.1%, 
respectively). The MTHFR genotype was not 
associated with meningioma patients. Defining 
patients with the CC genotype as reference, the 
relative risk of glioma for subjects with the T 
allele (CT+ TT genotype) was 1.17. 

 

supplementation of rats with phytochemicals.  Rats fed a diet high in phytochemicals 

show both reduced incidence and aggressiveness of tumors and was associated with an 

increase in bcl-II and catalase and a decrease in ki-67, sod-1 and sod-2 transcripts [156].  

This result correlates with an epidemiology study on adult glioma which showed reduced 

risk of glioma for those consuming a diet high in phytoestrogens [157]. 

 

VII. CONCLUSIONS 

There is a growing body of scientific evidence suggesting that there are critical periods 

of time extending from conception to puberty when the central nervous system in 

children may be more affected by toxic exposures.  While only 1% of pediatric brain 

tumors are diagnosed at birth or in the first few months of life, the majority of pBTs 

occur early in childhood, strongly suggesting that both prenatal and postnatal exposures 

may be involved in their etiology.  These exposures likely interact with the 

genome/epigenome of the fetus or young child to produce alterations in their genetic 

makeup which can predispose to development of disease including pBTs.  Importantly, 

the ability of environmental exposures to cause micronuclei, chromosomal aberrations, 

sister chromatic exchanges, DNA adducts, DNA single-strand breaks, and somatic 
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mutations in the DNA of a fetus has been demonstrated.  Furthermore, many of these 

alterations have been shown to predispose to tumor development.  These alterations 

likely play a role in pBT etiology and so we have discussed the frequent alterations.  We 

have also highlighted a role for both developmental pathway alteration and mitochondrial 

dysfunction in the etiology of these tumors.  It is likely, that pBTs result from the 

interplay of environmental factors with these biological mechanisms at critical 

developmental periods in a child’s life.  

Though past research has elucidated several potentially significant environmental, 

genetic and epigenetic factors in pBTs, evidence linking a majority of pBTs to specific 

genetic or environmental exposures is limited.  Factors such as the relatively low 

numbers of accessible tumor tissue for pBTs and the heterogeneity of these tumors have 

contributed to the considerable difficulty involved with determining their etiology.  

Moreover, most epidemiological research on these tumors has not considered important 

factors such as timing of exposure, gene-environment interaction, and gene-gene 

interaction within their design.  Additionally, the ability to appropriately measure levels 

of exposure at time of development or predisposition to disease through molecular 

biomarkers has been limited.  Improved research methods and tools, combined with 

larger studies involving homogenous tumor types, should help answer questions on the 

etiology of pBTs in the future. 

While several genetic disorders have been linked to development of pBTs, it is likely 

that the majority of pBTs are a result of low-penetrant gene alterations in common 

pathways.  Importantly, alterations and pathways that may be important to etiology in 

certain tumor types may not play a role in other pBT types.  It is probable, that 



41 
 

heterogeneity in alterations, and possibly even pathways, exists within tumor groups as 

well.  Identification of which pathways are most significant in the etiology of each pBT 

type will be critical in developing therapies for these tumors.  While therapies for single 

gene mutations have been successful in the past for certain cancers, it appears that 

therapies based on pathway inhibition will prove to be more successful in the treatment of 

tumors that have several mutations throughout a pathway such as pBTs. 
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ABSTRACT 

Pediatric central nervous system tumors (pCNSTs) are the second most common 

malignancy among children less than 20 years of age and the most common solid tumor 

of childhood.  The incidence of these tumors has been steadily increasing over the past 

decades.  The etiology as well as the mechanism of the development of a majority of 

pCNSTs remains elusive. While numerous genetic and epigenetic changes have been 

identified with both development and outcome of pCNSTs, most of these alterations do 

not define a majority of tumors. Though ionizing radiation is a risk factor for pCNST 

development, evidence for the role of other environmental factors such as pesticides, N-

nitroso compounds, and viral infections remain debatable.  It is probable that the etiology 

of pediatric brain tumors, as is the case with most cancers, is multifactorial. Interaction of 

environmental factors with genetic and epigenetic changes may be responsible for the 

development of the particular type of PCNST in an individual. The assessment of gene–

environment interaction in pCNSTs has been more complex because of the lack of sound 

molecular epidemiological studies with a more complete picture of individual cancer risk 

associated with environmental exposure and genetic analysis. The increased susceptibility 

of the developing fetus and child to environmental insults should also be considered as a 

part in the developmental of pCNSTs. This review describes the chromosomal, genetic 

and epigenetic changes found in common pCNSTs, and summarizes the alterations found 

in pCNSTs that may be influence mitochondrial-nuclear signaling and the basis for 

interaction between environment and genetic factors. 
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I. INTRODUCTION 

Pediatric central nervous system tumors (pCNSTs), which may occur in the brain or 

the spinal cord, are the second most common malignancy among children less than 20 

years of age and the most common solid tumor of childhood. The majority of primary 

pCNSTs arise in the cerebellum and brainstem (infratentorial) from glia and are broadly 

categorized as gliomas.  In contrast, most adult CNSTs (aCNST) originate in the 

cerebrum (supratentorial), although examples of childhood supratentorial CNSTs exist 

and vice versa.  Glial tumors are usually broken down into more specific subtypes based 

on their predicted cell type of origin.  The most common glial tumors include 

astrocytoma (from astrocytes), oligodendroglioma (from oligodendrocytes), brain stem 

glioma (from brain stem cells), and ependymoma (from ependymal cells).  Some 

pCNSTs are composed of primitive or undifferentiated cells, as would be expected given 

their origin during early life when the nervous system is still developing.  These include 

the primitive neuroectodermal tumors (PNETs) of the brain, notably medulloblastoma 

(MB), retinoblastoma, ependymoblastoma, and neuroblastoma (NB).   Mixed forms of 
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brain tumors (displaying a neuronal, as well as a glial component) also exist.  Other 

varieties of primary brain tumors include: tumors of the pineal parenchyma (e.g. 

pineocytoma, pineoblastoma), choroid plexus tumors, and neuroepithelial tumors of 

uncertain origin (e.g. gliomatosis cerebri, astroblastoma).  

The incidence of these tumors has been steadily increasing since the early 1980s [1;2].  

The reason for this is unknown.  While some of the heritable genetic risk factors thought 

to play a part in less than 5-10% of all pCNSTs are identified, previous studies have 

failed to produce strong evidence on the genetic alterations that predispose children to the 

remaining 95% of sporadic brain tumors.  Several cellular pathways important to brain 

development have been implicated in the development of pCNST, including the Sonic 

Hedgehog (SHh) pathway, the WNT-wingless (WNT) pathway, and the NOTCH 

signaling pathway.  During normal cerebellar development, these signaling pathways 

regulate growth and differentiation of granule cell precursors (GCPs) and neural stem 

cells.  Mutations that activate these pathways can cause excessive growth and failure in 

cell differentiation, and thereby predispose to several types of CNST.  However, 

identified changes in these pathways do not define a majority of pCNSTs. It appears that 

genetic alterations in pCNST are very subtle. Recent observations implicate a 

combination of genetic and epigenetic changes induced by environmental factors in the 

etiology of CNSTs. Therefore, the focus of this paper is on the role of gene mutations, 

single nucleotide polymorphisms (SNP) of genes, and epigenetic changes in the 

development of common pCNSTs. Chromosomal, genetic and epigenetic changes found 

in common pCNSTs, in addition to alterations found in pCNSTs that may be influenced 
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by mitochondria signaling are described.  Finally, environmental exposures and their 

interaction with genetic influences in relation to CNST development are discussed. 

 

II. ENVIRONMENTAL FACTORS AND pCNST 

The etiology of pCNSTs is largely unknown, though several genetic disorders are 

known risk factors for their development including neurofibromatosis type 1, Li-

Fraumeni syndrome, basal cell nevus (Gorlin’s) syndrome, Turcot syndrome, and ataxia 

telangiectasia. The role of environment in the etiology and development of pCNSTs is 

not very clear. Here the environment is defined as everything that surrounds us, i.e., air, 

water, diet, home, workplace, etc. It is becoming more evident that not only can drugs 

and environmental stressors interfere with normal fetal development by causing structural 

malformations, but that exposure to environmental stressors during development can also 

cause biochemical and functional abnormalities. In utero exposure to several drugs and 

environmental hazards has been proposed to be a primary cause for the increased 

incidence of childhood brain cancers, which poses a significant clinical problem. Some 

suspected in utero carcinogens include benzene, pesticides, trichloroethylene, ethanol, 

arsenic, cigarette smoke, and infectious biological agents.  Early childhood exposures 

may also influence both aCNST and pCNST development and evidence that pesticides 

can influence glial development and differentiation well into childhood support this view 

[3].  Furthermore, many substances, such as 1,3-Butadiene and N-Nitrosomethylurea, 

have been shown to induce neurogenic tumors in animals, with both the fetus and 

neonatal animals being at dramatically increased susceptibility to CNST development 

compared to adults [4]. 
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Aside from the extremely rare genetic conditions mentioned above, the only 

unequivocally identified risk factor is exposure to ionizing radiation, and this explains 

only a very small fraction of cases. The most consistent link between exposures and 

pCNST development aside from radiation is that for maternal consumption of cured 

meats, but whether a dietary component is responsible has not yet been revealed. A 

majority of epidemiological studies investigating pesticides and cancer risk have reported 

positive associations, with the risks for children generally higher than adults. While the 

consistency of results may be affected by type of pesticides being evaluated, exposure 

circumstances, and tumor classification standards, there is a considerable amount of 

epidemiological evidence that supports a link between pesticide exposure and pCNSTs.  

Several viruses have been investigated as causative agents in brain tumors.  For instance, 

JC virus, a type of polyoma virus, and T-protein, an oncogenic virus product, have been 

detected at significant levels in PNETs and other tumors [5], though these results are 

challenged by negative results in other studies [6-10].  The ability of MBs to be induced 

by JC virus in mice models has also been demonstrated however [11;12].  Parental 

exposure to heat and electromagnetic fields, parental occupational exposure to chemicals, 

tobacco exposure, maternal hair dye use, and exposure to several medications and 

vitamins have also been investigated as potential etiologic factors, with equivocal results 

being found.  Many of these exposures could certainly play a role in the etiology of 

pCNST however, as the high rates of cell proliferation and differentiation during 

development and childhood increases susceptibility of cells to mutagenic and epigenetic 

alteration.  In addition, the blood-brain barrier, which acts as a barrier to potentially 

harmful substances, is not fully developed in the fetus and can allow harmful substances 
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to reach sensitive organs such as the brain. In fact, in utero DNA damage resulting from 

environmental pollution has been associated with somatic gene mutation in newborns 

[13].  It appears that exposure to environmental factors may influence the development of 

pCNSTs, and they likely interact with genetic and epigenetic components. 

 

III. MOLECULAR CHANGES IN DIFFERENT TYPES OF pCNST 

One of the critical issues involving CNST molecular biology has been the inability to 

determine the cell of origin of each individual tumor type. The three main cell types from 

which these tumor precursor cells are thought to arise are neural stem cells, precursor 

cells, or differentiated cells. Genetic changes in each cell type have been associated with 

CNST development [14].  It is likely these genetic changes, which may be either 

inherited or somatic in nature, deregulate normal proliferation and differentiation, and 

initiate tumor formation.  Therefore, most pCNSTs (which are predominantly immature 

tumors) most likely arise from neural stem cells (which produce both glial and neuronal 

cells) or progenitor cells in their respective precursor cell type (i.e.  neuronal precursor 

cells for MBs), while most adult tumors probably form from differentiated cell types (i.e. 

astrocytes in astrocytoma) that have acquired stem cell-like or progenitor cell-like 

properties [14]. For a complete review of the current information on cell of origin in brain 

tumors the reader is referred to a 2006 review by Read et al. [14].   

Several cellular pathways important to brain development have been implicated in the 

development of pCNST, including the Sonic Hedgehog (SHh) pathway, the WNT-

wingless (WNT) pathway, and the NOTCH signaling pathway.  During normal cerebellar 

development, these signaling pathways regulate growth and differentiation of granule cell 
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precursors (GCPs) and neural stem cells.  Mutations that activate these pathways can 

cause excessive growth and failure in cell differentiation, and thereby predispose to 

several types of CNST.  Identified changes in these pathways do not define a majority of 

pCNSTs however, and few other significant genetic changes in these tumors have been 

established.  In fact, tumors arising in different regions of the brain retain distinct patterns 

of gene expression, though cells in different parts of the brain carry the same genes. This 

happens because different parts of the brain also contain factors that modify the use of 

those genes, suppressing some genes and activating others to allow the cells to take on 

specialized characteristics as the brain matures. Most of molecular and epigenetic 

changes have been identified in medulloblastoma, astrocytoma and neuroblastoma, and 

therefore, here, we discuss chromosomal, molecular and epigenetic changes in these three 

types of CNSTs. 

 

Medulloblastoma (MB) 

PNETs are commonly divided by tumor location into infratentorial PNET (iPNET) 

and supratentorial PNET (sPNET), with iPNET being the more common tumor type.  

MB, the most common iPNET, is an invasive embryonal tumor that originates in the 

cerebellum and is most commonly seen in children three to eight years of age.  They are 

the most common non-glial brain tumor, comprising approximately 25% of all pCNSTs 

[15].  Additionally, they are the most common malignant brain tumor of childhood [15], 

though sPNETs are generally considered to be a more aggressive tumor group than MB 

[16].  The two major subtypes of MB are classic MB (75 to 80% of all MBs), the most 

common tumor type which is found predominantly in children, and desmoplastic MB (15 
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to 20% of all MBs), which occurs much less frequently and is more common in adults.  

Classic MB is usually found in the midline, especially in the posterior vermis, while the 

desmoplastic subtype arises most commonly in the cerebellar hemispheres. A common 

variant that exists within these two subtypes is a typically more aggressive tumor type 

described as large cell/anaplastic (LC/A) MB.  For an in-depth review of clinical factors 

related to medulloblastoma development and survival please see Sarkar et al. 2006 [17].  

The most common alterations in pediatric MB are summarized in Table 2-1. 

Chromosomal Abnormalities: The most frequent genetic alteration, occurring in >70% 

of MB, is isochromosome 17q [i(17q)], which often occurs in conjunction with partial or 

complete loss of 17p, found in 30-60% of cases.  Monosomy 17, interstitial deletion and 

unbalanced translocation have been identified within this chromosome and contribute to 

these alterations [18-33].  Although loss of 17p is not specific for MB, it occurs at a 

higher frequency in MB than in any other tumor.  Specific loss at 17p13.3 has been 

identified in 38% of MB [34].  Attempts to identify genes on 17p which may be 

important to tumorigenesis, including p53, have produced negative results [20;35;36].  

Whether 17p deletion is associated with poor outcome is debated, with several studies 

finding these alterations produced poor therapeutic outcome, metastatic disease, and a 

shorter survival time [18;29;34], while others countered this finding [21;26]. The 

alterations are more frequent in the more aggressive LC/A MBs compared to classic MBs 

[37], and are absent in most nodular/desmoplastic MBs [38].     

Several other abnormalities occur in most MB, including loss of heterozygosity (LOH) 

on 7q, 8p, and 16q, which have been reported in 60-70% of cases [33].  8p contains a 

homozygous deletion on 8p22-23.1 and therefore could contain a yet to be identified gene  
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Table 2-1. Common susceptibility genes of pediatric medulloblastoma. 

Gene Name 
Gene 

Symbol 
Pathway/Function 

Type of 
Alteration 

Frequency 
of Alteration 

Reference  

Patched PTCH 
Sonic Hedgehog 
(SHh) Pathway 

Somatic 
mutation 

10% 

Raffel 1997 
[39]; 

Vorechovsky
1997 [40]; 

Wolter 1997 
[41] 

Smoothened SMO 
Sonic Hedgehog 
(SHh) Pathway 

Somatic 
mutation 

10% 
Taylor 2002 

[42] 
Mutated 

Suppressor of 
Fused  

SUFU 
Sonic Hedgehog 
(SHh) Pathway 

Somatic 
mutation 

5% 
Reifenberger 

1998 [43] 

RENKCTD11 
RENKCTD

11 

Suppressor of 
Sonic Hedgehog 
(SHh) Pathway 

Allelic Deletion 39% 
Di 

Marcotullio 
2004 [25] 

Phosphatase 
and tensin 

PTEN 
Tumor suppressor- 

Akt pathway 
Allelic Loss 19% 

Hartmann 
2007 [44] 

Adenomatous 
polyposis coli 

APC 
WNT-Wingless 

Pathway 
Somatic 
mutation 

3-13% 

Koch 2001 
[45]; Eberhart 

2000 [46]; 
Zurawel 2000 

[47] 
β-catenin 
(cadherin-
associated 
protein) 

CTNNB1 
WNT-Wingless 

Pathway 
Somatic 
mutation 

6% 
Zurawel 1998 
[48]; Dahmen 

2001 [49] 

Axin1/Axin2 
Axin1/Axi

n2 
WNT-Wingless 

Pathway 
Point mutation/ 

deletion 
5% 

Koch 2007 
[50]; Koch 
2001 [45]; 

Dahmen 2001 
[49] 

v-myc 
myelocytom-
atosis viral 
oncogene 

c-myc or 
N-myc 

Oncogene Overexpressed 5-15% 

Aldorasi 2002 
[51]; Avet-

Loiseau 1999 
[52] 

p53   p53 p53-ARF Pathway  
Somatic 
mutation 

10% 
Frank 2004 

[53] 

P14ARF P14ARF p53-ARF Pathway Methylation 10% 
Frank 2004 

[53] 
INK4AARF 

(p16) 
INK4AARF 

(p16) 
p53-ARF Pathway Deletion 10% 

Frank 2004 
[53] 

Neurotrophic 
tyrosine 
kinase, 

receptor, type 
3 
 

TrkC 
Neurotrophin 

Pathway 
Overexpressed 48-85% 

Tajima 1998 
[54]; 

Washiyama 
1996 [55] 

Platelet-
derived 

growth factor 
receptor α 

PDGFR-α 
PDGFR-Ras-

MAPK 

Synonymous 
Sequence 
Variation 

7% 
Gilbertson 
2006 [56] 
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Gene Name 
Gene 

Symbol 
Pathway/Function 

Type of 
Alteration 

Frequency 
of Alteration 

Reference  

Forkhead box 
G1 

FOXG1 

Theorized 
repressor of TGF-α 
induced expression 

of p21cip1 and 
cellular growth 

Copy gain 
between 2 and 

21 fold 
93% 

Adeesina 
2007 [57] 

RAS 
association 

domain family 
1A 

RASSF-1A 
Candidate tumor 

suppressor 
Transcriptionally 

silenced 
79% 

Lusher 2002 
[58] 

Orthodenticle 
homeobox 2 

OTX2 Oncogene Overexpressed  
93% of Large 
cell/Anaplas-

tic MB 

Di Sapio 
2005 [59] 

Paired box 5 PAX5 
Developmental 

control  
Overexpressed 70% 

Kozmik 1995 
[60] 

Caspase 8 Caspase 8 Apoptosis factor 
Transcriptionally 

silenced 
62% 

Gonzalez-
Gomez 2004 

[61] 
Hypermethyl-
ated in cancer 

HIC-1 
Candidate tumor 

suppressor 
Transcriptionally 

silenced 
72% 

Rood 2002 
[62] 

Secretory 
granule 

neuroendocri
ne protein 1 

SGNE1 
Inhibits 

proliferation 
Transcriptionally 

silenced 
50% 

Waha 2007 
[63] 

 

important to MB development [33].  Loss of chromosome 10q is also frequently seen in 

MB (40% of cases) [33;64], as is loss of chromosome 1q (20% of cases) [23;32;64-69].  

The most frequent abnormalities in chromosome 1 include unbalanced translocations, 

deletions and duplications and rearrangements of chromosome 1 have been shown to 

result in trisomy 1q without loss of the p-arm.  In addition, deletions in X, 1p, 3q, 6q, 8q, 

8p, 9q, 11p, 11q, 16q, and 18 and gains in 1p, 1q, 3q, 4p, 5p, 5q, 7q, 8q, 9p, 11p, 12q, 

13q, and 14q have been observed at lower rates [31;32;64;69-72], though some are only 

common in certain subtypes such as gains of 11p, 13q, and 14q in LC/A MBs [71].  

Trisomy of chromosome 7 [19;24;66;73] is also a common chromosomal alteration in 

MB, though it appears in most tumors with i(17q) and thus is most likely a secondary 

change unimportant to tumor initiation [74].   Loss of 9q, which contains the tumor 
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suppressor gene patched (PTCH) at locus 9q22.3, has been linked to poor outcome [75].  

Yin et al. 2001 identified the regions 10q25, 11p13-11p15.1 and 16q24.1-24.3 as 

showing LOH and being localized to the deleted in malignant brain tumors (DMBT1) 

gene site [69].  Amplification of N-myc and anonymous oncogenes at 2q12-22 and 17p11 

have also been detected in a set of LC/A MBs [71].  Finally, deletion of chromosome 22 

has also been reported in approximately 10% of these tumors [24;73;76], though some 

reports argue against the overall importance of this change [19;64], and misdiagnosis has 

been suggested as a possible explanation for this discrepancy [19]. 

Several more defined chromosomal regions that may contain oncogenes for MB have 

been identified by comparative genomic hybridization (CGH) and include chromosomal 

gains of 1q21.3-q23.1, 1q32.1, 2p21, 2p23.1-p25.3, 7, 5p15.3, 8q24, 9q34.13-q34.3, 

11q22.3, 17p11.2-q25.3, and 20q13.31-q13.33, and losses of 1q23.3-q24.2, 2q13.12-

q13.2, 3q26.1, 4q31.23-q32.3, 6q23.1-25.3, 8p22-23.3, 10q24.32-26.2, 12q13.12-q13.2, 

and 16q23.2-q24.3 [77-79].  Oncogene amplifications that have been identified using 

CGH in MB include D17S1670 (61.5% of tumors), PIK3CA (46.2%), PGY1 (38.5%), 

MET (38.5%), ERBB2 at 17q21.2 (38.5%), CSE1L (38.5%), PGY1 at 7q21.1, and 

MDM2 at 12q14.3-q15 [79].   

Gene Alterations: Several inherited genetic diseases predispose affected individuals to 

MB development, including the autosomal dominant disorder Gorlin’s syndrome and 

Turcot’s syndrome.  Somatic mutations in the Gorlin’s syndrome gene PTCH are found 

in approximately 10% of patients with sporadic MB [39-41;80;81].  This inactivation of 

PTCH, which leads to upregulation of the SHh pathway, appears to be more prevalent in 

desmoplastic MBs, along with loss of chromosome 9q, while loss of 17p, HIC-1 
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inactivation, and myc amplification are more prominent in classic MB [80;82;83].  

Mouse models for inactivation of PTCH also show development of MB [84;85].   

While PTCH is found mutated in sporadic MB at a relatively low frequency, other 

members of the SHh pathway are also mutated in MB and aberrant activation of this 

pathway is found in approximately 25% of cases [40;86;87] Reviewed in [88;89].  The 

hedgehog signaling pathway is one of the key regulators in brain development as it has 

been shown to control proliferation and differentiation of granule cell precursors (GCPs).  

Deregulated proliferation of these progenitor cells through activation of the SHh pathway 

can result in MB [90;91].  SHh activates patched (PTCH) which then interacts with 

Smoothened (SMO) and its downstream targets such as Fused (Fu) and Mutated 

Suppressor of Fused Homolog (SUFU), leading to signaling to Gli proteins to translocate 

to the nucleus and transcribe target genes [92].  Studies in the brain demonstrate that SHh 

signaling leads to increased Mycn transcription [93], which as described later, is 

implicated in CNST development as well.  While most SHh mutations are predominantly 

found in the desmoplastic subtype [40;80;87], they are reported in classic MB as well 

[39;41].  SUFU is found in approximately 10% of MB [87] while SMO is mutated in 

approximately 5% of tumors [43].  Furthermore, SUFU activation has been reported to 

result in overactivity of both the SHh and WNT signaling pathways, leading to excessive 

proliferation and failure in cell differentiation resulting in MB [94].  Along with 

mutations in SUFU and SMO, gene mutations in PTCH2, a PTCH homolog have also 

been identified [95].  In contrast to the above results, Chiappa et al. (1999) found no 

evidence for mutations in genes of the SHh pathway other than PTCH in 27 

medulloblastomas.  A negative regulator of the SHh pathway, RENKCTD11 (located at 
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17p13.2), shows allelic deletion in 39% of sporadic MBs and is significantly 

underexpressed in MB [25].  RENKCTD11 has been shown to inhibit MB growth by 

counteracting the SHh induced nuclear transfer of the transcription factor Gli, which 

regulates expression of several genes including N-myc, cyclin D, PTCH1, and Gli1 

[25;96;97].  Many of these target genes have been shown to exist at elevated levels in 

both major MB subtypes including PTCH1, Gli1, and N-myc [43;82;98;99].   

SHh signaling has also been found to interact with other genes that promote cell cycle 

progression or cell survival in MB.  For instance, hyperactive insulin-like growth factor 

(IGF) signaling enhances SHh-induced formation of MB [93;100], possibly through 

cooperative control of N-Myc, as SHh stimulates transcription of N-myc while IGF 

stabilizes N-myc [101].  MBs frequently overexpress the anti-apoptotic factor Bcl-II 

[102], and dysregulated apoptosis as a result of Bcl-II overexpression cooperating with 

SHh-stimulated proliferation appears to transform GCPs to form MBs [103].  SHh 

pathway target Gli1 is also significantly correlated with Bcl-II expression in MB and both 

proteins have been shown to be present in regions of decreased apoptosis in desmoplastic 

MB [104].    Alternatively, phosphatidylinositol 3-kinase (PI3K) signaling may also be an 

anti-apoptotic factor in SHh transformation of GCPs to aggressive MBs as elevated levels 

of Akt combined with no upregulated expression of Bcl-II was found in SHh induced 

MBs [103]. In fact, it appears that dysregulation of PTEN leading to activation of the 

PI3K/Akt pathway may play a significant part in medulloblastoma pathology [100].  

Animal models show that SHh induced formation of medulloblastomas is significantly 

enhanced by activation of the PI3K/Akt signaling pathway [93]. Proliferation of 

medulloblastoma cell lines is dependent on PI3K/AKT signaling, whereas apoptosis is 
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not significantly affected [100].  Allelic loss of PTEN has been found in 16% of the 

medulloblastoma cases and PTEN mRNA and protein levels are significantly lower in 

medulloblastomas compared with normal cerebellar tissue of different developmental 

stages, and reduction of PTEN expression was found associated with PTEN promoter 

hypermethylation in 50% of the MB tissue samples [100]. 

WNT pathway alterations have also been linked to MB (15% of cases), mostly of the 

classic MB type [reviewed in [88;89]].  Adenomatous polyposis coli (APC), a gene 

whose germline mutation is linked to development of Turcot’s syndrome, is found 

mutated in sporadic medulloblastoma (3-13%) [45;47;48;105-107].  In addition, the Wnt-

wingless pathway partner of APC, β-catenin (CTNNB1) is also found mutated in a small 

subset of sporadic MBs (~6%) and converts a GSK-3beta phosphorylation site from 

serine to cysteine [48;49].   Mutations in GSK-3beta itself have not been identified [108].  

Finally, mutations in another WNT pathway gene, Axin1/Axin2, including a single 

somatic point mutation in exon 1 (Pro255Ser) and seven large deletions, have also been 

detected in MB (~5%) [45;49;50], and their potential to activate oncogenic activity in the 

Wnt signaling pathway has been established [50].  All of these alterations influence 

translocation of β-catenin to the nucleus and activation of its target genes, including myc, 

in MB.  Nuclear accumulation of β-catenin predicts a favorable outcome in pediatric MB 

[109].   

Amplification of the Myc genes (c-myc and N-myc) is present in 5-15% of MBs 

[32;51;71;110-113], and is more common in the aggressive LC/A type [34;114;115].  

