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ABSTRACT OF THE DISSERTATION 

VACUUM BRAZING OF ALUMINA CERAMIC TO TITANIUM FOR BIOMEDICAL 

IMPLANTS USING PURE GOLD AS THE FILLER METAL 

by 

Mohammad S. Siddiqui 

Florida International University, 2011 

Miami, Florida 

Professor W. Kinzy Jones, Major Professor 

One of the many promising applications of metal/ceramic joining is in biomedical 

implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% 

alumina ceramic using pure gold as the filler metal. A novel method of brazing is 

developed where resistance heating of C.P titanium is done inside a thermal evaporator 

using a Ta heating electrode. The design of electrode is optimized using Ansys resistive 

heating simulations.  The materials chosen in this study are biocompatible and have prior 

history in implantable devices approved by FDA. This research is part of Boston Retinal 

implant project to make a biocompatible implantable device (www.bostonretina.org). 

Pure gold braze has been used in the construction of single terminal feedthrough in low 

density hermetic packages utilizing a single platinum pin brazed to an alumina or 

sapphire ceramic donut ( brazed to a titanium case or ferrule for many years in 

implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP 

titanium has been performed and evaluated in this dissertation. Brazing has been done by 

using electrical resistance heating. The 96% alumina ceramic disk was manufactured by 

high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold 
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performs were purchased from outside. Hermetic joints having leak rate of the order of 

1.6 X   10-8 atm-cc/ sec on a helium leak detector were measured.   

Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit 

diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure 

alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on 

the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for 

evaluation since all are refractory (less dissolution into molten gold), all form stable 

oxides (necessary for adhesion to alumina) and all are readily thin film deposited as 

metals. Wetting studies are also performed to determine the wetting angle of pure gold to 

Ti, Ta, Nb and W substrates. Nano tribological scratch testing of thin film of Nb (which 

demonstrated the best wetting properties towards gold) on polished 96% alumina ceramic 

is performed to determine the adhesion strength of thin film to the substrate. The wetting 

studies also determined the thickness of the intermetallic compounds layers formed 

between Ti and gold, reaction microstructure and the dissolution of the metal into the 

molten gold. 
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Nomenclature Used for samples in wetting studies X Y Z  

X   : The sample metallization (1- W; 2- Ta; 3- Nb; 4-Ti) 

Y   : Time at braze temperature ( A- 1 sec; B- 30 sec; C- 90 sec; D- 
       300 sec) 
 
Z   : Sample number for test X, Y  

Example: 4D2 is a sample where Ti is the substrate and gold was kept molten over it for 

30 seconds and this is the second sample of this type. 4D2 is also written as Ti-300sec-2nd 

sample.   
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1. INTRODUCTION  

The aim of the present work is to evaluate the process parameters of vacuum brazing 

alumina ceramic to titanium using pure gold as braze filler metal by characterizing the 

materials interactions. The present work can be divided into the following subtopics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Summary of the work plan 

 

High temperature cofired 
(HTCC) sample preparation 

Surface preparation of ceramic disk 
for brazing by centreless grinding 

Mechanical testing of HTCC  

Thin film metallization 

Braze Development 

Wetting Studies 

Adhesion strength determination of 
sputtered Nb layer on alumina 

Nb demonstrate best as 
metallization of ceramic by thin 
film  

Firing of HTCC 

Braze performance (Hermeticity 
testing and Mechanical testing 
of brazed joint). 

Energy Dispersive X-ray 
spectroscopic (EDX) 
characterization of the wetting 
studies samples to determine the 
optimum time for brazing 
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1.1 CHALLENGES IN VACUUM BRAZING OF C.P. TITANIUM TO 

ALUMINA CERAMIC 

Joining of ceramics is more difficult than joining metal to a metal as ceramics are not 

wetted by the filler metals used for brazing. This non wetting tendency of ceramics 

requires surface modification to improve the wetting of the ceramic to the braze filler 

metal. This work is focused on joining alumina (Al2O3) ceramic to Ti metal using pure 

gold as the filler metal. Use of pure gold is desired as it releases thermal stresses (by 

plastically deforming the pure gold braze) when the joint assembly is cooled down from 

the brazing temperature to room temperature as it is biocompatible.  The disadvantages 

associated with using pure gold are, the high melting point of gold which is above the 

allotropic transformation of Ti and that titanium and gold react and forms a series of 

intermetallic compounds (IMCs) some which are brittle and could be detrimental to the 

performance of the joint assembly. The formation of these intermetallic compounds can 

be avoided or minimized by understanding the reaction and growth kinetics of the 

intermetallic with temperature and time which will then improve the joint strength. This 

has been achieved by heating the parts to be brazed resistively. Rapid electrical pulses are 

used to heat the part rather than using slow heating in a furnace providing sufficient time 

for the intermetallic compounds (IMCs) to form and grow. Ta electrodes are used as 

heating elements, a thermal evaporator (JEOL JEE-4X) is used for the vacuum 

environment and a high current digital power supply is used for the current source in the 

resistive heating process to braze the parts.  

The challenges that have to be overcome during brazing of ceramics to metals are (i) poor 

wetting tendency of ceramic by liquid braze alloy (ii) coefficient of thermal expansion 
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mismatch between ceramic and metal leading to stress build up at the interface and (iii) 

interactions between the braze and the metals. These three factors are discussed in details 

in sections 2 and 3 of this dissertation.  

1.2 FOCUS OF PRESENT WORK                                                                                      

Present research has been done in collaboration with Boston Retinal Project, a 

collaborative effort between Harvard Medical School, the Massachusetts Ear and Eye 

Institute, MIT and Cornell, with primary funding from the Veterans Administration (VA). 

This project is an effort made to develop an implantable retina device to restore sight 

FIU’s role is to develop a high density feedthrough which is manufactured from 

technology with a proven history in implantable electrical stimulators The Boston Retinal 

Project had a 18 I/O feedthrough and FIU’s Electronic Packaging Laboratory 

demonstrated the capability to fabricate a 331 I/O device, greatly increasing visual 

accuaty. A ceramic disk with 331 I/Os is brazed to a titanium ferrule using pure gold as 

filler metal. Brazing of Ti has to be performed in high vacuum Ti being very reactive 

metal to air, nitrogen or hydrogen. In the present work brazing is performed in vacuum of 

the order of 5 X 10-4 Pascal inside a thermal evaporator. The alumina ceramic is 

metallized in the region where the braze joint is to be made of prior to brazing by 

sputtering a thin film of a refractory metal that wets well to gold (initial work used 500 

nm thickness of Nb metal). Pure gold metal preforms of 99.99% purity are used a braze 

filler metal. Hermetic joints having leak rate of the order of 1.6 X 10-8 atm-cc/ sec on 

helium leak detector were demonstrated. The advantage of doing resistance brazing in the 

present work is that brazing could be performed at a faster ramp rates and the whole 

process done in less than a minute. This is significant as Ti reacts with gold resulting in 4 
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intermetallic compounds reaction between gold and Ti as can be seen from the binary 

phase diagram in figure 1.2 [1].  

 

 

 

 

 

 

 

 

Two of these intermetallic compounds might be brittle because they exhibit no solid 

solubility. The use of pulsed resistive heating restricts the time for molten gold to interact 

with Ti and hence the growth of these intermetallic phases is decreased. The problem of 

formation of intermetallic compounds could not be avoided entirely but is reduced 

considerably. The formation of IMCs was observed when the samples were analyzed 

using scanning electron microscopy (SEM) and scanning transmission electron 

microscopy (STEM). Wetting studies performed for gold on Ti surface shows reactive 

wetting and dissolution of substrate material. Another advantage of utilizing a rapid 

heating process is that Ti undergoes an allotropic transformation from alpha to beta phase 

at 883 oC and the grain growth kinetics in the beta phase is an order of magnitude faster 

Figure 1.2: Binary phase diagram of Ti and Au [1] 
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than in the alpha phase [2-3]. This causes large grain size in the end product leading to 

softer Ti metal, which is detrimental to the performance of the device.  

Wetting studies were also performed with gold on different metals to determine the best 

thin film for metalizing the ceramic. A lower wetting angle in both cases is desired as the 

lower wetting angle helps spreading and capillary rise of molten gold between the metals 

to be joined. Scratch testing was also performed to analyze the adhesion strength of the 

thin films to the alumina ceramic and three point bending was performed to evaluate the 

strength of the fired alumina.   
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2. LITERATURE REVIEW 

2.1 Metal/ceramic joining 

Metal to ceramic joining has been an area under investigation for last few decades 

because of its enormous scope in different fields like the aerospace industry or 

biomedical implants industry. A range of techniques are utilized for metal-ceramic 

joining depending upon the application and the base metal to be bonded. Ceramics and 

metals can be joined together by mechanical, direct or indirect processes [4-7]. Direct 

methods include brazing and indirect methods include diffusion bonding. Brazing would 

be discussed in detail in section 2.1.1. 

Joining ceramic to metal via brazing technique is utilized where joints might get exposed 

to temperature as high as 500 °C. Structural ceramics as Si3N4, SiC, Al2O3, AlN and 

ZrO2, have been successfully brazed to a number of metals and alloys [8,9]. Research in 

this area has lead to development of new and improved filler alloys [8].  

2.1.1 Brazing 

Brazing is a joining technique which does not involve any melting or plastic state of the 

base metal [10]. In this process coalescence is produced by heating to a temperature 

higher than 450 oC (if the liquidus is below 450 oC, the process is called soldering) and 

by using a filler metal that must have a liquidus temperature higher than 450 oC and 

below the solidus temperature of the base metal. The filler metal is distributed between 

the closely fitted surfaces of the joint by capillary attraction.  

Brazing has four distinct characteristics:  
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• The coalescence, or joining, is achieved by heating the assembly or the region of the 

parts to be joined to a temperature of 450 °C or above. 

• Assembled parts and filler metal are heated to a temperature high enough to melt the 

filler metal but not the parts. 

• The molten filler metal spreads into the joint and must wet the base-metal surfaces. 

• The parts are cooled to freeze the filler metal, which is held in the joint by capillary 

attraction and anchors the part together. 

2.1.2 Adhesion, Wetting, Spreading, and Capillary Attraction 

The Young’s equation for a molten drop resting 

on a substrate is shown in figure 2.1. 

γsv = γlv cosθ+ γsl  ……………………………. 

(1) 

Where, γsv = surface tension at the solid-vapor 

interface; γlv = surface tension at the liquid-

vapor interface γsl = surface tension at the solid-

liquid Interface.  

The derivation of Young's equation is made under 

 the assumptions of spreading of non-reactive 

 liquid on an ideal (physically and chemically inert, smooth, homogeneous and rigid) 

solid, a condition that is rarely met in practical situations. Nevertheless Young's equation 

is the most fundamental starting point for understanding of the complex field of wetting 

[11]. 

