
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-8-2011

The Effects of Dynamic Culturing Environments
on Cell Populations Relevant to Heart Valve Tissue
Engineering
Catalina Martinez
Florida International University, martinez.12@gmail.com

DOI: 10.25148/etd.FI11120611
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Martinez, Catalina, "The Effects of Dynamic Culturing Environments on Cell Populations Relevant to Heart Valve Tissue
Engineering" (2011). FIU Electronic Theses and Dissertations. 505.
https://digitalcommons.fiu.edu/etd/505

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/505?utm_source=digitalcommons.fiu.edu%2Fetd%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

THE EFFECTS OF DYNAMIC CULTURING ENVIRONMENTS ON CELL 

POPULATIONS RELEVANT TO HEART VALVE TISSUE ENGINEERING  

 

 

A thesis submitted in partial fulfillment of the 

requirements for the degree of 

MASTER OF SCIENCE 

in 

BIOMEDICAL ENGINEERING 

by 

Catalina Martinez 

 

 

 

 

2011 



 ii

 

To:  Dean Amir Mirmiran     
 College of Engineering and Computing    

 
This thesis, written by Catalina Martinez, and entitled The Effects of 
Dynamic Culturing Environments on Cell Populations Relevant to Heart 
Valve Tissue Engineering, having been approved in respect to style and 
intellectual content, is referred to you for judgment. 

 
We have read this thesis and recommend that it be approved. 

 
 

_______________________________________ 
Yei-Chih Huang 

 
 
 

_______________________________________ 
Anuradha Godavarty 

 
 
 

_______________________________________ 
Sharan Ramaswamy, Major Professor 

 
 

Date of Defense: November 8, 2011 
 

The thesis of Catalina Martinez is approved. 
 
 
 

_______________________________________ 
Dean Amir Mirmiran 

College of Engineering and Computing 
 
 
 

_______________________________________ 
Dean Lakshmi N. Reddi 

University Graduate School 
 

 
 
 

Florida International University, 2011 



 iii

 

 

      
 

DEDICATION 

This work is dedicated to my parents Alfredo Martinez and Yamileth Cano, 

as well as my brother Juan Pablo Martinez who have always been a 

source of love and inspiration for me. 

  



 iv

ACKNOWLEDGMENTS 

  First of all I would like to thank my research mentor Dr. Sharan 

Ramaswamy for guiding me throughout the process of my research 

findings. Without his insights, support and experience in the field, it would 

have been impossible for me to complete this research thesis. I am very 

thankful for all the pieces of advice, which always encourage me to follow 

through my experiments.  

I would also like to thank the members of my thesis committee Dr. 

Yen-Chi Huang and Dr. Anuradha Godavarty for their time and support. I 

specially would like to thank Dr. Huang for allowing me to use his 

laboratory.  

          Lastly I want to thank Angela Henao, Stephanie Van Gulden  and 

Natasha Fernandez for helping me run experiments, and to the rest of my 

lab thank you for being there, working next to me in a healthy and nice 

environment.  

                                    

 

 

 

 

 

 

 



 v

ABSTRACT OF THE THESIS 

THE EFFECTS OF DYNAMIC CULTURING ENVIRONMENTS ON CELL 

POPULATIONS RELEVANT TO HEART VALVE TISSUE ENGINEERING  

by 

Catalina Martinez 

Florida International University, 2011 

Miami, Florida 

Professor Sharan Ramaswamy, Major Professor 

The design of a tissue engineered pulmonary valve (TEPV) involves cells 

source(s), scaffold, in vitro conditioning system and the functional stability 

of the TEPV in vivo. Vascular cells (pulmonary artery smooth muscle  

(SMCs) and endothelial cells (ECs)) and periodontal ligament derived 

stem cells (PDLSCs) are relevant sources for the designing of TEPVs. In 

this study, labeling of these cell populations with super paramagnetic iron 

oxide microparticles along with concomitant usage of transfection agents 

was followed by visualization using magnetic resonance, while 

Intracellular iron oxide was confirmed by prussian blue staining and 

fluorescence microscopy. Also, the potential of PDLSC as a feasible 

source for TEPVs was investigated, expressing differentiative capacity to 

both SMC and EC phenotypes by a combination of biochemical and 

mechanical stimulation. Flow conditioning in a u-shaped bioreactor 

augmented collagen production in SMC-EC (99.5% for n=3) and PDLSC 

(93.3% for n=3) seeded scaffolds after a 3-week culturing period (P<0.05). 
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1. INTRODUCTION 

There are over 25,000 infants born with congenital heart anomalies in the 

US alone (www.congenitalheartdefects.com), which usually demand either 

replacement of the pulmonary valve (PV) and/or reconstruction of the right 

ventricular outflow tract (RVOT). Available PV replacements in the market are: 

mechanical, xenograft fixed-tissue, and homograft valves. Prosthetic heart valves 

are implanted in approximately 275,000 patients yearly (1). However, current 

prosthetic heart valves have several limitations. Mechanical valves are prone to 

thrombosis; therefore life-long anticoagulant therapy is required (2). Xenograft 

fixed-tissue, commonly referred to as bioprosthetic heart valves do not require 

anticoagulants, but they have limited durability and are prone to calcification (3). 

Homograft valves are limited in availability and often experience immune 

rejection (4). Overall, none of these valve replacement strategies offer potential 

for growth, and are hence particularly limited for pediatric patients, as they will 

require multiple operations during their development.  (1,5-7).  

2. LITERATURE SEARCH 

2.1 Heart Valve Disease (HVD) – Heart Valve disease (HVD) results from 

the malfunctioning of one or more heart valves and is affected by factors such as 

immune reaction, trauma, inheritance and environmental factors (diet, smoking, 

etc.). The main job of heart valves is to open and close in a synchronized manner 

allowing blood to flow in one direction and preventing back flow. A significant 

amount of HVD is characterized by valve stenosis, causing the valve to become 

narrow, therefore affecting hemodynamics by decreasing the cross sectional 
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area for blood to flow. Similarly, improper valve closure causes regurgitation, 

creating a backflow of blood into the heart. In this study, we are specifically 

concerned with the pulmonary valve (PV), which lies between the right ventricle 

and the pulmonary artery and has three cusps responsible for blood flow from the 

heart to the lungs, as well as the exchange of oxygen and carbon dioxide. 

Malfunction of a PV demands a replacement by currently available designs. 

2.2 PV Replacements – The actual PV replacements available are 

mechanical, bioprosthetic or homograft valves. Mechanical heart valves (MHVs) 

are generally built from of titanium or pyrolytic carbon; their first designs include 

the caged ball, tilting disk and bileaflet versions (2). Bioprostheric heart valves 

(BHVs) are native valves usually derived from bovine or porcine sources, which 

undergo a fixative chemical process before implantation in the human body (6,7). 

All of these replacements are beneficial for the patient; yet they have serious 

limitations. For example, MHVs are durable, but are thrombogenic, require life-

long anticoagulants, and therefore are more prone to infection (2). BHVs do not 

require anticoagulants, but do not last as long as MHVs as they undergo 

calcification on their leaflets (3). Homograft valves on the other hand, contain 

some viable cells which would permit some tissue remodeling activity; however 

as they are allografts, the often experience immunological rejection.  

2.3 Tissue Engineered Heart Valves (TEHV) – Tissue engineering 

applies principles of engineering and life sciences toward the development of 

biological substitutes. This approach utilizes a bioabsorbable scaffolding material, 

seeded with cells and grown in vitro, to ultimately produce functional living tissue 
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which can be implanted in the body (8). The extracellular matrix (ECM) formed by 

the autologous cells provides the basic framework for the tissue and it is also 

responsible for its mechanical and structural properties. Cells organize, grow, 

proliferate and produce native ECM on the scaffold’s temporary matrix. In theory, 

due to their ability to permit somatic growth, the creation of a tissue-engineered 

structure from autologous cells can potentially offer several advantages over 

currently available treatment options (1, 4, 8). Additionally, tissue engineered 

pulmonary heart valves (TEPVs) would have fewer supply limitations in 

comparison with homografts. The Mayer group (9) found promising results, 

creating PV leaflets and sections of the main pulmonary artery. These structures 

were found to be non-thrombogenic and promote tissue remodeling. However, 

they had limited durability in the order of months (9). Sutherland et al. 

constructed TEHVs by seeding bone marrow derived stem cells (BMSC) onto 

nonwoven scaffolds that functioned in the pulmonary outflow tract of sheep for 8 

months (8). While the results from these studies are clearly encouraging, the 

current critical step for TEHV research is to identify a clinically viable autologous 

cell source, a scaffold with the suitable mechanical and biodegradable properties, 

an optimized in vitro conditioning system, and a way to track the functional 

stability of the tissue engineering implant in vivo in order to successfully move 

forward from in vitro conditioning into in vivo studies, and subsequently to clinical 

trials (10).  

