
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-4-2011

Modeling and Estimation for Transit On-time
Performance Improvement
Xiaobo Wang
Florida International University, xwang007@fiu.edu

DOI: 10.25148/etd.FI11120513
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Wang, Xiaobo, "Modeling and Estimation for Transit On-time Performance Improvement" (2011). FIU Electronic Theses and
Dissertations. 494.
https://digitalcommons.fiu.edu/etd/494

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/494?utm_source=digitalcommons.fiu.edu%2Fetd%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

MODELING AND ESTIMATION FOR  

TRANSIT ON-TIME PERFORMANCE IMPROVEMENT 

 

 

 

A thesis submitted in partial fulfillment of the  

requirements for the degree of 

MASTER OF SCIENCE  

in 

STATISTICS 

by 

Xiaobo Wang 

 

 

 

2011 

 



ii 
 

To:  Dean Kenneth G. Furton 
       College of Arts and Sciences 
 

This thesis, written by Xiaobo Wang, and entitled Modeling and Estimation for  
Transit On-time Performance Improvement, having been approved in respect to style and 
intellectual content, is referred to you for judgment. 
 
We have read this thesis and recommend that it be approved. 

 

 

             Florence George 

 

 

               Zhenmin Chen 

 

 

    Hassan Zahedi, Major Professor 

 

Date of  Defense: November 4, 2011 

The thesis of Xiaobo Wang is approved. 

 

 

Dean Kenneth G. Furton  
College of Arts and Sciences 

 

 

Dean Lakshmi N. Reddi 
University Graduate School 

 
 
 

Florida International University, 2011 



iii 
 

ABSTRACT OF THE THESIS 

MODELING AND ESTIMATION FOR 

TRANSIT ON-TIME PERFORMANCE IMPROVEMENT 

by 

Xiaobo Wang 

Florida International University, 2011 

Miami, Florida  

    Professor Hassan Zahedi, Major Professor 

Transit agencies have the opportunity to improve the delivery of services by using 

data from Intelligent Transportation Systems (ITS). On-time performance is an important 

measure. The objective of this paper is to adjust the timetables so that the probability of 

on-time performance is maximized. For this purpose we analyze data distributions of 

travel time and also consider the general case that data distribution is unknown. Statistical 

procedures are presented to find scheduled time for some selected distributions. Monte 

Carlo simulation is introduced for the purpose of finding scheduled time when data 

distribution is not known.  Simulation studies indicate that the on-time performance 

would increase using the proposed methodology. The contribution of this paper is to 

provide transit system a procedure to set up or update their timetables based on current 

ITS data and its distribution, and hence increase level of service. 
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INTRODUCTON 

The problem to be examined in my thesis involves how to improve transit on-time 

performance by modeling and estimating the distribution of transit travel time. The travel 

time in this paper refers to a period of time spent traveling between two adjacent stops, 

usually denoted by a random variable. The on-time performance is defined as percentage 

of the times that a bus is considered to be on-time, which used to indicate buses arriving 

or departing late, on-time, or early. Depending on the transit agency, on-time 

performance can be calculated by using arrivals, departures, or possibly a combination of 

both.  In this research, on-time performance is calculated by using arrivals. That is, if the 

scheduled arrival internal is interval [a, b], the on-time performance is the percentage of 

times that a bus arrives or departures within the scheduled interval. 

Transit agencies usually use the on-time performance measure as an important 

performance indicator for transit system. Since the distribution of arrival times for buses 

can be studied by using statistical methods, then one can use statistical methods to update 

scheduled time table to maximize the on-time performance. 

To better understand this problem, a hypothetical transit route is presented in the next 

page. The diagram in figure 1 shows a schematic of a hypothetical transit route. The route 

is divided into a number of timepoints (stops) when a bus traversing along the route. 

When a transit bus arrives at stop i+1, the actual arrival time is recorded at that particular 

location. If the bus arrival time falls outside the range of the scheduled interval, which is 

defined by the transit agency, the bus will be regarded as either late or early. Such 

process is depicted in Figure 1 under Actual Arrival Time, which shows here that the bus 
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arrives mostly early. However, if we shift the scheduled time to a little earlier time, 

chances for the number of early arrivals will be reduced.  

 

Figure 1.Moving a scheduled time in a hypothetical transit route 

 

Table1. Definition of Variables 

Variable Description ܣ௜ Arrival time at stop i. 

௜ܵ Scheduled time at stop i before adjustment (initially set by transit 

agencies). ܵ′௜ Optimal scheduled time at stop i after adjustment based on 

analysis of transit data. 

௜ܶ Travel time from stop i-1 to stop i. ܽ Tolerance time for early arrival, chosen by agencies.	ܽ ൐ 0. ܾ Tolerance time for later arrival, chosen by agencies.	ܾ ൐ 0. 

L The width of on-time performance interval. L= b+a (chosen by 

transit agencies). ሾ ௜ܵ െ ܽ, ௜ܵ െ ܽ ൅ ሿ On-time interval before adjustment at stop i. ሾܵ′௜ܮ െ ܽ, ܵ′௜ െ ܽ ൅  .ሿ Optimal on-time interval after adjustment at stop i. ݇ The number of stops for a given tripܮ
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In order to make the scheduled time to match the arrival time better, one solution is to 

update the timetables at each time point. Thus, such problem is reduced to the following 

question: What should be the new scheduled time in timetable which maximizes the on-

time performance? The first step to address this question is to define the relevant 

variables in the problem. In the following table 1, we introduce the variables and 

notations used in this paper. 

The goal of this work is to narrow the gap between the scheduled time and the arrival 

time. That is, we would like to maximize the probabilities that arrivals fall in their 

scheduled on-time interval as demonstrated in Figure 1. This can be achieved by 

adjusting the timetables so that the probability of on-time performance in each stop is 

maximized. Note that the probability of on-time performance is the area under the 

probability density function for the arrival time ܣ௜  over the scheduled on-time 

performance interval	ሾܵ′௜ െ ܽ, ܵᇱ௜ െ ܽ ൅  ௜, then theݔ	. If the scheduled time at stop i is	ሿܮ

probability of on-time performance is equal to:	ܲ	ሼݔ௜ െ ܽ ൑ ௜ܣ ൑ ௜ݔ ൅ ܾሽ	. Thus, our goal 

is to maximize ܲሼݔ௜ െ ܽ ൑ ௜ܣ ൑ ௜ݔ ൅ ܾሽ with respect to	ݔ௜ for i=1, 2,..., k. That is:  

݈ܽ݋ܩ :	max௫೔ஹ௔ ∑ ܲሼݔ௜ െ ܽ ൑ ௜ܣ ൑ ௜ݔ െ ܽ ൅ ሽ௞௜ୀଵܮ .         (1.1) 

Let ܵᇱ௜ be the optimal value of ݔ௜, then                              

∑ ܲሼܵ′௜ െ ܽ ൑ ௜ܣ ൑ ܵᇱ௜ െ ܽ ൅ ሽܮ ൒௞௜ୀଵ ∑ ܲሼݔ௜ െ ܽ ൑ ௜ܣ ൑ ௜ݔ െ ܽ ൅ ሽ௞௜ୀଵܮ  for all ݔ௜ ൒ ܽ. 
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LITERATURE REVIEW 

Researchers have shown a special interest in making use of transit data, such as travel 

time to improve transit services. Lee et al. (2001) studied the effect of travel time in an 

Automatic Vehicle Location (AVL) system. Hammerle et al. (2005) pointed out that 

some transit agencies would like to use transit data to provide more reliable service by 

developing methods for extracting information from these data to compute service 

reliability indicators.  

One main objective of these studies was to measure on-time performance. For example, 

New York City transit, see Nakanishi (1997), established a customer-oriented bus 

performance indicator program to measure the on-time performance. The on-time 

performance measure becomes increasingly more important since it can easily be used by 

supervisors and managers, so problematic issues can be detected and fixed early. 