Figure 2.1: Sessile drop 
configuration, top wetting and 
bottom non wetting condition 
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With a decrease in the contact angle the liquid drop surface area increases and hence the 

total liquid surface free energy increases. The total surface free energy of the solid 

decreases concurrently. The driving force for wetting is thus γsv- γsl.  

When γsv < γlv and γsv < γsl < γlv ( for non reactive wetting), a steady state condition results 

with   θ > 90 degrees. In either wetting (γsv > γlv) or nonwetting (γlv > γsv),  case, if  the 

mating surfaces are not in intimate contact as in the case of an adsorbed carbonaceous 

matter, in this case γsl becomes larger that γsv and also γlv and hence a large obtuse contact 

angle forms which approaches towards 180 degrees. It is not favorable to use a 

nonwetting liquid as a braze filler metal as it lacks the capability of penetration of surface 

irregularities because of the lack of capillary behavior [10]. 

Young’s equation can be modified to represent a work of adhesion Ws, by taking the case 

of 0 degrees contact angle yielding cosθ value as 1. The resisting force to the spreading of 

the drop then can be expressed as  

  Ws = γsv - γsl - γlv …………………….. (2) 

In order for spreading to occur Ws should be positive.  

If a reaction between the molten drop and the substrate occurs, then the free energy of the 

reaction ΔGR/dAdt, contributes to the driving force for wetting, which normally always 

exceeds γlv. This situation leads to spreading of drop.  

Young’s equation for the case of reactive wetting would be  

𝛾𝑠𝑣 − �γsl+GR
dAs.dt

� ≥  γsv cos θ 
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The free energy required for the increase of the surface area of the drop as the perimeter 

expands provides the only resistance force for expansion of drop. Thermodynamically it 

can be proved that the driving force for wetting does not exceeds γlv, which results in a 

steady state contact angle [10].   

2.1.3 Challenges in Joining Ceramics 

It is a well know fact that ceramics are poorly wetted by brazing alloys. This poor 

wettability of ceramics is due to the ionic and covalent bonding in their lattice due to 

which the electron movement is restricted [12]. There are two approaches to overcome 

the poor wetting characteristic of ceramic materials: Metallization of the ceramic or 

active metal brazing.  

In the first approach a surface treatment is given to decrease the surface energy of 

ceramics and to alter the interfacial thermodynamics to provide a better wettable surface 

to brazing metal/alloy, this process is known as metallization of ceramics. There are 

several ways to metallize the ceramics as mentioned below.  

i. Classical Mo-Mn process (not Biocompatible) 

ii. Cofired W, Ni electroplating and Ag-Cu braze (not Biocompatible) 

iii. The TiH2 process   

iv. Mechanical metallization 

v. Thin film deposition over ceramic by Physical vapor deposition (PVD)/Sputtering 

(Biocompatible) 

Sputtering involves depositing a thin (less than a micron to few microns thick) coating of 

a reactive metal, such as titanium, Nb etc. onto the ceramic prior to brazing [13-15]. In 

Physical vapor deposition (PVD) a metal is vaporized, ionized and accelerated by a bias 
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voltage. Sputtering is another PVD process. Both DC and AC power sources are used. In 

a DC discharge, the target acts as the cathode of the process and is connected to the 

negative pole of the high tension source. The ceramic substrate becomes the anode of the 

discharge and is either grounded or is under a floating potential [16, 17]. As a discharge 

is generated between cathode and anode of a plasma reactor, Ar atoms are ionized and 

converts to Ar+ after losing an electron. The positively charged Ar ions are accelerated 

towards the negatively biased target and because of momentum transfer eject the target 

atoms from the target. These ejected target atoms goes in all the direction in the 

sputtering chamber and some of them deposit over the ceramic substrate and form a thin 

film [16]. Sputtering technique is as old as 1877 but this technique has undergone 

phenomenal developments since then. Sputtering is a very versatile process and 

essentially adherent and dense films from virtually any material can be deposited [18].  

 

 

 

 

 

Sputtering chamber is pulled to a vacuum level of the order of 10-8 torr before the Ar is 

injected into the chamber. Sputtering is usually performed at an Ar gas pressure of 10-3 

torr. Table 2.1 shows a table relating different units of vacuum.  

The parameters that determine the sputtered thin film qualitatively and quantitatively are 

power level, sputtering gas, and sputtering pressure. An important feature of sputtering is 

that stoichiometric films can be formed. The ceramic substrate over which the film is 

  bar Torr Pa(Nm-2) atm 
1 mbar =  1x10-3 0.75 102 9.869 x 10-4 
1 bar =  1 7.5 x 102 1 x 105 0.987 
1 torr =  1.333 x 10-3 1 1.333 x 102 1.316 x 10-1 
1 pa (nm-2)=  1 x 10-5 7.5 x 10-3 1 9.87 x 10-6 
1 atm =  1.013 7.6 x 102 1.013 x 105 1 
1 mm Hg =  1.333 x 10-3 1 1.333 x 102 1.316 x 10-3 

Table 2.1: Table relating different units of vacuum  
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deposited is cleaned in ultrasonic cleaner with organic solvents, successively in the order 

of Isopropanol, Methanol and Acetone. To avoid any residue left over from solvent 

cleaning the substrate can be cleaned using plasma ashing. A clean surface is an essential 

requirement for the thin film to adhere with the substrate, since the bonding is atomic in 

nature. Figure 2.2 (a) and 2.2 (b) shows the phenomenon of DC and RF sputtering 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

2.1.4 Other challenges in vacuum brazing of alumina ceramic to metals  

In the previous section it has been discussed that joining ceramic to metal is not a simple 

process and one of the reason being the poor wettability of ceramic by filler metals used 

in brazing. Another challenge that has to overcome to join ceramic to metal is the 

difference in the coefficient of thermal expansion between metal and ceramic surfaces 

[25]. When the brazed joint is cooled down from the brazing temperature to the room 

Figure 2.2: Film deposition by (a) DC and (b) RF sputtering  
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temperature there are significant stress build up at the interface [26]. One way to release 

or to minimize the residual stresses is the use of a ductile filler metal or use of a ductile 

metal interlayer that undergoes plastic deformation to alleviate these stresses and to keep 

the brazed joint sound and leak proof [5, 27-29]. The quantification of residual stresses 

built up during metal to ceramic joint has been investigated by previous investigators like 

Abhijit Kar et al. [30]. They used x-ray diffraction (XRD) to measure the residual stresses 

in the brazed joint. Some researchers have used functionally graded materials to 

minimize the residual stresses [31].   

The coefficient of thermal expansion of some of the materials of interest for the present 

work are mentioned below in table 2.2. 

 

Element Coefficient of thermal expansion ( X 10-6) K-1 
96 % alumina  7  
Nb  7.2–7.3  
Ti  8.4–8.6  
Ta    6.5    
W     4.5–4.6     
Au                                                               
     

14                                                                   

 

In the present work pure gold is used as braze filler metal which is very ductile and its 

used is expected to reduce the stress build up at the ceramic to metal interface. Pure gold 

brazing has been done in industry to braze Ti to alumina [32] although the details of the 

process are not made available and are held as trade secrets. 

 

 

Table 2.2: Coefficients of thermal expansion of materials of interest 
from room temperature to 100° C (lowest value to highest value) 
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2.2 BIOCOMPATIBLE, HERMETIC JOINING OF CERAMICS AND 

METALS  

2.2.1 BIOCOMPATIBLE ACTIVE BRAZING 

Lasater patented a brazing technique using titanium-nickel braze filler alloy [37]. Jiang 

et. al showed in their work that strong hermetic, electrochemical corrosion resistant joint 

can be formed by brazing zirconia-to-Ti-6Al-4V using titanium nickel (TiNi)-clad braze 

filler material [38]. In such cases Ti from the base metal reacts with the Ni filler metal 

and form a eutectic alloy at the interface. At the interface Ni2TiO4 phase forms, which is 

responsible for the bond development. In this work the researchers also reported that the 

brazed joints have good biocompatibility and have been successfully used for second 

generation neuromuscular microstimulators developed at the Alfred Mann Foundation, 

Santa Clara, USA. Active brazing using TiNi-50® to form brazed joint between alumina 

and Ti-45%Nb alloy for Cochlear implants and alumina to metal assembly brazed with a 

modified filler metal for artificial retinal project has also been used successfully.   

2.2.2 NOBLE METAL BRAZING 

Silver and platinum based filler alloy are more commonly used noble metals than copper 

and nickel and sometimes palladium and gold based noble metal alloys are also used for 

this technique. Such brazing is performed in air or even in oxygen rich environment to 

promote the formation of noble metal oxide at the interface which caused the bonding to 

occur. Correia et al investigated the In TZP, Ti joints using platinum, they reported that 

joints were failing at the interface [39]. Agathopoulos S et. Al in their study to joint 

tetragonal zirconia polycrystal (TZP), with Ti using 25 microns foil in between observed 

formation of intermetallic compounds of Au and Ti. They also observed that Ti diffused 
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through the molten pool of gold and reacts with alumina forming undesirable oxides of Ti 

[40]. Silver was also tested to form TZP/Ti joints using 35 μm foil of silver and the 

resulting joint had better strength than the joint using gold as filler metal. Also a thick 

zone of Ti3O2 forms at the interface having large holes causing non hermetic joints. When 

Zirconia was brazed to titanium and its alloys with palladium in an induction furnace, 

bonding formed at the interface but again the brazed joint contains pores, thus the 

hermeticity of such joints is a problem. 

2.3 WETTING AND SPREADING OF METALS ON DIFFERENT 

SUBSTRATES  

One of the very important criteria for any metal to be used as a filler metal in the brazing 

process is that it should wet and spread readily on the mating surfaces. Wetting can be 

defined as the ability of the molten filler metal to adhere to the surface of a metal in the 

solid state and, when cooled below its solidus temperature, should make a strong bond 

with that metal [10]. Figure 2.3 shows examples of wetting and de-wetting [10].  

 

 

 

 

 

 

 

 
     Figure 2.3: Wetting and dewetting 



 

15 
 

2.3.1 Contact angle 

When a metal melts on a substrate, it spreads to some extent on that substrate and then 

comes to rest making an angle shown in figure 2.4. The angle between the tangent drawn 

at the triple point between the three phases and the substrate surface is called as contact 

angle of that liquid with that substrate. Contact angle has been widely used for 

characterizing interfacial phenomenon, wetting dewetting of solid surfaces etc [47,48].  

This contact angle is the result of three surface tension forces acting at the triple point. 

The relation between these surface tension values and the contact angle is given by the 

Young’s equation as shown in equation 1 in section 2.1.2.                                        

Wetting can be classified in two categories namely  

1. Non reactive wetting    

2. Reactive wetting 

2.3.2 Non reactive wetting 

A liquid spreading on a substrate with no 

reaction/absorption of the liquid by 

substrate material is known as non-

reactive or inert wetting [11]. Spreading 

of water or polymeric liquids on glass or 

metallic substrate is an example of 

nonreactive wetting. Wetting of alumina 

ceramic by pure gold or pure silver is an  

example of non reactive wetting.   