2.4 Cell Sources for Tissue Engineered Pulmonary Valves – Three 

relevant cell sources pertinent in tissue engineered hear valve efforts include 
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human vascular cells (native pulmonary artery smooth muscle  (SMCs) and 

endothelial cells (ECs)) and stem cell sources. Vascular cells (SMCs and ECs) 

have shown to promote heart valve tissue formation (1, 9, 11). Therefore, these 

vascular cells need to be assessed in order to track tissue remodeling in vivo. 

Studies using bone marrow derived stem cells (BMSCs) which are readily 

accessible, have shown that after a TEPV has been implanted, the BMSCs 

exhibit some pluripotency for potential vascularization of bioengineered tissues 

(8).  Evidence of smooth muscle cell phenotype has been obtained by Sutherland 

et al. (8) by expressing vimentin, and alpha-smooth muscle actin (alpha-SMA) 

markers in his studies. However they could not detect evidence of endothelial cell 

phenotype. 

Human periodontal ligament derived stem cells (PDLSCs) on the other 

hand, are a readily available source of pluripotent stem cells that may potentially 

support the valve phenotype. They are derived from the cranial neural crest and 

recent studies by Huang et al. (12) have shown that PDLSCs are a population of 

multipotent stem cells that can be differentiated into neural and mesenchymal 

lineages. Sub-populations of PDLSCs contain 4 embryonic stem cell markers 

(Oct4, Nanog, Sox2, Klf4) and exhibit the potential to differentiate to neurogenic, 

cardiomyogenic, osteogenic and chondrogenic cell lineages (12). Therefore, 

PDLSCs have the potential to promote concomitant differentiation into the EC 

and SMC phenotypes (12-14).  

2.5 Scaffold Material for Tissue Engineered Pulmonary Valves – The 

scaffold material serves as a support structure capable of retaining cells and 
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engineered tissue formation. Scaffold materials must allow cell attachment and 

migration, enable diffusion of cell nutrient and expressed products, as well as 

possess mechanical and biological properties to provide structural support. 

TEPVs are usually constructed by seeding cells onto porous synthetic of natural 

scaffolds (5). Natural scaffolds, from decellularized valve tissue already have 

proper anatomical structure, intrinsic bioactivity and desired mechanical 

properties (5). However, their innate variability, limited supply, and potential 

immunogenic reaction are obstacles in the field.  

On the other hand, synthetic scaffolds offer the added benefit of design 

flexibility, in which their material and structural properties, as well as anatomical 

shape can be tailored to meet the functional necessities (15,16). Polyesters such 

as polyglycolic acid (PGA) and poly-l-latic acid (PLLA) are the most widely used 

scaffold materials in the field of TEPVs. These materials mixed together in a 

50:50 blend create an immunogenic scaffold capable of degrading by hydrolysis 

into naturally occurring metabolites (15,16). This scaffold has an approximate 

fiber diameter of 0.012-0.015mm and a density of 61.75 mg/ml. Its benefits 

include a high porosity factor (>97%) allowing for a high cell seeding density.  

The PGA/PLLA scaffold has already been successful demonstrating its ability to 

rapidly grow cells and form an organized 3D tissue structure (1,5). 

2.6 In Vitro Conditioning Systems – Mechanical stimulation of 

engineered tissue growth in vitro can be achieved with a bioreactor, which has 

shown to improve the physical integrity of engineered heart valves prior to 

implantation (9,16,17). The mechanical environment would potentially include a 
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physiological flow and pressure for conditioning the developing valve tissue 

construct in a sterile setting prior to in vivo implantation (17-19). Different 

bioreactors have been designed by researchers to promote tissue formation and 

valve phenotype (5,9,16-19).  Hoerstrup et al (17) developed an in vitro cell 

culture system that provided the developing valve constructs with physiological 

pressure and flow to develop adequate strength of the constructs prior to 

implantation.  In a similar manner, Sticker et al (18) conducted a study to 

compare tissue samples exposed to stretch versus normal conditions showing 

there is higher tissue production on samples treated mechanically, i.e exposed to 

cyclic flexure.  Engelmayr et al (5) showed that laminar flow combined with cyclic 

flexure in a flow-stretch-flex (FSF) bioreactor allowed for larger tissue formation 

when compared to laminar flow without cyclic flexure when seeding BMSCs in a 

non-woven scaffold material (PGA/PLLA). However, Engelmayr this study did not 

use physiological levels, as the shear stresses were very low. The effects of fluid 

shear stresses on engineered tissue growth levels (i.e. collagen) can be 

evaluated in terms of bulk protein levels, differentiation potential, mechanical 

properties, gene expression and cell signaling events.  

The device utilized in our study, is an u-shaped bioreactor capable of 

replicating physiological hemodynamic conditions during in vitro tissue 

development, while keeping laminar conditions as shown by precise steady state 

states. This is a key advantage over other bioreactor designs incapable of 

generating physiologically relevant stresses, which have been widely recognized 

as an essential aspect of engineered heart valve tissue formation (5,16). 
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2.7 Noninvasive Visualization of Functional TEPV’s – A cell-tracking 

agent is required to be safe to use, i.e., does not alter cell activity, and permits 

retention within the cell for a reasonable period to allow for visualization over 

longitudinal time points (20). One approach would be to label the cells with super 

paramagnetic iron oxide (SPIO) microparticles and visualize the resulting 

artifacts as regions of signal voids characterized using magnetic resonance 

imaging (MRI). Other cell tracking methods include labeling with green 

fluorescent protein (GFP). However, this method is harmful for the tissue, as it 

may interfere with the protein synthesis of the cells and does not provide 

sufficient resolution beyond that of subcutaneous tissue, which is needed for the 

heart valve application (21). Another cell tracking method involves gadolinium 

compounds, which create contrast through T1 images, however the main 

disadvantage of this contrast agent lies on its low sensitivity (22). On the other 

hand, SPIO microparticles have already been demonstrated to work for MRI 

investigations without harming the cell (23-26). For example, Terrovitis et al. (24) 

showed that labeling BMSCs with ferumoxides was not toxic to the cells, and the 

cells could further be visualized in collagen gels/scaffolds. Ko et al. (27) showed 

that cellular MRI methodologies could further be used to visualize an implanted 

scaffold and the cellular behavior around the scaffold in the mouse model.  

 MRI has been reported to be useful in monitoring TEPV growth and 

function in vivo  (20). MRI allows cell detection utilizing SPIO microparticles as 

the contrast agent by accelerated T2* decay, which will present as hypointense 

regions caused by the intracellular iron oxide particles (10). This visualization is 
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necessary from the beginning of the in vitro culturing period of the engineered 

construct and could in theory be progressively tracked, even after implantation (8, 

28-30).   

To understand a process where there are many unknowns, such as the 

cell migration that will occur on the scaffold region, we propose to use SPIO and 

cellular MRI.  These include the migration of cells within and outside of a scaffold 

region, as well as the potential migration of native cells into the scaffold from 

regions proximal to the site of the implant. The ability to observe the type of cells 

that would adhere/migrate longitudinally and preferentially in/out of the scaffold 

material is a key aspect in predicting the quality and quantity of tissue that would 

form. On the other hand, efforts to label and track PDLSCs, a potential cell 

source in heart valve tissue engineering has to date not been performed. 

3. OBJECTIVES  

Our objectives were to conduct an in-depth study of the longitudinal position and 

migration patterns of cells during the engineered heart valve tissue development 

process under static and dynamic environments. This would be achieved through 

SPIO cell labeling and subsequent tracking studies by MRI. In addition, we 

wanted to investigate the potential of PDLSCs as a single, feasible source for 

heart valve tissue engineering. These hypothesis are addressed by the following 

specific aims: 

3.1 Specific Aim 1: Acquire longitudinal MRI images of SPIO-labeled 

cell populations in engineered valve tissue in cell culture with maximum 

possible cell contrast without compromising cell viability, proliferation and 
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differentiative capacity – Specifically, we wish to augment iron oxide uptake in 

human vascular cells (native pulmonary artery smooth muscle  (SMCs), 

endothelial cells (ECs)) and label human periodontal ligament derived stem cells 

(PDLSCs) from currently used protocols without compromising cellular viability 

and without affecting cell phenotypes. 

