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ABSTRACT OF THE DISSERTATION 

SYNTHESIS OF AZULENYLSILANE NITRONES AS DIAGNOSTIC TOOLS   FOR      

SUPEROXIDE DETECTION 

by 

Relina Tamrakar 

Florida International University, 2011 

Miami, Florida 

Professor David Becker, Major Professor 

The superoxide radical is considered to play important roles in physiological 

processes as well as in the genesis of diverse cytotoxic conditions such as cancer, various 

cardiovascular disorders and neurodegenerative diseases such as amyotrophic lateral 

sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). The detection 

and quantification of superoxide within cells is of critical importance to understand 

biological roles of superoxide and to develop preventive strategies against free radical-

mediated diseases. Cyclic nitrone spin traps such as DMPO, EMPO, DEPMPO, BMPO 

and their derivatives have been widely used in conjunction with ESR spectroscopy to 

detect cellular superoxide with some success. However, the formation of unstable 

superoxide adducts from the reaction of cyclic nitrones with superoxide is a stumbling 

block in detecting superoxide by using electron spin resonance (ESR). A 

chemiluminescent probe, lucigenin, and fluorogenic probes, hydroethidium and MitoSox, 

are the other frequently used methods in detecting superoxide. However, luceginen 

undergoes redox-cycling producing superoxide by itself, and hydroethidium and MitoSox 

react with other oxidants apart from superoxide forming red fluorescent products 
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contributing to artefacts in these assays. Hence, both methods were deemed to be 

inappropriate for superoxide detection. 

In this study, an effective approach, a selective mechanism-based colorimetric 

detection of superoxide anion has been developed by using silylated azulenyl nitrones 

spin traps. Since a nitrone moiety and an adjacent silyl group react readily with radicals 

and oxygen anions respectively, such nitrones can trap superoxide efficiently because 

superoxide is both a radical and an oxygen anion. Moreover, the synthesized nitrone is 

designed to be triggered solely by superoxide and not by other commonly observed 

oxygen radicals such as hydroxyl radical, alkoxyl radicals and peroxyl radical. In vitro 

studies have shown that these synthesized silylated azylenyl nitrones and the 

mitochondrial-targeted guanylhydrazone analog can trap superoxide efficiently yielding 

UV-vis identifiable and even potentially fluorescence-detectable orange products. 

Therefore, the chromotropic detection of superoxide using these nitrones can be a 

promising method in contrast to other available methods. 
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[1] INTRODUCTION 

Increasing evidence of involvement of superoxide radical anion (O2
•-) as a 

mediator of various pathological diseases,1-3 and its importance in physiological 

processes led to the development of methods for detecting  superoxide radical anion over 

the past decades. By far, the most commonly used probes include cyclic nitrones, 

hydroethidine, nitro blue tetrazolium, and other chemiluminescent and fluorescent 

species have received a criticism for various reasons.4-7 To overcome the existing 

problem associated with these probes, an effective approach, a selective, mechanism-

based colorimetric detection of superoxide anion has been developed by using a novel 

silylated azulenyl nitrone spin trap. The synthesized nitrones were found to trap 

superoxide anion, and hence, can be the potential biomarkers for superoxide production. 

The synthesized spin traps could offer a highly convenient method compared to other 

available colorimetric detection methods. My research describes the design, synthesis, 

chemical properties, testing and potential use of new silylated azulenyl nitrone 

compounds. 

[1.1] Historical Background  

Over the past decades, it has been established that radicals are ubiquitous in 

nature, and have a large impact on our lives. They are present in our bodies, produced in 

the atmosphere and during some important chemical reactions essential to life. Although, 

more than a century ago Gomberg had established the existence of a relatively stable 

carbon-centered free radical, the triphenyl methyl radical,8 it was not until five decades 

later that considerable importance of free radicals in chemistry and biology was 

recognized. In 1954, Gershman reported that oxygen poisoning damage is related to the 



2 
 

formation of free radicals during the reduction of oxygen.9 Soon after her publication, in 

the same year, free radicals were first detected in lyophilised biological materials by 

Commoner et al. using ESR.10 With this breakthrough discovery, investigations into the 

role of free radicals in biological systems were spurred. In 1956, Harman proposed his 

free radical theory of aging,11 in which it was suspected that aging and degenerative 

diseases were associated with the activity of free radicals. Gradually, in 1969, with the 

discovery of an enzyme called superoxide dismutase (SOD), McCord and Fridovich 

solidified  the importance of  free radicals  in the life sciences.12 They demonstrated that 

in biological systems, widely distributed superoxide dismutase catalyzes the dismutation 

of superoxide free radical anion (O2
•-) to yield oxygen and hydrogen peroxide and might 

play a vital role in protecting the organism against the detrimental effects of the 

superoxide radical anion. Free radicals are considered to be reactive intermediates and 

involved in many biologically destructive processes. Free radicals are able to damage 

macromolecules such as cellular lipids, proteins, carbohydrates and nucleic acids by 

reacting with them and disabling their normal functions. Once viewed as exclusively 

harmful species to organisms, beneficial roles of free radicals in physiological processes 

were first recognized in the 1970s. Work conducted by Millar and Murad indicated that 

the formation of hydroxyl radical (HO•) from superoxide ion and hydrogen peroxide 

actually stimulates activation of guanylate cyclase which catalyzed the formation of the 

“second messenger” 3',5'-cyclic guanosine monophosphate (cGMP) from guanosine 

triphosphate GTP.13 During the oxidative burst of phagocytic cells, free radicals are 

sequentially generated to attack invasive microorganisms.14,15 It has also been known that 

reactive oxygen species play important roles in the regulation of cardiac and vascular cell 
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functioning.16 Moreover, free radicals increase the production of the T-cell growth factor  

interleukin-2, an immunologically important T-cell protein.17  

Although the existence of free radicals is essential in maintaining cell viability in 

living organisms, their accidental damage to cells is inevitable. The overproduction of 

free radicals results in the formation of highly oxidizing species resulting in cellular 

dysfunction.18 Ultimately, the oxidative stress on cells is thought to make a significant 

contribution to a variety of diseases such as ischemia-reperfusion injury,19 cancer,20,21 

acute stroke,22 Alzheimer’s disease,23,24 cardiovascular disease,25 neurodegenerative 

disease,26 Down’s syndrome, and diabetes.27-29 More importantly, it seems that cells 

maintain a careful balance between beneficial and deleterious effects of free radicals, and 

this mechanism is obviously a critical aspect of our life. It becomes imperative to have 

“real-time” monitoring and measurement of these free radicals within cell for further 

investigation of their physiological and pathological roles that may ultimately lead to the 

development of new strategies for treatment. 

[1.2] Free Radicals 

A free radical is defined as an atomic, molecular or ionic species which possesses 

one or more unpaired electrons in its outermost shell.30 The presence of an unpaired 

electron sharply enhances their reactivity with other atoms or molecules especially in 

hydrogen atom abstraction, in the addition of double bonds in organic compounds and in 

a variety of other reactions to achieve a stable configuration. Free radicals can have 

positive, negative or neutral charge. In the biosciences, two types of radicals are 

commonly encountered, the carbon-centered radical (•R) in which the unpaired electron 

resides on the carbon atom, and the oxygen-centered radical (•O) in which the unpaired 
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electron resides on the oxygen atom. Oxygen-centered radicals are among a group of 

molecules known as reactive oxygen species (ROS). Of the two aforementioned radical 

types, oxygen-centered radicals such as superoxide anion radical, hydroxyl radical, and 

peroxyl radicals are believed by many to be the major cause of vascular diseases and 

pathological conditions in biological systems. 

[1.3] Superoxide radical anion  

Among the reactive oxygen species, superoxide radical anion (O2
•-) is the most 

important species because it is a progenitor of other reactive oxygen species in biological 

systems. A ground state oxygen molecule dissolved in aprotic solvents undergoes 

electrochemical reduction by gaining one electron to form superoxide radical anion based 

on the work of Sawyer and his co-worker31,32 according to the following reaction. 