 

 

 

 

 

 

 

 Figure 2.5: Molten drop of gold on 
alumina 

Figure 2.4: Sessile drop over a substrate 
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Figure 2.5 shows a molten drop of gold on alumina ceramic substrate forming an average 

wetting angle of 127 degrees [49]. 

2.3.3 Reactive wetting 

In reactive wetting the wetting process is influenced by reaction between the spreading 

liquid and substrate material.  

There may or may not be any formation Intermetallic compounds (IMCs) depending on 

the phase diagram of the two metals under study.  

Alteration of interface and possible formation of Intermetallic compounds are the two 

important features of reactive wetting that differentiate it from non-reactive wetting.    

 

 

 

 

Spreading of most of the non-metallic 

liquids on inert solids is generally non-

reactive type. The whole process is 

spontaneous and almost completes 

within small duration of time. This 

phenomenon is governed by 

capillary/surface tension, gravity and 

viscous forces in the order given.  

within small duration of time. This 

phenomenon is governed by 

capillary/surface tension, gravity and 

viscous forces in the order given.  

capillary/surface tension, gravity and 

viscous forces in the order given.   

 

 

Figure 2.6(a):Dissolutive wetting in 
Bi-Sn system without any formation 
of intermetallic compounds (IMCs).  

Figure 2.6 (b): Dissolutive wetting in Cu-Si 
system with the formation of intermetallic 
though not showing at this low 
magnification image 

Figure 2.6 (c): Dissolutive wetting in    
Au-Sn with IMC formation at interface.  



 

17 
 

On the other hand, spreading of metallic liquids on solid substrates is guided by 

additional factors such as diffusion, reaction, absorption, solidification, etc. The true 

equilibrium state is rarely achieved in such systems. Wetting and spreading studies 

performed by previous researchers have shown that for millimeter sized droplets the 

spreading time in dissolutive wetting ranges from a few seconds to several hundred 

seconds [50,51] which is more orders of magnitude higher than time taken for spreading 

in liquid metal/solid metal systems with negligible miscibility. Generally the time 

required for spreading in non reactive systems is around 10 ms [52,53]. 

Wetting in Bi-Sn is an example of dissolutive wetting without any formation of 

Intermetallic compounds [54], while wetting in Au-Sn system is an example of 

dissolutive wetting with the formation of Intermetallic compounds [55].  

Figure 2.6(a), 2.6(b) and 2.6(c) shows examples of dissolutive wetting without formation 

of Intermetallic in the first case while with the formation of Intermetallic compounds in 

the two later cases. 

2.3.4 Au-Ti system 

Au and Ti react and form a series of intermetallic compounds as shown in the figure 1.2. 

Gold exhibit excellent wetting characteristics towards Ti although the intermetallic 

compounds (IMCs) formation is undesired during brazing as two of the intermetallic 

compounds (IMCs) can be predicted as brittle phases from their binary phase diagram. 

The formation of intermetallic compounds of gold and Ti has been observed by S. 

Agathopoulos et. al., in their effort to braze tetragonal stabilized Zirconia (TZP) with 

Titanium using pure gold and gold titanium filler at 1100 oC [41]. They examined the 
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brazed joint by using EDS/back-scattering analysis technique and the reaction zone 

consisted of the following layers (from TZP to Ti): TiO2, TiAu6, TiAu2, TiAu, Ti3Au. 

According to older literature the phase TiAu6 was an equilibrium phase in Ti-Au 

diffusion couples, although newer data do not show TiAu6 as an equilibrium phase but 

rather TiAu4 [56]. The binary phase diagram of gold and titanium also indicates that the 

solid solubility of titanium in gold is around 10% which suggest that there would be 

dissolution of the titanium substrate when gold melt on titanium surface. 

2.3.5 Au-Nb system 

The Gold-Niobium binary phase diagram is shown in figure 2.7 below [57]. The 

maximum solubility of Nb in gold is about 57% while the maximum solubility of gold in 

niobium is about 36%.  

 

 

 

 

 

 

 

 

 Figure 2.7: Au-Nb binary phase diagram 
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Formation of intermetallic compounds (IMCs) like Au2Nb3 have been reported by 

Masahiro Kitada during heating of sputter deposited thin film of gold over Nb [58]. It has 

been reported by M. S. Wire et. al. that the Nb3Au compound formed after quenching 

from the high temperature α solid solution phase field show superconducting properties 

[59]. 

2.3.6 Gold Tungsten system 

Gold tungsten binary phase diagram does not show any formation of intermetallic 

compounds between the two components [60]. 

 

 

 

 

 

 

 

 

 

It has been observed from previous researchers that gold exhibit very good wetting to 

tungsten [61]. 

 

 

Figure 2.8: Au-W binary phase diagram 
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2.4 Nanoscratch testing of thin films 

Nanoscratch testing has been used successfully by other researchers in order to 

characterize the adhesion of sputtered thin film on substrates [62-65].  

Scratch testing can be performed by two ways: 

1. Constant load Nanoscratch test. 

2. Ramping force Nanoscratch test. 

Apart from determining the adhesion of a film to the substrate nano scratch test is also 

used to determine the wear properties and coefficient of friction of the thin film [66].  

2.4.1 Constant load Nanoscratch test 

In this test a constant normal load is applied on the indenter tip throughout the length of 

the scratch while the indenter scratches the surface of the sample. Figure 2.9 shows an 

SPM image of a scratch made under constant load on an aluminum sample [65].   

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Scratch made on Al surface using constant load testing mode utilizing a 
Berkovich tip 
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2.4.2 Ramping force Nanoscratch test 

In this variation of the test a ramping vertical force is applied on the indenter tip across 

the length of the scratch. A representative 10 μm, 2-D topographical in-situ SPM image 

obtained after a 1000 μN ramping force Nanoscratch test is shown in Figure 2.10. 

 

 

 

 

 

 

 

The data of lateral force Vs time is plotted as shown in the figure 2.11.  

 

 

 

 

 

When an abrupt change of the Lateral force occurs, the location where the film fails can 

be determined and the lateral force recorded at that point is referred as the scratch critical 

load (Lc or Pcrit). Shou Yi. Chang et. al has demonstrated the use of nano scratch testing 

Figure 2.11: Representative plot of Lateral force Vs time for a Nanoscratch test 

Figure 2.10: Scratch made on Al surface  diagram using ramping load testing mode 
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to determine the adhesion properties of SiOCH/SiCN interface in a multilayer structure of 

Si/PEOX/SiCN/SiOCH/SiCN multilayered film [67]. Figure 2.12(a) shows the 

penetration depth Vs load curve of nano scratch test under a maximum applied load of 30 

mN. It can  be seen that delamination of the film occur at the critical load of 9.5 mN and 

at a depth of around 260 nm. Figure 2.12 (b) shows a SEM image of scratch track.  

 

 

 

 

 

 

By using the following equations (4 and 5) they measured the critical stress for interface 

delamination σc and the fracture energy release rate Gc 

 

 

Where,  Pc = Critical load; dc = scratch track with μ = measured friction coefficient of 

indenter sliding given by the Nanoscratch tester = 0.15; υf = Poisson’s ratio of 

SiOCH/SiCN bilayer; t = total thickness of bilayer Ef = The average elastic modulus of 

the SiOCH/SiCN bilayer 

Fig. 2.12(a): Penetration depth versus load 
curve of nanoscratch test of Si/PEOX/ 
SiCN/SiOCH/SiCN film stack under a 
maximum applied load of 30 mN 

Fig. 2.12(b): SEM surface 
morphology along scratch 
track showing the beginning 
stage of interface 

 

……………..(4) 

……………..(5) 
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2.5 Modulus mapping at the Au-Ti interface  

Au-Ti binary system form a series of intermetallic compounds (IMCs) as shown in the 

phase diagram in figure 30. Modulus Mapping will result in the mechanical property data 

including the complex modulus map and a corresponding line profile map. Modulus 

Mapping would be used to characterize the mechanical properties of cross-sections of 

Au-Ti and other interfaces. The maps will illustrate the variation in properties between 

the different compounds/elements present at the interface. Figure 2.13 shows Modulus 

Mapping of a Metal Oxide Film at the interface done by Hysitron Company [68]. 

The average value of elastic modulus of commercially pure Titanium as reported by P. 

Majumdar et al by using nano indentation technique is 119±4.6 GPa and by using 

ultrasonic technique is   121±0.87 GPa [69]. After polishing the   samples were etched 

with Kroll’s reagent (10 vol. % HF and 5 vol. %  HNO3 in water) prior to performing the  

 

 

 

 

 

 

nano indentation testing. It is also reported by Mathew Donachie in his book on titanium 

that the elastic modulus of Titanium varies from as low as 93 GPa to as high as 120.5 

Figure 2.14: Young’s moduli (E) of 
the Titanium alloys. Error Bar ±SD 

Figure 2.15: XRD analysis of the cast 
alloys 

Figure 2.13: Map of complex modulus. Dotted 
line corresponds to line-profile map  

(b) Which illustrates the difference in 
mechanical properties across the cross-section  
of the metal-oxide film and its substrate 
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GPa [70]. The elastic modulus of 99.99 % pure gold is 74.4 GPA as reported by NIST 

[71]. The elastic modulus of cast 5, 10, 20 and 30 wt% gold alloys have been studied by 

Masafumi Kikuchi et. Al. and the reported values of the modulus of elasticity were 

plotted by them which are shown in figure 2.14 [72]. 

They also characterized their cast alloys for phase identification by using XRD technique 

as shown in figure 2.15. They reported that the elastic modulus’s values decreases till 20 

wt.% Au and then starts increasing which probably relate to the precipitation of Ti3Au 

phase for 30wt% Au.  

2.6 Nanoindentation test 

The nanoindentation test is one of the most developed techniques, which can provide 

information about the mechanical behavior of the material when it is subjected to 

deformation at the sub-micron scale.  The method developed by Oliver and Pharr allows 

determining the hardness and the elastic modulus from the nanoindentation load-

displacement data [73]. This method is specially suited for mechanical characterization of 

thin films where mechanical characterization at macro level is more difficult and complex 

[74-78]. Figure 2.16 shows a typical load vs. depth curve during loading and unloading 

during a nano indentation experiment. Along with the Young’s modulus, and hardness, 

the fracture toughness can also be determined as per equation 10.  

 

 

 

 

Figure 2.16: A typical curve showing loading and unloading during nano indentation 
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Pmax = Maximum load applied; Ac = area function, for Berkovich tip Ac is =24.5hhc = 

Contact depth; hmax = Maximum contact depth shown in Figure 1; Er = Reduced modulus; 

S = Slope during unloading; υi = Poisson’s coefficient of the indenter; υ = Poisson’s 

coefficient of the sample; Ei = Young’s modulus of indenter E = Young’s modulus of 

sample; Kc = Fracture toughness; α = empirical constant for a specific indenter; E = 

Young’s modulus calculated above; H = Hardness calculated above; c = crack length (can 

be measured using SEM); P = applied load 

Nanoindentation technique has been successfully used to characterize the mechanical 

properties of thin films deposited on a substrate. Figure 2.17 below shows an AFM image 

of a nanoindentation mark on an AlN thin film. The type of indenter tip used is 

Berkovich [79].  