Myc is activated by various mitogenic signals including those from pathways important 

to CNST development such as SHh and WNT.  Myc target genes in MB are primarily 
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involved in cellular growth and metabolism, cell proliferation including rapid expansion 

of progenitor cells during neurogenesis, cell cycle regulation and differentiation, and 

stem cell self-renewal [116-119].  While the variations of Myc can perform each other’s 

functions, it appears they function independently as well, modulating the expression of 

their targets based on cell type and environment [119;120].  New research shows that 

Myc induces mt gene expression and mt biogenesis, thereby directly linking Myc’s 

regulatory properties to the production of mitochondrial ROS and the promotion of 

genomic oxidative damage and instability [121].  Several studies of myc amplification or 

mRNA overexpression have linked the gene to aggressive clinical behavior in MB 

[51;75;110;112;122-124].  In addition, low N-myc expression has been related to higher 

survival rates [125].  Furthermore, c-myc alterations in combination with loss of 17p 

appear to produce a more aggressive MB [75].   

Defects in the p53-ARF pathway MB including p53 mutation, methylation of P14ARF 

or deletion of INK4AARF exist in ~20% of MB [53].  These pathway alterations are found 

more frequently in the LC/A MB tumor type, linking them to a more aggressive tumor 

type [53].  Mutations in the p53 gene itself, located in the 17p region at 17p13.1, are 

infrequent in MB however [20;36;71;126;127], though they may reduce survival 

(Woodburn et al. 2001).  Overexpression of Bmi1, which represses the ink4a/Arf tumor 

suppressor and is located on chromosome 10p, is strongly expressed in proliferating 

cerebellar precursor cells of mice and humans.  It is also coexpressed with the SHh 

pathway gene PTCH in a significant number of MBs and likely plays an important role in 

the proliferation of GCP cells [128]. 
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Several growth factors and transcription factors involved in neuronal growth, 

differentiation, survival, and apoptosis have also been investigated in relation to MB 

development.   Several members of the Neurotrophin signaling pathway including the 

neurothrophins NGF, BDNF, NT3   and the receptors p75, Tyrosine receptor kinase A 

(TrkA), TrkB, and TrkC are all expressed in MBs.  One of these, TrkC, which mediates 

the functional signals of neurotrophins, is overexpressed in 48-85% of MBs [54;55] and 

has been reported to be the single most powerful independent predictor of favorable 

outcome for MBs [17;123;125;129-132].  Only Gajjar et al. have found no evidence of 

TrkC affecting clinical presentation [133].  

The PDGFR-Ras/MAPK pathway, which is potentially involved in N-nitroso 

compound (NNC)-induced brain tumors in animals [134], has been shown to be activated 

in MB, and seems to be particularly important for metastatic MB [135;136].  A gene 

expression profile study found the platelet derived growth factor receptor alpha (PDGFR-

α) and the Ras/mitogen-activated protein (MAP) kinase pathway genes to be related to 

metastasis in MBs [136].  Known mutational ‘hotspots’ in PDGFR-α, NRas, KRas, HRas, 

BRAF, and PDGRF-β were not found in one MB study on this pathway, with the 

exception of a synonymous sequence variation in PDGFR-α (CCG to CCA; PRO 567 

PRO) that was found in approximately 7% of tumors (2 of 28 tumors studied), suggesting 

that this mutation may be associated with MB development in certain cases [56].  Wasson 

et al. also found no amplification in Hras, Kras, or Nras in 20 analyzed MBs [137].  One 

study did find N-ras mutations of codon 61 in 10% (3 of 32 cases) of MB however, 

including a C to A mutation at position 1 (leading to a substitution of a glutamine residue 

for a lysine) and an A to T mutation at position 3 (glutamine-histidine) [138].  A separate 
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mutation in pediatric supratentorial PNETs has been found as well.  An activating point 

mutation in KRAS [G to A transition in position 2 of codon 12, substituting aspartate 

(GAT) for glycine (GGT)] was detected in 1 of 3 sPNETs that developed after 

prophylactic central nervous system (CNS) treatment for leukemia or lymphoma [139].   

ErbB2 (aka HER2/neu) and neuregulin-1b (NRG-1b), part of the ErbB growth factor 

receptor signaling pathway involved in cerebellar development, appear to play significant 

roles in MB tumorigenesis also.  ErbB2 is expressed in >80% of MBs, while NRG-1b is 

expressed in 87.5% of MBs [140-144].  Again however, the Gajjar et al. 2004 study 

disagreed with the consensus as ErbB2 was expressed in only 40% of tumors [133].  

Reduced survival and increased ErbB2 expression has also been associated in several 

studies [133;140;142;143;145].  FOXG1, a theorized repressor of TGF-α induced 

expression of p21cip1 and cellular growth which interacts with NOTCH signaling, shows 

copy gain between 2 and 21 fold in 93% of MB [57].  Finally, several members of a 

family of transcription factors involved in regulation of neuronal differentiation, the 

NueroD family, were found to be expressed only in PNETs in a study on a series of 

different brain tumor types, indicating they may be important to MB development as well 

[146].   

Several other genetic changes, some also involved in neuronal differentiation, have 

been identified in relation to development of MBs.  Amplification of the oncogene OTX2 

has been described in 93% (14 of 15) anaplastic MBs [59].  Inactivation of RASSF-1A, 

located at 3p21, was found in 79% of MBs, regardless of pediatric or adult status and/or 

MB type [58].  The developmental control gene PAX5 is expressed in 70% of MB and 

was not found expressed in normal neonatal cerebellum tissue, indicating that PAX5 is 



74 
 

deregulated in MB [60].  Pomeroy et al. found the GCP transcription factors Zic1 and 

SSCL1 to be most closely correlated to MBs [82].  Upregulated genes correlated with 

favorable outcome in this study were involved in cerebellar differentiation [vesicle coat 

protein β-NAP, NSC1, Tyrosine receptor kinase C (TrkC), sodium channels], and genes 

encoding extracellular matrix proteins [procollagen-lysine-2-oxoglutarate 5-dioxygenase, 

lysyl hydroxylase, collagen type V α-I, elastin].  Poor prognosis was correlated with 

underexpressed cerebellar differentiation genes and overexpressed cell proliferation and 

metabolism genes [MYBL2, enolase I, LDH, HMG1 (Y), cytochrome C oxidase] and 

multidrug resistance [sorcin gene].  Other investigators have also found overexpression of 

GCP related genes in MB, including p75NTR, Math1, and the previously mentioned Zic1 

[82;147-149], though GCP marker expression tends to be seen more often in the 

desmoplastic form of MB found predominantly in adults.  In contrast, classic MB are 

associated with expression of markers of non-granule neurons such as calbindin-28k, a 

major calcium binding protein in the brain located predominantly in the cytosol [150] . 

Calbindin appears to play a role in reduction of intracellular calcium levels and calcium 

induced apoptosis in neurons and astrocytes [151;152].  Calbindin-d(28k)-positive MBs 

show increased aggressiveness, are associated with a high risk of death and recurrence, 

and are more frequently seen in a patients younger than 15 years old [150].  

Other genetic alterations reported include findings of high levels of a stem-cell 

marker, the glycoprotein CD133, in both MB tumor subtypes, suggesting that stem cells 

could provide the origin of both MB types [153;154].  Manganese superoxide dismutase 

(MnSOD) was overexpressed in MB in one study [155] and decreased in another[156], 

while catalase (CA) and GSH-Px have not been found to be increased in MB [156]. 
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Epigenetic Alterations: Several recent studies have identified the tumor suppressor 

genes RASSF1, Caspase 8, and HIC-1 as being transcriptionally silenced in over 60% of 

MB cases [61;62;157-159].  Hypermethylation of HIC-1, which is located at 17p13.3, has 

also proven to be a predictor of poor outcome [62].  Recently, Waha et al. 2007 identified 

a hypermethylated CpG island which led to silencing of the proliferation inhibiting 

secretory granule neuroendocrine protein 1 (SGNE1) gene in 50% of MBs analyzed 

(n=50), though no mutations were identified in the SGNE1 (SGNE1 is the human 

homologue of 7B2 located at 15q11-15).  Reports on methylation in MB have also 

identified p14ARF, p16INK4A, TP73, TP53, RB1, RASSF1A, HIC1, EDNRB, CASP8, 

DAPK, CDH1, THBS1, TIMP3, GSTP1, MGMT, INK4C (CDKN2C), and MCJ as 

showing methylation in MB, albeit at a frequency <20% [158;160].  

  

Astrocytoma 

Astrocytoma is the most common CNST, comprising 60% of cases of the disease 

overall, and 40% of all pediatric cerebral tumors [15;161].  It is divided into four WHO 

grades: Grade I pilocytic astrocytoma (aka juvenile pilocytic astrocytoma) predominantly 

occur as a benign cerebellar and midline structures tumor in children; Grade 2 diffuse 

astrocytomas (includes fibrillary, protoplasmic, and gemistocytic variants) are benign 

well-differentiated tumors seen primarily in 20-40 year olds, but also occur frequently in 

pediatrics, especially in the brain stem; Grade III anaplastic tumors are malignant tumors 

predominantly affecting the cerebrum of 40 year old patients; and the most common and 

malignant type overall, Grade IV glioblastoma multiforme (GBM), a necrotic tumor 

which targets patients in their 50’s or 60’s, though this is the most common tumor of the 
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brain stem in children.  In contrast to adults who more often have an aggressive high-

grade tumor (Grades III and IV), the low-grade types (Grade I and II) are the most 

common type of astrocytomas in childhood, though approximately 15-20% of all 

pediatric astrocytomas are Grade III and IV astrocytomas [162].  (CBTRUS 2007 Report) 

A more severe pilocytic astrocytoma subtype, pilomyxoid astrocytoma, also exists and is 

frequently found in children less than 3 years of age [38].  As with medulloblastoma and 

all CNST, debate continues as to whether astrocytomas arise from differentiated 

astrocytes, astroglial progenitor cells, or neural stem cells.  In addition, an inherited 

disease is also associated with development of this brain tumor, as individuals with 

neurofibromatosis type I (NF1), are at greatly increased risk of developing pilocytic 

astrocytomas.  Table 2-2 summarizes genetic alterations in astrocytoma. 

Cytogenetics: Very few studies have evaluated the genetics of pediatric astrocytomas, 

however most show significant differences in cytogenetic abnormalities between grades 

of pediatric astrocytomas and between pediatric and adult astrocytomas.  While most 

cytogenetic analysis of pilocytic astrocytoma show normal chromosomal arrangement 

[163-165], gains of chromosome 7 and 8 are observed in approximately one-third of 

cases, and loss of 22q is reported in 20-30% of cases [166].  These gains were not found 

in one study of low-grade astrocytomas [166], however another study identified trisomy 7 

in this tumor type [167].   Other abnormalities observed in pilocytic tumors include gains 

of chromosomes 10p, 11 and 12p, losses on chromosomes XY, 1p, 4q, 9p, 11p, 16p, 18, 

and 19, and telomeric associations [165;166;168;169].  Some authors have also suggested 

that chromosomal arrangements define two subtypes of pilocytic astrocytoma, mainly 

one group showing deletions on chromosome 19 and another group showing gains on 19p 



77 
 

Table 2-2. Common susceptibility genes of pediatric astrocytoma. 

Gene Name 
Gene 

Symbol 
Pathway/Function 

Type of 
Alteration 

Frequency of 
Alteration 

Reference 

Neurofibro-
matosis 1 

NF1 
Susceptibility  

gene for 
Neurofibromatosis 

Overexpress-
ion/mutation 

Common in 
pilocytic 

astrocytoma 
Platten 1996 [170] 

Epidermal 
growth factor 

receptor 
EGFR 

Member of ErbB 
family of growth 

factors 
Mutation 

Rare in 
pediatric 
tumors; 

common in 
adult tumors 

Bredel 1999 
[171]; Cheng 

1999 [172]; Sung 
2000 [173] 

Platelet-
derived growth 

factor 
receptor- α 

PDGFR-
α 

PDGFR-Ras-
MAPK 

Mutation 

Rare in 
pediatric 
tumors; 

common in 
adult tumors 

Bredel 1999 
[171]; Di Sapio 

2002 [174]; 
Nakamura 2007 

[175] 

PTEN PTEN Tumor Suppressor 
Homozygous 

deletion 

8% in high-
grade 

pediatric 
astrocytoma 

Cheng 1999 
[176]; Raffel 1999 
[177]; Watanabe 

1996 [178] 

p53 p53 
p53-MDM2-

p14ARF 
Mutation 

28-38% of 
high-grade 
pediatric 

astrocytoma 

Cheng 1999 
[176]; Felix 1995 
[179]; Nakamura 

2007 [175]; 
Pollack 1997 
[180]; Pollack 

2001 [181]; 
Pollack 2002 

[182]; Sure 1997 
[183] 

MDM2 MDM2 
p53-MDM2-

p14ARF 
Overexpressi

on 

67% of 
pediatric 
malignant 

astrocytoma 

Sung 2000 [173] 

p14ARF p14ARF 
p53-MDM2-

p14ARF 
Homozygous 

Deletion 

10% of 
pediatric 

glioblastoma 

Newcomb 2000 
[184] 

Ras-Akt 
pathway  

Ras-Akt 
pathway  

Ras-Akt pathway  
Pathway 

overexpressio
n 

100% of 
sporadic 
pilocytic 

astrocytomas 

Sharma 2005 
[185] 

Ras Ras Ras-Akt pathway Mutation Rare  

Sharma 2005 
[185]; Janzarik 

2007 [186]; 
Maltzman 1997 
[187]; Sharma 

2005 [185] 
RB-cyclinD1-

cyclin 
dependent 
kinase-p16 

RB 
cyclinD1

CDK4 
p16 

RB-cyclinD1-
cyclin dependent 
kinase 4 (CDK4)-

p16 pathway 

Inactivation 
of pathway 

25% of 
pediatric 

high-grade 
astrocytoma 

Sung 2000 [173] 
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and 22q [188].  Cytogenetic abnormalities appear unrelated to pediatric low-grade 

astrocytoma prognosis [189]. 

In contrast to the relatively low cytogenetic changes in grade I astrocytoma, pediatric 

malignant astrocytomas demonstrate a number of chromosomal changes and differ in 

several respects their adult tumor counterparts, though a few of these tumors have shown 

normal karyotype at well [190].  In a study on malignant childhood astrocytomas (Grade 

II-IV) (NOTE: included young adults less than 25 years old), the most common 

aberrations were loss of 16p (54% of cases), 17p (38%), 19p (38%), and 22 (38%) and 

gain on 2q (38%), 12q (38%), 13 (38%), 4q (31%), 5q (31%), and 8q (31%).  Other 

studies on these tumors have found loss of heterozygosity (LOH) on 1p/19q and 10p/10q, 

and gains of 7p and 9p at a lower frequency than adults, however LOH on 22q is 

comparable in frequency (44% of diffuse, 40% of anaplastic, and 61% of glioblastoma) 

[73;175].  LOH on 19q and 22q was more frequent in children older than six years of age 

compared to younger children.  Rickert et al. 2001 found that compared with adult cases, 

gain of 1p, 2q, and 21q as well as loss of 6q, 11q, and 16q were more frequent in 

pediatric malignant astrocytomas [191].  Furthermore, microsatellite instability, which is 

absent in adult astrocytomas, is seen in 27% (12/45) of pediatric malignant astrocytomas 

[192].  It also appears that survival is not predicted by cytogenetic changes in pediatric 

malignant gliomas, in contrast to adult malignant gliomas [193], though this is disputed 

by a study that showed survival was significantly shorter for pediatric high-grade 

astrocytomas with amplification of chromosome 1q [191].  Differences in chromosomal 

aberrations also exist between malignant grades of pediatric astrocytoma. Grade III 

pediatric tumors show differing cytogenetic changes (gain of 5q; loss of 6q, 9q, 12q, and 
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22q) compared to Grade IV pediatric tumors (gain of 1q, 3q, 16q, and loss of 8q and 17p) 

[191].  Specific regions showing high copy number amplification in pediatric malignant 

astrocytomas include 8q21-22, 7q22-23, 1p21-22, 2q22, 12q13-pter, 12q15-21, and 

13q11-14 [190].  

Gene Alterations and Characteristics: NF-1 is caused by a mutation of a gene on 

chromosome 17q which encodes a protein known as neurofibromin (Nf1).  This mutation 

also predisposes individuals to development of pilocytic astrocytoma.  In contrast to 

individuals with NF1 who show loss of NF1 expression [194], sporadic pilocytic 

astrocytomas often have overexpression of NF1 [170;195].  The reason for this 

discrepancy is currently unknown [38].  Beyond the NF1 gene, many of the other 

identified mutations found in astrocytomas are important for normal astrocyte 

development.  For instance, alterations in growth factor genes important for glial 

differentiation from neural stem cells such as mutations in the epidermal growth factor 

receptor (EGFR) (approximately 30% to 50% frequency in grade IV astrocytoma and 

15% of grade III astrocytoma) and overexpression of platelet-derived growth factor alpha 

(PDGFR-α) (found in many primary grades and secondary glioblastomas), are common 

in adult astrocytoma [196-201].  These common adult astrocytic alterations are detected 

rarely in pediatric low-grade astrocytomas however, and in fact, PDGFR-α amplification 

has only been observed in one case of one study on these tumors [137;171;173-

175;177;180;183].  Overexpression of EGFR is also rarely observed in pediatric 

anaplastic astrocytoma and glioblastoma [171-173;176;177], despite them being 

histologically indistinguishable from adult glioblastoma.  Interestingly, a malignant form 

of pediatric low-grade astrocytoma, disseminated astrocytoma (5-10% of all pediatric 
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low-grade astrocytoma), show a high rate of EGFR amplification and protein expression 

[202], as do pediatric non-brainstem high-grade tumors (80% show high expression 

levels though only 2 of 27 show amplification and EGFR changes did not influence 

outcome) [171].  Thus, it appears EGFR may drive progression of astrocytomas from low 

to high grade [198].    

A common signature of astrocytic tumor progression is angiogenesis and an 

increasingly hypoxic environment.  A report on angiogenic factors in childhood 

astrocytoma identified the EGFR/FK506-binding protein (FKBP)12/HIF pathway as 

being significantly overexpressed in childhood glioblastomas compared to low-grade 

childhood astrocytomas [203].  Peroxisome-proliferator-activated receptor-c coactivator-

1a (PGC-1a), a key mt-nuclear signaling gene involved in oxidative phosphorylation, mt 

biogenesis and respiration, is induced by a lack of nutrients and oxygen and is a 

powerfully regulator of the PDGFR family member vascular endothelial growth factor 

(VEGF) [204].  VEGF is upregulated in adult astrocytic tumors compared to normal brain 

[205].  Interleukin-6 (IL-6) upregulates VEGF expression in human glioblastoma cells 

and the activation of IL-6 is dependent on its interaction with STAT3.  This process may 

play an important role in angiogenesis and its contribution to glioma progression from 

lower-grade to high-grade GBMs [206].  VEGF, which can be induced by IL-6 and 

hypoxia [207], can also be upregulated by TNF-α and this process appears to be mediated 

by Sp-1 in human glioblastoma cells [208].  A role for Hypoxia-inducable factor-1 (HIF-

1) and its function in a hypoxic environment in the progression of astrocytic tumors to a 

more aggressive state has also been suggested and is supported by evidence that HIF-1 

mediated gene expression is modulated by alterations in genes important to  astrocytoma 
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development such PTEN, TP53, p16(CDKN2A), p14ARF, EGFR, and PDGFR [209].  

Furthermore, recent work shows that loss-of-function mutations in fumarate hydratase 

(FH) and succinate hydrogenase (SDH) in the mt TCA cycle result in activation of HIF-1.  

HIF-1 activation can then change the expression of numerous genes important to cellular 

metabolism, and increase angiogenesis, glucose uptake and glycolosis [210-213].  

Additionally, HIF-1 modulated gene expression can be influenced by reactive oxygen 

species (ROS), a signaling molecule primarily produced in mt [214].  This work has 

strengthened the notion that HIF-1 activation could play a role beyond promotion of 

angiogenesis and actually be involved in initiation of cancer.        

PTEN mutations, which occur in ~30% of adult high-grade astrocytoma, are rare (8% 

homozygous deletion) in childhood high-grade astrocytoma [176-178;201], and are non-

existent in pediatric pilocytic astrocytoma [215;216].  PTEN protein expression is present 

in 38% of pilocytic tumors however [215], and mutations in PTEN predict poor prognosis 

in pediatric grade III and IV malignant astrocytomas [177].  PTEN interacting with wild-

type p53 has been shown to inhibit angiogenesis in malignant astrocytoma cells 

[217;218], suggesting that mutations in p53 could be important in development of higher 

grade tumors.  Mutations of p53 in astrocytoma are thought to result in decreased 

apoptosis [219] and cellular transformation [220;221].  In fact, mutations in the p53 

pathway (mutation of p53/overexpression of MDM2/deletion of p14ARF) have been found 

to be >95% in high grade pediatric astrocytomas [173], with mutations in p53 itself 

occurring in 28-38% of both childhood and adult high-grade astrocytoma, though these 

mutations are much lower in children younger than 4 with high-grade astrocytoma 

[175;176;179-183].  Still, they are the most commonly observed alteration in pediatric 
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malignant astrocytomas (Grades II-IV), although some early studies did not find p53 to 

be a frequent mutation [222-224].  There is also controversy concerning p53 mutation 

frequency in pilocytic tumors as combination of reports show the frequency to be as low 

as 1.3% [215;224-226], while one report showed p35 mutation frequency to be 35% 

[227].  Overexpression of MDM2 occurs in 67% of pediatric malignant astrocytomas 

[173], while homozygous deletions of CDKN2A/p14ARF at 9p21 are found in 10% of 

pediatric malignant glioblastomas [184].   No MDM2 gene amplification was found in 

pediatric high-grade and pilocytic astrocytomas in one study however, although this study 

found p53 mutations to be rare in these tumors as well [224].  As mentioned above, Ink4a 

is a member of the p53 signaling pathway, being a gene product of p16.  Although Ink4a 

is frequently lost in a large fraction of human GBM samples, mice lacking Ink4a seldom 

develop spontaneous brain tumors [228].  Aberrant copy numbers of the Ink4a antagonist 

Bmi1, have been identified in 59% of gliomas (low and high-grade combined), and 

increased copy number of Bmi1 at 10p13 (3-5 copies), while found in all glioma types, 

are especially elevated in GBMs.  In addition, deletions of the Bmi1 locus are found in 

most types of tumors and are associated with poor prognosis, while increased copy 

number of the gene locus is not associated with poor outcome [229].  Some authors have 

suggested two alternative pathways to GBM involving the p53 pathway, one that 

transforms astrocytes and is Ink4a/Arf dependent and p53 independent, and another that 

transforms neural stem cells and is p53 dependent [230].  For a more detailed discussion 

of these mechanisms the reader is referred to Perotin et al. 2006 [230].   

 Studies in glioma cells have demonstrated the ability of oxidative stress to induce 

p53 dependent mt mediated apoptosis through MDM2 degradation promoting p53 
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signaling to the mt followed by cytochrome c release and nucleosomal fragmentation 

[231].  This apoptotic pathway involves both pro-apoptotic factors such as bax and Fas, 

and anti-apoptotic genes such as bcl-II [232].   Glial tumors (46 tumors including 

astrocytomas, oligodendrogliomas, oligo-astrocytomas, and glioblastomas) show 

upregulation of the apoptosis-promoting factors bax, Fas, Fas-L, and the apoptotic 

inhibitor bcl-II but none of these genes correlated with malignancy [233;234].  Bcl-II 

expression levels have been shown to increase with astrocytic tumor grade in glioma cell 

studies (included WHO grades I-IV), and an increase in proliferation and decrease in 

apoptosis accompanies this increased expression in each tumor grade [234].  

Furthermore, overexpression of Bax, an antagonist of Bcl-II, has been shown to 

accelerate apoptosis in rat glioma and human glioblastoma (GBM) cells, while Bcl-II 

overexpression inhibits apoptosis by repressing neutral sphingomyelinase and the 

subsequent cascade of ceramide formation, mt cytochrome c release and caspase 

activation [235].  Importantly, environmental stimuli such as heat shock, irradiation, and 

chemotherapeutic drugs [236], have been shown to activate sphingomyleinase mediated 

apoptosis.  Thus, Bcl-II gene over-expression inhibiting apoptosis coupled with gene 

alterations in other genes promoting cell proliferation may interact with environmental 

factors to play a significant role in tumor development and progression.   

NF1 is a Ras-guanosine triphosphatase-activating protein that, as previously described, 

contains germline mutations that predispose individuals to development of pilocytic 

astrocytoma.  Ras/Akt pathway overexpression has been reported in 100% of sporadic 

pilocytic astrocytomas in one study of 21 tumors [185], in ~70% of aGBM, and in most 

pGBM and aGBM cell lines [237].  A report by Faury et al. 2007 found that pediatric 
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glioblastomas can be divided by subtype based on Ras/Akt pathway activation.  In their 

analysis, the subset defined by Ras and Akt pathway activation had very poor prognosis 

and exhibited increased expression of genes related to proliferation and to a neural stem-

cell phenotype (expression of markers of neural stem cells such as nestin, dlx2, CD133, 

vimentin and ELK).  These findings were similar to those of the aggressive adult 

glioblastoma phenotype they observed.  A second subset not showing Ras/Akt pathway 

activation, showed better prognosis and expressed no markers of a proliferative/stem-cell 

phenotype, suggesting they may instead originate from astroglial progenitors. [238]  

Overexpression of H- or N-ras has been reported in 0, 43, and 71% of grade I, II, and 

high-grade astrocytomas respectively [239], though age was not accounted for in this 

study.  Several studies have found Ras mutation, including one which found a somatic 

G12A Kras mutation in pilocytic astrocytoma [186], one which found a Kras codon 13 

mutation in pilocytic astrocytoma [185], and another which found 3 of 25 (12%) of 

astroglial tumors to have mutation of K-ras-61.  As previously mentioned, mutations in 

Ras are possibly important given that they may be related to development of cancer from 

environmental exposure [240].  Overall however, mutations in Ras appear to be rare in 

pediatric astrocytoma, with some studies reporting no mutations of Ras variants in all 

tumors analyzed [185-187]. 

Mutations of SHH pathway, which regulates astroglial and oligodendroglial 

differentiation from their neural progenitor cells, are also found in astrocytomas, though 

they have been primarily investigated in adult tumors.  Three members of the Gli family 

(Gli1, Gli2, Gli3), which mediate SHh-induced transcriptional activation [241], are 

reported to be amplified and highly expressed in GBM [242] and Gli1 was found over-
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expressed in several low grade astrocytomas [243].  Levels of GLi1 were not found to 

correlate with prognosis however, while both PTCH and SMO mRNA expression 

correlated significantly with malignancy, suggesting their involvement in suppression of 

astrocytic tumors [244].   

Inactivation of the retinoblastoma (RB) tumor suppressor pathway 

(pRB/cyclinD1/cyclin dependent kinase 4 (CDK4)/p16) is found in approximately 25% 

of pediatric high grade astrocytoma, compared to over 80% of high grade adult 

astrocytomas showing these alterations [173].  Progression from astrocytoma to 

anaplastic astrocytoma has been shown to involve mutations in other tumor suppressor 

genes including the retinoblastoma (RB) gene on chromosome 13q.  Pilocytic 

astrocytomas show protein expression of CDK4 in 61% of cases and protein expression 

of p16 in 73% of cases [215], while loss of expression of p16 was found in 11/18 (61%) 

of pediatric glioblastomas [183].  

A majority of pediatric glioblastomas show overexpression of Y-box-protein-1 (YB1) 

(38 of 53 = 72%) [238], an RNA-binding protein/transcription factor involved in brain 

development. This gene may help drive oncogenesis in this tumor as its nuclear 

localization has been associated with poorer outcome and tumor progression in other 

cancers [245]. Other findings which point to the importance of precursor cells in tumor 

development include immunohistochemical studies that have astrocytoma cells express 

markers of glial progenitor cells such as GFAP, nestin, brain lipid-binding protein, and 

OLIG-2 [246-248].  PEN5, which is expressed in oligodendrocyte precursor cells 

(ODPCs), is also observed at a high frequency in pilocytic astrocytomas, suggesting 

ODPCs may give rise to pilocytic astrocytoma [249;250].  Lastly, as with MB, all grades 
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of astrocytoma have been found to harbor CD133 stem cells, providing for more debate 

on their cell of origin [154;251].   

