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ABSTRACT OF THE DISSERTATION 

ENDOCRINE REGULATION OF DYNAMIC COMMUNICATION SIGNALS IN 

GYMNOTIFORM FISH 

by 

Anna Goldina 

Florida International University, 2011 

Miami, Florida 

Professor Philip K. Stoddard, Major Professor 

 Communication signals are shaped by the opposing selection pressures imposed 

by predators and mates.  A dynamic signal might serve as an adaptive compromise 

between an inconspicuous signal that evades predators and an extravagant signal 

preferred by females. Such a signal has been described in the gymnotiform electric fish, 

Brachyhypopomus gauderio, which produces a sexually dimorphic electric organ 

discharge (EOD). The EOD varies on a circadian rhythm and in response to social cues. 

This signal plasticity is mediated by the slow action of androgens and rapid action of 

melanocortins.  

My dissertation research tested the hypotheses that (1) signal plasticity is related 

to sociality levels in gymnotiform species, and (2) differences in signal plasticity are 

regulated by differential sensitivity to androgen and melanocortin hormones. To assess 

the breadth of dynamic signaling within the order Gymnotiformes, I sampled 13 species 

from the five gymnotiform families.  I recorded EODs to observe spontaneous signal 

oscillations after which I injected melanocortin hormones, saline control, or presented the 

fish with a conspecific. I showed that through the co-option of the ancient melanocortin 
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pathway, gymnotiforms dynamically regulate EOD amplitude, spectral frequency, both, 

or neither.  

To investigate whether observed EOD plasticities are related to species-specific 

sociality I tested four species; two territorial, highly aggressive species, Gymnotus carapo 

and Apteronotus leptorhynchus, a highly gregarious species, Eigenmannia cf. virescens, 

and an intermediate short-lived species with a fluid social system, Brachyhypopomus 

gauderio. I examined the relationship between the androgens testosterone and 11-

ketotestosterone, the melanocortin α-MSH, and their roles in regulating EOD waveform. 

I implanted all fish with androgen and blank silicone implants, and injected with α-MSH 

before and at the peak of implant effect. I found that waveforms of the most territorial 

and aggressive species were insensitive to hormone treatments; maintaining a static, 

stereotyped signal that preserves encoding of individual identity. Species with a fluid 

social system were most responsive to hormone treatments, exhibiting signals that reflect 

immediate condition and reproductive state. In conclusion, variation in gymnotiform 

signal plasticity is hormonally regulated and seems to reflect species-specific sociality.  
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CHAPTER I 

 

INTRODUCTION 
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 Communication occurs in a complex network of receivers that include prospective 

mates, same-sex competitors, predators, and parasitoids (Dabelsteen, 2004). Collectively 

the different classes of receivers constitute a communication network (McGregor and 

Dabelsteen, 1996).  Different participants in the network have different interests, often 

opposed to those of the signaler. The different classes of receivers act within the 

communication network to differentially shape the communication signal. For example, 

while predation pressure should favor evolution of cryptic communication signals that 

can elude detection (Maynard-Smith and Harper, 2003), intended receivers such as 

potential mates, should favor more conspicuous and expensive signals that serve as an 

index of quality.  Opposing selection forces of these different audiences are thought to 

drive the evolution of compromise in signal structure (Bernal et al., 2007; Tuttle and 

Ryan, 1981).  The resulting compromised communication signals attract both intended 

and unintended receivers at reduced efficiencies, though the degree of reduction can vary 

between receiver classes depending on sensory biases.  

The established view is that predators constrain effectiveness of a communication 

signal while mates and competitors favor signal elaboration.  Research on electric fish, 

however, has suggested that solutions to elude hostile eavesdroppers have led to novel 

signal adaptations that themselves have become the substrate for elaboration through 

sexual selection (Stoddard et al., 1999).  Thus, the established view appears too 

restrictive to accurately ascribe the origins of signal structures and functions within 

communication networks.  Indeed, another solution suggested by electric fish research is 

that the classic compromise between opposing interests can be resolved through dynamic 
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communication signals that can be modified over time based on changing costs and 

benefits that follow from temporal changes in the interests and activities of the different 

audiences. Furthermore, since in a communication network individuals eavesdrop and are 

eavesdropped on, they might benefit from being able to modulate their signals based on 

content and presence of intended and unintended audience. For example, signals directed 

at a particular individual are invariably broadcast to predators, which can use these 

signals to localize prey. In the tungara frogs, complex “whine-chuck” calls attract not 

only females, but also predators and parasitoid flies, better than simple “whine” calls 

(Bernal et al., 2007). Thus, presence of predators would constrain signal elaboration 

potentially increasing the need for dynamic control of communication.  

Through dynamic regulation of the signal an individual can increase its signal 

complexity or energetic content at times when these features can be most beneficial (e.g., 

in the presence of females), and decrease them when costs are high (e.g., when predators 

and eavesdroppers are around). Dynamic signal modulation would be favored in an 

environment where predators occupy similar niches as their prey species. However, 

animals living in stable social groups must be able to maintain a signature signal that is 

stereotyped enough to be identified by conspecifics and is an accurate representation of 

the individual’s status at all times (Bond et al., 2003). While evidence of these dynamic 

signals is recorded in taxa ranging from fish to primates (Cheney and Seyfarth, 2005; 

Naguib, 2005; Peake, 2005), it is not clear how this plasticity evolved.  

It is not known how can some species have infinitely plastic signals, while the 

signals of other species are immutable. The endocrine mechanisms that regulate these 

diverse communication signals are also unknown.  My dissertation explores how 
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gymnotiform electric fish dynamically alter their signals in accordance with the opposing 

interests created by the communication networks in which they live, and presumably with 

which they evolved. I examine the relationship between peptide and steroid hormones 

and their role in mediating dynamic signaling among species of gymnotiform electric fish 

that exhibit different social strategies.  I use a comparative approach to answer two 

questions: 1) Is communication signal plasticity related to species-specific social 

strategies? 2) Have endocrine mechanisms evolved to generate the diversity seen in 

dynamics of signal plasticity?  

 

Electric fish are exemplary models to study dynamic signal evolution 

 The ability to generate electric signals evolved independently in the African order 

Mormyriformes and the South American order Gymnotiformes about 100 million years 

ago (Alves-Gomes, 2001). The order Gymnotiformes is composed of five families with 

close to 200 species of weakly electric fish, widely distributed from southern Mexico to 

northern Argentina (Albert and Crampton, 2005). Gymnotiforms occupy diverse fresh 

water habitats varying in depths, temperatures, conductivity and oxygen content, flooding 

periods and vegetation (Albert and Crampton, 2005). 

 All gymnotiforms generate weakly electric organ discharges (EOD) that they use 

for electrolocation and communication (Alves-Gomes, 2001).  The EODs are species-

specific and convey information on status and sex, and play a key role in aggression, 

territoriality and mate assessment (Hopkins, 1988).  Because all gymnotiforms are 

nocturnal and inhabit murky waters, the EOD is their primary mode of communication. 

However, since the EOD is also used for electrolocation it is constantly emitted even 
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when the fish are inactive. This inability to shut down the EOD for prolonged periods of 

time makes gymnotiform weakly electric fish susceptible to electrosensory predators such 

as catfish and the electric eel, Electrophorus electricus (Stoddard, 1999; Westby, 1988). 

In Brachyhypopomus gauderio, a member of the Hypopomidae family, predation 

pressure probably selected for the evolution of a more complex, biphasic EOD that is less 

detectable by electroreceptive predators (Stoddard, 1999). The biphasic signal has further 

been modified by sexual selection, where male Brachyhypopomus gauderio enhance the 

duration and amplitude of the second phase of their waveform during nighttime to attract 

females (Curtis and Stoddard, 2003). Thus, in at least one species of weakly electric fish, 

a dynamic communication signal evolved through opposing selection pressures. 

Most pulse gymnotiforms modify EOD rate and at least three families 

(Sternopygidae, Hypopomidae and Rhamphichthydae) modify the amplitude of their 

signals in a circadian pattern; enhancing their waveforms at night and decreasing them 

during the day (Moller, 1995; Stoddard et al., 2007).  These increases coincide with 

nighttime activity onset, including foraging and social interactions. Weakly electric 

species also modulate various aspects of their EODs in a species-specific manner in the 

contexts of competition, aggression and mating.  Members of the Apteronotidae family 

produce transient increases of their EOD frequencies known as chirps, that can be divided 

into 6 types based on duration, amount and type of frequency increase and decrease 

(Zupanc et al., 2006). Some of these chirps have been correlated with aggressive behavior 

observed in Apteronotus leptorhynchus and Apteronotus albifrons during escalated fights 

for shelter (Dunlap and Larkins-Ford, 2003; Serrano-Fernandez, 2003; Tallarovic and 

Zakon, 2002).  
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Most gymnotiforms modify EOD rate during social interactions. Members of the 

Apteronotidae family and Eigenmannia cf. virescens from the Sternopygidae family, 

exhibit a jamming avoidance response (JAR) which prevents interference of 

electrolocation by fish with similar frequencies.  During a JAR a fish shifts its own 

discharge frequency away from the jamming frequency of another fish allowing it to 

maintain electrosensory capabilities (Heiligenberg, 1986). Interestingly, the JAR 

response seems to correlate with different social structures of these species. Eigenmannia 

cf. virescens are believed to be a gregarious species (Hagedorn and Heiligenberg, 1985) 

and they normally die if isolated (personal observation).  Correlated with this behavior, 

Eigenmannia can maintain a JAR for up to 6 hours, known as a long term frequency 

elevation (LTFE) and can shift its discharge frequencies upward and downward from the 

jamming frequencies of conspecifics; thus allowing them to maintain prolonged social 

interaction without affecting electrolocation ability (Oestreich and Zakon, 2005).  

Apteronotus, on the other hand, are much more aggressive and territorial and will fight 

until death to maintain sole control of a shelter (personal observation). Apteronotids can 

only shift their frequency upward during a JAR and exhibit a much weaker LTFE than E. 

virescens (Oestreich and Zakon, 2005). In fact, Apteronotus leptorhynchus intentionally 

jam rivals during aggressive interactions (Tallarovic and Zakon, 2005), yet another 

example of a dynamic control of communication signal. 
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The EOD is generated by a well-described neural circuit that is regulated by 

hormones 

Because of their structural simplicity, electric signals constitute good models for 

exploring dual hormone signal regulation and the implication of hormonal interplay for 

communication. The neural circuitry of electrocommunication and electrolocation has 

been well described. The EOD is produced by the summation of action potentials 

generated by electrically excitable cells of the electric organ (Szabo, 1974). EOD is 

regulated by the pacemaker cells, which synapse on each other and on adjoining relay 

cells in the pacemaker nucleus (PMN) in the medulla. Relay cells further innervate the 

electromotoneurons in the spinal cord, which synapse on electrocytes.  The electrocytes 

of all weakly electric fish, except Apteronotids, are myogenically derived (in 

Apteronotidae, electrocytes are an extension of electromotorneurons (Bennett, 1971)). 

Because cells of the PMN are intrinsically oscillating and spontaneously active, and 

because of their extensive connections to each other and relay cells, the frequency of the 

EOD is determined by the firing frequency of the PMN. The waveform is modulated by 

the ion channel properties of the electrocytes (Zakon, 1999). 

The EOD is regulated centrally and peripherally by steroid hormones. Androgens 

masculinize the EOD waveform by increasing the firing rate of the PMN and broadening 

electrocyte action potential (Few and Zakon, 2001). Andrognes masculinize, while 

estrogens feminize the waveforms of most gymnotiforms (Dunlap and Zakon, 1998; Few 

and Zakon, 2001; Hagedorn and Carr, 1985). Increased 11-ketotestosterone levels in 

members of Apteronotidae family are positively correlated with increased chirp rate, but 
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androgen implants stimulate chirp production only in Apteronotus leptorhynchus, not in 

A. albifrons (Dunlap, 2002a, b; Dunlap and Larkins-Ford, 2003).  

While androgens affect EOD waveform on an intermediate timescale of days to 

months, serotonin and melanocortin hormones such as Adrenocorticotropic hormone 

(ACTH) and α-Melanocyte Stimulating Hormones (α-MSH) induce rapid changes in the 

EOD within minutes-hours of injection (Markham and Stoddard, 2005; Smith and 

Combs, 2008; Stoddard et al., 2003; Stoddard et al., 2006). Serotonin regulates the EOD 

centrally and has no effect on the waveform when applied directly on electrocytes (Allee 

et al., 2008; Stoddard et al., 2003). Serotonin effects on the waveform are likely exhibited 

through the activation of the hypothalamus-pituitary interrenal axis, stimulating 

melanocortin release at the periphery (Markham and Stoddard, 2005; Stoddard et al., 

2003). 

The melanocortin system is highly conserved across vertebrates (Metz et al., 

2006).  Derived from the posttranslational modification of pro-opiomelanocortin 

(POMC), the melanocortin peptide hormones act through a series of 7-transmembrane G-

protein-coupled receptors (MC1R-MC5R) to regulate a diverse array of physiological and 

behavioral processes (Ducrest et al., 2008; Hadley and Haskell-Luevano, 1999).  The 

POMC and melanocortin receptors are widely expressed throughout the body, including 

the central and peripheral nervous systems, skin, and reproductive tract (Ducrest et al., 

2008). Melanocortins regulate a wide suite of traits including social communication, 

learning, grooming, appetite, lipolysis, melanin production, inflammation, 

glucocorticosteroid release, sexual performance, and aggressive and sexual behaviors 

(Brain and Evans, 1977; Ducrest et al., 2008; Gonzalez et al., 1996; Wikberg et al., 
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2000).  In Brachyhypopomus gauderio injections of adrenocorticotropic hormone 

(ACTH) increase amplitude and second phase duration of the EOD by differentially 

modulating the action potentials of the two excitable membranes of the electrocytes 

(Markham and Stoddard, 2005).  Peripheral injections of ACTH or α-MSH induce 

changes in the waveform comparable to those observed during social interactions, 

suggesting a possible mechanism for dynamic EOD regulation (Markham and Stoddard, 

2005; Stoddard et al., 2006). 

All studies examining the effects of hormones on EOD modulations have focused 

on 5 select gymnotiform species; Apteronotus leptorhynchus, Eigenmannia cf. virescens 

and Sternopygus macrurus (testosterone, cortisol and 11-ketotestosterone, serotonin), and 

Gymnotus carapo (testosterone, 1 study), and Brachyhypopomus gauderio (DHT, ACTH, 

α-MSH, serotonin). These studies are instrumental in increasing our knowledge of the 

proximate mechanisms involved in EOD modulation and set the stage for this 

dissertation, using a comparative approach to examine the role of communication 

behaviors and social strategy in the evolution of neuroendocrine mechanisms of animal 

sociality.  

In chapter II of this dissertation, I examine the extent of dynamic signaling in 

representative species of the order Gymnotiformes. I measure EOD waveform 

modulations from day to night, in response to short-term social challenges and 

melanocortin (ACTH and α-MSH) injections.  In chapter III, I measure whether short-

term signal plasticity of Brachyhypopomus gauderio is driven by activational effects of 

the androgens testosterone (T) and 11-ketotestosterone (11-KT).  Furthermore, I examine 

if androgens enhance the effects of melanocortins on signal waveform. Finally, in chapter 
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IV I compare 4 gymnotiform species (Gymnotus carapo, Brachyhypopomus gauderio, 

Eigenmannia cf. virescens, and Apteronotus leptorhynchus) with varying degrees of 

sociality and signal plasticity. I examine whether the different degrees of dynamic 

signaling in these four species are driven by differential sensitivity to androgens and α-

MSH. 
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Abstract 

Dynamic communication signals allow individuals to adapt to the opposing 

interests imposed by mates and predators. Such plasticity is present in Brachyhypopomus 

gauderio, a weakly electric gymnotiform that oscillates its electric organ discharges 

(EODs) on a circadian rhythm and during social interactions. Signal plasticity is 

modulated by melanocortin hormones (ACTH and α-MSH), which mimic waveform 

changes that occur during staged social interactions. While all gymnotiforms generate 

EODs for communication and electrolocation, the taxonomic breadth of dynamic signal 

regulation is not known. I explored the presence of circadian and melanocortin-induced 

EOD plasticity within the Neotropical order Gymnotiformes. I continuously recorded 72 

h of EODs from 13 species from each of the five gymnotiform families (at least 2 

species/family) to observe spontaneous oscillations of the EOD, after which I injected (i) 

ACTH, (ii) α-MSH, or (iii) saline control, (iv) or presented the fish with a conspecific.  I 

found that signal plasticity in weakly electric fish included modulations in EOD 

amplitude, spectral frequency, both, or neither. My results show that members of the 

Hypopomidae can modulate amplitude and spectral frequency of their signals, while 

Apteronotidae don’t modulate either parameter. In Sternopygidae, Sternopygus macrurus 

can change EOD amplitude and spectrum, while Eigenmannia cf. virescens can only 

modulate amplitude. In Gymnotidae, all modulations types are present. The phylogenetic 

pattern of differences in signal modulation suggests that melanocortin-based EOD 

waveform plasticity evolved at the base of the gymnotiform clade and was lost 

independently in the family Apteronotidae, which produces EODs through a derived 

neural electric organ. The gymnotiform electric fish appear to have evolved a dynamic 
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control of their electric waveform through co-option of the ancient melanocortin hormone 

pathway. Widespread response to the same modulator suggests taxonomic differences in 

modulation patterns that probably result from derived differences in the voltage-gated ion 

channels of the electrocytes.  

Keywords: Gymnotiformes, adrenocorticotropic hormone (ACTH), alpha-melanocyte 

stimulating hormone (α-MSH), electric communication signals, plasticity, EOD 

 

Introduction 

Communication signals can reflect individual quality, sex, developmental stage, 

identity, and condition. In most species, traits such as sex, condition and genetic quality 

are static; they cannot be changed rapidly and may not reflect current environmental or 

social conditions. Static signals may include deer antlers (Alcock, 2001), beetle horns 

(Emlen et al., 2006), chucks of frogs (Ryan et al., 1982) and bird plumage (Karubian et 

al., 2011).  The call of male midshipman fish conveys reproductive strategy; territorial 

nesting males produce “grunts,” and “hums,” while subordinate, sneaker males typically 

do not vocalize. These call types are static, as are the male morphs (Grober and Bass, 

2002). Furthermore, in species that use multiple signals or signaling modalities to 

communicate, dynamic signaling might be costlier for the signalers and less informative 

to the receivers that rely on multiple messages for effective information transfer (Bro-

Jorgensen, 2009; Rand and Ryan, 1981). 

Traits that convey social status and quality are dynamic, reflecting short-term 

environmental and social changes. Dynamic signals change rapidly, yet might be 

energetically expensive to generate and maintain. For animals restricted to a single 
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communication mode or that possess a limited repertoire, dynamic signal modulation can 

allow quick adjustments to sudden environmental and social changes. Examples of 

dynamic traits include rapid color change in chameleons (Stuart-Fox and Moussalli, 

2008) and fish (Burmeister et al., 2005), soft vascularized parts in birds (Karubian et al., 

2011), and acoustic signals such as advertisement calls of frogs (Emerson, 2001).  

Most animals use multiple sensory modalities to communicate, making 

examination of the role of any one signal in communication logistically difficult (Bro-

Jorgensen, 2009).  Weakly electric fishes are a great model system to study 

communication signal plasticity because their signals contain both static and dynamic 

components. In addition, most electric fish use their electric sense as the main 

communication modality, thus reducing the possible effects of multiple sensory 

modalities on evolution of communication signals.  