3.2 Specific Aim 2: Differentiate PDLSC into concomitant EC and 

SMC through use of a growth factor cocktail, mechanical stimulation or 

both – PDLSCs would be differentiated into ECs and SMCs in cell culture with 

growth factors, and/or would be mechanically stimulated under steady flow using 

shear stress at 1 dyne/cm2 to promote further differentiation that is supportive of 

the heart valve phenotype. 

3.3 Specific Aim 3: Perform biological studies of the SPIO-labeled 

cells in 3D static or dynamic polymer seeded scaffolds determine 

extracellular matrix (ECM) production and changes in cell phenotype – Cell-

seeded polymers would be housed in a bioreactor and exposed to fluid induced 

shear stress conditioning. Vascular cell migratory activity under dynamic states 

would be compared to static controls by means of SPIO as the contrast agent. 

4. MATERIALS AND METHODS 

4.1 Aim 1 Methodologies 
 

Cell Labeling: Various concentrations of Bangs particles (Bangs 

laboratories, Fishers, IN), which are co-labeled with a fluorescent red tag 

(excitation=660nm, emission =690nm) were used to label the vascular cells 
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(Genlantis, Fisher Scientific, IN) at two different incubation times (24 hours and 

48 hours), while the PDLSCs (University of Miami, Tissue Engineering 

Laboratory, Miami, FL) were labeled at an incubation time period of 24 hours. 

After proliferating all cell lineages, roughly, 3 million cells and were re-plated 

equally into 15 chamber slides (Fisher Scientific, PA). Vascular cells (n=5) were 

labeled for a 24 hour period with three different concentrations of SPIO 

microparticles (0.23g of Fe per ml of solution: 50, 100 and 200 μg/ml). 

Concomitantly, during the same 24 hour period, cells were exposed to 4.5μg/ml 

of a transfection agent (Protamine Sulfate, Sigma, MO). A second group of the 

vascular cells were labeled with ferumoxides in the same manner except that the 

incubation time was doubled, i.e., 48 hours. On the contrary, the PDLSCs were 

labeled following the protocol used by Suzuki et al. (31) for embryonic stem cells. 

The PDLSCs (n=5) were labeled with SPIO microparticles at a concentration of 

200 μg/ml for 24 hours. During this 24-hour period, the PDLSC’s were also 

exposed to a 12μg/ml of the transfection agent (Protamine Sulfate, Sigma, MO). 

MR Imaging of Cells in Culture: For vascular cells (SMC and EC), MRI 

datasets were collected on a 4.7-Tesla (200MHz) 40-cm bore magnet with a 

Bruker Avance™ (Bruker Inc., Rheinstetten, Germany) console using an actively 

shielded gradient set.  A linear birdcage radio frequency (RF) coil with a diameter 

of 35mm was used for imaging the samples in order to increase sensitivity of 

signal detection.  A 2D gradient echo fast imaging (GEFI) pulse sequence with 

180mm resolution and 10ms time of echo (TE) was employed to visualize the 

labeled vascular cells in the chamber slide.  On the other hand, for PDLSC, MRI 
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datasets were collected on a 3.0-Tesla (123MHz) 60-cm bore magnet with a 

Magnetom Trio, (Tim, Simens) console using an actively shielded gradient set.  A 

transmit/receive 15 channel knee coil that provides high resolution.  A 3D 

gradient echo pulse sequence with 60mm resolution and 11.2ms TE and 100ms 

relaxation time (TR) was employed to visualize the labeled PDSLCs in the 

chamber slide.  

Proliferation and Viability: SPIO-labeled and unlabeled cells (EC, SMC 

and PDLSC) were cultured for 1 week to assess proliferation and viability. EC’s 

were cultured using Genlantis medium (Genlantis, San Diego, CA) while SMCs 

and PDLSC’s were grown in-vitro using Dulbecco’s Modified Eagle’s Medium  

(DMEM, Lonza, Basel, Switzerland) with 4.5 g/l glucose and l-glutamine 

(Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, 

ATCC, Manasas, VA), and 1% penicillin/streptomycin (Invitrogen, Carlasbad, CA). 

At both the beginning and end of 1 week, live cells were manually counted using 

a hemocytometer. Dead cells were excluded by addition of Trypan Blue dye 

(Sigma Aldrich, St. Louis, MO) prior to the counting process.  

Iron Oxide Detection: After culturing SPIO-labeled and unlabeled cells 

(SMC, EC and PDLSC) for a week, they were rinsed with 0.01M Phosphate 

Buffered Saline (PBS) and detached from the T-75cm2 flask (Fisher Scientific, 

PA) by 0.25% Trypsin-EDTA (ATCC, Manasas, VA). Cell pellets were collected 

in a 15 ml conical tube (Fisher Scientific, PA) and transferred to chamber slides 

(n=6 per cell type). After the cells attached overnight, they were fixed with 10% 

formalin for further detection of iron oxide. Prussian Blue Stain: Slides (n=3 per 
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cell type) were then incubated in a 1:1 working solution of 2% Potassium 

Ferrocyanide and 2% Hydrochloride acid for 20 min at 55OC, washed in tap water 

followed by a counterstain of nuclear fast red for 5 min. The slides were then 

dehydrated through alcohol, and cleared in xylene. After mounting the slides with 

Permount (Fisher Scientific, PA) they were examined under an upright 

microscope for presence of iron particles inside the cells. Fluorescent red tag in 

Bangs Particles: Slides (n=3 per cell type) were counterstained for filamentous-

actin (F-actin, Invitrogen, Carlsbad, CA) using Alexa Fluor 488 conjugated 

phallotoxin at 5U/mL for 20 min at 26OC, and washed in PBS. The slides were 

then mounted and stained for DAPI with Vectashield Mounting Media (Invitrogen, 

Carlsbad, CA)) and examined under an inverted fluorescent microscope for 

presence of the red tag contained in the magnetic core of the Bangs particles 

(660 excitation, 690 emission).  

RNA Isolation and Reverse Transcription: The cells (SMC, EC and 

PDLSC) were rinsed with PBS and detached from the T-75cm2 flask (Fisher 

Scientific, PA) by 0.25% Trypsin-EDTA (ATCC, Manasas, VA). Cell pellets were 

collected in a 15 ml conical tube (Fisher Scientific, PA). The pellet was 

transferred to a 1.5 ml RNAase free tube to perform the RNA isolation procedure. 

Total mRNA was purified with SV Total RNA Isolation System (Promega, 

Madison, WI). 1µg of total mRNA was used for reverse transcription reaction with 

GoScript™ Reverse Transcription System (Promega, Madison, WI). The cDNA 

was synthesized using oligo (dT)15 primer, according to the manufacturer’s 

instructions.  
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qRT-PCR for SMC, EC and PDLSC Marker Genes: Quantitative RT-

PCR was performed using GoTaq® qPCR Master Mix (Promega, Madison, WI).  

Signals were detected with a Step One Real-Time PCR System (Applied 

Biosystems, Carlsbad, CA). The PCR tube contains 2 primers and SYBR® green 

I dye reagent along with the cDNA, a product of reverse transcription mentioned 

above. The primers were designed to amplify the target sequence. The PCR 

primer sequences for SMC, EC and PDLSC are listed in Table 1. The sample 

tube was held at 950C, 2 minutes before the cycle started to activate the Taq 

polymerase. The cycling parameters were 950C, 5 seconds; 600C, 45 seconds; 

950C, 15 seconds.  

Table 1: qRT-PCR Primer Sequences 
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4.2 Aim 2 Methodologies 
 

Cell Differentiation: After PDLSCs reached 100% confluency, they were 

separated into 4 groups during a week period at a cell density of 1*106 cells/cm2. 

Group [1] – Negative control: This group contained PDLSCs cultured in its basal 

media. Group [2] – Differentiating Media: This group contained PDLSCs exposed 

to a special media believed to induce SMCs and ECs differentiation. Group [3] – 

BioFlux: This group of PDLSCs was subjected to a physiologically relevant shear 

flow (1 dyne/cm2) while being cultured in the Bioflux200 system (Fluxion, San 

Francisco, CA). Group [4] – Differentiating Media + BioFlux: This group combined 

the special media and the physiological relevant shear flow (1 dyne/cm2) while 

culturing the PDLSC inside the Bioflux200 system (Fluxion, San Francisco, CA). 