Information concerning on-time performance can help to improve the delivery of services 

of the entire transit system, or an individual route in a particular system. 

Because only measuring performance indicators is not enough, researchers need to 

consider how to improve service quality especially on-time performance by analyzing 

transit data. One approach is to make the real-time transit data available to passengers, 

transit dispatchers and supervisors. When the real-time information is provided, both bus 

operators and passengers can better arrange their schedules to be on time. Tri-Met in 

Portland, see Kimpel et al. (2004), shows that scheduling can be improved with 

monitoring transit data.  Shalaby et al. (2004) have made efforts towards using transit 
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data to develop bus travel time models to obtain real-time information on bus arrival and 

departure times with the goal to improve the on-time performance.  

To improve the on-time performance, one approach is to match scheduled times with 

arrival times by updating the timetables. Some studies have attempted to find the 

relationship between on-time performance and the travel time. For example, Portland 

State University and Tri-Met, see Strathman et al. (2002), analyzed the on-time 

performance from the perspective of the travel time variation. Also Cevallos et al. (2008) 

suggested that to improve an on-time performance, the scheduled travel time should be 

set at a value slightly less than the mean or the median of the travel times. 

From the above reviews, it can be seen that researchers have a special interest in using 

travel time data to improve transit systems. They have also tried different ways to find the 

underlined relationships in the data. These studies could be summarized into one question 

which has been asked frequently: how to model and estimate the service reliability by 

using current transit data? For example, Ahmed and others et al. (2011) introduced four 

different multivariate regression models to measure different dimensions of service 

reliability. All these models were based on travel time under the assumption that the 

travel time has a normal distribution. 

There are some other studies which are based on alternative statistical methodologies 

than regression approach. For example, Wall and Dailey (1999) developed an algorithm 

for predicting the arrival time of a transit vehicle using a combination of both the AVL 

data and the historical data. The algorithm they used in that work was based on the 

Kalman filter framework and statistical estimation of scheduled time were also done 
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under the assumption that the transit data has a normal distribution. For Kalman filter, see 

Kalman (1960). 

However, in many practical situations, transit data may not follow a normal distribution. 

Presently, there are very limited results for the case that the normality assumption is not 

valid. In this research, we extend the work of a previous paper by Cevallos (2011) that 

describes a procedure for improving on-time performance at transit agencies. We will 

introduce several different distributions in addition to the normal distribution and develop 

a general method to improve on-time performance on the basis of the selected appropriate 

distribution. In addition, this paper also presents and compares several other new 

approaches for on-time performance strategies.  

In the past, transit agencies typically used two methods to set up or update a transit 

timetable. One method is based on the transit system manual. Basically, in the manual 

method they use some key factors to calculate the travel time between two stations, and 

the travel time is used to set up or update the timetable.  The calculation commonly used 

is usually based on a linear regression model, but this model cannot be used for 

nationwide transit systems. The second method uses data from running a bus for a 

number of times in a particular route to estimate a rough timetable.  While the final time 

table will depend on the experience of drivers on the roads. Subsequently, when the 

transit agencies receive complaints from passengers, they would collect that information 

to update the timetables for the future.  None of these two methods described are quite 

based on formal maximization of the on-time performance measure.  Thus in this 

research, we attempt to find a procedure to take use of historical data and develop a 
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methodology with the intention of optimally updating a transit timetable which 

maximizes the on-time performance. If a distribution for transit data is assumed, usually a 

Goodness-of-Fit test can be used to validate the assumption. For goodness-of-fit test, see 

Hans (1967). 

My research attempts to answer the problem of maximizing the on-time performance 

based on the selection of an appropriate statistical/mathematical model for the transit data 

and then study the model by estimating the related parameters, analytically if possible, or 

numerically by using simulations. This research also proposes and compares some other 

nonparametric procedures and strategies to improve the on-time performance by updating 

the time tables.  
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METHODOLOGIES  

The objective of this study is to adjust the timetables so that the probability of on-time 

performance is maximized. Since the probability of on-time performance depends on the 

distribution of the bus arrival time, therefore, it is necessary to know (or to estimate) the 

distribution of the arrival time. Note that the bus arrival time at stop i, ܣ௜, is equal to the 

arrival time at stop i-1,	ܣ௜ିଵ, plus the travel time,	 ௜ܶ , between stop i and stop i-1.  That is, 

௜ܣ ൌ ௜ିଵܣ ൅ ௜ܶ , ݅ ൌ 2,3, … , ݇,        (3.1) 

assuming there is no stopping time (negligible) between arrival time and departure time 

at stop i. Note that ܣ௜ in terms of ௜ܶ  :is given by ݏ	

௜ܣ ൌ ∑ ௝ܶ௜௝ୀଶ , ݅ ൌ 2,3, … , ݇.								         (3.2) 

Usually the first stop is the origin of the trip, without loss of generality we assume that at 

time zero the bus is ready for its trip at the origin of trip (stop 1), and hence we assume: 

ଵܵ ൌ ଵܣ	 ൌ 0. 

To simplify the model, we make the following initial assumptions: 

Assumption 1. The arrival times are random variables and the scheduled times are 

constants.                          (3.3) 

Assumption 2. The travel times between stops are independent random variables (That is, 

ଵܶ, ଶܶ, … ௞ܶ are independent but not necessary identical random variables).   (3.4) 
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Assumption (3.3) can be justified that drivers’ habits are not expected to depend on 

scheduled times but rather on distances between stops, speed limits, and bus conditions. 

The travel time between two stops ideally should be relatively constant for a given 

distance at a given driving speed. However, because of many other factors such as traffic 

congestions, the travel time varies randomly. Therefore, ௜ܶ is considered to be a random 

variable in the model.  

To achieve the maximization goal in (1.1), first we need to know the probability 

distribution of arrival time ܣ௜. Then based on the distribution of ܣ௜, or its sample estimate, 

we will use some analytical approaches to find the new optimal scheduled time ,ܵ′௜ , 
which maximizes the on-time performance at the stop i.  

Let  ܣ௜ଵ, ,௜ଶܣ … ,  ௜ and a common pdf ௜݂. Traditionally, transit agencies update their scheduled timetablesܨ ௜௡೔ be ݊௜  i.i.d observed arrival times for the stop i, with a common cdfܣ

for stop i by using the average of these observed arrival times.  That is, they use the 

scheduled time 	Sᇱ୧ for the stop i given by: 

	Sᇱ୧ ൌ ଵ௡೔ ∑ ௜௝௡೔௝ୀଵܣ , ݅ ൌ 2,3, … , ݇,                                 (3.5) 

regardless of the distribution of arrival time,	ܨ௜, and parameters of the selected on-time 

interval. Thus, a timetable set by such calculation would not necessarily be optimal since 

it does not consider the distribution of arrival time and the relevant transit scheduled on-

time intervals. 
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In the following sections, we would discuss our procedures for three different cases, 

depending on the assumptions on the cdf  ܨ௜ and the pdf  ௜݂.  
Case 1: Distribution of ܑۯ and its parameters are completely known  

Let ܣ௜~ܨ௜ሺݔ;  , the cumulative distribution function	௜ܨ ሻ. In this section, we assume thatࣂ

of arrival time, is completely known where ࣂ	denotes a known vector of parameters. In 

this paper we assume arrival time distributions are all unimodal. We make this 

assumption to make the calculation easier, but this is not unreasonable assumption since 

the plotted histograms for most transit data appear to be almost unimodal.  