 

 

(6) 

…(7) 

..(10) 

…(9) 

…(8) 
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Table 2.3: Comparison of hardness values from partial unloading experiments at 
indentation depths of 10% and 20% of the film thickness. Er corresponds to modulus 
value at 10% of the film thickness and Es corresponds to reduced modulus at 20% of 
film thickness [82]. 
 

 

 

 

 

Dietiker et.al. have studied the Nanoindentation of single-crystalline gold thin films [80]. 

They observed the trend that metallic thin films exhibit a size-dependent hardening 

effect. They investigated the properties of Au films in the thickness range from 31 to 858 

nm by nanoindentation. They measured the average reduced modulus as 79 GPa for Au 

film of 858 nm thickness while the reduced modulus was measure as 111 GPa for film 

thickness of 207 nm. The hardness of 858 nm thin film was measured as 1.07 GPa while 

207 nm thin gold film yields a hardness value of 2.79 GPa. All these values were 

measured at 10% of the film thickness. Table 2.3 shows the variation of the reduced 

modulus and the hardness values at 10% and 20% of the thickness of the film.  

 

Figure 2.17: An AFM image of a Berkovich indentation on AlN thin films obtained at 
an indentation load of 50 mN.  
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2.7 Four Point Bend Flexural Testing for Mechanical Properties of alumina 

Knowledge of the inherent mechanical strength of the fired alumina is critical to insure 

that the feedthrough component meets the historical performance of cofired alumina and 

that the strength indicates proper firing and excellent adhesion between the sintered 

alumina particles. Because ceramics have limited ductility but high compressive strength, 

the standard mechanical testing method is 3 or 4 point flexure testing, which yields a 

flexural strength at failure. Alumina being one of the most important electro ceramic [81-

85]. There are different standards for doing flexural testing of ceramic “JIS Testing 

Method for Flexural Strength (Modulus of Rupture) of High Performance Ceramics 

(R1601-1981) (Japan) ”, DIN 51110-3(Germany), MIL-STD-1942(MR) (US) However, 

the dominate standard is ASTM C 1161 is used to perform flexural strength testing of 

advance ceramic [86].  

 

2.7.1 ASTM C 1161 Specification 

The flexural strength is computed based on simple beam theory and it is assumed that the 

material is isotropic and homogeneous, and the modulus of elasticity in tension and 

compression are identical and the material is linearly elastic. The average grain size 

should be no greater than the one fifth of the beam thickness. Table 2.4 shows the 

possible fixture spans as per ASTM C 1161. Table 2.5 shows the possible dimensions for 

the sample sizes.  Figure 2.18 shows a picture of the loading span for both the three and 

four point loading fixtures for ASTM C 1161 standard. 
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Configuration  Support Span (mm) Loading Span (mm) 

A 20 10 

B 40 20 

C 80 40 

    

Configuration Width (mm) Depth (mm) Length (mm) 

A ~2 1.5 25 

B 4 3 45 

C 8 6 90 

 

Nomenclature and formulas used 

Flexural Strength S = 3*P*L/ (2*b*d2) ………………………………….. (11) 

Where S = Strength of ceramic beam in 3 point flexure; P = break force; L = Outer 

(support) span; b = specimen width and; d = specimen thickness 

The strain rate of loading is calculated as follows: 

ε = 6ds/L2  ………………………………………..(12) 

Where ε = strain rate; d = specimen thickness; s = crosshead speed, and; L = Outer 

(support) span. 

Table 2.5: Sample size as per ASTM C 1161 

 

Table 2.4: Fixture span as per ASTM C 1161 

Figure 2.18: The four point and thee point fixture configuration as per ASTM C 1161 
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The cross head speeds for different testing configurations are given in table 2.6.  

 

Configuration Crosshead Speeds, mm/min 
A 0.2 

B 0.5 

C 1.0 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.6: Cross head speeds for different configurations 
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3. EXPERIMENTAL PROCEDURE AND RESULTS 

3.1 Fabrication and Flexural strength testing of 96% alumina-High temperature 

cofired ceramic (HTCC) samples 

High temperature co-fired ceramic (HTCC) was processed as per the conventional 

cofired tape processing technique. HTCC tape was supplied by Maryland Ceramic & 

Steatite Co., INC. Street, Maryland, USA. A 96% alumina content formulation was used, 

with 2 % talc and 2% kaolinite clay as the glass component. The composition of the slip 

used fabricate the green tape supplied from the manufacturer is mentioned in table 3.1.  

 

 

 

 

 

 

 

The tape thickness was 5 mils and exhibited firing thickness of around 20% in the X-Y 

direction and 12.8% in the Z direction. Thermal gravinometric analysis (TGA) was used 

to determine the firing cycle of the tape. The TGA curve for the tape is shown in the 

figure 3. 1 Based on the TGA analysis the firing cycle is shown in the figure 3.2. This 

A-16 alumina       960.0 grams 

EPK Kaolin                    20 grams 

Nytal 400 talc                 40.0 grams 

Fish Oil, Z-3                   40.0 grams 

Xylenes 214.3 grams 

Ethyl Alcohol                 214.3 grams 

Benzyl Butyl phthalate   66.5 grams 

Polyalkylene Glycol       66.5 grams 

Polyvinyl Butyral, B-98 78 grams 

Table 3.1: Composition of HTCC tape 
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optimized firing cycle causes maximum organics burn up at low temperature which 

avoids the problem of delamination in the fired samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Thermo graviometric analysis (TGA) curves for the HTCC tape 

 

Figure 3.2: Firing cycle of green tape 
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Firing in furnace 

The processing steps for fabrication of samples are mentioned in the figure 3.3 below.  

 

 

 

 

 

 

 

 

 

There are five steps involved to fabricate the finished samples. First step is the laser cutting of the 

green tape to the required size of sheet. Green tape was cut into size using Class 3 laser from 

Universal Laser systems, Scottsdale, Arizona, USA, machine using wavelength of 630-680 nm. 

These sheets were then stacked together, placing the green sheets over an aluminum plate and 

vacuum sealing in a polythene bag. The stacked sheets inside the vacuum sealed bag were then 

subjected to isostatic lamination at 3000 psi and at 70 oC. After lamination the laminated 

tape was taken out of the vacuum sealed bag and mechanical cut. The mechanical cutting 

system is shown in figure 3.5 (a). It has a micrometer at the base where the sample is 

kept. Calculations were made for the prefired dimensions of the laminate which 

incorporated the shrinkage into account. After cutting, the samples were fired as per the  

Figure 3.3: Processing steps for the fabrication of samples 
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firing cycle. The fired samples were then subjected to edge chamfering using slurry of 

600 grit SiC particles suspended in glycerin. For chamfering the edges a special mounting 

holder shown in figure 3.5 (b) and 3.5 (c) was manufactured by machining which have 

grooves at 45 degrees, the sample was fixed to that groove using wax which melts at 70 

oC and keep the sample adhered to the holder when cooled. The average grain size of the 

alumina grains are 2.1 microns (which is much less than one fifth of the beam thickness 

as it is a requirement of the ASTM C 1161) as shown in figure 3.4.   

 

 

 

 

Chamfering was done only on the two long edges of one face. The chamfered face was 

the bottom face when placed in the testing fixture. The testing fixture is shown in figure 

3.5 (e). A broken sample is shown in the figure 3.5(d) showing the chamfered edges. 

3.1.1 Experimental Setup and fixtures used 

Flexural strength test samples were tested on EnduraTec model ELF 3200 series. 

Enduratec ELF 3200 is a DMA that perform dynamic tests on a wide range of materials, 

from very soft rubber to stiff nylons. The Dynamic mechanical analyzer (DMA) has the 

capability to measure properties in compressive, tensile, and flexural modes. The load 

cell goes up to 200N. Figure 3.5 (f) shows a picture of the experimental setup of the 

machine.    

Figure 3.4: SEM micrograph of alumina sample 
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Figure 3.5(a): Fixture used for 
cutting green laminated tape 

Figure 3.5(b): Steel stub with the 
groove over which the samples were 
glued for chamfering 

Figure 3.5(c): Setup used for 
chamfering the samples 

Figure 3.5(d): Chamfered sample  

Figure 3.5(f): Endura tech machine 
used for testing samples Figure 3.5(e): Loading fixture 
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3.1.2 Flexural Strength Values 

After careful chamfering of the edges to 0.12±0.03 mm the values obtained are shown in 

figure 3.6 which range from 309 MPa to 377 MPa.  

 

 

 

 

 

 

 

Mean value of Flexural strength = 337.3 MPa; Standard deviation = 30.27 MPa. 

Testing was done by ASTM C 116, test condition A, using a sample length of 25 mm. 

3.2     Fabrication of Ceramic disk and its metallization by sputtering 

Brazing of alumina ceramic to titanium metal using a pure gold filler metal is discussed 

in this section. Figure 1.2 shows the binary phase diagram of gold and titanium which 

depicts formation of 4 intermetallic compounds namely Ti3Au, TiAu, TiAu2, and TiAu4. 

Furnace brazing which brings Ti and Au for prolonged period of time in contact would 

not be good for two reasons.  

(1) Formation of interface layers of these intermetallic compounds 

thermodynamically, two of which can be predicted as brittle as they have minimal 
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Figure 3.6: Flexural strength values of chamfered specimens tested as per 
ASTM C1161 
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solid solubility. The formation of intermetallic phases has been shown by 

previous researchers during brazing of Ti with gold [41]. Presence of large 

amount of these brittle phases in the brazed joint interface is very deteriorating for 

the performance of brazed assembly. 

(2)  The second reason is gold melts at 1064 °C so the brazing temperature has to be 

higher than 1064 °C, while Ti undergoes allotropic transformation from α (HCP) 

to β (BCC) at 883 °C. The grain growth in beta phase titanium is more than an 

order of magnitude faster than in the alpha phase. If Titanium is maintained at 

temperatures above the allotropic transformation temperature for a time of a few 

minutes in the beta phase field, then grain grows to approximately mm size and 

this causes the metal to become soft. Since furnace brazing process is slow, this 

effect is more prominent in furnace brazing. Brazing using faster ramps using 

resistance heating should be processed in less than one minute minimizes grain 

growth.  

96% alumina ceramic was prepared by high temperature cofired ceramic (HTCC) 

processing. Green tape was purchased from Maryland ceramics. HTCC exhibits 20 % x-y 

shrinkage and a 12.8% z axis shrinkage. The tape was 5 mils thick in green state. 

Ceramic disk was manufactured in a similar way as the samples for flexural strength 

testing. All the calculation were made considering x, y and z axis shrinkage into account. 