As positive control, both human vascular EC and SMC were utilized. [1] Negative 

control: This group contained PDLSCs cultured in its basal media. [2] 

Differentiating Media: This group contained PDLSCs exposed to a special media 

believed to induce SMCs and ECs differentiation. [3] BioFlux: This group of 

PDLSCs was subjected to a physiologically relevant shear flow (1 dyne/cm2) 

while being cultured in the Bioflux200 system (Fluxion, San Francisco, CA). [4] 

Differentiating Media + BioFlux: This group combined the special media and the 

physiological relevant shear flow (1 dyne/cm2) while culturing the PDLSCs inside 

the Bioflux200 system (Fluxion, San Francisco, CA). As positive control, both 

human vascular EC and SMC were utilized. 

Differentiating Media:  The cocktail mix utilized to culture cells in groups 

[2] and [4] was hypothesized to induce differentiation of PDLSCs into EC and 



 15

SMC concomitantly as a similar version of the mix has already been effective in 

differentiating PDLSCs into cardiomyocytes (32). Therefore, since PDLSCs can 

be differentiated into other cardiovascular cell lineages, such as cardiomyocytes, 

it serves to argue that they have the potential to become vascular SMCs and/or 

ECs (33,34). The cocktail mix we have utilized contains DMEM High glucose 

(Invitrogen, Carlsbald, CA), 10% fetal bovine serum (ATCC, Manasas, VA), 1% 

Penicillin/streptomycin (ATCC, Manasas, VA), as well as 10ng/mL of vascular 

endothelial growth factor (VEGF, BD Science, USA), 25ng/mL of basic fibroblast 

growth factor (bFGF, Invitrogen, Carlsbald, CA), 10ng/mL of Insulin-like Growth 

Factor (IGF-1, Invitrogen, Carlsbald, CA), 10uM of 5-azacytidine (Sigma Aldrigh, 

St. Louis, MO), 100nM Ascorbic Acid (Sigma Aldrich, St. Louis, MO), 10nM 

Oxytocin (Sigma Aldrigh, St. Louis, MO),  10nM hydrogen peroxide (Sigma 

Aldrich, St. Louis, MO).  The cocktail mix was changed every two days during a 

1-week period, with exception of the hydrogen peroxide, which was added daily.  

BioFlux 200 System: This system enables the user to prepare 8 cell 

assays in parallel, while controlling their temperature. Its interface connects an 

electropneumatic pump to the well plates, which initiates the “controlled shear 

flow”.  BioFlux 200 can also be connected to an inverted regular or fluorescent 

microscope; allowing the user to for example, perform immunohistochemical 

findings while the cells are being stimulated. Therefore, this system is highly 

conducive for assessing stem cell differentiation outcomes. 

Cell Phenotype: After the 1-week period of culturing the cells under the 

differentiating media, cells from the four separate groups were subjected to PCR 
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and immunohistochemistry in order to check for SMC and EC cell phenotypes. 

RNA isolation, reverse transcription and qRT-PCR methods were performed in a 

similar manner to that of the labeled cells as described earlier for the SPIO-

labeling studies. 

Immunohistochemistry: Characterization of cell phenotype by 

immunohistochemistry was performed. After the 1-week culture period, cells from 

all groups were rinsed with PBS and detached from the T-75cm2 flasks (Fisher 

Scientific, PA) by Trypsin-EDTA (ATCC, Manasas, VA). Cell pellets were 

collected in a 15 ml conical tube (Fisher Scientific, PA) and transferred evenly to 

chamber slides (n=6 per group) at a density of 200,000 per chamber slide. After 

24 hours, the slides were fixed in 10% buffered formalin. Sections were then 

washed in PBS-T  3 x 5min. The sections were incubated for 1 hour in Normal 

Donkey Serum (1:10 in PBS-T). Next, the sections were incubated (Overnight, 

4°C) with mouse alpha-smooth muscle actin (1:500, Sigma Aldrich, St. Louis, 

MO) or rabbit von Willebrand Factor (vWF, 1:500, Invitrogen, Carlsbad, CA). 

After washing in PBS, the sections were incubated in their secondary antibodies 

for two hours Texas Red (1:800) anti-mouse IgG and Texas Red (1:400) anti-

rabbit IgG, to identify anti-alpha-sma or anti-vWF respectively. The sections were 

washed again with PBS 3x5min. Finally, the slides were mounted and stained for 

DAPI with Vectashield Mounting Media (Invitrogen, Carlsbad, CA)) and examined 

under an inverted fluorescent microscope.  



 17

 

4.3 Aim 3 Methodologies 
 

Cell Labeling: PDLSC’s were labeled with Bangs particles (Bangs 

laboratories, Fishers, IN), co-labeled with a fluorescent red tag 

(excitation=660nm, emission =690nm) at a concentration of 200ug/mL. SMCs 

and ECs were labeled in a similar manner as previously described. However, the 

Bangs particles utilized to label the SMCs were colabeled with a green tag 

(excitation=480, emission=520) while the ECs were labeled with the Bang’s 

particles colabeled with the red tag (excitation=660nm, emission =690nm) in 

order to distinguish the cell type under a fluorescent microscopy. 

Cell Seeding: A non-woven 50:50 blend of polyglycolic acid (PGA) and 

poly-L-lactic acid (PLLA) scaffold (Biofelt, Concordia Fiber, RI) was utilized for 

cell seeding. This scaffold has an approximate fiber diameter of 0.012-0.015mm 

and its density is 61.75 mg/ml. Its benefits include its high porosity factor (>97%).  

The PGA/PLLA scaffold has already been successful demonstrating its ability to 

rapidly grow cells and form an organized 3D tissue structure (1,5). Rectangular 

scaffold samples (n=12) of dimensions (17mm X 6mm X 1mm) were subjected to 

Ethylene Oxide gas sterilization (AN 306, Anprolene, Andersen Products 

Inc., Haw River, NC) for 12 hours. After the sterilization period, each sample was 

placed in a hybridization tube and seeded with previously SPIO labeled and 

unlabeled SMC (~87%) –EC (~13%) at a density of 2x106 million cells per cm2. 

The hybridization tubes (n=2) were then placed on a rotisserie (Fisher Scientific, 

PA) and rotated at 8rpm inside a standard cell culture incubator operating at 
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37OC and 5% CO2 for one day+ 7days (static culture). The SPIO-labeled and 

unlabeled PDLSC-plated scaffolds were seeded in the PGA/PLLA scaffold in a 

similar manner. 

Monitoring tissue development process: The mechanical conditioning 

for the seeded scaffolds was developed in a u-shaped bioreactor shown on 

Figure 1. This bioreactor is capable of replicating physiological hemodynamic 

conditions during in-vitro tissue development, which has been widely recognized 

to be an essential aspect of engineered heart valve tissue formation (5,16). Post-

static culturing of the scaffolds (n=12) during a total of 8 days in the rotisserie, 

they were separated into two groups: static and flow. Scaffolds (n=6) were then 

then cultured also for a two week period in dynamic conditions, housed in the u-

shaped bioreactor being exposed to a physiologically relevant continuous flow 

rate (750 mL/min) which develops a shear stress of a 5-6 dynes/cm2 (18). The 

tissue formation studies were based on the SMC-EC-seeded-scaffolds, as well 

as the PDLSC seeded scaffolds.  

Figure 1: The u-shaped bioreactor for in vitro mechanical conditioning. 
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MRI of PDLSC-seeded Scaffold Inside Bioreactor: MRI datasets were 

collected on a 3.0-Tesla (123MHz) 60-cm bore magnet with a Magnetom Trio, 

(Tim, Simens) console using an actively shielded gradient set.  A transmit/receive 

15 channel knee coil that provides high resolution.  A 3D gradient echo pulse 

sequence with 60mm resolution and 11.2ms TE and 100ms relaxation time (TR) 

was employed to visualize the labeled PDSLC-seeded scaffold inside the 

bioreactor.  

Histology: SPIO-labeled PDLSC-seeded scaffolds were fixed and 

embedded with paraffin at different time points for the samples exposed to flow 

or static conditions. While the samples cultured under static conditions were fixed 

and embedded in paraffin at: 1-week post static culture, 2-weeks post static 

culture and 3-weeks post static culture. Samples (n=2 at each time point/group) 

were washed in PBS, and fixed in 10% formalin, then embedded in paraffin and 

sectioned at 10um. Sections were stained with hematoxylin and eosin for overall 

morphology. 

Fluorescence Validation: In order to see the migratory activity of PDLSC 

in the PGA/PLLA copolymer; and to validate the presence of iron through the 

fluorescent tag of the Bang’s particles, sections were mounted and stained for 

DAPI with Vectashield Mounting Media (Invitrogen, Carlsbad, CA)) and examined 

under an inverted fluorescent microscope. 