                         O2   +    e-        O2
•-      (1) 

With one electron in its outermost shell, superoxide radical anion is paramagnetic. The 

bond distance between O-O is 1.33oA. In aqueous media, superoxide radical anion is 

always in equilibruim with the hydroperoxyl radical as shown in equation 2.33  

  H2O  +  O2
•-  HOO•   +  

-
OH       (2) 

The electronic structure of superoxide anion contains three electrons in two  

separate antibonding orbitals (π*, 2p), one with paired and another with unpaired  

electrons.34 Hence, O2
•- is both a radical and anion species. When dissolved in organic 

solvents, it is very reactive.35 In water, superoxide anion has been demonstrated to be a 

strong proton acceptor with at least four molecules of water through hydrogen bonding.36 
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It is unstable and disproportionates in water and readily forms oxygen and hydrogen 

peroxide. Superoxide radical anion can act as an one electron acceptor as well as one 

electron donor depending on the nature of substrate with which it is reacting.37 Therefore, 

it becomes involved in both oxidation and reduction reactions. If a substrate has strong 

electron affinity, it undergoes superoxide-mediated one electron reduction. However, 

with an electron-deficient substrate, superoxide can act as a nucleophile or undergo one-

electron transfer to give molecular oxygen.  

[1.4] Formation of superoxide radical in biological systems 

In biological systems, the superoxide radical anion, O2
•-, is not a very reactive 

damaging agent but plays a critical role in the formation of other harmful reactive oxygen 

species (ROS) that have been implicated in the genesis of various pathological 

conditions. These reactive oxygen species include, reactive radicals such as hydroxyl 

radicals (HO•), hydroperoxyl radicals (HOO•), peroxyl radicals (ROO•), alkoxyl radicals 

(RO•), the carbonate radical anion (CO3
•-) and non-radicals such as hydrogen peroxide 

(H2O2), alkyl hydroperoxides (ROOH), hypochlorous acid (HOCl),   singlet oxygen (1O2) 

and peroxynitrite anion (ONOO-). Secondary reactive oxygen species are also produced 

from singlet oxygen, ionizing radiation38 and peroxynitrite anion, but with less 

frequency.39 Superoxide radical anion productions can be both enzymatically and non-

enzymatically mediated. 

[1.4.1] Electron transport chain as a source of superoxide radical 

Molecular oxygen is an essential component for living organisms to survive, and 

is widely distributed. Aerobic cells utilize oxygen to oxidize organic substrates for energy 

generation. During cellular respiration, oxygen, by accepting electrons, is consumed 
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along with metabolic substrates that undergo oxidation to produce ATP, water and carbon 

dioxide. The cellular respiration takes place in mitochondria via a pathway known as the 

electron transport chain (ETC). The ETC consists of several electron acceptor enzyme 

complexes in the inner membrane of the mitochondrion.40 In this mechanism, electrons 

are passed from one molecule to another producing a proton gradient across the 

mitochondrial membrane each time until electrons are passed to oxygen to produce water 

and energy (ATP). The electrons from oxidation reduce oxygen to water in myocardial 

cells via two pathways.41 The mitochondrial electron transport chain reduces ~95 % of 

oxygen to water by the tetravalent pathway.41  The reduction of oxygen requires four 

electrons to each oxygen molecule as shown in the reaction 3 where Eφ is the standard 

reduction potential.42 

  O2   + 4H+   + 4e-  2H2O      Eφ=+0.82V                  (3) 

It is believed that under normal conditions, molecular oxygen metabolism 

proceeds via a series of four sequential univalent reduction reactions (four-one electron 

addition reactions) to form two molecules of water that also results in the formation of 

two free radicals and one hydrogen peroxide molecule as shown in the overall process.43 

The pKa of the equilibrium between superoxide anion and its conjugated base H2O• is 4.8 

implying that O2
•-   is the dominant species at physiological pH and mediates the further 

steps. 
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O2   +  e-   O2
•- (+ H+   H2O•)             Eo= -0.33V       E’= +0.28V   (4) 

O2
•-  +  e-   O2

--(+ 2H+  H2O2  +  O2)         E
o= +0.87V      E’= +0.63V   (5)            

H2O2  +  e- + H+  HO•  + H2O            Eo= +0.38V      E’= +0.73V   (6) 

HO•  + e-  + H+  H2O           Eo= +2.33V      E’= +1.56V   (7) 

The thermodynamic parameters of this process are reported by Fee and 

Valentine44 where Eo is the standard cell potential and E’ is the potential at the 

physiological conditions (pH 7, 25oC) of the specific intermediate. To reduce oxygen by 

accepting one electron to form superoxide anion is thermodynamically very unfavorable 

compared to the other reductions. However, once the first step takes place, the remaining 

steps will occur spontaneously giving minimal chance for the occurrence of only partial 

univalent reduction of oxygen. The entire process takes place in the enzyme active site 

where oxygen is incorporated into protein and bound to it so that it cannot leave until it is 

converted into water. However, it is estimated that ~ 2 % 45 to ~5 % (in the 

myocardium)41  of the electron flow through the electron transport chain, is subjected to 

one univalent reduction of molecular oxygen generating superoxide radical anion. The 

partial univalent pathway occurs when electrons are leaked from the electron transport 

chain during the terminal enzyme complex reduction in mitochondria. Molecular triplet-

state oxygen then accepts these leaked electrons to form superoxide radical anion46 and 

once in its anionic form, it can easily cross the inner mitochondrial membrane. 

[1.4.2] Enzymatic source of superoxide radical  

In phagocytes, the superoxide radical anion is also produced by the leukocyte 
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enzyme NADPH oxidase.47 Phagocytic cells such as neutrophils or macrophages are 

capable of recognizing the invading microorganisms, and play a role in the immune 

defense mechanism by oxidative activity called the respiratory burst.48 During the 

respiratory burst, the consumption of oxygen is considerably increased compared to 

normal conditions.49 When there is the initial inflammatory response, neutrophils are 

shifted to the site of injury which activates NADH or NADPH oxidases and transfers 

electrons originating from NADH or NADPH to oxygen, thus generating superoxide 

radical to kill oxygen dependent microorganisms in the plasma membrane or on its outer 

surface.50 Similar enzymes that produce O2
•- are also present in cells other than 

leukocytes. They prefer NADH to NADPH.51 
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  Figure 1. Formation of superoxide by xanthine and hypoxanthine  

Xanthine oxidase is another popular enzyme that can also produce superoxide.  

Xanthine oxidase is widely distributed in human with relatively high activity in liver and 
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intestine.52,53 Xanthine oxidase is an inter-convertible form of xanthine dehydrogenase. 

Under normal conditions, xanthine oxidase exists in the form of xanthine dehydrogenase 

that uses NAD+ as electron acceptor, thus producing none or very insignificant amounts 

of superoxide anion.54 However, upon depletion of ATP, xanthine oxidase is formed as a 

result of proteolytic cleavage by a calcium-dependent protease.55 The enzyme then 

sequentially catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid 

with a large production of superoxide contributing to oxidative damages during certain 

disease conditions such as ischemic-reperfusion. The superoxide anion is generated in 

both oxidation steps. 

Peroxidases can also generate the superoxide anion. Evidence shows that 

peroxidase catalyzes the oxidation of substrates like NADH or NADPH to NAD radical 

(NAD•) by using hydrogen peroxide. The superoxide anion is apparently produced by the 

reduction of molecular oxygen by NAD•.56 Furthermore, the presence of certain phenols 

stimulates NADH oxidation which increases the rate of the formation NAD•, thus 

increasing the production of superoxide anion.57 

The superoxide anion is also produced from oxidation of NADH in the presence 

of a catalase.58,59 In this process, catalase probably catalyzes the oxidation of NADH to 

its free radical in the presence of hydrogen peroxide. The resulting NADH free radical 

(NAD•) then transfers an electron to molecular oxygen thereby producing superoxide 

anion. 

              Catalase 
NADH  NAD•  + H2O                                            (8) 

                      H2O2 
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NAD• + O2  NAD+   +  O2
•-       (9) 

 

Lipoxygenase also contributes to the formation of superoxide anion.60 The 

oxidation of purine neucleotides (NADH or NADPH) catalyzed by lipoxydase in the 

presence of linoeic acid lead to the generation of superoxide and might cause oxidative 

stress in cells.61 

Other enzymes that may be responsible for superoxide anion generation include 

PGH synthase62 and cycloxygenase.63 The mechanism for these processes is similar to 

that for lipoxygenase and peroxidase. 

