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ABSTRACT OF THE THESIS 

RESOURCE PARTITIONING AMONG THREE MESOCONSUMERS AT A MARSH 

MANGROVE ECOTONE: A RESPONSE TO A SEASONAL RESOURCE PULSE 

SUBSIDY 

by 

Ross Boucek 

Florida International University, 2011 

Miami, Florida 

Professor Jennifer Rehage, Major Professor 

 Pulse subsidies account for a substantial proportion of resource availability in 

many systems, having persistent and cascading effects on consumer population dynamics, 

and the routing of energy within and across ecosystem boundaries.  Although the 

importance of resource pulses is well-established, consumer responses and the extent of 

resource partitioning is not well understood. I identified a pulse of marsh cyprinodontoid, 

invertebrate, and sunfish prey, entering an estuary, which was met by an influx of both 

marsh and estuarine predators. In response to the pulse, consumers showed marked diet 

segregation.   Bass consumed significantly more cyprinodontoids, bowfin consumed 

significantly more invertebrates, and snook almost exclusively targeted sunfishes.  The 

diversity of the resource pulse subsidizes multiple consumers, routing pulsed production 

through various trophic pathways and across ecosystem boundaries.  Preserving complex 

trophic linkages like those of the Everglades ecotone may be important to maintaining 

ecosystem function and the provisioning of services, such as recreational fisheries. 
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FIGURE CAPTIONS 

FIGURE 1.  Map showing the location of the five study sites in Rookery Branch in the 
upper Shark River, ENP. Study sites are shown in black circles, and black squares denote 
hydrological stations.  
 
FIGURE 2. Variation in prey CPUE (catch per unit effort) over sampling events for A) 
cyprinodontoids (white bars) and invertebrates (gray bars) caught in minnow traps, and 
B) for sunfishes caught via electrofishing. The solid black line shows marsh water depth 
(USGS hydrostation SH1) over the period of sampling. The dashed line indicates 
complete marsh drying.  
 
FIGURE 3. A) Variation in electrofishing CPUE (# of fish per 100 m of mangrove 
shoreline), and B) fish size (standard length for snook and bass, and total length for 
bowfin) for the three focal consumer species: bass (dotted black), bowfin (dashed light 
grey), and snook (solid dark gray). 
 
FIGURE 4.  Mean proportion of full stomachs per electrofishing bout across the four 
seasons for bass (dotted black), bowfin (dashed light grey), and snook (solid dark gray). 
 
FIGURE  5.  Mean numerical proportion of A) cyprinodontoids, B) macroinvertebrates, 
and C) sunfishes per stomach sampled across seasons for bass (dotted black), bowfin 
(dashed light grey), and snook (solid dark gray 
 

 

 

 

 



INTRODUCTION 

The importance of pulsed resources in driving ecological dynamics across 

multiple scales of organization has become increasingly accepted by ecologists (Polis et 

al. 1997; Marczak et al. 2007; Yang et al. 2008). Pulsed resources, defined as rapid 

increases in resource availability, followed by gradual declines, occur across a wide range 

of ecosystem types (Ostfeld and Kessing 2000; Yang et al. 2008), and often characterized 

by brief and intense events of high resource availability (Holt 2008; Yang et al. 2008). 

Though these spikes in resource availability may appear as outliers across spatiotemporal 

scales in resource heterogeneity, they can account for a substantial proportion of 

resources in many systems. Further, they have important effects on consumer abundance 

and coexistence, as well as food web dynamics and stability (Polis et al. 1997; Ostfeld 

and Kessing 2000; Huxel et al. 2002). For example, in beaches of the Bahamas, wrack 

deposited by storm events dramatically increases the abundance of detritivorous insects, 

which are then exploited by spiders and lizards. These spiders and lizards switch their 

diets from local herbivorous insects to this newly-available resource, thus releasing local 

herbivores from predation, and causing up to 70% decreases in local vegetation densities 

(Piovia-Scott et al. 2011).   

Pulses of energy that cross ecosystem boundaries are considered subsidies 

(Marczak et al. 2007), and also may have persistent and cascading effects on food web 

structure and dynamics (Ostfeld and Kessing 2000). These effects are dependent on the 

frequency and intensity of pulsed events, the diversity of the pulse subsidy, and the 

trophic placement of pulse consumers (Polis et al. 1998; Anderson et al. 2008). Pulses 
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consumed by taxa at lower trophic levels typically result in  strong numerical responses, 

but  due to their limited mobility, pulsed production remains localized (Yang et al. 2008). 