After firing the disks were rough and were centreless grounded to give them a smooth 

lateral surface for sputtering. Centreless grounding needed a tolerance of 25 mils so the 
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dimensions of as fired ceramic disks were 313 mils which yielded a 288 mils diameter 

ceramic disk after centreless grounding.  

A picture of as fired ceramic disk and centreless grounded disk are shown in figure 3.7 

(a) and 3.7 (b) respectively. 

1. Centreless grinding was performed at Ferro Ceramic Inc. of Boston to 288 mils 

using 800 grit diamond wheel.  

2. These disks were then metallized by the sputtering technique.  The disks were 

masked with kapton to protect the vias and were prepared for the next step of 

sputtering the 500 nm thin film of Nb to metalize the ceramic in order to improve 

the wettability of ceramic towards the braze filler metal.  Only approximately 5 

mils in radial direction on each side of a diameter was left unprotected on one 

face, where sputtering needed to be done along with the lateral surface.  

3. Nb sputtering of 500 nm was done at Cornell Nano Science (CNS) facility over 

the lateral surface and the unexposed surface on one side only. A picture of thin 

film sputtered masked disk is shown in the figure 3.1 (c). After sputtering the 

masking is removed and the disk was cleaned.   
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Since alumina ceramic is non-wetted 

by gold, a sputter coating of Nb of 500 

nm thickness was done at Cornell 

Nano Science facility. Nb has almost 

same thermal conductivity as that of 

alumina and hence there is no thermal stresses generated because of thermal mismatch 

between the sputtered thin film and the substrate. Also Nb shows the best wetting 

behavior towards gold (which is shown in next section) and hence chosen to metallize the 

ceramic  

3.3 Wetting Studies 

Wetting angle determination experiment is performed in JEOL Model JEE-4X thermal 

evaporator. A technique similar to sessile drop technique is utilized to determine the 

wetting angle of liquid gold on different surfaces. Ti, W, Ta and Nb electrodes were cut 

in the shape shown in figure 3.9. Ti electrode is different in dimensions than other 

Figure 3.7(a): Fired Laser drilled 
ceramic Disk showing rough 
circumference 

 

Figure 3.7 (b): Centreless grounded disk 

 

Figure 3.8: 500 nm Nb thin film 
Sputtered ceramic disk with kapton  
masking on one face  
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electrodes in thickness. The Ti electrode is 20 mils thick while, W and Ta are 5 mils thick 

and Nb is 4 mils thick. These electrodes are heated resistively very slowly and held at all 

incremental values of power for 50 seconds to stabilize the temperature until the gold 

melts on top of these electrodes The voltage increments was 0.1 volt each time.  The 

experiment is performed in vacuum of the order of 2 X 10-3 Pascal. The duration the 

liquid gold was kept molten at these heating electrodes were 1 seconds (just when the 

gold melts), 30 seconds, and 90 seconds. In case of Au-Ti system an additional data point 

is collected at 300 seconds. For every individual time 3 samples are made. The samples 

were cross sectioned for further analysis to determine possible reaction at the interface 

and formation of Intermetallic compound (if any) which is specially critical for Au-Ti 

interface as the binary phase diagram dictates formation of 4 different Intermetallic 

compounds (IMCs). Temperature measurement is done by using a disappearing filament 

optical pyrometer model DFP 2000, manufactured by spectrodyne Inc. Range 1 (760 °C 

to 1240 °C) was used to determine the temperature of the electrode. The manufacturer’s 

claimed accuracy of the pyrometer for range 1 is 0.25% of reading. Ansys simulation 

corresponding to this electrode is shown in figure 3.9. Pure gold cylindrical samples of 

99.95% purity, of approximately 1 mm diameter and 1 mm height were cut out from a 

wire of 1 mm diameter and placed at the center of the heating elements. The pyrometer 

was targeted at the center of the electrode. Current and power calibrations were 

performed first without any gold to determine the power required to increase the 

temperature at the center of heating element to 1100 oC. The purpose of wetting studies 

was to determine the best thin film for metallization of alumina ceramic as alumina 

ceramic does not show any wetting towards gold. In the results section angles θ1 and θ2 
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are referred as the contact angles measured at two diametrically opposite points of the 

solidified gold drop cross sectioned across its center.   

 

 

 

 
 

 
 

3.3.1 Au-Ti system 

Au-Ti binary phase diagram is shown in figure 1. Gold exhibit very good wetting and 

spreading on Ti surface as can be seen from the measured value of wetting angle shown 

in table 3.2.  

 

 Ti-1second-
sample number 

Ti-30 second 
sample number 

Ti-90second-
sample number 

Ti-300second-
sample number 

 1st 2nd  3rd  1st  2nd  3rd  1st 2nd 3rd 1st 2nd 3rd 
θ1 62 60 68 46 59 56 45 45 32 33 40 37 

θ2 63 57 66 47 54 55 46 45 28 33 32 41 

θ(avg) 62.5 58.5 67 46.5 56.5 55.5 45.5 45 30 33 36 39 

 

 

 

 

Figure 3.9: Two dimensional drawing 
of electrode used for wetting studies 
(All the dimensions are in inches). 

Figure 3.10: Ansys simulation of 
electrode used for wetting studies 

Table 3.2: Contact angle values of different sample for Au on Ti 
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Standard deviation for θ1 = 4.25; θ30 = 5.5; θ90 = 8.8; θ300 = 3. 

SEM analysis indicates the dissolution of the substrate with time. Figure 3.14 shows the 

variation of the substrate dissolution with time. SEM imaging revealed fracture at the Au-

Ti interfaces for samples in which gold and Ti interacted for 300 seconds. Figure 3.12 (e) 

and 3.12 (f) shows fractured interface. Figure 3.13 also shows voids formation at the 

interface along with complete fracture at the interface. These voids were also found in 

some samples in which gold interacted with Ti for a smaller period of time like for 90 

seconds. The voids could be kirkendall voids in the intermetallic compounds and could 

have formed during the IMC formation.  

 

 

 

Figure 3.11: Graph showing the variation of contact angle with time at 1075±10º C 
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Figure 3.12 (c): Magnified view of solidified 
drop end showing wetting angle 

Figure 3.12 (b): Magnified view of solidified 
drop center showing substrate dissolution Figure 3.12 (a): Ti-90 sec sample 

Figure 3.12 (e): T-300 sec sample showing 
fracture at interface 

Figure 3.12 (f): T-300 sec sample showing 
fracture and void formation at interface 

Figure 3.12 (d): Sample Ti-90 sec 
sample showing IMC formation  
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3.3.2 Au-Nb system 

Au shows excellent wetting towards Nb metal. Wetting angle drops down very rapidly 

from 1 second to 30 seconds and then it changes very slightly till 90 seconds.  

 

 

 

 

 

 

Standard deviation for θ1 = 8.81, for θ30 = 2.18, for θ90 = 0.35. 

 

Figure 3.14: Graph showing variation of 
Ti substrate dissolution depth with time 

 

      Figure 3.15: Variation of wetting angle with time of gold on Nb at 1090±10 oC 

 

Figure 3.13: Magnified view of the circle 
shown in figure 3.25 (f) showing a clearer 
image of void formation and fracture at 
interface at 2000 X 
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 Nb-1second-sample 
number 

Nb-30 second sample 
number 

Nb-90second-
sample number 

 1st 2nd  3rd  1st  2nd  3rd  1st 2nd 3rd 
θ1 43 36 34 7 5 13 7 5 4 
θ2 57 34 35 7 8 8 5 6 4 
θ(avg) 50 35 34.5 7 6.5 10.5 6 5.5 4 

 

           

 

 

 

 

High magnification images at the Au-Nb also show intermediate layers as shown in 

figure 3.17 which are probably of the intermetallic compounds shown in the Au-Nb 

binary phase diagram.  

 

                    

Table 3.3: Contact angle values of different sample for Au on Nb 

Figure 3.16(a): Sample Nb-90 seconds 
sample (3C2) 

Figure 3.16(c): Drop center 

Figure 3.16(b): Drop end 

Figure 3.17: Au-Nb interface for Nb-90 
secs sample (3C-2) at 5000X 
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3.3.4 Au-W system 

Gold does not show very good wetting towards Tungsten. Although the wetting angle 

decreases with time at a temperature of 1090±10 oC as shown in figure 3.18.   

 

 W-1second-sample 
number 

W-30 second-sample 
number 

W-90 second-
sample number 

 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

θ1 122 107 127 127 113 106 90 97 99 

θ2 110 107 127 116 109 107 94 97 89 

θ(avg) 116 107 127 121.5 111 106.5 92 97 94 

  

Standard deviation for θ1 = 10.02, for θ30 = 7.70, for θ90 = 2.52  

 

 

 

 

 

 

          3.3.5      Au-Ta system 

         Figure 3.20 shows the Au-Ta binary phase diagram [87]. 

         

Figure 3.18: Graph showing the 
variation of wetting angle of gold to 
Tungsten with time at a contact 
temperature of 1090± 10 oC. 

 

Figure 3.19: Sample number W-90 
seconds sample (1C2) 

Table 3.4: Wetting angle values of gold on tungsten metal at 1090± 10 °C 
  

      113 
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The wetting of liquid gold towards tantalum metal is excellent and the measured wetting 

angle is very low. Figure 3.21 shows an image of molten gold on Ta substrate at 1090 

°C for a period of 90 seconds. The measured average contact angle for this sample is 12 

degrees. 

 

 

 

                                 

 

 

 

 

 

 

 

Figure 3.21: Sample number Ta-90 sec sample 

Figure 3.20: Au-Ta binary phase diagram 
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3.4 Scratch testing of sputtered thin Nb films over alumina substrate 

Nanoscratch experiment was conducted on sputtered thin films over polished alumina 

ceramic using Hysitron TriboIndenter TI 900 (Hysitron Inc., Minneapolis, USA). It has 

a horizontal capacitive transducer for applying normal load and two vertical capacitive 

transducers for measuring the lateral force experienced by the indenter during 

scratching. The Berkovich tip used for scratch testing the samples is in the form of a 

triangular pyramid with total included angle of 142.3 degrees and the radius of curvature 

of tip is 100 nm. Thin film of Nb metals of thicknesses 60 nm (sample number 5A) and 

540 nm (sample number 5B) were sputtered in Cornel Nanoscience facility. Alumina 

disks of roughly 8 mm in diameter and roughly 1.5 mm in thickness were polished 

before sputtering and their surface roughness was measured by using optical 

profilometery. The polishing sequence that was followed to polish alumina ceramic disk 

is first 9 microns diamond suspension was used and was subsequently polished by 1 

microns diamond suspension on cloth with manual polishing at a speed of 250 rpm. The 

polishing was done at each step for 15 minutes. A total of 5 reading were taken for each 

disks to find the average value of surface roughness as shown in table 3.4 below.  