Other genetic findings in pediatric astrocytomas include studies showing MnSOD is 

strongly expressed in all glioma types (46 tumors including astrocytomas, 

oligodendrogliomas, oligo-astrocytomas, and glioblastomas) but is not correlated with 

tumor grade [155;233].  Another study found that MnSOD expression was decreased in 

gliomas however, while catalase (CAT) levels were significantly increased in ascending 

order in high-grade astrocytoma and low-grade astrocytomas, and GSH-Px was not 

increased in any astrocytomas [156].  Finally, pilocytic astrocytomas show upregulation 

of several immune defense-related genes including HLA-DRalpha, HLA-DPA1, HLA-

DPB1, HLA-DQB1, IgG3, IgGK, FCER1G, A2M, FCRN, IFI-56K, DAP12, TIMP1, 

TIMP2, CDKN1A, and SOCS3 [252].   

Epigenetic Alterations: Very few studies have specifically assessed epigenetic changes 

in pediatric astrocytomas.  In one study however, both GSTP1 and p14ARF  were both 

found to be unmethylated in pilocytic astrocytomas.  This was in comparison to MBs 

which showed an 18% methylation rate for GSTP1 and a 45% rate for p14ARF [253]. 

Other epigenetic changes have been identified primarily in adult astrocytomas.  Grade 

II gliomas (astrocytomas, oligodendrogliomas, and oligoastrocytomas), grade III 

astrocytomas, and secondary GBMs commonly display a methylated PTEN promoter.  

This event is absent in non-tumor brain specimens and rare in primary GBMs [254].   

That grade III astrocytomas and secondary GBMs contain methylation of PTEN is 

consistent with the hypothesis that they arise from progression of grade II gliomas.  

PTEN promoter methylation also appears to phosphorylate protein kinase B (PKB/Akt) 
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and activate the PI3K pathway, which can also be activated by PTEN mutations [254].  

Significant global hypomethylation is frequent in adult GBMs and is associated with 

specific copy number alterations, a low-functioning methylenetetrahydrofolate reductase 

(MTHFR) allele status, and increased proliferation, suggesting that either low MTHFR 

levels and increased cell proliferation lead to hypomethylation or decreased MTHFR 

causes hypomethylation which promotes cell proliferation [255].  Finally, secondary 

glioblastomas show promoter methylation of RB1, TIMP-3, and HRK [256-258].   

 

Neuroblastoma (NB)  

Neuroblastoma, a tumor located in the peripheral neural crest, is the most common 

extracranial solid tumor in childhood and the most common cancer in infancy, causing 8-

10% of all infant malignancies [259].  Approximately 75% of cases of neuroblastoma 

(NB) occur in children under the age of 2 [260].  Table 2-3 summarizes genetic 

alterations in neuroblastoma. 

Table 2-3. Common susceptibility genes of neuroblastoma. 

Gene Name 
Gene 

Symbol 
Pathway/Function 

Type of 
Alteration 

Percent 
of Cases 

Reference 

v-myc 
myelocytomat

osis viral 
oncogene 

N-myc Oncogene Overexpression 25-35% Park 2008 [261] 

Ras Ras Ras-Akt pathway Mutation Rare Ballas 1988 [262] 

bcl-II bcl-II 
Governs mitochondrial 

outer membrane 
permeabilization 

Expressed 
Majority 
of tumors 

Ikegaki 1995 
[263] 

 

N-myc protoncogene is amplified in 25 to 35% of neuroblastomas [261].  It is the key 

genetic feature used to stratify patients into risk groups [264-266].  As with other CNSTs, 
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myc target genes in neuroblastoma are primarily involved in cellular growth and 

metabolism, cell proliferation, and cell cycle regulation [119].  Phenotype of NB cell  

lines have been transformed, supporting the oncogenic potential of N-myc [267;268].  

Antisense experiments using N-myc have also shown that downregulation of N-Myc 

result in decreased proliferation and cell growth in NB [269;270].  Finally, mice 

experiments using N-myc as a target gene have shown its ability to produce NB in vivo 

[271-273].  The adverse prognostic significance of N-myc amplification in NB has been 

well established and correlates with increased metastases and chemotherapy resistance 

[264;266;274;275].  Its importance in aggressive NB is also supported by studies 

showing amplification of N-Myc in NB cell lines exhibit increased proliferation, 

underexpression of inhibitors of angiogenesis, and increased invasive potential 

[266;268;276-282]. 

Ikegaki et al. found that bcl-II is expressed in a majority of NB tumors and cell lines, 

however it was not correlated with clinical outcome or myc amplification or expression 

[263].  Phosphatidylinositol 3-kinase (PI3K) inhibition in mice neuroblastoma produces 

decreased tumor size and decreased N-myc protein levels.  In addition knock-down of 

PI3K in N-myc amplified human neuroblastoma cells causes decreased proliferation and 

increased apoptosis [283].  Finally, Ras mutations were identified in one study on 

neuroblastoma [262].  

 

IV. MITOCHONDRIAL-NUCLEAR SIGNALING IN CNST DEVELOPMENT 

Because mitochondria play a large part in brain development and are abundant in brain 

tissue, their health is critical to the wellbeing of the pediatric brain.  Mitochondria in the 
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developing brain are very different from those of mature animals and these 

developmental differences in mitochondria can make the immature brain more vulnerable 

to environmental factors.   

Mt have been shown to play a crucial role in energy metabolism through oxidative 

phosphorylation, programmed cell death, and the generation of DNA-damaging ROS as 

side products of their normal function.  Mitochondrial DNA (mtDNA) is an easy target 

for oxidative DNA damage due to its close proximity to ROS production, its lack of 

protective histone proteins, and its limited repair capabilities.  Environmental exposures 

causing dysregulation of mtDNA and ROS production may contribute to increased 

nuclear gene mutagenesis. The ability of mt dysfunction and mt mutations, to cause 

cancer has been the subject of intense debate, however.  Recent evidence that mtDNA 

mutations seem to promote tumorigenesis by preventing apoptosis [284] supports a role 

for mt dysfunction in cancer.  In addition, evidence that mutated nuclear genes that 

encode subunits of complex II may cause loss of this complex’s tumor suppressor role 

and promote development of hereditary paraganglioma [285;286], suggests that mt-

nuclear signaling may be important to tumorigenesis as well. 

 

Evidence of mitochondrial changes in CNST: Mitochondrial abnormalities in tumor 

tissues generally have been considered to be a consequence, rather than the cause of 

tumorigenesis.  However, recent reports argue against this concept and provide support to 

the idea that mitochondria (mt) may control the growth of cancer tissues [287].  For 

example, genetic and sporadic cases of brain tumors (paraganglioma and 

pheochromocytoma) are caused by mutation of a mitochondrial-specific protein, 
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succinate dehydrogenase, a Krebs cycle enzyme [285;288;289].  Recently, mutations in 

another mitochondrial Krebs cycle protein, fumarase, have been associated with the 

development of uterine fibroids, skin leiomyomata and renal cell cancer [290]. Mutations 

in these proteins appear to be involved in familial predisposition to benign and malignant 

tumors, such as malignant phaeochromocytomas and renal cell carcinomas.   

Somatic mtDNA mutations have been found in tumors of NF1, an autosomal 

dominantly inherited disease which predisposes to development of pilocytic astrocytoma.  

These mutations were all found in the D-loop region [7 of 19 patients with diffuse 

cutaneous neurofibromas (avg. of 1 mutation per tumor) and 9 of 18 patients with benign 

plexiform neurofibromas (average of 3 mutations per tumor) had at least 1 somatic 

mtDNA mutation] and the proportion of mutant mtDNA in the neurofibroma tumors was 

increased in relation to non-tumor tissues Additionally, the D-loop np 303 to 309 C8 

mutation was always dominant in tumors, while the C7 variant was either reduced or 

absent in tumors and was dominant in non-tumor tissue [291].  Kiebish and Seyfried 

2005 sequenced the entire mitochondrial genome in a series of chemically induced and 

spontaneous mouse brain tumors with differing metastasis, malignancy, and vascularity.  

They reported that the tumors showed somatic mtDNA mutations in regions of 

mononucleotide repeats, which are similar to those found previously in hypervariable 

regions of the D-loop in human brain tumors.  However, none of these mutations were 

considered pathogenic since they did not change amino acid sequence and therefore could 

not alter gene function [292].   

Mt Changes in Medulloblastoma: Studies have found mitochondrial mutations in MB.  

One study analyzed the entire mitochondrial genome of 15 cases of MB and the 
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cerebrospinal fluid (CSF) of eight of these 15 cases.  40% (6 of 15) of the tumors studied 

had at least one mitochondrial mutation and seven of eight of the CSF samples were 

found to have mtDNA mutations as well. Three tumors had one somatic mtDNA 

mutation, 2 had two mutations, and 1 had 11 mutations.  The somatic mutations identified 

in this study, which were located primarily in regions of mononucleotide repeats rather 

than in respiratory chain related genes, include: three coding region mutations 1) G7521A 

mutation in tRNA aspartate that changes a GT base pairing to AT base pairing at the 

amino acyl stem region,  2) the T15904C mutation in tRNA threonine at the loop region, 

and 3) the A15937G mutation at the first bp next to the loop, all of which may affect 

tRNA structure and stability;  two missense mutations that can alter mt structure and 

function: 1) Y496H in cytochrome c oxidase and 2) L96P in NADH subunit 4, which are 

involved in the substitution of the hydrophobic aromatic tyrosine with positively charged 

histidine, and the hydrophobic leucine residue with  helix destabilizing secondary amino 

acid proline; and several noncoding region mutations in areas such as transcription factor 

binding sites and replication primer sites that can affect mtDNA replication, transcription, 

and expression.  5 (29.4%) mutations were located in the np 303-315 polyC tract region 

and 11 (61%) were in the D-loop region. [293] 

Mt Changes in Astrocytomas and Other Gliomas: Malignant glioma is the best-

characterized type of brain tumor with respect to mtDNA alterations.  The most frequent 

observation involves changes in the copy number of mtDNA.  A study that examined 45 

glioma specimens found that mtDNA was highly amplified in 87% of the cases.  In 

comparison, a nuclear-encoded reference gene (erb-b) that is frequently amplified in 

human cancers, increased in only 18% of the tumor specimens, indicating that mtDNA 
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alterations may be much more frequent in gliomas than nuclear-encoded gene alterations 

[294]. Analysis of 15 low grade gliomas (5 pilocytic astrocytomas, 3 gangliogliomas, 5 

low-grade astrocytomas, and 2 neurocytomas) confirmed this finding as all samples 

analyzed showed evidence of mt sequence localization within the nucleus [295]. 

Interestingly, the authors also noted a transfer of mtDNA to the nucleus with nuclear 

localization of the mtDNA segment significantly correlated to an increase of mtDNA 

copy numbers. This is significant given that incorporation of mtDNA into the nuclear 

genome may serve as a mechanism of oncogene activation.  In addition, a high frequency 

of mtDNA copy number changes has been found in comparison to normal control tissue 

in both low and high grade gliomas [294;295].  Furthermore, the mt content of gliomas is 

significantly lower than normal rat brain tissue, as is activity levels of cytochrome c 

oxidase and citrate synthase [296].  This low amount of normally functioning mt has been 

linked to a hexokinase dependent shift of energy metabolism to glycolysis in gliomas 

[296].    

Astrocytic tumors show high sequence variability, as well as a loss of the 

heteroplasmy present in a polymorphic D-loop region site of normal cells [297].  

Differences in percentage of mtDNA mutations between astrocytic tumor grades has not 

been found [298].  A recent study of 42 cases of malignant astrocytomas (39 GBMs, two 

anaplastic astrocytomas, and one anaplastic oligoastrocytoma) showed alterations in 36% 

of the cases in the D-loop region, including 16 different somatic alterations (three in the 

HV1 region and thirteen in the D310 region) [299].  This frequency is comparable to 

other reports of mtDNA instability in malignant gliomas [297;300].  These alterations do 

not appear to be associated with increased aggressiveness however [299].   
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Recent work in differential hybridization of GBM tumors revealed decreased 

expression of seven mt genes.  Genes downregulated were mt NADH dehydrogenase 

subunits 1 and 4 (ND1; ND4); mt cytochrome oxidase subunits I, II, and III (COXI; 

COXII; COXIII); mt ATP synthase subunit 6 (ATP6); and mt 12S rRNA. The authors 

noted however, that the reason for this decreased expression could be due to a decrease in 

mt genome transcription activity, increased mutations in mtDNA, and/or a decrease in 

number of mt in GBMs [301].   Others have found hypoxia-tolerant GBM cells to reduce 

their rate of oxygen consumption in response to oxygen shortage, a defense mechanism 

that contributes to their survival in this environment.  In contrast, hypoxia-sensitive GBM 

cells maintain their rate of oxygen consumption and show reduced survival [302;303].   

This inability of hypoxia-sensitive cells to respond to reduced oxygen may result from an 

amino acid change in the gene encoding the ND6 subunit of Complex I which may alter 

Complex I function in hypoxia-sensitive cells [304].     

Other reports have noted mt genome instability in the hypervariable regions in the D-

loop of meningiomas, schwannomas, gliomatosis cerebri, low-grade astrocytomas, 

GBMs, and neurofibromas [291;297;298;300;305] and the presence of 23 separate 

mtDNA alterations in 4 separate GBM cell lines [304].     

Some authors have reported that the mtDNA instabilities (e.g. mutations, 

polymorphisms, etc.) found in CNST tumors (primarily adult astrocytomas, meningioma, 

and shwannoma) are simply common human polymorphisms and ‘mutational hotspots’ 

[300].  The same authors found no correlation between nuclear mitochondrial instability 

(nMI) and D-loop changes or mtDNA instability and patient characteristics such as sex, 

age, tumor size, and clinical outcome [300].  Regardless of their functional significance, 
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the above studies clearly show that mtDNA alterations are a frequent event in the 

development and progression of brain disease pathologies and warrant further 

investigation.  Information on specific mitochondrial-nuclear signaling genes that may 

play a role in brain disorders can be found in the succeeding section. 

 

V. GENE-ENVIRONMENT INTERACTION (GEI) AND CNST DEVELOPMENT 

Very few studies to date have investigated GEI in relation to CNST development, 

especially in pediatric populations.  To date, only one epidemiologic study has assessed 

the effect of environmental interactions with gene mutations on development of pCNST.   

In this study, two frequent polymorphisms in Paraoxonase (PON1), a gene that 

metabolizes two residentially used insecticides (chlorpyrifos and diazinon), were 

investigated in relation to CNST [n = astrocytoma (37), PNET (15), other (14)]. A 

nonsignificantly increased risk of CNST in relation to the inefficient PON1 promoter 

allele (PON1-108T allele, relative to PON1-108CC: odds ratio (OR) = 1.4; 95% confidence 

interval (CI), 1.0–2.2; p-value for trend = 0.07] was found.  However, this association 

was strongest and reached statistical significance among children whose mothers reported 

chemical treatment of the home for pests during pregnancy or childhood (PON1-108T 

allele: among exposed, OR = 2.6; 95% CI, 1.2–5.5; among unexposed, OR = 0.9; 95% 

CI, 0.5–1.6) and when primitive neuroectodermal tumors were assessed alone (per 

PON1-108T allele: OR = 2.4; 95% CI, 1.1–5.4) [306].  An in vitro study investigating the 

effect of chlorpyrifos exposure on glioma cells found that the cell signaling interference 

produced by chlorpyrifos exposure was greater in undifferentiated cells compared to 

differentiating cells, though effects were still noticed on this cell type as well.  However, 
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differentiation enhanced ROS production from chlorpyrifos exposure and provoked 

shortage of the nuclear transcription factor Sp1, an essential molecule in differentiation 

[3]. 

In addition to the above GEI study on pCNST, two studies have assessed GEI in adult 

glioma.  A case-control study on lead exposure, the lead toxicity associated gene δ-

aminolevulinic acid dehydratase (ALAD), and risk of brain tumors found increased risk 

of meningioma with occupational lead exposure.  Risk of meningioma, a tumor present 

mainly in later life, was markedly increased in individuals with the ALAD2 variant allele, 

for whom risks increased in a dose dependent fashion from 1.1 (0.3-4.5) to 5.6 (0.7-45.5) 

and 12.8 (1.4-120.8) compared to unexposed persons.  Risk for glioma was not associated 

with occupational lead exposure [307].  A second adult GEI study on glutathione 

transferases (GST) polymorphisms, cigarette smoke exposure, and development of adult 

glioma failed to find any significant GEI [308].  Several other studies have investigated 

genes involved in detoxification of carcinogens, and their relation to both pCNST and 

aCNST development, though no exposure was considered in these studies.  

Polymorphisms in the carcinogen metabolizing genes GSTM1, GSTP1, and GSTT1 have 

been investigated for their effect on risk of pCNST.  The frequency of the GSTM1 null 

allele was found to be significantly lower in high-grade pediatric astrocytomas (p < 

0.002).  Additionally, a significant increase in the frequency of the rare GSTP1 variant 

Val114/Val114 was found in all pediatric astrocytomas combined (p < 0.002) and all 

pediatric brain tumor types that displayed microsatellite instability (MSI) from mismatch 

repair (MMR) defects (0.003), suggesting this genotype may define a population 

susceptible to pCNST development.  This same study assessed these polymorphisms in 
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relation to aCNST and found no relation of GST polymorphisms to tumor development 

[309].  Another study found the relative risk of pCNST to be increased 4.9-fold for 

patients carrying one non-null (GSTM1*A) allele of GSTM1 compared to patients with 

two null alleles (95% confidence interval 1.5–16, P = 0.009) [310].  Finally, a meta-

analysis on GST polymorphisms and adult brain tumor risk also failed to find any 

association between GST and tumor development, though the GSTT1 null genotype was 

associated with meningioma development (OR=1.95; 95% CI, 1.02-3.76) [311].    

Population studies on folate involvement in CNST development have also been 

performed.  Folate is an important micronutrient molecule involved in DNA synthesis 

and methylation.  Studies have linked folate deficiency with both pediatric cancer 

[312;313] and genomic damage [314]. Disturbances in DNA synthesis, methylation, and 

repair of this pathway may be involved in CNST development [255].  An investigation of 

single nucleotide polymorphisms (SNPs) in the folate pathway 

[methylenetetrahydrofolate reductase (MTHFR) C677Tand A1298C, methionine 

synthase (MTR) A2756G, thymidylate synthase (TS) 28-bp tandem repeat, and reduced 

folate carrier (RFC) G80A] and their relation to CNST susceptibility in pediatrics found 

that the homozygous CC allele of MTHFR A1298C, which reduces MTHFR activity, 

conferred an increased risk of embryonal CNS tumors (medulloblastoma, 

pinealoblastoma, and PNETs) (OR: 3.9; 95% CI: 1.3–11.4, p = 0.02).   SNPs in glial 

tumors (astrocytoma, oligodendroglioma, and ependymoma) were not related to 

development of disease [315].  A recent report on folate pathway SNPs in adult 

meningioma and high grade glioma found that MTHFR C677T and A1298C genotypes 

associated with increased 5,10 methylenetetrahydrofolate levels elevated disease risk 
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while another report on these tumors failed to associate the MTHFR 677T SNP with 

tumor development [316]. 

While very few population studies have investigated GEI in CNST, some effects of 

environmental exposures on CNST development can be seen from cell line and tissue 

studies such as the aforementioned study on glioma cells exposed to chlorpyrifos.  For 

instance, several studies have investigated manganese toxicity in brain tumor cell lines.  

Manganese (Mn) exposure in humans is rare but can occur through occupational 

pathways.  Mn targets brain mt and interferes with energy metabolism in both 

astrocytoma and neuroblastoma cells through reduction of activity of glycolytic and TCA 

enzymes such as hexokinase, pyruvate kinase, lactate dehydrogenase, citrate synthase, 

and malate dehydrogenase [317].  As a result of this metabolic change, Mn exposure may 

increase oxidative stress via activation of the mitochondrial permeability transition pore, 

a result found in Mn exposed astrocytes [93].  Manganese-induced cell death in both 

astrocytoma and neuroblastoma cells is primarily necrotic in nature and is enhanced by 

glutathione depletion [318].  Interestingly, neuroblastoma cells are more susceptible to 

Mn toxicity than GBM cells, possibly because of Mn treatments effects on apoptosis in 

GBM cells.  On treatment in GBM cells increases apoptosis and has differential effects 

on proliferation pathways as it induces down-regulation of MAPK pathway, but does not 

significantly affect the AKT pathway.  Furthermore, Mn reduces levels of c-Jun, c-Fos, 

and MMP-2 (an extracellular matrix degrading enzyme), which are all associated with 

invasiveness of GBM [317].  

Other in vitro studies include a report which found selenium levels in the 

cerebrospinal fluid of patients with malignant brain tumors to be lower than those with 
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benign tumors.  Furthermore, selenium’s anticancer effects are seen in its ability to 

preferentially target human glioma cells for cell death through induction of superoxide 

and its subsequent disruption of mitochondria [319].   In vivo studies showing 

environmental exposure effects on CNST include studies in mice that show increased 

susceptibility to brain mutations for prenatal and neonatal (N-ethyl-N-nitrosourea) ENU-

exposed mice over adult ENU-exposed mice [320].  Additionally, incidence and degree 

of aggressiveness of gliomas has been shown to be influenced by dietary supplementation 

of rats with phytochemicals.  Rats fed a diet high in phytochemicals show both reduced 

incidence and aggressiveness of tumors and was associated with an increase in bcl-II and 

catalase and a decrease in ki-67, sod-1 and sod-2 transcripts [321].  This result correlates 

with an epidemiological study on adult glioma which showed reduced risk of glioma for 

those consuming a diet high in phytoestrogens [322]. 

 

VI. CONCLUSIONS 

A growing body of evidence suggesting that there are critical periods of time 

extending from conception to puberty when the central nervous system in children may 

be more affected by toxic exposures.  While only 1% of pediatric brain tumors are 

diagnosed at birth or in the first few months of life, the majority of pCNSTs occurs 

before age five, strongly suggesting that both prenatal and postnatal exposures may be 

involved in their etiology.  These exposures likely interact with the genome/epigenome of 

the fetus or young child to produce alterations in their genetic makeup which can 

predispose to development of disease including pCNSTs (Figure 2-1).   Importantly, the 

ability of environmental exposures to cause micronuclei, chromosomal aberrations, sister  
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Figure 2-1. A schematic representation of an early life gene-environment interaction 
model for development of pediatric brain tumors. 
 

chromatic exchanges, DNA adducts, DNA single-strand breaks, and somatic mutations in 

the DNA of a fetus has been demonstrated.  Furthermore, many of these alterations have 

been shown to predispose to tumor development.  These alterations likely play a role in 

pCNST etiology and so we have discussed the frequent alterations in several common 

pCNSTs and have reviewed current research on GEI in these tumors.  While past 

research has elucidated several potentially significant environmental, genetic and 

epigenetic factors in pCNSTs, evidence linking a majority of pCNSTs to specific genetic 

or environmental exposures is limited.  Factors such as the relatively low numbers of 

accessible tumor tissue for pCNSTs and the heterogeneity of these tumors have 

contributed to the considerable difficulty involved with determining their etiology.  
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Moreover, most past research on these tumors has not considered important factors such 

as timing of exposure, GEI, and gene-gene interaction within their design.  Additionally, 

the ability to appropriately measure levels of exposure at time of development or 

predisposition to disease through molecular biomarkers has been limited.  Improved 

research methods and tools, combined with larger studies involving homogenous tumor 

types, should help answer questions on the etiology of pCNSTs in the future. 
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 HYPOTHESIS AND SPECIFIC AIMS 

 

Hypothesis: In utero environmental exposures are hypothesized to produce genetic and 

epigenetic changes in mitochondrial-nuclear signaling genes, such as, PGC1, mtTFA, 

NRF-1. These changes, in turn, may be involved in the development of  pediatric central 

nervous system tumors (pCNTSs). 

 

Specific Aim 1: To evaluate activation and/or expression of genetic and epigenetic 

components of the mt-nuclear signaling pathway in brain tumors. 

 

Specific Aim 2: To estimate pre- and postnatal environmental risk factors (organic 

solvents, pesticides, illicit drugs, infections, etc.) for childhood brain cancer.  

Correlations of these risk factors to our genetic and epigenetic changes of interest will be 

determined to establish whether there is any evidence of gene-environment interactions 

(GEI) between our genes and/or epigenes of interest and in utero and early life exposures. 

 

Specific Aim 3: To identify how many genetic and/or epigenetic changes are required for 

the development of pCNST. 
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ABSTRACT 

Objective:  Relatively little is known about the etiology of childhood brain tumors (CBT). 

While there are several studies which link pesticide exposure to increased risk of CBT, 

findings have been inconsistent.  A meta-analysis of 17 published epidemiological studies 

was performed to test the concept that imprinting as a result of in utero exposure to 

pesticides is involved in the development of brain cancer in children. 

Material and methods:  Meta-analysis was performed using the general variance-based 

method and homogeneity was tested by means of the Q statistic. Summary relative risk 

(RR) estimates were calculated for risk of childhood brain cancer and 1) paternal 

exposure to pesticides prior to conception, 2) both maternal and paternal exposure to 

pesticides during pregnancy, 3) maternal exposure during pregnancy to a. agricultural and 

b. non-agricultural activities, and 4) childhood exposure to a. agricultural and b. non-

agricultural activities up to date of diagnosis with CBT.  

Results:  Results reveal a significantly increased risk of CBT among children whose 

mothers had farm-related exposures during pregnancy (RR=1.48, 95% CI=1.18–1.84). A 

dose response is recognized when this risk estimate is compared to those for risk of CBT 

from maternal exposure to non-agricultural pesticides (e.g. home extermination, pest 

strips) during pregnancy (RR=1.36, 1.10–1.68), and risk of CBT among children exposed 

to agricultural activities (RR=1.32, 1.04–1.67).  

Conclusions:  Our findings suggest that in utero imprinting of brain development by 

pesticides may be involved in the etiology of CBT. 
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INTRODUCTION 

Links between pesticide exposure and childhood tumors were first noted in case 

reports in the 1970s [1-3].  Since then, numerous studies have been published that support 

a role for pesticides in childhood brain tumor (CBT) etiology.  To date, three separate 

reviews of pesticide exposure and CBTs have been published [4-6].   In 1997, Daniels et 

al. found that the studies to date showed that 1) farm residence was associated with CBT 

and 2) pesticide use in the home was fairly consistently associated with CBT despite the 

small sample sizes of studies.  However, they concluded that “it remains unclear whether 

a specific time window of exposure may be of greater importance in studying the effects 

of home pesticide use.”  Zahm and Ward’s 1998 review noted that nine of the 17 studies 

through 1998 had reported increased risk of CBT from pesticide exposure, five additional 

studies found a positive relationship that was not statistically significant, and only three 

studies reported no excess risk associated with pesticide exposure.  Finally, Jurewics and 

Hanke 2006 reported that most studies since 1998 found associations between CBT and 

both agricultural employment and home use of pesticides.  In addition, they commented 

on new positive associations being found with prenatal and preconception time periods of 

exposure.    

Most studies on the relation between pesticide exposure and CBT have used small 

sample sizes and to date no meta-analysis of these studies has been published.  While not 

a pediatric study, a meta-analysis of adult BT and farming did find an increased RR of 

1.30 (95% CI: 1.09 – 1.56) [7].  By conducting a meta-analysis of the studies on CBT and 

pesticides we aim to synthesize past information on this topic and produce more robust 

risk estimates of any relations that may exist.  Questions that we attempted to answer 
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with this study include:  1) Does exposure to pesticides increase risk of CBT?; 2) Are 

maternal and paternal exposures both important in CBT etiology and if so, does one 

increase risk more than the other?; 3) Are certain exposure time periods important for 

etiology of CBT?; and, 4) Is there a difference in risk for agricultural and non-agricultural 

pesticides exposures? 

 

BACKGROUND 

Several mechanisms for CBT development from pesticide exposure have been 

suggested, occurring at three separate time periods:  

(1) exposure during preconception resulting in genetic alterations;  

(2) in utero exposure causing genetic or teratogenic effects; and  

(3) postnatal exposure via the mother's breast milk or direct exposure to 

the child (e.g. diet, childhood play habits, etc.). 