Monoamine oxidase has shown to be a superoxide anion generator in Parkinson’s 

disease.64 

[1.4.3] Non-enzymatic source of superoxide radical  

Thiols may be responsible for the production of superoxide radical anion non-

enzymatically. In biological systems, thiols such as glutathione, ethyl mercaptan, 2-

mercaptoethanol and dithiothreitol have shown to inhibit SOD reduction of nitro blue 

tetrazolium (NBT) suggesting the formation of superoxide anion.65 

Thiols undergo one-electron oxidation with the formation of thiyl radicals. The 

oxidation reaction is catalyzed by transition metal ions.66 Thiyl radicals apparently react 

with thiolate anion producing disulfide radical anion (RSSR•-) which loses an electron to 

dioxygen yielding superoxide anion and disulfides.67 

[1.4.4] Microsomes as source of superoxide radical 

Superoxide anion production  by microsomes has been implicated in in vivo 

studies.68 Two major components in microsomes are NADPH- cytochrome 450 reductase 
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and cytochrome 450 which cause the generation of superoxide. Microsomes stimulate the 

NADPH-dependent SOD inhibitable oxidation of epinephrine to adrenochrome69 and the 

reduction of nitro blue tetrazolium (NBT) in rat liver suggesting the formation of 

superoxide anion.70 Furthermore, corticosteroids has shown to enhance the activity of 

NADPH-cytochrome reductase implying the increased formation of superoxide anion.71 

[1.4.5] Cell nuclei as a source of superoxide radical 

Cell nuclei may also be the source of superoxide anion formation. The generation 

of superoxide anion by cell nuclei was based on the oxidation of epinephrine in the 

presence of NAHD-cytochrome reductase which was inhibitated by superoxide dismutase 

(SOD).72,73 On the basis of the location of cell nuclei, superoxide formation is NADH- or 

NADPH-dependent. The generation of superoxide anion by the nuclear membrane may 

cause human malignant brain tumors.74 

[1.4.6] From nitric oxide synthase 

Superoxide anion is also generated by nitric oxide synthase (NOS) in the presence 

of calcium/calmodulin. Upon binding of calcium/calmodulin to NOS, electrons derived 

from NADPH transfer from flavin-containing reductase to heme-containing oxidase 

domains of NOS to activate the enzyme. However, dissociation of ferrous-dioxygen 

complex, formed by binding of oxygen to the heme group, may occur to generate 

superoxide anion instead of forming water.75 

[1.5] Formation of secondary free radicals  

Superoxide can undergo spontaneous dismutation by non-enzymatic or enzymatic 

pathways to hydrogen peroxide which is less reactive and stable than superoxide anion. 

Superoxide dismutase (SOD) is an enzyme which catalyzes the dismutation of superoxide 
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anion in biological systems at the rate that is four orders of magnitudes. 

              SOD 
2O2

•-  +  2H+     H2O2  +  O2        (10) 
 

Superoxide dismutase (SOD) contains certain metals such as copper, zinc and 

manganese which act as a catalyst for the SOD-mediated disproportionation of O2
•- in the 

cytosol by Cu/Zn-SOD enzyme, and mitochondria by Mn-SOD enzyme.76 Hydrogen 

peroxide is known for its capacity to cross the cellular membrane and to diffuse.  

Hydrogen peroxide is also produced by peroxisomes particularly in liver under 

physiological conditions.77 Damage to fatty acids has been attributed to the hydrogen 

peroxide production other than in liver. 

The resulting hydrogen peroxide is then removed by three general mechanisms. 

In the cytosol, two enzymes named catalase and glutathione (GSH) peroxidase are 

known to catalyze the dismutation of hydrogen peroxide into water and oxygen78 while in 

the mitochondria glutathione peroxidase alone accelerates this process:  

2H2O2   H2O  +   O2                  (11) 

Catalase resides within the microbodies like peroxisomes which contains four 

porphyrin heme (iron) groups that catalyzes the enzyme-mediated degradation of the 

hydrogen peroxide primarily produced from fatty acids and amino acids.  

Glutathione peroxidase requires reduced-glutathione, a tripeptide (N,N-L-γ-

glutamyl-cysteinglycine (GSH), to dismutate hydrogen peroxide into water and oxygen 

which is then oxidized to disulfides GSSG.79 The oxidized form of glutathione is then 

reduced back to GSH by the enzyme glutathione reductase in the presence of NADH 
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which is supplied by a metabolic source. The process of reduction can be classified as a 

detoxification mechanism. 

      glutathione peroxidase 

2 GSH  + 2 H2O2        2 H2O  + O2  +  GSSG  (12) 

 

In the second mechanism, hydrogen peroxide can undergo Fenton-like reactions 

to produce the hydroxyl radical (HO•) in the presence of a transition metal such as iron or 

copper.80 The hydroxyl radical reacts rapidly with biomolecules resulting in the formation 

of carbon-centered radical which is more stable and longer-lived. Normally, iron exists 

predominantly in its oxidized ferric state form (Fe3+). The reduction of Fe3+ to Fe2+ is a 

very important biochemical step to initiate the Fenton-like reaction.81,82 In the first step, 

superoxide radical anion acts as a reducing agent for reduction of coordinated Fe3+ to 

Fe2+. In the second step, this reduced form catalyzes the decomposition of hydrogen 

peroxide into hydroxyl radical. The overall reaction is also called the Haber-Weiss 

reaction.83 

Fenton reaction: 

O2
•- +  Fe3+   Fe2+  +  O2         (13) 

Fe2+ + H2O2  HO•  +  Fe3+  + OH-        (14) 

Haber-Weiss reaction or net reaction: 

  Fe2+ 
O2

•- + H2O2  O2 + HO•  +  OH-         (15) 
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The iron cations are strong oxidants which govern iron reactivity in the Fenton 

reaction, and contribute to the final oxidative damages in biological systems.84,85 Because 

of the toxicity of iron, living organisms carefully sequester iron in safe complex forms 

and carefully release it as a micronutrient. 

In the presence of chloride, hydrogen peroxide is also decomposed by an enzyme, 

myeloperoxidase (MPO) into hypochlorous acid (HOCl). The decomposition process 

occurs in neutrophils86 and in monocytes. Hypochlorous acid is a strong oxidant that can 

damage biomolecules directly and by decomposing to chlorine. Therefore, this 

mechanism is considered to be a process leading to the formation of a toxic physiological 

agent. The resulting hypochlorous acid reacts with hydrogen peroxide to form a non-

radical oxidant such as singlet oxygen and water.87,88 Similarly, hydrogen peroxide can 

form hypobromous acid by the action of the enzyme eosinophil peroxidase (EPO)89. 

These hypohalous acids are capable to produce hydroxyl radical by reacting with the 

superoxide radical anion: 

H2O2  +  X- HOX  +  H2O         (16) 

H2O2  + HOX  H2O + H+ + X- + 1O2       (17) 

HOX +  O2
•- HO•  +  X-  + O2        (18) 

Apart from these reactive oxygen species, another biologically significant free 

radical is nitric oxide (NO•). Nitric oxide (NO) is produced in biological tissue by the 

semi-essential amino acid L-arginine via the action of nitric oxide synthase (NOS) by a 

five electron oxidative reaction to form L-citrulline.90 In the cardiovascular system, NO is 
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produced primarily by endothelial cells while certain nerves, blood cells, and vascular 

smooth muscle cells are also capable of producing nitric oxide. The activity of NO is 

controlled by cytokines which connect the immune system with the cardiovascular, 

nervous and endocrine systems. Therefore, when there is an urgent need for cell defense, 

immune cells can make large amounts of nitric oxide.91  

Nitric oxide (NO) is a very unstable molecule and has a half-life of only a few 

seconds under physiological conditions. During the oxidative burst, NO reacts 

spontaneously with superoxide radical anion produced by immune cells to generate a 

more oxidatively active molecule, the peroxynitrite anion (ONOO-). The formation of 

peroxinitrite is regulated by the concentration of NO. It is produced when the level of NO 

is very high and dismutation by SOD is inhibited. In acidic medium, peroxynitrite anion 

is protonated to afford peroxynitric acid which can react with organic molecules. 

Spontaneous decay of ONOOH by heterolytic cleavage generates hydroxyl radical (HO•) 

and nitrogen dioxide radical (NO2•).
92 The decomposition reaction is catalyzed by the 

transition metal of SOD and myeloperoxidase which continues to give nitrates as a final 

product:93 

NO•  + O2
•-  ONOO-           (18) 

ONOO- + H+ ONOOH          (19) 

ONOOH       HO• +  NO2•           (20) 

HO• +  NO2• NO3
-  + H+           (21) 
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Peroxinitrite  and its protonated form, (ONOOH), can react with selective 

biomolecules such as protein thiols, zinc fingers, and membrane lipids by a one or two 

electron oxidation process and eletrophilic nitration.94 This reaction is accelerated by 

carbon dioxide.95 Moreover, the formation of hydroxyl radical by peroxynitrite has a 

minor role in vivo because of an affinity of peroxynitrite towards carbon dioxide. 