Taxa in upper trophic levels exhibit functional responses, are often mobile, thus easily 

transport pulsed production across ecosystem boundaries. For example, black bears 

(Ursus americanus) consume up to 50% of salmon that pulse into streams of the Pacific 

Northwest, carrying partially-consumed carcasses into riparian forests that fertilize 

vegetation and increase the production of scavenging insects (Schindler et al. 2003). If 

subsidies consist of diverse resource types, they can promote the co-existence of multiple 

consumers through resource partitioning (i.e., populations or species using a subset of the 

total resource pool), thus compartmentalizing a pulse into different food webs (Huxel et 

al. 2002).  However, many studies aggregate consumer functional groups, which can 

prevent researchers from accurately quantifying subsidy effects (Marczak et al. 2007).  

Thus, a full understanding of the magnitude of subsidy effects necessitates the 

characterization of the response of individual consumer species.   

Consumer responses to resource pulses are typically expected to be a function of 

the degree of specialization on the subsidy, the rate at which consumer populations can 

numerically respond, and the mobility of consumers (Otsfield and Kessing 2000, 

Marczak et al. 2007). Generalist consumers are often more efficient at exploiting pulsed 

prey, because of diet plasticity that allows generalists to quickly and effectively capitalize 

on newly-available resources (Ostfeld and Kessing 2000; Anderson et al. 2008; Yang 

2005). Among generalist consumers, competition is expected to drive some asymmetry in 

the exploitation of pulsed production (Huxel et al. 2002; Baxter et al. 2005; Paetzold et 
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al. 2005). Coexistence of generalist consumers, either within populations or across 

species, may not be stable if they both take advantage of similar resource opportunities 

(Chesson et al. 2004). Thus, diverse prey subsidies that present more foraging 

opportunities can benefit multiple consumers, having a stabilizing effect on communities 

(Huxel et al. 2002). Pulse diversity may be particularly important when resources are 

consumed by multiple taxa at upper trophic levels that can route pulsed production across 

ecosystem boundaries (Polis 1997). For instance, in Venezuelan llanos, relatively 

unproductive rivers are strongly subsidized by the annual drying of adjacent floodplains 

(Winemiller 1989). As prey pulse into river channels, multiple piscivorous fishes 

originating from both floodplains and river channels partition a diverse prey assemblage.   

The effects of resource subsidies are typically pronounced in coastal and aquatic 

systems that are unproductive or have low levels of comparable resources (Polis et al. 

1997; Fausch et al. 2002; Power and Dietrich 2002; Marczak et al. 2007).   The 

Everglades are a rainfall-driven subtropical wetland, characterized by oligotrophy and 

phosphorous limitation (Gaiser et al. 2004; Ewe et al. 2006). At the southern end of the 

Everglades, graminoid freshwater marshes transition to an extensive mangrove-fringed 

estuary (Mclvor et al. 1994). These habitats have distinct fish communities, but patterns 

of fish abundance and distribution are strongly influenced by the same seasonal 

hydrological variation; which drives the extent of inundation and water levels in marshes, 

and salinity and tidal influence in the estuary (Chick et al. 2004; Trexler et al. 2005, 

Rehage and Loftus 2007). In the wet season, vast expanses of marshes become inundated, 

promoting secondary production and allowing smaller prey (i.e., cyprinodontoids and 
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decapod crustaceans), as well as larger-bodied fishes (e.g., centrarchids) to disperse 

across the landscape. As rainfall decreases in the dry season, water levels drop and 

marshes dry, effectively reducing habitat availability and quality. In response to this 

seasonal drydown, fish and other aquatic organisms disperse to the deepest habitats in the 

landscape (i.e., solution and alligator holes, central sloughs and canals; Trexler et al. 

2005; Rehage and Trexler 2006; Rehage and Loftus 2007; Parkos et al. 2011).  

 In the southern Everglades, freshwater fishes can take refuge into oligohaline 

tidal creeks as marshes dry (Rehage and Loftus 2007). Concentrations of marsh prey that 

enter the upper estuary also create a resource subsidy that consumers originating from 

estuarine, environments can exploit. For marsh taxa, movement into creeks may intensify 

predator prey interactions. However, the magnitude of the subsidy to estuarine food webs 

is unknown since estuarine consumers are forced to compete with freshwater species for 

marsh prey.  Thus, the goals of this study were to: (1) characterize the diversity, duration 

and magnitude of the marsh prey pulse into the Everglades mangrove region, (2) examine 

the response of estuarine consumer abundance and diet to the subsidy, and (3) investigate 

the extent of resource partitioning among estuarine and freshwater consumers. I sampled 

prey abundance, predator numerical responses, and predator diets in mangrove creeks 

continuously before, during, and after a marsh prey subsidy. I hypothesized that in 

response to marsh drying and the prey pulse: (1) both marsh and estuarine consumers 

would increase in abundance and feeding activity, but (2) consumer specialization and 

thus partitioning would be high  (3) As prey abundance and diversity decrease with pulse 
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depletion, I expected feeding activity to decrease, and consumer diet overlap to increase, 

as consumers are forced to share a small pool of prey 

 