While occupational exposure is an established pathway for significant pesticide 

exposure, contact through home use of pesticides has been of less concern.  However, 

substantial pesticide exposure to children can occur in and around the home, with those 

being used outdoors being tracked into the home on shoes and by pets.  82% of United 

States households use pesticides with an average of 3 to 4 different pesticide products 

being used per home [8].  These exposures can become long-lasting as the pesticide 

residues can remain in carpets, furniture, and toys without being degraded by processes 

that exist outdoors (e.g., rain and sun) [6].  Furthermore, Whyatt et al. 2003 examined 

pesticide levels in plasma of 230 NYC mothers and infant pairs, finding that 7 pesticides 

were detected in up to 83% of the plasma sample.  Maternal plasma levels were 
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correlated with cord blood levels, indicating placental transfer from pregnant mother to 

fetus [9]. 

 

METHODS 

 A PubMed search was conducted to identify studies of the association between 

CBT and pesticides.  This search included articles published from 1966 until December 

17, 2010.  Search terms used in various combinations were brain, cancer, tumor, 

childhood, adolescent, in utero, pregnancy, central nervous system, pesticides, farming, 

and agriculture.  References cited in the studies identified by this search were also 

reviewed for inclusion in the meta-analyses.   

Inclusion criteria for initial search were:  1) Published in English language peer-

reviewed journals between 1966 and 2006;  2) Provided sufficient data to determine an 

estimator of risk for CBT and its confidence interval (CI); and, 3) Study evaluated 

pesticide and/or farm exposure and CBT.  Exclusion criteria for initial search were:  1) 

Did not report original results (reviews, comments, letters, etc.);  2) Results already 

reported in another study or in a more comprehensive study; 3) Geographic studies using 

GIS, etc.; 4) Study had less than 4 cases in subgroup of interest; and, 5) Study did not 

report timing of exposure.  For timing of exposure a study was excluded if the exposure 

period was not specific to one of our identified time periods.  For example, Kristensen et 

al. 1997 used a 5 year period of exposure and was thus excluded from the final analyses 

[10]. 

CBT was defined as any child diagnosed with CBT until age 19.  This conformed to 

the standard SEER (Surveillance, Epidemiology, and End Results) childhood cancer 
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classification.  CBT included all central nervous system tumors including brain tumors 

such as astrocytoma and primitive neuroectodermal tumor (PNET) and other central 

nervous system tumors such as neuroblastoma.  Pesticide exposures were defined as 

either agricultural or non-agricultural in nature.  Agricultural pesticide exposures were 

defined as exposures to pesticides from farming, farm related activities, living on a farm, 

mixing and preparing agricultural pesticides, horticulture, nursery work, and professional 

gardening.  Non-agricultural pesticide exposures were those that occurred during home 

use such as flea/tick pesticide use, garden pesticide use, yard treatment, pest strip use, and 

home extermination. 

 The data were stratified three separate ways and several separate meta-analyses 

were performed among these groups.  Stratification methods included 1) exposure 

categories separated into maternal exposures, paternal exposures, and child exposures; 2) 

exposure time period separated into preconception, pregnancy, and childhood; and 3) 

type of exposure split into agricultural pesticide exposures and non-agricultural pesticides 

exposures.   

A general variance-based method using confidence intervals developed independently 

by Prentice and Thomas [11] and Greenland [12] was used to calculate odds ratio risk 

estimates.  This method requires only information on each study’s estimate of risk and its 

95% confidence interval, reducing the amount of studies excluded from the analysis 

because of missing data.  The weight given to each study is chosen to be the inverse of 

the variance of the effect estimate, meaning that larger studies with smaller standard 

errors are given more weight than smaller studies that have larger standard errors.  In 

addition, because adjusted rate ratios and confidence intervals are used in the analysis, 
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the method takes confounding into consideration, unlike other meta-analyses methods 

which may not include confounding in their estimates.  Analysis was completed using 

Comprehensive Meta-Analysis Version 2.2.046 from Biostat, Inc. which can be 

downloaded at www.Meta-Analysis.com [13]. 

Risk estimates were combined following several pre-determined rules.  For studies 

that reported risk estimates for different types of CBT separately without reporting a 

summary estimate for all CBT, we calculated a summary risk estimate for use in our 

meta-analyses.  For example, one summary risk estimate was calculated by combing the 

odds ratio for risk of astrocytoma and PNET reported by Bunin et al. 1994. In addition, 

when a study reported more than one risk estimate for different pesticide exposure types 

or situations, the general exposure category was used for the meta-analyses calculations.  

Finally, the studies that reported home exposure/use of pesticides during pregnancy 

without specifying it as either maternal or paternal specifically were included in the 

maternal exposure during pregnancy category.  This was based on the concept that the 

mother is the ultimate exposure during this period.   

 

RESULTS 

The initial literature search produced 33 studies that fit the inclusion criteria.  17 studies 

were rejected by the exclusion criteria, leaving 16 studies for the final meta-analyses 

calculations.  Table 3-1 lists the characteristics of these  16 studies, including their 

design, case and control totals, and tumor types analyzed.  Of the 16 studies, 15 were 

case-control studies and one was a cohort study.  Results of the meta-analyses performed 

can be found in Table 3-2, organized by time period and exposure category.   
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Table 3-1. Characteristics of studies included in the meta-analyses of parental 
pesticide exposure and risk of childhood brain tumor development. 
Study First 
Author 
and Year 

Study 
Design 

Study Subjects (n) Tumor Type(s) 

Feychting 2001 
[14] 

Cohort 
152 cases; 11 exposed cases; 
235,635 cohort size 

Nervous System Tumor 

Kuijten 1992 
[15] 

Case-
control 

163 cases and control 
mothers; 
158 cases and control fathers 

Astrocytoma 

Wilkins 1990 
[16] 

Case-
control 

110 cases; 193 controls Brain Cancer 

Efird 2003 [17] 
Case-
control 

1218 cases; 2223 controls Astroglial, PNET, Other Glial, Other 

Kerr 2000 [18] 
Case-
control 

183 cases; 372 controls Neuroblastoma 

Holly 1998 
[19]* 

Case-
control 

540 cases; 801 controls Astroglial, PNET, Other Glial 

Bunin 1994 [20] 
Case 
control 

322 cases; 321 controls Astrocytoma, PNET 

McCredie 1994 
[21] 

Case-
control 

82 cases; 164 controls Brain and cranial nerve tumors 

Daniels 2001 
[22] 

Case-
control 

538 cases and 504 control 
mothers; 405 cases and 304 
control fathers 

Neuroblastoma 

Pogoda 2001 
[23] 

Case-
control 

224 cases; 218 controls 
Brain, cranial nerve, and cranial meninges 
tumors 

Leiss 1995 [24] 
Case-
control 

17 cases; 118 controls Brain Cancer 

Davis 1993 [25] 
Case-
control 

45 cases; 85 no disease 
controls; 108 cancer controls 

Astrocytoma, Medulloblastoma, Other 

Preston-Martin 
1982 [26] 

Case-
control 

209 cases; 209 controls 
Astrocytoma, medulloblastoma, 
ependymoma, other glioma, meningioma, 
neuroma, other 

McKean-
Cowdin 1998 
[27]* 

Case-
control 

540 cases; 801 controls Astroglial, PNET, Other Glial, Other 

Wilkins 1988 
[28] 

Case-
control 

30 cases; 19 controls Brain Cancer 

Gold 1982 [29] 
Case-
control 

70 cases Brain Cancer 

*These manuscripts used the same study population.  However, different exposure analyses results were 
reported in each study and therefore, both manuscripts were included in our meta-analyses. 
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Table 3-2. Summary of results of meta-analyses of the association between pesticides 
and childhood brain tumors. 

Time Period Exposure Category 
Studies in 
Estimate 

Summary Risk Estimate  
Odds Ratio (95% CI) 

Pre-conception 
Maternal Exposures 1 0.87 (0.29 – 2.60) 
Paternal Exposures 3 2.29 (1.39 – 3.78) 

Pregnancy 

Maternal Exposures 
(Agricultural) 

5 1.48 (1.18 – 1.84) 

Maternal Exposures  
(Non-agricultural) 

7 1.36 (1.10 – 1.68) 

Paternal Exposures 5 1.63 (1.16 – 2.31) 

Childhood 
Agricultural Exposures 4 1.35 (1.08 – 1.70) 

Non-agricultural Exposures 5 1.32 (1.04 – 1.67) 

 

Exposure during Pre-conception 

No meta-analysis was performed on maternal exposure to pesticides during 

preconception as only one study fit the criteria for this grouping.  This study, McKean-

Cowdin et al. 1998, reported no increased risk for CBT from maternal exposure to  

pesticides during preconception (OR: 0.87, 95% Confidence Interval (CI): 0.29 – 2.6) 

[27].  Three studies were combined for the paternal exposure to pesticides during 

preconception, producing a calculated summary risk estimate of odds ratio (OR) = 2.29 

(95% CI: 1.39 – 3.78) (Figure 3-1). 

Exposures during Pregnancy 

All three summary risk estimates for exposure during pregnancy showed a significant 

association between pesticide exposure and CBT.  A combination of 5 studies for 

maternal exposure to agricultural pesticides during pregnancy generated an increased risk 

of OR = 1.48 (95% CI: 1.18 – 1.84) (Figure 3-2).   
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Figure 3-1. Meta-analysis results for paternal exposure to pesticides during pre-
conception. 
 

 
Figure 3-2. Meta-analysis results for maternal exposure to pesticides during 
pregnancy (agricultural/work exposures only). 
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Seven studies of maternal exposure to non-agricultural pesticides during pregnancy 

produced a summary risk estimate of OR = 1.36 (95% CI: 1.10 – 1.68) (Figure 3-3).  

Finally, the paternal exposure to pesticides during pregnancy meta-analysis grouped five 

studies for a final calculated summary risk estimate of OR = 1.63 (95% CI: 1.16 – 2.31) 

(Figure 3-4). 

Exposures during Childhood 

Combining four studies of childhood exposure to agricultural pesticides produced a 

summary risk estimate of OR = 1.35 (95% CI: 1.08 – 1.70) (Figure 3-5).  Non-

agricultural pesticide exposures during childhood were also found to be significantly 

associated with development of CBT as a meta-analysis of five studies found an 

increased risk of OR = 1.32 (95% CI: 1.04 – 1.67) (Figure 3-6). 

 

DISCUSSION 

Our meta-analyses produced several estimates of increased risk of CBT from exposure 

to pesticides.  Comparing results from our categories of exposure, pre-conception and 

pregnancy exposure estimates were slightly higher than childhood exposure estimates, 

paternal exposures produced slightly higher risk estimates compared to maternal 

exposures, and agricultural exposures produced slightly higher risk estimates compared 

to non-agricultural exposures. 

Evidence supporting a possible role for paternal exposure to pesticides during 

preconception and increased risk of CBT is limited but does exist.  Tomatis et al. 1981 

reported male rats given a single dose of ethylnitrosourea prior to mating with untreated 
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Figure 3-3. Meta-analysis results for maternal exposure to pesticides during 
pregnancy (non-agricultural exposures only). 
 

 
Figure 3-4. Meta-analysis results for paternal exposure to pesticides during 
pregnancy (agricultural/work exposures only). 
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Figure 3-5. Meta-analysis results for childhood exposure to agricultural pesticides. 
 

 
Figure 3-6. Meta-analysis results for childhood exposure to non-agricultural 
pesticides. 
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females produced offspring at increased risk for CNS tumors (5.6% compared to 1.9% 

controls; p = 0.08) [30].  Yu et al. 1999 found that offspring of male mice treated with 

chromium two weeks before conception were at increased risk of tumors.  This study also 

reported that methylation changes were noted in the sperm and could have altered 

parental imprinting [31].  Lastly, a population study by Infante-Rivard et al. 1999 found 

increased risk of leukemia in children whose fathers were exposed to pesticides during 

preconception [32]. 

There are several strengths of this meta-analysis.  As mentioned earlier, the use of the 

general variance based method gave more weight to larger studies, considered 

confounding, and limited the number of studies excluded because of missing data.  Most 

studies used interview data to assess exposure, providing a more direct accounting of 

exposure.  Finally, the combining of similar exposure time periods and splitting of 

maternal/paternal and agricultural/non-agricultural exposures allowed for assessment of 

the range of possible external etiological factors involved in CBT development. 

Limitations of the study include those typical of the epidemiological studies combined 

in meta-analyses such as publication bias, recall bias and exposure misclassification.  

Also, pesticide and CBT type, along with individual practices of participants, were not 

distinguished in most studies.  Lastly, a few studies had correlations for exposures across 

three time periods, thus limiting our ability to evaluate fully the independent effects of 

pesticide exposure during specific time periods. 

Based on the collective results of these meta-analyses it appears pesticide exposure 

does increase risk of CBT, with preconception and prenatal exposures being especially 

important factors in increasing risk of its development.  Interestingly, paternal exposure 
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may be as important, if not more important than maternal exposures, particularly during 

the preconception period.  Whether this is a result of paternal exposures being more 

prevalent than maternal exposures or the consequence of a biological process, is a 

question that deserves further attention in future investigations of CBT etiology.  The 

need for CBT exposure studies with better exposure time period characterization, 

including the division of pregnancy exposures into trimester, is also apparent. 
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ABSTRACT 

Astrocytomas are neoplasms of the brain that originate in a type of glial cell called an 

astrocyte. Recent advances in high-throughput microarrays have produced a wealth of 

information concerning molecular biology of glioma.  In particular, microarrays have 

been used to obtain genetic and epigenetic changes between normal non-tumor tissue and 

glioma tissue.  Due to the relative rarity of gliomas, microarray data for these tumors is 

often the product of small studies, and thus pooling this data becomes desirable.  

Additionally, analysis of microarray data has been an evolving field as techniques such as 

cluster analysis, networking analysis and principal components analysis have been used 

in order to tease biologically relevant information from the large amount of data 

produced from microarrays. We chose to combine these analytic approaches through first 

combining available microarray data on gliomas using a meta-analysis approach, and 

then conducting gene pathway networking analysis on results of this meta-analysis.  Our 

goal in this study was to identify key genes and/or pathways that are critical in the 

development of astrocytic tumors.  We also aim to identify genes and/or pathways that 

may further the understanding of the differences between low and high grade astrocytic 

tumors.   Several steps were involved in our analysis, including: 1) identification of a 

significant set of over- and under-expressed genes through meta-analysis of several 

astrocytoma microarray studies; 2) enrichment analysis of the set of significant genes;  3) 

network analysis of the set of significant genes; and  4) investigation and validation of the 

network analysis. Through meta-analysis of 12 sub-studies which compared normal 

tissue to astrocytomas, we were able to identify a list of 554 genes which were 

differentially expressed in the majority of these studies.  Many of the genes have in fact 
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been implicated in development of astrocytoma, including EGFR, HIF-1α, c-Myc, 

WNT5A, and IDH3A.  We then performed reverse engineering of our gene list using 

Bayesian network analysis.  Four networks of genes were produced, one for each grade of 

Astrocytoma (Grade I-IV).  Genes most influential to the highest grade of astrocytoma, 

Glioblastoma (Grade IV) were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, 

ANXA2, TOP2A, and SERBP1.  This study was able to identify a set of key genes 

significantly dysregulated during the development of astrocytoma.  Our results suggest 

that alterations in the expression of eight to ten key genes may be required for the 

development of astrocytomas. 
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BACKGROUND 

Astrocytomas are neoplasms of the brain that originate in a type of glial cell called an 

astrocyte.  They are the most common glioma and their most aggressive form, 

glioblastoma multiforme, has a median survival of less than one year.  While recent 

studies have characterized much of their basic biology, the major mechanisms behind the 

development of these tumors still remain unknown.  Importantly, while some 

glioblastomas are thought to evolve from lower grade astrocytomas (secondary 

glioblastomas), most are thought to arise de novo (primary glioblastomas).  Identifying 

genetic differences between the typically benign lower grade astrocytomas (Grade I-II) 

malignant higher grade astrocytomas (Grade III-IV) could be an important step in better 

characterization of these highly malignant tumors (Figure 4-1).  In addition, 

determination of the main pathways and genes involved in their development could 

provide for better therapies in the future. 

Recent advances in high-throughput microarrays have produced a wealth of 

information concerning glioma biology.  In particular, microarrays have been used to 

obtain differences in gene expression between normal non-tumor tissue and glioma 

tissue.  Due to the relative rarity of gliomas, microarray data for these tumors is often the 

product of small studies, and thus pooling this data becomes desirable.  Additionally, 

analysis of microarray data has been an evolving field as techniques such as cluster 

analysis, networking analysis and principal components analysis have been used in order  

to tease biologically relevant information from the large amount of data produced from 

microarrays. We chose to combine these analytic approaches through first combining 

available microarray data on gliomas using a meta-analysis approach, and then 
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conducting Bayesian analysis on results of this meta-analysis.  Our goal in this approach 

was to identify key genes and/or pathways that are critical in the development of 

astrocytic tumors.  Our results point to the involvement of several key genes in the 

development and progression of astrocytoma (8 – 18 genes depending on the grade of 

tumor). 

   

 
Figure 4-1. Characteristics of progression of Astrocytoma from Grade 1 to Grade 4. 
 

METHODS 

Several steps were involved in our analysis, including: 1) identification of a significant 

set of over- and under-expressed genes through meta-analysis of several astrocytoma 

microarray studies; 2) enrichment analysis of the set of significant genes;  3) network 

analysis of the set of significant genes; and  4) investigation and validation of the network 

analysis.   A more detailed description of these steps follows. 
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Meta-analysis of Microarray Datasets:  Oncomine (Compendia Bioscience, Ann 

Arbor, MI), a web-based cancer microarray database, was used to perform meta-analysis 

of cancer vs. normal studies in Astrocytoma [1]. The goal of this analysis was to identify 

a set of significantly over-and under-expressed genes in Astrocytoma for further 

investigation.  An Oncomine query for 'Differential Analysis - Cancer vs. Normal 

Analysis' and 'Cancer Type - Brain and CNS Cancer' was performed to identify studies 

that compared Astrocytoma to normal tissue.  Pilocytic Astrocytoma (WHO Grade I), 

Diffuse Astrocytoma (WHO Grade II), Anaplastic Astrocytoma (WHO Grade III), and 

Primary and Secondary Glioblastoma Multiforme (WHO Grade IV) 'sub-studies' were 

chosen.  Only studies analyzing microarray mRNA expression were used for the analysis.  

For purposes of this paper, 'sub-studies' are defined as studies on brain tumor sub-types 

within a larger overall study on brain tumors. Studies from our query that compared 

Astrocytic tumors to normal tissue were then selected for the meta-analysis.  Oncomine 

ranks genes within each individual study based on a gene's p-value compared to all other 

genes within the study.  In meta-analysis, two heat-maps are returned: one for top over-

expressed genes and one for top under-expressed genes.  Genes in these heat-maps 

ordered based on their median rank across the selected individual analyses.  For our 

study, the top 600 significantly under-expressed and the top 600 significantly over-

expressed genes from meta-analysis were narrowed to our 'significant gene list' by 

discarding all genes from these 1200 over- and under-expressed genes that were 

identified in 6 or less of the sub-studies.  Thus, a gene was included in our final list of 

significant genes if it was identified as over- or under-expressed in at least 7 of the 10 
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sub-studies.  This final set of genes was then subjected to enrichment and pathway 

analysis with several different tools. 

Gene Set Enrichment Analysis: FuncAssociate (Roth Laboratory, Harvard) and 

Ingenuity Pathway Analysis (IPA) (Redwood City, California) were used to identify 

pathways and other systems biology characteristics of our top set of genes.  

FuncAssociate is a web-based tool which performs a Fisher's Exact Test to determine a 

list of Gene Ontology (GO) attributes that are over- (or under-) represented among a set 

of genes entered by the user [2].  GO Terms, curated by the Gene Ontology Consortium, 

identify significant cellular components (e.g. rough endoplasmic reticulum, ribosome), 

biological processes (e.g. signal transduction, pyrimidine metabolic process), and 

molecular functions (e.g. catalytic activity, binding, adenylate cyclase activity) of a set of 

genes [3].  Our significant gene list from Oncomine was entered into FuncAssociate for 

analysis.  Settings were species: Homo sapiens; namespace: HGNC_Symbol; mode: 

ordered; simulations: 1000; over/under: both; and p-value cutoff: 0.05.  The HGNC 

Symbol namespace setting resulted in our choosing the entire known human genome as 

our universe of comparison genes for the enrichment analyses.   

IPA was also used to analyze our Oncomine gene list.  This web-based program uses a 

manually curated database of findings from the scientific literature, along with data 

obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG), to analyze 

connections between genes, proteins, and other molecules.  It also uses its own 

terminology for functional classifications of these molecules that is similar but not exact 

to the terminology used by GO.  Enrichment analysis was performed using IPA's "Core 

Analysis" function.  Whereas GO Terms do not relate significant pathways of a set of 
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genes, IPA Core Analysis does have this ability and therefore was used both to identify 

significant biological processes/molecular functions and to identify any pathways that 

were more commonly activated or inactivated in our set of genes.  Significance of the 

identified processes and pathways is given by the right-tailed Fisher exact test p-value, 

meaning only overrepresented attributes are returned by IPA.  The IPA default reference 

set of molecules, which includes all functionally-characterized molecules in IPA, was 

used as the universe of comparison genes.  Several groups of processes are identified, 

including: biological functions (‘Bio Functions’), toxicological functions (‘Tox 

Functions’), and established pathways (‘Canonical Pathways’).  The number of molecules 

from a set of data found to be in a pathway, divided by the total number of molecules in 

the identified canonical pathway is given.    

 

Reverse Engineering Bayesian Network Analysis: Bayesian networks have been 

widely used and accepted in modeling molecular networks from microarray data [4;5].  

These networks are probabilistic graphical models that produce directed acyclic graphs 

(DAG) that represent a set of random variables and their conditional dependencies. 

Nodes of the DAG represent genes or other variables such as disease and are assumed to 

be conditionally independent of each other.  The structures produced by Bayesian 

network analysis naturally represent causal hypotheses. 

We used the software application Banjo (Duke University, NC) for probabilistic 

structure learning of static Bayesian networks from our steady state expression data from 

Oncomine [6].  Banjo performs structure inference using a local search strategy termed 

Bayesian Dirichlet equivalence (BDe) scoring metric for discrete variables.  This strategy 
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makes incremental changes in the structure aimed at improving the score of the structure.  

A score for the ‘best network’, influence scores for the edges of the best network, and a 

dot graphical layout file are returned as results of the search.  The dot file is a DAG 

indicating regulation among genes and their possible influence on disease outcome.   

The goal of this Bayesian analysis was to identify what may be the most critical genes 

for development of astrocytoma from our significant set of meta-analysis genes.  This 

was accomplished by identifying a Markov blanket of each network output chosen as the 

'best network' for each grade of astrocytoma.  In a Bayesian network, the Markov blanket 

of any node A is its set of neighboring nodes composed of a nodes parents, children, and 

the parents of its children.  This defined set of neighboring nodes shields node A from the 

rest of the network, and thus the Markov blanket of node A is the only knowledge needed 

to predict the behavior of node A.   

Though its sensitivity is low, Banjo has been shown to have a very high positive 

predictive value for 100 plus case sets (regardless of the number of genes) composed of 

the type of 'global', steady-state gene data we analyzed [7].  For an overview of Bayesian 

network probability structures the reader is referred to Charniak 1991 [8].  Several other 

papers provide more detailed information on their construction and examples of their use 

with molecular modeling [5;9-12]. 

To perform the analysis on our data, expression values for our significant set of genes 

were downloaded from Oncomine and loaded into Microsoft Excel.  The top 100 over-

expressed genes and top 100 under-expressed genes were then considered for analysis in 

Banjo.  In order to increase our sample size, missing cases imputation was performed on 

cases with missing expression data for a particular gene using average of all expression 
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values across the gene as the imputation.  Cases without Grade identification and/or 

identified as non-tissue cases (i.e. cell lines) were excluded from the analysis.  Studies 

from our meta-analysis with missing data for a large amount of genes were also excluded.  

The expression data for the remaining genes was then separated by Grade, discretized per 

study (due to Oncomine normalizing expression values per study), and combined for 

analysis in Banjo.  Discretization of the data into three tiers expression (under-, median-, 

and over-expressed) was performed using the programming software tool Perl.  

Assuming normally distributed data, the three tiers were selected based on a one standard 

deviation confidence interval (i.e. ~68% of the values will have 'median-expression', with 

~16% of the values under-expressed and ~16% of the values over-expressed).  

Discretized files were then run in Banjo for four separate analyses: 1) Normal Tissue vs. 

Grade I Pilocytic Astrocytoma cases, 2) Normal Tissue vs. Grade II Diffuse Astrocytoma 

cases, 3) Normal Tissue vs. Grade III Anaplastic Astrocytoma, and 4) Normal Tissue vs. 

Grade IV Glioblastoma Multiforme cases.  Analyses was performed on the four Grades 

three separate times (three hours in length for each network search), with the 'best 

network' from these three runs being chosen as our 'final best network' for each Grade.  

Best network score significance was calculated using a log calculation of all three 

network scores, with a percent of the total score returned for each network. 

 

Investigation of Bayesian Network Results: Several methods were used to investigate 

and validate both the prediction capabilities and the biological plausibility of our Markov 

network genes.  They included literature and biological database searches, prediction 

analysis and clustering analysis, and curated gene and pathway analysis.  The literature 
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and database search of our Markov genes gathered information on gene cellular 

localization and function, and published research supporting the genes involvement in 

tumor formation by searching biological databases such The Human Gene Compendium's 

GeneCards (www.genecards.org), PubMed (www.pubmed.com), the Information 

Hyperlinked over Proteins (iHOP) Database (www.ihop-net.org), and the Glioblastoma 

Multiforme Database (GBMBase) (www.gbmbase.org).   

To assess the ability of our Markov genes to distinguish between normal and tumor 

samples in our analysis, we performed several prediction analyses including receiver 

operating characteristic (ROC) curve analysis representing the Bayesian network 

discretized results; and linear regression, logistic regression, cross validation and support 

vector machine (SVM) analysis to assess the predictability of both the discretized and 

raw expression values of our Markov genes.  Hierarchical Clustering was also performed 

on each set of Markov genes in order to further explore how these genes separated our set 

of non-tumor and tumor patients.  These analyses were performed using both IBM SPSS 

Statistics 19.0 and Multi-Experiment Viewer (MeV) version 4.7.1.  

Genie, a software tool for analyzing Bayesian networks developed by the University 

of Pittsburgh [13], was used to predict the probability of developing Astrocytoma given 

certain expression states for its gene network.  In Bayesian network analysis this is done 

by learning the parameters of a given DAG structure.  To accomplish this task, the 

discretized results files for each Grade of astrocytoma were loaded into the Genie 

software.  Additionally, the Banjo network structure results were recreated in Genie.  

Genie’s ‘learn parameters’ function was then used to predict probabilities of outcomes for 

certain network structures.  Given our small sample sizes, we did not allow a probability 
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of 0 to be assigned to any result, choosing instead to use 0.01 for any probability 

calculated as 0.  This allowed us to perform parameter assessment under the assumption 

that a low probability case may still have a very small chance of occurring in our data.  

Once our network parameters were established in Genie, we analyzed the probability of 

developing each grade of astrocytoma given differentially expressed states of the Markov 

genes of each grade.  This was done assuming the 2005-2007 Surveillance, Epidemiology 

and End Results (SEER) calculated lifetime probability of diagnosis of cancer of the 

brain and other nervous system of 0.61% [14]. (NOTE: This analysis was performed for 

Grade IV Astrocytoma only).    

In order to investigate existing literature and ontology based connections between our 

Markov gene lists we used programs in both IPA and PathJam [15].  The goal of these 

analyses was to investigate a) the quality of our network analysis findings in Banjo and 

Genie, and b) the biological relationships of our Markov genes from these analyses.  The 

initial investigation was done using the Path Explorer feature of IPA.  Path Explorer uses 

curated literature and experimental evidence of biochemical interactions to produce 

networks of existing connections between a set of user imputed genes.  This function was 

used to search for any existing connections among the Grade IV Astrocytoma Markov 

Genes.   

IPA’s Core Analysis was then performed on these same Grade IV Astrocytoma 

Markov Genes in order to produce connections for a set of genes independent of their 

established pathways.  This analysis generated gene networks produced by including 

genes in pathways of the inputted gene list.  Networks are ordered in importance by an 

IPA-defined significance score.  Settings for this analysis were Direct and Indirect 
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Relationships, All Data Sources, All Species, and All Tissues & Cell Lines.  The Human 

Genome U133 Plus 2.0 Array (19,079 genes) was selected as our reference universe of 

genes as it contained the largest gene set from our meta-analysis and was used in 2 of the 

5 meta-analysis studies used for our Banjo analysis.  The top identified network from the 

Core Analysis was compared to our Banjo/Genie generated results.  