The South American order Gymnotiformes is composed of five families with over 

250 species of weakly electric fish distributed from southern Mexico to northern 

Argentina (Crampton, 2011). Electric fish occupy diverse fresh water habitats varying in 

depths, temperatures, conductivity, oxygen content, flood period, and vegetation (Albert 

and Crampton, 2005). While all gymnotiforms generate electric organ discharges (EODs) 

for electrolocation and communication; the signal waveforms are species-specific 

conveying information on sex and social status (Alves-Gomes, 2001; Hopkins, 1988).  

Gymnotiforms are mostly nocturnal, making the EOD their primary mode of 

communication. Because the EOD is also used for electrolocation it is constantly emitted 

even when the fish are inactive, making gymnotiforms susceptible to electrosensory 

predators such as catfish and the electric eel, Electrophorus electricus (Stoddard, 1999; 
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Westby, 1988). Electroreceptive predators use the ampullary system, which is narrowly 

tuned to direct current and to 0-50Hz frequency range; the range at which muscle cells 

depolarize, to detect their prey (Bradbury and Vehrencamp, 1998).The ancestral EODs 

are believed to be monophasic signals, as in Brachyhypopomus genus and in Gymnotus 

cylindricus, with most of the energy concentrated in the lower frequencies and highly 

conspicuous to predators  (Stoddard, 1999). This predation pressure probably selected for 

the evolution of more complex, multiphasic EODs that are less dectectable to 

electroreceptive predators (Stoddard, 1999; 2002). Complex signals with equal amounts 

of energy above and below 0V of direct current are less conspicuous to electroreceptive 

eavesdroppers because the signals balance the amount of energy around 0V of direct 

current, nulling the DC component that is so attractive to predators (Stoddard and 

Markham, 2008). While both electroceptive predators and electrogenic fish possess the 

ampullary system, gymnotiforms and the African mormyriforms evolved tuberous 

electroreceptors which are broadly tuned to the individual’s own, high-frequency 

component signal (Zupanc and Bullock, 2005). The high-frequency signals cannot be 

detected by electroreceptive predators (Stoddard, 1999). The presence of the tuberous 

system allowed electric fish to develop a private communication channel, and the 

presence of both ampullary and tuberous receptor systems set the stage for the evolution 

of dynamic communication signals.  

In the hypopomids and the African mormyrid genus Macrusenius a biphasic 

signal has been further modified by sexual selection, where males increase EOD 

amplitude and duration of the second phase at night, particularly while challenging other 

males and courting females (Curtis and Stoddard, 2003; Franchina et al., 2001; Machnik 
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and Kramer, 2008). EOD modification made both groups more conspicuous to 

electroreceptive predators by increasing energy in the ampullary-sensitive region of the 

spectrum (Hanika and Kramer, 1999, 2000; Stoddard, 1999). Thus, in at least one of 

gymnotiform and one mormyriform group of weakly electric fish, the EOD signal 

appears to have been shaped by classic opposition of natural and sexual selection 

pressures. 

The EOD is produced by the composite action potentials of electrocytes, 

myogenically derived cells of the electric organ. While the discharge rate is regulated by 

the pacemaker nucleus in the brain (Few and Zakon, 2001; Mills and Zakon, 1991), 

waveform shape is regulated peripherally by the electrocytes (Szabo, 1974). It was 

believed that the EOD is a static signal, constrained by the biophysical properties of the 

ion channels on the electrocyte membranes (Bennett, 1971). However, in the genus 

Brachyhypopomus (Hypopomidae), the EOD changes on multiple timescales. Long-term 

changes occur during development and seasonally (Franchina, 1997), and are driven by 

steroid hormones (Meyer, 1983; Mills and Zakon, 1991; Zakon, 1993). Rapid changes, 

on the other hand, ranging from minutes to hours, occur during the onset of nighttime 

activity and social interactions (Franchina et al., 2001; Franchina and Stoddard, 1998; 

Hagedorn, 1995; Stoddard et al., 2007). Recently, the melanocortins alpha-melanocyte 

stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) were found to 

be involved in the modulation of EODs in Brachyhypopomus gauderio, a member of the 

Hypopomidae family (Markham et al., 2009a; Markham and Stoddard, 2005). Within 

minutes of injection, ACTH and α-MSH induce rapid changes in the signal waveform of 

B. gauderio that resemble changes seen during social interactions (Franchina et al., 2001; 
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Goldina et al., 2011). Additionally, in B. gauderio, prolonged social isolation causes a 

decline in EOD amplitude and duration that can be partially reversed with melanocortins 

(Franchina et al., 2001; Franchina and Stoddard, 1998; Stoddard et al., 2007).  

Currently, the taxonomic breadth of short-term signal plasticity is unknown.  

While multiple gymnotiform species can rapidly modulate EOD discharge rate (Zakon 

and Smith, 2009; Zupanc et al., 2006), dynamic waveform modulation has only been 

described in the genus Brachyhypopomus and in Sternopygus macrurus (Sternopygidae) 

(Hagedorn, 1995; Markham et al., 2009b; Stoddard et al., 2006). Yet, the ability to alter a 

communication signal quickly has many potential benefits ranging from reduction of 

energetic costs of signal production during times of inactivity (i.e., during the day, in the 

absence of potential mates) to decreasing detection by predators and competitors.  

In this study I survey representative species across the order Gymnotiformes to 

characterize the extent of EOD plasticity and its hormonal regulation (Fig. 2). I examine 

whether EOD amplitude and spectra within the ampullary range vary (i) from day to 

night, (ii) during short-term social interactions and, where present, (iii) if this plasticity is 

driven my the melanocortins ACTH and α-MSH as in B. gauderio.  

 

Methods 
 
Animals 
 

I sampled at least two representative species from each of the five Gymnotiform 

families (Table 1). Except for Brachyhypopomus gauderio, Gymnotus cylindricus, and 

Rhamphichthys marmoratus, all animals were purchased through various fish importers 

(Ruineman’s Aquarium, Inc., Ornamental Fish, Segrest Farms and World Wide Scientific 
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Animals). Brachyhypopomus gauderio, originally obtained from Colombia/Argentina, 

was sampled from a captive-reared F14 breeding colony at Florida International 

University, Gymnotus cylindricus was captured in Costa Rica by colleagues, and 

Rhamphichthys marmoratus was a generous gift from Troy Smith.  

All fish were kept either in our aquarium facility, in a 12D:12L, in tanks with 

temperatures ranging between 26-28oC and conductivities between 100-200μS/cm, or in 

an outdoor facility in 450 liter pools covered with water hyacinths, Eichhornia crassipes. 

Except Electrophorus electricus, which was fed frozen smelt, all fish were fed 

oligochaete blackworms (Gulfstream Tropical Aquaria, Dania, Florida) 3x weekly. Fish 

were housed depending on their aggression and sociality levels. Aggressive species from 

the Gymnotidae and Apteronotidae families were housed individually.  Conspecifics 

from the remaining families were housed in groups. Fish were brought indoors and 

placed individually in 284 liter aquaria for data collection (see EOD recording). This 

study was conducted within the guidelines outlined by the National Institute of Health’s 

‘Guide for the Care and Use of Laboratory Animals (DHEW Publication 80-23, revised 

1985) and all protocols were approved by the FIU IACUC (protocol approval no. 08-

023). 

      
EOD recording 
 
 Changes in fish EODs were monitored using an automated EOD machine (Fig. 1) 

(Stoddard et al., 2003). The EOD machine is an automated system that consists of 12 

tanks, 120cm x 44cm x 44cm, covered with copper shielding. The tanks are in a light 

(12D : 12L) and temperature (27±2 °C) controlled room. Each tank is divided into three 
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compartments by two plastic grids covered in mesh. An electrically transparent, unglazed 

ceramic tube connects the two partitions via two plastic funnels that guide fish into the 

tube. The tank is equipped with two pairs of nichrome electrodes, one pair on top of the 

ceramic tube (tube electrodes) and the other pair on the opposite ends of the tank (tank 

electrodes). When the tube electrodes register that a fish is centered in the ceramic tube, 

the tank electrodes record approximately nine consecutive EODs every minute, which are 

then digitized. The recorded EODs are amplified 500X and low-pass filtered at 10kHz.  

To record the high-voltage signals of Electrophorus electricus without damaging our 

equipment, we connected a 1kΩ : 31kΩ voltage divider to the tube electrodes thereby 

decreasing the voltage being recorded and digitized.  The amplifier was lowered to a gain 

of 1X. 

 
Experimental design 

Fish weights were measured prior to being placed in the EOD machine tanks. In 

the recording tanks, we measured EODs of all the individuals for at least 72 hours to 

obtain baseline recordings and to monitor for day-night signal oscillations. Following 

baseline recordings, animals were injected with α-MSH, ACTH (25uM/g of fish, i.m.) 

and saline. The following concentrations of ACTH and α-MSH were chosen based on 

previous studies showing that this concentration fully enhances the EOD in 

Brachyhypooomus gauderio (Markham and Stoddard, 2005). Finally, to examine whether 

melanocortins mimic the EOD response to a social challenge, I placed a conspecific into 

the middle compartment of the test tanks, where the intruder was able to interact 

electrically but not physically with the resident individual. The social challenge lasted 45-
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60 minutes. Order of all treatments was randomized. Most individuals received all of the 

treatments (1) ACTH, (2) α-MSH, (3) Saline and (4) Social challenge. 

 
Injections 

Alpha-Melanocyte stimulating hormone (α-MSH) and adrenocorticotropic 

hormone (ACTH) (Sigma, M4135 and A2227, respectively) were dissolved in 

physiological saline: NaCl 114mmol l-1, KCl 2mmol 1-1, CaCl2.2H2O 4mmol 1-1, 

MgCl2.6H2O 2mmol l-1, Hepes 2 mmol l-1, pH adjusted to 7.2 with NaOH for a final 

concentration of 25uM.  Aloquats were frozen until and diluted to 25uM on the day of 

injection. Physiological saline was used to control for handling and injection. 

Experimental and control solutions were injected at 1ul g-1 of fish intramuscularly using a 

Hamilton syringe fitted with a disposable 31.5 gauge needle. All injections were done 

between 11:00 and 14:00.   

 

Data analysis 
 
Signal analysis 

Spectral analysis with a Hanning-windowed FFT was used to examine changes in 

peak-to peak amplitude and power spectra within the ampullary range (0-50Hz) because 

of treatment. Analyses were performed in Matlab. I measured the EOD amplitude and 

power spectra in the low-frequency range (0-50Hz) immediately before treatment and at 

the peak of the response following treatment. In cases where no response was evident, as 

in response to a saline injection or in species that are insensitive to melanocortins, the 

EOD was measured 45 minutes after treatment. In species sensitive to melanocortins, it 
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takes about 45 minutes for melanocortins to reach peak effect (Markham and Stoddard, 

2005; Stoddard et al., 2006). Changes in day-night signal variation were measured by 

sampling the EODs midday, around noon and during the night when the EOD amplitude 

as at its highest. The time when night amplitude peaked varied between species.  

 
Statistical analysis 

We tried to minimize the number of treatments the individuals were subjected to 

if the animals appeared very fragile or stressed. In such cases the four different treatments 

(saline, ACTH, α-MSH, and social challenge) were split between individuals where one 

individual might have received a saline and ACTH injections, while another individual 

was treated with saline and α-MSH. While I tried to have at least 6 individuals per 

representative species because of import regulations, unpredictability of fish importers 

and increased mortality rate resulting from prolonged handling stress, certain groups have 

fewer than 6 individuals (i.e., Electrophorus electricus).  

Responses to melanocortin injections were compared to saline responses using 

paired t-tests. In cases where no significant differences were found between ACTH and 

MSH responses, data were pooled to increase statistical power. Paired t-tests were also 

used to measure differences between day and night amplitude, as well as pre and post-

social challenge responses. Where data did not meet normality assumptions, Wilcoxon 

signed rank test was used. Analyses were performed using SPSS (version 14.0), α= 0.05 

two tailed. 
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Results 
 
Day-Night EOD changes 

EOD amplitudes increased from day to night in members of the 

Rhamphichthyidae, Hypopomidae and Sternopygidae. Within Rhamphicthyidae, 

amplitude increased at night in Rhamphichthys marmoratus (t = -2.06, df =18, p=0.05), 

but not in Gymnorhamphichthys rondoni (t =-1.09, df = 7, p =0.31). Of the three 

Hypopomidae species tested, nighttime amplitude increase in B. gauderio was the 

greatest (25.19±7.97%), followed by S. elegans (15.12±3.12%) and B. bennetti (10.9 

±2.15%; Table 2).  In both Sternopygidae species, nighttime amplitude was significantly 

higher than daytime amplitude (E. cf. virescens; t=-2.81, df = 10, p= 0.02; S. macrurus; 

Z=-2.51, N=15, p=0.01, Table 2). In Gymnotidae and Apteronotidae, EOD amplitudes 

were invariant (Table 2).  

Nighttime onset did not affect the low-frequency end of the power spectrum 

(<50Hz) in members of Gymnotidae or Apteronotidae (Table 2), while causing a 

significant enhancement in all three Hypopomidae species, and in R. marmoratus. 

Interestingly, neither S. macrurus nor E. cf. virescens exhibited a change in the ampullary 

range of the EOD spectra during the night (Table 2).  

 
Effect of melanocortins on EOD 

Compared to saline, injections of the melanocortin α-MSH, but not ACTH 

significantly enhanced EOD amplitudes in the Gymnotidae (G. cylindricus α-MSH: t = -

3.38, df=7, p=0.01; G. carapo α-MSH: Z=-3.26, N=24, p<0.01), Rhamphichthyidae (G. 

rondoni α-MSH: t=-3.15, df=7, p=0.02), and Hypopomidae (B. bennetti α-MSH: t=-
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21.38, df=4, p<0.01; B. gauderio α-MSH: t=-2.72, df=7, p=0.03). From previous studies 

we know that ACTH can increase EOD amplitude by up to 26% (Markham and Stoddard, 

2005), suggesting that our lack of statistical significance (B. gauderio ACTH: t=-6.26, 

df=6, p=0.06) might be confounded by a small sample size. In S. elegans, ACTH 

enhanced EOD amplitude to a greater extent than α-MSH (ACTH: t=-5.45, df=8, p<0.01; 

α-MSH: t=-2.15, df=9, p=0.06). There was no difference between ACTH and α-MSH 

response in Sternopygidae, (S. macrurus: t=-0.80, df=12, p=0.44, E. cf. virescens: t=0.52, 

df=9, p=0.61), and both melanocortins increased EOD amplitude (S. macrurus: Z=-3.30, 

N=14, p<0.01; E. cf virescens: t=-4.59, df=9, p<0.01). Neither melanocortin had any 

effect on A. leptorhynchus (α-MSH: Z=-0.68, N=6, p=0.5; ACTH: Z=-0.06, N=9, 

p=0.95) or A. albifrons (α-MSH: t=-0.29, df=3, p=0.79; ACTH: t==1.08, df=7, p=0.32) 

amplitudes.  

Within the Gymnotidae, α-MSH increased EOD spectra within the ampullary 

range only in G. cylindricus (t=-4.87, df=7, p<0.01). Neither melanocortin treatment had 

any effect on the EOD spectra of the remaining species in Gymnotidae, Apteronotidae, or 

Rhamphichthyidae (Table 2). Within Hypopomidae, α-MSH, but not ACTH increased 

signal spectrum in S. elegans (α-MSH: t=-7.02, df=9, p<0.01; ACTH: t=-2.02, df=8, 

p=0.08) and B. gauderio (α-MSH: t=-6.08, df=7, p<0.01; ACTH: t=0.67, df=6, p=0.53), 

while neither melanocortin had any effect on B. bennetti (α-MSH: t=-1.81, df=4, p0.15; 

ACTH: t=-6.00, df=4, p=0.58). Within Stenopygidae, both melanocortins increased 

signal spectrum in S. macrurus (Z=-2.67, N=13, p<0.01), but had no effect on E.cf. 

virescens (t=1.97, df=9, p=0.08).  
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Effect of short-term social challenges on EOD 

Social challenges had no effect on peak-to-peak amplitudes of Gymnotidae, 

Rhamphichthyidae or Apteronotidae species (Table 2). Only S. elegans (t=-2.49, df=6, 

p=0.05) and B. bennetti (t=-2.90, df=4, p=0.04) within Hypopomidae, and S. macrurus 

(Z=-2.95, N=11, p<0.01) within Sternopygidae increased amplitudes during social 

challenges (Table 2).  

Social challenges significantly increased the energy within the low-frequency 

rage of S. macrurus (Z=-2.82, N=12, p<0.01) and decreased it in A. leptorhynchus (Z=-

2.02, N=5, p=0.04). The spectra of all other species remained unaffected (Table 2).  

 

Discussion 
 
EOD waveform plasticity varies across gymnotiform families 

 I observed three patterns of EOD modulations in gymnotiform species examined; 

amplitude modulation, spectral modulation, combined amplitude and spectral 

modulation, and absence of waveform modulation entirely. In general, neither species in 

Apteronotidae or Gymnotidae seem to express dynamic waveform modulation (although 

individual species, and individuals in the non-modulating species showed some degree of 

amplitude and/or spectrum plasticity). In the Apteronotidae, both A. leptorhynchus and A. 

albifrons do not modulate their amplitudes from day to night, during social challenges or 

in response to melanocortins (Table 2, Fig. 7).  Interestingly, in response to a social 

challenge, A. leptorhynchus increased the amount of energy present within the low-

frequency range of the power spectrum (Table 2, Fig. 7C), but neither melanocortin 

treatment was able to mimic this response. Within Gymnotidae, neither species exhibited 
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day-night or social challenge-induced modulation of EOD amplitude or spectra (Table 2, 

Fig. 3). However, G. carapo and G. cylindricus increased EOD amplitude in response to 

α-MSH, but not ACTH. This differential melanocortin response was also observed in G. 

rondoni (Rhamphichthyidae, Table 2) and in B. gauderio (Hypopomidae, Table 2). In B. 

gauderio, ACTH has been shown to significantly enhance signal amplitude (Markham 

and Stoddard, 2005), suggesting that lack of statistically significant ACTH effect might 

be a confound of small sample size rather than absence of a biologically significant 

melanocortin effect (Fig. 5).  Furthermore, short-term social challenges had no effect on 

either amplitude or power spectra of B. gauderio EOD. I have previously shown that 

short-term social challenge can enhance signal amplitude (Franchina et al., 2001; Goldina 

et al., 2011);  I am not sure why these effects were not observed in this study. In previous 

studies, the social challenges administered consisted of size-matched same-sex male 

opponents, inducing a large amplitude increase (Franchina et al., 2001; Goldina et al., 

2011). However, because I was unsure of the sex of the other species in this study, I used 

male and female same-sex social challenges. Compared to males, female B. gauderio do 

not exhibit as large nightly amplitude increases (Franchina and Stoddard, 1998; Stoddard 

et al., 2007), nor do they respond to same-sex social challenges (Allee et al., 2009). 

However, no sex difference was apparent in my statistical analyses (data not shown).  