DNA Quantification: DNA was quantified after the 3 week by a technique 

adapted from Ramaswamy et al. (35). For each assay, thin samples (8x7X1 mm) 
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were cut from PDLSC/SMC-EC seeded scaffolds (controls, and scaffolds 

exposed to flow) along their long axis and weighed prior to extraction. Each 

sample was then placed in a microcentrifuge tube and extracted in 1ml of 0.125 

mg/ml papain solution for 10 hours in a 60OC water bath. The 0.125mg/ml 

papain solution must made immediately prior to use by adding l-cysteine 

dihydrochloride (Sigma Aldrich, St. Louis, MO) to a phosphate buffered EDTA 

solution (PBE, Sigma Aldrich, St. Louis, MO) to a concentration of 10 mM, adding 

papain (minimum 10 units/mg (P4762); Sigma) to a concentration of 0.125mg/ml. 

The PBE solution was made beforehand by adding sodium phosphate dibasic 

(Sigma) and Ethylenediaminetetraacetic acid (EDTA; Sigma Aldrich, St. Louis, 

MO) to deionized water at concentrations of 100 and 10 mM, respectively. The 

PBE solution needs to be balanced to pH 6.5 with 0.5 N hydrochloric acid (Sigma 

Aldrich, St. Louis, MO) and sterile filtered using a vacuum filtration unit (0.2 mm 

PES membrane; Nalgene Labware). The extracts were then assayed using the 

PicoGreen dsDNA quantitation kit (Invitrogen, Carlsbad, CA) as per the 

manufacturer’s instructions and using a Genesys 20 spectrophotometer (Thermo 

Spectronic, Rochester, NY). 

Extracellular Matrix Quantification: Collagen and sulfated 

glycosaminoglycans (S-GAG) were assayed following a similar technique used 

by Ramaswamy et al. (35). For the collagen assay, thin samples (8x7X1 mm) 

were cut from PDLSC/SMC-EC seeded scaffolds (controls, and scaffolds 

exposed to flow) along their long axis and weighed prior to extraction. Total 

collagen was extracted from samples using a solution of 0.5M acetic acid (Sigma 
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Aldrich) and pepsin ((1 mg/ml), Sigma Aldrich, St. Louis, MO). Each sample was 

the placed in a microcentrifuge tube and incubated in 1ml of extraction solution 

on a rocker table ((Orbitron Rotator); Boekel Scientific, Feasterville, PA) at 4OC 

for 16 hours. For the S-GAG assay, the same extract used for the DNA assay 

was utilized. Subsequent to the extraction procedure, the collagen and S-GAG 

extracts were assayed following the protocols of the manufacturer’s provided by 

Sircol and Blyscan assay kits. (Biocolor Ltd. Newtownabbey, N. Ireland) using a 

Genesys 20 spectrophotometer (Thermo Spectronic, Rochester, NY). 

4.4 Statistical Analysis  
Statistical analysis was performed utilizing the SPSS Software Version 

16.0 for the independent t-test for all proliferation and viability tests (n=5), as well 

as gene expression tests (n=3) from Aim 1. For Aim 2, four different groups of 

cells were compared; in addition we used ANOVA through MATLAB 7.12 to be 

able to compare the three groups pairwise (1 to 2, 1 to 3, 1 to 4, etc), so the 

probability of   an incorrect result would be: 1 - (0.95 x 0.95 x 0.95)   =  14.3% in 

order to prevent type I and type II errors. Finally, SPSS Software Version 16.0 

was also utilized for performing statistical analysis for extracellular matrix and 

DNA quantification results (n=3, replicates=5) from Aim 3. 
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5. RESULTS AND DISCUSSION PART I: SPIO MICROPARTICLE 

LABELING STUDIES FOR THREE DIFFERENT CELL POPULATIONS, 

IMPLICATIONS FOR TISSUE ENGINEERED HEART VALVES   
MR Imaging of Cells in Culture: We determined that vascular cells 

exposed to a concentration of 200 μg/ml of SPIO microparticles and incubated 

for a period 48 hours was optimum for detection by MRI (Figure 2). Similarly, 

PDLSCs were successfully imaged when exposed to a SPIO concentration of 

200 μg/ml and incubated for a period of 24 hours (Figure 2e) (36,37). 

 

Figure 2: (A-B) A cMR image of the SMCs with a 200μg/mL concentration of the SPIO particles. (A) 
Under 24 hours incubation time. (B) Under 48 hours incubation time. (C-D) A cMR image of the ECs 
under a 24 hours incubation time. (C) With a 100μg/mL concentration of the SPIO particles. (D) With 
a 200μg/mL concentration of the SPIO particles.  (E) A cMR image of the PDLSCs with a 200μg/mL 
concentration of the SPIO particles under 24 hours incubation time. 

Proliferation and Viability: Figure 3 and Figure 4 below show the 

proliferation and viability for the vascular cells (SMCs and ECs) unlabeled, and 

labeled for the three SPIO concentrations previously described after a 48 hour 

incubation time. Figure 5 and Figure 6 show the proliferation and viability for the 

PDLSC unlabeled and labeled at 200ug/mL. No significant (N.S, p>0.05) values 
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were found between proliferation and viability between labeled and unlabeled 

cells (SMCs, ECs, and PDLSCs). Viability for SMCs unlabeled cells (UC) was 

89±3.5%, while for labeled cells (LC) it was75±3%. ECs, viability of UC was 

89.8±2.7%, and LC was 87±2%. As for PDLSC (UC) was 96±1.3%, while for 

labeled cells (LC) it was 94±1%. Proliferation of all cell types was doubled 

measured over one week, and values were not significantly different (p>0.05) 

between LCs and UCs. 

 

Figure 3: Proliferation of human vascular cells SMC (green) and EC (red) unlabeled, and  SPIO-
labeled at three different concentrations: 50, 100 and 200 ug/m in a 48 hour incubation time. The 
values for both cell types at the different cell concentration did not have any significant differences 
(N.S) based on the independent t-test (n=5). 
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Figure 4: Viability of human vascular cells SMC (green) and EC (red) unlabeled, and  SPIO-labeled at 
three different concentrations: 50, 100 and 200 ug/m in a 48 hour incubation time. The values for 
both cell types at the different cell concentration did not have any significant differences (N.S) based 
on the independent t-test (n=5). 

 

 

Figure 5: Proliferation for PDLSC’s unlabeled and SPIO-labeled at a concentration of 200 ug/ml. 
There were no statistical  differences in the values based on the independent t-test (n=5). 



 25

 

Figure 6: Viability for PDLSCs unlabeled and SPIO-labeled at a concentration of 200 ug/ml. There 
were no statistical differences in the values based on the independent t-test (n=5). 

Iron Oxide Detection: The Prussian blue stain was positive for iron oxide 

particles inside the cells for the three cell lineages (Figure 7). On the other hand, 

positive red staining indirectly confirmed intracellular iron oxide uptake as shown 

in Figure 8 , Figure 9 and Figure 10.  
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Figure 7: Prussian Blue Stain taken at 100X. Scale bar=200μm. Blue dots represent the iron, while 
the cytoplasm is shown in a light pink color. (A) SMCs, (B) ECs and (C) PDLSCs cell populations. 

 

 

 

Figure 8: Immunofluorescence of SMCs taken at 100X, Scale bar=200μm (Left) and 200X, Scale 
bar=100μm(Right). Both images were stained for F-actin (green), DAPI (blue) and the fluorescence 
from the Bangs particles (red). 
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Figure 9: Immunofluorescence of ECs taken at 100X, Scale bar=200μm (Left) and 400X, Scale 
bar=100μm(Right). Both images were stained for F-actin (green), DAPI (blue) and the fluorescence 
from the Bangs particles (red). 

 

 

 

Figure 10: Immunofluorescence of PDLSCs taken at 100X, Scale bar=200μm (Left) and 200X, Scale 
bar=50μm(Right). Both images were stained for F-actin (green), DAPI (blue) and the fluorescence 
from the Bangs particles (red). 

 

qRT-PCR for SMC, EC and PDLSC Marker Genes: The change in cycle 

threshold (∆Ct) values were averaged and normalized with GAPDH using the 

∆∆Ct method (38). Fold changes were calculated as 2-∆Ct and the gene 
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expression ratio of each of the three types of cells (SMCs, ECs and PDLSCs) 

unlabeled relative to labeled indicated as shown on Figure 11, Figure 12 and 

Figure 13. Specifically, for SMCs GAPDH, B-1 integrin and Thy-1 were both 

expressed with no significant differences in UC and LC. For ECs, GAPDH, Flk-1, 

and VE-Cadherin were all expressed with no significant differences; while 

PECAM-1 was greatly expressed in LC compared to UC, and Tie-1 was 

expressed greatly in UC compared to LC. Lastly, for PDLSCs, GAPDH, Klf4, and 

Nestin were all expressed with no significant differences in both UC and LC. Also,  

Slug was expressed greatly in UC compared to LC. 