 Complementary to this Core Analysis's production of top biological and disease 

related functions was our investigation of our Markov genes using PathJam [15].  This 

public server-based tool allows for interpretation of gene lists by integrating pathway-

related annotations from several public sources including Reactome, KEGG, NCBI 

Pathway Interaction Database, and Biocarta.  Using this tool we were able to produce  

interactive graphs linking all four Astroctyoma Markov gene lists with pathway 

annotations, allowing for graphical pathway investigation into our gene lists. 

 

RESULTS 

Meta-analysis of Microarray Datasets: A total of 12 studies (with 27 sub-studies) 

conducting cancer vs. normal analysis on 'Brain and CNS Cancer' were identified in 

Oncomine.  Non-astrocytic tumor studies and studies analyzing DNA (i.e. acCGH arrays) 

were then discarded, leaving seven studies (10 sub-studies) on astrocytoma for the meta-

analysis.  These 10 sub-studies are listed in Table 4-1.   

The top 600 significantly over-expressed and top 600 significantly under-expressed 

genes were identified from a total of 10 'sub-studies'.  The narrowing of the initial list of 

1200 genes produced a total of 646 genes for further analysis (372 significantly over-

expressed genes and 274 significantly under-expressed genes).  A list of these genes can 
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be found in Table 1 and Table 2 of the Appendix.  It should be noted that Primary and 

Secondary Glioblastomas were separated within only one of the nine studies identified as 

Astrocytoma in Oncomine (Bredel: 27 Primary vs. 2 Secondary Glioblastomas).  

Therefore, separation of these subtypes of Glioblastomas was not considered in our study. 

Table 4-1. List of Oncomine studies in meta-analysis of Astrocytoma vs. Normal 
Studies. 

Oncomine Study ID, Publication Journal, Date Study Astrocytoma Type*   
n  

(tumor/normal) 

Bredel Brain 2, Cancer Res, 2005 [16] Glioblastoma 27 / 4 
Gutmann Brain, Cancer Res, 2002 [17] Pilocytic Astrocytoma 8 / 3 
Lee Brain, Cancer Cell, 2006 [18] Glioblastoma 22 / 3 
Liang Brain, Proc Natl Acad Sci USA, 2005 [19] Glioblastoma 30 / 3 
Rickman Brain, Cancer Res, 2001 [20] Astrocytoma 45 / 6 
Shai Brain, Oncogene, 2003 [21] Astrocytoma 5 / 7 
Shai Brain, Oncogene, 2003 [21] Glioblastoma 27 / 7 
Sun Brain, Cancer Cell, 2006 [22] Anaplastic Astrocytoma 19 / 23 
Sun Brain, Cancer Cell, 2006 [22] Diffuse Astrocytoma 7 / 23 
Sun Brain, Cancer Cell, 2006 [22] Glioblastoma 81 / 23 
* All studies are Astrocytoma tissue type vs. normal tissue. 
  

Gene Set Enrichment Analysis: In order to identify significant biological processes, 

molecular functions, and pathways of the final set of 646 genes, we conducted 

enrichment analysis on this set of genes.  As described in the methods, two separate 

programs were used for this analysis: FuncAssociate and IPA.   

FuncAssociate Results: FuncAssociate identified 60 GO Terms as being over-

represented and 1 GO Term as being under-represented among our set of 314 over-

expressed genes (Table 4-2 and Table 4-3).  Several significant processes were related to 

nervous system processes (axon part, postsynaptic density, synapse part, synaptic 

transmission, neuron projection), developmental processes (cell part morphogenesis, 

cellular component morphogenesis, regulation of anatomical structure morphogenesis, 
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anatomical structure morphogenesis, regulation of developmental process, anatomical 

structure development, development process), and several cellular processes associated 

with cancer (cell adhesion, biological adhesion, regulation of cell proliferation, regulation 

of apoptosis).  Several genes involved in developmental processes have been linked to 

brain tumor development.  147 genes of our list of 646, in fact, were categorized in the 

GO developmental process terms listed above.  Several of these genes, including MYC, 

EGFR, HIF1A, HGF, APOE, TIMP3, and WNT5A have been identified as being 

important to development of astrocytoma.   

Table 4-2. Significant over-represented GO Terms for differentially expressed genes 
in Astrocytoma. 
Rank p-adjusted GO ID GO Name 

1 0.006 GO:0019829 Cation-transporting ATPase activity 
2 0.036 GO:0033267 Axon part 
3 0.04 GO:0005938 Cell cortex 
4 0.04 GO:0014069 Postsynaptic density 
5 0.013 GO:0044420 Extracellular matrix part 
6 0.019 GO:0032990 Cell part morphogenesis 
7 0 GO:0032989 Cellular component morphogenesis 
8 0 GO:0019900 Kinase binding 
9 0 GO:0044456 Synapse part 

10 0.011 GO:0019901 Protein kinase binding 
11 0.001 GO:0010035 Response to inorganic substance 
12 0.002 GO:0007268 Synaptic transmission 
13 0 GO:0043005 Neuron projection 
14 0 GO:0044419 Interspecies interaction between organisms 
15 0.002 GO:0044057 Regulation of system process 
16 0.013 GO:0022603 Regulation of anatomical structure morphogenesis 
17 0 GO:0019899 Enzyme binding 
18 0 GO:0008092 Cytoskeletal protein binding 
19 0 GO:0007155 Cell adhesion 
20 0 GO:0022610 Biological adhesion 
21 0 GO:0042127 Regulation of cell proliferation 
22 0 GO:0042995 Cell projection 
23 0 GO:0005515 Protein binding 
24 0.007 GO:0005509 Calcium binding 
25 0 GO:0008150 Biological process 
26 0.001 GO:0010033 Response to organic substance 
27 0 GO:0023034 Intracellular signaling pathway 
28 0 GO:0044459 Plasmamembrane part 
29 0.013 GO:0045907 Intracellular transport 
30 0.001 GO:0009653 Anatomical structure morphogenesis 
31 0.011 GO:0050793 Regulation of developmental process 
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Rank p-adjusted GO ID GO Name 
32 0.011 GO:0051239 Regulation of multicellular organismal process 
33 0.016 GO:0010646 Regulation of cell communication 
34 0.013 GO:0035466 Regulation of signaling pathway 
35 0.035 GO:0045184 Establishment of protein localization 
36 0.035 GO:0042981 Regulation of apoptosis 
37 0 GO:0005488 Binding 
38 0.033 GO:0050790 Regulation of catalytic activity 
39 0.015 GO:0065009 Regulation of molecular function 
40 0.03 GO:0031226 Intrinsic to plasma membrane 
41 0 GO:0048518 Positive regulation of biological process 
42 0.006 GO:0042221 Response to chemical stimulus 
43 0 GO:0048522 Positive regulation of cellular process 
44 0.015 GO:0065008 Regulation of biological quality 
45 0 GO:0043234 Protein complex 
46 0.001 GO:0048519 Negative regulation of biological process 
47 0 GO:0009987 Cellular process 
48 0.016 GO:0048856 Anatomical stucture development 
49 0.011 GO:0048523 Negative regulation of cellular process 
50 0 GO:0005737 Cytoplasm 
51 0 GO:0032502 Developmental process 
52 0.002 GO:0005886 Plasma membrane 
53 0.007 GO:0016043 Cellular component organization 
54 0.005 GO:0023052 Signaling 
55 0 GO:0044444 Cytoplasmic part 
56 0.006 GO:0032991 Mactromolecular complex 
57 0 GO:0065007 Biological regulation 
58 0.002 GO:0050789 Regulation of biological process 
59 0.005 GO:0050794 Regulation of cellular process 
60 0.013 GO:0044424 Intracellular part 

 

Table 4-3. Significant under-represented GO Terms for differentially expressed 
genes in Astrocytoma. 
Rank p-adjusted  GO ID GO Name 

1 0.006 GO: 0004984 Olfactory receptor activity 

 

Ingenuity Pathway Analysis Results:  IPA produced similar and contrasting results to 

the above analysis using FuncAssociate.  Top Canonical Pathways identified for the over-

expressed gene list include: ‘Synaptic Long Term Potentiation’ (p-value: 6.25E-07; Ratio 

of molecules in pathway from user list/total molecules in pathway: 16/113), ‘IL-8 

Signaling’ (p-value: 7.41E-07; Ratio: 20/186), ‘G Beta Gamma Signaling’ (p-value: 

9.48E-07; Ratio: 15/119), ‘CXCR4 Signaling’ (p-value: 1.1E-06; Ratio: 19/167), and 
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‘Cholecystokinin/Gastrin-mediated Signaling’ (p-value: 1.39E-06; Ratio: 15/104) (Figure 

4-2).  Several pathways known to be important to glioma development were also at the 

top of the significant canonical pathways list, including ‘WNT/beta-Catenin Signaling’ 

(CD44, CDH2, DVL3, LRP1, MYC, SOX4, SOX9, SOX13, TCF3, TCF4, TLE3, 

WNT5A) and ‘mTOR Signaling’ (EIF3B, EIF3E, EIF3F, EIF4A1, HIF1A, PRKD1, 

RHOC, RND2, RND3).  Confirming our gene list as involved with brain tumor 

development, ‘Glioma Invasiveness Signaling’ (CD44, F2R, ITGAV, MMP9, RHOC, 

RND2, RND3, TIMP3, TIMP4) and ‘Glioblastoma Multiforme Signaling’ (CDK6, 

CDKN1A, EGFR, ITPR2, MYC, RHOC, RND2, RND3, TCF3, WNT5A) were returned 

as significant pathways as well. 

IPA Core Analysis also returns what are termed ‘Top Bio Functions’, grouped into 

three categories:  Diseases and Disorders, Molecular and Cellular Functions, and 

Physiological System Development and Function.  Significant functions are returned with 

their associated p-value and # of input molecules in the function.  The top 5 Disease and 

Disorders for our list of 554 astrocytoma differentially expressed genes were: 

‘Neurological Disease’ (p-value: 1.17E-25 – 4.98E-04; 270 molecules from our list), 

‘Cancer’ (3.83E-24 – 5.61E-04; 240 molecules), ‘Skeletal and Muscular Disorders’ 

(2.32E-19 – 4.42E-04; 206 molecules), ‘Genetic Disorder’ (3.04E-17 – 5.27E-04; 354 

molecules), and ‘Inflammatory Disease’ (2.20E-16 – 4.92E-04; 195 molecules).  The top 

5 Molecular and Cellular Functions were ‘Cell Death’ (1.36E-21 – 5.81E-04; 205 

molecules), ‘Cellular Growth and Proliferation’ (1.23E-14 – 4.48E-04; 203 molecules), 

‘Cell Morphology’ (2.51E-14 – 4.82E-04; 99 molecules), ‘Cellular Movement’ (1.08E-11 

– 4.58E-04; 116 molecules), and ‘Cell Cycle’ (5.83E-11 – 5.61E-04; 91 molecules).     
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Figure 4-2. Top Canonical Pathways for Astrocytoma differentially expressed genes.  
The threshold line denotes the cutoff for significance (p-value = 0.05).    Ratio is the 
number of molecules in the input list vs. the total number of molecules in the function. 
 

 The top 5 Physiological System Development and Functions were ‘Tissue 

Development’ (1.65E-09 – 5.79E-04; 105 molecules), ‘Skeletal and Muscular System 

Development and Function’ (1.67E-09 – 2.96E-04; 54 molecules), ‘Tissue Morphology’ 
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(7.04E-08 – 1.35E-04; 78 molecules), ‘Nervous System Development and Function’ 

(1.48E-07E – 3.65E-04; 96 molecules), and ‘Behavior’ (1.67E-07 – 3.09E-04; 47 

molecules).  Figure 4-3 shows these top Bio Functions in order of significance. When 

interpreting these results, it is important to keep in mind that the p-values refer to the 

High Level Functions rather than to individual Lower-Level Functions, and therefore, if a 

High Level Function contains two or more specific Lower-Level Functions, a range of 

significances is displayed.  

Core Analysis also produces Top Toxicity Profiles.  The Top 5 profiles for our 554 

differentially expressed genes were ‘Hepatic Fibrosis’ (p-value: 3.59E-06; Ratio of 

molecules: 13/85), ‘Hepatic Cholestasis’ (p-value: 4.77E-03; Ratio: 11/135), ‘G1/S 

Transition of the Cell Cycle’ (p-value: 5.02E-03; Ratio: 6/49), ‘Oxidative Stress’ (p-

value: 1.05E-02; Ratio: 6/57), and ‘VDR/RXR Activation’ (p-value: 1.28E-02; Ratio: 

7/77) (Figure 4-4).  
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Figure 4-3. Top Biological Functions for Astrocytoma differentially expressed genes.  
The threshold line denotes the cutoff for significance (p-value = 0.05). 
 

 
Figure 4-4. Top Toxicological Functions for Astrocytoma differentially expressed 
genes.  The threshold line denotes the cutoff for significance (p-value = 0.05).  Ratio is 
the number of molecules in the input list vs. the total number of molecules in the 
function. 
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Reverse Engineering Bayesian Network Analysis: Four separate analyses were run in 

Banjo in order to search for genes critical for Grade I, II, III and IV Astrocytoma 

development.  As discussed in the methods, studies and/or genes with missing expression 

data were excluded from the network analysis.  Studies removed for both analyses were 

Bredel 2005, Liang 2005, and Rickman 2001. Additionally, Gutmann 2002 was removed 

from the Grade IV analyses as it did not contain Grade IV tumors.  Genes were removed 

from our top 200 genes list (100 over- and 100 under-expressed genes) for each analyses 

based on availability per Grade.  77 genes were removed for Grade 1, 68 for Grade 2, and 

23 each for Grades 3 and 4. Please see Table 4-4 for sample size and search score results 

for each grade of tumor.  Markov blanket genes identified for each grade were as follows:  

 Grade I Pilocytic Astrocytoma: IGFB5, TIMP4, SSR2, LPL, DUSP7, GABRA5, 
SH3GL3, C1S, WNT10B, SRPX, ANK3, HLAA, EIF4A1, PTGER3, CCND2 

 
 Grade II Diffuse Astrocytoma: FN1, MARCKS, PRDX4, NONO, SPARC,  

WNT5A, CD44, EIF4A1, CD99, CALCRL, EMP1, VCAN, CDH11, VAMP1, 
RAB3B, DUSP7, PPP2R2B, SERINC3 

 
 Grade III Anaplastic Astrocytoma: LPL, MARCKS, SERBP1, DPYSL3, SNRPE, 

EIF4A1, ANXA1, MCM3, BTN3A3, MTHFD2, DAB2, RCAN2, RUSC2, TPPP, 
MAST3, CNTN2 

 
 Grade IV Glioblastoma Multiforme: COL4A1, EGFR, BTF3, MPP2, RAB31, 

CDK4, CD99, ANXA2, TOP2A, SERBP1 
 

 
DAG structures for these Markov genes can be seen in Figures 4-5, 4-6, 4-7, and 4-8.  A 

comparison of these Markov genes across each grade of Astrocytoma can be found in 

Appendix Table 3. 
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Table 4-4. Sample statistics and significance of search score results of Bayesian 
network analysis. 

 
Studies in 
Analysis 

Normal Tumor 
Genes 

Analyzed 
for Network 

Bayesian Analysis Network Score 
Significance* 

Search 1 Search 2 Search 3 

Normal vs. 
Grade 1 

Bredel, 
Gutmann, 
Rickman 

13 30 122 1.37% 98.16% 0.46% 

Normal vs. 
Grade II 

Rickman, 
Shai, Sun 

36 14 131 9.11% 6.62% 84.62% 

Normal vs. 
Grade III 

Bredel, 
Shai, Sun 

34 23 176 1.98% 0.04% 99.95% 

Normal vs. 
Grade IV 

Bredel, 
Shai, Sun 

34 137 176 0.00% 0.00% 99.99% 

*Significance score for each network equals percent of total score for all three networks combined. 
 

 

 

 
Figure 4-5. Markov blanket genes for Bayesian network of Pilocytic Astrocytoma.  
Darker shade genes are overexpressed genes and lighter shade genes are underexpressed 
genes from the Oncomine meta-analysis. 
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Figure 4-6. Markov blanket genes for Bayesian network of Diffuse Astrocytoma.  
Darker shade genes are overexpressed genes and lighter shade genes are underexpressed 
genes from the Oncomine meta-analysis. 
 

 
Figure 4-7.  Markov blanket genes for Bayesian network of Anaplastic Astrocytoma.  
Darker shade genes are overexpressed genes and lighter shade genes are underexpressed 
genes from the Oncomine meta-analysis. 
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Figure 4-8. Markov blanket genes for Bayesian network of Glioblastoma 
Multiforme.  Darker shade genes are overexpressed genes and lighter shade genes are 
underexpressed genes from the Oncomine meta-analysis. 
 

Analysis of Bayesian Network Results 

Normal Tissue vs. Grade I Astrocytoma:  Prediction analysis of the 15 Grade I 

Markov genes showed that the 15 gene set we identified as important for Pilocytic 

Astrocytoma development was able to predict tumor status consistently in each analysis 

type (Table 4-5).  Results of hierarchical clustering using expression data from our 

Markov genes can be found in Figure 4-9.  Results of the PathJam analysis can be found 

in Appendix Figure 1.  
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Figure 4-9. Hierarchical clustering of Pilocytic Astrocytoma Markov genes using 
raw expression values of Rickman study only.  No Tumor /Tumor Bar: Red bar areas 
represent samples without tumors and green bar areas represent tumor cases.  Expression: 
Blue squares represent underexpression; yellow squares represent overexpression. 
 

Table 4-5. Pilocytic Astrocytoma prediction analysis summary.  15 total Markov 
genes were used in the analysis, except in linear stepwise regression, which used only 10 
significant predictor genes in the analysis. 

Type of Prediction Analysis 
Case Counts 

(No Tumor/Tumor) 
Predictability 

Bayesian Network Results using ROC Curve 13/30 1.000 AUC (.000 sig.) 
Linear Regression (15 genes together) 13/30 .873 (aR square) (.000 sig.) 
Linear Regression (stepwise) (10 gene model) 13/30 .880 (aR square) (.000 sig.) 
Logistic Regression (discretized expression) 13/30 Error: Perfect fit detected 
Logistic Regression (raw expression) 6/19 Error: Perfect fit detected 
Cross Validation (discretized expression) 13/30 79.1% 
Cross Validation (raw expression) 6/19 88% 
Support Vector Machine (SVM) 6/19 100% 
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Normal Tissue vs. Grade II Astrocytoma: Prediction analysis of the 18 Grade II 

Markov genes showed that our set of 18 genes was able to predict tumor status 

consistently when using logistic regression, cross validation and SVM analysis.  Linear 

regression seemed to predict that a signature of 10 genes would predict tumor status just 

as well as our 18 total genes, though each gene set only predicted approximately 21% of 

the tumor status's variability in either case (Table 4-6).  Results of hierarchical clustering 

using expression data from our Markov genes can be found in Figure 4-10.  Results of the 

PathJam analysis can be found in Appendix Figure 2.   

Normal Tissue vs. Grade III Astrocytoma: Prediction analysis of the 18 Grade III 

Markov genes showed that our set of 18 genes was able to predict tumor status, especially 

when using logistic regression, raw expression in cross validation, and the SVM analysis.  

Linear regression seemed to again predict that a signature of much less than the total 

genes (10 of 18) would predict tumor status (Table 4-7). Results of hierarchical clustering 

using expression data from our Markov genes can be found in Figure 4-11. Results of the 

PathJam analysis can be found in Appendix Figure 3. 

Table 4-6. Diffuse Astrocytoma prediction analysis summary.  18 total Markov genes 
were used in the analysis, except in linear stepwise regression, which used only 10 
significant predictor genes in the analysis. 

Type of Prediction Analysis 
Case Counts 

(No Tumor/Tumor) 
Predictability 

Bayesian Network Results using ROC Curve 36/14 1.000 AUC (.000 sig.) 
Linear Regression (18 genes together) 36/14 .207 (aR square) (.092 sig.) 
Linear Regression (stepwise) (10 gene model) 36/14 .880 (aR square) (.028 sig.) 
Logistic Regression (discretized expression) 36/14 88% (1.000 sig.) 
Logistic Regression (raw expression) 23/8 Error: Perfect fit detected 
Cross Validation (discretized expression) 36/14 70% 
Cross Validation (raw expression) 23/7 80% 
Support Vector Machine (SVM) 23/7 100% 
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Figure 4-10. Hierarchical clustering of Diffuse Astrocytoma Markov genes using 
raw expression values of Sun Study Only.  No Tumor /Tumor Bar: Green bar areas 
represent samples without tumors and red bar areas represent tumor cases.  Expression: 
Blue squares represent underexpression; yellow squares represent overexpression. 
 

Table 4-7. Anaplastic Astrocytoma prediction analysis summary.  18 total Markov 
genes were used in the analysis, except in linear stepwise regression, which used only 11 
significant predictor genes in the analysis. 

Type of Prediction Analysis 
Case Counts 

(No Tumor/Tumor) 
Predictability 

Bayesian Network Results using ROC Curve 34/23 1.000 AUC (.000 sig.) 
Linear Regression (18 genes together) 34/23 .631 (aR square) (.000 sig.) 
Linear Regression (stepwise) (11 gene model) 34/23 .645 (aR square) (.000 sig.) 
Logistic Regression (discretized expression) 34/23 96.5% (1.000 sig.) 
Logistic Regression (raw expression) 23/19 Error: Perfect fit detected 
Cross Validation (discretized expression) 34/23 84.2% 
Cross Validation (raw expression) 23/19 100% 
Support Vector Machine (SVM) 23/19 100% 
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Figure 4-11. Hierarchical clustering of Anaplastic Astrocytoma Markov genes using 
raw expression values of Sun study only.  No Tumor /Tumor Bar: Green bar areas 
represent samples without tumors and red bar areas represent tumor cases.  Expression: 
Blue squares represent underexpression; Yellow  squares represent overexpression. 
 

Normal Tissue vs. Grade IV Astrocytoma: Prediction analysis of the 10 Grade IV 

Markov genes showed that our set of 10 genes was again able to consistently predict 

between non-tumor and tumor cases with all analysis (Table 4-8). Please see Appendix 

Table 4 for results of the biological database and literature search.  Research supporting 

the potential involvement and importance of all 10 genes in development of glioblastoma 

was found in the literature.  Results of hierarchical clustering using expression data from 
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our Markov genes can be found in Figure 4-12. Assessment of increased lifetime risk of 

development of development of astrocytoma due to deregulation of our Markov genes 

showed that differential expression of all 10 of our genes at once increased your lifetime 

risk of brain tumor development to 85.90%.  In contrast, differential expression of two 

separate sets of 10 genes found outside the Markov blanket in our Bayesian network 

increased lifetime risk of brain tumor development to 2.61% and 0.98% respectively 

(Table 4-9).   

Results of the IPA and PathJam analysis can be found in Appendix Figures 4 through 

6.  The investigation using IPA’s Path Explorer produced a network of genes showing 

empirical evidence of interaction among our 10 Glioblastoma Markov blanket genes.  

IPA Core Analysis of these same Markov genes added genes and molecules such as 

NFkB, ERK, MAPK, Vegf, growth hormone and collagen to produce a network whose 

top biological functions are cancer, neurological disease, and cellular movement 

(Appendix Figure 6).  Our analysis of these same Markov genes using PathJam found 

that three of the 10 genes in particular seemed to be potential 'hubs of activity' and had 

functions that they shared.  These genes, EGFR, COL4A1, and CDK4 all shared the 

'pathways to cancer' annotation; and EGFR and COL4A1 were shown to be involved 

specific cancers such as glioma, melanoma, lung cancer, bladder cancer, and pancreatic 

cancer.  Additionally, COL4A1 and EGFR shared involvement in axon guidance and 

focal adhesion.  For a full list of the biological pathways and gene ontology terms 

associated with each gene please see Appendix Figure 4. 
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Table 4-8. Glioblastoma Multiforme prediction analysis summary.  10 total Markov 
genes were used in the analysis, except in linear stepwise regression, which used only 6 
significant predictor genes in the analysis. 

Type of Prediction Analysis 
Case Counts 

(No Tumor/Tumor) 
Predictability 

Bayesian Network Results using ROC Curve 34/23 1.000 AUC (.000 sig.) 
Linear Regression (18 genes together) 34/23 .631 (aR square) (.000 sig.) 
Linear Regression (stepwise) (11 gene model) 34/23 .645 (aR square) (.000 sig.) 
Logistic Regression (discretized expression) 34/23 96.5% (1.000 sig.) 
Logistic Regression (raw expression) 23/19 Error: Perfect fit detected 
Cross Validation (discretized expression) 34/23 84.2% 
Cross Validation (raw expression) 23/19 100% 
Support Vector Machine (SVM) 23/19 100% 
 
 

 
Figure 4-12. Hierarchical clustering of Glioblastoma Multiforme genes using raw 
expression values of Sun study only.  No Tumor /Tumor Bar: Green bar areas represent 
samples without tumors and red bar areas represent tumor cases.  Expression: Darker 
squares represent underexpression; Lighter squares represent overexpression. 
 

Table 4-9. Risk associated with Markov genes vs. non-Markov genes in 
Glioblastoma Multiforme.  Normal Gene Set Risk represents the SEER calculated 
0.61% chance of a person developing a brain tumor in their lifetime. 
Gene Set Risk 

Normal Gene Set 0.61 

Markov Differentially Expressed (COL4A1, CD99, ANXA2, MPP2, EGFR, CDK4, 
BTF3, RAB31, TOP2A, SERBP1) 

85.90 

D-Connected Differentially Expressed (KIF5C, PALLD, S100A10, TPPP, PCNA, 
FN1, IGFBP2, CDH11, LYPLA1) 

2.61 

D-Separated Differentially Expressed (PKP4, SYNCRIP, CALCRL, GABRA5, 
MOBP, PLOD2, WNT5A, C1S, RPS2, FCHO1) 

0.98 
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DISCUSSION 

This study produced several major findings including identification of a list of top 

over- and under-expressed genes among 10 sub-studies on astrocytoma, identification of 

several genes important to development of both low and high grade astrocytomas, 

identification of important signaling pathways in astrocytic tumors, and identification of 

possible mechanisms which explain the genes and pathways identified as important to 

development of astrocytoma.   

Through meta-analysis of 10 sub-studies which compared normal tissue to 

astrocytomas, a list of 646 genes which were differentially expressed in the majority of 

these studies was identified.  Many of the genes identified through this meta-analysis 

have in fact been implicated in development of astrocytoma including EGFR 

(amplification occurs in ~40% of primary glioblastomas [23;24]), HIF-1α, c-Myc, 

WNT5A, and IDH3A.  Enrichment analysis of the 646 genes using FuncAssociate 

identified several processes associated with these genes, many of which are related to 

nervous system, developmental, and tumor promoting processes.  Ingenuity Pathway 

Analysis also produced a list of processes that are significantly associated with these 

genes, including two pathways which have previously been linked to development of 

astrocytomas [1. 'WNT/beta-Catenin Signaling' (Genes from our set in pathway: CD44, 

CDH2, DVL3, LRP1, MYC, SOX4, SOX9, SOX13, TCF3, TCF4, TLE3, WNT5A) and 

2. 'mTOR Signaling' (Genes: EIF3B, EIF3E, EIF3F, EIF4A1, HIF1A, PRKD1, RHOC, 

RND2, RND3)] and  two pathways associated with brain tumor development [1. 'Glioma 

Invasiveness Signaling' (Genes: CD44, F2R, ITGAV, MMP9, RHOC, RND2, RND3, 
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TIMP3, TIMP4) and ‘Glioblastoma Multiforme Signaling' (Genes: CDK6, CDKN1A, 

EGFR, ITPR2, MYC, RHOC, RND2, RND3, TCF3, WNT5A)]. 

In order narrow our large set of genes down into a few genes which could be most 

influential to development of astrocytomas, we performed reverse engineering of our 

gene list using Bayesian network analysis.  Four networks of genes were produced, one 

for each grade of Astrocytoma. 