 

 

 

 

 

 

  

Roughness at 5A 5B 
 Ra (nm) Ra (nm) 
Point 1 315 313 
Point 2 277 320 
Point 3 308 306 
Point 4 299 294 
Point 5 310 298 

Average 302 306 

Table 3.5: Surface roughness measured by optical profilometery for samples 5A and 5B 
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A picture of sputtered alumina disk is shown in figure 3.22.  

 

 

 

 

 

 

 

Some area of the sample was masked to produce a bare surface. Scratched of lengths of 

15 microns were made at across the interface. The vertical force was kept constant at 

8000 µN. After the load has reached the set value, the indenter starts scratching the 

sample at a speed of 0.5 µm per second. When the scratch length has reached 15 µm, the 

load is released. Figure 3.24 shows the lateral force vs. displacement plot corresponding 

to scratch 3 on disk 5A of scratch tests performed at samples 5A and 5B. The formula 

used to determine the adhesion strength is as follows: 

Adhesion strength=Maximum lateral force for delamination/area at delamination 

                        …………………………………………….. (13) 

Y = 8 X depth of indenter into the sample at  

delamination = 8 * x 

 

Considering that the tip has conoshpherical geometry 

Lateral surface area of a cone = πrl  

Where, r = radius of cone, l = slant height of cone, and l2 = r2 + h2, Where h = vertical  

Figure 3.23: Cross 
sectional View of a 
scratch 

Figure 3.22: Scratch test disk with Nb sputtering and some bare alumina regions 

Sputtered Nb film 

Bare alumina 

Y 

Depth of indenter tip into the 
sample at delamination = X 
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height of cone, in the present case. r = (𝑌
2
) = 4x and, l2 = r2 + h2 = (4x)2 + x2 = 17x2 

Lateral surface area of a cone = πrl = π*4x2*(17)1/2 = 51.78πx2 

Area at delamination that would be use in equation (1) would be half of this area. 

Area = �1
2
� ∗ 51.78πx2 = 25.89x2 

Table 3.6 shows adhesion strengths values obtained for samples 5A. Sample 5B did not 

yield any predictable values for adhesion strengths.  

 

Scratch 
number 

Indenter tip depth at 
the point of 
delamination 

Lateral area 
(denominator in 
equation 15) 

Lateral force 
for 
delamination 

Adhesion 
strength 
(MPa) 

 
2 308 2456029 1550 631 
 

3 177 811108 1950 2404 
 

4 182 857580 1450 1691 
 

 

 

 

 

 

 

Figure 3.25 shows an image of coating measured by SPM. The sputtered film has 

variation in thickness of the coating and hence the variation in the delamination force is 

observed.  

 

Figure 3.24: Lateral force (µN) vs. Lateral Displacement 

      

 

Lateral 
Force 

 
           Time 

 

Table 3.6: Adhesion strengths for sample 5A 
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Discussion: The large variation in the adhesion strength could be attributed to two 

reasons. 

1. There is variation in the thickness of coating at different places. 

2. The surface of the alumina substrate is not perfectly smooth and the scratch was 

penetrating the coating, changing the adhesion strength.  

3.5  Braze Development 

Figure 3.26 shows the experimental setup of JEOL JEE-4X model thermal evaporator 

used for brazing the ceramic disk to the Ti ferrule. The experiment is performed under 

high vacuum of 3 X 10-4 Pascal to avoid any formation of oxides of Ti. Ti ferrule, 

99.99% pure gold perform and Ta electrode are shown in picture 3.27 (a), 3.27 (b) and 

3.27 (c) respectively. 

Figure 3.25: Thickness profile measured by SPM attached with the nanoindentor for  

sample 5A 
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The top, bottom and cross sectional view of Ti ferrule drawing are shown in figure 3.28.  

Figure 3.26: JEOL model JEE-4X Thermal evaporator with the Ta electrode 
and parts to be brazed arranged before brazing  

Figure 3.27: (a) Top view of the Ti ferrule (b) 99.99% pure gold perform (c) 
Ta electrode used for brazing  

Figure 3.27: (a) Figure 3.27: (b) Figure 3.27: (c) 
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The recess in Ti ferrule has inner diameter of 290 mils as can be seen in figure 3.28 (b), 

and the outer diameter of ceramic disk is 288 mils. So effectively there is a gap of 1 mil 

radially on both sides along any diameter. Gold perform wicks up in the gap between the 

ceramic disk and the Ti ferrule due to capillary action when melting occurs.   

The dimensions of pure gold perform shown in figure 3.27 (b) is as follows: 

Outer Diameter = 287 mils; Inner Diameter = 264 mils; Thickness = 10 mils 

Before brazing all the parts going to be brazed are ultrasonically cleaned in 3 step 

cleaning by isopropanol, methanol and acetone in the same order for 5 minutes at each 

step. The parts are dried and then the pure gold perform was placed in the hole of Ti 

ferrule, resting on the lip of the ferrule. Then the thin film Nb coated alumina ceramic 

disk was placed over the gold perform and pressed to make intimate contact. The 

unbrazed assembly is placed inside the hole of Ta electrode. An image of Ta electrode is 

shown in figure 3.27 (c). Ta electrode was machined out of a Ta sheet of 5 mils 

thickness. The hole at the center of the Ta electrode is 305 mils in diameter. This  

Figure 3.28: (a) - Top view, (b)-Cross sectional view, (c)-bottom view of Ti 
ferrule shown in figure 3.27 (a) 
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unbrazed assembly was connected between the two vertical posts inside the thermal 

evaporator. Electrical connections were made specially designed spring mechanism 

based clamps as shown in figure 3.26. The thermal evaporator was connected with an 

external DC power supply to control the power input using lab view software. 

Temperature measurements for the temperature rise and fall of the Ta electrode were 

made using a R type thermocouple. The tip of thermo couple was coated with high 

temperature alumina glue and was cured at 450 oC for 4 hours. This coating is required 

to avoid electrical connection between the Ta electrode and thermocouple. Figure 3.29 

shows the experimental setup of the temperature measurement for the Ta electrode, and 

figure 3.30 (a) through 3.30 (d) shows the data obtained were plotted with time using lab 

view software. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29: Temperature measurement setup of the Ta electrode  
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After the cycle is complete and brazing is done, the sample and the Ta electrode is 

allowed to cool down. The bell jar is vented and sample is removed from the system. 

Figure 3.31 (a) and 3.31 (b) shows front and back side of a brazed assembly.    

 

 

 

 

Figure 3.30 (b): Voltage vs. time plot 

Volt (V) 

Time (sec.)  

Time (sec.) 

Figure 3.30 (d): Power vs. time plot 

Power 
(W) 

Figure 3.30 (c): Current vs. time plot 

Current 

(amp) 

Time (sec.) 

Figure 3.30 (a): Temperature vs. time plot 

Temp. 
(°C)  

Time (sec.)  
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The brazed assemblies were tested for hermeticity discussed in section 3.6.  

The brazed samples were cross sectioned using diamond wafering blade for further 

analysis. Figure below 3.32 (a) and 3.32 (b) shows a picture of the sectioned sample 

viewed through SEM showing the gold/titanium and gold/Nb/Alumina interfaces in later 

image.   

 

 

 

 

 

Observing the gold/Ti interface in the backscattered compositional mode of SEM, two 

intermetallic compounds formation in figure 3.33 (a) can be seen, although when Focused 

Figure 3.31 (b): Back side of the 
brazed assembly       

Figure 3.31 (a): Front side of the 
brazed assembly       

Figure 3.32(a): Cross Sectioned brazed assembly       Figure 3.32 (b): Au-Ti interface 
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Ion Beam (FIB) analysis of thin Au-Ti interface was done all the four intermetallic 

compounds where detected at the interface.  

 

 

 

 

 

 

 

3.6 EDX Analysis of the brazed samples for Au-Ti interface  

For the present study for developing a biocompatible feedthrough brazing assembly of 

alumina ceramic to alumina, the Au-Ti interface is most critical because of formation of 4 

different Intermetallic compounds between gold and Titanium. Out of these 4 IMCs, two 

should be brittle as they do not show any solid solubility as per the Au-Ti binary phase 

diagram in figure 1. FIB technique was utilized to extract a thin lamella of less than 100 

nm and EDX technique was done on this lamella to avoid spreading of the electron beam 

and to avoid the effect of mixing of signals in the results. Figure 3.34 (a) through 3.34 (e) 

shows the Au-Ti interface for the thin lamella and the EDX data obtained from the point 

and shoot feature of the machine. FIB extracted samples showed very clear interlayers 

forming at the Au-Ti interface.   

Figure 3.33 (a): BSC image showing  

Au-Ti interface at 5000X   

Figure 3.33 (b): FIB extracted sample  

showing Au-Ti interface   
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Figure 3.34 (a) Figure 3.34 (b) Figure 3.34 (c) 

Figure 3.34 (d) Figure 3.34 (e) Figure 3.34 (f) 

Figure 3.34: (a) through (f) shows the Au-Ti interface at 50,000 magnification and the 
points where the EDX data were collected 
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3.7 Au-Nb sputtered alumina, interface 

Figure 3.35 and 3.36 showed the Au-Nb sputtered alumina interface. Formation of 

intermetallic layers at the Au/Nb/Alumina could be possible in figure 3.35 (b) although a 

more concrete technique like TEM is required to ensure if there are intermetallic layers 

present at this interface. 

 

 

 

 

 

 

3.8 New Design of Ti ferrule for brazing 

Due to the change in the design of the Ti ferrule based on the overall package and 

processing required by the packaging team of the Boston Retina project, the design of Ta 

electrode was changed. The new design of Ti ferrule stood off from the heater and hence 

an obvious thermal difference between the ferrule and the heater built up. This changed 

forced the use of gradual heating for that design which resulted in more than 5 minutes of 

interaction of molten gold with Ti before gold wicked up through capillary action. After 

brazing the assembly was not found intact and the ceramic disk came off. Figure 3.37(a) 

and (b) shows the new design of Ti ferrule which could not be successfully brazed to the 

ceramic disk using the current Ta resistive heater method.   

Figure 3.35: Overall interface at 1000 X   Figure 3.36: Au-Nb sputtered alumina  

Interface at 20000 X   
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3.9 EDX analysis of the wetting studies samples for molten gold on Ti substrate 

at 1075±10 °C for 287 seconds 

Sample on which gold was kept molten for 287 seconds is subjected to EDX analysis and 

TEM analysis. When the Au-Ti interface obtained during brazing and during wetting 

studies were studied under SEM and EDX it was observed that some or all of these 

(c) (b) (a) 

Figure 3.37: Ti ferrule of new design, (a)- Bottom view, (b)- Side view 
(c)- Top view 

Figure 3.37(d): Ti ferrule of 
new design top view 

Figure 3.37(e): Ti ferrule of new 
design with the feedthrough disk 
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Figure 3.38: SEM image at 5000x where EDX point scan is performed 

Intermetallic compounds shown in the binary phase diagram formed at the interface. 