Suppose, for stop i, the scheduled arrival time is ݔ௜ and the corresponding scheduled on-

time interval is 	ሺݔ௜ െ ܽ, ௜ݔ െ ܽ ൅  ሻ ,where a and L are constants given by the transitܮ

agency.  Then, the probability of on-time performance for this scheduled arrival time 

interval is given by: 

௜ܲ ൌ ܲሼݔ௜ െ ܽ ൑ ௜ܣ ൑ ௜ݔ െ ܽ ൅ ሽܮ ൌ ௜ݔ௜ሺܨ െ ܽ ൅ ሻܮ െ ௜ݔ௜ሺܨ െ ܽሻ. 
Therefore the goal in (1.1) is equivalent to: 

max௫೔ஹ௔ ∑ ሾ ௜ݔ௜ሺܨ െ ܽ ൅ ሻܮ െ ௜ݔ௜ሺܨ െ ܽሻ௞௜ୀଵ ሿ.        (3.6) 

In order to solve the above problem, first we have the following lemma.  

Lemma 3.1 Suppose ܨ௜  is a differentiable cumulative distribution function with 

corresponding unimodal density ௜݂ (such that  ௜݂  is strictly increasing when ݔ௜ < ܯ௜ and 

strictly decreasing when ݔ௜ ൐ ௜ܯ   where ܯ௜   is the unique mode of pdf ௜݂ ). Then the 
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optimal scheduled time ܵ′௜	for stop i can be obtained by solving the following equation 

with respect to	ݔ௜: 
௜݂ 	ሺݔ௜ െ ܽሻ ൌ ௜݂	ሺݔ௜ െ ܽ ൅  .ሻܮ

Proof: Assume the arrival time at stop i is ܣ௜ which has a cdf 	ܨ௜ሺݔሻ with a pdf ௜݂ሺݔሻ. 
Then the goal in (1.1) can be rewritten as follows: 

ܲ ≡max௫೔ஹ௔ ෍ሾܨ௜ሺݔ௜ െ ܽ ൅ ሻܮ െ ௜ݔ௜ሺܨ െ ܽሻሿ௞
௜ୀଶ  

ൌ ∑ max௫೔ஹ௔ ሾܨ௜ሺݔ௜ െ ܽ ൅ ሻܮ െ ௜ݔ௜ሺܨ െ ܽሻሿ௞௜ୀଶ  .         (3.7) 

Let   

௜ܲ ൌ ௜ݔ௜ሺܨ െ ܽ ൅ ሻܮ െ ௜ݔ௜ሺܨ െ ܽሻ,        (3.8) 

then (3.7) can be written as: 

ܲ ൌ ∑ max௫೔ஹ௔௞௜ୀଶ ௜ܲ .                    (3.9) 

For i=2,…,k , in order to maximize  ௜ܲ in (3.8), we take its derivative with respect to ݔ௜	and set it equal to zero. That is: 

డ௉೔డ௫೔ ൌ 0	.                   (3.10) 

Then (3.10) reduces to the following equation: 

௜݂ 	ሺݔ௜ െ ܽ ൅ ሻܮ െ ௜݂	ሺݔ௜ െ ܽሻ ൌ 0.        (3.11) 
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If  ݔ௜ ൌ ܵ′௜ is the solution to the equation (3.11), then we must have:  

௜݂ 	ሺܵ′௜ െ ܽሻ ൌ ௜݂	ሺܵ′௜ െ ܽ ൅  ሻ.                 (3.12)ܮ

Since pdf  ௜݂ is assumed to be unimodal, equation (3.12) implies that for any ܮ ൐ 0, 

ܵ′௜ െ ܽ ൑ ௜ and ܵ′௜ܯ െ ܽ ൅ ܮ ൐  ௜  orܯ

  ܵ′௜ െ ܽ ൏ ௜ and ܵ′௜ܯ െ ܽ ൅ ܮ ൒  ௜ .            (3.13)ܯ

To complete the proof that ܵ′௜ is the solution which maximizes  ௜ܲ , we need to show that 

the second derivative of ௜ܲ  at point ܵ′௜ is less than zero. Since   
డమ௉೔డమ௫೔ ൌ ௜݂ᇱሺݔ௜ െ ܽ ൅ ሻܮ െ

௜݂ᇱሺݔ௜ െ ܽሻ  , we need to show ௜݂ ᇱሺܵ′௜ െ ܽ ൅ ሻܮ െ ௜݂ᇱሺܵ′௜ െ ܽሻ   is less than zero. Since ௜݂ 
is unimodal with mode ܯ௜. We have ௜݂ ᇱሺݔ௜ሻ ൏ 0 for ݔ௜ ൐  and ௜݂	௜ܯ ᇱሺݔ௜ሻ ൐ 0 for ݔ௜ ൏ܯ௜ . Since ܵ′௜ െ ܽ ൅ ܮ ൐ ௜ and ܵ′௜ܯ െ ܽ ൏ ௜ it follows that ݂′ሺܯ ௜ܵ െ ܽ ൅ ሻܮ 	൏ 0 and ݂′ሺ ௜ܵ െ ܽሻ 	൐ 0	 thus  ݂′ሺܵ′௜ െ ܽ ൅ ሻܮ െ ݂′ሺܵ′௜ െ ܽሻ 	൏ 0 , which competes the proof. 

Optimal scheduled times for some selected unimodal families of distributions 

Assuming we know the distribution of arrival time (ܣ௜	ሻ, we can solve equation (3.12) to 

find the new scheduled time (ܵ′௜ሻ for the following selected families of distributions. 

i. Normal Family of Distributions 

Suppose, the arrival time ܣ௜  at stop i, has a normal distribution. That is, ܣ௜~݈ܰܽ݉ݎ݋	ሺߤ௜, ௜ଶሻߪ  ,where ߤ௜  and 	ߪ௜ଶ  are known location and scale parameters,  െ∞ ൏ ௜ߤ ൏ ∞ and	ߪ௜ଶ 	൐ 0 .The pdf for ܣ௜ is given by: 
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௜݂ሺݔ; ,௜ߤ ௜ଶሻߪ ൌ ଵඥଶగ	ఙ೔మ ݁ିሺೣషഋሻమమ	഑೔మ .            

It is easy to see that the solution to equation (3.12) which maximizes ௜ܲ 	 is ܵᇱ௜ given by: 

ܵᇱ௜ ൌ ௜ߤ ൅ ܽ െ ௅ଶ ,           (3.14) 

and hence the optimal on-time interval for stop i is given by: 

௜ߤ] െ ௅ଶ, ߤ௜ ൅ ௅ଶሿ , 
where constant L >0 is chosen by transit authority.  

ii. Lognormal Family of Distributions 

Suppose, the arrival time ܣ௜  at stop i, has a lognormal distribution. That is, ܣ௜~݈ܽ݉ݎ݋݊݃݋ܮሺߤ௜, ∞௜ଶሻ ,where െߪ ൏ ௜ߤ ൏ ∞ and ߪ௜ଶ ൐ 0, are known location and scale 

parameters, respectively. The pdf for ܣ௜ is given by: 

௜݂ሺݔ; ,௜ߤ ௜ଶሻߪ ൌ ଵ௫ඥଶగ	ఙ೔మ ݁ି൫ౢ౤ೣషഋ೔൯మమ഑೔మ .         