To investigate the biological mechanisms of our set of significant Grade IV network 

genes we used biological databases such as The Human Gene Conpendium's GeneCards, 

PubMed, the Information Hyperlinked over Proteins (iHOP) Database, and the 

Glioblastoma Multiforme Database (GBMBase).  Results of this investigation can be 

found in Table 4.  Much of the biology described in this table was considered  in the 

context of current knowledge on signaling pathways of astrocytoma.  Major patterns in 

these tumors have been described [25], and include components of the Ras-MAPK and 

PI3K-AKT-mTOR signaling pathways being affected in the plurality (88%; 80 of 91) of 

malignant gliomas and disruption of the p53 and RB tumor suppressor networks also 

occurring in a high proportion of glioblastomas: 87% (79 of 91) and 78% (71 of 91), 

respectively [25]. 

There are several strengths and limitations involved with our analyses.  Several 

characteristics of  microarray expression studies must be considered.  First, expression 

levels of many genes differ among individuals and thus gene expression can be analyzed 

like other quantitative phenotypes such as height and blood glucose levels.  This allowed 

us to separate each gene into expression categories of over-, median, and under-

expression. Expression changes can also reflect many types of alterations significant to 
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tumor development, including chromosomal translocations and epigenetic alterations.  

Additionally, several studies have established causal links between differential gene 

expression and complex disease risk and thus identification of over- and under-expressed 

genes in tumor tissue compared to normal tissue could provide important clues to the 

development of tumors.  Furthermore, it has also been shown that genes with similar 

expression patterns form complexes and/or pathways that are part of regulatory circuits 

that may lead to tumors and other diseases, lending support to the validity of our pathway 

analyses.   Our meta-analysis, which took the top 600 over- and top 600 under-expressed 

genes from a set of studies, should also have produced the most important differentially 

expressed genes across all astrocytic tumors.  Analysis that shows 143 genes in GBM are 

expressed on average at 10-fold higher levels than normal tissue confirms that the most 

highly expressed genes in GBM were considered in our analysis [26]. 

There are also several limitations of expression values. Foremost are the discrepancies 

between protein and mRNA levels in studies correlating their expression, a clear sign that 

interactions outside the classical DNA to mRNA to protein pathway are taking place 

inside the cell.  Additionally, it has been shown that known genes may not necessarily be 

differentially expressed in diseases due to the ability of mutations in the coding regions of 

genes and post-translational modifications affecting gene function without affecting its 

expression level. However, our approach of meta-analysis and focusing on networks of 

genes rather than single genes may lessen the effect of missing important genes (i.e. 

while one gene in a pathway may not be expressed, another may).  Finally, only looking 

at mean expression changes of genes could lead to incorrect conclusions about the 
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involvement of a pathway in a disease condition, and so as suggested by de la Fuente 

2010, co-expression of genes should also be considered [27]. 

 Limitations of enrichment analysis in general apply [28] to our analysis, including: a) 

incomplete annotation databases as a result of only a subset of known genes being 

functionally annotated; b) annotation databases may not be completely updated with all 

literature results; c) some annotation assignments may be erroneous, especially those 

which are electronically inferred; d) singling out the most important processes for genes 

involved in several biological processes is limited.  This can be overcome by looking at 

the gene in context of other over- and/or under-expressed genes however; and e) 

annotation bias due to some biological processes being studied in more detail than others 

(e.g. proliferation). 

Another limitation of our approach is that because our set of significant genes was 

chosen through meta-analysis of micro-array studies that used differing platforms and 

differing gene totals per study, we were unable to input a set of genes as for our 'total 

gene universe' in our gene enrichment analyses.  This limited us to choosing the entire 

genome as our universe of comparison genes for the enrichment analyses.  However, 4 of 

the 9 studies contained 18,800+ genes and one other study contained 14,584 genes, 

making it likely that most of our selected significant genes represent most of the 

appropriate over- and/or under-expressed genes in astrocytoma.   

Reverse network engineering methods have evolved greatly over the past decade, with 

recent reports lending credibility to their ability to correctly predict biological 

interactions [29;30].  However, limitations associated with their use must be considered. 

In particular, static Bayesian networks cannot contain feedback loops, due to the steady 
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state nature of the data.  Thus, a characteristic common to biological systems was not 

considered in our network.  Also, because Bayesian networks model probabilistic 

dependencies among variables and not causality, we cannot conclusively say that the 

parents of a node are direct causes of its behavior [4].  A causal link can be inferred 

however, if the Causal Markov Condition holds true.  Simply, this condition states that 

any node in a Bayesian network is conditionally independent of its non-descendants, 

given its parents; and, a node is conditionally independent of the entire network, given its 

Markov blanket. A strength of our approach is the exploration of gene networks in 

tumors without a priori genetic interaction networks being assumed.  This has been 

mentioned as a limitation of previous work on gene networks in gliomas [31].  

Incorporation of biological evidence that directs our Bayesian network search could serve 

to strengthen our approach in the future however. 

Finally, limitations concerning the data used in our study must be considered.  For 

example, our inability to separate pediatric astrocytomas from adult astrocytomas, 

secondary glioblastomas from secondary glioblastomas, and male vs. female cases does 

limit the extent to which we can draw conclusions from our data.  The possibility that 'a 

fraction of GBMs designated as primary tumors may follow a sequence of genetic events 

similar to that of secondary lesions but not come to clinical attention until malignant 

progression to a GBM has occurred', lessens the concern of dividing types of 

glioblastomas however.  Additionally, our method could be considered non-biased in this 

respect, as it does not pre-condition results based on priors, thus allowing for a search 

which may provide key genes across all hypothesized glioblastoma subtypes. 



186 
 

This research was able to identify several genes and pathways that are associated in 

the development of astrocytoma.  Though these molecules could be causally linked to 

astrocytoma, further detailed analysis is necessary.  Experiments involving system 

perturbations of these genes (e.g. gene knockout experiments) are needed to establish 

directionality in our network and to provide validity of our findings. 
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ABSTRACT 

Recent developments in bioinformatics, including integration of large amounts of 

diverse biological and environmental data, allow for investigation of gene-gene and gene-

environment interactions.  Bioinformatics resources were used to develop hypotheses for 

investigation of GEI in the development of glioblastoma multiforme (GBM), the most 

common and aggressive type of human brain tumor.  Genes responsive to environmental 

exposures were identified using the Environmental Genome Project, Comparative 

Toxicology, and Seattle SNPs databases.  These genes were then compared to a curated 

list of genes altered in GBM.  The list of genes responsive to the environment and 

important to GBM was then further investigated using gene networking tools such as 

RSpider and Cytoscape.  A total of 173 environmentally responsive genes were found to 

be altered in GBM. The main biological functions of these genes included Signaling by 

Nerve Growth Factor (NGF), DNA Repair, Integrin Cell Surface Interactions, Biological 

Oxidations, Apoptosis, Synaptic Transmission, Cell Cycle Checkpoints, and Arachidonic 

Acid Metabolism.  Importantly, NGF, a protein essential to axonal growth and 

differentiation, and maintenance and survival of its targeted nerve cells, has been 

implicated in development of several cancers, including GBM.  Generation of GEI data 

relevant to GBM etiology through this bioinformatics method, can provide highly 

useful information for hypothesis generation. 
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INTRODUCTION 

The etiology of brain tumors is mainly unknown. Aside from extremely rare genetic 

conditions, such as neurofibromatosis and tuberous sclerosis, the only unequivocally 

identified risk factor is exposure to ionizing radiation, and this explains only a very small 

fraction of cases.   Research over the past few decades does point to the relevancy of a 

few environmental exposures in brain tumor etiology however.  A number of these 

exposures, including pesticides, N-nitroso compounds, non-ionizing radiation from long-

term cell phone use, and infection with polyomavirus, have been positively linked to 

brain tumors, although findings are inconclusive.  Several work-related exposures have 

been convincingly linked to brain tumors however, including nuclear workers exposed to 

radiation, pathologists and embalmers exposed to formaldehyde, plastic workers exposed 

to vinyl chloride, and textile and plastic workers exposed to acrylonitrile [1].   

Very few epidemiological studies to date have investigated gene-environment 

interactions (GEI) in relation to brain tumor development.  To date, two studies have 

assessed GEI in adult glioma.  A case-control study on lead exposure, the lead toxicity 

associated gene δ-aminolevulinic acid dehydratase (ALAD), and risk of brain tumors 

found increased risk of meningioma with occupational lead exposure.  Risk of 

meningioma, a tumor present mainly in later life, was markedly increased in individuals 

with the ALAD2 variant allele, for whom risks increased in a dose dependent fashion 

from 1.1 (0.3-4.5) to 5.6 (0.7-45.5) and 12.8 (1.4-120.8) compared to unexposed persons.  

Risk for glioma was not associated with occupational lead exposure [2].  A second adult 

GEI study on glutathione transferases (GST) polymorphisms, cigarette smoke exposure, 

and development of adult glioma failed to find any significant GEI [3].  While few GEI 
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studies in glioblastoma exist, computational modeling of 600 adults with glioma has 

shown that a polygenic-environment-interactive model best explained the pattern of 

occurrence of brain tumors [4]. 

Recent developments in bioinformatics such as tools that allow for the assessment of 

pathway and gene relationships, text mining of published literature, and integration of 

large amounts of diverse biological and environmental data allow for hypothesis driven 

investigations of gene-gene and gene-environment interactions.  Methods that exploit 

these tools have been applied to modeling of gene-environment interactions in depression 

and alcohol use [5], and bipolar disorder and its interaction with both tobacco use [6] and 

lithium treatment [7].   Integration of toxicological and pharmacological databases such 

as the Comparative Toxicological Database (CTD) [8] and Environmental Genome 

Projects (EGP) [9] with data on genetic alterations has also proven useful in developing 

hypothesis for research into GEI related diseases [10;11].  We chose to use these 

environmental bioinformatics resources to develop hypotheses for investigation of gene-

environment interactions in the development of glioblastoma multiforme (GBM), the 

most common and aggressive type of human brain tumor.   

 

BACKGROUND ON GENE ALTERATIONS AND ENVIRONMENTAL 

EXPOSURES 

Alterations in genes that interact with environmental influences are thought to play a 

large part in this variable response and its subsequent risk for disease.  The genetic 

alterations that result from environmental exposures can occur at several levels, including 

in single nucleotides, small stretches of DNA (microsatellites), whole genes, structural 
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components of chromosomes, or complete chromosomes.  In principle, complex diseases 

such as cancer might be more susceptible to the lower levels, or ‘softer’ forms, of 

variation such as variation in noncoding sequences and copy number, which alter gene 

dose without abolishing gene function.  Thus, variability in responsiveness of these 

altered genes to environmental influences may be directly related to disease 

susceptibility.   

Among rearrangements frequently involved in tumor progression is DNA 

amplification, which drastically modifies gene dosage in cancer cells [12;13] and has 

been linked to glioma development through growth factors such as EGFR [14].  

Amplification of a gene refers to existence of at least five copies of a DNA segment (or 

deletion of a segment for loss of copies) that is less than 20 megabases in length, whereas 

a low (<5) copy number increase or decrease (also referred to as gain or loss), is directed 

towards intact chromosomes, entire chromosome arms, or larger chromosomal regions 

with only one intra-chromosomal breakpoint.  Mechanisms of gene amplification have 

been reviewed in detail by Myllykangas and Knuutila [15].  In this review, the authors 

cite a 0.440 amplification frequency per case of GBM (268 amplifications in 609 

reviewed cases) vs. 0.047 amplification per case of astrocytoma (43 amplifications in 920 

reviewed cases).  This difference may be due to the more progressed solid tumor nature 

of GBM compared to astrocytoma.  For the purposes of this paper, amplification or 

deletion, and gain or loss of gene copy number will be referred to as copy number 

variation (CNV). 

 A recent study of gene expression variation sought to determine the fraction of gene 

expression ‘traits’ associated with either SNPs or CNVs in complex phenotypes. SNP 
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genotypes and CNV measurements were associated with 83% and 18% of those gene 

expression traits for which statistically significant associations were found [16].  While 

CNVs accounted for a small role, this study may still underestimate the role of CNVs, 

given the greater completeness and accuracy with which SNPs can be queried at present.  

Regardless, the import of both SNPs and CNVs to variation in phenotype and disease 

susceptibility is becoming clearer.  Recent research is also finding that, surprisingly, most 

of the SNP variations associated with disease are not in the region of DNA that codes for 

a protein. Instead, they are usually in the large non-coding regions on the chromosome 

between genes, or in the intron sequences that are edited out of the DNA sequence when 

proteins are processed. These are presumably sequences of DNA that control other genes, 

but usually, their protein function is not known [17]. 

Evidence of environmental exposures causing CNV is still developing, while the 

environments ability to cause SNP mutations is quite established [18;19].  Although 

evidence suggests that most common copy number variants are inherited and therefore 

caused by ancestral structural mutations [20], there is growing evidence that many or 

most normal and sporadic, nonrecurring CNVs, which account for the majority of 

disease-associated CNVs in humans and those in cancers, arise via mechanisms coupled 

to aberrant DNA replication and/or non-homologous repair of DNA damage [21].  This 

suggests an unexpected mitotic, rather than meiotic, cell origin for many CNVs and has a 

number of important implications for the role of environmental exposures in their 

formation.  This evidence has led some to hypothesize that the two types of 

environmental agents most likely to be associated with CNV formation are: 1) agents that 

lead to replication stress, which might lead to CNVs through secondary breakage or 
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replicative template switching, and 2) agents that directly induce DNA double-strand 

breaks (DNA DSBs), which might lead to CNVs through inappropriate joining of broken 

ends.  Moreover, the ability of environmental agents to cause CNVs and induce 

epigenetic transgenerational effects in the sperm epigenome separate from methylation 

effects has recently been established [22].   

In an attempt to identify genes potentially important in environmentally related 

alterations in GBM, we apply a method similar to the bioinformatics methods of Herbert 

et al. in their research on identifying potential environmentally-related autism genes [23].  

We have modified and extended this method to include a search for specific gene-

chemical observations important for our 'environmentally responsive genes', and develop 

a gene network using these genes and alterations in GBM. 

 

METHODS 

A summary of the methodology and workflow outline for this research can be seen in 

Figure 5-1.  Briefly, significant copy number alterations and SNP mutations in GBM 

were curated from published literature and the COSMIC database [24].  Gene lists from 

six studies on GBM were used for this curation (Table 5-1) [24-30].  Design of study, 

analysis platform, sample size and region of genome analyzed were criteria used to select 

studies to include in our alteration results.   

Gene lists from three environmental databases were used for the compilation of 

possible environmentally important genes in GBM.  These databases were: 
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a. The Environmental Genome Project (EGP) located at: 

http://egp.gs.washington.edu/finished_genes.html.  The National Institute of 

Environmental Health Sciences (NIEHS) EGP is a database which identifies and 

genotypes genes with functions related to cell cycle, cell division, cell signaling, 

cell structure, DNA repair, gene expression, homeostasis, metabolism, immune 

and inflammatory response, hormone metabolism, nutrition, oxidative 

metabolism and  stress, membrane pumps and/or drug resistance, and signal 

transduction [9].  All genes from this database were included in our 

environmentally responsive genes list. 

b. Seattle SNPs located at: http://pga.gs.washington.edu/finished_genes.html.  The  

Seattle SNP database is a National Heart Lung and Blood Institute (NHLBI) 

funded project focused on identifying, genotyping, and modeling associations 

between SNPs in candidate genes and pathways that underlie inflammatory 

responses in humans.  All genes from this database were included in our 

inflammatory genes list. 

c. The Comparative Toxicogenomics Database (CTD) located at: 

http://www.mdibl.org/research/ctd.shtml.  The CTD, operated by the Mount 

Desert Island Biological Laboratory (MDIBL) with support from the National 

Institutes of Health (NIH), collects gene-environment-disease interactions 

information from published literature.  It is searchable by several methods 

including disease, gene, chemicals and gene-chemical interactions.  We searched 

GBM to obtain a list of genes found to be modulated by chemical exposures. 
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Table 5-1. List of Glioblastoma studies used for compilation of alterations list. 

Alteration 
Type 

Study Author and Year 

Total TCGA 
2008 
[25] 

Korshunov 
2006  
[28] 

Freire 
2008 
[27] 

Margareto 
2009  
[29] 

Parson 
2008 
[30] 

Carter 
2009 
[26] 

COSMIC 
[24] 

Amplifications 15 35 98 x 69 x x 217 

Deletions 12 x 44 x 77 x x 350 

Copy Gains 158 34 x 22 x x x 214 

Copy Losses 126 34 x 1 x x x 161 

SNP Mutated 
Genes 

222 x x x 42 17 2129 2410 

Driver 
Mutations 

x x x x 42 17 x 59 

 

 
Figure 5-1. Bioinformatics methodology.  This flowchart illustrates steps outlined in 
the methods section by which we identified interactions between three 
environmentally relevant genomics databases and Glioblastoma alterations. 
 

The gene lists from the glioblastoma alterations search and our environmental genes 

database search were then inputted into the GeneVenn program [31] to assess their 

overlap. Gene overlaps between the three environmental gene databases and our 
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glioblastoma alterations list were determined.  Overlapping genes, referred to as the ‘GEI 

gene list’ from this point forward, were used for further analysis including:  

1. Pubmatrix (http://pubmatrix.grc.nia.nih.gov), an NIH tool which allows cross       

referencing of gene lists with search terms, was used to assess whether 

overlapping genes had been previously studied in relation to glioblastoma. 

2. The GEI gene list was searched in the Comparative Toxicology Database for 

relevant gene-chemical interactions and chemical associations. 

3. Both the GEI gene list and the entire Glioblastoma alterations list were subjected 

to gene networking analysis using the bioinformatics tools RSpider [32] and 

DAVID [33].  RSpider results were visualized using Cytoscape [34]. 

 

RESULTS 

A total of 217 amplified genes, 214 copy number gain genes, 350 deleted genes, 161 

copy number loss genes, and 2410 SNP mutated genes were found in the 6 total studies 

and 1 database we searched (Table 5-1).  According to the COSMIC database, 2,129 

genes have been found to be mutated in glioblastoma, while 15,733 genes have been 

sequenced in glioblastoma where no mutation has been found.  The top 20 mutated GBM 

genes in our COSMIC search, with the percentage of mutated genes per tumors analyzed, 

can be seen in Figure 5-2.  In a GeneVenn comparison of our alterations lists, 67 

amplified/gain genes and 45 deleted/loss genes were shown to also be mutated in our 

gene sets, while 6 amplified/gain genes also have copy number deletion or loss in GBM 

(Figure 5-3).  
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Figure 5-2. Top 20 genes mutated in Glioblastoma according to COSMIC database 
search.  Blue bars represent tissue samples with mutations; Red bars represent all tissue 
samples. 

The search of the environmental databases returned 648 Environmental Genome 

Project (EGP) genes (environmentally responsive genes), 319 Seattle SNP (SSNP) genes 

(inflammatory genes), and 15 Comparative Toxicology Database (CTD) genes 

(toxicogenomic genes).  Very little overlap existed between these gene sets (4 between  

EGP and CTD, 3 between SSNP and CTD, 8 between EGP and SSNP, and 1 between all 

three databases).  Overlapping of our final list of GBM alterations with the environmental 

genes found 173 genes that have an environmental exposure link and are altered in 

glioblastoma.  These genes are listed in Appendix Table 5 with their gene symbol, gene 

name, and whether they have ever been previously studied in glioblastoma.  Of these 173 

genes, a Pubmatrix search found that 65 of our overlapping genes had not been 

previously assessed in glioblastoma research.  The list of 173 genes potentially important 
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in GEI in glioblastoma formation 

was then subjected to analysis in 

the Comparative Toxicology 

Database.  Results indicate 

substantial potential for chemical 

interaction with these set of 

genes including interactions with 

chemicals such as arsenic and 

pesticides such as chlorpyrifos 

for gene ABCB1, benzene and 

bisphenol A for EGFR, and 

estradiol for MDM2 and NCOA1.  In total, our list of 173 genes produced 30,983 gene-

chemical interactions and showed 13,779 chemical associations.  A specific search for 

chemical-gene interactions producing mutagenesis in our genes found 68 results.  A list 

of these genes accompanied their interacting chemical and a brief description of their 

interaction effect can be found in Appendix Table 6.   

The final section of our analysis involved the development of a gene network for our 

173 potentially environmentally important GBM genes and a second network for our 

entire list of over 3,000 GBM alterations.  These networks were produced using R spider, 

a web-based tool for that develops biological networks from user-inputted gene lists by 

querying the core pathways and reactions contained in the Reactome and KEGG 

databases.  These databases, which use data extracted from biomedical experiments and 

literature, are currently two of the most complete and best-curated pathway databases. 

Figure 5-3. Overlap between our Glioblastoma 
amplified/gain genes, deleted/loss genes, and 
SNP mutated genes. 
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RSpider and Cytoscape analysis of our list of 173 GEI GBM genes produced a 

network with main biological functions of Signaling by Nerve Growth Factor (NGF), 

DNA Repair, Integrin Cell Surface Interactions, Biological Oxidations, Apoptosis, HIV 

Infection, Synaptic Transmission, Metabolism of Amino Acids and Derivatives, 

Signaling by Insulin Receptor, Cell Cycle Checkpoints, and Arachidonic Acid 

Metabolism.  The RSpider/Cytoscape network for the list of GBM alterations again found 

Signaling by NGF to be the top biological function.  Other functions for this gene list 

were Integrin Cell Surface Interactions, Cell Cycle Checkpoints, Signaling by PDGF, 

Synaptic Transmission, Signaling by Rho GTPases, Signaling by Insulin Receptor, DNA 

Repair, Apoptosis, Inositol Phosphate Metabolism, and Metabolism of Carbohydrates.  

Genes from our list of 173 GEI genes involved in NGF signaling, according to our search 

of the CTD database include AKT2, BRAF, CASP9, MDM2, NRAS, PTEN, and STAT3. 

Analysis by DAVID of the 173 GEI GBM genes found 35 KEGG ontologies 

significantly represented in the gene list (Table 5-2).  The top ontology was ‘Pathways in 

cancer’ which contained 42 of the 173 GEI genes.  The ontology ‘Glioma’ was also 

significant as 13 of the 173 GEI are known glioma genes according to the KEGG 

database.  The top KEGG ontology for the Glioblastoma alterations list according to 

DAVID analyses was also ‘Pathways in Cancer’, as 123 genes from the list were in this 

ontology.  A total of 62 KEGG ontologies were significantly represented in this list of 

over 3,000 mutated genes.  Gene ontology results for this list of alterations provide a 

broad overall picture of pathways potentially affected by or effecting Glioblastoma 

development. Representations of the ‘Pathways in Cancer’ and ‘Glioma’ KEGG 
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pathways/ontologies with genes contained in the GEI gene list and GBM gene list 

highlighted are presented in the Appendix (Appendix Figures 7-10). 

 

DISCUSSION 

Our review of current research on GBM found very few studies that assessed the 

potential role of gene-environment interaction in their development.  Several plausible 

environmental exposures have been linked to their development however, and therefore 

the possible biological mechanisms involved need more investigation.  Most research on 

GBM biology to date has focused on a few mechanisms and pathways in their 

development, including those promoting cell cycle dysregulation and enhanced glioma 

cell proliferation.  These mechanisms include the Rb pathway, the p53 pathway, 

mitogenic signaling pathways (MAPK, PI3K, PTEN, AKT) and receptor tyrosine kinase 

signaling molecules (EGFR and PDGFR) [35].  Our bioinformatics investigation found 

173 genes with the potential to be involved in GEI in GBM.  65 of these environmentally 

responsive genes have not been investigated with regards to Glioblastoma, and several of 

them were shown to have significant potential for response to chemicals and subsequent 

disease related actions.  For example, Chlorpyrifos, an organophosphate insecticide 

associated with development of neurological disorders [36;37], was shown to bind to 

ABCB1 gene in our CTD search.  While this gene has been studied in Glioblastoma 

treatment [38], to our knowledge, its potential for involvement in development of GBM 

through GEI has not been assessed.  In fact, 174 of our 176 Glioblastoma altered genes 

with GEI potential had evidence of gene-chemical relationships in our CTD search, 

including many with mutagenic relationships (Appendix Table 6).  We have shown that
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Table 5-2. KEGG Gene Ontology Results produced by DAVID analysis of 173 GEI Glioblastoma gene list. 