Peroxynitrite reacts rapidly with carbon dioxide to form an unstable molecule, 

nitrosoperoxycarbonate (ONOOCO2-), which spontaneously homolysis into carbonate 

radical anion (CO3
•-) and nitrogen dioxide radical (NO2•).

96 

[1.6] Mechanism of free radical-mediated tissue damage 

When the balance between the rate of formation of free radicals and the rate of 

their scavenging is disturbed, the damage of tissues and their structures is inevitable. In 

particular, hydroxyl radical is the most powerful reactive species of oxygen and can react 

with lipids, DNA and proteins. Because of its strong reactivity, tissue damages occur at 

the site of its formation.  

[1.6.1] Free radicals in lipid peroxidation 

Polyunsaturated fatty acids are among the major targets of radical-mediated 

damages among othose that involve free radical chain reactions. The presence of a 

methylene group between double bonds makes polyunsaturated fatty acids susceptible to 

oxidation with the formation of a conjugated diene bond. The oxidation reaction first 

generates a second radical, which in turn reacts with another macromolecule and 

continues the chain reaction.  
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Figure 2. Schematic mechanism of lipid peroxidation of polyunsaturated fatty 

acids 

The hydroxyl radical first abstracts a hydrogen atom from polyunsaturated fatty 

acids of cell membranes and initiates the chain reaction of lipid peroxidation by 

generating an alkyl radical (figure 1). The alkyl radical then reacts with oxygen to form 

an alkyl peroxyl radical, which in turn, abstracts a hydrogen atom from another fatty acid 

to propagate the chain reaction. A number of products are formed from lipid peroxidation 

once newly formed  lipid peroxides react with metals such as malondialdehyde (MDA) 

and 4-hydroxynonenal (HNE)97. These aldehyde products are electrophilic and can react 

with nucelophilic sulfhydryl moieties like those in cysteine, and amino acids residues 

such as histidine and lysine.98 Lipid peroxidation modifies both the structure and function 

of cell membranes.99 
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The hydroperoxyl radical (HOO•), the conjugate acid of superoxide anion, may 

also participate in fatty acid peroxidation initiation in vivo by abstracting a hydrogen 

atom from the methylene group of unsaturated fatty acids.100 

[1.6.2] Free radicals in DNA damage 

The hydroxyl radical can also react with DNA by addition to double bonds and 

abstracting hydrogen atoms especially from bases. It can also react with the deoxyribose 

backbone. The consequences of these reactions are modification of individual nucleotide 

bases, single-strand breakage, DNA-protein cross links, and chromosomal rearrangement. 

Addition of hydroxyl radical to pyrimidines101 (thymine and cystosine) and purines102,103 

forms hydroxyl pyrimidines and hydroxyl purines respectively. Hydroxyl radical reacts 

with guanine bases to form 8-oxo-7-hydo-29-deoxyguanosine.104,105 Malondialdehyde 

(MDA), one of the products of lipid peroxidation, can also react with DNA bases causing 

mutation and cancer.106  

The peroxynitrite anion also causes oxidative DNA damage as well as nitration of 

DNA bases. 

[1.6.3] Free radicals in protein damage 

Proteins are also sensitive to oxidation reactions especially with hydroxyl radicals 

formed upon exposure to ionization. Abstraction of an alpha hydrogen atom by hydroxyl 

radical from any one of the amino acid residues or the peptide backbone leads to carbon-

centered radicals (alkyl radical), which upon addition of oxygen under aerobic conditions 

forms alkylperoxyl radicals. The alkyperoxyl radical then interacts with the protonated 

form of superoxide radical anion (HO2•) thus leading to an alkyl peroxide that, in turn, 

further reacts with HO2• to give a protein alkoxyl radical which can cause peptide bond 
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cleavage.107 These newly formed protein alkyl-, alkylperoxyl- and alkoxyl- radicals can 

abstract hydrogen atoms from amino acid residues in the same or different protein and 

continue the same reaction.107 The hydroxyl radical generated by the Fenton reaction can 

also initiate the same reaction in the absence of ionizing radiation causing loss of 

histidine residues, 108 loss of tyrosine residues, and bityrosine cross-links.109 On the other 

hand, protein-peroxyl radicals can undergo scission and produce carbonyl 

compounds.110,111 Peroxynitrite anion is another reactive species that can react with 

amino acids residues of proteins and modify their structures and thus affect their 

functions.112,113 

[1.7] Biological defense against free radicals 

The toxic action of free radicals from a variety of sources has led to the 

development of a series of defense mechanisms within organisms to decrease or eliminate 

the damage they inflict.114 Defense mechanisms against the negative influence of free 

radicals include, mechanisms preventing the formation of free radicals, repair 

mechanisms of damaged cells, physical defenses, and antioxidant defenses. From the 

biological standpoint, an antioxidant is any substance that prevents oxidation of other 

molecules by oxidants while it is itself oxidized to a relatively stable compound either in 

a radical or non-radical form, that can stop the propagation radical reaction. Superoxide 

dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) are enzymatic 

antioxidants. Glutathione (GSH) is a non-enzymatic antioxidant.  

When the level of superoxide anion is elevated, cells rapidly synthesize SOD 

enzymes to dismutate superoxide radical anion. Manganese superoxide dismutase 

(MnSOD) is associated with DNA which would behave like a “tethered antioxidant.” 



20 
 

Hence, MnSOD would enhances DNA protection from oxidative events and even inhibits 

carcinogenesis.115 Copper-zinc superoxide dismutase (CuZnSOD) is unusually stable and 

is the most important intracellular antioxidant. Among metals, copper appears to be 

involved in the dismutation process by  oxidation and reduction reactions whereas zinc 

helps in the enzyme stabilization but does not participate in dismutation.116 

Enzyme-Cu2+  +  O2
•- Enzyme-Cu+   +  O2        (22) 

Enzyme-Cu+  +  O2
•- + 2H+ Enzyme-Cu2+   +  H2O2      (23) 

Deficiency of SOD increases the risk of tissue damages and causes morphological 

disorders. On the other hand, increased SOD expression also has a deleterious effect on 

mammalian cells.  

In physiological conditions, free radical and non radical species exist at low and 

measurable concentration.117 Cells maintain the concentrations of these free radical  

species by establishing equilibrium between the rate of their generation and removal.118 

Each cell function is characterized by the oscillation of electrons stored (redox state) in 

many cellular constituents.119 Under oxidative stress conditions, glutathione peroxidase 

(GPx) removes hydrogen peroxide thereby forming glutathione disulfide at the expense 

of glutathione (GSH); this in turn, increases the formation of protein mixed disulfide.120 

Oxidized glutathione is then stored inside cells and this will increase the ratio of reduced 

(GSH) to oxidized glutathione (GSSG). However, too high concentrations of GSSG may 

damage many enzymes oxidatively. Cells will then remove oxidized glutathione disulfide 

by the activity of glutathione reductase in the presence of NADPH to maintain the redox 
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state as represented by the oxidized (GSSG)/ reduced (GSH) ratio.121 The ratio of 

oxidized and reduced glutathione is a measure of oxidative stress within an organism.  

GSSG  + NADPH  + H+ 2GSH  + NADP+         (24) 

The Nernst equation can be used as a tool to estimate a reduction potential from 

reducing capacity, which is the concentration of the reduced species. Both of these 

factors are important to determine the redox state of the cell.119   

Catalase, similar to glutathione peroxidase, eliminates hydrogen peroxide 

generated from dismutation of superoxide anion. In addition to its role as a cofactor of 

glutathione peroxidase, glutathione is involved in many other metabolic phenomena. 

Gluthathione inhibits the ability of copper ion to generate free radicals by chelation.122 It 

can quench certain free radicals and non- radicals such as HO•, RO•, RO2•, R•, and 

peroxynitrite anion. However, the reaction with a radical would generate the thiyl radical 

(GS•) which may generate superoxide anion. In such case, SOD might assist GSH in the 

elimination of free radicals. Moreover, GSH reacts with peroxynitrite anion to form 

nitrosothiol, which leads to the regeneration of nitric oxide. This is an important process 

in the protection of cells from deleterious effects of peroxynitrite. 

Similarly, the formation of NO can act as direct feedback inhibition of NOS for 

further synthesis of NO.123 

[1.8] Role of free radicals in various diseases 

Oxidative stresses caused by free radicals have been implicated in various 

pathological conditions. The involvement of free radicals in disease is triggered by 

various factors such as genetic, environmental and disturbance of metabolic systems. 



22 
 

Free radicals produced in mitochondria are widely believed to be the major cause of 

manifestation of a pro-oxidative shift in the plasma thiol/disulfide redox state which 

impairs glucose tolerance. These conditions are generally observed in cancer124 and 

diabetes.125 As in the other cases, the enhanced activity of NAD(P)H oxidase and 

xanthine-oxidase are the major cause of ROS generation derived from superoxide anion. 