METHODS 

Study System 

         The Everglades are a karstic rainfall-driven subtropical wetland, where water flows 

across shallow vegetated freshwater marshes into an extensive region of tidal mangrove 

forests (dominated by red mangroves, Rhizophora mangle; Fry and Smith 2002).  In the 

estuary,  production is largely driven by marine phosphorous brought in by tides, storm 

events, and groundwater inputs, which causes the system to function as an ‘upside down 

estuary’, with higher productivity in the downstream portion of the system (Childers 

2006; Ewe et al. 2006).  

I sampled fishes in first and second order oligohaline ecotonal creeks in the 

southwestern region of Everglades National Park (ENP). These creeks link upstream 

freshwater marshes to the mangrove estuary (Figure 1; 25°27'28 N, 80°52'32 W). In 

particular, this ecotonal region, known as Rookery Branch (RB), links the Shark River 

Slough (SRS), the main freshwater drainage for the southern Everglades, to the Shark 

River estuary (SRE). These two systems are a focal study area for the Florida Coastal 

Everglades Long-Term Ecological Research (FCE LTER, fce.lternet.edu). Previous work 

has shown that RB creeks and other oligohaline zones of the estuary function as dry-

down refugia for freshwater fishes (Rehage and Loftus 2007; McCarthy et al. 2011). 

Long-term marsh hydrology data (1986-2006) taken from USGS SH1 hydrostation (1.5 
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km upstream of sites; http://sofia.usgs.gov/eden/) show that marshes in the vicinity of 

study creeks consistently dry between January and May. On average, marshes stay dry 

for 33 ± 8 days before re-flooding again at the onset of the wet season. During the dry 

season, as rainfall and freshwater inflows diminish, salinities in creeks peak at 11 PSU 

(Boucek and Rehage unpub. data), potentially limiting freshwater fishes to these 

uppermost reaches of the estuary.  

 

Focal Taxa 

To examine how consumers partition marsh prey subsidies in the upper SRE, I 

sampled the abundance and diets of two dominant freshwater marsh mesoconsumers; 

largemouth bass (Micropterus salmoides) and bowfin (Amia calva), and one estuarine 

consumer, snook (Centropomus undecimalis). Sampling over the past six years at these 

sites shows that these three species account for 45% (± 2.0 SE) of the yearly 

mesoconsumer abundance in RB creeks (Rehage et al.; unpub. data). Florida gar 

(Lepisosteus platyrhincus) are another dominant mesocosumer, accounting for 48% (± 

2.0 SE) of predator abundance. However, due to their high site fidelity (Heithaus et al. 

unpub. data), low feeding rates (78% ± 6.0 SE of stomachs were empty, n = 149; Boucek 

and Rehage unpub. data), and potential gape limitations that would restrict them from 

sharing resources with focal consumers, I excluded gar from analyses presented here.  

 Although bass, bowfin, and snook co-occur at the ecotone, their physiological 

tolerances, habitat requirements, and foraging strategies differ.  Snook are a tropical 

euryhaline ambush piscivore found throughout the Caribbean in habitats ranging from 
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land-locked freshwater lakes to offshore reefs (Blewett et al. 2006; Muller and Taylor 

2006; Adams et al. 2011). Largemouth bass and bowfin are mesopredators found 

throughout Everglades freshwater marshes, including natural (Chick et al. 2004; Trexler 

et al. 2005) and man-made habitats (e.g., canals; Rehage and Trexler 2006). Largemouth 

bass are a temperate cruising piscivore (Carey and Wahl 2010; Norris et al. 2010). Unlike 

snook, which tolerate a wide salinity range (Muller and Taylor 2006), largemouth bass 

are limited to salinities below 15 PSU, and often prefer salinities less than 3 PSU (Norris 

et al. 2010).  Bowfin are a relic fish from the holostean lineage found throughout the 

Mississippi drainage, with wide tolerances to an array of abiotic conditions, except 

salinity (Scarnecchia 1992; Koch et al. 2009). Bowfin are cruising generalist predators, 

known to consume amphibious, invertebrate, and teleost prey in Everglades freshwater 

habitats (Loftus 2000; Jordan and Arrington 2001). Bowfin can tolerate salinities as high 

as 8 PSU, but experience mortality at 10 PSU (Hanson et al. 1976). Gapes are similar 

among the three consumers, thus no species should be restricted from consuming large 

prey items. 