 I observed amplitude modulation in E. cf. virescens of Sternopygidae in response 

to melanocortins and nighttime onset, but not to social challenges (Table 2). Neither of 

these treatments increased energy in the ampullary region of the EOD power spectrum 

(Fig. 6D).  It is possible that in E. cf. virescens, melanocortins drive the day-night 

rhythms, but not social communication.  
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 Plasticity in amplitude and power spectra was present in several species within the 

gymnotiform families.  Sternopygus macrurus of Sternopygidae increased signal 

amplitude and boosted energy in the ampullary-sensitive region of the spectrum in 

response to melanocortins and social challenges (Fig. 6A). Nighttime onset increased 

amplitude without affecting the power spectra (Fig. 6B). Conversely, R. marmoratus 

(Rhamphichthyidae) increased amplitude and spectral energy during nighttime, but not in 

response to melanocortins or social challenges (Table 2, Fig. 2A,B). Finally, members of 

the Hypopomidae exhibited the most plastic signals; enhancing EOD amplitudes in 

response to every treatment (except B. gauderio, see above).  All four species tested 

boosted energy in the low-frequency region of the spectrum, a phenomenon that was 

mimicked by α-MSH but not ACTH injections in S. elegans and B. gauderio (Table 2, 

Fig. 5).  

  In summary, it seems that members of the Apteronotidae and Gymnotidae exhibit 

most static signals, Sternopygidae and Rhamphichthyidae mainly modulate amplitude, 

while Hypopomidae have the most dynamic signals, varying amplitude and power 

spectrum. I examined too few species, especially from the Rhamphichthyidae, 

Sternopygidae and Apteronotidae, to be confident that the patterns I observed can be 

extended to the rest of the family members. Therefore, in the rest of this paper I interpret 

my results with caution, hoping to stimulate discussion and more experiments using the 

less popular, but not less fascinating gymnotiform species.  
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Proximate differences in signal production may account for differences in EOD 

plasticity 

The observed species and family differences in signal plasticity may be attributed 

to electric organ heterogeneity, as well as the differential expression of ion channels on 

the electrocyte membranes. Additionally, differential sensitivity to melanocortins may be 

the product of (1) differential melanocortin receptor expression on electrocytes or (2) 

differential melanocortin sensitivity of downstream effectors that regulate signal 

waveform.  

Electric organs differ between species in electrocyte shape, quantity, number of 

excitable faces, patterns of innervation by motoneurons, as well as presence of accessory 

organs (Bennett, 1971). All of these differences contribute to species-specific waveforms, 

including differences in EOD phase number, pulse shape, and duration. For example, the 

34 recognized species within the family Gymnotidae, possess highly variable EODs 

ranging from monophasic (E. electricus and G. cylindricus) to multiphasic signals (G. 

carapo and G. ucamara) (Lovejoy et al., 2010). In G. carapo different phases of the 

waveform are generated by distinct parts of the electric organ; the abdominal and central 

portion of the electric organ have doubly innervated electrocytes allowing it to produce 

an EOD waveform with four faces (Caputi et al., 2005; Trujilo-Cenoz and Echague, 

1989). In several gymnotids, S. elegans (Hypopomidae) and rhamphichthyds 

(Rhamphichthyidae) accessory organs contribute additional phases to the waveforms 

(Crampton and Albert, 2006). However, while the electric eel (E. electricus) has three 

electric organs, Main, Hunter’s and Sachs, only Sachs and posterior portion of the 

Hunter’s organ are used in low-voltage signaling for communication and electrolocation 
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(Main and anterior portion of Sachs generate the high-voltage EODs used to stun prey 

(Bennett, 1971; Zupanc and Bullock, 2005)). In E. electricus melanocortins increased 

overall signal amplitude (Fig. 3A); however, I could not tell which organ was 

discharging. It is possible that Sachs and Hunter’s organ are differentially sensitive to 

melanocortins, affecting communication, hunting or both behaviors.  

Unlike the rest of the gymnotiforms whose electric organs are myogenically 

derived, the electric organs of apteronotids are an extension of the electromotoneurons 

(Bennett, 1971).  Apteronotids have a myogenically derived larval electric organ, that is 

replaced by a neurogenic organ during development (Unguez and Zakon, 1998; Zakon 

and Unguez, 1999). Neurogenically derived electrocytes allow apteronotids to produce 

EODs of the highest frequency in the entire order. However, the ability to generate a 

dynamic waveform might have been lost along with the loss of myogenically derived 

electric organ. Alternatively, the neurogenic organ might lack melanocortin receptor 

expression in electrocytes and is thus insensitive to melanocortins. Examining whether 

melanocortin sensitivity and amplitude modulation is present throughout larval and 

juvenile stages, and is lost when the juvenile myogenic organ is replaced by the adult 

neurogenic one would be a good test of this hypothesis.  

Dynamic signaling might also be a result of species-specific co-option of the 

melanocortin hormone pathway. Short-term amplitude modulations in B. gauderio and S. 

macrurus are regulated by melanocortins through the activation of the cAMP/PKA 

pathway (Markham and Stoddard, 2005; McAnelly et al., 2003; Stoddard et al., 2006), 

which in turn promotes exocytosis of preformed voltage-gated Na+ and inward rectifying 

K+ channels into the electrocyte membrane. Increasing the number of ion channels in the 
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membranes causes EOD amplitude increase (Markham et al., 2009b).  Furthermore, if 

melanocortin receptors are differentially expressed throughout the electric organ of a 

species with either a heterogeneous organ, as in gymnotids, or with accessory organs, as 

in rhamphichthyids or Steatogenys, then different phases of the waveforms can be 

independently modulated, increasing signal plasticity. Plasticity might also be a result of 

differential expression of melanocortin receptors. Of the five melanocortin receptors 

(MC1-5R), MC2R is specific for ACTH, MC1R and MC4R have equally high affinities 

for α-MSH and ACTH, and MC3R has the highest affinities for α-MSH and lowest for 

ACTH (Gantz and Fong, 2003).  It is possible that differential responses to ACTH and α-

MSH I observed in G. cylindricus, G. carapo, R. marmoratus, G. rondoni and B. 

gauderio reflect differential expression of the melanocortin receptors within the electric 

organs of these species. However, while melanocortin system is highly conserved across 

vertebrates (Metz et al., 2006), it is not known whether the receptor affinities described in 

other teleosts reflect melanocortin receptor affinities in gymnotiforms. Furthermore, it is 

currently not known if gymnotiform electrocytes express melanocortin receptors. 

Preliminary studies suggest that B. gauderio electrocytes express MC-5R (Villinger and 

Stoddard, unpublished observations), a receptor associated with aggressive and sexual 

behaviors in rodents (Caldwell and Lepri, 2002; Morgan and Cone, 2006; Morgan et al., 

2004).  

Finally, signal plasticity may be generated through secondary melanocortin 

effects. ACTH regulates testicular steroidogenesis and glucocorticoid release and 

promotes testosterone production during fetal mouse development (Ducrest et al., 2008; 

Haskell-Luevano and Hadley, 1999; O'shaughnessy et al., 2003). In gymnotiforms, 
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androgens masculinize the waveform (Allee et al., 2009; Hagedorn and Carr, 1985; Silva 

et al., 2002), and in B. gauderio, androgens enhance α-MSH amplitude rise (Goldina et 

al., 2011), further increasing sexual dimorphism of the waveform. Androgens also 

enhance α-MSH amplitude response of E. cf. virescens, but not of G. carapo or A. 

leptorhynchus (Goldina and Stoddard, unpublished observations). Interestingly, all four 

species are sensitive to androgens (Dunlap et al., 1998; Dunlap and Zakon, 1998; Silva et 

al., 2002). These findings suggest that signal plasticity is regulated through differential 

melanocortin sensitivity, while steroid hormones activate these effects possibly by 

inducing changes in electrocytes observed during sexual differentiation (Bass and 

Volman, 1987).  

 

Behavioral explanations for observed signal differences 

EODs are energetically expensive to generate (Salazar and Stoddard, 2008) and it 

would make sense to restrict signaling to situations where benefits (i.e., mate attraction) 

can outweigh the energetic costs. Dynamic signaling can thus serve as an adaptive 

strategy for species that share habitats with multiple predators. Hypopomids have the 

most dynamic signals (Table 2, Fig. 5), increasing signal amplitude and power at night, 

when courting females and during social interactions (Franchina et al., 2001; Franchina 

and Stoddard, 1998). They are often found in the same habitats as gymnotids, whose diet 

at least partially consists of electric fish, including B. gauderio  (Crampton and Albert, 

2006; Miranda et al., 2008).  

Within the Gymnotidae, E. electricus has been reported to prey on G. carapo and 

possibly other electric species in the wild (Westby, 1988). Through natural selection for 
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multiphasic signals gymnotiforms might have decreased their conspicuousness to 

electroreceptive predators (Stoddard 1999), maintenance of such signals is energetically 

expensive when predators are absent. In Gymnotus, the multiphasic state is ancestral with 

multiple lineages losing phases independently. Thus, the monophasic waveform of G. 

cylindricus is a derived condition (Lovejoy et al., 2010). Gymnotus cylindricus inhabits 

freshwaters in Central America that are devoid of electrorecetive predators such as 

catfish, stingrays and electric eels (Lovejoy et al., 2010). Thus, G. cylindricus does not 

incur the potential costs of enhancing the amplitude and energy in the low frequency 

region of the power spectrum (Table 2). The monophasic waveform of B. bennetti seems 

to encode sex, and males in breeding condition produce signals twice as large as that of 

females (Crampton and Albert, 2006).  Of all the gymnotiforms I tested, B. bennetti 

exhibits the greatest increase in the low-frequency end of the spectrum during nighttime 

and social challenges (Table 2), making it highly conspicuous to electroreceptive 

predators. It has been suggested that the B. bennetti is a batesian mimic of the electric eel 

and its large discharge is often mistaken by scientists for this sympatric predator’s EOD 

(Stoddard, 1999). Whether B. bennetti males experience greater predation rates than 

females or if they manage to escape predation because they are mistaken for predators 

themselves remains to be tested.  Currently, no studies examine whether the 

melanocortin-induced waveform enhancements reflect actual signal modulations used by 

this species and whether, as seen in hypopomids and mormyrids (Machnik and Kramer, 

2008; Stoddard, 1999), greater signal amplitude is preferred by females. 

In wave fishes (Apteronotidae and Sternopygidae), EOD frequency is typically 

very stable, sexually dimorphic and conveys social status. Short-term frequency 
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modulations of wave species are often used during courtship and aggressive interactions 

(Hagedorn and Heiligenberg, 1985; Zakon and Smith, 2002). EOD waveform and 

frequency are highly variable across apteronotid species and might be used in species 

recognition (Turner et al., 2007). The function of amplitude modulation, however, is not 

clear.  Since wave type waveforms are symmetrical above and below 0 volts DC, their 

waveforms are generally not attractive to predators. The absence of any amplitude and 

spectral modulation in the apteronotid species might be attributed to the need to maintain 

a stable, stereotypical signal that is recognizable by territorial conspecifics. Since most 

apteronotids are highly aggressive and territorial, keeping waveform amplitudes and 

spectra constant may convey information about individual identity and serve as a 

signature signal.  Alternatively, since most apteronotids are confined to deep river 

channels (Crampton and Albert, 2006), fast flowing waters might inhibit effective 

transmission of amplitude-modulated signals. Another explanation for the relative 

stability of EOD amplitude in apteronotids is that amplitude modulation might be 

reserved for electroreception, enhacing object detectability used in scan-swimming 

(Crampton and Albert, 2006). Therefore, dynamic amplitude modulation in the context of 

communication, in addition to amplitude modulations during scan-sampling, might be too 

energetically expensive. 

Similarly, amplitude modulation in Sternopygidae might reflect their more social 

nature. Since E. virescens adjust their EOD frequencies to avoid jamming conspecifics 

within their social groups (Oestreich and Zakon, 2005), they maintain a stable amplitude 

during social challenges to convey identity and status (Table 2, Fig. 6C).  On the other 

hand, the less social S. macrurus does not form shoals and does not have a means to 
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avoid being electrically jammed by conspecifics, changes amplitude during social 

challenges (Table 2, Fig. 6A) to possibly convey changes in motivation.  

 

Conclusions 

In gymnotiforms, electric organ heterogeneity within and between individuals 

may serve as a substrate for the evolution of signal plasticity and dynamic 

communication signals via the co-option of the ancient melanocortin hormone pathway.  

Most likely, this melanocortin driven plasticity is mediated through differential 

modulation of the voltage-gated ion channels.  

To date, very little is known about the behaviors and significance of signal 

modulations in most gymnotiforms. Without the basic knowledge of their natural history, 

it is impossible to propose the value of signal modulations in communication of a given 

species. Furthermore, without understanding the behavioral repertoires of the different 

species, including the environmental pressures they are under, one cannot fully 

understand the proximate or ultimate reasons for dynamic signaling in gymnotiforms. I 

hope that my findings will stimulate further studies examining EOD plasticity of multiple 

poorly described gymnotiform species in their natural environments.   
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Table 1. Species origin and weights (mean ± S.E.). 

 
Family 
Species 

Origin Weight (g) 
Mean ± SD 

Gymnotidae   
Electrophorus electricus Brazil 1098 ± 710 
Gymnotus cylindricus Costa Rica 7.53 ± 2.99 
Gymnotus carapo Colombia / Peru 30.3 ± 17.3 
Gymnotus ucamara Peru 11.8 ± 4.38 
Rhamphichthyidae   
Rhamphichthys marmoratus Colombia 28.8 ± 18.8 
Gymnorhamphichthys rondoni Peru 4.5 ± 0.7 
Hypopomidae   
Steatogenys elegans Peru 9.96 ± 4.09 
Brachyhpopomus bennetti Ecuador 10 ± 3.2 
Brachyhypopomus gauderio Colombia / Argentina 9.6 ± 1.3 
Sternopygidae   
Sternopygus macrurus Ecuador 26.2 ± 15.2 
Eigenmannia cf. virescens Guyana / Colombia 9.85 ± 4.16 
Apteronotidae   
Apteronotus albifrons Brazil 18 ± 3.83 
Apteronotus leptorhynchus Colombia 14.1 ± 8.4 

 

Beyond country, I was unable to find out the detailed locations from which the different 

species were obtained, because except for B. gauderio and G. cylindricus, all individuals 

were purchased from multiple tropical fish importers. Since most of the above species 

occupy multiple habitat types (Albert and Crampton, 2005), it was not possible to 

differentiate the effect of habitat or presence of  heterospecifics on signal plasticity within 

any one species. Also, because most of the tested species are not sexually dimorphic in 

morphology or their signals, I do not know the sex of most individuals used in this study.
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Table 2. Change in EOD amplitude from day to night and in response to melanocortin (ACTH and MSH) injections and short-

term social challenges. 

Species  % Relative amplitude change % Relative change in ampullary range  
(< 50Hz) of the spectrum 

E. electricus N Mean±SE Statistic p-value Mean±SE t statistic p-value 
Day-Night 2 -12.80 ± 5.30 ----- ----- 1517.7 ± 297.0 ----- ----- 

MSH 2 11.5 ± 4.30 ----- ----- -768.7 ± 306.0 ----- ----- 
G. cylindricus        

Day-Night 16 -1.27 ± 1.11 t =-0.06 0.95 80.50 ± 42.70 t =1.84 0.09 
MSH 8 2.30 ± 0.58 t =-3.38   0.01* -118.27 ± 48.1 t =-4.87 <0.01* 

ACTH 8 -1.10 ± 0.44 t =-0.90 0.40 14.05 ± 28.32 t =-1.48 0.18 
Social challenge 12 0.74 ± 0.62 t =-0.65 0.53 -25.28 ± 22.18 t =-1.08 0.30 

G. carapo        
Day-Night 29 -1.47 ± 4.36 Z = -1.80 0.07 9.65 ± 6.43 Z = -0.81 0.42 

MSH 24 8.47 ± 4.11 Z = -3.26 <0.01* -1.81 ± 4.38 Z = -1.26 0.21 
ACTH 9 -0.04 ± 0.95 Z = -0.42 0.68 29.06 ± 48.80 Z = -1.01 0.31 

Social challenge 9 -0.46 ± 3.60 Z = 0.00 1.00 109.1 ± 88.0 Z = -0.30 0.77 
G. ucamara        
Day-Night 8 -3.71 ± 2.34 t = 1.40 0.20 -9.70 ± 10.06 t = -1.32 0.23 

MSH 8 1.94 ± 1.96 t =-1.43 0.20 8.02 ± 6.52 t = 1.28 0.24 
ACTH 8 6.41 ± 7.66 t =-1.09 0.31 -11.0 ± 10.67 t =-0.92 0.39 

Social challenge 8 7.02 ± 10.48 t =-0.41 0.69 5.27 ± 10.10 t =0.02 0.98 
R. marmoratus        

Day-Night 19 17.64 ± 8.98 Z = -2.42  0.02* -9.53 ± 6.18 Z = -1.93  0.05* 
MSH+ACTH 19 18.76 ± 6.40 Z = -1.69 0.09 1.79 ± 6.86 Z = -0.28 0.78 

Social challenge 8 5.95 ± 6.74 Z = -0.17 0.87 -134.20 ± 129.1 Z = 0.00 1.00 
G. rondoni        
Day-Night 8 22.5 ± 16.90 t =-1.09 0.31 -4.3 ± 16.10 t = 0.48 0.65 

MSH 8 40.2 ± 13.8 t = -3.15   0.02* -7.1 ± 21.70 t = -0.83 0.43 
ACTH 8 6.8 ± 3.50 t = 0.68 0.52 1.1 ± 9.80 t = -0.74 0.49 

Social challenge 8 5.0 ± 6.50 t = 0.39 0.71 5.8 ± 15.40 t = -0.22 0.83 
S. elegans N Mean±SE Statistic p-value Mean±SE t statistic p-value 
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Day-Night 14 15.12 ± 3.12 t = -3.24 <0.01* -35.25 ± 9.75 t = -3.38 <0.01* 
MSH 10 35.87 ± 14.14 t = -2.15 0.06 -65.50 ± 5.00 t = -7.02 <0.01* 

ACTH 9 12.47 ± 2.19 t = -5.45 <0.01* -17.11 ± 8.58 t = -2.02 0.08 
Social challenge 7 2.26 ± 0.89 t = -2.49  0.05* 11.80 ± 18.70 t = 0.50 0.63 

B. bennetti        
Day-Night 5 10.9 ± 2.15 t =-4.24   0.01* -1736.43±2398.4 t =-5.55 <0.01* 

MSH 5 37.12 ± 1.45 t = -21.38 <0.01* - 489.0 ± 375.80 t =-1.81 0.15 
ACTH 5 17.54 ± 2.92 t = -6.26 <0.01* -1712.3 ± 2691.5 t = -6.00 0.58 

Social challenge 5 1.11 ± 0.35 t = -2.90   0.04* -1736.43±2398.4 t = -2.51 0.07 
B. gauderio        
Day-Night 8 25.19 ± 7.97 t = -5.49  <0.01* -56.7 ± 4.65 t = -8.45 <0.01* 

MSH 8 14.50 ± 7.67 t = -2.72    0.03* -63.1 ± 10.20 t = -6.07 <0.01* 
ACTH 7 9.32 ± 7.53 t = -2.26 0.06 -47.25 ± 9.02 t = 0.67 0.53 

Social challenge 7 4.02 ± 3.02 t = -1.34 0.23 -12.4 ± 8.53 t = -1.27 0.25 
S. macrurus        
Day-Night 15 9.63 ± 2.91 Z = -2.51   0.01* 1.90 ± 2.83 Z = -0.74 0.46 

MSH + ACTH 14 64.76 ± 7.25 Z = -3.30 <0.01* -6.95 ± 1.60 Z = -2.67 <0.01* 
Social challenge 12 13.91 ± 4.08 Z = -2.95 <0.01* -2.05 ± 2.35 Z = -2.82 <0.01* 
E. cf. virescens        

Day-Night 11 17.88 ± 5.50 t = -2.81   0.02* 1.41 ± 2.21 t = 0.51 0.62 
MSH + ACTH 11 65.13 ± 11.70 t = -4.59 <0.01* -5.41 ± 2.14 t = 1.97 0.08 

Social challenge 5 42.11 ± 35.40 t = -1.47 0.22 1.94 ± 1.68 t = 1.14 0.32 
A. albifrons        
Day-Night 8 -0.71 ± 1.65 t = 0.41 0.69 1.53 ± 1.15 t = 1.16 0.28 

MSH 4 -3.07 ± 3.06 t = -0.29 0.79 2.35 ± 1.34 t = 2.50 0.09 
ACTH 8 2.60 ± 2.24 t = -1.08 0.32 -2.30 ± 2.76 t = 0.20 0.85 

Social challenge 6 2.96 ± 0.98 t = -2.04 0.10 -2.58 ± 1.36 t = -1.87 0.12 
A. leptorhynchus        

Day-Night 11 -2.10 ± 2.36 Z = -0.31 0.76 0.26 ± 2.21 Z = -0.27 0.79 
MSH 6 -2.50 ± 7.21 Z = -0.68 0.50 -2.54 ± 0.95 Z = -1.35 0.18 

ACTH 9 -0.52 ± 2.74 Z = -0.06 0.95 -2.65 ± 1.73 Z = -0.06 0.95 
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Numbers represent sample size (N), mean and standard deviation of % relative amplitude change and the p-value from 

statistical analyses. Asterisks represent statistically significant differences (p<0.05). Melanocortin responses were compared to 

saline responses, day amplitude was compared to nighttime increase, and response to social challenge was compared to EOD 

amplitude during solitary condition (i.e. day vs. night, pre vs. peak-social challenge effects). Because I only had two 

Electrophorus electricus, no statistical analyses were run; the data are presented strictly for comparative purpose.
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Figure 1. EOD machine. Allows around the clock recording and tracking of electric 

signals, following social and pharmacological challenges.
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Figure 2. Day-night EOD modulations of select members of the order 

Gymnotiformes. (A) Pictures of the select species used in this study. Phylogeny 

adapted from Crampton (2011). (B) EOD waveforms change from day (black) to 
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night (gray) in members of the Hypopomidae, Sternopygidae and Rhamphichthyidae, 

but not in Gymnotidae or Apteronotidae. (C) Nighttime onset increases the amount of 

energy present in the ampullary range of the power spectra of Hypopomidae and R. 

marmoratus of Rhamphichthyidae. The spectra of remaining species are unchanged. 