The equation (3.12) for lognormal case is given by:  

ଵሺ௫ି௔ሻඥଶగఙ೔మ ݁ି൫ౢ౤	ሺೣషೌሻషഋ೔൯మమ഑೔మ ൌ ଵሺ௫ି௔ା௅ሻඥଶగఙ೔మ ݁ି൫ౢ౤	ሺೣషೌశಽሻషഋ೔൯మమ഑೔మ .      (3.15) 

It is easy to check that the equation (3.15) reduces to solving the following equation with 

respect to x: 
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݁ି൫ౢ౤	ሺೣషೌሻషഋ೔൯మమ഑೔మ ା൫ౢ౤	ሺೣషೌశಽሻషഋ೔൯మమ഑೔మ ൌ ௫ି௔ሺ௫ି௔ା௅ሻ	,       (3.16) 

 taking the log of left and right sides of (3.16) we get: 

ଵଶఙ೔మ ሺ݊ܮሾሺݔ െ ܽ ൅ ሻሿݑሻሺܮ ∗ ቂ݊ܮ ௫ି௔ା௅௫ି௔ ቃ ൅ ሺ2ߤ௜ሻ݊ܮ ቀ ௫ି௔௫ି௔ା௅ቁሻ െ ݊ܮ ቀ ௫ି௔௫ି௔ା௅ቁ ൌ 0 .   (3.17) 

In (3.17), if we let	ݐ ൌ ݊ܮ ௫ି௔ା௅௫ି௔ , then x in terms of t is given by: 

ݔ ൌ ௅௘೟ିଵ ൅ ܽ,           (3.18) 

Now, equation (3.17) in terms of t can be written as: 

௘೟ିଵඥ௘೟ ൌ ௅௘ഋ೔ష഑೔మ .         (3.19) 

If we set √݁௧ 	≡  :then (3.19) reduces to the following quadratic equation in terms of z ,ݖ

ଶݖ  െ ݖܿ െ 1 ൌ 0.         (3.20) 

The solutions to equation (3.20) are: 

ݖ ൌ ௖േ√௖మାସଶ  where ܿ ൌ ௅௘ഋ೔ష഑೔మ	. 
Note that only the solution ݖଵ ൌ ௖ା√௖మାସଶ   is admissible. Thus, if we equate ݖଵ ൌ √݁௧  and 

solve it for t, we get:  

ݐ ൌ ሺ௖ା√௖మାସଶ݊ܮ ሻଶ where 	ܿ ൌ ௅௘ഋ೔ష഑೔మ .       (3.21) 
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Now, substituting for t from (3.21) in equation (3.18), we obtain the solution to the 

equation (3.15) which is: 

ݔ ൌ ௅௘೟ିଵ ൅ ܽ ൌ ௅௘ಽ೙ሺ೎శඥ೎మశరమ ሻమିଵ ൅ ܽ ൌ ௅ቆ೎శඥ೎మశరమ ቇమିଵ ൅ ܽ, where ܿ ൌ ௅௘ഋ೔ష഑೔మ.     
Hence the optimal on-time scheduled time ܵᇱ௜ for the lognormal case is given by: 

ܵᇱ௜ ൌ ௅ቆ೎శඥ೎మశరమ ቇమିଵ ൅ ܽ    where 	ܿ ൌ ௅௘ഋ೔ష഑೔మ ,      (3.22a) 

and thus the optimal scheduled on-time interval  for stop i  for the lognormal case is 

given by: 

൦ ௅ቆ೎శඥ೎మశరమ ቇమିଵ			 , ௅ቆ೎శඥ೎మశరమ ቇమିଵ ൅  ൪ ,       (3.22b)ܮ

where ܿ ൌ ௅௘ഋ೔ష഑೔మ and the constant L >0  is given by the transit authority. 

 

iii. Gamma Family of Distributions 

Suppose, the arrival time ܣ௜ at stop i, has a ܽ݉݉ܽܩሺ݇௜, ௜ߠ	 ௜ሻ distribution, where ݇௜>0 andߠ ൐ 0	are known shape and scale parameters, respectively.  That is, the pdf for ܣ௜ is 

given by: 

	 ௜݂ሺݔ; ݇௜, ௜ሻߠ ൌ ௞೔ିଵݔ ௘షഇೣ೔ఏ೔ೖ೔௰ሺ௞೔ሻ  .       (3.23) 
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The equation (3.12) for the gamma case is given by:  

ሺݔ െ ܽ	ሻ௞೔ିଵ ௘షೣషೌ	ഇ೔ఏ೔ೖ೔௰ሺ௞೔ሻ ൌ ሺݔ െ ܽ	 ൅ ሻ௞೔ିଵܮ ௘షೣషೌ	శಽഇ೔ఏ೔ೖ೔௰ሺ௞೔ሻ ,             (3.24)  

which reduces to the following equation: 

 ݁ ಽഇ೔ ൌ ቀ1 ൅ ௅௫ି௔	ቁ௞೔ିଵ.         (3.25)  

It is easy to check that the solution to equation (3.25) which maximizes ௜ܲ is given by: 

ܵᇱ௜ ൌ ௅௘ಽ/ሺഇ೔ೖ೔షഇ೔ሻିଵ ൅ ܽ.        (3.26) 

Hence the optimal scheduled on-time interval based on the optimal scheduled time ܵᇱ௜ for 

stop i is given by: 

ቂ ௅௘ಽ/ሺഇ೔ೖ೔షഇ೔ሻିଵ			 , ௅௘ಽ/ሺഇ೔ೖ೔షഇ೔ሻିଵ ൅   ,ቃܮ
where L >0 is a known constant given by the transit authority for stop i. 

Table 2. Summary of ࢏′ࡿValues ܣ௜ ܵᇱ௜ Optimal Interval ܣ௜~݈ܰܽ݉ݎ݋ሺߤ௜,  ௜ଶሻߪ
 

ܵᇱ௜ ൌ ௜ߤ ൅ ܽ െ ௅ଶ    
  

ݎ݁ݓ݋ܮ ݐ݅݉݅ܮ ൌ ௜ߤ െ ௅ଶ ܷݎ݁݌݌ ݐ݅݉݅ܮ ൌ ௜ߤ ൅ ௅ଶ ܣᇱ௜~݈ܽ݉ݎ݋݊݃݋ܮሺߤ௜, ௜ଶሻ ܵᇱ௜ߪ ൌ ௅ቆ೎శඥ೎మశరమ ቇమିଵ ൅ ܽ     

where ܿ ൌ ௅௘ഋ೔ష഑೔మ   
ݎ݁ݓ݋ܮ ݐ݅݉݅ܮ ൌ ൬௖ା√௖మାସଶܮ ൰ଶ െ 1  

ݐ݅݉݅ܮ	ݎ݁݌݌ܷ ൬௖ା√௖మାସଶܮ ൰ଶ െ 1 ൅  ܮ

Where ܿ ൌ ௅௘ഋ೔ష഑೔మ 
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,ሺ݇௜ܽ݉݉ܽܩ~௜ܣ ௜ሻ ܵᇱ௜ߠ ൌ ௅/ሺఏ೔௞೔ିఏ೔ሻ݁ܮ െ 1 ൅ ܽ 

 

ݎ݁ݓ݋ܮ ݐ݅݉݅ܮ ൌ ௅/ሺఏ೔௞೔ିఏ೔ሻ݁ܮ െ 1 

ݎ݁݌݌ܷ ݐ݅݉݅ܮ ൌ ௅/ሺఏ೔௞೔ିఏ೔ሻ݁ܮ െ 1 ൅  ܮ

 

Table 2 shows a summary of optimal scheduled times calculated in this section.  

Generally speaking, an optimal scheduled time can be obtained by solving equation (3.12) 

if the distribution of arrival time is known.  

Case 2: Distribution of ܑۯ is known but its parameters are unknown.  

Let ܣ௜~ܨ௜ሺݔ; ሻࣂ	 , where the functional form of ܨ௜	 is assumed to be known but  its 

parameter vector ࣂ	may be partially or completely unknown and need to be estimated 

from the observed arrival times. In this section, for each family of distributions discussed 

earlier in case 1, we try to estimate the optimal scheduled time and the scheduled on-time 

interval using sample observed arrival times. Since the Maximum Likelihood Estimator 

(MLE) of a parameter ߠ  is a consistent estimator which is a function of sufficient 

statistics for the unknown parameter, the procedure used here is to replace any unknown 

parameters of the model with its maximum likelihood estimators. If a MLE is not 

unbiased, whenever possible, we take an unbiased estimator based on the MLE. However, 

there may be cases that the MLEs do not have a nice closed existed form and it may be 

difficult to obtain them analytically. For those cases, one alternative approach is to use 

their moment estimators (the unbiased version if possible). In the following table we 

summarize the MLEs and moment estimators for the parameters of those models 

considered in case 1. The MLE of a parameter ߠ  is denoted by ߠ෠  and the moment 
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estimator is denoted by ߠ෨ . Once unknown parameters are replaced by their sample 

estimates, the procedure in case 1 can be used to estimate the optimal scheduled on-time 

intervals. 