 

Figure 11: Quantitative RT-PCR of SMC unlabeled (2) and labeled with SPIO microparticles (2). Each 
column is normalized by GAPDH (endogenous gene). Values for all genes were not statistically 
different (n=3). 
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Figure 12: Quantitative RT-PCR of EC unlabeled (5) and labeled with SPIO microparticles (5). Each 
column is normalized by GAPDH. Values for all genes were not statistically different with exception 
of PECAM 1 and Tie 1 (P < 0.05) (n=3). 
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Figure 13: Quantitative RT-PCR of PDLSC unlabeled (5) and labeled with SPIO microparticles (5). 
Each column is normalized by GAPDH. Values for all genes were not statistically different with 
exception of Sox 2 and Slug (P < 0.05) (n=3). 

Treatments for congenital heart valve disease clearly need advanced 

procedures for examining the effectiveness of the treatment during in vivo 

conditions. MRI can be utilized in cellular processes to longitudinally track the 

fate of cells seeded on a specific scaffold. Noninvasive longitudinal monitoring by 

means of MRI is increasingly being utilized on processes related to cell and 

tissue engineering. These developments can drastically aid in the evaluation of 

tissue-engineered constructs (39,40). SPIO nanoparticles have been 

demonstrated to work in MRI investigations without harming the cell in any way 

(24-28). Terrovitis et al. showed that labeling BMSC’s with ferumoxides was not 

toxic to the cells, and they could even be further visualized in collagen 

gels/scaffolds (26). In another study performed by Ko et al (29) cellular MRI 

N.S 

N.S 

N.S 

P < 0.05 
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methodologies were demonstrated to allow for visualization of an implanted 

scaffold as well as the cellular behavior around the scaffold in a mouse model. 

He utilized SPIO-labeled-hMSCs, which were then cultured in a scaffold: gelatin 

sponge to support cell growth and proliferation (29). In a similar manner, MRI has 

been reported to be useful in monitoring tissue engineering heart valve (TEPV) 

growth and function in-vivo by Hill et al (22). As mentioned earlier, MRI allows 

cell detection by accelerated T2* decay, which are represented as hypointense 

regions caused by the intracellular iron oxide particles (41). This visualization is 

necessary from the beginning of the in-vitro culturing period of the engineered 

construct and could in theory be progressively tracked, even after implantation 

(41).  Harrington et al (42) utilized cellular MRI to track the fate of SPIO labeled 

macrophages seeded onto functional tissue engineered vascular grafts (TEVGs) 

through serial imaging. In their study, seeded cells were rapidly lost from 

implanted scaffolds instead of progressing into cells in the neovessel as 

hypothesized by their group. However, their findings were a successful 

application of noninvasive MRI for a serial study of cellular level processes in 

tissue engineering (42).  

In this study, the three cell lineages (SMCs, ECs and PDLSCs) proliferate 

and were viable after being labeled with SPIO microparticles at 200 μg/mL They 

were successfully visualized using T2* contrast by MRI 1 week post-labeling. 

MRI slices were co validated by Prussian blue staining and fluorescence 

microscopy confirmed the presence of the ferumoxide particles as evidenced by 

the detection of the co-labeled red tag of the Bang’s particles intracellularly. The 
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migratory activity of the cells could also be tracked longitudinally during their 

developmental process, which would permit us to understand their in vivo 

hemodynamic environment in future work. 

6. RESULTS AND DISCUSSION PART II: PDLSC AS A POTENTIAL 

CELL SOURCE FOR HEART VALVE TISSUE ENGINEERING  

 Cell Phenotype: The ∆Ct values were averaged and normalized with 

GAPDH using the ∆∆Ct method (38). Fold changes were calculated as 2-∆Ct and 

the gene expression ratio of each of the four groups (negative control, 

differentiating media, BioFlux, and differentiating media + BioFlux) indicated as 

shown on Figure 14. ANOVA test was performed to compare the four groups 

pairwise (Table 2 through 7). Table 8 summarizes the gene expression 

comparison among all groups. Table 9 on the other hand shows the percentage 

increase of gene expression of all groups compared to group 1. There was an 

increased percentage of group 4 over groups 2 and 3 in genes Thy-1, Pecam-1 

and Flk-1 and Ve-Cadherin. 

Based on results from qRT-PCR on Figure 14, P-values from Tables (2 

through 7) as well as gene expression comparison (Table 8) and percentage 

increase comparison (Table 9) it was determined that the highest gene presence 

for both smooth muscle cells and endothelial cells was produced from RNA 

extracted from group 4, i.e., PDLSCs exposed to our differentiating media and 

flow in the BioFlux system (1dyne/cm2). There was a significant affect (P < 0.05) 

of these two variables for the cells to positively express genes for both smooth 

muscle  (beta-1 integrin and Thy 1) and endothelial (Pecam-1, Flk-1, VE-
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Cadherin) cell phenotypes compared to all other groups. There were also 

significant differences (P < 0.05) in the expression of all genes when comparing 

them against each other as seen on Tables 2 through 8. However, these results 

also showed a considerable effect in the differentiative capacity of PDLSCs 

based on just flow  (group 3) or differentiation medium (group 2) as both of these 

groups developed gene expression in the qRT-PCR results. The effect of 

differentiation medium alone on PDLSCs was significant (P < 0.05) for EC gene 

expression over basal medium; however, it was not for SMC gene expression 

(Tables 2 through 7). Similarly, the effect of flow alone on PDLSCs compared to 

basal medium without flow was significantly different (P < 0.05) for both SMC and 

EC phenotypes. Therefore flow alone had a higher effect on the differentiative 

capacity of PDLSCs than the differentiative medium. Our control group (group 1) 

of cells that were cultured under their regular basal medium did not show 

significant expression of either SMC or EC phenotypes.  
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Figure 14: Quantitative RT-PCR of PDLSC (n=3). Group 1: Cells cultured in regular basal medium. 
Group 2: Cells cultured in differentiating media. Group 3: Cell cultured in basal medium and exposed 
to 1 dyne/cm2. Group 4: Cells cultured in differentiating media and exposed to 1 dyne/cm2. Each 
column is normalized by GAPDH. 

 

Table 2: P-value for GAPDH gene expression within the four groups. 

GAPDH 

Sum of 
Squares 
(SS) 

Degrees of 
Freedom 
(df)  

Mean of 
Squares 
(MS) F-Test P-Value 

Groups 0.78 3 0.26 6.97 0.0127 

Error 0.30 8 0.04     

Total 1.08 11       
  
Table 3: P-value for Beta-1-Integrin gene expression within the four groups. 

Beta-1-
Integrin SS df MS F-Test P-Value 

Groups 79.35 3 26.45 47.2 1.97 x10^5 

Error 4.48 8 0.56     

Total 83.83 11       
 



 35

Table 4: P-value for THY-1 gene expression within the four groups. 

THY-1 SS df MS F-Test P-Value 

Groups 45.84 3 15.28 17.99 0.0006 

Error 6.79 8 0.85     

Total 52.63 11       

 

Table 5: P-value for PECAM-1 gene expression within the four groups. 

PECAM-1 SS df MS F-Test P-Value 

Groups 162.39 3 54.13 277.59 2.01x10^8 

Error 1.56 8 0.20     

Total 163.95 11       

 

Table 6: P-value for FLK-1 gene expression within the four groups. 

FLK-1 SS df MS F-Test P-Value 

Groups 156.67 3 52.22 124.58 4.71x10^7 

Error 3.35 8 0.42     

Total 160.02 11       

 

Table 7: P-value for VE-CADHERIN gene expression within the four groups. 

VE-
CADHERIN SS df MS F-Test P-Value 

Groups 119.20 3 39.73 26.8 0.0002 

Error 11.86 8 1.48     

Total 131.06 11       

 

Table 8: Gene expression comparison among all groups 

Groups being compared Genes significantly different from Group 4 (p<0.05)

Group 1 vs. Group 4 B-1-integrin, Thy 1, Pecam-1, Flk-1, Ve-cadherin 
Group 2 vs. Group 4 B-1-integrin, Thy 1, Pecam-1, Flk-1
Group 3 vs. Group 4 Ve-Cadherin
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Table 9: Percentage Increase of Gene Expression per Group Compared to Group 1  GROUP 2 VS. GROUP 1 GROUP 3 VS. GROUP 1 GROUP 4 VS. GROUP 1
BETA-I-
INTEGRIN 

59.43% 98.92% 98.93% 
THY-1 -251.80% 92.06% 95.15% 
PECAM-1 92.07% 99.72% 99.87% 
FLK-1 99.25% 97.86% 99.887% 
VE-CADHERIN 99.53% 97.86% 99.51% 
 

Immunohistochemistry: PDLSCs from group 1 (negative control) did not 

stain positive for either alpha-sma or vWF (Figure 15 (A and B)). While PDLSCs 

from group 2 showed positive staining for both gene markers (Figure 15C, 15D). 