KEGG Gene Ontology 
Gene 
Count 

% of 
Genes in 
Ontology 

P-Value Genes in KEGG Gene Ontology Category 

hsa05200:Pathways in cancer 42 24.4186 1.38E-20 

FGFR2, FGFR1, FGFR3, PTGS2, ERBB2, MLH1, CDH1, PTEN, 
MMP2, SHH, CTNNB1, ARNT, IGF1R, CDKN2A, CDKN2B, CASP9, 
BCL2, CSF3R, EGF, MYC, FGF2, AKT2, EGFR, MSH6, IL6, BRAF, 
MSH2, TGFBR2, TP53, BRCA2, CDK6, RB1, HGF, STAT1, CDK4, 

STAT3, NRAS, BAX, MDM2, MAPK9, PTCH2, ABL1 

hsa05218:Melanoma 17 9.883721 2.78E-12 
EGFR, FGFR1, BRAF, TP53, CDK6, CDH1, RB1, HGF, CDK4, PTEN, 

NRAS, IGF1R, CDKN2A, MDM2, EGF, FGF2, AKT2 

hsa05219:Bladder cancer 14 8.139535 4.20E-12 
EGFR, FGFR3, BRAF, ERBB2, TP53, CDH1, RB1, CDK4, MMP2, 

NRAS, CDKN2A, MDM2, EGF, MYC 

hsa05212:Pancreatic cancer 16 9.302326 4.73E-11 
EGFR, BRAF, ERBB2, TGFBR2, TP53, BRCA2, CDK6, RB1, STAT1, 

CDK4, STAT3, CDKN2A, CASP9, MAPK9, EGF, AKT2 

hsa05215:Prostate cancer 17 9.883721 1.08E-10 
EGFR, FGFR2, FGFR1, BRAF, ERBB2, TP53, IGF2, RB1, PTEN, 

CTNNB1, NRAS, IGF1R, CASP9, BCL2, MDM2, EGF, AKT2 

hsa04115:p53 signaling pathway 15 8.72093 2.59E-10 
TP53, CDK6, CHEK1, CHEK2, CDK4, PTEN, ATM, CDKN2A, 
CASP9, CCND2, BAX, SERPINE1, GADD45G, MDM2, MDM4 

hsa05213:Endometrial cancer 13 7.55814 1.31E-09 
EGFR, BRAF, ERBB2, TP53, MLH1, CDH1, PTEN, CTNNB1, NRAS, 

CASP9, EGF, MYC, AKT2 

hsa04110:Cell cycle 18 10.46512 2.54E-09 
CDC7, E2F4, TP53, PRKDC, CDK6, CHEK1, RB1, CHEK2, CDK4, 
ATM, CDKN2A, CDKN2B, CCND2, CDKN2C, GADD45G, MDM2, 

ABL1, MYC 

hsa05210:Colorectal cancer 15 8.72093 4.89E-09 
EGFR, MSH6, BRAF, MSH2, TGFBR2, TP53, MLH1, CTNNB1, 

IGF1R, CASP9, BAX, BCL2, MAPK9, MYC, AKT2 

hsa05214:Glioma 13 7.55814 1.37E-08 
EGFR, BRAF, TP53, CDK6, RB1, CDK4, PTEN, NRAS, IGF1R, 

CDKN2A, MDM2, EGF, AKT2 
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KEGG Gene Ontology 
Gene 
Count 

% of 
Genes in 
Ontology 

P-Value Genes in KEGG Gene Ontology Category 

hsa05223:Non-small cell lung cancer 12 6.976744 2.71E-08 
EGFR, NRAS, CDKN2A, CASP9, BRAF, ERBB2, TP53, CDK6, RB1, 

EGF, CDK4, AKT2 

hsa05220:Chronic myeloid leukemia 12 6.976744 9.21E-07 
NRAS, CDKN2A, BRAF, TGFBR2, TP53, MDM2, CDK6, RB1, 

ABL1, CDK4, MYC, AKT2 

hsa05222:Small cell lung cancer 11 6.395349 2.01E-05 
PTGS2, CASP9, CDKN2B, BCL2, TP53, CDK6, RB1, CDK4, MYC, 

PTEN, AKT2 

hsa04010:MAPK signaling pathway 19 11.04651 3.50E-05 
EGFR, FGFR2, FGFR1, FGFR3, BRAF, NF1, TGFBR2, TP53, DDIT3, 

NRAS, TNFRSF1A, MAP3K8, GADD45G, MAPK9, RAP1B, EGF, 
FGF2, MYC, AKT2 

hsa03430:Mismatch repair 6 3.488372 1.49E-04 MSH6, RFC2, MSH2, POLD1, MLH1, PMS2 

hsa04012:ErbB signaling pathway 10 5.813953 1.61E-04 
EGFR, NRAS, BRAF, ERBB2, MAPK9, EGF, ABL1, ABL2, MYC, 

AKT2 

hsa04060:Cytokine-cytokine receptor 
interaction 

17 9.883721 3.14E-04 
EGFR, IL3, IL6, TNFRSF25, TGFBR2, TNFRSF8, HGF, IFNAR1, 
TNFRSF1A, TNFRSF9, IFNA1, TNFRSF1B, TNFRSF11B, IL17B, 

IL4R, CSF3R, EGF 

hsa05216:Thyroid cancer 6 3.488372 4.70E-04 NRAS, BRAF, TP53, CDH1, MYC, CTNNB1 

hsa04510:Focal adhesion 14 8.139535 6.96E-04 
EGFR, BRAF, ERBB2, HGF, PTEN, CTNNB1, VWF, IGF1R, CCND2, 

BCL2, MAPK9, RAP1B, EGF, AKT2 

hsa04722:Neurotrophin signaling 
pathway 

10 5.813953 0.002176 
NRAS, BRAF, BCL2, BAX, TP53, MAPK9, RAP1B, ABL1, CSK, 

AKT2 

hsa04630:Jak-STAT signaling pathway 11 6.395349 0.002988 
IL3, IFNA1, IL6, CCND2, IL4R, CSF3R, STAT1, MYC, STAT3, 

IFNAR1, AKT2 

hsa04210:Apoptosis 8 4.651163 0.003823 TNFRSF1A, IL3, CASP9, BCL2, BAX, TP53, ATM, AKT2 

hsa05014:Amyotrophic lateral sclerosis 
(ALS) 

6 3.488372 0.007297 TNFRSF1A, TNFRSF1B, CASP9, BCL2, BAX, TP53 

hsa04520:Adherens junction 7 4.069767 0.00853 EGFR, IGF1R, FGFR1, ERBB2, TGFBR2, CDH1, CTNNB1 
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KEGG Gene Ontology 
Gene 
Count 

% of 
Genes in 
Ontology 

P-Value Genes in KEGG Gene Ontology Category 

hsa04620:Toll-like receptor signaling 
pathway 

8 4.651163 0.008628 IKBKE, IFNA1, IL6, MAP3K8, MAPK9, STAT1, IFNAR1, AKT2 

hsa03420:Nucleotide excision repair 5 2.906977 0.018309 ERCC5, RFC2, DDB1, POLD1, POLE 

hsa04920:Adipocytokine signaling 
pathway 

6 3.488372 0.019018 TNFRSF1A, PPARA, TNFRSF1B, MAPK9, STAT3, AKT2 

hsa04610:Complement and coagulation 
cascades 

6 3.488372 0.021341 F13B, VWF, F3, F13A1, SERPINE1, SERPING1 

hsa05211:Renal cell carcinoma 6 3.488372 0.022569 NRAS, BRAF, RAP1B, HGF, ARNT, AKT2 

hsa04810:Regulation of actin 
cytoskeleton 

11 6.395349 0.026801 
EGFR, FGFR2, FGFR1, NRAS, ITGAL, FGFR3, BRAF, IGF2, EGF, 

CSK, FGF2 

hsa05221:Acute myeloid leukemia 5 2.906977 0.044768 NRAS, BRAF, MYC, STAT3, AKT2 

hsa04914:Progesterone-mediated oocyte 
maturation 

6 3.488372 0.048636 PGR, IGF1R, BRAF, MAPK9, IGF2, AKT2 

hsa00980:Metabolism of xenobiotics by 
cytochrome P450 

5 2.906977 0.049693 CYP3A4, CYP1B1, CYP2C19, CYP2E1, UGT1A1 

hsa04370:VEGF signaling pathway 5 2.906977 0.095568 NRAS, PTGS2, CASP9, NOS3, AKT2 
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many of these genes have not been studied in Glioblastoma, and therefore their potential 

for involvement in GBM should be assessed in future investigations into the etiology of 

GBM.   

Through gene network and gene ontology analysis, we were able to obtain significant 

biological functions involved in our set of GEI and GBM alteration genes lists.  The top 

function in both gene sets involved NGF, a small secreted protein important in axonal 

growth and integral in the differentiation, maintenance and survival of its targeted nerve 

cells.  NGF has been implicated in several cancers including liver cancer [39], oral cancer 

[40], breast cancer [41], and several brain cancers [42-44], including glioblastoma 

[45;46].  The survival and proliferation of breast cancer cells are in fact, strongly 

stimulated by NGF [47], and NGF, through direction of downstream signaling of PI3K, 

ERK, and VEGF, may be an important stimulator of breast cancer angiogenesis [48].  

Furthermore, the potential importance of NGF on the development of tumors through 

shifting proapoptotic signals in cancer cells has been shown in GBM cells [45].  

Importantly, environmental factors such as PCBs are believed to have the ability to 

influence the NGF neurotrophic system [49].  One mechanism for the influence of NGF 

to environmental factors may be through Nrf2, a redox-sensitive transcription factor that 

has been shown to direct expression of cytoprotective phase 2 genes such as thioredoxin 

reductase 1 (TXNRD1) in GBM cells [50].  There are obvious limitations to this type of 

bioinformatics analyses of course.  While this analysis provides numerous hypotheses for 

potential GEI interactions, it can only suggest possibilities, and therefore further research 

in a lab setting is necessary to validate their involvement in GBM.  Another limitation is 

the nonrandom choice of our set of GBM alterations.  While we did choose studies and 
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databases we felt would provide a comprehensive set of alterations, we did not assess the 

entire set of literature on GBM alterations, and therefore may have missed some potential 

alterations in our analysis.  Furthermore, we have not included epigenetic genes in our 

analysis and therefore may have missed other potential GEI pathways to GBM through 

these mechanisms.  While these are shortcomings of this type of research, the clear 

benefit of this study in particular, is the production of a list of genes with potential to 

contribute to GBM that have not previously been studied.  Furthermore, generation of 

GEI data relevant to GBM etiology through this bioinformatics method provides highly 

use information for hypothesis generation. 
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Appendix Table 1. Significantly over-expressed gene list from Oncomine meta-
analysis of normal vs. astrocytoma studies.  *Genes are ranked by significance in 
Oncomine.  **Genes were considered significant in the meta-analysis, and chosen for 
further analysis, if they were found in at least in at least 7 of 10 meta-analyzed studies. 

Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

1 SYNCRIP 9 187 PLAU 10 

2 RAB31 10 188 HLA-DRB1 10 

3 HLA-G 8 189 SERPING1 10 

4 FN1 10 190 RB1 8 

5 HLA-J 7 191 NFKB1A 10 

6 SOX4 10 192 PTTG1IP 10 

7 C1R 10 193 RPL12 9 

8 SNRPG 9 194 CXCR4 9 

9 NAMPT 9 195 FYB 10 

10 TIMP3 10 196 ITGAV 10 

11 GNB2L1 10 197 ISG15 10 

12 IGFBP7 9 198 GALNT1 10 

13 HIF1A 10 199 SEC11A 8 

14 RPLP0 9 200 EMP3 10 

15 ANXA2 10 201 IFI44 8 

16 LPL 10 202 CAV1 10 

17 ID3 7 203 RIT1 10 

18 PRPF40A 9 204 ATP6V0E1 9 

19 MARCKS 10 205 RBMS1 9 

20 P4HB 10 206 SMAD1 10 

21 PALLD 8 207 LPCAT1 8 

22 COL4A1 10 208 FOXD1 9 

23 PRDX4 10 209 EIF4A3 10 

24 SERBP1 9 210 AEBP1 10 

25 IFI16 10 211 MYCBP 10 

26 PROS1 10 212 DDX39 8 

27 DPYSL3 10 213 CTSO 10 

28 IDH1 8 214 IL13RA1 10 

29 DYNLT1 9 215 CFI 9 

30 NONO 10 216 TFPI 10 

31 SOD2 10 217 G3BP1 10 

32 SPARC 10 218 DAG1 10 

33 TIMP4 10 219 CKS2 10 

34 DBI 9 220 PABPC1 10 

35 CD151 10 221 AK2 9 
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Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

36 SNRPE 9 222 PTPN12 10 

37 LYPLA1 9 223 ILF2 10 

38 ZFP36L2 10 224 SP3 10 

39 HLA-F 10 225 SSR4 10 

40 HLA-B 8 226 SOX6 7 

41 PTBP1 9 227 LAPTM4B 9 

42 PCNA 10 228 CDKN2C 9 

43 COL1A2 10 229 F13A1 10 

44 BTF3 9 230 SP110 7 

45 WNT5A 10 231 TOP1 10 

46 CCND2 10 232 ANXA5 10 

47 CD44 10 233 MUC1 10 

48 EIF4A1 10 234 VAT1 10 

49 CSDA 10 235 UBE2J1 9 

50 PDLIM5 9 236 KCTD12 7 

51 HLA-E 9 237 INPPL1 10 

52 NNMT 10 238 TAP1 10 

53 CD99 10 239 STAT1 10 

54 IGFBP5 10 240 GBP1 10 

55 ANXA1 10 241 PHLDA1 10 

56 CALCRL 10 242 COPB2 10 

57 IGFBP2 9 243 DECR1 10 

58 EMP1 8 244 COL4A2 10 

59 BTG1 10 245 SNRNP200 8 

60 SRPX 10 246 SOX9 10 

61 SSR2 9 247 KIF14 10 

62 PRRX1 8 248 ACBD3 9 

63 TRAF3IP2 9 249 DARS 10 

64 CDK4 10 250 TAPBP 9 

65 EGFR 10 251 LYN 10 

66 TOP2A 10 252 CHI3L2 10 

67 PTPRZ1 10 253 BCL6 10 

68 SAT1 10 254 ILF3 10 

69 ABCC3 9 255 LMNB1 9 

70 WEE1 10 256 TGIF1 10 

71 TAGN2 9 257 NID1 10 

72 S100A10 10 258 PPP4C 10 

73 MCM3 10 259 CANX 10 

74 STAT3 10 260 NMI 10 

75 RPS2 9 261 COL1A1 7 
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Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

76 BTN3A3 9 262 SEC61G 9 

77 MTHFD2 10 263 TRIO 10 

78 RPS19 10 264 DNALI1 9 

79 VCAN 10 265 F2R 10 

80 IRAK1 10 266 PSMB9 9 

81 CDH11 10 267 C1orf61 10 

82 RPL18A 9 268 CEBPD 9 

83 DAB2 10 269 SLC2A5 10 

84 TMX1 9 270 TCF4 10 

85 PSMB8 7 271 LSM7 8 

86 HLA-A 10 272 EDNRA 10 

87 CD63 8 273 PLXNB2 8 

88 HSD17B10 10 274 SSR1 10 

89 DAP 10 275 SCP2 10 

90 UBE2L6 9 276 SUPR1 9 

91 DFNA5 7 277 PXDN 10 

92 TGFB1 10 278 OSMR 9 

93 YBX1 8 279 RNASE6 10 

94 C1S 10 280 IL1RAP 9 

95 FCGBP 10 281 GLB1 10 

96 PYGL 10 282 SON 10 

97 SHMT2 10 283 LIMS1 10 

98 PLOD2 10 284 NEDD4 10 

99 ODC1 10 285 ZNF22 10 

100 VIM 10 286 WTAP 10 

101 PSMA2 10 287 RPL29 10 

102 LTF 7 288 EIF3B 10 

103 IGFBP3 10 289 TM9SF1 10 

104 ABCA1 8 290 EIF3E 10 

105 WDR1 8 291 CD14 10 

106 NCK1 10 292 TNX8 7 

107 B2M 10 293 ENTPD1 10 

108 KDELR2 10 294 RBBP4 10 

109 CTSC 10 295 GPR56 8 

110 GNAS 10 296 STAB1 8 

111 CHI3L1 10 297 BUD31 10 

112 SFRS3 10 298 DTYMK 10 

113 RAB13 8 299 LRP10 8 

114 ADAM9 10 300 TRIB2 10 

115 TNC 10 301 GNA12 9 
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Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

116 HNMT 9 302 RBMX 10 

117 CALD1 10 303 HEBP2 9 

118 APOC1 10 304 SFRS1 9 

119 PSME2 10 305 ARHGDIB 10 

120 MCL1 10 306 FLNA 10 

121 PHB2 10 307 VCAM1 10 

122 MYC 10 308 CSNK1A1 10 

123 RELA 9 309 PSMF1 10 

124 PLTP 8 310 PDIA6 9 

125 SOAT1 7 311 GNS 10 

126 NME4 10 312 RUNX1 10 

127 RHOC 10 313 RPL17 8 

128 HLA-C 7 314 SMC5 9 

129 ZC3HAV1 9 315 ETV1 10 

130 JAG1 10 316 LAMC1 10 

131 CSRP2 10 317 PCOLCE 10 

132 BARD1 10 318 RECQL 10 

133 LAMA4 9 319 VAMP8 8 

134 PRCP 9 320 ARHGEF6 10 

135 TIMP1 10 321 BNIP2 10 

136 CBX3 10 322 FADD 10 

137 NME2 7 323 HLA-DRA 10 

138 CPNE3 8 324 MDK 9 

139 CD163 10 325 GALNT10 9 

140 POLR2J 10 326 TNPO1 10 

141 CKAP4 10 327 HMGN1 9 

142 PTN 9 328 EIF4EBP1 8 

143 LYPD1 9 329 BTN3A2 9 

144 DLG5 9 330 TMCO1 9 

145 LAPTM4A 9 331 KARS 10 

146 ID4 10 332 POSTN 10 

147 WWTR1 9 333 ELF1 10 

148 CALU 9 334 TPM2 10 

149 GBE1 10 335 GTF3C2 10 

150 FYN 10 336 GBP2 9 

151 ERGIC3 9 337 TP53 9 

152 BACH1 8 338 GAS1 10 

153 SERPINE1 10 339 CYFIP1 10 

154 POLD2 10 340 JUN 10 

155 AIF1 10 341 RCN1 10 
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Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

156 FCGRT 10 342 HNRNPUL1 9 

157 H19 8 343 HAT1 9 

158 H2AFV 9 344 MAPK7 10 

159 MAPRE1 10 345 TRIM14 10 

160 KIAA0040 7 346 UBE2C 10 

161 TPR 10 347 MAPKAPK2 10 

162 RPL23 10 348 SP100 10 

163 COL3A1 10 349 SFPQ 10 

164 DPY19L1 9 350 FKBP5 10 

165 APOE 10 351 HLA-DMA 10 

166 PDPN 9 352 H3F3A 10 

167 GNG5 9 353 NPM1 7 

168 NUP205 10 354 NAGA 7 

169 SSRP1 10 355 CTGF 10 

170 HLA-DQB1 10 356 GUSB 10 

171 LAMB2 10 357 RPA1 10 

172 LHFPL2 10 358 MPZL1 9 

173 BAT1 8 359 LY96 8 

174 OBSL1 9 360 HLA-DPB1 10 

175 CNN3 10 361 AIMP2 9 

176 PPIB 10 362 ARPC1B 10 

177 STK17A 9 363 EEF1G 10 

178 ACLY 10 364 SH3BP2 10 

179 FCGR1A 9 365 UBA7 10 

180 COL6A1 10 366 PTK7 10 

181 RPL7A 7 367 FHL1 10 

182 ZNF207 9 368 CLEC2B 10 

183 TLE3 10 369 CCBL2 9 

184 NMB 9 370 VEGFA 10 

185 SRI 10 371 CLIC1 7 

186 PAICS 10 372 SEPT9 8 
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Appendix Table 2. Significantly under-expressed gene list from Oncomine meta-
analysis of normal vs. astrocytoma studies.  *Genes are ranked by significance in 
Oncomine.  **Genes were considered significant in the meta-analysis, and chosen for 
further analysis, if they were found in at least in at least 7 of 10 meta-analyzed studies. 

Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

1 ANK3 10 139 RAB11FIP2 9 

2 DCNTN1 7 140 DLGAP2 9 

3 BCL2L2 10 141 MADD 10 

4 WDR7 9 142 TNK1 9 

5 PLEKHB2 9 143 CD200 10 

6 PRKCZ 10 144 SORBS2 9 

7 GRM3 10 145 RAP1GAP 10 

8 OPA1 9 146 NR1D1 10 

9 USP12 9 147 IDI1 10 

10 ATP6V0A1 10 148 MAL 10 

11 VAMP1 8 149 ELMO1 10 

12 EPB41L3 9 150 PURA 10 

13 IDH3A 10 151 KRT17 10 

14 MAPRE2 10 152 CD47 10 

15 SH3GL3 10 153 RUFY3 9 

16 PTGER3 10 154 COX7A1 9 

17 ATP6V1E1 9 155 MPHOSPH8 9 

18 RCAN2 10 156 BIN1 10 

19 SBF1 7 157 C5orf30 9 

20 TSPYL1 9 158 CAMTA1 9 

21 RANGAP1 9 159 PRDM2 10 

22 ZNF365 7 160 GSTM5 10 

23 SNCG 9 161 EDIL3 9 

24 STAU2 9 162 NEFM 10 

25 ASPHD1 7 163 SYT5 10 

26 PTAFR 10 164 PRSS3 9 

27 RAB3B 10 165 LARGE 9 

28 PRKCB 10 166 STK39 8 

29 STMN1 10 167 SV2B 9 

30 CNNM2 9 168 XK 10 

31 CACNA1B 8 169 CLCN4 10 

32 CHIC1 7 170 MEG3 9 

33 VAMP2 10 171 NECAB3 7 

34 WNT10B 9 172 YWHAZ 10 

35 DUSP7 10 173 C22orf9 8 
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Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

36 GRIN2C 10 174 INPP5F 9 

37 RUSC2 9 175 RAB3A 10 

38 MAPK8IP2 7 176 DBP 10 

39 SSX2IP 9 177 KCNAB2 10 

40 TPM3 9 178 GABRB2 8 

41 TPPP 9 179 SLC17A7 9 

42 PICK1 8 180 AMPH 10 

43 APLP1 10 181 PDE1A 10 

44 GABRA5 9 182 QDPR 10 

45 SOCS7 9 183 FOXO4 10 

46 PPP1R16B 9 184 KCNMA1 10 

47 TSPAN5 9 185 MYH10 10 

48 MAPT 10 186 CYP26A1 9 

49 MAGI1 10 187 RAB40B 10 

50 RASGRF1 10 188 SEMA4D 10 

51 MAST3 9 189 NCKIPSD 9 

52 CNTN2 10 190 PRR4 10 

53 SERPINI1 10 191 DCLK1 9 

54 PKP4 10 192 UROS 9 

55 CACNB1 10 193 PDE2A 9 

56 NUAK1 9 194 KIAA0232 10 

57 SNCA 10 195 TRIM3 8 

58 KIF17 7 196 ARHGEF4 8 

59 GABRA2 10 197 SYNPO 9 

60 TTBK2 7 198 MBOAT7 10 

61 BTRC 8 199 RIMS2 9 

62 DYNC1I1 9 200 TERF2IP 9 

63 PRKCG 10 201 PSD3 9 

64 ZBTB7A 9 202 STX1A 10 

65 LMTK2 9 203 ATP6V1C1 10 

66 RYBP 9 204 FXR2 10 

67 KIF5C 9 205 RAB40C 9 

68 AGTPBP1 9 206 KIT 10 

69 RYR2 10 207 UBE3A 10 

70 LDOC1 8 208 ZC3H13 9 

71 TPD52 10 209 CLASP2 9 

72 MOBP 10 210 MAN1A2 9 

73 TUBB4 10 211 HLF 10 

74 LDB3 8 212 SYN2 10 

75 CACNA1A 9 213 NEBL 9 
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Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

76 BSCL2 9 214 NR2F6 9 

77 MPP2 9 215 CPLX2 10 

78 PPP2R2B 10 216 JAKMIP1 8 

79 RAP1GDS1 9 217 MYCBP2 9 

80 GOT1 10 218 DGKZ 10 

81 WASF1 10 219 DOCK3 9 

82 FAIM2 9 220 KCNC3 7 

83 FCH01 9 221 HABP4 9 

84 CDKN2D 10 222 PRKCQ 9 

85 EFR3B 9 223 SLC13A3 9 

86 MBP 10 224 RAPGEF5 8 

87 SNRPN 10 225 PET112L 8 

88 CA11 9 226 KCNC4 10 

89 SERINC3 10 227 GRM7 8 

90 MICAL3 9 228 NPY1R 10 

91 EFNA5 9 229 CCKBR 10 

92 FGF13 9 230 DLG1 10 

93 IQSEC1 9 231 GRM1 8 

94 PAK1 10 232 PEBP1 10 

95 ULK2 9 233 RNMT 9 

96 ATP2B1 10 234 CCDC64 8 

97 MAP2K4 10 235 PEG3 10 

98 GABARAPL1 9 236 GRLF1 10 

99 APBB1 10 237 KLK3 10 

100 ATP8A1 9 238 NAV3 8 

101 AUH 10 239 CLDN9 9 

102 NIPAL3 10 240 PRKAR1A 10 

103 DNM1L 10 241 CRHR2 8 

104 EMX1 9 242 PPP1R7 10 

105 SCAMP1 10 243 ICAM5 10 

106 FAAH 10 244 CRELD1 8 

107 LPGAT1 10 245 PRKCE 10 

108 PTPRD 10 246 ARFGEF2 8 

109 GHITM 8 247 PPFIA2 9 

110 AAK1 9 248 FABP6 9 

111 DGK1 10 249 PDIA2 9 

112 CACNA1C 10 250 OSBPL1A 9 

113 FUT9 9 251 RAPGEF3 10 

114 GRIN2A 10 252 FAM190B 10 

115 PDS5B 8 253 CALM1 9 
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Gene Significance 
Rank* 

Gene Symbol 
Studies  

(of 10)** 
Gene Significance 

Rank* 
Gene Symbol 

Studies  
(of 10)** 

116 KCNJ9 8 254 LOC157627 8 

117 APBA1 10 255 PCDH9 9 

118 DIP2C 9 256 DOCK9 9 

119 IQSEC3 9 257 FRMPD4 8 

120 TYRO3 9 258 HSPH1 10 

121 KIAA0284 7 259 C17orf108 9 

122 HK1 7 260 SEPT11 9 

123 PAFAH1B1 10 261 DNAJC6 9 

124 FXYD1 9 262 GDE1 9 

125 SLC25A4 10 263 EXOC6B 7 

126 KHDRBS2 7 264 CAMK2G 10 

127 HRAS 10 265 OPTN 9 

128 ACTR1A 10 266 ANXA3 9 

129 AP3M2 10 267 PPFIA3 9 

130 MEF2C 10 268 NDEL1 9 

131 CLTB 9 269 CDC42 9 

132 ATP2B3 10 270 CDH8 10 

133 TLN2 10 271 ARPP19 9 

134 SEC14L5 9 272 DTNB 9 

135 SLC6A12 10 273 PPM1A 10 

136 RB1CC1 10 274 ATP58 10 

137 ATP5L 7 275 MTMR9 9 

138 SPOCK3 7 
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Appendix Table 3. Comparison of Markov blanket genes across Grades I to IV 
Astrocytoma.  Over-expressed genes are red; Underexpressed genes are blue.  Genes 
highlighted in grey are Markov blanket genes for the corresponding tumor grade. 

PILOCYTIC DIFFUSE ANAPLASTIC GLIOBLASTOMA 

ANK3 ANK3 ANK3 ANK3 
ANXA1 ANXA1 ANXA1 ANXA1 
ANXA2 ANXA2 ANXA2 ANXA2 
BTF3 BTF3 BTF3 BTF3 

BTN3A3 BTN3A3 BTN3A3 BTN3A3 
C1S C1S C1S C1S 

CALCRL CALCRL CALCRL CALCRL 
CCND2 CCND2 CCND2 CCND2 
CD44 CD44 CD44 CD44 
CD99 CD99 CD99 CD99 

CDH11 CDH11 CDH11 CDH11 
CDK4 CDK4 CDK4 CDK4 

CNTN2 CNTN2 CNTN2 CNTN2 
COL4A1 COL4A1 COL4A1 COL4A1 

DAB2 DAB2 DAB2 DAB2 
DPYSL3 DPYSL3 DPYSL3 DPYSL3 
DUSP7 DUSP7 DUSP7 DUSP7 
EGFR EGFR EGFR EGFR 

EIF4A1 EIF4A1 EIF4A1 EIF4A1 
EMP1 EMP1 EMP1 EMP1 
FN1 FN1 FN1 FN1 

GABRA5 GABRA5 GABRA5 GABRA5 
HLAA HLAA HLAA HLAA 

IGFBP5 IGFBP5 IGFBP5 IGFBP5 
LPL LPL LPL LPL 

MARCKS MARCKS MARCKS MARCKS 
MAST3 MAST3 MAST3 MAST3 
MCM3 MCM3 MCM3 MCM3 
MPP2 MPP2 MPP2 MPP2 

MTHFD2 MTHFD2 MTHFD2 MTHFD2 
NONO NONO NONO NONO 

PPP2R2B PPP2R2B PPP2R2B PPP2R2B 
PRDX4 PRDX4 PRDX4 PRDX4 

PTGER3 PTGER3 PTGER3 PTGER3 
RAB31 RAB31 RAB31 RAB31 
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PILOCYTIC DIFFUSE ANAPLASTIC GLIOBLASTOMA 

RAB3B RAB3B RAB3B RAB3B 
RCAN2 RCAN2 RCAN2 RCAN2 
RUSC2 RUSC2 RUSC2 RUSC2 
SERBP1 SERBP1 SERBP1 SERBP1 
SERINC3 SERINC3 SERINC3 SERINC3 
SH3GL3 SH3GL3 SH3GL3 SH3GL3 
SNRPE SNRPE SNRPE SNRPE 
SPARC SPARC SPARC SPARC 
SRPX SRPX SRPX SRPX 
SSR2 SSR2 SSR2 SSR2 

TIMP4 TIMP4 TIMP4 TIMP4 
TOP2A TOP2A TOP2A TOP2A 
TPPP TPPP TPPP TPPP 

VAMP1 VAMP1 VAMP1 VAMP1 
VCAN VCAN VCAN VCAN 

WNT5A WNT5A WNT5A WNT5A 
WNT10B WNT10B WNT10B WNT10B 
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Appendix Table 4.  Characteristics of Grade IV Glioblastoma Multiforme Markov blanket genes.  References are listed 
below text of manuscript. 