Table 3. MLEs and Moment Estimators for the Selected Models in Case 1  

Model 
(distribution) 

Unknown 
parameters 

  ሻ  MLEsߠ)
 ෠ሻߠ)

 

Moment Estimator 
 (෨ߠ)

,௜ߤሺ݈ܽ݉ݎ݋ܰ   ௜ଶሻߪ
 

 ଶߪ   ߤ
ߤ̂ ൌ ଵ௡∑ ௜௡௜ୀଵݔ ො௠௟௘ଶߪ (*)                     ൌ 1݊෍ሺݔ௜௡

௜ୀଵ െ ොଶߪ ሻଶݔ̅ ൌ ଵ௡ିଵ∑ ሺݔ௜௡௜ୀଵ െ  (*)   ሻଶݔ̅

 
 

෤ߤ ൌ 	݉ଵ ߪ෤ଶ ൌ ݉ଶ െ݉ଵଶ 

,௜ߤሺ݈ܽ݉ݎ݋݊݃݋ܮ ߤ̂ ଶߪ ߤ ௜ଶሻߪ ൌ 1݊෍ln ௜௡ݔ
௜ୀଵ  

ො௠௟௘ଶߪ ൌ 1݊෍ሺlnݔ௜௡
௜ୀଵ െ  ሻଶߤ̂

 

෤ߤ ൌ ln ݉ଵଶ√݉ଶ ߪො௠௟௘ଶ ൌ ln ݉ଶ݉ଵଶ 

 

,ሺ݇௜ܽ݉݉ܽܩ  ߠ ݇ ௜ሻߠ
 
No closed form 

෨݇ ൌ ݉ଵଶ݉ଶ െ ݉ଵଶ ߠ෨ ൌ ݉ଶ െ݉ଵଶ݉ଵ  

 
Remark 1: The moment estimators are obtained by equating the distribution moments ߤ௞ ൌܧሺܺ݇ሻ with sample moments, ݉௞= 

ଵ௡ ∑ ௜ܺ௞௡௜ୀଵ 	and used to solve for the unknown parameters. For 

details, see for example VK. Rohatgi and AK, saleh (2001)  

Remark 2:  If MLE does not have a closed form, we use the moment estimator instead. 

(*): unbiased estimator 
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Case 3: Distribution of ܑۯ is completely unspecified (completely nonparametric case) 

Let ܣ௜~ܨ௜  where ܨ௜	 is completely unspecified. In this section, we discuss three 

approaches to address this case. The first approach is based on replacing the unknown 

arrival time distribution, ܨ௜, in equation (3.7) with its sample empirical cdf, ܨ෠௜, and then 

proceed with maximization. The second approach is replacing the unknown pdf ௜݂, with a 

suitable estimator መ݂௜  .This method involves density estimation and generally the 

procedures are more complicated. The third approach is constructing the on-time 

performance of a given length based on some appropriate sample statistics such as 

sample mean, sample median, sample mode, sample middle point, sample geometric 

mean, sample harmonic mean and sample skewness.  

i. Empirical distribution approach:  

Let ଵܺ, ܺଶ, … , ܺ௡೔  be iid  observations from arrival time ܣ௜~ܨ௜ , where ܨ௜  is unknown.  

The empirical cdf, ܨ෠௜,  is defined as: 

ሻݔ෠௜ሺܨ ൌ ே௨௠௕௘௥	௢௙	௑೔	ஸ௫	௡೔ ൌ ଵ௡೔ ∑ ሻ௡೔௝ୀଵݔ௑ೕሺܫ ,        (3.27) 

where ܫ௑ೕሺݔሻ ൌ ൜ 1			݂݅	 ௝ܺ ൑ 	݂݅			0	ݔ ௝ܺ ൐   .	ݔ
It is well known that empirical cdf  ܨ෠௜ሺݔሻ	is an unbiased and consistent point estimator of ܨ௜ሺݔሻ, at each ݔ ∈ ܴ. 
Note that for any fixed x, the indicator  ܫ௝ ≡  is a Bernoulli random variable with	ሻݔ௑ೕሺܫ

parameter ݌ ൌ  ,distribution.  Hence (ሻݔ௜ሺܨ=, p	n= ݊௜)  ሻ has a binomialݔ෠௜ሺܨ݊ ሻ, andݔ௜ሺܨ
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ሻሻݔ෠௜ሺܨሺܧ ൌ ሻݔ௜ሺܨ  and  ܸ ቀܨ෠௜ሺݔሻቁ ൌ ி೔ሺ௫ሻቀଵ	ି	ி೔ሺ௫ሻቁ௡ , ݔ ∈ ܴ.	 That is, ܨ෠௜ሺݔሻ  is 

an unbiased estimator for ሻݔ௜ሺܨ  and by the strong law of large numbers, the 

estimator ܨ෠௜ሺݔሻ	converges to ܨ௜ሺݔሻ  as ݊ → ∞ , almost surely at eachݔ ∈ ܴ . Thus the 

unbiased estimator ܨ෠௜ሺݔሻ is strongly consistent. If in equation (3.8), we replace ܨ௜  with 

the empirical distribution function, ܨ෠௜ ,we get:  

௜ܲ ൌ ௜ݔ෠௜ሺܨ ൅ ሻܮ െ  ௜ሻ .        (3.28)ݔ෠௜ሺܨ

Hence we propose the following numerical procedure to find the value of ݔ௜  which 

maximize	 ௜ܲ.  
1. Sort sample data, in ascending order, mark them as ሺܺଵሻ, ሺܺଶሻ, … . , ሺܺ௡ሻ. 

ሻݔ෠௜ሺܨ ൌ 	݂݋	ݎܾ݁݉ݑܰ ௜ܺ 	൑ ݊	ݔ ൌ ݆݊ 	݂݅	ܺሺ௝ሻ ൑ ݔ ൏ ሺܺ௝ାଵሻ	. 
2. In (3.28), initialize variable ݔ௜ ൌ ܿ ൌ ሺܺଵሻ and define a gap variable ∆ൌ 1. 
3. Calculate ௜ܲሺ1ሻ ≡ ෠௜ሺܿܨ െ ܽሻ െ ෠௜ሺܿܨ െ ܽ ൅  .ሻܮ
4. Shift c by ∆	 value, that is, ݊݁ݓ	ܿ ൌ ܿ	݈݀݋ ൅ ∆  and then repeat step 3 to 

obtain	 ௜ܲሺ2ሻ.  
5. Exit loop when ݊݁ݓ	ܿ ൌ ሺܺ௡ሻ . Then sort ௜ܲሺ݆ሻ values and obtain the maximum 

value with the corresponding ܿ ൌ ܿ∗ value. Finally we get the optimal scheduled 

time interval which is ሾܿ∗ െ ܽ, ܿ∗ െ ܽ ൅   ௜ݔ  ሿ, where ܿ∗ is the obtained value ofܮ
which maximize݀	 ௜ܲ. 

Note that the ܿ∗	obtained in step 5 may not be unique. In that case, we suggest to take the 

smallest ܿ∗	if the histogram of the data is almost right skewed, take the largest ܿ∗	if the 
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histogram of the data is almost left skewed and take the midpoint between the largest ܿ∗	and the smallest ܿ∗	if the histogram of the data is almost symmetric.   

ii. Density function estimation approach 

This approach involves density estimation which requires more advanced theoretical 

statistical procedures beyond the scope of this thesis, but it could be a separate research 

project for the future, we put less effort on it and only would introduce it in this section. 

Presently, there are several nonparametric density estimator methods where most of 

them are based on Kernel-smoothing, using a normal kernel.  