In a similar manner, PDLSCs from groups 3 and 4 stained positively for both 

smooth muscle (alpha-sma) and endothelial cell markers (vWF) (Figure 16 (A 

and B); and Figure (16 and D)). Positive staining was confirmed with positive 

controls, i.e. smooth muscle cells and endothelial cells (Figure 17 (A and B)). 
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Figure 15: (A and B) represents staining for alpha-sma for cells from group 1: negative staining (A) 
and group 2: positive staining (B), while Figure 9(C and D) represents staining for vWF for cells from 
group 1: negative staining (A) and group 2: positive staining (B). DAPI (Blue) marks the nucleus of 
the cells, while Texas Red (Red) marks either alpha-sma (A and C) or vWF (B and D). The images 
were taken at 20X, on an upright fluorescent microscope.  
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Figure 16: (A and C) represents positive staining for alpha-sma for cells from group 3 (A) and group 
4 (B), while Figure 10(B and D) represents positive staining for vWF for cells from group 3 (A) and 
group 4 (B). Texas Red (Red) marks either alpha-sma (A and C) or vWF (B and D). The images were 
taken at 20X, on an inverted fluorescent microscope.  

  

Figure 17: (A) represents positive staining to alpha-sma for mooth muscle cells, while (B) represents 
positive staining for vWF for endothelial cells. DAPI (Blue) marks the nucleus of the cells, while 
Texas Red (Red) marks either alpha-sma (A ) or vWF (B). The images were taken at 20X, on an 
upright fluorescent microscope. 

alpha-sma vWF 
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Over the past decade, the potential of BMSCs to provide regenerative 

treatment strategies in cardiac disease have been investigated (1,5-9). 

Researchers have found that MSCs differentiate in vitro into cardiomyocytes and 

smooth muscle cells, however, there has not yet been clear evidence of MSCs 

differentiation to endothelial lineages under solely biomechanical environments 

(8, 43, 44). Embryonic stem cells (ESCs), on the other hand have been shown to 

have a high potency to develop cardiac phenotypes including both SMCs and 

ECs (13,14). In our study we utilized PDLSCs because subpopulations of this cell 

lineage have shown to express ESCs markers (Oct4, Sox2, Nanog, and Klf4), 

therefore exhibiting a higher differential potential than MSCs (12). Owing to their 

more primitive state, PDLSCs offer the possibility to differentiate into neurogenic 

(ectoderm), as well cardiomyogenic, osteogenic and chondrogenic (mesoderm) 

cell lineages suggesting extensive pluripotency capacities. To date, the only 

pluripotent stem cells with capacity to differentiate into the three germal layers 

(ectoderm, mesoderm and endoderm) are ESCs, however, based on recent 

findings by Huang et al (12) PDLSCs may provide similar pluripotency and 

perhaps the only cell type that can be derived from adults.  In addition, PDLSCs 

can easily be culture expanded and are potentially more immune-tolerant 

compared to BMSCs, and therefore could be used in an allogenic manner.  

These properties make PDLSCs an especially attractive cell source for 

cardiovascular tissue engineering therapeutics for use in applications such as 

severe congenital heart valve disease and anomalies. 



 40

             After examining phenotypic changes in the PDLSCs from all four groups 

using immunohistochemistry and RT-PCR we found out that there is a significant 

effect of culturing the cells with our differentiating cocktail media containing and 

dynamic conditioning by means of flow (1 dyne/cm2). Also, the use of only 

cocktail media, or shear stress  (1 dyne/cm2) also has an effect in valve like 

expression. However, flow has a much more dominant effect in comparison to  

biochemical stimulants in differentiating PDLSCs into valve phenotypes. 

7. RESULTS AND DISCUSSION PART III: VASCULAR CELL 

MIGRATORY ACTIVITY UNDER DYNAMIC STATES COMPARED TO 

STATIC CONTROLS BY SPIO-LABELED CELLS 

To observe cell behavior in a scaffold environment under static and steady flow 

states, we scaled up our studies to 3-D culture, with a focus on cell detection, 

visualization and distribution using the PDLSCs. 

MR Imaging: SPIO-labeled PDLSCs seeded in the PGA/PLLA scaffold 

under rotisserie culture for 1 week and subsequently housed in our u-shaped 

bioreactor were successfully labeled under a concentration of 200 μg/ml (Figure 

18).  The MRI scan parameters for the resulting T2*-weighted images that were 

acquired were with 60mm resolution and 11.2ms TE and 100ms TR. 
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Figure 18: MRI of PDLSC-seeded scaffolds in situ within the U-shaped bioreactor.  The figure shows 
axial and sagittal slices from T2*-weighted images.  Dark spots within the scaffold region are cells, 
which are hypointense due signal attenuation caused by the intracellular SPIO micro-particles. 

 Histology: We report representative histology for the PDLSCs, which 

were fixed and embedded with paraffin at different time points, cut in a 

microtome at 10µm in the axial direction, and stained for hematoxilyn and eosin 

(H&E) for general morphology (Figure 19). More cells were observed when 

cultured under flow conditions; meaning flow allows more cells to remain viable. 

Also, changes in morphology under flow states suggest induced differentiation. 
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Figure 19: H&E staining for general tissue assessment and organization of PDLSCs 2 weeks of 
culturing (A): Cultured under flow conditions. (B): Cultured under static conditions. Magnification is 
20x. 

 

Fluorescent Validation for PDLSC seeded scaffold: Sections were also 

mounted and stained for DAPI with Vectashield Mounting Media (Invitrogen, 

Carlsbad, CA)) and examined under an inverted fluorescent microscope to 

further validate the MR image for presence of the red tag contained in the Bangs 

particles for further validation of the iron oxide presence inside the cells (Figure 

20).   



 43

 

Figure 20: Immunofluorescence of PDLSC seeded scaffold  (A-B) Cultured under static conditions 
(C-D) Cultured under flow conditions. Magnification is 20x.  DAPI (nucleus), and Red (Bangs 
Particles). 

 DNA Quantification for SMC-EC-seeded Scaffolds: Based on our 

seeding density of 2x106 cells/scaffold, and results from Engelmayr et al (1) 

suggesting a seeding efficiency of 90% when utilizing PGA/PLLA as the 

scaffolding material we assumed that an average of 180,000 cells/scaffold were 

retained. Assuming a DNA content of 7.6 pg/cell (45), there was an initial DNA 

content of 13.68ug/scaffold. After 3 weeks of incubation the DNA concentration 

decreased to 4360 ng/g wet weight (68.1%) in the static group from the initial 

DNA concentration. Whereas in the group exposed to dynamic flow it decreased 

to 12720 ng/g wet weight (7.0%) as shown in Figure 21. The difference between 

the static and flow group is significantly different (p<0.05) meaning less cells died 

when they were exposed to flow. 

200um 200um 

200um 
200um 

A C 

B D 
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Figure 21: DNA content of SMC-EC seeded scaffolds after 3 weeks of incubation. Values presented 
are the mean of the measurements for 3 samples. Error bars indicate standard error. 

 

 Extra Cellular Matrix Quantification for SMC-EC-seeded Scaffolds: 

After the 3 week period, the collagen concentration was 436.8±15.04 ug/g wet 

weight in the group exposed to flow compared with 218.9±25.9 ug/g wet weight 

in the static group. There was a 99.5% increase in collagen in the group exposed 

to flow compared to the static group (p<0.05). On the other hand, the S-GAG 

concentration was 351.6±44.5 ug/g wet weight in the group exposed to flow, 

compared to 424.38±36.6 ug/g wet weight in the control group. This represents a 

17.1% decrease in the GAG production from the scaffolds exposed to flow in 

comparison to the static controls (Figure 22), which is not significantly different. 

P < 0.05 
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Figure 22: Composition content of SMC-EC seeded scaffolds after 3 weeks of incubation. Values 
presented are the mean of the measurements for 3 samples. Error bars indicate standard error. 
Insignificant comparisons are designated by ‘‘N.S.’’. The group exposed to flow exhibited a 99.5% 
increase in collagen compared to the static group (p <0.05) (n=3) (r=5). 