Asterisks indicate significant day-night differences (p<0.05).  
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Figure 3. Signal plasticity in Gymnotidae. In general, members of the Gymnotidae do 

not change EOD amplitude (triangle; A, B, C, D) or energy in the low-frequency 

region of the signal spectrum (circles; B, D, F, H). A decrease in relative power 

change means an increase in energy of the low-frequency region of the EOD power 

spectrum. Symbols represent individual data points represented as relative change.  

Horizontal and vertical bars depict mean and SEM, respectively. Significant 

differences between treatments are indicated by brackets, p-values reflect results from 

paired t-tests or Wilcoxon signed-rank test between treatments.
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Figure 4. Signal plasticity in Rhamphichthyidae.  Only G. rondoni increased signal 

amplitude in response to α-MSH injections and during the night (A). Neither species 

modified its power spectrum (B, D). 
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Figure 5. Signal plasticity in Hypopomidae. Members of the Hypopomidae have the 

most dynamic signals; changing both EOD amplitude (A, C, E) and spectrum (B, D, 

F). The extent of plasticity ranges between species.  
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Figure 6. Signal plasticity in Sternopygidae. S. macrurus increases its amplitude  

(A) and signal spectrum (B), while E. cf. virescens only modifies its signal  

(B) amplitude (C).  
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Figure 7.  Signal plasticity in Apteronotidae. Apteronotids have highly stable signals, keeping 

amplitude and spectrum stable from day to night and in response to melanocortins. 
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CHAPTER III 

 

TESTOSTERONE AND 11-KETOTESTOSTERONE HAVE DIFFERENT 

REGULATORY EFFECTS ON ELECTRIC COMMUNICATION SIGNALS OF MALE 

BRACHYHYPOPOMUS GAUDERIO 

 

 

 

 

 

 

 

 

As published in Hormones and Behavior 

May 2011 

Volume 60, Pages 139-147 

Copyright © Elsevier 



 
 

59

Abstract 

The communication signals of electric fish can be dynamic, varying between the 

sexes on a circadian rhythm and in response to social and environmental cues. In the 

gymnotiform fish Brachyhypopomus gauderio waveform shape of the electric organ 

discharge (EOD) is regulated by steroid and peptide hormones.  Furthermore, EOD 

amplitude and duration change on different timescales and in response to different social 

stimuli, suggesting that they are regulated by different mechanisms. Little is known about 

how androgen and peptide hormone systems interact to regulate signal waveform. We 

investigated the relationship between the androgens testosterone (T) and 11-

ketotestosterone (11-KT), the melanocortin peptide hormone α-MSH, and their roles in 

regulating EOD waveform of male B. gauderio.  Males were implanted with androgen (T, 

11-KT, or blank), and injected with α-MSH before and at the peak of androgen effect. 

We compared the effects of androgen implants and social interactions by giving males a 

size-matched male stimulus with which they could interact electrically.  Social stimuli 

and both androgens increased EOD duration, but only social stimuli and 11-KT elevated 

amplitude. However, no androgen enhanced EOD amplitude to the extent of a social 

stimulus, suggesting that a yet unidentified hormonal pathway regulates this signal 

parameter. Additionally, both androgens increased response of EOD duration to α-MSH, 

but only 11-KT increased response of EOD amplitude to α-MSH. Social stimuli had no 

effect on EOD response to α-MSH. The finding that EOD amplitude is preferentially 

regulated by 11-KT in B. gauderio may provide the basis for independent control of 

amplitude and duration.   
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Keywords: 11-ketotestosterone (11-KT); alpha-melanocyte stimulating hormone (α-

MSH); androgen; communication signal; electric fish, electric organ discharge (EOD; 

gymnotiform; plasticity; Testosterone (T). 

 

Introduction 

Hormones co-regulate reproductive condition, behaviors, and, in many cases, the 

structure of communication signals (Adkins-Regan, 2005; Wilczynski and Chu, 2001). 

Hormonally mediated correlations between behavior, body condition, and signal structure 

may enable a receiver to infer the signaler’s neuroendocrine state from the signal, and 

thus predict aggressive response or reproductive performance (Ketterson et al., 2009; 

McGlothlin et al., 2008; McGlothlin and Ketterson, 2008; Oliveira, 2005). Animals 

integrate social and physical stimuli in the environment and commonly respond by 

secreting fast-acting peptide hormones, which rapidly modulate behavior and steroid 

secretion. While steroid hormones overlap with peptides in these roles, they modulate 

physical phenotype and behavior over longer time periods through genomic action. The 

potential interplay between fast-acting peptides and slow-acting steroids enables greater 

behavioral flexibility over varying temporal ranges and social conditions. Thus, the 

extent to which steroid hormones may prime or inhibit the actions of peptide hormones 

can generate versatile behaviors that are best adapted to the individual’s environment 

(Adkins-Regan, 2005). The electric communication signals of gymnotiform fish are 

regulated by melanocortin peptide hormones and by sex steroids on short and long time 

horizons, respectively (Stoddard et al., 2006).  Because of their structural simplicity, 
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electric signals constitute good models for exploring dual hormone signal regulation and 

the implication of hormonal interplay for communication. 

The weakly electric gymnotiform species Brachyhypopomus gauderio (Giora and 

Malabara, 2009), southern sister species to B. pinnicaudatus, produces a sexually 

dimorphic electric organ discharge (EOD) for electrolocation and communication.  The 

neural circuitry of electrocommunication and electrolocation has been well described 

(Heiligenberg, 1991; Hopkins, 1995; 1999; Metzner, 1999; Zupanc and Maler, 1997). 

The EOD pulse rate is regulated centrally in the pacemaker nucleus of the medulla, while 

waveform amplitude and duration are regulated peripherally (Few and Zakon, 2001; 

Mills and Zakon, 1991) by the electrocytes, electrically excitable cells of the electric 

organ (Szabo, 1974).  The near simultaneous electric discharge of the anterior and 

posterior membranes of each electrocyte in B. gauderio produces a biphasic signal that 

varies in amplitude and duration (Fig. 1A).  The durations of both phases are nearly equal 

in females, while males exhibit a longer duration of the second phase (referred to as τp2) 

(Franchina, 1997; Hopkins et al., 1990).  

The EOD is a dynamic signal that varies on a circadian rhythm, increasing in 

amplitude and τp2 at night and during social interactions (Franchina et al., 2001; Stoddard 

et al., 2007) (Fig. 1).  This signal plasticity is driven by the slow, genomic action (days-

weeks) of steroid hormones (Allee et al., 2009; Dunlap et al., 1998; Stoddard et al., 2006; 

Zakon, 1993; Zakon and Smith, 2002) and by the rapid, non-genomic (minutes-hours) 

action of monoamine and peptide hormones (Markham et al., 2009a; Markham and 

Stoddard, 2005; Stoddard et al., 2003). Androgens masculinize the gymnotiform EOD by 

increasing waveform duration in peripheral electrocytes (Allee et al., 2009; Bass and 
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Hopkins, 1984; Bass and Volman, 1987; Few and Zakon, 2001; Silva et al., 2002) and 

altering discharge frequency in the central pacemaker nucleus (Dunlap et al., 1998; 

Meyer, 1983).  

Weakly electric species modulate EOD parameters in a species-specific manner in 

the contexts of competition, aggression, and mating. In B. occidentalis, winners of 

agonistic interaction have lower peak-power frequency and larger amplitude signals than 

losers. DHT, but not estrogen implants, masculinize these signal parameters, mimicking 

waveforms of dominant individuals (Hagedorn and Carr, 1985; Hagedorn and Zelick, 

1989). Similarly, in B. gauderio social competition elevates circulating androgen (T and 

11-KT) levels (Salazar and Stoddard, 2009) while in mormyriform electric fish 

Brienomyrus brachyistius, dominant males have the highest 11-KT levels (Carlson et al., 

2000). In Apteronotus leptorhynchus, another gymnotiform species, 11-KT levels are 

correlated with aggressive EOD modulations, which can be induced by 11-KT implants 

(Dunlap, 2002; Dunlap et al., 1998).  

While androgens masculinize EOD waveform on a long-term timescale of days to 

months, melanocortins such as adrenocorticotropic hormone (ACTH) and α-melanocyte 

stimulating hormone (α-MSH) induce similar changes in the EOD waveform within 

minutes (Markham et al., 2009a).  Melanocortins and their receptors are highly conserved 

across vertebrates (Metz et al., 2006) and regulate a diverse array of physiological and 

behavioral processes including social communication, learning, glucocorticosteroid 

release, and aggressive and sexual behaviors (Brain and Evans, 1977; Ducrest et al., 

2008; Gonzalez et al., 1996; Wikberg et al., 2000).  In B. gauderio, injections of ACTH 

or α-MSH activate the cAMP/PKA pathway, which extends the 2nd phase of the EOD 
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(τp2) by extending action potential duration, and increases EOD amplitude by 

differentially modulating the timing of action potentials of the two excitable membranes 

of the electrocytes (Markham and Stoddard, 2005). These waveform changes are 

comparable to those observed during social interactions, suggesting a mechanism for 

social regulation of EOD (Franchina et al., 2001; Markham et al., 2009a; Markham and 

Stoddard, 2005; Stoddard et al., 2006).  Additionally, in B. gauderio, prolonged social 

isolation causes a decline in EOD amplitude and τp2 that can be partially reversed with 

melanocortins (Franchina et al., 2001; Franchina and Stoddard, 1998; Stoddard et al., 

2007).  

The interaction between androgens and melanocortins (and thus the interaction 

between long-term and rapid EOD modulators) has been less clear. Studies have 

suggested a bidirectional relationship between steroids and melanocortins, where α-MSH 

enhances the effects of gonadal steroids centrally and peripherally and steroids upregulate 

melanocortin receptors, increasing sexual and aggressive behavior in rodents (Ducrest et 

al., 2008; Wikberg et al., 2000).  In B. gauderio females, 5α-dihydrotestosterone (DHT) 

implants enhance τp2 response to injections of either serotonin or ACTH with little effect 

on EOD amplitude (Allee et al., 2009). Since both T and 11-KT are important for the 

development of secondary sexual characteristics and the accompanying sex-specific 

reproductive behaviors in teleost fish (Oliveira et al., 2005), it is possible that the EOD 

waveform is differentially regulated by the actions of aromatizable T and the non-

aromatizable 11-KT, as is the case in teleost species with alternative reproductive 

strategies (Bass, 2008; Lee and Bass, 2005; Perry and Grober, 2003; Remage-Healey and 

Bass, 2006) . Subsequently, the absence of amplitude modulation by non-aromatizable 
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DHT observed in a prior study (Allee et al., 2009) could be because amplitude is 

regulated by aromatizable T.  

In this study we test the hypothesis that circulating androgens regulate melanocortin 

actions on electric signal waveform.  To that end, we explored the interactions between 

α-MSH, T, and 11-KT in generating communication signal plasticity in B. gauderio. 

 

Methods 

Animals 

We randomly selected sexually mature male Brachyhypopomus gauderio (total 

length=17.9±1.9 cm, weight= 8.7±2.9g) from our outdoor breeding colony at Florida 

International University.  These captive-reared 15-17th generation fish were maintained 

in 450-liter outdoor pools, in mixed-sex groups of 5-10 individuals. The water surface 

was covered with water hyacinths, Eichhornia crassipes. Water conductivity was 

maintained at 70-100uS cm-1.  For data collection, fish were brought indoors and placed 

individually in 284-liter aquaria.  Aquaria were kept in a light- and temperature-

controlled room on a 12:12 L:D light cycle. Water temperature and conductivity were 

maintained at 27-28°C and 70-100uS cm-1, respectively.  Fish were fed oligochaete 

“blackworms” ad libitum every other day. The EOD data collection was continuous from 

the time each fish was placed into the recording tank until it was removed at the end of 

the experiment.  Experiments were conducted during the breeding season, May–Sep 2008 

& 2009. Experiments complied with the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals (DHEW Publication 80-23, revised 1985) and were 

approved by the FIU IACUC (protocol approval no. 08-023).  
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Data collection 

EODs were recorded in an automated, calibrated recording system described in 

detail elsewhere (Franchina et al., 2001; Stoddard et al., 2003).  Briefly, the recording 

system consists of 12 automated aquaria, 120 x 44 x 44 cm, in an environmentally 

controlled room.  Each aquarium is divided into thirds by plastic mesh screening with 

plastic mesh funnels.  The funnels direct fish through an unglazed ceramic tube that joins 

the outer two compartments.  To obtain repeatable measurements, EODs are amplified 

and digitized from nichrome wire electrodes at opposite ends of the tank only when the 

fish is in the ceramic tube, and thus centered in the tank. Electrodes on top of the ceramic 

tube register when the fish is geometrically centered in the tank, and trigger the computer 

to record EODs from electrodes on the tank ends.  

To quantify the effects of androgens and α-MSH on the waveform, we measured 

changes in the peak-to-peak amplitude and τp2, the time constant of an inverse 

exponential function fitted to the decay segment of the second EOD phase (Fig. 1).  

 
Experimental design 
 
Experiment 1: Effect of androgens on EOD waveform 
 

To verify that testosterone and 11-ketotestosterone modulate EOD waveform 

(amplitude and τP2) in B. gauderio, 18 sexually mature males were placed in EOD 

recording tanks and isolated for 10 days.  Social isolation causes a decline in EOD 

amplitude baseline and τp2, stabilizing by the end of the first week (Franchina et al., 

2001).  At the end of the isolation period, males were randomly divided into three 
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implant groups (n=6 per group), removed from their respective tanks and implanted with 

silicone implants containing either testosterone (T), 11-ketotestosterone (11-KT), or a 

blank (see implant protocol below).  Fish were returned to the recording tanks and their 

EODs were monitored for seven days for changes in response to the implant, and to 

determine the time when the androgen effects peak, for a subsequent experiment. We 

discarded data from one male in the T-implanted group because he exhibited an 

anomalously reversed circadian rhythm, so that group had only 5 males. 

 

Experiment 2: Effect of androgens on melanocortin responsiveness 

Males were randomly assigned to one of three implant groups (11-KT, T, or blank) 

with 6 individuals per group. All males were placed into individual EOD recording tanks 

and isolated for 6 days (Fig. 2).  During this time their EODs were recorded and 

monitored.  On days 7 and 8 of social isolation, before steroid treatment, each fish was 

injected with either 25 μM g-1 body weight α-MSH or saline control, in counterbalanced 

random order. This concentration of α-MSH was chosen based on previous studies 

showing that 25 μM g-1 fully enhances the EOD (Markham et al., 2009a; Markham and 

Stoddard, 2005). On the ninth day of recording, individuals were removed from their 

recording tanks, implanted with silicone implants (T, 11-KT, or blank), and quickly 

returned to their tanks to resume recording.  

 The effect of androgen implants on EOD amplitude was monitored daily.  When 

the EOD amplitude reached a maximum, determined by the lack of increase for 24 hours 

(usually 2-4 days after the implant), fish were re-injected with 25 μM α-MSH and saline, 

as explained above.  To verify that androgen implants elevated circulating androgen 
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levels, all fish were bled 4-5 days post-implant for hormone analyses at a later time (see 

Blood collection and analyses below). Fish were returned to recording tanks and 

monitored for another three days to ensure full recovery before returning to outdoor 

pools.  

 

Experiment 3: Effect of a social interaction on melanocortin responsiveness  

We used a social challenge treatment for comparison purposes to examine whether 

androgen implants fully mimic the effect of a social companion on waveform recovery 

from social isolation. Eight males were isolated for 6 days and implanted with blank 

implants on day 9, as in Experiment 2. The following day, a size-matched male was 

placed into the middle compartment of each recording tank to serve as a social stimulus.  

This placement allowed electrical interaction between the experimental and stimulus 

males but not physical contact.  A PVC hiding tube was placed in the middle 

compartment, oriented perpendicularly to the ceramic tube of the experimental male to 

reduce signal interference from the social stimulus. As in Experiment 2, males were 

injected with saline and α-MSH prior to implants (days 7 and 8) and then re-injected 2 

and 3 days after the beginning of the social challenge. 