The density at x by the kernel smoothing method is given by: 

݂ሺݔሻ ൌ ଵ௡௛ ∑ ሺ௫ି௑೔௛௡௜ୀଵܭ ሻ	,																	        (3.29) 

where K is the kernel function, h is the window size and ௜ܺ 	is the observed data.  Once 

unknown density function is estimated, then one can follow the procedure described in 

case 1 to estimate the optimal scheduled on-time interval. 

iii. Sample statistics approach 

The statistics considered here are sample mean, sample geometric mean, sample 

harmonic mean, sample median, sample mode, sample midpoint, and sample interquartile 

midpoint. If a statistics T is used then the scheduled time is given by: 

ܵ′௜ ൌ ܶ ൅ ܽ െ ௅ଶ , 
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Where a and L are given by transit agencies. Hence the proposed scheduled on-time 

interval based statistics T is: 

ሾܵ′௜ െ ܽ, ܵᇱ௜ െ ܽ ൅ ሿܮ ൌ ቂܶ െ ௅ଶ , ܶ ൅ ௅ଶቃ.       (3.30)  

iv. Guess model   

Here we suggest another easy procedure to approximate scheduled time which we call it 

guess model. In lemma 3.1, we showed that if ܵ′௜	is the optimal scheduled time for a 

given distribution, then 	ܵ′௜ 	 ∈ ሺܯ௜ ൅ ܽ െ ௜ܯ,ܮ ൅ ܽሻ , where ܯ௜ denotes the mode of the 

distribution of arrival time ܣ௜. Since in this section we assume distribution is completely 

unknown, we suggest the following on-time arrival time based on the sample mode:  

ܵ′௜ ൌ ෡௜ܯ ൅ ܽ െ ௅ଶ ൅ ௜ߟ̂ ∗ ௅ଶ  ,                          (3.31) 

where ܯ෡௜  and ̂ߟ௜	denote the sample mode and the sample skewness, respectively. The 

sample skewness is defined by: 

௜ߟ̂ ൌ భ೙೔ ∑ ሺ௫ೕି௫̅ሻయ೙೔ೕసభሺ భ೙೔ ∑ ሺ௫ೕି௫̅ሻమሻ೙೔ೕసభ య/మ .        (3.32) 

Since the data have multiple modes, we suggest replacing ܯ෡௜ with the midpoint of the 

interval with the highest frequency in the histogram for the observed arrival time data. 

Model Comparison  

In earlier sections, we have discussed the procedures for the case that the distribution of 

arrival time is known, or can be estimated and the completely nonparametric case. In this 
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section we use computer simulation to compare the performance of the procedures 

introduced earlier. 

We used SAS program for the Monte Carlo simulation to compare performance of 

different scheduled on-time intervals. The source codes for the SAS programs are given 

in the appendix. Figures 2, 3, 4, 5, 6 and 7 illustrate that the on-time performance changes 

when updating the scheduled time using different methods discussed in previous sections. 

In Figures 2, 3 and 4, the arrival time is randomly generated from a Gamma distribution 

with different values of the scale and shape parameters. In Figures 5, 6 and 7, the arrival 

time is randomly generated from a skewed normal distribution for different values of 

scale and shape (hence skewness) parameters.  In figure 8, the arrival time is randomly 

generated from a lognormal distribution for different values of scale parameter. Since 

transit agencies currently consider an arrival to be on-time if it is at most five minutes 

earlier or at most two minutes later than the scheduled arrival time, for the purpose of 

simulation, in equation (3.7) we take ܽ ൌ 5  and ܾ ൌ 2  (and hence L=7).  Since the 

skewnormal does not have a closed form, we did not include this method in skewnormal 

figures. The optimal on-time performance based on various sample statistics, guessing 

method, and statistical models discussed in previous sections are given in the table 4.  

The following symbols are used in table 4: 

തܺܽ ൌ ଵ௡ ∑ ௜ܺ௡௜ୀଵ 	represents the sample arithmetic mean of arrival times.  

തܺ௛ ൌ ௡∑ భ೉೔೙೔సభ  represents the sample  harmonic mean of arrival times.  

തܺ௚ ൌ ඥ ଵܺ ௜ܺ …ܺ௡೙  represents the sample  geometric mean of arrival times.  
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ܳଶ represents the sample median (or 2nd quartile ) of arrival times.  

  .represents the sample mode of arrival times	ܯ

෠ܺ௠௜ௗ ൌ ௑ሺభሻା௑ሺ೙ሻଶ  represents the sample midpoint of arrival times.  

ܳ௠ ൌ ொభାொయଶ 	represents the  midpoint between  ܳଵ and ܳଷ,where ܳଵ and ܳଷ are the 1st and 

3rd sample quartiles, respectively.   

For example, otp_geomean represents the on-time performance determined from 

geometric mean. That is, the new scheduled time based on geometric mean is 	Sᇱ୧ ൌതܺ௚ 	െ ௅ଶ ൅ ܽ .  

Table 4. Calculation formula for each method 

Methods 	Sᇱ୧ (Scheduled Time) Scheduled time interval 

otp_median 	Sᇱ୧ ൌ ܳ2 െ 2/ܮ ൅ ܽ [ܳଶ െ 2ܮ , ܳଶ ൅  2ሿܮ
otp_mean 	Sᇱ୧ ൌ ഥܺ௔ 		െ 2/ܮ ൅ ܽ [ തܺܽ െ 2ܮ , തܺܽ ൅  2ሿܮ
otp_harmean 	Sᇱ୧ ൌ ഥ݄ܺ െ 2/ܮ ൅ ܽ ሾഥ݄ܺ െ 2ܮ , ഥ݄ܺ ൅  2ሿܮ
otp_mid 	Sᇱ୧ ൌ ܳ݉ െ 2/ܮ ൅ ܽ ሾܳ݉ െ 2ܮ ,ܳ݉ ൅  2ሿܮ
otp_mode 	Sᇱ୧ ൌ 	ܯ െ 2/ܮ ൅ ܽ ሾܯ െ 2ܮ ܯ, ൅  2ሿܮ
otp_transit * 	Sᇱ୧ ൌ ഥܺ௔	 ሾഥܺ௔ െ ܽ, ഥܺ௔ െ ܽ ൅  ሿܮ
otp_geomean 	Sᇱ୧ ൌ ഥܺ݃ െ 2/ܮ ൅ ܽ ሾഥܺ݃ െ 2ܮ , ഥܺ݃ ൅  2ሿܮ
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otp_guess ௜ܵ ൌ ܯ ൅ ܽ െ ௅ଶ ൅ ෝ݅ߟ ∗ ௅ଶ                 ሾܯ െ 2ܮ ൅ ௜ߟ̂ ∗ 2ܮ ܯ, ൅ 2ܮ ൅ ௜ߟ̂ ∗  2ሿܮ
otp_nqmid 	Sᇱ୧ ൌ 	 ෡ܺ݉݅݀ െ 2/ܮ ൅ ܽ ሾ෡ܺ݉݅݀ െ 2ܮ , ෡ܺ݉݅݀ ൅  2ሿܮ
otp_equation Solve equation (3.12). See table 3 Solve equation (3.12). See table 3 

*Methods currently used by transit agency. 

The findings from these simulations are as follows. If we don’t know the distribution of 

arrival time, we have the following conclusions: 

1. The on-time performance using these methods would be very close to each other 

when the density of arrival time is almost symmetric.  

2. The scheduled time defined by	Sᇱ୧ ൌ ܳଶ 	െ ௅ଶ ൅ ܽ  as the optimal scheduled time 

overall performs well when we have no sufficient information about the 

distribution of arrival times. 