DNA Quantification for PDLSC-seeded Scaffolds: DNA was quantified 

in the same way as for the SMC-EC-seeded scaffolds. Similarly, a seeding 

density of 2x106 cells/scaffold was utilized, and 90% cell retention was assumed. 

Therefore based on the 7.6 pg DNA content/cell (45), there was an average initial 

DNA content of 13.68ug/scaffold. 3 weeks post culture of the scaffold, the DNA 

concentration decreased to 4130 ng/g (69.8%)wet weight in the static group and 

decreased 8830 ng/g wet weight (35.5%) in the group exposed to dynamic flow 

as shown on Figure 23. The difference between the static and flow group is 

significantly different (p<0.05) meaning less cells died when they were exposed 

to flow. 

N.S P < 0.05 
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Figure 23: DNA content of PDLSC seeded scaffolds after 3 weeks of incubation. Values presented 
are the mean of the measurements for 3 samples. Error bars indicate standard error. (n=3) (r=5). 

Extra Cellular Matrix Quantification for PDLSC-seeded Scaffolds: 

After the 3 week period, for the PDLSC-seeded scaffolds the collagen 

concentration was 400.2±13.2 ug/g wet weight in the group exposed to flow 

compared with 207.8±10.2 ug/g wet weight in the static group. There was a 

93.3% increase in collagen group exposed to flow compared to the static group 

(p<0.05). Furthermore, the S-GAG concentration was 296.0±15.6 ug/g wet 

weight in the group exposed to flow, compared to 307.5±15.6 ug/g wet weight in 

the control group. This represents a 3.7% decrease in the GAG production from 

the scaffolds exposed to flow in comparison to the static controls, which is not 

significantly different (Figure 24). 

P < 0.05 
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Figure 24: Composition content of PDLSC seeded scaffolds after 3 weeks of incubation. Values 
presented are the mean of the measurements for 3 samples. Error bars indicate standard error. 
Insignificant comparisons are designated by ‘‘N.S.’’. The group exposed to flow exhibited a 93.3% 
increase in collagen compared to the static group (p <0.05). (n=3)(r=5) 

 

Mechanical conditioning is believed to stimulate tissue formation in 

engineered tissues. It has been shown by researchers (9,18-21) that mechanical 

properties of engineered heart valves can be improved through bioreactor-based 

mechanical stimulation. The u-shaped bioreactor utilized in our study has the 

potential to provide physiological hemodynamic conditions during in vitro tissue 

development while keeping laminar conditions as shown by precise steady state 

states which is an essential aspect for tissue formation. The effects of fluid shear 

stress on tissue formation can then be evaluated by bulk protein, differentiation 

capacity, mechanical properties and cell signaling events.  

We were able to successfully image a 3D construct with ferumoxide-

labeled PDLSCs under MRI, and further validate the presence of iron oxide 
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indirectly via fluorescent microscopy. At the same time we showed the general 

distribution of the PDLSCs that were seeded onto a 50:50 PLLA/PGA blend of 

biodegradable scaffolds through H&E staining. Thus, cell visualization on 3-D 

scaffolds specimens could be successfully carried out in situ in the U-shaped 

bioreactor, intermittently, during the steady flow-conditioning period.  These 

findings demonstrate the ability to successfully conduct cell tracking studies on 

scaffolds that are undergoing a mechanical conditioning process in a longitudinal 

fashion, using MRI. 

An intrinsic goal of TEPV efforts is to recapitulate native valve extra 

cellular matrix protein concentrations, namely, collagen, GAG and elastin. In our 

study we found that mechanical stimulation by means of a physiological relevant 

flow (750 mL/min) augmented the collagen production in both EC-SMC and 

PDLSC seeded scaffolds after 3 weeks of culture (1 week static + 2 week 

dynamic). SMC-EC seeded scaffolds were subjected to dynamic flow exhibiting 

increased collagen mass production levels compared to our static controls. 

Similarly, PDLSC seeded scaffolds exposed to dynamic flow also displayed 

higher collagen formation than non-flow cultured scaffolds. This represents a 

similar behavior in tissue formation by both SMC-EC and PDLSC seeded 

scaffolds. Also, consistent with other researchers (1,5), we found a reduction in 

the GAG concentration when applying dynamic flow to the cell-seeded scaffolds. 

Flanagan et al and Balguid et al (46,47) performed some studies on GAG 

production, finding that the integration of a GAG constituent to the scaffold 

causes enhanced extracellular matrix production.   The accelerated collagen 
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formation rates in the flow-groups may limit the cells ability to synthesize large 

concentrations of GAGs simultaneously.  GAG concentrations in the TEPV 

constructs reflective of native valves may be reached by exogenous 

supplementation; alternatively, some level of initial static tissue culture may be 

necessary before initiating the dynamic conditioning protocols.  In addition we did 

not examine elastin levels in our experiments.  Thus, further investigations are 

needed in order to further optimize the tissue engineering protocol. 

DNA content of both SMC-EC and PDLSC scaffolds was decreased after 

3 weeks of culture on both static and dynamic groups. This would mean that less 

cells are retained in the tissue over time, however the ability of the cells to 

secrete more collagen increases with physiological flow conditioning.  

For future studies, we would like to incorporate the flex and stretch 

features of the u shaped bioreactor, and see how cyclic flexure affects tissue 

formation over a 3 week period.  

8. CONCLUSION  

In summary, we were able to detect spatial position of cells noninvasively 

using MRI.  The cells (SMCs, ECs and PDLSCs) were efficiently labeled with 

SPIO microparticles at an optimum concentration of 200µg/mL in combination 

with of transfection agents, protamine sulfate at a concentration of 4.5µg/mL for 

vascular cells and 12µg/mL for stem cells. The iron oxide presence inside the 

cells was confirmed   by fluorescence microscopy (red tag). We expect that the 
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cellular MRI techniques performed for the cell populations in this study will guide 

protocol optimization during in vitro to in vivo translation of TEPV constructs.  

 On a separate note, we found that PDLSCs subjected to differentiating 

media, and a shear stress of 1 dyne/cm2 induces differentiation to SMC and EC 

phenotypes. PDLSCs have the potential to become a single cell source feasible 

for the creation of tissue engineering pulmonary valves as they have the ability to 

support valve cell phenotypes (e.g. SMC s and ECs).  They can be easily culture 

expanded and possess sufficient plasticity to remodel into valve tissue thus 

making them an appealing cell source for heart valve tissue engineering.  

We studied the effects of mechanical stimulation by means of steady flow, 

by the use of our u-shaped bioreactor, in which we placed seeded SMC-EC and 

PDLSC seeded scaffolds and effectively obtained more robust collagen matrix 

production. Therefore, the study shows that both native cells (SMC-EC) and our 

viable cell source (PDLSC) both augmented levels of collagen production when 

stimulated by physiological levels of flow. Cellular scaffolds were also 

successfully visualized in situ in the u-shaped bioreactor and successfully 

validated by means of histology and fluorescence microscopy. 

Significance: This project has an overall impact in the field of TEPVs. 

Specifically, it leads to a better understanding of the cell distribution of vascular 

cells and stem cells under static as well as steady flow states.   Fluid shear 

stresses are one of the major physical stimulatory components of native heart 

valve and thus from a biomimetic viewpoint is relevant to heart valve tissue 
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engineering studies. Also, we introduced PDLSC into the heart valve tissue 

engineering field; they were presented as a potential allogenic cell source for 

creating heart valve constructs by demonstrating concomitant differentiation into 

EC and SMC phenotypes. In particular, more complete EC differentiation was 

observed under combined biochemical and flow states. VE-CADHERIN was 

uniquely expressed under these conditions, which is indispensable for proper 

vascular development. 

Future Work: We hope that future in vitro studies will include longitudinal 

MR imaging of SPIO-labeled cells (SMC-EC and PDLSC) seeded on PGA/PLLA 

to be able to understand further the migration of cells when exposed to flow 

conditions in the u-shaped bioreactor. These studies can be then compared to 

the findings from this project related to tissue formation, differentiative capacity, 

plus histological and fluorescent validation of the iron oxide presence inside the 

cells. In addition, other stress states such as pulsatile flow, cyclic flexure and 

dynamic tensile stresses individually or in a coupled manner, need to be further 

investigated.  Nonetheless this work has taken the first steps in delineating the 

role of a fluid-induced stress state on cells relevant to engineered heart valve 

tissue engineering and forms the basis for further work that will examine the 

mechano-biology of evolving heart valve tissues. 
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