Sampling Effort 

I sampled headwater creek shoreline and channel habitats at five fixed study sites 

in the RB region of SRE (Figure 1). Three of these sites were located at the upper most 

accessible reaches in first-order creeks, while two were located further downstream in the 

main stem of RB. These sites spanned the uppermost 3.2 km of the 25-km SRE, and 

averaged 1.1 ± 0.04 m SE in depth.  In order to capture variation in both prey and 

predator abundance, as well as predator diet in response to marsh drying, I sampled these 
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five sites repeatedly, every three weeks between November 2010 and June 2011 (nine 

sampling events). I sampled invertebrate and cyprinodontoid abundance (typically < 4 cm 

in length) using unbaited 3-mm, metal-mesh minnow traps (25.4 mm opening). Minnow 

traps are a commonly used but often biased sampling technique (Rozas and Minello 

1997; Layman and Smith 2001). To compensate for biases in catch due to trap placement, 

I deployed traps overnight in pairs, one at the water surface secured to mangrove 

proproots, and another set on the bottom.  I randomly set five pairs of traps across a fixed 

100 m stretch of shoreline at each site. Sampling via minnow trapping was conducted at 

all sampling events except January 2011. Fishes and macroinvertebrates captured in traps 

were fixed in 10% formalin and brought back to the lab for processing. I report minnow 

trap CPUE (catch per unit effort) as the sum of the overnight catches of the top and 

bottom trap.   

In addition to traps, I sampled creeks using a boat-mounted, generator-powered 

electrofisher (two-anode, one cathode Smith-Root 9.0 unit) to target the larger prey and 

predator taxa (typically 4-75 cm in length). Boat electrofishing is an effective sampling 

technique in freshwater habitats, including the Everglades (Burkhardt and Gutreuter 

1995, Chick et al. 1999), and has been used successfully to sample upper SRE fish 

communities (Rehage and Loftus 2007).  Sampling was standardized by conducting 5 

minute bouts (pedal time), and prior to analyses, CPUE was adjusted to a standardized 

length of shoreline (i.e., catches per 100 m). I recorded the distance traveled during all 

bouts using a GPS unit, and then adjusted CPUE for distance ((CPUE/distance 

traveled)*100 m). For all bouts, power was standardized to 1500 Watts according to 

temperature and salinity conditions (Burkhardt and Gutreuter 1995).  I conducted three 
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replicate bouts at each site (5 sites x 3 bouts x 9 sampling events = 135 electrofishing 

bouts). These replicate bouts were conducted at fixed points in each study creek, each 

200 m apart. At the end of each bout, all captured fishes where counted, measured, and 

weighed. 

 

I then removed stomach contents of focal consumers captured at each bout via 

nonlethal pulsed gastric lavage (PGL).  Gastric lavage is an effective and relatively non-

lethal method of removing ingested prey items (Brosse et al. 2002; Hakala and Johnson 

2004; Barbour et al. in review). Pulsed gastric lavage removes stomach contents by using 

pressurized water from a tube inserted past the esophagus, causing regurgitation of 

consumed food items (Light et al. 1983; Hartleb and Moring, 1995; Fowler and Morris 

2008). I repeated this procedure until three consecutive treatments failed to produce any 

new diet material.  In snook and largemouth bass, PGL removes 100% of prey items 

(Hartleb and Moring 1995; Adams et al. 2009). I collected all stomach contents in a mesh 

screen, and fixed them in 10% formalin for later processing in the lab.  I identified prey 

items in stomach samples by matching fish and invertebrate traits to a reference 

collection from study sites (e.g., spiny ray counts, body, gill raker, jaw, and pharyngeal 

teeth morphology, and scale type). Prey items that did not have at least three identifying 

features were recorded as ‘unknown’. I weighed prey items separately, and reconstructed 

partially-digested prey items by matching tissue color, degree of digestion, and bone 

morphology in order to obtain accurate counts and length measurements.  
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Statistical Analyses 

I examined variation in consumer electrofishing CPUE and body size (standard 

length for bass and snook, and total length for bowfin) with two-way ANOVAs that 

tested the effects of species and time. For all analyses, I aggregated the nine sampling 

periods into four periods of interest (hereafter referred to as seasons): wet (four sampling 

events: November to February), early transition (early March sample), late transition (late 

March sample) and dry (three sampling events: April to June 2011). From electrofishing, 

I obtained CPUE of all sunfishes, a key prey item in consumer diets, and compared 

CPUE across sites and sampling periods with a 2-way ANOVA.  Sunfish and predator 

CPUE are reported as the number of individuals caught per 100 meters of creek 

shoreline. For prey caught in minnow traps, I report the sum of the top and bottom 

overnight catch, and aggregated these into two key functional groups: cyprinodontoids 

and invertebrate prey. A three-way ANOVA was used to examine the effects of season, 

functional group, and site on total CPUE of minnow trap pairs. To meet parametric test 

assumptions, I log transformed all CPUEs prior to analyses (Ln (CPUE+1)), and used 

Tukey’s pairwise comparisons in post hoc tests.  