3. As expected, the Monte Carlo simulations illustrate that the scheduled on-time 

intervals obtained using analytical method introduced in this research is better 

than all other procedures when the distribution of arrival time is known or can be 

effectively estimated. 
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Figure 2 On-time performance measure vs. values of shape parameters (Gamma distribution): value of scale =100 

 

ܽ݉݉ܽܩ~௜ܣ ሺ݈ܵܿܽ݁ ൌ 100,  ሻ݁݌݄ܽܵ
Sample Size N=100 Replications=1000 
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Figure 3. On-time performance measure vs. values of shape parameters (Gamma distribution): value of scale =200 

ܽ݉݉ܽܩ~௜ܣ ሺ݈ܵܿܽ݁ ൌ 200,  ሻ݁݌݄ܽܵ
Sample Size N=100 Replications=1000 
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Figure 4. On-time performance measure vs. values of shape parameters (Gamma distribution): value of scale =400 

 

ܽ݉݉ܽܩ~௜ܣ ሺ݈ܵܿܽ݁ ൌ 400,  ሻ݁݌݄ܽܵ
Sample Size N=100 Replications=1000 
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Figure 5.On-time performance measure vs. values of shape parameters (Skewnormal distribution): value of scale =100 

 

ሺ݈݈ܵܿܽ݁ܽ݉ݎ݋݊ݓ݁݇ܵ~௜ܣ ൌ 100, ݊݋݅ݐܽܿ݋ܮ ൌ 3600,  ሻ݁݌݄ܽܵ
Sample Size N=100 Replications=1000 
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Figure 6. On-time performance measure vs. values of shape parameters (Skewnormal distribution): value of scale =200 

 

ሺ݈݈ܵܿܽ݁ܽ݉ݎ݋݊ݓ݁݇ܵ~௜ܣ ൌ 200, ݊݋݅ݐܽܿ݋ܮ ൌ 3600,  ሻ݁݌݄ܽܵ
Sample Size N=100 Replications=1000 
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Figure 7. On-time performance measure vs. values of shape parameters (Skewnormal distribution): value of scale =400 

 

ሺ݈݈ܵܿܽ݁ܽ݉ݎ݋݊ݓ݁݇ܵ~௜ܣ ൌ 400, ݊݋݅ݐܽܿ݋ܮ ൌ 3600,  ሻ݁݌݄ܽܵ
Sample Size N=100 Replications=1000 
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Figure 8. On-time performance measure vs. values of scale parameters (Lognormal distribution) 

݊݋݅ݐܽܿ݋ܮሺ݈ܽ݉ݎ݋݊݃݋ܮ~௜ܣ ൌ 3600, ݈ܵܿܽ݁ሻ 
Sample Size N=100 Replications=1000 
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Remark on arrival time 	࢏࡭ 
By (3.2), the arrival time (	A୧) at stop i is a summation of previous travel time. Let ௜ܶିଵ 

and ௜ܶ be two independent continuous random variables with density functions	݂ሺݔ	ሻ and ݂ሺݕሻ. The sum ܼ ൌ ௜ܶିଵ ൅ ௜ܶ	is a random variable with density function	݄ሺݖሻ, where ݄ሺݖሻ is the convolution of ݂ሺݔሻ	and ݃ሺݕሻ. That is: 

݄ሺݖሻ ൌ ׬ ݂ሺݖ െ ݕሻ݀ݕሻ݃ሺݕ ൌ ׬ ݃ሺݖ െ ାஶିஶାஶିஶ.		ݔሻ݀ݔሻ݂ሺݔ 																				  (3.33) 

The above formula is to obtain density function of Z for only two independent random 

variables. In general, the density function of ܣ௜	 ൌ ଵܶ ൅ ଶܶ ൅ ⋯൅	 ௜ܶ, where ଵܶ,	 ଶܶ,…,	 ௜ܶ 
are independent  random variables with corresponding density function  ்݂ భ , ்݂ మ ,…, ்݂ ೔,respectively, is given by : 

஺݂೔ሺݔሻ ൌ ൫்݂ భ ∗ ்݂ మ ∗ … ∗ ்݂ ೔൯ሺݔሻ				,		       (3.34) 

where the right-hand side of (3.34) is an i-fold convolution of ்݂ భ, ்݂ మ,…, ்݂ ೔. 
In some special cases, the density function of sum can easily be found based on the 

density function of its components. Table 5 gives some examples of these cases. As listed 

in the table 5, when ௜ܶ  has a distribution such as Exponential distribution, Normal 

distribution, Cauchy distribution or Gamma distribution (with the same values of scale 

parameter), the distribution of ܣ௜	 ൌ ଵܶ ൅ ଶܶ ൅ ⋯൅	 ௜ܶ , can easily be obtained and are 

well-known in the literature. For example, if all travel time distributions in each segment 

follow normal distributions, then the arrival time,	A୧, will also have a normal distribution, 

though its parameters will be different.  
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This table only covers some simple examples, for more comprehensive list see any 

advance book in distribution theory such as Johnson and Kotz (1994).  

Table 5. Special cases of	ܑ܂ and ܑۯ 
௝ܶ 	ሺ	݆ ൑ ݅ሻ ܣ௜ሺൌ෍ ௝ܶ		ሻ௜

௝ୀଵ  

௝ܶ~݈ܽ݅ݐ݊݁݊݋݌ݔܧሺߣሻ ܣ௜~݈݃݊ܽݎܧሺ݅, ,௝ߤሺ݈ܽ݉ݎ݋ܰ~ሻ ௝ܶߣ ݈ܽ݉ݎ݋ܰ~௜ܣ ௝ଶሻߪ ቀ෍ߤ௝ ,෍ߪ௝ଶቁ 

௝ܶ~ݕ݄ܿݑܽܥሺݔ௝, ௝ሻߛ ௝ݔሺ෍ݕ݄ܿݑܽܥ~௜ܣ ,෍ߛ௝ሻ 
௝ܶ~ܽ݉݉ܽܩሺ ௝݇, ሺ෍ܽ݉݉ܽܩ~௜ܣ ሻߠ ௝݇ ,  ሻߠ
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IDEAS FOR POSSIBLE FUTURE RESEARCH 

The proposed methodologies can further be improved and extended: First, in the 

proposed models, it is assumed that drivers would not take any adjustment action when 

they are late or early at a particular stop. If drivers arrive at a stop i-1 earlier or later than 

the scheduled time, they may try to adjust their speed to meet the scheduled time for the 

next stop. Second, usually in transit agencies, the total amount of delays for a given road 

may have some constraint. That is, ∑ ሺܵ′௜ െ ௜ܵሻ 		൏ ௞௜ୀଵ	ܥ where ܥ is set by transit agencies. 

Lastly, though transit agencies like to use on-time performance measure to evaluate their 

services, mean squared errors of scheduled adherence can also be used as an alternative 

way to measure the performance of their services.   

To address the first possible improvement, one can introduce a parameter β as an 

adjustment factor, where β is used to adjust travel time between the stops based on 

changes on the driver’s driving habit. For example, when a driver is late in arriving at 

stop i-1, he may speed up in trip continuation to stop i. One way to adjust the reduction in 

the travel time may be modeled by βሺSᇱ୧ െ Aᇱ୧ሻ, where in this case the equation (3.1) can 

be rewritten as follows: 

௜ܣ ൌ ௜ିଵܣ ൅ βሺSᇱ୧ିଵ െ Aᇱ୧ିଵሻ ൅ ௜ܶ .             (4.1) 

If 	β ൌ 0 , this reduces to the earlier model which does not consider driver’s adjustment 

factor. Using (4.1), the problem will become more complicated and it needs further 

investigation.  
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To address the second and third possible improvements one may use procedure based on 

linear programming formulation which we would like to investigate in the future.
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SUMMARY CONCLUSION 

This paper presents a perspective on how to improve transit on-time performance by 

using arrival time data. Several methodologies are proposed for updating the bus 

timetables by using arrival time data. The goal of this procedure is to find a new 

scheduled time (S′୧ ) which maximizes the on-time performance measure that currently 

transit agencies use to evaluate their services. Three different cases are discussed in this 

paper. In the first case, the distribution of arrival times is assumed to be completely 

known. In the second case, the functional form of the distribution of arrival times is 

assumed to be known but parameters of the model could be unknown. In the third case, 

the distribution of the arrival time is considered to be completely unspecified. Monte 

Carlo simulations are used to compare the effectiveness of these methods. 