These conditions are normally observed in chronic inflammation126 and ischemia/ 

reperfusion injury respectively. 

An alteration of cellular thiol/disulfide redox state as a result of oxidative stress 

has been found in many cancer cells. Damage to DNA, occurs because free radical-

induced permanent modification of genetic materials, thereby leading to cell mutagenesis 

and carcinogenesis.127 An increased level of DNA damage has also been found in tumors 

which suggest the involvement of oxidative stress in the etiology of cancer. If DNA is 

severely damaged, then affected cells are selectively eliminated by the process called 

apoptosis.128 Apoptosis, a normal biological process, is a programmed cell death that 

destroys the damaged cells that could otherwise cause a threat to the integrity of 

organisms by leading to many morphological changes.129 However, uncontrolled 

apoptosis can lead to the destruction of healthy cells.130 The consequences of DNA 

damage are arrest or induction of transcription, induction of signal transcription 

pathways, genomic instability, and replication error; all of them are associated with 

carcinogenesis.131,132 The formation of the DNA oxidation product, 8-oxo-7-hydo-29-

deoxyguanosine (8-oxo-dG), has been studied most extensively as a potential biomarker 

of carcinogenesis because it is easily detectable. 8-oxo-dG was first detected in urine by 
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Shigenaga et al133 Tobacco smoking is one of the sources of carcinogenic reactive oxygen 

species.134 

Free radicals are also involved in diabetes mellitus.29,135 Hyperglycemia is the 

common characteristic of both type-1 diabetes mellitus (insulin-dependent) and type-2 

diabetes mellitus (non-insulin-dependent). Hyperglycemia is the condition in which an 

excessive amount of glucose is circulated in the blood plasma. Increased glucose levels 

are shown to increase the production of free radicals from various sources. The major site 

of superoxide anion formation in diabetes is mitochondrial complex II136 which is 

different from the sites mitochondrial complex I and the ubiquinone-complex III that 

generate superoxide anion under normal conditions. Glucose auto-oxidation has been 

shown to produce superoxide anion in diabetic patients137,138 The advanced glycation end 

(AGE) products are the result of glucose oxidation which interact with specific cell 

surface binding proteins with subsequent generation of reactive oxygen species (ROS).139 

The increased level of ROS may cause the development of diabetic complications such as 

accelerated atherosclerosis140 and other vascular pathologies.141 

Various inflammatory diseases are associated with the elevated production of 

reactive oxygen species.142 Atherosclerosis is one of the chronic inflammatory diseases 

that is characterized by hardening and thickening of the arterial walls that develop in the 

inner coat.143 In the presence of hyperlipidemia, oxidative stress may activate the genes 

that induce an inflammatory response to the vascular endothelium. The injured 

endothelial cells then stimulate the recruitment of mononuclear cells into the arterial 

walls which bind oxidized low-density lipoprotein (LDL) resulting in abnormal 

macrophages, that subsequently undergo apoptosis. The massive apoptosis of 
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macrophages causes the formation of atherosclerotic plaque.144 Moreover, experimental 

data shows that hypertension may cause an intensification of atherosclerosis.145  

A role for oxidative stress in hypertension has been supported by the study of an 

animal model of hypertension by Vaziri et al. via in vivo glutathione depletion.146 

Similarly, a potential causative role for oxidative stress is also found in patients with 

essential hypertension.147,148 The mechanism that seems to contribute to hypertension is 

increased generation of superoxide anion in the vessel wall followed by the formation of  

peroxinitrite anion,149 which in turn, increases vasoconstriction.150 In vivo studies in 

animals demonstrated that angiotensin II is the main factor that is involved in the 

oxidative stress that leads to chronic high blood pressure.151,152 

It is suggested that oxidative stress is also involved in several neurodegenerative 

diseases. Nervous tissue suffers more oxidative damages than other tissue types.153 

Although the brain contributes only a few percent of all tissue mass, it is the most large 

amount of ATP is required to maintain normal neuronal functions. Brain has a high iron 

content154 that can be released as ions during brain injury, and these ions catalyze free 

radical reactions resulting in HO• formation which thereby accelerates lipid peroxidation 

and autoxidation of neurotransmitters.  

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by 

impairment of higher cognitive functions and extensive neuronal loss. Two pathological 

features found in AD patients are the accumulation of amyloid plaques (amyloid-β 

peptide) in the brain and the presence of neurofibrillary tangles and neurophil threads.155 

A progressive cerebral accumulation of amyloid-β peptide is the major event in the 

development of Alzheimer’s disease. The accumulation of peptides causes neurofibrillary 
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damage in neurons and neuronal cell death. A postmortem study of Alzheimer’s disease 

brains indicated the reduction of various neurotransmitters.156 These phenomena are the 

major cause of loss of cognitive functions.116 The evidence of increased lipid 

peroxidation and decreased polyunsaturated fatty acids content, increased protein and 

DNA oxidation, increased formation of 4-hydroxynonenal (product of lipid peroxidaiton) 

in AD ventricular fluids, the presence of advanced glycation end products, 

malondialdehyde, nitrotyrosine, and peroxynitrite in neurofibrillary tangles supports the 

involvement of oxidative stress in the brains of Alzheimer’s disease victims.155,157 The 

significant amount of lipid peroxidation has been implicated by the increased level of 4-

hydroxynonenal in the postmortem cerebrospinal fluid of Alzheimer’s disease patients.158 

Most individuals with Down’s syndrome have been shown to develop Alzheimer’s 

disease as they get older.159 The higher risk of Alzheimer’s disease in individuals with 

Down’s syndrome might be as a result of the extra copy of chromosome 21 which leads 

to increased production of amyloid beta. Down’s syndrome is a genetic disease that 

results from three copies of chromosome 21. The syndrome leads to mental retardation, 

often ranging from mild to moderate disability. A small number of individuals with 

Down’s syndrome have a severe to high degree of intellectual disability. There is 

evidence of over-expression of Cu/ZnSOD in Down’s syndrome that may result in 

increased production of hydrogen peroxide.28 Overproduction of Cu/ZnSOD in 

transfected cells appears to promote increased lipid peroxidation. 160 

Parkinson’s disease (PD) is characterized by a problem in controlling movement 

that includes slow movement of foot and hand when they are at rest and muscle rigidity.           

Parkinson’s disease (PD)  is associated with a selective loss of neurons in a part of the 
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midbrain called the substantia nigra.98 The cells of the substantia nigra produce 

dopamine, a neurotransmitter-chemical messenger between brain and nerve cells, which 

communicates with cells in another region of the brain. It is believed that oxidative stress 

is an initiator of dopaminergic cell degeneration which is also associated with the 

presence of Lewy bodies in the substantia nigra and elsewhere on the basis of the 

postmortem study.64,161 Lewy bodies are small spherical proteins which affect the brain’s 

normal functions and interrupt the action of important chemical messengers. 

Similarly, in amyotrophic lateral sclerosis (ALS), motor neurons are the main 

targets affected in the motor cortex, spinal cord and brain stem162 which leads to muscle 

tone impairment, respiratory failure, paralysis, and often death. Multiple mutations are 

associated with familial amyotrophic lateral sclerosis. Studies show that 20 % of familial 

ALS patients carry mutations in the Cu/ZnSOD gene, suggesting the involvement of free 

radicals.163 One hypothesis concerning the etiology of ALS is that metals at the active 

sites of mutant Cu/ZnSODs allow these enzymes to catalyse oxidation reactions via 

peroxynitrite-generated nitrating species.164 Several lines of transgenic mice 

overexpressing mutant Cu/ZnSOD have shown to develop a motor neuron disease, whose 

pathology and mode of progression resemble familial ALS patients. Gurney, Becker et al. 

used azulenyl nitrone (AZN) to suggest oxidative stress in SOD mutant transgenic 

mice.165 Recently, Siddque’s team discovered mutation in ubiquilin 2 gene in the brains 

and in the spinal cords of ALS victims.166 The mutant ubiquilin 2 gene causes the 

accumulation of damaged protein contributing several forms of amyotrophic lateral 

sclerosis.  