 I report numerical values for all dietary analyses. Gravimetric measures were 

excluded since they often overestimate the importance of any single, large prey item 

(Hyslop 1980; Cortés 1997). Numerical counts were converted into proportional 

contributions to each individual’s diet during any one season. Consumed fishes that were 

not readily identifiable passed the level of ‘unknown fish’ were excluded from analyses 

(accounting for 30% of diet items), which is comparable to previous diet studies 

conducted on piscivorous fishes (Jepsen et al. 1997; Blewett et al. 2006; Adams et al. 
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2009).  I calculated two dietary metrics of interest: proportion of full stomachs per bout 

and numerical proportions of cyprinodontoids, invertebrates, and sunfishes found in diet 

samples. Because of nonnormality, I used Scheirer-Ray-Hare tests (equivalent to 2-way 

ANOVAs) to examine the effects of consumer species and season on the proportion of 

full stomachs, and the numerical proportions of cyprinidontoids, invertebrates, and 

sunfishes in diets. This test has been used in other diet studies, although it is often 

criticized for being relatively conservative (Dytham 1999; Meynier et al. 2008). I used 

Mann-Whitney U tests in post hoc comparisons (Meynier et al. 2008), and  SAS© 9.2 for 

all statistical analyses. 

 

RESULTS 

Pulse Dynamics: Small Prey 

 From November 2010 to June 2011, I collected 9744 fishes and 

macroinvertebrates (22 fish species and 5 invertebrate taxa) in minnow traps. Fish CPUE 

in trap pairs was dominated by bluefin killifish (Lucania goodei, 71%) and Eastern 

mosquitofish (Gambusia holbrooki, 24%), while the remaining 5% consisted of Florida 

flagfish (Jordanella floridae), gobies (Gobiosoma spp), and sailfin mollies (Poecilia 

latipinna). Of the invertebrates caught in traps, 99% were palaemonid shrimp 

(Palaemonetes spp), likely dominated by Palaemonetes paludosus (McCarthy et al. 

2011). During the wet season, catches were relatively low, averaging 2.9 fish and 1.5 

macroinvertebrates per trap pair. Once marshes upstream of the RB dried in mid-March 

(March 15th, 2011 for SH1, Figure 2A), There was a significant increase in both prey 
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groups (p < 0.011). Cyprinodontoids increased seven fold, while invertebrates showed a 

threefold increased (Table 1; Figure 2A). Increases in both cyprinodontoids and 

invertebrates within the estuary were relatively short-lived, lasting only six weeks. By the 

dry season sample, the abundance of small fishes and shrimp in creeks were significantly 

lower than during the wet season (p < 0.05).  

Sunfish Prey and Consumer CPUE  

I sampled a total of 2755 fish from 25 species over the course of the nine 

sampling events. Of these 25 taxa, 19 were considered potential prey items due to their 

smaller size. Among these prey taxa, 72% were sunfishes, dominated by dollar (Lepomis 

marginatus) and spotted sunfishes (Lepomis punctatus). Estuarine taxa accounted for the 

reminder of the prey component: 8% were hogchokers (Trinectes maculatus), 6% striped 

mullet (Mugil cephalus), 5% striped mojarra (Diapterus plumieri), and 4% ladyfish 

(Elops saurus). For the sunfishes, CPUE averaged only 0.8 fish per 100 m of mangrove 

shoreline during the wet season, but their abundance increased 6.5 fold in the early and 

late transition sampling events, matching the timing of marsh drying (Table 1; Figure 

2B). Sunfish numbers appeared to show a sharper decrease than the smaller prey, with 

their numbers dropping from 23 to 7 fish per 100 m of creek shoreline within a three-

week  period (Late transition vs. dry, p = 0.0001; Figure 2B).  

 

The three focal species in this study composed 60% of predator catches: 37% 

were largemouth bass, 14% were bowfin, and 9% were snook. Gar dominated the 

remainder of predator catches (39%). Across seasons, bass and bowfin numbers increased 
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by 8 and 32 fold respectively between the wet and early transition samples, matching the 

timing of marsh drying and the prey pulse (p < 0.001; Figure 2B). In contrast, snook 

numbers lagged behind, increasing from 0.3 to 2.5 fish per 100 m of shoreline between 

the wet and late transition samples (p = 0.014, Figure 2B). On average, snook numbers in 

the late transition season were comparable to bowfin numbers (3 fish per 100 m), but 

significantly lower than bass numbers (11 fish per 100 m; p < 0.001). 