This research can provide transit agencies with procedures to help them to find optimal 

scheduled on-time intervals using historical ITS data.  The methods discussed in this 

paper are expected to improve transit agencies’ on-time performance percentage at a very 

low cost (Just by updating the timetable).   

In this research, we have simplified the model by reducing variables and making some 

appropriate assumptions that may not be valid for some cases. For example, the travel 

time could be modeled by more variables like bus travel time plus passenger boarding 

and unloading time. In big cities, those data could play a very significant role. In this 

work we implicitly counted the passenger boarding and unloading time as a part of the 

travel time. The boarding and unloading time could be considered separately but this 

needs to be investigated in the future.   
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Appendix 1- Find the relationship between shape and on-time performance (SAS) 
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1. %let llm= -5; 
2. %let ulm= 2; 
3.  
4.  
5. data SimData; 
6. array x x1-x100; 
7. array a a1-a100; 
8. array b b1-b100; 
9. array c c1-c100; 
10. array d d1-d100; 
11. array e e1-e100; 
12. array f f1-f100; 
13. array g g1-g100; 
14.  
15. array xmean xmean1-xmean1000; 
16. array xmedian xmedian1-xmedian1000; 
17. array xmiddlepoint xmiddlepoint1- xmiddlepoint1000; 
18. array xharmean xharmean1- xharmean1000; 
19. array xskewness xskewness1-xskewness1000; 
20. array xmode xmode1-xmode1000; 
21. array xgeomean xgeomean1-xgeomean1000; 
22.  
23.  
24. array otp_median otp_median1-otp_median1000; 
25. array otp_mean otp_mean1-otp_mean1000; 
26. array otp_mid otp_mid1-otp_mid1000; 
27. array otp_mode otp_mode1-otp_mode1000; 
28. array otp_harmean otp_harmean1-otp_harmean1000; 
29. array otp_old otp_old1-otp_old1000; 
30. array otp_geomean otp_geomean1-otp_geomean1000; 
31. array otp_transit otp_transit1-otp_transit1000; 
32. array counts {100} counts1-counts100 ; 
33.  
34. shape =-10; 
35. scale =300; 
36. location =3600; 
37.  
38.  
39. do n=1 to 40; 
40. shape = shape +0.5; 
41.  
42.   do r=1 to 1000; 
43.   harmean = 0; 
44.   geomean =1; 
45.   do i=1 to 100; 
46.  
47.  
48.      sigma = shape/sqrt(1+(shape)**2); 
49.   normal1= rand('NORMAL',0,1); 
50.   normal2= rand('NORMAL',0,1); 
51.   u1= sigma*normal1+sqrt(1-sigma*sigma) * normal2; 
52.   if(normal1>=0) then t=u1; else t=-u1; 
53.   x{i}= (t* scale +location);  
54.  
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55.  /*  
56.   seed= ranpoi(123,87); 
57.  
58.   x{i} = rangam(seed,shape);  x{i} = 

scale*rangam(seed,shape);  /* gamma with shape a */ 
59.   /* gamma with shape a & scale b */ 
60.   
61.   harmean + 1/x{i}; 
62.   geomean =(abs(x{i}) **0.01) * geomean; 
63.   end; 
64.  
65.  do i = 1 to 100; 
66.   counts{i} = 0; 
67.  end; 
68.  
69.   do ii = 1 to 100; 
70.     compare = x{ii}; 
71.     do jj = 1 to 100; 
72.       if x{jj}-20 <= compare and x{jj}+20 >= compare  then 

counts{ii} + 1; 
73.     end; 
74.   end; 
75.  
76.   biggest = max(of counts1-counts100); 
77.  
78.   do k = 1 to 100; 
79.     if counts{k} = biggest then leave; 
80.   end; 
81.  
82.   xmode{r} = x{k}; 
83.   xmedian{r}= median( of x1-x100); 
84.   xmean{r} = mean( of x1-x100); 
85.   lower_quartile=PCTL(25,of x1-x100); 
86.   uper_quartile=PCTL(75,of x1-x100); 
87.   xmiddlepoint{r}= (lower_quartile +uper_quartile)/2; 
88.   xharmean{r}= 100/harmean; 
89.   xskewness{r}= skewness( of x1-x100); 
90.   xgeomean{r}= geomean;   
91.   otp_median{r} =0; 
92.   otp_mean{r} =0; 
93.   otp_mid{r} =0; 
94.   otp_harmean{r} =0; 
95.   otp_old{r} =0; 
96.   otp_mode{r} =0; 
97.   otp_transit{r}=0; 
98.   otp_geomean{r}=0; 
99.  
100.   do i=1 to 100; 
101.     mid = (&llm+&ulm)/2*60; 
102.    a{i}=x{i}+ mid -xmedian{r}; 
103.  b{i}=x{i}+mid-xmean{r}; 
104.  c{i}=x{i}+mid-xmiddlepoint{r}; 
105.  d{i}=x{i}+mid-xharmean{r}; 
106.  f{i}=x{i}+mid-xmode{r}; 
107.  e{i}= x{i}-xmean{r}; 
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108.  g{i}= x{i}-xgeomean{r}; 
109.  
110.  lowlimit= &llm *60; 
111.  uplimit= &ulm *60; 
112.  if(lowlimit<a{i}<uplimit) then otp_median{r}+1; 
113.  if(lowlimit<b{i}<uplimit) then otp_mean{r}+1; 
114.  if(lowlimit<c{i}<uplimit) then otp_mid{r} +1 ; 
115.  if(lowlimit<d{i}<uplimit) then otp_harmean{r}+1; 
116.  if(lowlimit<f{i}<uplimit) then otp_mode{r}+1; 
117.  if(lowlimit<x{i}-3600<uplimit) then otp_old{r} +1 ; 
118.  if(lowlimit<e{i}<uplimit) then  otp_transit{r} +1 ; 
119.  if(lowlimit<g{i}<uplimit) then  otp_geomean{r} +1 ; 
120.    
121.   end;   
122.  
123.   end; 
124.    
125.   median_out = mean (of xmean1-xmean1000); 
126.   mean_out = mean (of xmedian1-xmedian1000); 
127.   mid_out = mean (of xmiddlepoint1- xmiddlepoint1000); 
128.   harmean_out = mean (of xharmean1- xharmean1000); 
129.   skewness_out = mean (of xskewness1-xskewness1000); 
130.   mode_out =mean( of xmode1-xmode1000); 
131.   geomean_out =mean (of xgeomean1-xgeomean1000); 
132.  
133.   otp_median_out = mean(of otp_median1-otp_median1000); 
134.   otp_mean_out = mean(of otp_mean1-otp_mean1000); 
135.   otp_harmean_out = mean(of otp_harmean1-otp_harmean1000); 
136.   otp_mid_out = mean(of otp_mid1-otp_mid1000); 
137.   otp_old_out = mean(of otp_old1-otp_old1000); 
138.   otp_mode_out = mean(of otp_mode1-otp_mode1000); 
139.   otp_transit_out = mean(of otp_transit1-otp_transit1000); 
140.   otp_geomean_out = mean(of otp_transit1-otp_transit1000); 
141.   output; 
142.  
143.   keep shape scale location mode_out skewness_out 

median_out mean_out mid_out harmean_out otp_old_out  
otp_median_out  otp_mean_out otp_harmean_out otp_mid_out 
otp_mode_out otp_transit_out otp_geomean_out geomean_out; 

144.  
145. end; 
146. run; 
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Appendix 2- Test distribution of sample data (SAS) 
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1. proc univariate data= Data  noprint; 
2.  
3. histogram travel_1 travel_2 travel_3 travel_4/ 
4. kernel ( k = normal 
5. c = MISE 
6. w = 3.0 
7. color = green ) 
8. lognormal 
9. weibull 
10. gamma 
11.  
12. midpoints = 0 to 500 by 50; run; 
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