 

Implants 

11-ketotestosterone (Sigma, K8250) and testosterone (Sigma, T6147) were each 

mixed with silicone (Dow Corning 3140 MIL-A-461 45 RTV coating) in a 1:4 ratio and 

shaped into thin lines. The mixtures were allowed to cure for about a week and the 

implant concentrations were recalculated to adjust for mass lost through evaporation. The 
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resulting implants release all of the steroids contents within 2-4 days, which is evident by 

the steady decline in EOD amplitude and τp2 5 days after implanting (unpublished 

observations).  Implants were custom cut for each fish based on its weight, for a final 

concentration of 0.05mg of 11-KT or T per 10 grams of fish.  This concentration was 

based on previous studies (Allee et al., 2009)  

To place the implants, we anesthetized the fish by immersion in a 0.075% solution 

of 2-phenoxyethanol (Sigma, P-1126FD) or 0.008% clove oil (80mg l-1 eugenol, Sigma, 

E51791).  We used an 18-gauge needle to cut a small hole through the skin into the fatty 

area on the trunk dorsal to the anal fin rays into which we inserted an implant.  The 

incision was closed with surgical glue and the fish was returned to the recording tank.  

EOD amplitude and duration were monitored for any changes. 

 

MSH injections 

We dissolved α-melanocyte stimulating hormone (α-MSH) (Sigma, M4135) in 

physiological saline: NaCl 114 mM l-1, KCl 2mmol 1-1, CaCl2.2H2O 4 mM 1-1, 

MgCl2.6H2O 2 mM l-1, HEPES 2 mM l-1, pH adjusted to 7.2 with NaOH (modified from 

Ferrari and Zakon, 1993), for a final concentration of 100 μM.  Aliquots were frozen 

until day of use and then diluted with saline to 25 μM prior to injection.  Physiological 

saline injections controlled for handling and injection.  Experimental and control 

solutions were injected at 1ul g-1 of fish intramuscularly using a Hamilton syringe fitted 

with a disposable 31.5 gauge needle.  All injections were administered between 11:00 

and 14:00.   
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Blood collection and analysis 

Males were removed from the recording tanks, anesthetized by immersion in 

0.075% 2-phenoxyethanol and bled from the subvertebral sinus.  Blood was collected 

into 1ml polypropylene tube containing 5 μl of 10% EDTA and centrifuged for 15 

minutes at 7000 rpm at -4° C.  Plasma samples were separated and transferred into a 

separate polypropylene tube and stored at -20oC until steroid extraction and analysis.  

Plasma samples were extracted according to a steroid extraction protocol validated for 

this species (Salazar and Stoddard, 2009).   Briefly, 250 μl plasma samples were 

extracted using a mixture of hexane:ethyl acetate  (90:10 for 11-KT and 70:30 for T) and 

resuspended in the phosphate buffer provided in the enzyme immunoassays (EIA) kits 

(Cayman Chemical, Inc.).  Concentrations were quantified in duplicate according to the 

specification of the T and 11-KT EIA kits.  

The detection limits of the EIA kits were 1.3 pg/ml for 11-KT and 6 pg/ml for T.  

To verify extraction recovery, 11-KT and T EIA kit standards were extracted using 5 ml 

of hexane:ethyl acetate alongside the plasma samples.  Extraction efficiency was assessed 

by comparing kit standards for each hormone with the standards that have been extracted 

using hexane:ethyl acetate.  All plasma samples were run in two 11-KT and T assays. For 

11-KT, the intra-assay coefficients of variation were 4.04% and 8.16%, while the inter-

assay coefficient of variation was 1.44%.  For T, the intra-assay coefficient of variation 

was 3.17% and 10.75% and the inter-assay coefficient of variation was 2.78%.  
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Data treatment and analyses 

 In B. gauderio, all treatment effects are superimposed on the individual’s 

circadian rhythm (Franchina and Stoddard, 1998). To isolate the effects of treatments 

(implants, social challenge, and injections) from circadian oscillations, we used a 

previously described MATLAB  (Mathworks, Natick, MA) data analysis program 

(Stoddard et al., 2003) to fit a smoothing spline function (MATLAB Spline Toolbox) to 

minute-by-minute EOD parameter data.  We used the resulting functions to extract 

treatment effects. To examine the effect of androgen implants and social challenge on the 

waveform amplitude and τp2, we measured the daytime minima and nighttime maxima 

before and after the treatment and then calculated a relative change in both parameters. 

To isolate the effects of α-MSH and saline injections from circadian oscillations, we fit 

the smoothing spline function to the data one more time, but this time omitting the effects 

of the injections, which are clearly visible in the data. We took the difference between the 

two fit lines (with and without injection effects) to represent the effects of injections on 

the waveform, independent of circadian oscillations. We assessed the effect of implants 

and social challenges on α-MSH response by calculating the difference in α-MSH 

injection effects before and after implant/social treatment.  

 

Statistical analyses 

We combined data from the first two experiments to examine the effect of 

androgen implants on EOD waveform. We used a two-way MANCOVA (GLM 

multivariate procedure in SPSS 14.0, Model III) with two fixed factors: (1) treatment [11-

KT, T, blank] and (2) Year [2008 (Expt. 1), 2009 (Expt. 2)].  To account for the possible 
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influence of body size on the response to steroid treatment and year, we used body weight 

and length as covariates. To examine the effects of androgen implants on α-MSH 

responsiveness (Expt. 2), we compared the differences in the magnitude of amplitude and 

τp2 response to α-MSH injection between the three implant groups using one-way 

MANCOVA (GLM multivariate procedure in SPSS 14.0, Model III) with implant [11-

KT, T, blank] as a fixed factor and body weight and length as covariates. Paired t-tests 

analyzed the effects of a social challenge on amplitude and τp2, as well as on α-MSH 

responsiveness (Expt. 3).  We log-transformed plasma steroid levels to meet the 

assumptions of normality and analyzed using one-way ANOVA.  Where MANCOVA 

differences were significant (p < 0.05), we used the protected LSD post hoc analysis to 

determine significant pairwise differences. Data are reported as mean ± SEM. All 

analyses were performed using MATLAB and SPSS (version 14.0), α= 0.05 two tailed. 

 

Results 

Androgen effects on blood levels 

Androgen implants elevated plasma levels only for the particular androgen 

implanted and did not alter levels of the other androgen (ANOVA T: F2, 11= 22.09, 

p<0.01; 11-KT F2, 11= 6.42, p=0.01) (Table 1).  For example, even though T is a precursor 

for biosynthesis of 11-KT, the T implants only elevated plasma T levels, without 

affecting plasma 11-KT, which did not differ between T and blank implanted males 

(p=0.78).  
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Effect of androgens on EOD waveform 

Androgen implants increased τp2 both in the day (Fig. 3A and B) and at night 

(Fig. 3C and D) relative to blank implanted males (LSD post-hoc: T day p<0.01; T night 

p<0.01; 11-KT day p<0.01; 11-KT night p<0.01). 11-KT had a larger effect than T on τp2 

at night (Fig. 3C), but not during the day (Fig. 3A; post-hoc LSD; day p=0.31; night 

p<0.01).  However, only 11-KT elevated EOD amplitude at night (Fig. 3D; post-hoc 

LSD: T p=0.23; 11-KT p=0.02), while neither androgen changed daytime amplitude (Fig. 

3B; post-hoc LSD: T p=0.51; 11-KT p=0.97). Body length, but not weight, significantly 

predicted daytime τp2, but not amplitude (univariate between-subject tests; daytime τp2 

p=0.02, amplitude p=0.70).  

Baseline EOD amplitude differed between the two years of the study (GLM 

multivariate tests: F4, 24=4.99 p<0.01).  Pre-implant day and night EOD amplitudes of the 

fish sampled in 2009 were significantly higher than those in 2008 (univariate between-

subjects tests: day amplitude p=0.02; night amplitude p=0.03). Pre-implant day and night 

τp2, however, did not differ between years (univariate between-subjects tests: day τp2: 

p=0.85; night τp2: p=0.90). The interaction between implants and year was not significant 

for any of the EOD parameters tested (GLM multivariate tests: F8, 50 =1.86, p=0.09). 

Neither body weight nor body length differed between the two years (GLM multivariate 

tests: weight F4, 24=0.52, p=0.72; length F4, 24=1.15, p=0.36).  

 

Effect of social stimuli on EOD waveform 

Addition of a conspecific male to the tank significantly increased EOD amplitude 

of the focal male both by day and night (Fig. 4b) (paired t-test: day t: p=0.01; night 
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p=0.01). However, social stimulation only increased τp2 during the night  (Fig. 4a; paired 

t-test: day t=0.09, p=0.93; night t=-8.73, p<0.01).  

 

Androgen effects on α-MSH challenge 

As reported previously (Stoddard et al., 2006), α-MSH enhanced both τp2 (Fig.5b; 

t=3.23, df=25, p<0.01) and amplitude (Fig. 5c; t=8.87, df=25, p<0.01). Overall, 11-KT 

imparted the most pronounced increase in EOD waveform responsiveness to α-MSH, 

while T only enhanced responsiveness of τp2 (Fig. 6). Neither body length nor weight 

predicted the magnitude of α-MSH injection response to implant treatments (GLM 

multivariate tests: weight F2, 12=0.41, p=0.67; length F2, 12=0.16, p=0.86). Implant type 

had a significant effect on EOD response to α-MSH (GLM multivariate tests, F4, 26=4.05, 

p=0.01) While both androgen implants increased τp2 response to α-MSH (Fig. 6a; post-

hoc LSD; 11-KT p<0.01; and T p=0.03), only 11-KT increased amplitude responsiveness 

to α-MSH (Fig. 6b; post-hoc LSD: 11-KT p=0.02; T p=0.78). Social interactions had no 

effect on response to α-MSH for either EOD parameter (Fig. 7; amplitude t=-0.19, df=7, 

p=0.86; τp2 t=-1.21, df=7, p=0.27).  

The combined 11-KT and α-MSH treatments enhanced the waveform 

multiplicatively, inducing a significantly larger increase than expected from the 

summation of the individual androgen and peptide treatments (paired t-test; τp2 t= -5.56, 

df=5, p<0.01; amplitude t=2.42, df=5, p=0.06). Combined T and α-MSH effects did not 

deviate significantly from the summation of individual hormone treatments (paired t-test; 

τp2 t=-0.80, df=5, p=0.46; amplitude t=1.84, df=5, p=0.13). 
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Discussion 

Of the two dominant teleost androgens, only 11-KT increased EOD amplitude and 

increased the response of amplitude to α-MSH (Fig. 6, Table 2). It is important to note 

that both androgen implants elevated circulating T and 11-KT levels above normal 

physiological levels, compared to the baseline levels of Blank implanted males (Table 1) 

and the levels reported by Salazar and Stoddard (2009). However, despite the 

supraphysiological levels, T failed to elevate EOD amplitude or increase amplitude 

responsiveness to α-MSH  (Fig.6, Table 2), suggesting that the effects we observed are 

11-KT specific. To our knowledge, this is the first study to show that EOD amplitude can 

be modulated by a non-aromatizable androgen, but not its precursor testosterone.  In a 

previous study conducted on female B. gauderio, none of the DHT implant doses (0.03-

1mg 10g-1 of fish) significantly elevated EOD amplitude or enhanced the effects of 

melanocortins on amplitude (Allee et al., 2009).  However, all androgen implants, DHT 

(Allee et al., 2009), T, and 11-KT enhanced baseline τp2 (Fig. 3A, C) and the 

responsiveness of τp2 to injected melanocortins (Fig 6a).  

In other gymnotiforms, androgens differentially affect the EOD signal. While 11-

KT masculinizes the EOD frequency and duration in all species tested to date (Dunlap et 

al., 1998; Dunlap and Zakon, 1998), the effects of T and DHT seem to be species-specific 

(Dunlap et al., 1998; Zakon et al., 1990). DHT lowers EOD frequency of Apteronotus 

albifrons, but has no effect on frequency of A. leptorhynchus.  Conversely, T has no 

effect on EOD frequency of A. albifrons, while feminizing (lowering) the frequency of A. 

leptorhynchus and masculizinig (lowering) it in Sternopygus macrurus (Dunlap et al., 



 
 

75

1998; Meyer, 1983; Zakon, 1999).  In B. gauderio and B. occidentalis T and DHT 

implants masculinize female EODs by increasing duration of the EOD’s second phase 

(Hagedorn and Carr, 1985; Silva et al., 1999). While the differential sensitivity to T has 

been attributed to disparate aromatase activities in the brain (Zakon, 1999), the 

differential effect of DHT and 11-KT on EOD suggests that different androgens activate 

different pathways regulating waveform shape.  

Androgen administration reproduced the enhancing effect of social interaction on 

the EOD τp2. However, the EOD amplitude elevation induced by 11-KT is not 

comparable to the large increase elicited by social stimulation (Fig. 3, Table 2), 

suggesting that another unidentified hormone is also involved in regulating EOD 

amplitude. Social stimulation did not affect EOD responsiveness to α-MSH treatment 

(Fig. 7), possibly because endogenous melanocortins saturated melanocortin receptors 

during social interactions.    

Differential effects of 11-KT and T on behavior have been reported mainly in 

species with alternative reproductive tactics (Grober and Bass, 2002; Hirschenhauser et 

al., 2004; Lee and Bass, 2005; Oliveira et al., 2005).  In these species, 11-KT levels are 

highly correlated with aggressive and territorial behaviors of the “bourgeois” phenotypes, 

while T maintains the female and socially parasitic (sneaker and satellite) male 

phenotypes. For example, in the batrachoid fishes, T regulates only the vocalizations of 

females and type II sneaker males, while 11-KT regulates the vocalizations of type I, 

territorial, paternal males; vocal activity of type I males are insensitive to T (Bass, 2008). 

Interestingly, while some female gymnotiforms such as B. gauderio and members of the 

genus Apteronotus have higher plasma concentrations of T than males (Dunlap et al., 
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1998; Salazar and Stoddard, 2009), these patterns have not been associated with any 

female-specific behaviors.    

Among teleosts with fixed reproductive strategies the specific role of each 

androgen has been hard to elucidate. Androgen responses to aggressive interactions, 

territorial intrusions and females seem to reflect species-specific reproductive and 

parental strategies (Hirschenhauser et al., 2004). In general, 11-KT levels in all species 

are highly responsive to territorial intrusions, while T levels, do not vary significantly in 

response to social challenges in various species of cichlids (Hirschenhauser et al., 2004; 

Parikh et al., 2006). In the three-spined stickleback, Gasterosteus aculeatus, 11-KT levels 

are greatest during the beginning stages of the courtship phase (Pall and Borg, 2002) and 

11-KT is needed for the production of spiggin, a proteinacious glue for nest building 

(Olsson et al., 2005). Our findings demonstrate that EOD amplitude, which is also 

associated with competition intensity (Franchina et al., 2001; Salazar and Stoddard, 

2009), is modulated preferentially by 11-KT and is less sensitive to T manipulations, in 

B. gauderio, another species with fixed reproductive strategies.  

 

Behavioral significance of signal modulation 

Previous studies in our lab have found that EOD amplitude response to social 

challenge is specific to the sex of the challenger. Male challengers induce a rapid (10-20 

min) amplitude increase, as well as a long-term amplitude increase, peaking within 24 

hours. Female challengers, on the other hand, only elicit a long-term amplitude increase 

on the scale of days but no rapid increase on the scale of minutes comparable to that 

elicited by males (Franchina et al., 2001). As in our study (Fig. 4), Franchina et al.(2001) 
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found that compared to EOD amplitude, duration was much more responsive to social 

challenge on both time scales and in response to either sex. In B. gauderio, increased 

male-male competition causes an increase in amplitude and τp2 (Salazar and Stoddard, 

2009).  EOD amplitude and the variances of circulating 11-KT levels track competition 

intensity, increasing as the male density in a pool is increased. On the other hand, τp2 and 

T levels seem to track the presence or absence of competition (Salazar and Stoddard, 

2009). In all of the studies on B. gauderio, τp2 is always more responsive than amplitude 

to any stimulus (Allee et al., 2009; Franchina et al., 2001; Markham and Stoddard, 2005; 

Salazar and Stoddard, 2009). 

The differential time course in response to different types of social stimuli might 

reflect the reproductive behaviors of B. gauderio, which breed seasonally in temperate 

areas (Quintana et al., 2004; Silva et al., 2002) in an exploded lek polygyny breeding 

system (Miranda et al., 2008). The transition from non-breeding to breeding season is 

likely preceded by increasing androgen levels, which stimulate the development of 

secondary sexual characteristics (Adkins-Regan, 2005), and expression of androgen 

receptors in the pacemaker nucleus (Pouso et al., 2010). Increased androgen levels 

masculinize EOD waveform (Hagedorn and Carr, 1985; Pouso et al., 2010; Silva et al., 

2002) and likely increase melanocortin sensitivity (see below).  As males compete for 

and establish territories during the breeding season, rapid EOD enhancement can signal 

quality and competitive ability to nearby competitors and potential mates. These short-

term responses are driven by melanocortins (Markham et al., 2009a; Markham and 

Stoddard, 2005). 
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Proposed mechanism for androgen regulation of melanocortin-driven EOD 

signaling 

Androgens might increase melanocortin sensitivity through different mechanisms.  

In the distantly related gymnotiform Sternopygus macrurus, the sexually dimorphic EOD 

waveform duration is regulated by the kinetics of Na+ and K+ currents in the electrocytes 

(Ferrari et al., 1995; Few and Zakon, 2001; 2007; Schaefer and Zakon, 1996). The 

kinetics of voltage-gated ion channels in S. macrurus electrocytes are regulated by steroid 

hormones, and accordingly, electrocytes express androgen receptors (Dunlap and Zakon, 

1998; Few and Zakon, 2001; 2007; Liu et al., 2008).  In addition, circadian rhythmicity 

and short-term EOD amplitude modulations of B. gauderio and S. macrurus are regulated 

by melanocortins through the activation of the cAMP/PKA pathway (Markham and 

Stoddard, 2005; McAnelly et al., 2003; Stoddard et al., 2006). Recent findings show that 

the melanocortin ACTH activates the cAMP/PKA pathway, promoting exocytosis of 

preformed voltage-gated Na+ and inward rectifying K+ channels from vesicles into the 

electrocyte membrane, thus increasing electrocyte sodium flux during the action 

potential, causing EOD amplitude to increase (Markham et al., 2009b).   

Androgens might enhance melanocortin sensitivity of electrocytes by either 

affecting the expression of melanocortin receptors or the density and kinetics of voltage-

gated ion channels. Data from other vertebrates have shown that androgens can stimulate 

melanocortin receptor expression (Ducrest et al., 2008; Wikberg et al., 2000). The 

expression of the recently described, Na+ channel (Nav1.4bL) splice variant in the electric 

organ of S. macrurus is positively correlated with EOD frequency and is lowered by 

androgen treatment. An alternate splice variant, Nav1.4a is constitutively expressed in the 
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electric organ and muscle.  Possibly, androgens selectively alter Na+ channel splicing in 

favor of decreased Nav1.4bL levels, thereby reducing the rate of Na+ current inactivation 

and masculinizing the waveform (Liu et al., 2008). A similar mechanism might operate 

for the sexually dimorphic expression of the potassium channels Kv1.1a and Kv1.2a 

(Few and Zakon, 2007).  Thus, androgens might increase EOD sensitivity to 

melanocortins either by increasing melanocortin receptor synthesis or by selectively 

changing the ratio of Na+ channel splice variants synthesized. Melanocortins, in turn, 

could activate the cAMP/PKA pathway shuttling the newly formed channels into the 

electrocyte membrane to produce EOD waveform enhancement or could alter kinetics by 

directly phosphorylating existing membrane channels.  

In our study only 11-KT enhanced EOD amplitude in response to α-MSH 

injections, while both androgens increased EOD τp2 response to MSH (Fig. 6, Table 2). 