Figure 3.38 shows a back scattered compositional image of the Au-Ti interface formed 

during wetting studies for molten gold on titanium held for 287 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

As per the above analysis it is possible that points 4, 7 9 and 11 represents the 

Intermetallic compounds Ti3Au, TiAu, TiAu2 and TuAu4 this possibility could only be 

confirmed by performing TEM at the cross section. Figure 3.39 shows a line scan EDX  

                                                          Ti-K  Au-M 

FIU-AMERI-EDS Test 091708(10)_pt1                 93.73    6.27 
FIU-AMERI-EDS Test 091708(10)_pt2                 95.37    4.63 
FIU-AMERI-EDS Test 091708(10)_pt3                 91.32    8.68 
FIU-AMERI-EDS Test 091708(10)_pt4                74.35   25.65 
FIU-AMERI-EDS Test 091708(10)_pt5                72.19   27.81 
FIU-AMERI-EDS Test 091708(10)_pt6                55.92   44.08 
FIU-AMERI-EDS Test 091708(10)_pt7                48.76   51.24 
FIU-AMERI-EDS Test 091708(10)_pt8                44.25   55.75 
FIU-AMERI-EDS Test 091708(10)_pt9                32.64   67.36 
FIU-AMERI-EDS Test 091708(10)_pt10                37.09   62.91 
FIU-AMERI-EDS Test 091708(10)_pt11                18.78   81.22 
FIU-AMERI-EDS Test 091708(10)_pt12                  8.97   91.03 

Table 3.7: EDX analysis at the different points shown in figure 1 showing atomic 
percentages of Au and Ti at different point 
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     Figure 3.40: Count rate variation along the  

     length of the EDX line scan 

 

 

 

 

 

 

 

 

composition profile at the Au-Ti interface. The pattern shown in the change in the count 

rate in figure 3.40 also suggests the possibility of formation of all the different 

Intermetallic compounds between Au and Ti. 

The Ti-300 sec (4D) samples where gold was kept molten over Ti substrate for 5 minutes 

were observed to fracture at the interface of gold and Ti and solidified gold drop 

separated from the sample. An image of the separated solidified gold drop and its 

impression over the Ti substrate are shown in the figure 3.41 (a) and (b) respectively. 

 

 

 

 

Figure 3.39: Line scan EDX analysis 
at the interface of approximately 8 
μm length 

Figure 3.41(a): Fractured gold drop Figure 3.41(b): Drop’s Impression on Ti substrate 
and the points where EDX was performed 
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Figure 3.42 shows the EDX spectra obtained at the 5 points shown on figure 3.41(b) 

which consistently shows the atomic ratio of Ti to Au as 1:2, suggesting the presence of 

TiAu2 compound at the interface causing crack propagation and failure at the interface. 

All the five points showed the presence of only TiAu2 compound with the atomic 

percentages in the range of ± 5%.  

 

 

 

 

 

 

 

3.10 Modulus Mapping at the Au-Ti interface 

The 2D Modulus Mapping has been carried out on the wetting studies samples Ti-300 

sec-1st and Ti-300 sec-2nd and Ti-300 sec-3rd samples using Hysitron TriboIndenter® 

(Hystrion Inc., Minneapolis, MN) with the nano-DMA (Dynamic Mechanical Analyzer) 

transducer. The experimental parameters are as follows: 

1. Tip used – 100 nm Berkovich, Static Load – 2 µN, Dynamic Load – 1 µN,  

Figure 3.29(a): EDX at point 1 in figure 14 

Figure 3.42: EDX at point 5 in figure 3.41 (b) 
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2. Frequency – 200 Hz, Maps were obtained at three places in each sample - at 

Interface, - Gold at Distance, - Titanium at Distance. All maps were obtained for 

30 x 30 µm area     

 

 

 

 

 

 

 

Images of samples Ti-300 sec-1st (4D-1) and Ti-300 sec-3rd (4D-3) are shown in figure 

3.43  and 3.44 respectively. These samples showed fracture at the Au-Ti interface and 

epoxy has been penetrated in between gold and Ti during sample mounting. Figure 3.43 

through 3.45 shows the screen shot of the data obtained for modulus mapping on gold 

away from the interface, Ti away from interface and modulus map at the interface in 

sample Ti-300 sec-3rd (4D-3), and the comparison in figure 3.46.  

Figure 3.43: Modulus Maps on Sample Ti-300 sec-3rd on Gold away from the interface 
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There could be several reasons for the large variation in modulus including sample 

polishing.   

 

 

The color bar clearly indicate the difference in the modulus values at different point 

because of the formation of reaction products between gold and Ti at the interface. These 

reaction products have different modulus from either Ti or Au. Figure 3.46 shows a 

comparative picture of modulus map for the three different locations namely Au away 

from the interface, Ti away from the interface and the interface.  

 

Figure 3.44: Modulus Maps on Sample Ti-300 sec-3rd (4D3) on Titanium away 
from the interface 
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The results obtained for the sample Ti-300 sec-3rd (4D3) are as follows- Au near interface 

(Average) = 36.28 GPa; with the average value of standard deviation for 5 points is 

38.9Gpa. 

Au distant from interface (Average) = 36.88 GPa; with the average value of standard 

deviation for 10 points is 37.88Gpa.  

Figure 3.45: Modulus Maps on Sample Ti-300 sec-3rd (4D3) at the Interface 

 

Figure 3.46: Modulus Maps on Sample 4D3: Comparison 
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Ti distant from Interface (Average) = 48.19 GPa; with the average value of standard 

deviation for 10 points is 40.82 GPa.  

Ti near interface (Average) = 57.6 GPa, with the average value of standard deviation for 

5 points is 40.87 GPa.  

3.11 Quasistatic Nanoindentation 

In order to completely characterize the Au-Ti interface, a nanoindentation experiment 

was performed at the Au-Ti interface for samples Ti-300 sec-1st (4D1), and Ti-300 sec-3rd 

(4D3). The experimental parameters were set as followed: 

• Tip used – 100 nm Berkovich,  Peak Load – 2500 µN, Loading unloading 

Constant Rate – 250 µN/s, Dwell – 3s 

• Indents were made at four places in each sample (1) Gold near Interface, (2) 

Titanium near interface, (3) Gold at Distance, (4) Titanium at Distance. 

The variation in the loading and unloading curves at the gold surface and at the Ti surface 

close to the interface is caused by the formation of intermetallic compounds between Ti 

and gold. Results of indentation experiments are shown in table 3.8 below. 

 

Sample 
name 

Gold Gold Near 
Interface 

Titanium Titanium near 
interface 

 E 
(GPa)  

H 
(GPa)  

E 
(GPa)  

H 
(GPa)  

E 
(GPa)  

H 
(GPa)  

E 
(GPa)  

H 
(GPa)  

Ti-300 
sec-1st  95 ± 5  2.2 ± 

0.08  114 ± 8  3.2 ± 
0.3  127 ± 3  4.5 ± 

0.01  
121 ± 

6  
4.2 ± 
0.6  

Ti-300 
sec-3rd   

149 ± 
2  

4.9 ± 
0.08  

147 ± 
26  

4.5 ± 
1.4  

138 ± 
0.2  

4.5 ± 
0.2  

148 ± 
3  

3.8 ± 
0.2  

Table 3.8: Modulus and hardness values measured by nanoindentor 



 

67 
 

1. Sample Ti-300 sec-1st (4D1) shows a clear indication of reaction product 

(intermetallic compounds) formation at interface – increase in E and H of Gold at 

interface and decrease for Ti 

2. Sample Ti-300 sec-3rd (4D3) does not show increase in E and H of gold at 

interface – but a wide variation in E and H indicates intermetallic compounds formation.  

 

3.12 Leak Testing of Brazed Assembly 

The brazed assemblies discussed in section 3.5 were subjected to helium leak testing to 

determine their leak rate. A Varian vacuum technology, Model 979 series Helium Mass 

spectrometer leak detector shown in figure 3.47 (a) and the fixture used to test the brazed 

assembly to determine its leak rate is shown in figure 3.47 (b). The fixture was 

manufactured at the machine shop at FIU. O-rings of proper size were bought from 

outside vendor.  The brazed assembly is placed on the o-ring shown in figure 3.47 facing 

down. The vacuum is pulled and once a vacuum level of 1 X 10-4 Pa is reached helium 

gas is sprayed over the brazed assembly. The leak rate measured by the mass 

spectrometer is of the of the order of 1.6 X 10-8 atm-cc/second.  

 

 

 

 

 Figure 3.47(b): Fixture mounted on the test 
port of Varian 979 Helium leak detector 

Figure 3.47(a): Varian 979 
Helium leak detector 
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3.13 Mechanical testing of Au-Ti brazed joint  

To determine the strength of the brazed joint of Ti and Au a test similar to nail head pull 

testing was performed [88]. Raw materials used for fabrication of samples are shown in 

figure 3.48. Ti electrode in a shape of a flat dog bone which were also used for wetting 

studies are used as a substrate over which Ti rod of 3 mm in diameter is brazed by 

electrical resitance heating using pure gold as braze filler metal.   

 

 

 

 

 

The sample shown in figure 3.50 was be tested in the MTS mechanical testing machine of 

model 858 test sytem with a load call of 1000N. The fixture used to hold the sample as 

shown in figure 3.52. This fixture prevent deformation of the Ti during testing and also 

minimizes moments during testing and test essentially the brazed joint sterngth only.  

Figure 3.49: Heated electrode 
showing the central hot zone 

Figure 3.50: Brazed sample 

Figure 3.48: Raw materials used 
for making brazed joints 

Figure 3.51: Lab View data for 
voltage Vs time  
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Rate of pull for the first lot of samples is 0.01 mm/second. Strain rate is kept as 2.5 

mm/min. Fixture shown in figure 3.52 slides into the groove of the bottom holder of 

machine and the top grip was holding the Ti rod 10 mm away from the joint to avoid the 

moments of forces and to keep the stress uniaxial. Sample numbers S8, S13 and S9 have 

molten gold and Ti in contact for time period of 30 seconds while sample S15, S 18 and 

S7 have molten gold in contact with Ti for 40 seconds.  

 

 

 

 

                           

 

 

 

 

 

Sample Number Fracture Strength (MPa) 

S8 44.28 

S13 47.86 

S9 56.6 

S15 29.09 

S18 20.24 

S7 19.29 

Figure 3.52: Holding fixture for holding the brazed sample 

Table 3.9: Fracture Strength obtained for different samples 

S2 

S1 
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S1 in figure 3.54 corresponds to the average values of S8, S13 and S9. The average value 

for these three samples is 49.58 MPa with a standard deviation of 6.34 MPa while S2 in 

figure 3.54 corresponds to the average values of S15, S18 and S7. The average values for 

these sample is 22.9 MPa with a standard deviation of 5.4 MPa.  

3.13.1 Analysis of Fractured Interface 

Optical image of fractured Ti substrate and the Ti rod is shown in figure 3.55 below. 