 

Stomach Contents 

I lavaged every snook and bowfin captured in electrofishing samples (n = 99 and 

159, respectively), and approximately half of the largemouth bass captured (247 out of 

571 bass caught). Proportions of stomachs with prey among these three consumers did 

not vary between the wet and transition seasons (p > 0.095), but decreased significantly 

as resources depleted in the dry season (p < 0.004).  Across bowfin, bass, and snook, 

stomach fullness decreased from 83% in the early transition season to 43% in the dry 

season sample (Figure 4; Table 2).  

Overall, freshwater prey taxa, presumably of marsh origin, composed 93% of all 

diet items.  In the wet season, marsh invertebrates dominated diets of all consumers, 

accounting for 65% of prey items, while small fishes and sunfishes contributed relatively 

little (< 15% for each group). As marshes dried in the early transition season and fish 

prey became more abundant in the estuary, consumers began eating more 

cyprinodontoids (33% of prey items; Figure 5A), and sunfishes (41%; p < 0.040; Figure 

5B). During the late transition season, consumption of cyprinodontoids remained high 
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(40% of prey items), but sunfishes in diets decreased to 12% of prey items consumed (p = 

0.002). For invertebrates, consumption was minimal during the early transition season 

(24% of prey items), but increased in subsequent samples (43% in the late transition and 

60% of prey items in the dry season; Figure 5C).  

The consumption of cyprinodontoids and invertebrates varied across consumer 

taxa, but this contribution was not affected by season (Table 2). Across sampling periods, 

bass consistently consumed a greater proportion of cyprinodontoids than both snook and 

bowfin (40% vs. 19% and 16.5% of prey items respectively; p < 0.042; Figure 5A). 

Instead, invertebrates contributed more to bowfin diets (68% of prey items compared to 

49% for snook and 42% for bass, p < 0.058; Figure 5B). Sunfish consumption varied 

both across seasons and consumer species (Table 2; Figure 5C). In the early transition 

season when sunfish abundance increased, snook consumed more sunfishes relative to the 

other two species (80% of prey items vs. an average of 28% for the freshwater 

consumers; p < 0.020; Figure 5C).  But, consumption of sunfishes by snook decreased 

dramatically in the late transition season to 17% of prey items, which was similar to the 

amount consumed by bass (16%; p = 0.081), but higher than the 1% consumed by bowfin 

(p = 0.039). Lastly during the dry season, snook continued to eat more sunfishes, at least 

relative to bowfin (15% vs. 3%, p = 0.018; Figure 5C).   

DISCUSSION 

Although pulsed subsidies account for a significant portion of resource 

availability in many systems, studies often overlook how functionally-similar consumer 

species respond to resource pulses (Marczak et al. 2007).  Yang et al. (2008) noted the 
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need to consider pulsed subsidies from the perspective of the consumer. Thus, it is 

important to not only identify the bulk amount of pulsed resources consumed, but how it 

is routed through specific consumer taxa.  In this study, I identified a hydrologically-

driven allochthonous prey pulse that was partitioned among three consumers within the 

oligohaline zone of an Everglades estuary. Influxes of prey into the mangrove region may 

be extremely important, since estuarine prey made up only 7% of the diets across all 

consumers. Heavy reliance on allochthonous subsidies by consumers has been shown in 

other coastal and aquatic studies (Marczak et al. 2007). For instance, Paetzold et al. 

(2005) noted that 89% of terrestrial carabid beetle diets were derived from pulsed 

emergences of aquatic stream insects.  

Dietary analyses showed that the marsh prey subsidy was significantly partitioned 

among the three focal consumers.  At peak prey abundance, largemouth bass primarily 

consumed smaller-bodied cyprinodontoids, bowfin diets were dominated by invertebrates 

(most notably palaemonid shrimp), and snook almost exclusively consumed the larger 

sunfishes.  Differential resource use by consumers during pulsed events can have 

important ecological ramifications, especially if consumers are long-lived and highly 

mobile, and thus able to transport pulsed production across ecosystem boundaries (Polis 

et al. 1997). In this study, snook likely exported marsh production to the mid and lower 

estuary and potentially to marine habitats, while bass and bowfin routed it back to 

marshes upon reflooding. If these highly abundant and ephemeral resource pulses occur 

in some predictable fashion, long-lived consumers may track them, potentially creating 

predictable, energetic linkages across ecosystems boundaries (Polis 1997; e.g., Rosenblatt 
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and Heithaus 2011). These pulses of high resource availability may be particularly 

important for fishes, which have oversized stomachs relative to body size, likely an 

evolutionary response to high temporal resource heterogeneity (Armstrong and Schindler 

2011).   