11-KT implants significantly elevated circulating 11-KT levels (Table 1) and increased 

nighttime amplitude (Fig. 2; p = 0.012).  Since the types of androgen receptors found in 

some teleosts (AR1 and AR2) have the highest affinities for T and DHT (Larsson et al., 

2002; Sperry and Thomas, 1999), differential androgen receptor expression on the 

electrocyte surface cannot account for the 11-KT specific, multiplicative enhancement of 

amplitude and τp2. Since AR2 affinity for T is still higher than for 11-KT, it is not likely 

that α-MSH amplitude response is specific to a particular receptor. However, since 

androgen receptor affinities have not been examined in gymnotiforms, it is possible that 

unlike the AR1 and AR2 found in Atlantic croaker (Sperry and Thomas, 1999), androgen 

receptors in gymnotiforms have higher affinity for 11-KT than T.  The recent finding that 

one of the androgen receptors has been lost in the Otophysi lineage (Douard et al., 2008) 
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suggests that the remaining receptor might mediate the actions of T and 11-KT 

differently than in species with two functional receptors. Preliminary findings in our lab 

suggest that the electrocytes of B. gauderio express only one type of AR receptor 

(Villinger and Stoddard, unpublished observations). Thus, the AR receptor in B. gauderio 

might be preferentially activated by 11-KT, independent of binding affinity, as has been 

reported in three-spined stickleback (Olsson et al., 2005). Preferential sensitivity to 11-

KT could also explain the differential magnitude of the combined androgen-melanocortin 

treatments, with 11-KT upregulating expression of melanocortin receptors or ion channel 

densities in active membranes of the electrocyte more effectively than T.  

The finding that 11-KT but not T enhances EOD amplitude and the melanocortin 

action on amplitude suggest that EOD amplitude is regulated by a different mechanism or 

pathway than EOD duration, allowing different information to be communicated by the 

two signal parameters.  

 

Conclusions 

Both sexually dimorphic EOD parameters are regulated by short-term and long-

term modulators. 11-KT modulates EOD amplitude in the long-term while melanocortins 

modulate it in the short-term. Likewise, T and 11-KT modulate τp2 in the long-term while 

melanocortins modulate it in the short-term. Changing social environment, competition 

for mates, and aggressive interactions all can stimulate a behavioral and motivational 

response within minutes, which would be reflected on the EOD via melanocortins. 

Continuous stimulation or seasonal changes would enhance the EOD via long-term action 

of androgens. We suspect that increased androgen levels during the breeding season 
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stimulate ion channel synthesis in the electrocytes, in anticipation of increased social 

interactions. The synergistic and differential effects of steroid and peptide hormones on 

modulation of EOD parameters allows changes in the signal to track long-term and short-

term physiological responses. Because fish can increase T without increasing 11-KT, the 

differential sensitivity of EOD amplitude and 2nd phase duration to the two androgens 

(only 11-KT modulates EOD amplitude, while both androgens modulate signal duration) 

provides a potential mechanism for independent regulation of these two sexually 

dimorphic signal traits.  
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Table 1. Androgen implants significantly elevated plasma T and 11-KT levels compared 

to blank implanted males (T implant: p<0.001; 11-KT implant: p=0.01).  

 

Plasma androgen levels (mean ± SEM)  Implant 
Type T (ng/ml) 11-KT (ng/ml) 
Blank 1.23±0.09 (n=4) 2.44±2.27  (n=4) 

T 16.58±3.79 (n=5) 1.66±0.98  (n=5) 
11-KT 2.19±0.91 (n=4) 11.0±2.63  (n=4) 
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Table 2. Androgen implants and social challenge significantly enhanced EOD τp2 and the 

effects of α-MSH on τp2. 

 

Treatment EOD 
amplitude 

 

EOD      
 τp2 

α-MSH   
T -  

11-KT   
Social challenge   

T  α-MSH ≈ α-MSH > α-MSH 
11-KT  α-MSH > α-MSH >> α-MSH 
Social  α-MSH ≈ α-MSH ≈ α-MSH 

 

However, only 11-KT elevated EOD amplitude and increased the effects of α-MSH on 

amplitude. Upward arrows indicate elevation and the horizontal bar (-) indicates no 

significant change. Arrow number reflects the magnitude of the change. Effects of steroid 

implants and social challenge on α-MSH response are compared directly to α-MSH 

effects alone. 
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Figure 1. (A) The EOD waveform of B. gauderio varies in peak-to-peak amplitude and in 

duration of the second phase (parameterized as τp2), (B) We recorded EODs around the 

clock for the duration of the experiment. We selected for analysis the amplitude and τp2 

when the EOD reached a daytime minimum and nighttime maximum.  
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Figure 2. Design of experiment 2. See methods section for details. 
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Figure 3. Effect of androgen implants on daytime (A, B) and nighttime (C, D) EOD. (A) 

11-KT and T implants increased τp2 during the day (11-KT p<0.01; T p<0.01), but neither 

androgen implant increased daytime amplitude (B. 11-KT p=0.09; T p=0.51). (C) 11-KT 

caused higher elevation of τp2 than T did (p<0.01 for 11-KT; p<0.01 for T), but only 11-

KT elevated EOD amplitude (D. 11-KT p=0.02; T p=0.23). Relative change in τp2 and 

amplitude following social stimulation are shown separately because the data were 

collected the following year. Circles and crosses represent individual data points 

represented as relative change.  Horizontal and vertical bars depict mean and SEM, 

respectively. Open and shaded circles represent the two years, 2008 and 2009, 

respectively, over which these experiments were conducted. For comparison, EOD 

response to social challenges is presented as plusses next to the implant data. Different 
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letters represent significant differences between treatments (p<0.05), based on LSD 

pairwise comparisons. 
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Figure 4. Effect of social challenge on the EOD waveform. Social challenge significantly 

increased daytime amplitude (B. paired t-test, t= -3.47, p=0.01), but not τp2 (A. paired t-

test, t=0.09, p=0.93).  However, at night, τp2 was significantly higher after the social 

challenge (A. paired t-test, t=-8.73, p<0.01) as was amplitude (B. paired t-test, t=-3.39, 

p=0.01). “Before” refers to the amplitude and τp2 measured before a social challenger was 

placed in the tank. “After” indicates the peak of the EOD waveform caused by the 

presence of the social stimulus. Triangles = data points, horizontal bars = means, and 

vertical bars = SEM. 
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Figure 5.  Effect of α-MSH on EOD waveform. (A) α-MSH injections increase the 

amplitude and τp2 in the biphasic EOD of B. gauderio.  Compared to saline, α-MSH 

injections increase τp2 (B. paired t-test, t=3.23, df=25, p<0.01) and amplitude (C. paired 

t-test, t=8.87, df=25, p<0.01). Different letters represent significant differences between 

treatments (p<0.05). Pluses, horizontal bars and vertical bars represent individual data 

points, mean, and SEM, respectively. 
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Figure 6.  Androgen effect on EOD responsiveness to α-MSH injections. (A) 11-KT and 

T implants increased the τp2 of the MSH response relative to blank implants (p<0.01 for 

11-KT, p=0.03 for T). Only 11-KT increased amplitude responsiveness to α-MSH 

injections (B. 11-KT p=0.02; T p=0.78). Social challenge had no effect the magnitude of 

α-MSH response in τP2 (paired t-test, t=-1.21, p=0.86) or amplitude (paired t-test, t=-

0.19, p=0.27). Pluses, horizontal bars, and vertical bars represent individual data points, 

mean, and SEM, respectively. Different letters represent significant differences between 

treatments (p<0.05), based on LSD pairwise comparisons.  
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Figure 7. Effect of social challenge on melanocortin responsiveness. Social challenge had 

no effect the magnitude of α-MSH response in τp2 (A, paired t-test, t=-1.21, p=0.85) or 

amplitude (B. paired t-test, t=-0.19, p=0.26). Horizontal bars and vertical bars represent 

mean, and SEM, respectively. 
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CHAPTER IV 

 

HORMONALLY REGULATED SIGNAL PLASTICITY TRACKS SOCIALITY 

ACROSS GYMNOTIFORM FISH 
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Abstract 

While sociality can promote the evolution of complex communication signals, the need to 

remain recognizable by conspecifics might constrain signal plasticity. I propose that 

signal plasticity is related to sociality levels in the gymnotiform electric fishes.  Taxa that 

maintain very loose social networks should produce plastic signals that reflect their 

immediate condition and reproductive state, while highly territorial and aggressive taxa 

should produce stable signals that preserve the encoding of individual identity. In 

gymnotiforms, electric signal plasticity is mediated by slow action of androgens and 

rapid action of melanocortins. I tested the hypothesis that differential sensitivity of 

electric signals to the known signal modulating hormones, androgens and melanocortins, 

maintain stable signature signals in species where individual recognition is important, 

while promoting dynamic signaling in species with loose social networks. I tested four 

species each from a different gymnotiform family; two territorial, highly aggressive 

species, Gymnotus carapo and Apteronotus leptorhynchus, one highly gregarious species, 

Eigenmannia cf. virescens, and one intermediate short-lived species with a fluid social 

system, Brachyhypopomus gauderio. Fish were implanted with (i) testosterone, (ii) 11-

ketotestosterone or (iii) blank silicone implants and twice injected with the melanocortin 

peptide hormone α-MSH, before the implant and at the peak of the implant effect. The 

waveforms of the two most territorial and aggressive species were insensitive to hormone 

treatments, maintaining static and stereotyped waveform shapes and amplitudes, while 

waveforms of the two less aggressive species were highly modulated by hormone 

treatment. Intermediate plasticity, was observed in G. carapo and E. virescens. These 
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data are consistent with my hypothesis that social strategies could facilitate or inhibit 

dynamic signaling through differential responsiveness to hormones.  

Keywords: 11-ketotestosterone (11-KT); alpha-melanocyte stimulating hormone (α-

MSH); androgen; communication signal; electric fish, electric organ discharge (EOD; 

gymnotiform; plasticity; Testosterone (T), sociality. 

 

Introduction 
 

Animals living in social groups must balance the trade-off between maintaining 

stable communication signals that accurately portray their individual identity, versus the 

benefits of adjusting these signals to reflect changes in reproductive competitive states. 

Birds, amphibians, and some mammals typically resolve this conflict by producing 

separate signals or signal traits that are relegated to each function (Berg et al., 2011; 

Falls, 1982; Gerhardt, 1991; Mammen and Nowicki, 1981; May-Collado et al., 2007; 

Stoddard, 1996; Templeton et al., 2005), but the conflict may persist within a class of 

signals or in animals with limited signal repertoires. Through dynamic signal regulation 

an individual can increase signal extravagance when beneficial (e.g., males in the 

presence of breeding females or rival males), and decrease extravagance when costs are 

high (e.g., when predators or other hostile eavesdroppers are present) or benefits are low 

(e.g., intended receivers such as mates or rivals are absent). However, animals living in 

stable social groups must be able to maintain a signature signal that is stereotyped enough 

to be identified by conspecifics and is an accurate representation of the individual’s status 

or identity at all times (Bond et al., 2003; Falls, 1982).   
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Certain social systems may foster stereotypy of an entire signal or of selected signal 

traits to aid individual recognition. For example, delphinid species with increasing 

sociality levels produce signals with greater tonal frequency and complexity relative to 

solitary species (May-Collado et al., 2007). Emperor penguins live in large colonies, and 

carry their chicks on their feet. When one adult in the mated pair returns from foraging it 

must be able to find its mate and offspring. Adults and chicks use only the first three 

harmonics of the adult signal to recognize their parents’ and mate’s call (Jouventin et al., 

1999).  In the black-capped chickadee call the  “chicka” part is stable to the individual, 

while the “dee” is dynamic, assuming the flock identity signal (Mammen and Nowicki, 

1981).  In the African electric fish Pollimyrus adspersus and Pollimyrus isidori, 

communication signals are highly stable, sexually dimorphic, and exhibit greater 

variability between than within individuals, making them ideal for individual recognition. 

Males of both of these species are highly territorial, they build and guard nests and 

produce stereotypical courting signals (Crawford, 1992; Paintner and Kramer, 2003). 

Interestingly, in P. isidori only the amplitude of the first phase of the signal varies 

significantly between the sexes, while differences in signal duration and amplitude of the 

first phase distinguish between individuals, suggesting that recognition does not require 

stereotypy of the entire signal (Crawford, 1992). Another African electric species, 

Brienomyrus brachyistius establishes hiding places and breeding territories; all 

characteristics of animals with signature signals and their electric signals are stereotypic 

enough to allow consistent tracking and differentiation between females/juveniles and 

males (Friedman and Hopkins, 1996),  



 
 

103

In this study I ask, how is the trade-off between dynamic and stable signaling 

mediated by the endocrine mechanisms that control signal production and modulation in 

the weakly electric gymnotiform fish with different sociality levels.  Members of the 

South American order Gymnotiformes comprise five families of weakly electric species 

with over 250 species (Albert and Crampton, 2005).  They occupy diverse fresh water 

habitats varying in depth, temperature, conductivity, dissolved oxygen, flood period, and 

vegetation (Albert and Crampton, 2005). Gymnotiforms produce weak electric organ 

discharges (EODs) for electrolocation and communication. EODs have characteristic 

time x voltage waveforms that are often distinctive to species, sex, maturity, and social 

status. Electric signaling plays a key role in aggression, territoriality, and mate 

assessment (Hagedorn and Zelick, 1989; Hopkins, 1988). EODs of some species exhibit 

circadian rhythms during the breeding season (Dunlap et al., 2011; Pouso et al., 2010; 

Silva et al., 2002), increasing sexually selected signal parameters as night approaches, to 

enhance the signal at the onset of activity (Franchina and Stoddard, 1998; Goldina et al., 

2006; Moller, 1995; Stoddard et al., 2007). EODs also change in a species-specific 

manner in the context of competition, aggression and mating (Black-Cleworth, 1970; 

Dunlap and Larkins-Ford, 2003b; Franchina et al., 2001; Hagedorn and Heiligenberg, 

1985; Salazar and Stoddard, 2009).   

The neural circuitry and endocrine pathways that regulate EOD production and 

modulation have been well described, making electric fish great models for 

understanding the interplay between proximate and ultimate factors driving the evolution 

of diverse communication strategies. The EOD is produced by the summation of action 

potentials generated by electrocytes, electrically excitable cells of the electric organ 
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(Szabo, 1974) and can vary in frequency and waveform.  Frequency is determined by the 

firing rate of the oscillatory neurons in the medullary pacemaker nucleus, which 

innervate the electromotoneurons in the spinal cord. Electromotoneurons synapse on 

electrocytes, giant cells derived from muscle cells.  In one family, Apteronotidae, 

modified electromotoneurons serve as electrocytes.  Phases of EOD waveforms can vary 

in number, polarity, amplitude, and duration. Waveform is modulated by the ion channel 

properties of the electrocytes (Zakon et al., 1999), the innervation patterns and the 

presence of excitable faces of the individual electrocytes, as well as presence and location 

of accessory electric organs (Caputi et al., 2005; Kirschbaum and Schwassmann, 2008).  

The EOD is regulated centrally and peripherally by steroid hormones. Androgens 

masculinize the waveform by increasing the firing rate of the pacemaker nucleus and 

broadening action potentials of individual electrocytes in the periphery (Few and Zakon, 

2001). Elevated levels of 11-ketotestosterone (11-KT) in Apteronotids are positively 

correlated with increased rat of chirps, modulations used in the contexts of aggression 

and courtship. Androgen implants stimulate chirp production in Apteronotus 

leptorhynchus (Dunlap, 2002a, b; Dunlap and Larkins-Ford, 2003a) and increase 

amplitude and second phase duration of Brachyhypopomus gauderio (Allee et al., 2009; 

Goldina et al., 2011; Silva et al., 2002). While androgens affect EOD waveform on a 

timescale of days to months, melanocortin peptide hormones, such as adrenocorticotropic 

hormone (ACTH) and α-melanocyte stimulating hormones (α-MSH), induce rapid 

changes in the EOD within minutes of injection or direct application to electrocytes 

(Stoddard et al., 2006). Melanocortin peptides are involved in learning, grooming, 

aggression, sexual behaviors, and social signaling (Brain and Evans, 1977; Gonzalez et 



 
 

105

al., 1996; Wikberg et al., 2000).  In gymnotiform electric fish, melanocortin application 

induces EOD modulations that resemble signal changes observed during social 

interactions (Markham and Stoddard, 2005; Stoddard et al., 2006). Furthermore, in B. 

gauderio, androgens and melanocortins interact in the regulation of EOD pulse amplitude 

and duration, making the EOD a highly dynamic communication signal (Goldina et al., 

2011).  

I offer the hypothesis that insensitivity of signal-generation structures to androgens 

and melanocortins enables highly aggressive and or territorial species to maintain a stable 

signature signal, while sensitivity to these hormones enables gregarious species with 

loose social networks to produce dynamic communication signals that adjust to changing 

social environments.  To evaluate this hypothesis, I chose four gymnotiform species from 

different families, selecting species that exhibit different sociality levels (Table 1, Fig. 1).  

Gymnotus carapo (family Gymnotidae) is sexually monomorphic in EOD waveform and 

morphology (Albert and Crampton, 2005), highly aggressive and territorial (Black-

Cleworth, 1970; Westby, 1988). Gymnotus species are typically solitary. Their EODs are 

believed to serve as individual-specific signature signals in the context of territorial 

aggression (McGregor and Westby, 1992). In addition, G. carapo is one of only three 

gymnotiform genera with paternal behavior and the only genus reported where males 

mouthbrood the eggs and guard juveniles (Crampton and Hopkins, 2005; Kirschbaum 

and Schugardt, 2002). Like G. carapo, Apteronotus leptorhynchus (family 

Apternonotidae) is highly aggressive and territorial.  In captivity, fish fight until death to 

maintain sole control of a shelter (Hagedorn and Heiligenberg, 1985; Hupe and Lewis, 

2008).  Apteronotus leptorhynchus establishes dominance hierarchies based on EOD 
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frequency and size, but does not exhibit parental behavior (Hagedorn and Heiligenberg, 

1985; Kirschbaum and Schugardt, 2002). Eigenmannia cf. virescens (family 

Sternopygidae) is a gregarious species (Hagedorn and Heiligenberg, 1985). Fish 

aggregate into shoals during the light hours and disperse at nighttime. If threatened by a 

predator, individuals aggregate into a more compact group (Oestreich and Zakon, 2005). 

Eigenmannia cf. virescens also lack parental behavior (Kirschbaum and Schugardt, 

2002). Finally, Brachyhypopomus gauderio (family Hypopomidae) is a short-lived 

polygynous species that aggregates into mixed-sex social networks (Dunlap et al., 2011; 

Miranda et al., 2008). Brachyhypopomus. gauderio generates dynamic waveforms which 

increase at night, in response to social interaction, and in response to α-MSH injections 

(Franchina et al., 2001; Franchina and Stoddard, 1998; Stoddard et al., 2007).  