Friedreich’s ataxia is an autosomal recessive genetic disorder which is caused by 
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a defect in gene called Fractaxin.167 The clinical features consist of loss of position and 

vibration sense in the lower limbs and dysarthria, loss of deep tendon reflexes, and 

progressive limb and gait ataxia. Evidence of oxidative stress and therapeutic benefit 

from antioxidants have been reported.168 

Huntington’s disease (HD) is a neurodegenerative disease of autosomal dominant 

inheritance which causes both movement disorder and dementia. There is evidence of 

elevated levels of oxidative damage products such as malondialdehyde (MDA) and 

leukocyte-8-hydroxydeoxyguanosine (8-OHdG) in Huntington’s disease patients.169   

Multiple sclerosis (MS) is an inflammatory disease which affects the brain and 

spinal cord. Multiple sclerosis is caused by damage to the myelin sheath which is the 

protective covering of nerve cells.170 Post-mortem analysis of the brains of the MS 

victims indicated the presence of nitrotyrosine which may be produced by reaction 

between superoxide and nitric oxide.171 

Neuronal ceroid lipofuscinoses (NCL) are a group of neurodegenerative 

lysosomal storage disorders which is characterized by the progressive and permanent loss 

of motor and physiological ability.172,173 It involves the progressive accumulation of the 

pigments called lipofuscins in cells of the brain and other tissues. Clinically, NCLs are 

defined by their age of onset and symptoms: infantile NCL (Santavuori-Haltia), late-

infantile NCL (Jansky-Bielschowsky), juvenile NCL (Batten disease, Spielmeyer-Vogt) 

and adult NCL (Kuf’s disease) and epilepsy NCL (progressive epilepsy with mental 

retardation). Study on cultured cell derived from patients with NCL indicated that 

oxidative stress is common manifestation of neuronal ceroid lipofuscinoses.174  

Injury to heart, brain, lungs, intestine, liver, kidney and skeletal muscle resulting 
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from ischemic/reperfusion may present in a variety of clinical conditions such as organ 

transplantation, stroke, myocardial infractions, and other situations.175-177 On the basis of 

hospital discharge records, 5 million patients (16.2 %) were diagnosed with ischemic 

cardiovascular events and such events were the major cause of death (38.7 %) in the 

United States.178 Occurrence of tissue damage is attributed to the large amount of ROS 

production during ischemia/reperfusion.179 Under the ischemic condition (oxygen 

deprivation), there is depletion of adenosine triphosphate (ATP) which results in the 

conversion of xanthine dehydrogenase is into xanthine oxidase that utilizes oxygen. At 

the same time, cellular ATP is catabolized to hypoxanthine which accumulates in 

ischemic tissue. Upon subsequent reperfusion (reoxygenation), xanthine oxidase uses the 

influx of oxygen to oxidize hypoxanthine into xanthine with rapid generation of 

superoxide anion and hydrogen peroxide.180 Treatment with a synthetic SOD mimetic has 

been shown to attenuate tissue damage in a rat model of  ischemia/reperfusion injury.181  

Obstructive sleep apnea is a breathing disorder among adults, characterized by an 

abnormal pause in breathing during sleep.182 The resulting repeated hypoxia and 

reoxygenation is similar event to the conditions of ischemia/reperfusion. Untreated and 

severely affected individuals often develop cardiovascular diseases such as coronary 

artery disease, arterial hypertension and cerebrovascular disease183 that are associated 

with increased mortality.184 The involvement of free radicals in obstructive sleep apnea, 

which could be the cause of the associated cardiovascular events, has been implicated by 

the detection of increased production of superoxide anion from polymorphonuclear 

neutrophils in affected patients after exposure to various stumuli.185  

Aging is a process of progressive loss in the efficiency of physical and cognitive 
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functions of an organism after the reproductive phase of life.107 The fact that free radicals 

cause deleterious damage to cells  over time which results in aging was proposed by 

Harman et al.11 Several studies also support his theory by showing progressive generation 

of free radicals and almost exponential increases in accumulation of oxidatively damage 

proteins, lipids and DNAs during aging.186-188 Mitochondria are the primary sites of 

generation of oxidants during the aging process. Much of the oxidized DNAs, especially 

the nuclear DNA, are repaired by the cell but the mitochondrial DNA receives only low 

repair activity.189 Over time, the damaged mitochondrial DNA accumulates and slowly 

shuts down mitochondria causing cell to age and eventually die. 

[1.9] Free radicals in important physiological processes 

In addition to the detrimental effects of free radicals, they are also well recognized 

for their importance in vital physiological activities. It is well established that free 

radicals play a role in protective signaling and regulation within the cells. Cells in 

organisms communicate with each other and respond to extracellular stimuli via a 

signaling mechanism called a signal transduction.190 With this biological mechanism, 

cells convey the information from the outside of the cell to various functional agents 

inside the cell. Signals are transferred within cells when cells are stimulated by reactive 

oxygen species. Signal transduction is initiated by extracellular signals such as growth 

factors, neurotransmitters, hormones and cytokines.48 The signal transduction processes 

can leads to the activation of a class of proteins called transcription factors which are 

responsible for the expression of genes. Through the free radicals, which are generated in 

low concentration by stimulation of growth factors and hormones, the signal is 

transmitted. For example, hydrogen peroxide, produced by growth factors, is found to be 
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necessary for the proper functioning of signal transduction191,192 and acts as a secondary 

messenger.192 However, superoxide anion appears to regulate protein tyrosine 

phosphatase (PTPs) activity more effectively than hydrogen peroxide via a cysteine 

residue with the formation of the cysteine disulfide.193 The formation of the cysteine 

disulfide results in inactivation of the protein, which is reactivated by a specific enzyme 

that reduces cysteine disulfide. The reversible regulation of PTPs indicates that free 

radicals play an important cell signaling role in controlling redox balance.  

Free radicals and ROS also regulate immune responses. Superoxide anion and 

nitric oxide generated in neutrophils and macrophages during the inflammatory condition 

plays a major role in cell defense. During inflammation, peroxynitrite anion may form 

from superoxide and nitric oxide which participates in the CNS inflammatory response of 

rat infected with Borna disease virus and in the host immune response to Coxsackievirus 

infection.194 

Superoxide and other ROS produced by NADPH oxidase of vascular cells appear 

to regulate the vascular and cardiac cell functioning in rat by activating intracellular 

signaling pathways.16 Free radicals are shown to be involved in the stimulation of 

guanylate cyclase which catalyzes the formation of 3',5'-cyclic guanosine monophosphate 

(cGMP) from guanosine triphosphate (GTP). The resulting cGMP regulates vascular 

smooth muscle tone and inhibits platelet adhesion.195 

Free radicals as signaling factors also regulate the monitoring of oxygen tension 

in the control respiratory ventilation.196 Changes in oxygen concentration are sensed by 

the regulated production of hormones such as erythropoietin and IGF-II (insulin-like 

growth factors) which are controlled by hypoxia-inducible factor.196 



31 
 

The involvement of free radicals in a signal preconditioning has been an 

interesting subject in many studies aimed at understanding the natural protective 

mechanism for ischemia in minimizing sudden cardiac death.197-200xx Preconditioning, a 

condition whereby a signal increases the tolerance of tissue to ischemia/reperfusion 

injury, such that a brief episode of non-lethal ischemia confers long and short term 

protection against the lethality of a prolonged ischemic insult.201 Evidence shows the 

beneficial effect of preconditioning in a variety of organ systems including the circulating 

system. 

[1.10] Detection of free radicals 

Detection of free radicals began to develop soon after the discovery of the 

biological importance of superoxide anion in physiology.202 Several in vivo studies on the 

action of antioxidants suggested the role of free radicals and ROS as a stimulator of 

inflammatory signaling and promoter of growth stimulatory signals which can lead to 

several disorders.203 Therefore, in biomedical research, identification of ROS and their 

sources is crucial to the development of novel drugs that function as both radical 

scavenger and non-steroidal anti-inflammatory agents (which target the sites of free 

radical generation). The identification of radicals will allow investigator to understand 

their exact role in specific diseases as well as their formation sites and their molecular 

targets. However, problems exist in the detection and quantification of intracellular 

superoxide radical anion. Spectroscopic technique known as electron spin resonance 

(ESR) otherwise known as electron paramagnetic resonance (EPR) were developed.  