Previous work shows that resource pulses are often met by two types of 

consumers, opportunistic residents and mobile specialists (Yang et al. 2008). 

Opportunistic residents are local generalist consumers that rapidly respond to pulsed 

resources (Watt et al. 2000; Spiller et al. 2010), whereas mobile specialists actively track 

patchy and asynchronous prey (Yang et al. 2008).  Snook may be considered mobile 

specialists that move upstream for a short period of time to exploit sunfishes, this may be 

particularly true for larger individuals. Like snook, speckled peacock bass (Cichla 

temensis) move down the Cinaruco River during falling water periods to take advantage 

of pulses of floodplain S. kneri prey (Hoeinghaus et al. 2003).  As sunfish abundance 

dropped, snook abundance remained the same, but mean size in study creeks decreased, 

indicating a replacement of adult snook by smaller conspecifics. Adult snook have been 

shown to cannibalize smaller juvenile and subadults elsewhere (Adams et al. 2006). 

Thus, smaller snook may not move into the Rookery Branch during the peak of the pulse 

in order to avoid predation.  

 In other Florida rivers, such as the Peace and Caloosahatchee, snook leave 

oligohaline systems in the spring and early summer likely to spawn at the coast (Blewett 

et al. 2009).  . Adams et al. (2011) showed significant site fidelity by snook in spawning 

grounds in Charlotte Harbor, but whether they express similar site fidelity in the context 
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of foraging is unknown. Ongoing tagging work aims to examine if snook repeatedly 

return to Everglades headwater creeks to take advantage of seasonal prey subsidies. In 

contrast, bowfin and bass were displaced from marshes as a result of seasonal dry down. 

Thus, the degree to which they are actively tracking the pulse is unknown, but it is 

plausible that they experience higher foraging success in mangrove creeks relative to the 

more complex, vegetated marshes. Habitat complexity is often negatively related to 

foraging efficiency; particularly for piscivorous taxa such as bass (Valley and Bremigan 

2002).   

Overall, snook abundance in 2010-2011 was relatively low compare to previous 

years, when snook numbers during marsh drying were similar those of bowfin (R.E. 

Boucek, unpub. data). These low numbers are likely the result of an episodic cold event 

that killed approximately 80% of snook in southwest Florida during winter of 2010 (A. 

Adams, unpub. data). Cold fronts can occur from September to April, dropping water 

temperatures below lethal limits (9-14°C; Muller and Taylor 2006). During sampling, 

snook were absent from study sites in December 2010 and February 2011, when water 

temperatures reached 12.5°C. Cold fronts may alter snook distribution away from RB and 

to warmer waters downstream, resulting in short periods of predator release for sunfish 

prey. Thus, temperature has the potential to strongly mediate the degree to which this 

pulse contributes to snook foraging and overall population performance, not unlike its 

overwhelming effect on other ecological processes (Gilman et al. 2010). With climate 

change predicted to increase the frequency and intensity of cold events in South Florida 
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(Noss et al. 2011), the routing of energy across marsh and estuarine compartments of the 

system may be altered.  

The mechanism by which snook detect and track the pulse is not known. The fact 

that their increases in abundance are slightly delayed to those of marsh consumers 

suggest that cues may be involved. One possibility is that snook rely on general cues that 

are correlated with the prey pulse, such as increase salinity (e.g., Orrock et al. 2004). 

Else, snook may routinely sample the upper estuary to determine prey abundance. Future 

work that tracks consumer movements across the estuary will help understand the 

mechanisms underlying prey pulse detection.  

Although there was no significant increase in feeding activity in response to the 

marsh prey pulse, consumer diets shifted at the onset of marsh drying. Bass and snook 

shifted from consuming primarily invertebrates during the wet season to strictly 

piscivorous diets. However, bass consumed the smaller cyprinodontoids, while snook 

consumed the larger sunfishes. Although bowfin did not incorporate more fish into their 

diets, they consumed more marsh invertebrates.  Thus, consumers are partitioning this 

relatively diverse pulse (Huxel et al. 2002), but snook may be receiving the most 

energetic gain from the pulse, since sunfishes are substantially larger (> 6 cm SL) and 

likely provide more energy per prey unit (Thierry et al. 2011). Resource partitioning in 