In this study I examine the relationship between hormone responsiveness and 

sociality structures of the four gymnotiform species described above. Specifically, I 

compare EOD waveform plasticity and responsivity to the androgens testosterone and 11-

ketotestosterone (T and 11-KT) and the peptide hormone α-MSH. I predict that 

gregarious species with loose social networks such as B. gauderio and E. cf. virescens, 

generate temporally plastic signals through enhanced sensitivity to androgens and 

melanocortins. In aggressive and territorial species such as G. carapo and A. 

leptorhynchus, where the costs of dynamic signaling outweigh the benefits (i.e., inability 

to be identified by neighboring conspecifics can incur attacks and injury (McGregor, 

1993; McGregor and Westby, 1992), a temporally static signal will be maintained 

through insensitivity of the electric organ to short-term hormonal fluctuations. 
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Methods 

Subjects 

I used individuals from four Gymnotiform species, Gymnotus carapo, Apteronotus 

leptorhynchus, Eigenmannia cf. virescens, and Brachyhypopomus gauderio. Gymnotus 

carapo (N=14, total length 25.60 ± 2.60cm, weight 57.28 ± 12.71g), Apteronotus 

leptorhynchus (N=17, total length=18.03 ± 7.35cm, weight 17.94 ± 7.33g), and 

Eigenmannia cf. virescens (N=27, total length 17.65 ± 5.85cm, weight 11.26 ± 13.08g) 

were purchased from Ruineman’s Aquariums (Miami, FL) kept in an indoor facility in 

individual or group tanks. The tanks were kept in a light- and temperature-controlled 

room on a 12L:12D light cycle, with water temperatures 27-28°C and conductivity 120-

150μS cm-1.  Captive bred Brachyhypopomus gauderio (N= 35, total length=17.9±1.9 

cm, weight= 8.7±2.9g) were maintained 450 liter pools in our outdoor breeding colony at 

Florida International University.  Fish were kept in mixed-sex groups of 5-10 individuals. 

The pools were covered with water hyacinths, Eichhornia crassipes. Water conductivity 

was maintained at 70-100uS cm-1. Data presented for B. gauderio were presented in more 

detail by Goldina et al. (2011); I present these data here in condensed form for 

comparison with the other three species. 

All fish were fed oligochaete “blackworms” ad libitum every two days. For data 

collection fish were brought indoors and placed individually in 284 liter aquaria. 

Experiments complied with the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals (DHEW Publication 80-23, revised 1985) and were approved by 

the FIU IACUC (protocol approval no. 08-023).  
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Data collection 

EODs were recorded in an automated, calibrated recording system previously described 

in detail (Stoddard et al., 2003).  Briefly, fish were placed into aquaria, 120 x 44 x 44 cm, 

in a temperature- and light-controlled room (12L:12D). Water conductivity was 

maintained at 100-120uS cm-1. Each tank was divided into thirds by plastic mesh 

screening, with plastic funnels directing fish through an unglazed ceramic tube that 

joined the outer two compartments. EODs were amplified and digitized from nichrome 

wire electrodes affixed to opposite ends of the tank. To obtain repeatable measurements, 

EODs were recorded only when the fish was geometrically centered in the tank. Position 

was determined by a circuit that monitored the intensity of electric signals recorded from 

electrodes on the surface of the resting tube. The system automatically recorded EODs 

when the fish passed through the ceramic tube, the geometric center of the tank. Nine 

EODs were recorded every minute around the clock. The recorded signals were amplified 

500X and low-pass filtered at 10 kHz.  

 

Experimental design 
 
A week of social isolation in B. gauderio lowers circulating androgens (Salazar and 

Stoddard, 2009) which causes the male’s EOD to diminish considerably in its sexually 

dimorphic properties (Franchina et al., 2001).  In this experiment, individuals of each 

species (sample sizes explained below) were placed into individual EOD recording tanks 

for an initial isolation period of six days during which their EODs were recorded and 

monitored.  On days 7 and 8 of social isolation, before steroid treatment, each fish was 

injected with either 25μM g-1 body weight α-MSH or saline control, in counterbalanced 
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random order. This dose of α-MSH was chosen based on previous studies showing that 

25μM g-1 fully enhances the EOD (Markham et al., 2009a; Markham and Stoddard, 

2005). On the ninth day of recording, individuals were removed from their recording 

tanks, implanted with silicone implants (Blank, T, or 11-KT), and quickly returned to 

their tanks for 7 more days of recording.  

The effect of androgen implants on EOD amplitude was monitored daily.  When 

the EOD amplitude reached a maximum, determined by the lack of increase for 24 hours 

(usually 2-4 days after the implant), fish were re-injected with 25 μM α-MSH and saline, 

as explained above. Because the EOD amplitudes of A. leptorhynchus did not respond to 

either steroid implant (pilot experiments for this study), I injected these individuals three 

days after implanting to maintain an experimental design comparable to the other species.  

I used at least six individuals for each implant group. Because Gymnotus carapo 

are extremely robust, but limited in availability, I used the same six individuals for all 

three implant groups (see below) in a repeated-measures design. Implant order was 

randomized for each individual and individuals were given at least two weeks to recover 

between implants. Because the other three species are more fragile but relatively easy to 

obtain, I used 18 separate individuals, six for each implant group.  

 

Androgen implants 

11-Ketotestosterone (Sigma, K8250) or Testosterone (Sigma, T6147) was mixed with 

silicone (Dow Corning 3140 MIL-A-461 45 RTV coating) in a 1:4 ratio. The mixture was 

allowed to cure for about a week and the concentration of 11-KT or T implant was 

recalculated to adjust for silicone mass lost through evaporation. The final ratio of 11-
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KT: silicone was 1:3.8 and 1:4 for T: silicone.  Implants were custom cut for each test 

fish based on its weight, for a final concentration of 0.05mg of 11-KT or T per 10 grams 

of fish. Validation that these implants elevate circulating androgen levels was conducted 

in B. gauderio (Allee et al., 2009; Salazar and Stoddard, 2009; Goldina et al., 2011).  

To insert the implants, I anesthetized the fish by immersion in a 0.075% solution 

of 2-phenoxyethanol (Sigma, P-1126FD) and, using an 18-gauge hypodermic needle, 

made a small hole in the fatty area of the trunk, dorsal to the anal fin and lateral to the 

pterygiophore muscle and electric organ, into which we placed an implant.  The incision 

was closed with surgical glue and the fish was returned to the recording tank. EOD 

amplitude and duration were monitored for changes over the subsequent days.  

 

MSH injections 

α-Melanocyte stimulating hormone (α-MSH) (Sigma, M4135) was dissolved in 

physiological saline: NaCl 114mmol l-1, KCl 2mmol 1-1, CaCl2.2H2O 4mmol 1-1, 

MgCl2.6H2O 2mmol l-1, HEPES 2 mmol l-1, adjusted to pH 7.2 with NaOH for a final 

concentration of 25 μM.  Aliquots were frozen until and diluted to 2.5 μM on the day of 

injection. Physiological saline was used as a control for handling and injection. 

Experimental and control solutions were injected at 1μl g-1 of fish intramuscularly using a 

Hamilton syringe fitted with a disposable 31.5 gauge needle for all species except G. 

carapo for which we used a 21 gauge needle to pierce its much thicker skin. All 

injections were done between 1100 and 1400.    

 



 
 

111

Data treatment and analyses 

To quantify the effects of androgens and α-MSH on the waveform, I measured total, 

peak-to-peak amplitude and duration of each species. In addition, since different phases 

of the waveform are differentially sensitive to androgen treatments (Dunlap and Zakon, 

1998; Silva et al., 2002), for species with multiphasic waveforms, I measured the 

duration and amplitude of each phase (i.e., P1, P2, and P3 for G. carapo,  and P1 and P2 

for B. gauderio and A. leptorhynchus (Fig.1)) .  

In all species, I examined treatment effects by measuring relative change of each 

parameter (amplitude and duration) before and after each hormone treatment. I assessed 

the effects of androgen implants on waveform response to α-MSH injections by 

comparing EOD responses to α-MSH before and after implant treatments. Since each 

individual G. carapo underwent all three implant treatments, waveform responses to α-

MSH injections during different implant treatments were compared within each 

individual. In the other three species, treatment effects were compared among individuals 

(see Statistical analyses below).  

 

Statistical analyses 

The effect of androgen implants on baseline waveforms and α-MSH responsiveness of B. 

gauderio, A. leptorhynchus, and E. cf. virescens was analyzed with a one-way 

MANCOVA (GLM multivariate procedure in SPSS 14.0, Model III).  We used response 

variables (i) baseline, (ii) α-MSH response, and (iii) saline response, with two levels 
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each, before and after implant, as within-subject factors.  Implant type (Blank, T, and 11-

KT) was the between-subject factor.  

Since the same G. carapo individuals were used for all three implant treatments, I 

used a one-way repeated measures MANCOVA (GLM repeated measures procedures, 

v.14.0 Model III) with (1) EOD amplitude and (2) EOD duration as within-subject factors 

with three levels each (i) Blank, (ii) T, and (iii) 11-KT to examine the effects of steroid 

implants on the four phases of their waveforms. Thus androgen effects on the EOD were 

compared within individuals relative to the effects of control (blank) implants.  The effect 

of steroid implants on EOD response to α-MSH injections was examined with a two-way 

repeated measures MANCOVA using time [two levels: (i) before implant and (ii) after 

implant], EOD amplitude, and EOD duration as within-subject factors.  During the course 

of the experiments, some individuals got sick and were removed from the study and 

analyses.  Thus, total sample size of G. carapo was reduced to 11 for assessment of 

androgen effects and 10 for measuring androgen effects on α-MSH responsiveness on the 

waveform.  

Paired t-tests compared the effects of saline and α-MSH injections on EOD 

amplitude and EOD duration. Body weight and length were used as covariates in all 

analyses to account for possible influence of size on response variables. Where 

MANCOVA differences were significant (p < 0.05), I used the protected LSD post hoc 

analysis to determine significant pairwise differences. Data are reported as mean ± SEM. 

All analyses were performed using MATLAB and SPSS (version 14.0), α= 0.05 two 

tailed. 
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Results 

Androgen effect on EOD waveform 

Gymnotus carapo  

Overall, androgens enhanced multiple phases of G. carapo amplitude and duration (GLM 

multivariate tests: amplitude F7,2=1767.39, p<0.01; duration F8,3 = 15.327, p =0.02).  

Neither androgen changed the total peak-to-peak EOD amplitude, (univariate within-

subjects test: p = 0.34; Table 2, Fig. 2A), but 11-KT elevated P1 amplitude (LSD post-

hoc: 11-KT p < 0.01; T p = 0.26, Table 2). Likewise, the interaction between EOD 

amplitude and body weight was related to amplitude of P1 (GLM univariate tests: 

F2,16=4.203, p=0.03), but not other phases. Neither androgen changed amplitudes of P2 or 

P3 phase of the G. carapo EOD (Table 2).  

Only 11-KT increased P3 (LSD post-hoc: P3 11-KT p <0.01, T p=0.13; total 11-

KT p <0.01, T p=0.21; Fig. 2A). Testosterone implants had no effect on either phase 

duration (post-hoc LSD: P1 p = 0.70; P2 p= 0.70; P3 p = 0.13; total p =0.21; Table 2).  

Neither body weight, nor body length was significantly related to EOD change in 

amplitude or duration in response to androgen treatments (GLM multivariate tests: 

amplitude weight F4,5=1.869, p=0.25; length F4, 5=0.148, p=0.96; duration weight 

F4,5=0.804, p =0.57; length F4, 5 = 1.232, p =0.40).  

 

Brachyhypopomus gauderio 

Only 11-KT elevated EOD amplitude relative to controls (post-hoc LSD: T p=0.23; 11-

KT p=0.02; Fig. 2C). However, both androgens increased duration of P1 & P2 (LSD 

post-hoc: P1 T p=0.03, KT p=0.01; P2 T p<0.01, 11-KT p<0.01; data not shown) and 
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total duration (LSD post-hoc: T p<0.01; 11-KT p<0.01; Fig. 2D). Neither body length nor 

body weight had any relation to either EOD duration (GLM multivariate tests; weight 

F6,25=0.75, p=0.62, length F6,25=0.39, p=0.88) or to EOD amplitude (GLM multivariate 

tests; weight F2,29=0.76, p=0.48, length F2,29=1.25 p=0.30).  

 

Eigenmannia cf. virescens 

11-KT implants elevated baseline amplitude of E. cf. virescens (LSD post-hoc: 11-KT 

p<0.01, T p=0.24; Fig. 2E).  Body weight related positively with EOD amplitude (GLM 

multivariate tests: weight F1,23=121.01, p <0.01), but not EOD duration (GLM 

multivariate tests: weight F1,23=0.601, p=0.45).  

 

Apteronotus leptorhynchus 

Androgens had no effect on EOD amplitude or total duration in A. leptorhynchus (GLM 

univariate tests: amplitude F1, 12=0.307, p=0.74; duration F2, 12=0.177, p=0.84: Fig 2G, 

H). However, while the duration of either EOD phase did not change significantly in 

response to androgen implants (GLM univariate tests: P1 F2, 12=3.59, p=0.06; p2 F2, 

12=0.27, p=0.77), 11-KT increased duration of P1 (post-hoc LSD: 11-KT p=0.04, T 

p=0.93). Neither body length, nor weight, significantly predicted baseline amplitude 

(univariate tests: weight F1, 12=0.47, p=0.51; length F1, 12=0.29, p=0.60) or duration 

(univariate tests: weight F1, 12=0.06, p=0.85; length F1, 12=0.69, p=0.42).  
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Androgen effects on α-MSH challenge 

Gymnotus carapo 

α-MSH injections significantly enhanced P2 and total peak-to-peak amplitude and 

duration (GLM multivariate tests: amplitude F20,200= 2.26, p<0.01; duration F20,180= 1.63, 

p=0.05, Table 2). However, androgens did not affect response of EOD duration to α-

MSH (GLM multivariate tests: duration F8, 32= 1.04, p = 0.43, Fig. 3B). Androgen 

implants enhanced the effect of α-MSH injection on amplitudes of P2 and P3 (univariate 

tests: P2 p=0.06; P3=0.04), but not total amplitude (univariate tests: F2,18=1.00, p=0.39; 

Fig 3A). Neither body length, nor weight, significantly predicted baseline amplitude 

(GLM multivariate tests: weight F4, 4=1.28, p=0.41; length F4,4=0.08, p=0.99) or duration 

(GLM multivariate tests: weight F4, 4=1.82, p=0.29; length F4,4=5.04, p=0.07).  

 

Brachyhypopomus gauderio 

As reported previously (Stoddard et al., 2006), α-MSH enhanced both total duration (t=-

15.33, df=17, p<0.01) and amplitude (t=7.47, df=17, p<0.01). Both T and 11-KT 

enhanced the response of EOD duration to α-MSH (Fig. 3D), but only 11-KT enhanced 

the response of EOD amplitude to α-MSH (Fig. 3C). Neither body length nor weight 

predicted the magnitude of α-MSH injection response to implant treatments (GLM 

multivariate tests: weight F2, 12=0.41, p=0.67; length F2, 12=0.16, p=0.86). While both 

androgen implants increased duration response to α-MSH (Fig. 3D; post-hoc LSD; 11-

KT p<0.01; and T p=0.03), only 11-KT increased the responsive of amplitude to α-MSH 

(Fig. 3C; post-hoc LSD: 11-KT p=0.02; T p=0.78). Also, only 11-KT significantly 
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enhanced P2 duration (post-hoc LSD: 11-KT p<0.01; T p=0.10), while neither implant 

enhanced P1 duration (post-hoc LSD: 11-KT p=0.66; T p= 0.94; data not shown.)  

 

Eigenmannia cf. virescens 

Compared to saline injections, α-MSH enhanced amplitude (t=10.02, df=26, p<0.01), but 

not duration (t=0.02, df=256, p=0.98) in E. virescens. Implant type had a significant 

effect on EOD duration, but not amplitude response to α-MSH (GLM univariate tests: 

amplitude F2, 23=1.17, p=0.33; duration F2,23=6.62, p<0.01; Fig. 3E, F). Relative to blank 

implants, duration was higher in 11-KT implanted fish (post-hoc LSD: 11-KT p<0.01, 

T=0.70). There was a significant interaction effect between response to α-MSH injection 

and implant type on amplitude, but not duration (GLM multivariate tests; amplitude 

F2,23=6.19, p<0.01, duration F2,23=2.23, p=0.13). Relative to blank implants, 11-KT 

increased amplitude responsiveness to α-MSH injections (post-hoc LSD: amplitude 

p=0.03, Fig 3E). T had no effect on melanocortin response of either amplitude or duration 

(post-hoc LSD: amplitude p=0.23; duration p=0.7; Fig. 3E, F). Weight did not predict the 

magnitude of α-MSH injection amplitude or duration response to implant treatments 

(GLM multivariate tests: amplitude F1,23=1.26, p=0.27, duration F2,23=0.35, p=0.6).   

 

Apteronotus leptorhynchus 

Relative to saline, α-MSH injections had no effect on A. leptorhynchus amplitude or total 

duration (paired t-test: amplitude t=0.30, df=16, p=0.3; duration t=1.41, df=16, p=0.18). 

Overall, neither implant had a significant affect on α-MSH responsiveness of amplitude 
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or total duration (GLM multivariate tests: amplitude F2,13=0.38, p=0.5, Fig 3G; total 

duration F2,12=1.66, p=0.2, Fig. 3H). 

 
 
Discussion 
 

My findings demonstrate that the extent of hormonally-mediated communication 

signal plasticity in the Gymnotiformes order reflects the species-specific social systems. 

The most territorial and socially aggressive taxa, A. leptorhynchus and G. carapo, have 

the most stable signals with the least capacity for hormonally-mediated signal plasticity, 

while the highly gregarious E. cf. virescens exhibit hormonally-mediated plasticity in 

EOD amplitude, yet retain stability of EOD duration.  The short-lived exploded lek 

species, B. gauderio, has the least stable signal and the most hormonally-mediated 

plasticity of both EOD amplitude and duration (Fig. 4). 

Apteronotus leptorhynchus does not modulate its EOD waveform either in a 

circadian manner or during social interactions (Goldina et al., 2006), nor does it respond 

to short-term androgen implants or melanocortin injections (Fig. 4).  I was surprised that 

neither T nor 11-KT induced a change in A. leptorhynchus amplitude or duration, since 

multiple studies have shown that EOD frequency, pulse duration and chirp production are 

modulated by 11-KT and T over longer time scales (Dunlap et al., 1998; Schaefer and 

Zakon, 1996). The quick-acting silicone implants I used release most of their steroid 

within the first five days, which produces dramatic enhancements of the waveforms of B. 

gauderio evident on the 2nd and 3rd days post-treatment (Allee et al., 2009; Goldina et al., 

2011). In previous studies of androgen effects on signals of gymnotiforms with wave-

type EODs, signal changes appeared after two weeks of treatment. Because frequency 
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change in electric fish with narrow-band wave-type EODs requires a coordinated 

modulation of the central and peripheral nervous systems (McAnelly and Zakon, 2000; 

Zakon and Smith, 2009), a longer exposure to androgens might be necessary to activate 

signal changes in wave-fish. Apteronotids, which appear basal to the other gymnotiforms 

(Arnegard et al., 2010) might never have gained the ability to rapidly alter their 

waveforms.  Alternately, apteronotids might have lost the ability to respond rapidly to 

modulate EOD waveform – apteronotids have a derived electric organ comprised of 

motoneurons, in contrast to the rest of the clade, with myogenically derived electrocytes 

(Bennett, 1971).  

I observed intermediate signal plasticity in G. carapo and E. cf. virescens. In both 

species 11-KT and α-MSH increased signal amplitude. In G. carapo 11-KT and α-MSH 

also enhanced waveform duration (Fig. 4). However, I did not observe waveform 

enhancement by T in either species as previously described (Dunlap and Zakon, 1998; 

Silva et al., 2002). As in A. leptorhynchus, the disparity between my findings and 

previous studies might be attributable to different time courses of steroid action. 