EDX point analysis on the Ti substrate and on Ti rod after fracture is shown in the figure 

3.56 and 3.57 respectively. Atomic ratio suggests that Ti substrate has TiAu4 substrate 

while Ti rod surface has TiAu2 phase. 

 

 

 

 

 

 

 

 

Figure 3.55: Fractured Ti substrate and Ti rod 

Impression 
of Ti rod on 
Ti Substrate 

Ti Rod 

Figure 3.53: Force Vs displacement data 
obtained from testing for one of the sample 

Figure 3.54: Fracture Strength values 
obtained for different samples 

   S1(30)     S2(40)  
     Time (seconds) 
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Figure 3.58 and 3.59 below shows SEM images of cross sectioned brazed assembly. 

Figure 3.59 shows formation of at least 2 interlayers between Au and Ti.  

 

 

Figure 3.56: Ti impression on the 
substrate and points of EDX data 

 

Figure 3.57: Ti rod and the points of 
EDX data collection 

Table 3.11: EDX data for figure 3.57 
in atomic percentages of Ti and Au 

Table 3.10: EDX data for figure 3.56 
in atomic percentages of Ti and Au 
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3.13.2 Fracture Strength of brazed samples 

Brazed sample of Ti to Ti were made using 99.99% pure gold as braze material and were 

tested for pull strength. Fracture strength obtained varied from 56.6 MPa to 19.29 MPa 

for a lot of 6 samples with the standard deviation of 15.54 MPa. Fracture surface of 

sample were analyzed using SEM and EDX. Fracture surface of sample showed the 

presence of TiAu2 and TiAu4 compounds on the surface of Ti rod and on Ti substrate 

respectively suggesting the fracture to occur in between these two intermetallic 

compounds. Cross section analysis of brazed sample showed an interlayer of 

approximately 1 micron thickness clearly showing at least 2 intermediate layers in the 

SEM image. 

 

 

 

 

Figure 3.58: Cross sectioned 
brazed sample 

Figure 3.59: Au-Ti interface at 
8000X 
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4. DISCUSSIONS AND CONCLUSIONS 

4.1 Three point bend testing of HTCC alumina ceramic 

Three point bend samples prepared via HTCC standard process were tested as per ASTM 

C 1161 with a non articulating fixture. The obtained values of flexural strength of a lot a 

of 10 samples was found to have a tight distribution of flexural strength values with a 

standard deviation of 30.27 MPa. Sample chamfering was critical step to perform the 

testing correctly. Flexural strength value of 96% alumina ceramic as reported by 

Coorstek company is 358 MPa while in the present work the mean value of flexural 

strength obtained is 337.3 MPa. The glass system which is present in the samples tested 

here is 50% kaolinite and 50% talc causes the slight variation from the reported value of 

Coorstek company (358 MPa) as the glass system used by them is slightly different. 

4.2 Wetting Studies 

Wetting studies of gold with all the elements Ti, Ta, W and Nb as substrates were 

observed to be reactive wetting and dissolution of substrate was observed. Among the 

wetting behavior of gold to W, Ta and Nb, gold exhibit best wetting tendency towards 

Nb. Gold also showed excellent wetting towards Ti metal.  

In the Au-Ti system the sample in which gold was kept molten over the Ti substrate and 

quenched showed fracture at the interface of Ti and Au. The facture surface was analyzed 

by EDX technique and TiAu2 compound was detected at the fractured surface over Ti 

substrate.  

Spreading was observed to be rapid in Au-Ti and Au-Nb system while spreading was 

pretty slow in the Au-W system. Au-W system initially shows an obtuse contact angle 

which eventually reaches close to 90 degrees in a time span of 90 seconds. Samples of 
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Au-Ti wetting studies were further analyzed by EDX and TEM for possible formation of 

intermetallic compounds. These samples were also analyzed by modulus mapping and 

nanoindentation experiments.  

The low wetting angle and close match of thermal expansion of Nb to alumina is 

indicative that Nb thin film metallization would be best for metallizing the alumina 

ceramic for brazing purpose.  

4.3 SEM and EDX analysis 

SEM and EDX analysis at the Au-Ti interface showed the formation of possible 

intermetallic compounds between Au and Ti. SEM analysis in the backscattered 

compositional image mode showed layers having different contrast in the microstructure.  

Line scan EDX profile at the Au-Ti interface showed presence of all 4 possible 

intermetallic compounds as per Au-Ti binary phase diagram. EDX analysis at the 

interfaces of Au-W and Au-Nb system also showed dissolutive wetting in these systems.  

4.4 Modulus mapping at the Au-Ti interface 

Modulus mapping results showed that there is formation of reaction products between 

gold and Ti as there is considerable difference in the elastic modulus obtained at the 

interface and the values away from the interface.  

4.5 Nanoindentation at the Au-Ti interface 

Nanoindentation experiment was used to characterize the interface of Au-Ti. Hardness 

value was measured at gold away from interface, Ti away from interface and at both 

these elements close to the interface. There is variation between the slopes of the loading 

and unloading curves at the different points at interface representing the difference in the 
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mechanical properties of interface at different points because of formation of reaction 

products (IMCs of Au-Ti) which were also confirmed by EDX analysis.  

4.6 Scratch testing at the Alumina/Nb interface 

Scratch testing at the polished Alumina/Nb interface yielded the adhesion strength values 

of sputtered thin film of Nb to alumina ceramic. It can be concluded that a very adherent 

sputtered Nb films over polished alumina surface can be obtained. A large variation in 

the adhesion strength is observed which could be due to two reasons namely either 

because of the non uniformity in the surface roughness or because of the non uniformity 

in the thickness of the sputtered thin film. Scratch testing samples prepared with sputtered 

thin film of other metals did not yielded any reportable data. 

4.7 Vacuum Brazing 

Resistance brazing of alumina ceramic to titanium metal using pure gold as filler metal 

was successfully achieved. Strong and hermetic brazed joints were obtained. Alumina 

was metallized to increase the wetting towards gold by sputtering a thin film of Nb metal 

of 500 nm thickness. The brazed assembly was tested for hermeticity and a leak rate of 

the order of 1.6 X 10-8 atm-cc of He/sec is measured on Helium leak detector. Cross 

sectioning the brazed assembly and doing microscopic analysis and EDX analysis reveal 

that there are intermediate phase present at the interface of Au and Ti. EDX analysis gave 

their elemental composition as Ti3Au and TiAu.   

4.8 Leak Testing of brazed assembly 

Helium leak testing on Varian 979 Helium leak detector was performed and the brazed 

assembly was hermetic of the order of 1.6 X 10-8 atm-cc of He/sec.  
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The brazed assemblies which were made for longer periods of time were not hermetic 

and few of them even failed after cooling.  

4.9 Mechanical testing of Au-Ti brazed joint 

The average value of fracture strength for the three samples in which the interaction time 

of molten gold with Ti was 30 seconds is 49.58 MPa with a standard deviation of 6.34 

MPa while for the three sample when the interaction time was kept as 40 yields an 

average values of fracture strength as 22.9 MPa with a standard deviation of 5.4 MPa. 

This is indicative of the growth of the brittle intermetallics as the interaction time of 

molten gold with Ti increases. Fracture surface analysis of the tested samples shown that 

the brazed sample fracture at the interface of the two intermetallic TiAu2 and TiAu4 

which were detected by EDX on the two separate parts of the fractured sample.  
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5. SUGGESTIONS FOR FUTURE WORK 

5.1 Tensile testing of brazed sample 

An effort was made in the present work to make the brazed joint to test for tensile 

strength. The testing standard tried to be followed was ASTM E8 [1]. Though the sample 

dimensions were different than E8. Figure 1 shows a picture of tensile sample made after 

brazing two 3 mm diameter Ti cylindrical rods of length 1 inch which were brazed to  

each other at one end using a 3 mm diameter and 0.1 mm thin gold foil. An effort was 

made in the direction to manufacture the test samples for tensile testing via brazing inside 

a micro furnace. Figure 3, 4 and 5 shows the fabrication of the micro furnace while figure 

6 shows the micro furnace in operation collecting data.   

 

 

 

 

 

 

 

 

 

 

 

 
       Figure 5.4: Brazed sample 

Figure 5.1: Alumina tube with hole                      Figure 5.2: Ta sheet wrapped  
drilled to insert thermocouple                               alumina tube 

       Figure 5.3: Micro furnace in  
       operation and data collection 

       Figure 5.4: Brazed sample 
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A hole was made in the alumina tube through a diamond tool and a thermocouple was 

glued to the alumina tube. The glue was cured at 250 oC for 4 hours. Figures 5.5 (a) 

through 5.5 (d) shows the data collected through the micro furnace. This effort was not 

also pursued to fabricate the tensile strength specimen as the there is considerable 

difference between the firing cycle of the Tantalum heating electrode and the micro 

furnace and hence the tensile strength obtained out of the samples made by this micro 

furnace would not be true representative of the brazed assembly. It is recommended in 

this work to manufacture a micro furnace that would produce a similar heating curve as 

that obtained for the Ta electrode used for making the brazed assembly. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Voltage Vs time curve 

Figure 5.5 (a): Voltage Vs. time curve       Figure 5.5(b): Current Vs. Time curve  

Figure 5.5(c): power Vs. time         Figure 5.5 (d): Temperature Vs. time  
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5.2 Three/four point flexural strength testing of the samples with the vias 

In the present work the brazed assembly has 331 vias in it. Under the working 

environment this kind of ceramic disc would undergo enormous thermal stresses which 

might lead to crack initiation and propagation leading to failure of the device. An effort 

was made in the direction to test the flexural strength of HTCC alumina ceramic 

containing vias at the center in them. A picture of sample containing an array of vias of 2 

by 3 is shown in the figure 5.6.  

 

 

 

 

 

5.3 Ti grain growth and determining the incubation period for the alpha to beta 

transformation 

It was one of the initial aims of this study to do a grain growth kinetics study on titanium. 

Some efforts were made in that direction and some data were collected which were not 

sufficient enough to reach to a conclusion.  

 

 

 

 
Figure 5.7: Ansys simulation of      
grain growth sample 

Figure 5.6: Three point bend samples containing vias 

Figure 5.12: Ansys simulation of 
Ti grain growth heating element 

Figure 5.8: Temperature Vs. Time profile 
obtained the Ti heating element 
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5.7 shows ansys simulations results on the design of samples that were used to study the 

alpha to beta phase transformation study. Figure 5.8 shows the heating cycle that was 

given to one of the sample in which the sample was heated and kept at a temperature for 

100 seconds. The temperature was measured by an alumina coated thermocouple that was 

touching the surface of the sample. After the experiment the sample was cut and a portion 

of sample that was at the centre was taken for further analysis like XRD and optical 

microscopy. This experiment could give the values of incubation period for alpha to beta 

transformation in C.P titanium and the Ti grain growth with the time.  
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