Venezuelan rivers shows that among three Cichla spp., C. temensis targets significantly 

larger prey than C. orinocensis and C. intermedia, and as a result, is the only one to see a 

fitness gain (Jepsen et al. 1997; Hoeinghaus et al. 2006).  
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Diets frequently include prey that consumers are most efficient at capturing, not 

necessarily those that provide the most energetic gain relative to handling time (i.e., 

optimal diet theory), nor the ones that are most often attacked (i.e., ‘active predator 

choice’; Sih and Christensen 2001). Therefore, consumer prey ‘preferences’ reflect 

capture success that is strongly influenced by prey behavior (e.g., refuge use and 

mobility). Antipredator behavioral tactics affect predator-prey habitat domain overlap, 

encounter rates, and escape responses (Sih and Christensen 2001; Schmitz 2007). For 

instance, cyprinodontoids dominated bass diets relative to other prey. Bass are relatively 

smaller visual predators that may occupy and successfully forage in shallower littoral 

zones that are inhabited by these smaller-bodied prey (Chick and Mclvor 1997). Snook, 

as the largest predator, may be better at capturing and handling large sunfish prey. Also 

snook are relatively mobile (Muller and Taylor 2006), thus may be better at tracking high 

sunfish patchiness across the landscape (Mundahl et al. 1997). Compared to bass and 

snook, bowfin are benthic foragers that prefer turbid waters and structurally complex 

habitats (Koch et al. 2009). Consequently, their ability to detect and capture invertebrates 

hidden within the substrate or embedded in matrices of prop roots ,may be higher.  

Although prey behaviors and consumer foraging styles strongly influence predator 

‘preference’, other factors such as competition and predation may also affect consumer 

diets (Schmitz 2007).  

 

Overall, seasonal marsh hydrology effectively created a resource pulse that 

subsidized and concentrated large-bodied predatory fishes in an upper Everglades 

estuary. The diversity of the pulse provided foraging opportunities that wereexploited by 
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multiple consumers with different foraging tactics, thus routing pulsed production 

through multiple pathways and across ecosystem boundaries.  Understanding and 

conserving complex trophic pathways within estuaries and coastal systems is of particular 

importance, since they can play a vital role in the provisioning of ecosystem services 

(e.g., fisheries; Worm et al. 2006). Further, resource pulses have been shown to allow for 

the coexistence of multiple consumer species, through increased trophic diversity, 

ultimately promoting system resilience (Fausch et al. 2007). In many estuaries, 

hydrological patterns have been altered to accommodate water and land use demands, 

resulting in the simplification of food webs (Adams et al. 2009; Layman et al. 2007).  

Climate change may have a similar effect. Thus, identifying these trophic linkages, and 

understanding their context-dependency, and implications for ecosystem function and 

service provisioning is of critical importance, and may prove helpful in successful 

resource management.  
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TABLE 1. Summary of ANOVAs, testing effects of season (S), taxonomic group (T), and site (C) on estimates of prey 

abundance from minnow traps and electrofishing, and of predator abundance and size, also from electrofishing bouts.   

 

    

Minnow trap 
CPUE  

Sunfish CPUE Predator CPUE Predator size (length) 

Effects df F   p   df F  p  df F  p  df F  p  

PS 3, 272 27.0 <0.001 3, 114 49.7 <0.001 3, 423 49.5 <0.001 3, 930 4.9 0.002 

T 1, 272 29.0 <0.001       3, 423 64.2 <0.001 2, 930 583.9 <0.001

C 3, 272 9.1 <0.001 4, 114 3.8 0.006             

T x S 3, 272 13.0 <0.001       6, 423 4.0 <0.001 6, 930 10.6 <0.001

C x S 12, 272 1.3 0.207 12, 114 2.6 0.004             

C x T 4, 272 3.3 0.011                   

C x T x S 12, 272 0.9 0.504                   
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TABLE 2.  Results of Scheier-Ray-Hare tests comparing effects of species and season on 

mean proportion of full stomachs (FS) and mean numerical counts of the three prey 

types, cyprinodontoids (C), invertebrates (I), and sunfishes (S), compared.  Significant 

statistical values are shown in bold. 

\Same comments as in table 1 apply here 

 

 

 

 

 

  

Diet 
variable 

Season           Predator species  Season x species 

df            F          P   df          F          P   df          F          P 

FS 3, 189   14.5   <0.001 2, 189      0.4     0.810 6, 189       0.8      0 .990 

C 3, 273   17.0   <0.001 2, 273      36.5   <.001 6, 273         5.6     0.470 

I 3, 273    9.5    <0.024 2, 273       11.1 < .001 6, 273         2.7     0.850 

S 3, 273   40.0   <0.001 2, 273       12.9  <.001 6, 273        17.7    0.010 
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FIGURE 1 
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