Interestingly, 11-KT increased the waveforms of both species (Table 2, Fig. 4), 

suggesting that (1) 11-KT is more effective in modulating signal plasticity, and (2) 11-KT 

and T have different functions in EOD modulation.  

Both, A. leptorhynchus and G. carapo are long-lived, highly aggressive and 

territorial species. By keeping their signal waveforms insensitive to short-term hormonal 

fluctuations, these species can maintain stereotyped signals to aid in individual 

recognition. Similarly, by maintaining hormonal sensitivity in other aspects of signal 

production, (discharge frequency in A. leptorhynchus, differential phase duration or 
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amplitude in the G. carapo), individuals can respond to rapid changes in their social 

environment without compromising identification by neighbors and mates. A. 

leptorhynchus waveform contains species-specific information and might be used for 

conspecific and mate recognition, while EOD frequency induces approach and chirp 

production (Fugere and Krahe, 2010). Thus, while EOD frequency is androgen-

dependent, reflects individual sex, reproductive stage and social status, and is used in 

varying social contexts (i.e. JAR, chirps, rises) (Dunlap and Larkins-Ford, 2003a, b; 

Tallarovic and Zakon, 2005; Zakon et al., 2002; Zakon and Smith, 2002), EOD amplitude 

is a static parameter that might aid in individual and species recognition in habitats 

containing multiple sympatric species with overlapping frequencies (Crampton and 

Albert, 2006; Fugere and Krahe, 2010; Turner et al., 2007).  While very little is known 

about the functional significance of waveform modulations in G. carapo, few studies 

have shown that G. carapo modulate EOD rate during aggressive interactions (Black-

Cleworth, 1970; McGregor and Westby, 1992). Unfortunately, no studies have examined 

whether differential phase modulation communicates social status, sex, or identity in 

Gymnotus spp.  Unlike adults with multiphasic waveforms, larval and juvenile Gymnotus 

only produce the P1 phase (Crampton and Hopkins, 2005). Since P1 amplitude is the only 

phase sensitive to 11-KT (Table 2), relative amplitude of P1 might permit identification 

of developmental stage conspecifics.  In response to melanocortins, P2 amplitude was the 

most plastic parameter of the whole waveform, while the other three phases remained 

static (Table 2). In Gymnotus, EOD duration might be key to discrimination of 

individuals or possibly species where multiple species occur in syntopy (Crampton et al., 

2011).  
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Greater EOD amplitudes have been suggested to be a sign of dominance in 

Eigenmannia (Zakon and Smith, 2009), and to serve as an attractive trait for female B. 

gauderio which prefer large males with greater amplitude and duration EODs (Curtis and 

Stoddard, 2003). By increasing signal amplitude, individuals boost the power of their 

signals, thus increasing active signal space (detectability range), as well as potentially 

enhancing perception of their size/dominance by potential mates and competitors 

(Stoddard and Salazar, 2011). Androgens and melanocortins increase signal power in B. 

gauderio (Allee et al., 2009, Goldina et al., 2006), which might be beneficial in cases of 

social instability, during the beginning of the breeding season when territories and 

dominance hierarchies are being established and males are looking for prospective mates. 

Interestingly, while B. gauderio are highly responsive to androgen and melanocortins in 

every aspect of the waveform, the duration of P1 is less responsive to melanocortins and 

the combined effect of melanocortins and androgens. Thus, the stereotypy of P1 is likely 

used for species-recognition, while P2 plasticity is used for male-male competition and 

mate attraction (Curtis and Stoddard, 2003; Franchina et al., 2001; Stoddard, 2010). In E. 

cf. virescens, EOD duration is a completely static signal, while amplitude is responsive to 

androgens and melanocortins (but with no interaction, Fig. 4). Eigenmannia is the most 

gregarious of all gymnotiform genera; individuals form stable networks and adjust their 

EOD frequencies to reflect intra-sexual social hierarchies while preventing jamming 

(Hagedorn and Heiligenberg, 1985; Oestreich and Zakon, 2005). Thus, Eigenmannia 

modify their frequency and signal amplitude, leaving only duration of their signal static. 

Interestingly, Sternopygus macrurus, a less gregarious Sternopygid than Eigenmannia, 
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does change EOD pulse duration in response to melanocortins (Markham et al., 2009b; 

Zakon et al., 1990).  

 

Phenotypic independence and integration as a potential mechanism for generating 

EOD stereotypy and plasticity. 

Hormones integrate peripheral and central nervous system structures with environmental 

and social changes to produce and regulate dynamic communication signals.  The extent 

to which hormones can mediate behavioral traits can enhance or constrain evolution of 

communication signals and consequently social systems. This mediation can range from 

phenotypic integration in which there is a direct relationship of a hormone on the 

expression of a phenotypic trait to phenotypic independence, where the phenotypic trait 

is decoupled from the influence of hormone (Ketterson et al., 2009). Thus, under 

phenotypic integration, I expect to see a correlation between hormone treatments and 

EOD modulations, while under phenotypic independence the EOD might be insensitive 

to hormonal fluctuations (Ketterson et al., 2009).  

Evolution of dynamic signals requires development of structures to generate these 

signals in the signalers, as well as sensory and cognitive structures needed by receivers to 

discriminate among these signals. In the African mormyriforms, ability to generate 

complex, multiphasic EODs evolved in combination with a suite of traits: electrocytes 

with flexible innervation patterns, a broad spatial distribution of electroreceptors on the 

skin, and a differentiation of the brain region needed to discriminate among complex 

signals in the receivers (Carlson et al., 2011; Sullivan et al., 2000).  The signals of one 

such species, Brienomyrus brachyistius, are known to reflect social structure, wherein 
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dominant males produce the longest EOD durations and highest 11-KT levels (Carlson et 

al., 2000). Androgen hormone treatment has been shown to cause structural changes in 

the electrocytes (Bass and Volman, 1987; Freedman et al., 1989; Hagedorn and Carr, 

1985) and social interaction and cortisol treatment have stimulated cell proliferation 

within electric communication centers of the brains of A. leptorhynchus and B. gauderio 

(Dunlap et al., 2006; Dunlap et al., 2011).  

My data suggest the presence of both patterns between and within gymnotiform 

species (Fig. 4). In A. leptorhynchus, a highly territorial and aggressive species, complete 

phenotypic independence of short-term signaling plasticity is evident in the lack of 

waveform response to any hormone treatment (Fig. 4). An interesting finding in my study 

is the partial effect of T on the EOD waveform of B. gauderio and complete T 

insensitivity in the other species (Fig. 4). Since 11-KT is the dominant androgen in 

teleosts, it is commonly found that T levels are relatively similar (if not higher in 

females) in both sexes (Borg, 1994).  Behavioral insensitivity to testosterone has been 

suggested as an adaptation in species with male parental care to prevent high T levels 

from compromising parental behavior (Lynn, 2008; Lynn et al., 2005). However of the 

species tested in this study, only G. carapo exhibits parental behavior (Crampton and 

Hopkins, 2005). Yet, all four species are, to some extent, insensitive to T (in B. gauderio 

second phase duration, but not amplitude, is enhanced by T). A short-lived species such 

as B. gauderio might invest more energy in signal production and elaboration through 

enhanced hormone sensitivity than a long-lived species such as G. carapo.  Sensitivity to 

melanocortins, androgens, and the combined melanocortin-androgen treatments result in 
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the greatest waveform enhancement and thus phenotypic integration in B. gauderio 

(Gavassa et al., 2011). 

 The relationship between hormone and signal modulation is multivariate, and 

independence or integration can occur in all or just one level of the signal response, 

(Ketterson et al., 2009), differentially affecting multiple signal parameters. For example, 

EOD rate originates in the medullary pacemaker nucleus and is regulated by androgens in 

both A. leptorhynchus and E. virescens (Dunlap et al., 1998; Dunlap and Zakon, 1998; 

Schaefer and Zakon, 1996; Zakon, 1999). Intermediate phenotypic integration between 

hormones and EOD waveform seems plausible in E. virescens and G. carapo, where G. 

carapo is sensitive to 11-KT and α-MSH treatments separately, but androgens only 

partially enhance EOD response to melanocortin treatments (Table 2 and Fig. 4). The 

EOD amplitude of E. virescens, on the other hand, responds to 11-KT, α-MSH, and 11-

KT further enhances amplitude response to melanocortins, but duration is insensitive to 

either hormone treatment (Figure 4). Through partial phenotypic integration individuals 

might be able to maintain certain aspects of their signal static and easily recognizable by 

conspecifics (i.e. duration in E. cf virescens, P1 of B. gauderio, P1 and P3 of G. carapo), 

while responding to changes in social environments using the dynamic traits (Figure 4). 

 

Conclusion 

I examined the role of short-term hormone regulation in generating communication 

signals, and found that response of the signal to steroid and peptide hormones reflects 

species-specific sociality levels. By evolving tissues that are differentially sensitive to 

endocrine signals, animals can adapt to the social challenges of their respective 
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environments.  Because of their nocturnal habits, relatively little is known about the 

natural history of gymnotiform electric fish.  In addition to expanding the knowledge of 

electric fish social systems and reproductive behavior, further studies examining the 

possible differential expression of hormone receptors and enzymes regulating hormone 

action at relevant target sites are needed to understand the ultimate and proximate 

mechanisms leading to dynamic signaling. Equally important would be studies examining 

the meaning of signal enhancements to the animals themselves. Does enhancing signal 

amplitude or duration mean the same thing to a territorial, solitary animal as it does to a 

more gregarious animal?  
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Table 1. Summary of gymnotiform sociality forms. 
 
 Behavior 

Species 
Sociality 

(group aggregation) 

Aggression 

levels 

Parental 

behavior 

Mating 

strategy 

Gymnotus carapo Solitary 1,2 High 1 Paternal 3,4 Polygynous 3,4  

Brachyhypopomus 

gauderio 

Loose  

aggregations 5,6  

Medium-low 
9 

Absent 11 
Exploded lek 

polygyny 5 

Eigenmannia cf. 

virescens 
Shoaling 7,8 

Medium-low 
11 

Absent 4 Polygynous 7 

Apteronotus 

leptorhynchus 

Solitary / loose 

aggregations 10,11 
High 11 Absent 4,5 Polygynous 7 

 
The patterns described in this table are discerned from studies that examined different 

aspect of gymnotiform social behavior. I based our assessments of sociality on lab 

observations and a few field studies showing spacing between individuals and 

willingness to share a shelter. For aggression levels, “high” implies that agonistic 

interactions often result in physical injury or death, while “medium-low” might result in 

loss of resources, but not bodily harm. The remaining parameters, parental behavior and 

mating strategies were based on published studies.  

1. Black-Cleworth, 1970; 2. Westby, 1988; 3. Crampton and Hopkins, 2005; 

4. Kirschbaum and Schugardt, 2002; 5. Miranda et al., 2008. 5. Dunlap et al., 

2011; 7. Hagedorn and Heligenberg,1985; 8. Oestreich and Zakon, 2005; 9. 

Salazar, 2009; 10. W.G.R. Crampton pers. com.; 11. Unpublished observations 
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Table 2. Response of Gymnotus carapo to androgen and peptide hormone treatments. 

Amplitude P1 P2 P3 Total 
Blank 0.003 ± 0.03 0.013 ± 0.024 0.039 ± 0.022 0.007 ± 0.019 

T -0.042 ± 0.033 0.025 ± 0.046 -0.001 ± 0.040 0.011 ± 0.042 

11-KT -0.280 ± 0.061* -0.025 ± 0.064 -0.016 ± 0.077 -0.072 ± 0.062 

α-MSH -0.124 ± 0.153 0.068 ± 0.010* 0.033 ± 0.055 0.060 ± 0.010* 

α-MSH (Blank) 0.049 ± 0.017 0.068 ± 0.010 0.043 ± 0.012 0.065 ± 0.011 
α-MSH (T) -0.071 ± 0.113 0.058 ± 0.005* 0.047 ± 0.007 0.054 ± 0.004 

α-MSH (11-KT) 0.043 ± 0.018 0.047 ± 0.007* -0.182 ± 0.134 0.041 ± 0.009 
          

Duration P1 P2 P3 Total 
Blank -0.210 ± 0.009 -0.010 ± 0.020 0.012 ± 0.023 -0.007 ± 0.015 

T -0.015 ± 0.011 -0.003 ± 0.011 0.063 ± 0.014 0.016 ± 0.006 

11-KT 0.009 ± 0.023 0.034 ± 0.040 0.595 ± 0.135* 0.224 ± 0.065* 

α-MSH 0.016 ± 0.006 0.013 ± 0.005* 0.040 ± 0.007* 0.023 ± 0.004* 

α-MSH (Blank) 0.013 ± 0.007 0.015 ± 0.003 0.018 ± 0.010 0.014 ± 0.005 

α-MSH (T) 0.014 ± 0.004 0.016 ± 0.006 0.031 ± 0.006 0.021 ± 0.003 

α-MSH (11-KT) 0.016 ± 0.006 0.011 ± 0.006 0.030 ± 0.005 0.019 ± 0.004 

 

Values represent mean change following treatment ± SEM.  Asterisks * represent 

significant changes (p<0.05) of the EOD phase in response to hormone treatment.  

Response to androgen implants were compared to blank implant using post-hoc LSD.  α-

MSH response was compared to saline treatment using paired t-tests. 
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Figure 1. Selected gymnotiform species and their respective EODs. (A) Phylogeny 

(Crampton, 2011) and photographs of the four species we chose for this study, (B) their 

respective waveforms (black) and response to α-MSH injections (gray). (C) In each 

species we measured total peak-to peak amplitude and duration of each phase. In G. 

carapo, we named phases V2, V3, and V4 as P1, P2, and P3, to maintain consistent 

nomenclature with the other species (Pereira et al., 2007).  
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Figure 2. Effect of androgen implants on EOD amplitude and duration. 11-KT elevated 

EOD amplitude of B. gauderio (C. 11-KT p=0.02; T p=0.23), and E.cf. virescens (E. 11-

KT p<0.01; T p=0.24), but neither 11-KT nor T affected amplitude of the G. carapo (A) 

or A. leptorhynchus (G). 11-KT increased total EOD duration of G. carapo (B: p<0.01 

for 11-KT; p=0.21 for T). In B. gauderio 11-KT caused higher elevation of duration than 

T (D: p<0.01 for 11-KT; p<0.01 for T). Neither androgen implant had a significant effect 

on EOD duration of E. virescens (F) or A. leptorhynchus (H). Symbols represent 

individual data points represented as relative change, while horizontal and vertical bars 

depict mean and SEM, respectively. Different letters represent significant differences 

between treatments (p<0.05), based on LSD pairwise comparisons.  
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Figure 3. Effect of androgen implants on responsiveness of EOD amplitude to 

melanocortins. Only 11-KT increased amplitude responsiveness to α-MSH injections in 

B. gauderio (C. 11-KT p=0.02; T p=0.78) and E. cf. virescens (E.  11-KT p=0.03; T 

p=0.23), but neither androgen had any affect on G. carapo (A) or A. leptorhynchus (G) 

amplitude response. In B. gauderio 11-KT and T implants increased the τp2 of the MSH 

response relative to blank implants (D: p<0.01 for 11-KT, p<0.01 for T). Androgens had 

no effect on the total EOD duration response to MSH injections in the other three species.  
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Figure 4. EOD plasticity and stereotypy reflect endocrine integration and independence in 

gymnotiforms. EODs of gymnotiform species with static, stereotyped signals, as seen in 

amplitude of A. leptorhynchus and amplitude and duration of E. virescens are insensitive 

to androgens and melanocortin hormones. G. carapo, E. virescens (amplitude) and B. 

gauderio exhibit varying levels of hormone sensitivity and EOD plasticity, suggesting 

integration between communication signal and hormonal modulator. Gymnotiform 

species are placed in order of increasing sensitivity to hormone treatments (left column) 

of their waveforms. Waveform responses are separated into two tables, amplitude (A) and 

duration (B). Pluses indicate a presence of a response.  
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CHAPTER V 

 

CONCLUSION 
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 The ability to adjust signals to reflect changes in motivation, body condition and 

social status may serve as a substrate for the evolution of complex communication 

systems and sociality. The physiological ability to adjust signals occurs through the 

interplay between peptide and steroid hormones. Understanding this interplay can allow 

researchers to advance testable models for evolution of neural and genetic mechanisms 

that regulate sociality.  

 In my dissertation I examined the extent of dynamic communication signals 

within the electric fish order Gymnotiformes. I investigated how closely related species 

of weakly electric fish modify different parameters of their EOD waveforms. I showed 

that signal plasticity is not an all-or-none event, but rather a continuum that is 

differentially mediated by androgen and peptide hormones and tracks species-specific 

sociality levels. Social strategies facilitate or inhibit dynamic signaling, whereby species 

that maintain stable social groups sacrifice short-term signal plasticity for stable, easily 

identifiable signature signals, while species that maintain loose social associations have 

the most plastic signals. Consequently, the electric organs of species that dynamically 

alter their signal structure to adjust to changes in the social environment are most 

sensitive and responsive to steroids, peptide hormones, and neuromodulators. Species 

that maintain stable social groups, on the other hand, exhibit insensitivity to such 

hormone changes. In gymnotiforms, the electrocytes of the most gregarious species (B. 

gauderio and E. virescens) were most responsive to androgen and melanocortin 

manipulations, while the most aggressive and territorial species (A. leptorhynchus and G. 

carapo) were insensitive to hormone manipulations.  
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 Furthermore, I showed that the androgens testosterone and the fish specific 11-

ketotestosterone regulate different aspects of the EOD. This differential androgen 

regulation may serve as a basis for independent regulation of distinct signal traits and 

possibly, set the stage for the evolution of increased plasticity. Thus, communication 

plasticity is driven by differential responsiveness patterns to hormones that are correlated 

to behavioral phenotypes. 

Much research has focused on understanding the neural circuitry of 

electrocommunication and the mechanisms of EOD modulations within the nervous 

system. My dissertation elucidated some of the proximate mechanisms that modulate 

dynamic signaling in gymnotiforms; however, still many questions need to be addressed. 

Currently, we know very little about the natural history of gymnotiforms. To understand 

the selection pressures that led to the evolution of differential dynamic signaling in this 

order, we need to know how these animals behave in their natural habitats. For instance, 

are the highly territorial and aggressive species equally aggressive in the wild as they are 

in the laboratory, where they cannot escape their opponents? How often do territorial and 

aggressive individuals come in contact with each other? Is individual recognition more 

prevalent in the shoaling than territorial species? Furthermore, while I have shown 

different forms of signal plasticity in gymnotiforms, it is not know what these signal 

modulations mean to the fish in their natural habitats. Studies examining the role of EOD 

modulations in behavior are sorely lacking in the electric fish literature. 

Furthermore, more studies are needed to understand the proximate mechanisms 

driving species differences in dynamic signaling. Currently, it is not known whether the 

observed melanocortin sensitivities result from the same melanocortin receptor type 
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being differentially expressed within the electric organ and or between species, or if 

different melanocortin receptors are expressed in species with different sociality levels. 

Finally, the same questions can be addressed towards androgen regulation of the 

waveform.  

By combining the existing knowledge of the mechanisms of signal modulation in 

gymnotiforms with experiments designed in a contextually relevant manner to the fish, 

we can further understand the factors that drive evolution of dynamic communication 

signals, which are likely conserved across vertebrates.  
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