Gene Symbol / Name Genomic Location / 
Cellular Localization Function Cancer / Disease Link 

COL4A1 
Collagen, type IV, 

alpha 1 

13q34 
extracellular matrix 

Inhibits 
angiogenesis and 
tumor formation  

Are upregulated in malignant and metastatic brain tumors 
 [32] 

EGFR 
Epidermal growth 

factor receptor 

7p12 
membrane Growth factor 

Consistently linked to development of glioblastoma [33]; Has been linked to 
glioma tumor invasiveness, proliferation, and angiogenesis [34;35]; Mutations 

have been found in EGFR in primary glioblastomas [36] and have been linked to 
poor prognosis in GBM [37].  Its signaling has been shown to cooperate with loss 

of tumor suppressor gene functions in promotion of gliomagenesis 

BTF3 
Basic transcription 

factor 3 

5q13.2 
nucleus 

Transcription 
factor 

Found to be highly expressed in glioblastoma multiforme [38]; regulates tumor-
associated genes in pancreatic cancer cells [39] 

MPP2 
Membrane protein, 

palmitoylated 2 

17q12-q21 
membrane 

Tumor suppressor; 
Coupling of 

cytoskeleton to cell 
membrane 

Contributes to cell proliferation and resistance in cisplatin treatment in 
medulloblastoma cells [40] 

RAB31 
Member RAS 

oncogene family 

18q11.3 
membrane 

Vesicle and granule 
targeting 

May have role in regulating EGFR in astrocyte development and oncogenesis (Ng 
2009) [41]; associated with survival in glioblastoma [42] 

CDK4 
Cyclin-dependent 

kinase 4 

12q14 
cytoplasm 

Cell cycle 
regulation; inhibits 
RB protein family 

members 

Known target of glioblastoma anticancer therapy [43]; thought to be a driver 
mutation gene in glioblastoma [44]  

CD99 
CD99 molecule 

Xp22.32 
membrane 

Leukocyte 
migration, T-cell 

adhesion, protein 
transport, and T-

cell death 

May act as an oncosuppressor in osteosarcoma; Is a useful marker for diagnosis 
of brain tumor types [45] 

ANXA2 
Annexin A2 

15q22.2
Extracellular space, 

Regulation of cell 
growth 

Involved in migration of neural stem cells to glioma sites [46]; potentially 
involved in glioma invasion [47] 
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Gene Symbol / Name Genomic Location / 
Cellular Localization Function Cancer / Disease Link 

extracellular matrix, 
membrane 

TOP2A 
Topoisomerase (DNA) 

II alpha 170kDa 

17q21-q22 
Cytosplasm, nucleus, 

nucleoplasm 

Resolves 
topological 
problems in 

genomic DNA 
resulting from 

replication, 
transcription and 

repair 

Is target of several anticancer agents; mutations in this gene have been 
associated with development of drug resistance; common significantly altered 
gene in cancer [48]; May be involved in network of genes controlling cell cycle 

regulation in glioblastoma [49]; very high copy number gain in glioblastoma [50] 

SERBP1 
SERPINE1 mRNA 
binding protein 1 

1p31 
Cytoplasm, nucleus 

Regulation of 
mRNA stability Significantly overexpressed in ovarian cancer, especially in advanced disease [51] 
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Appendix Table 5. List of 173 genes present in environmental gene databases and 
having mutations in Glioblastoma, with number of studies conducted on the gene in 
relation to Glioblastoma. 

Gene 
Symbol 

Gene Name 
Number of 

GBM 
Studies 

ABCA3  ATP-binding cassette, sub-family A (ABC1), member 3 1 
ABCB1  ATP-binding cassette, sub-family B (MDR/TAP), member 1B 80 
ABCG2  ATP-binding cassette, sub-family G (WHITE), member 2 16 
ABL1  c-abl oncogene 1, non-receptor tyrosine kinase 1 

ABL2  
v-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-

related gene) 
0 

ADAMTS13  
a disintegrin-like and metallopeptidase (reprolysin type) with 

thrombospondin type 1 motif, 13 
2 

ADM  adrenomedullin 13 
AKT2  thymoma viral proto-oncogene 2 6 

ALDH1A2  aldehyde dehydrogenase family 1, subfamily A2 0 
ALOX12  arachidonate 12-lipoxygenase 0 

AOC3  amine oxidase, copper containing 3 0 
API5  apoptosis inhibitor 5 0 

APOBEC3G  Apoplipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G  0 
ARNT  aryl hydrocarbon receptor nuclear translocator 2 
ATM  ataxia telangiectasia mutated homolog (human) 23 

ATRX  alpha thalassemia/mental retardation syndrome X-linked homolog (human) 0 
BAX  BCL2-associated X protein 155 
BCL2  B-cell leukemia/lymphoma 2 25 
BMI1  Bmi1 polycomb ring finger oncogene 12 
BRAF  Braf transforming gene 8 

BRCA1  breast cancer 1 7 
BRCA2  breast cancer 2 5 
CALCA  calcitonin/calcitonin-related polypeptide, alpha 1 
CAPN3  calpain 3 0 
CASP9  caspase 9 60 
CCK  cholecystokinin 5 

CCND2  cyclin D2 4 
CDC7  cell division cycle 7 (S. cerevisiae) 0 
CDH1  cadherin 1 4 
CDK4  cyclin-dependent kinase 4 92 
CDK6  cyclin-dependent kinase 6 12 

CDKN2A  cyclin-dependent kinase inhibitor 2A 177 
CDKN2B  cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 18 
CDKN2C  cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) 7 

CEACAM1  carcinoembryonic antigen-related cell adhesion molecule 1 0 
CES3  carboxylesterase 3A 0 

CHEK1  checkpoint kinase 1 homolog (S. pombe) 0 
CHEK2  CHK2 checkpoint homolog (S. pombe) 2 

CHRNA4  cholinergic receptor, nicotinic, alpha polypeptide 4 0 
CIZ1  CDKN1A interacting zinc finger protein 1 0 
CKS2  CDC28 protein kinase regulatory subunit 2 1 
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Gene 
Symbol 

Gene Name 
Number of 

GBM 
Studies 

CLSPN  claspin homolog (Xenopus laevis) 0 
COCH  coagulation factor C homolog (Limulus polyphemus) 0 
CPSF4  cleavage and polyadenylation specific factor 4 0 
CSF3R  colony stimulating factor 3 receptor (granulocyte) 7 

CSK  c-src tyrosine kinase 4 
CTNNB1  catenin (cadherin associated protein), beta 1 44 
CTNND2  catenin (cadherin associated protein), delta 2 0 
CYP1B1  cytochrome P450, family 1, subfamily b, polypeptide 1 1 

CYP27B1  cytochrome P450, family 27, subfamily b, polypeptide 1 7 
CYP2C19  cytochrome P450, family 2, subfamily c, polypeptide 50 0 
CYP2E1  cytochrome P450, family 2, subfamily e, polypeptide 1 1 
CYP3A4  cytochrome P450, family 3, subfamily a, polypeptide 41A 15 

DDB1  damage specific DNA binding protein 1 0 
DDC  dopa decarboxylase 2 

DDIT3  DNA-damage inducible transcript 3 10 
E2F4  E2F transcription factor 4 4 

EDNRA  endothelin receptor type A 0 
EGF  epidermal growth factor 252 

EGFR  epidermal growth factor receptor 747 
ELN  elastin 1 

ENO1  enolase 1, alpha non-neuron 1 
EPHB6  Eph receptor B6 1 

ERBB2  
v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 

neuro/glioblastoma derived oncogene homolog (avian) 
73 

ERCC5  
excision repair cross-complementing rodent repair deficiency, 

complementation group 5 
0 

ESR1  estrogen receptor 1 (alpha) 3 
F13A1  coagulation factor XIII, A1 subunit 0 
F13B  coagulation factor XIII, beta subunit 0 

F2RL1  coagulation factor II (thrombin) receptor-like 1 0 
F3  contactin 1 5 

FANCA  Fanconi anemia, complementation group A 2 
FGF2  fibroblast growth factor 2 68 

FGFR1  fibroblast growth factor receptor 1 20 
FGFR2  fibroblast growth factor receptor 2 11 
FGFR3  fibroblast growth factor receptor 3 3 
FOXA2  forkhead box A2 0 
FOXM1  forkhead box M1 9 

FUT2  fucosyltransferase 2 0 
GABPA  GA repeat binding protein, alpha 0 
GAD2  glutamic acid decarboxylase 2 0 

GADD45G  growth arrest and DNA-damage-inducible 45 gamma 0 
GAS6  growth arrest specific 6 3 

GATA3  GATA binding protein 3 1 
GCLC  glutamate-cysteine ligase, catalytic subunit 0 
GYPC  glycophorin C 0 
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Gene 
Symbol 

Gene Name 
Number of 

GBM 
Studies 

HGF  hepatocyte growth factor 58 
IFNA1  interferon alpha 1 0 

IFNAR1  interferon (alpha and beta) receptor 1 0 
IGF1R  insulin-like growth factor I receptor 45 
IGF2  insulin-like growth factor 2 7 

IGFBP7  insulin-like growth factor binding protein 7 5 
IKBKE  inhibitor of kappaB kinase epsilon 3 
IL17B  interleukin 17B 0 

IL3  interleukin 3 1 
IL4R  interleukin 4 receptor, alpha 6 
IL6  interleukin 6 12 

ITGAL  integrin alpha L 1 
ITM2B  integral membrane protein 2B 0 
JUNB  Jun-B oncogene 3 
KEL  Kell blood group 0 
KLF4 Kruppel-like factor 4 (gut) 0 

MAP3K8 mitogen-activated protein kinase kinase kinase 8 0 
MAPK9 mitogen-activated protein kinase 9 0 
MDM2 transformed mouse 3T3 cell double minute 2 114 
MDM4 transformed mouse 3T3 cell double minute 4 4 
MLH1 mutL homolog 1 (E. coli) 22 
MLL myeloid/lymphoid or mixed-lineage leukemia 1 3 

MMP10 matrix metallopeptidase 10 0 
MMP15 matrix metallopeptidase 15 2 
MMP2 matrix metallopeptidase 2 23 
MN1 meningioma 1 0 

MSH2 mutS homolog 2 (E. coli) 17 
MSH6 mutS homolog 6 (E. coli) 12 

MUC5AC mucin 5, subtypes A and C, tracheobronchial/gastric 1 
MYBPC3 myosin binding protein C, cardiac 0 

MYC myelocytomatosis oncogene 132 
NCOA1 nuclear receptor coactivator 1 1 

NF1 neurofibromatosis 1 44 
NOS3 nitric oxide synthase 3, endothelial cell 1 
NRAS neuroblastoma ras oncogene 3 

PARK2 Parkinson disease (autosomal recessive, juvenile) 2, parkin 3 
PDIA2 protein disulfide isomerase associated 2 0 
PGR progesterone receptor 3 
PMS1 postmeiotic segregation increased 1 (S. cerevisiae) 0 
PMS2 postmeiotic segregation increased 2 (S. cerevisiae) 11 

POLD1 polymerase (DNA directed), delta 1, catalytic subunit 0 
POLE polymerase (DNA directed), epsilon 4 

POLG2 polymerase (DNA directed), gamma 2, accessory subunit 0 
POR P450 (cytochrome) oxidoreductase 16 

PPARA peroxisome proliferator activated receptor alpha 0 
PRKCB1 protein kinase C, beta 1 
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Gene 
Symbol 

Gene Name 
Number of 

GBM 
Studies 

PRKDC protein kinase, DNA activated, catalytic polypeptide 36 
PROM1 prominin 1 2 
PTCH2 patched homolog 2 0 
PTEN phosphatase and tensin homolog 391 

PTGDR prostaglandin D receptor 0 
PTGS2 prostaglandin-endoperoxide synthase 2 57 
RAD52 RAD52 homolog (S. cerevisiae) 1 
RAP1B RAS related protein 1b 2 

RB1 retinoblastoma 1 25 
RFC2 replication factor C (activator 1) 2 2 

SEMA7A 
sema domain, immunoglobulin domain (Ig), and GPI membrane anchor, 

(semaphorin) 7A 
0 

SERPINE1 serine (or cysteine) peptidase inhibitor, clade E, member 1 23 
SERPING1 serine (or cysteine) peptidase inhibitor, clade G, member 1 0 

SFTPB surfactant associated protein B 0 
SHH sonic hedgehog 11 

SLC14A1 solute carrier family 14 (urea transporter), member 1 0 
SLC4A1 solute carrier family 4 (anion exchanger), member 1 0 

SMARCB1 
SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily b, member 1 
6 

STAT1 signal transducer and activator of transcription 1 20 
STAT3 signal transducer and activator of transcription 3 89 

TAF1 
TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated 

factor 
0 

TAF6 
TAF6 RNA polymerase II, TATA box binding protein (TBP)-associated 

factor 
0 

TERT telomerase reverse transcriptase 25 
TGFBR2 transforming growth factor, beta receptor II 1 

TGM1 transglutaminase 1, K polypeptide 0 
TNFAIP2 tumor necrosis factor, alpha-induced protein 2 0 

TNFRSF11B tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin) 1 
TNFRSF1A tumor necrosis factor receptor superfamily, member 1a 1 
TNFRSF1B tumor necrosis factor receptor superfamily, member 1b 0 
TNFRSF25 tumor necrosis factor receptor superfamily, member 25 0 
TNFRSF8 tumor necrosis factor receptor superfamily, member 8 0 
TNFRSF9 tumor necrosis factor receptor superfamily, member 9 1 

TP53 transformation related protein 53 211 
TRPM2 transient receptor potential cation channel, subfamily M, member 2 4 
TRPV5 transient receptor potential cation channel, subfamily V, member 5 0 

UGT1A1 UDP glucuronosyltransferase 1 family, polypeptide A1 1 
UNG uracil DNA glycosylase 4 

VCAM1 vascular cell adhesion molecule 1 0 
VDR vitamin D receptor 2 

VLDLR very low density lipoprotein receptor 0 
VWF Von Willebrand factor homolog 17 
XDH xanthine dehydrogenase 1 
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Appendix Table 6. List of genes mutated in Glioblastoma and showing mutagenic actions in response to chemicals in 
studies curated in the Comparative Toxicology Database. 

Gene 
Symbol 

Chemical Name Organism Interaction Interaction Actions PubMed IDs 

ATRX Ethylnitrosourea Rn 
Ethylnitrosourea results in increased mutagenesis of 

ATRX gene 
increases 

mutagenesis 
16495775 

CYP2E1 Vinyl Chloride Hs 
CYP2E1 gene polymorphism promotes the reaction [Vinyl 

Chloride affects the mutagenesis of KRAS gene] 
affects mutagenesis 
|increases reaction 

12705718 

CYP2E1 Vinyl Chloride Hs 
CYP2E1 gene polymorphism promotes the reaction [Vinyl 

Chloride affects the mutagenesis of TP53 gene] 
affects mutagenesis 
increases reaction 

12705718 

CYP2E1 Vinyl Chloride Hs 
CYP2E1 gene polymorphism promotes the reaction [Vinyl 
Chloride results in increased mutagenesis of KRAS gene] 

increases 
mutagenesis 

increases reaction 
17384900 

CYP2E1 Vinyl Chloride Hs 
CYP2E1 gene polymorphism promotes the reaction [Vinyl 
Chloride results in increased mutagenesis of TP53 gene] 

increases 
mutagenesis 

increases reaction 

12010862|1738490
0 

EGFR Ethylnitrosourea Mm 
Ethylnitrosourea results in increased mutagenesis of EGFR 

gene 
increases 

mutagenesis 
15366372|1672432

7 

ERBB2 Ethylnitrosourea Rn 
Ethylnitrosourea results in increased mutagenesis of 

ERBB2 gene 
increases 

mutagenesis 
16651423 

IGF1R Ethylnitrosourea Mm 
Ethylnitrosourea results in increased mutagenesis of 

IGF1R gene 
increases 

mutagenesis 
16461637 

MLL Genistein Hs Genistein results in increased mutagenesis of MLL gene 
increases 

mutagenesis 
17468513 

MLL kaempferol Hs kaempferol results in increased mutagenesis of MLL gene 
increases 

mutagenesis 
17468513 

MLL Permethrin Hs Permethrin results in increased mutagenesis of MLL gene 
increases 

mutagenesis 
12937054 

MLL Quercetin Hs Quercetin results in increased mutagenesis of MLL gene 
increases 

mutagenesis 
17468513 

MSH2 Ethylnitrosourea Rn 
Ethylnitrosourea results in increased mutagenesis of 

MSH2 gene 
increases 

mutagenesis 
16495775 
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Gene 
Symbol 

Chemical Name Organism Interaction Interaction Actions PubMed IDs 

MSH6 Ethylnitrosourea Rn 
Ethylnitrosourea results in increased mutagenesis of 

MSH6 gene 
increases 

mutagenesis 
16495775|1841748

1 

MYC Estradiol Mm 
AICDA protein affects the reaction [Estradiol results in 

increased mutagenesis of MYC gene] 

affects reaction 
increases 

mutagenesis 
19139166 

MYC Estradiol Mm Estradiol results in increased mutagenesis of MYC gene 
increases 

mutagenesis 
19139166 

PARK2 Ethylnitrosourea Ol 
Ethylnitrosourea results in increased mutagenesis of 

PARK2 exon 
increases 

mutagenesis 
17156454 

PTEN Ethylnitrosourea Mm 
Ethylnitrosourea results in increased mutagenesis of PTEN 

gene 
increases 

mutagenesis 
15755804|1672432

7 

SHH Ethylnitrosourea Mm 
Ethylnitrosourea results in increased mutagenesis of SHH 

enhancer 
increases 

mutagenesis 
17049204 

SLC4A1 Ethylnitrosourea Mm 
Ethylnitrosourea results in increased mutagenesis of 

SLC4A1 gene 
increases 

mutagenesis 
16724327 

STAT1 Ethylnitrosourea Mm 
Ethylnitrosourea results in increased mutagenesis of 

STAT1 gene 
increases 

mutagenesis 
16688530|1672432

7 

TP53 2,4,6-trichlorophenol Dr 
2,4,6-trichlorophenol results in increased mutagenesis of 

TP53 gene 
increases 

mutagenesis 
18939895 

TP53 2-phenylphenol Hs 
[2-phenylphenol metabolite co-treated with NAD co-

treated with Copper] results in increased mutagenesis of 
TP53 gene 

affects cotreatment 
increases 

mutagenesis 
10334203 

TP53 2-phenylphenol Hs 
bathocuproine inhibits the reaction [[2-phenylphenol 

metabolite co-treated with NAD co-treated with Copper] 
results in increased mutagenesis of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 2-phenylphenol Hs 
CAT protein inhibits the reaction [[2-phenylphenol 

metabolite co-treated with NAD co-treated with Copper] 
results in increased mutagenesis of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 Acrolein Hs Acrolein results in increased mutagenesis of TP53 gene increases 17030796 
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Gene 
Symbol 

Chemical Name Organism Interaction Interaction Actions PubMed IDs 

mutagenesis 

TP53 Acrylamide Hs Acrylamide results in increased mutagenesis of TP53 gene 
increases 

mutagenesis 
15240786 

TP53 Aflatoxin B1 Hs 
Aflatoxin B1 results in increased mutagenesis of TP53 

gene 
increases 

mutagenesis 
12619106|1594649

7 

TP53 Aflatoxins Hs Aflatoxins results in increased mutagenesis of TP53 gene 
increases 

mutagenesis 
16007211 

TP53 Arsenic Hs Arsenic results in increased mutagenesis of TP53 gene 
increases 

mutagenesis 
15967209 

TP53 Arsenic Hl Arsenic results in increased mutagenesis of TP53 gene 
increases 

mutagenesis 
19203779 

TP53 Arsenic Of Arsenic results in increased mutagenesis of TP53 gene 
increases 

mutagenesis 
19203779 

TP53 bathocuproine Hs 
bathocuproine inhibits the reaction [[2-phenylphenol 

metabolite co-treated with NAD co-treated with Copper] 
results in increased mutagenesis of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 bathocuproine Hs 
bathocuproine inhibits the reaction [[phenylhydroquinone 
co-treated with Copper] results in increased mutagenesis 

of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 chlorophyllin Rn 
chlorophyllin inhibits the reaction [Cyclophosphamide 

results in increased mutagenesis of TP53 exon] 

decreases reaction 
increases 

mutagenesis 
19227835 

TP53 NAD Hs 
[2-phenylphenol metabolite co-treated with NAD co-

treated with Copper] results in increased mutagenesis of 
TP53 gene 

affects cotreatment 
increases 

mutagenesis 
10334203 

TP53 NAD Hs 
bathocuproine inhibits the reaction [[2-phenylphenol 

metabolite co-treated with NAD co-treated with Copper] 
results in increased mutagenesis of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 
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Gene 
Symbol 

Chemical Name Organism Interaction Interaction Actions PubMed IDs 

TP53 NAD Hs 
CAT protein inhibits the reaction [[2-phenylphenol 

metabolite co-treated with NAD co-treated with Copper] 
results in increased mutagenesis of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 Copper Hs 
[2-phenylphenol metabolite co-treated with NAD co-

treated with Copper] results in increased mutagenesis of 
TP53 gene 

affects cotreatment 
increases 

mutagenesis 
10334203 

TP53 Copper Hs 
bathocuproine inhibits the reaction [[2-phenylphenol 

metabolite co-treated with NAD co-treated with Copper] 
results in increased mutagenesis of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 Copper Hs 
bathocuproine inhibits the reaction [[phenylhydroquinone 
co-treated with Copper] results in increased mutagenesis 

of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 Copper Hs 
CAT protein inhibits the reaction [[2-phenylphenol 

metabolite co-treated with NAD co-treated with Copper] 
results in increased mutagenesis of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 Copper Hs 
CAT protein inhibits the reaction [[phenylhydroquinone 
co-treated with Copper] results in increased mutagenesis 

of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 Copper Hs 
[N-hydroxy-4-aminobiphenyl co-treated with Copper] 

results in increased mutagenesis of TP53 gene 

affects cotreatment 
increases 

mutagenesis 
11275476 

TP53 Copper Hs 
[phenylhydroquinone co-treated with Copper] results in 

increased mutagenesis of TP53 gene 

affects cotreatment 
increases 

mutagenesis 
10334203 



238 
 

Gene 
Symbol 

Chemical Name Organism Interaction Interaction Actions PubMed IDs 

TP53 Curcumin Rn 
Curcumin inhibits the reaction [Cyclophosphamide results 

in increased mutagenesis of TP53 exon] 

decreases reaction 
increases 

mutagenesis 
19227835 

TP53 Cyclophosphamide Rn 
chlorophyllin inhibits the reaction [Cyclophosphamide 

results in increased mutagenesis of TP53 exon] 

decreases reaction 
increases 

mutagenesis 
19227835 

TP53 Cyclophosphamide Rn 
Curcumin inhibits the reaction [Cyclophosphamide results 

in increased mutagenesis of TP53 exon] 

decreases reaction 
increases 

mutagenesis 
19227835 

TP53 Cyclophosphamide Rn 
Cyclophosphamide results in increased mutagenesis of 

TP53 exon 
increases 

mutagenesis 
19227835 

TP53 Ethylnitrosourea Ol 
Ethylnitrosourea results in increased mutagenesis of TP53 

exon 
increases 

mutagenesis 
17156454 

TP53 Ethylnitrosourea Rn 
Ethylnitrosourea results in increased mutagenesis of TP53 

gene 
increases 

mutagenesis 
16495775 

TP53 glycidamide Hs 
glycidamide results in increased mutagenesis of TP53 

gene 
increases 

mutagenesis 
15240786 

TP53 
N-hydroxy-4-
aminobiphenyl 

Hs 
[N-hydroxy-4-aminobiphenyl co-treated with Copper] 

results in increased mutagenesis of TP53 gene 

affects cotreatment 
increases 

mutagenesis 
11275476 

TP53 Nitrofurazone Hs 
Nitrofurazone results in increased mutagenesis of TP53 

gene 
increases 

mutagenesis 
15488632 

TP53 phenylhydroquinone Hs 
bathocuproine inhibits the reaction [[phenylhydroquinone 
co-treated with Copper] results in increased mutagenesis 

of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 

TP53 phenylhydroquinone Hs 
CAT protein inhibits the reaction [[phenylhydroquinone 
co-treated with Copper] results in increased mutagenesis 

of TP53 gene] 

affects cotreatment 
decreases reaction 

increases 
mutagenesis 

10334203 
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Gene 
Symbol 

Chemical Name Organism Interaction Interaction Actions PubMed IDs 

TP53 phenylhydroquinone Hs 
[phenylhydroquinone co-treated with Copper] results in 

increased mutagenesis of TP53 gene 

affects cotreatment 
increases 

mutagenesis 
10334203 

TP53 
potassium 

diazoacetate 
Hs 

potassium diazoacetate results in increased mutagenesis of 
TP53 gene 

increases 
mutagenesis 

16926174 

TP53 
Tobacco Smoke 

Pollution 
Hs 

Tobacco Smoke Pollution results in increased mutagenesis 
of TP53 gene 

increases 
mutagenesis 

10824542 

TP53 Vinyl Chloride Hs 
CYP2E1 gene polymorphism promotes the reaction [Vinyl 

Chloride affects the mutagenesis of TP53 gene] 
affects mutagenesis 
increases reaction 

12705718 

TP53 Vinyl Chloride Hs 
CYP2E1 gene polymorphism promotes the reaction [Vinyl 
Chloride results in increased mutagenesis of TP53 gene] 

increases 
mutagenesis 

increases reaction 

12010862|1738490
0 

TP53 Vinyl Chloride Hs 
GSTM1 gene polymorphism affects the reaction [XRCC1 
gene polymorphism affects the reaction [Vinyl Chloride 

affects the mutagenesis of TP53 gene]] 

affects mutagenesis 
affects reaction 

16097394 

TP53 Vinyl Chloride Hs 
GSTT1 gene polymorphism affects the reaction [XRCC1 
gene polymorphism affects the reaction [Vinyl Chloride 

affects the mutagenesis of TP53 gene]] 

affects mutagenesis 
affects reaction 

16097394 

TP53 Vinyl Chloride Hs 
Vinyl Chloride results in increased mutagenesis of TP53 

gene 
increases 

mutagenesis 

12010862|1267051
9|16881598|173849

00 

TP53 Vinyl Chloride Hs 
XRCC1 gene polymorphism affects the reaction [Vinyl 

Chloride affects the mutagenesis of TP53 gene] 
affects mutagenesis 

affects reaction 
16097394 

TP53 Vinyl Chloride Hs 
XRCC1 gene polymorphism promotes the reaction [Vinyl 

Chloride affects the mutagenesis of TP53 gene] 
affects mutagenesis 
increases reaction 

14602524 

TP53 Vinyl Chloride Hs 
XRCC1 gene polymorphism promotes the reaction [Vinyl 
Chloride results in increased mutagenesis of TP53 gene] 

increases 
mutagenesis 

increases reaction 

12010862|1688159
8 
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Appendix Figure 1.  Results of PathJam analysis of Grade 1 Astrocytoma Markov genes.  Arcs represent interactions 
between genes and pathways.  Databases for curated pathways and gene ontology terms are identified by their respective emblems. 
See Additional File 1. 
 
Appendix Figure 2.  Results of PathJam analysis of Grade 2 Astrocytoma Markov genes.  Arcs represent interactions 
between genes and pathways.  Databases for curated pathways and gene ontology terms are identified by their respective emblems. 
See Additional File 2. 
 
Appendix Figure 3.  Results of PathJam analysis of Grade 3 Astrocytoma Markov genes.  Arcs represent interactions 
between genes and pathways.  Databases for curated pathways and gene ontology terms are identified by their respective emblems. 
See Additional File 3. 
 
Appendix Figure 4.  Results of PathJam analysis of Grade 4 Astrocytoma Markov genes.  Arcs represent interactions 
between genes and pathways.  Databases for curated pathways and gene ontology terms are identified by their respective emblems. 
See Additional File 4. 
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Figure 5.  IPA connections of Grade IV Glioblastoma Markov genes.  Direct 
interactions between genes (genes/gene products make direct physical contact with each 
other) are represented by solid lines.  Indirect interactions (genes/gene products do not 
make direct physical contact with each other but instead may influence each other 
through some intermediate factor) are represented as dotted lines. 
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Figure 6.  Top IPA Grade IV Glioblastoma Markov genes network.  IPA defined the 
network as related to ‘cancer, neurological disease, and cellular movement’.  Shaded 
genes represent our Markov genes. Non-shaded molecules were added by IPA during the 
analyses.
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Appendix Figure 7.  KEGG Pathway ‘Pathways in Cancer’ found to contain 42 genes from our GEI Glioblastoma 
alterations list.  Analyses run using DAVID.  Stars represent genes in the GEI gene list and pathways significantly represented in 
the GEI gene list. 
See Additional File 5. 
 
Appendix Figure 8. KEGG Pathway ‘Glioma’ found to contain 13 genes from our GEI Glioblastoma alterations list.  
Analyses run using DAVID.  Stars represent genes in the GEI gene list and pathways significantly represented in the GEI gene list. 
See Additional File 6. 
 
Appendix Figure 9. KEGG Pathway ‘Pathways in Cancer’ found to contain 123 genes from our Glioblastoma alterations 
list.  Analyses run using DAVID.  Stars represent genes in the GBM gene list and pathways significantly represented in the GBM 
gene list. 
See Additional File 7. 
 
Appendix Figure 10. KEGG Pathway ‘Glioma’ found to contain 30 genes from our Glioblastoma alterations list.  Analyses 
run using DAVID.  Stars represent genes in the GBM gene list and pathways significantly represented in the GBM gene list. 
See Additional File 8. 
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