Electron spin resonance has been a powerful tool for the detection of unpaired 

electrons within free radicals. Free radicals can have either + ½ or – ½ spin and therefore 
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act as a small magnet.116 Electron spin resonance is the resonant absorption of microwave 

radiation by paramagnetic species under the influence of an external applied magnetic 

field.204 The electron magnetic moment of the unpaired electron can align itself either 

parallel or anti-parallel to the field creating two energy levels which vary with magnetic 

flied strength. When the applied microwave energy matches the energy level separation, 

energy is absorbed and causes movement of the electron from the lower energy level to 

the upper one. The absorption is monitored and a spectrum is obtained usually in the 

microwave region of the electromagnetic spectrum. The degree of absorption is 

proportion to the number of free radical in the substance.205 The equation to obtain 

absorbance is: 

∆E = gβH      (22) 

where ∆E is a the energy gap between the two energy levels of the electron, g is a 

gyromagnetic ratio of the electron whose value for the free electron is 2.00232 (most 

biological free radicals have value close to this), β is the Bohr magneton and H is the 

applied magnetic field. The number of lines in the ESR spectrum of a radical is known as 

the hyperfine structure. The presence of many nuclei in radicals makes it often very 

complicated. Generally, a radical is identified by calculating the g value, hyperfine 

structure and line shape. 

Although a promising instrument, the ESR is insensitive for direct detection of 

free radical such as superoxide radical anion and hydroxyl radical in living system. Direct 

detection of intracellular superoxide radical by spectroscopic observation is difficult or 

virtually impossible because of its exceptionally short lifetime, low concentration and 
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rapid intracellular reactions. Direct detection of biological free radicals is only possible 

with high concentrations of free radicals or if low temperature is used to minimize their 

reactions. For example, at exceptionally low temperature, ESR was able to detect the 

hydroperoxyl radical (HO2•) in argon at 4.2oK directly.206 The hydroperxyl radical was 

generated by addition of hydrogen atom to oxygen. In another experiment, Saito207 and 

Czapski208 have reported using ESR to detect HO2• by forming a metal complex. 

However, these approaches limit the detection of biologically generated free radicals. To 

overcome this difficulty, the spin trapping approach was developed. In this technique, a 

radical is allowed to react with a spin trap molecule to form a more stable radical product, 

detectable by ESR, which provides a spectrum characteristic for the particular free radical 

that is trapped. The spin trapping method to detect short-lived radicals was first pioneered 

by Janzen et al.209 With the advent of ESR spectroscopy and the spin trapping method, it 

is now possible to identify free radicals produced at physiological temperatures. Spin 

trapping methods have proved to be a very useful tool in detecting superoxide radical 

anion both in vivo and in vitro detection. In addition to spin trapping, other techniques 

have also been employed for the detection of free radicals particularly superoxide radical 

anion, which will be discussed in a subsequent section. 

[1.11] Nitrones  

The term “nitrone” is a concise word that describes compounds derived from 

nitrogen ketone compounds. The name nitrone was first given by Pfeiffer in 1916 to a 

class of compounds containing a nitrogen-oxygen linkage (N→O) in order to indicate the 

chemical similarity to carbonyl compounds.210 Later, in 1938, Smith 211 reviewed those 

compounds and redefined nitrone as a class of compounds for both open and closed 
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chains containing the  group below: 

 

N O

 

 1 

There are a variety of methods to synthesize these nitrones such as direct 

alkylation of oximes, oxidation of N,N-disubstituted hydroxylamines, thermal 

isomerization of oxaziranes, and from carbonyl and nitroso compounds.212 Nitrones have 

a remarkable ability to undergo nucleophilic addition 213 and 1,3-dipolar cycloaddition 

reactions.214 Because of these properties, nitrones have received special attention as 

building blocks in the synthesis of various natural and biologically active compounds as 

well as for their application in radical trapping studies (including those that takes place in 

biological systems).215 

The compounds containing the nitrone moiety have demonstrated a potential 

therapeutic activity in both in vivo and in vitro studies.216,217 In addition, nitrones have 

also been useful for detection of free-radical mediated oxidative stress in biological 

systems.217 Up until now, many nitrone-containing molecules have been developed, and 

examined for their efficacy as antioxidants and as potential tools for superoxide anion 

radical detection. 

[1.11.1] Synthesis of biologically important nitrone-based spin traps  

Acyclic nitrones can be synthesized directly by condensation of N-
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monosubstituted hydroxylamines with carbonyl compounds. The most widely tested 

nitrone, α-N-phenyl-N-tert-butylnitrone (PBN), and its derivatives have been synthesized 

by using this method of preparation.218 
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Azulenyl nitrone (AZN) is a new class of acyclic nitrone first prepared by Becker 

et al. by condensing N-tert-butyl hydroxylamine with an azulenyl aldehyde derived from 

guaiazulene.219 Studies of AZN in animal models showed a therapeutic benefit against a 

number of diseases and utility as biomarker of free radical events.165,217,220  
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Using the same protocol, STAZN, a second generation azulenyl nitrone was 

synthesized.221 Recently, in studies conducted by researchers at the Salk Institute, 

STAZN was deemed an emerging therapy for ischemic stroke. Its mode of action, 
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according to these researchers, may be pleiotropic.222 Ginsberg and Becker et al. reported 

several papers that documented the beneficial effects of STAZN for stroke in animal 

models.223-226 
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Heteroaryl-nitrone molecules, in which the carbon of the nitrone moiety has a 

heteroaromatic substituent, can be prepared by various methods227  including N-

alkylation of oximes,228 and condensation of active methylene compounds with nitroso 

compounds.229 
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Cyclic nitrones have also received much attention-specially for the superoxide 

detection. Cyclic nitrones are usually prepared by reductive cyclization between carbonyl 

and nitro functional groups. First, the nitro group is reduced to the hydroxylamine with 

zinc and aqueous ammonium chloride, which is followed by intramolecular condensation 

with the carbonyl moiety form a ring.230 Many pyrroline N-oxide derivatives were made 

by this method.231-233 

N

OONO2

Zn/NH4Cl

 

                        7 

It is also possible to prepare nitrones by oxidizing amines and imines. Bernotas et 

al. have made a cyclic analog of PBN, MDL-101,002, and other derivatives, by catalytic 

oxidation of imines with hydrogen peroxide.234,235 
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The subsequent nitrone can be a precursor for the synthesis of another nitrone. For 

instance, MDL-108,881 was prepared by nucleophilic addition followed by oxidation.236 
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Some highly substituted nitrones have been synthesized by oxidation of 

amines.237 
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[1.12] Methods for superoxide radical detection 

[1.12.1] Nitrones as spin traps for superoxide radical detection 

The spin trapping technique commonly consists of using one of two classes of 

compounds; namely, nitroso compounds and nitrones. Reaction of unstable radicals with 

nitroso compounds and nitrones often formed a long-lived nitroxide radical which is also 

called an aminoxyl radical or spin adduct. The nitroxide adducts so formed are detectable 

by ESR spectroscopy. 
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     Figure 3. Spin trapping of a free radical with nitrone and nitroso compound  

Nitroxide radicals are fairly stable because of the delocalization of the electron 

between the nitrogen and oxygen. 

N O N O
+

 

                                 Figure 4. Resonance stablization of spin adduct 
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In nitroso compounds, the free radical directly adds to the nitrogen atom. The 

resulting spin adducts displays hyperfine nitrogen splittings because of the trapped 

radical whereas, in nitrone spin traps, the radical detected by ESR is influenced by the 

carbon adjacent to the nitrogen atom (because the free radical adds to the adjacent 

carbon). However, spin adducts obtained from nitroso compounds are often less stable, 

especially when oxygen-centered radicals are trapped compared to those obtained from 

nitrones. Furthermore, nitroso compounds are toxic are are thus less frequently used in 

biological systems. As a result of undesirable features, nitrones are preferred in biological 

systems despite the fact that spin adduct from nitroso compounds give better structural 

informations from ESR than do those from nitrones. 

In early work, two kinds of spin traps have been developed, the five membered 

cyclic nitrone, 5,5-dimethyl-3,4-dihydro-2 H-pyrrole N-oxide (DMPO), and linear 

nitrones such as α-N-phenyl-N-tert-butylnitrone (PBN) and N-[(1-oxidopyridin-1-ium-4-

yl)-methylidene]-1,1-isopropylamine (PyOBN). Of these, the linear nitrones PBN and 

PyOBN were found to be very inefficient in detecting superoxide anion by ESR.238,239 α-

N-phenyl-N-tert-butylnitrone (PBN) traps superoxide anion to form the superoxide spin 

adduct (PBN-OOH), which is highly unstable and decays into its corresponding hydroxyl 

adduct (PBN-OH) which also suffers a decomposition reaction. The kinetic studies 

showed that the rate of decay was first-order.240 The half-life of the hydroxyl adduct is 38 

s while that of the superoxide adduct is even less than that at neutral pH.241  Therefore, 

the ESR spectra of these superoxide spin adducts are not very characteristic of the radical 

trapped. To improve their efficiency, efforts were made by elaborating phosphorylated 

analogues and replacing methyl group with ester moieties.242,243 However, no better 
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results have been observed in trapping superoxide with these derivatives despite the fact 

that they are efficient at trapping carbon-centered radicals. A kinetic study conducted by 

Tuccio et al demonstrated that cyclic nitrones are incomparably better at detecting 

superoxide anion that was than the linear nitrones.244 
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   Figure 5. Structures of DMPO, PBN and PyOBN 

5,5-dimethyl-3,4-dihydro-2 H-pyrrole N-oxide (DMPO) is a cyclic nitrone the 

first to be used. It has been used as such for decades. Bonnett et al. first prepared DMPO 

as a model molecule towards the synthesis of corrins, which is the parent macrocyclic 

component of vitamin B12.
245 The spin trapping property of DMPO with carbon-centered 

radicals was first examined by Iwamura et al. in 1967.246 The spin adduct formed from 

the reaction was found to be very unstable. Later, Janzen et al. demonstrated the ability of 

DMPO to trap oxygen-centered radicals.247 It was Harbour et al. who first brought 

attention to the use of DMPO for the detection of superoxide radical.248 DMPO indeed 

can trap superoxide radical to produce a relatively stable DMPO-superoxide adduct 

(DMPO-OOH). 



42 
 

 

N

O

N

O

OOH N

O

OH

decomposes

 

    11 DMPO     DMPO-OOH   DMPO-OH 

       Figure 6. Reaction of DMPO with superoxide radical  

The ESR spectrum of the spin adduct consists of hyperfine splitting because of 

the β–hydrogen and the nitroxide nitrogen. The hyperfine coupling constant of DMPO-

OOH was reported as: AN = 14.34 G, AH
β =  11.7 G, AH

γ = 1.25 G (gauss).249 However, 

the DMPO-OOH adduct was found to be unstable and spontaneously decomposes into 

the DMPO-hydroxyl adduct (DMPO-OH) and a non radical species.238 The stability of 

DMPO-OOH is pH dependent. Butterner and Oberley have reported the half-life of 

DMPO-OOH in the range of 27s and 91 s at pH 9 and pH 5 respectively.250 It has been 

reported that a cyclic nitroxide radical possessing an α-hydrogen atom tends to 

disproportionate rapidly.251  The hyperfine coupling constant of DMPO-OH is AN = 

14.874 G and AH = 14.81 G (gauss). On the basis of a kinetic study, the second order rate 

constant for the reaction of DMPO with superoxide is only 10 M-1s-1 while that with 

hydroxyl radical is approximately 2 x 10 M-1s-1.252 Glutathione peroxidase, which is 

present in most cells rapidly catalyzes the decomposition reaction. As a result, the 

superoxide dismutase-inhibitable formation of DMPO-OH was monitored for superoxide 

detection. However, the detection of DMPO-OH leads to misinterpretation of the free 

radical actually trapped because DMPO efficiently reacts with hydroxyl radicals to 

produce DMPO-OH adducts. Hence, the detection of DMPO-OH does not unequivocally 
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provide evidence for the identification of the hydroxyl radical either. Reaction of DMPO 

with neutrophils superoxide anion gave a number of EPR spectra including that of 

DMPO-OH while the experimental study demonstrated no evidence of hydroxyl radical 

in human neutrophil.253 To overcome these drawbacks of DMPO, several DMPO-type 

analogues have been developed. These spin traps include the alkoxy-phosphorylated 

analogues: 5-diethyoxyphosphoryl-5-methyl-1-pyroline N-oxide (DEPMPO)254 and 5-

diisopropyloxyphosphoryl-5-methyl-1-pyroline N-oxide (DIPPMPO).255 As expected, the 

spin adduct DEPMPO-OOH and DIPPMPO-OOH did not decompose into the 

corresponding hydroxyl adduct  and  have  higher  persistency compared to DMPO-OOH.  
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  Figure 7. Structures of DEPMPO, DIPPMPO, EMPO and BocMPO 

 The first ESR evidence of superoxide generation, in ischemia/reperfusion of isolated rat 

myocardium, has been detected by using the DEPMPO spin trap.256 However, superoxide 

detection using DEPMPO and DIPPMO remains limited in biological systems because of 

the confounding ESR spectrum because of an additional 31P hyperfine coupling, the 

existence of diastereomers, and formation of ESR silent products.  

Since the presence of an electron withdrawing dialkoxy-phosphoryl moiety in the 
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β-position of the nitrone  function stabilizes the superoxide adduct, investigators have 

turned to  the synthesis of alkoxy-carbonyl nitrones, 5-ethoxycarbonyl-5-methyl-1-

pyroline N-oxide (EMPO),257 its isotpoically labeled nitrone (15N) EMPO,232 and 5-tert-

butoxycarbonyl-5-methyl-1-pyroline N-oxide (BocMPO or BMPO). The presence of an 

ester function in EMPO and (15N) EMPO improved the ESR signal to noise ratio and 

increased the stability of its superoxide adduct (EMPO-OOH) compared to that of 

DMPO-OOH. Moreover, EMPO-OOH did not decompose into its corresponding adduct 

EMPO-OH. However, the major disadvantage of EMPO is that EMPO-OOH decays 

faster than DEPMPO-OOH. The relative half-life of EMPO-OOH is 8 min while that of 

DEPMPO-OOH is 14 min. Steric hindrance may play a role in the stability of nitroxide 

molecule.258 In terms of stability of the superoxide adduct, BMPO-OOH is slightly more 

stable than EMPO-OOH. Similar to EMPO-OOH, BMPO-OOH does not decay non-

enzymatically to the BMPO-OH adduct. The time-dependent change in ESR spectra 

demonstrated that BMPO-OOH adduct could be detected even up to 35 min while the 

EMPO-OOH signal intensity was not detectable at this time-point. The BMPO-derived 

adduct also provided a higher signal to noise ratio in biological systems. Even with these 

ideal characteristics, it has some limitations. For instance, the enzyme glutathione 

peroxidase can readily decompose BMPO-OOH into BMPO-OH adduct, making the ESR 

spectrum difficult to interpret in biological systems. The rate constant for the superoxide 

trapping reaction of EMPO was reported three times higher than BMPO at pH 7.2 which 

indicates that EMPO is superior to BMPO.243 At the same pH, the rate constant of BMPO 

is fairly equal to DEPMPO, but at pH 7.4, the rate constant of DEPMPO is twice  as 

much as BMPO259 suggesting DEPMPO is twice as efficient as BMPO at trapping 
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superoxide. One of the problems of using DEPMPO is that it decomposes on heating 

which makes its preparation in high purity very difficult. 

Despite the tremendous efforts in developing new ESR suitable nitrone spin traps 

to improve spin trapping of superoxide, the intracellular detection of superoxide using 

ESR spectroscopy remains a big challenge. Several groups have turned to other 

techniques for superoxide detection. 

[1.12.2] Chemilumigenic probes for detecting superoxide radical 

In the chemiluminescence-based technique, a chemiluminescent probe, upon 

exposure to superoxide anion, emits a photon, which, in turn, can be detected by a 

luminometer or scintillation counter. The sensitive measurement of the emitted photons 

reflects the biological production of superoxide. The possibility of detecting superoxide  
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         Figure 8. Structures of lucigenin and luminol 

by use of a chemiluminescent probe came from Totter et al.,260 who postulated that 

oxygen radicals in the reaction caused emission of light. Later, Fridovich261 demonstrated 

the involvement of superoxide anion in the system of xanthine oxidase/xanthine and a 

chemiluminescent compound leading to the emission of light. 
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The most widely used compound in this study was bis-N-methylacridimium 

nitrate (lucigenin or DBA++) because of its sensitivity. Lucigenin is cell permeable, 

hence, detected superoxide reflects both intracellular and extracellular superoxide 

production.  Lucigenin-derived chemiluminescence has been used in the specific 

detection of superoxide formation by in vitro isolated enzymes, vascular tissue262 and 

inflammatory cells, such as neutrophils and macrophages.263 It has also been used as an 

indicator of superoxide production in numerous disease conditions such as various form 

of hypertensions,264 diabetes mellitus,265 and hypercholesterolemia.266 It is also possible 

to detect mitochondrial superoxide production by using lucigenin.267 

Other chemiluminescent compounds include 5-amino-2,3-dihydroxy-1,4-

phthalazinedione (luminol) and cypridina luceferin analogs such as 2-methyl-6-phenyl-

3,7-dihydroimidazo (1,2- )-pyrazin-3- one (CLA), 2-methyl-6-(p-methoxyphenyl)-3,7-

dihydroimidazo (1,2- )-pyrazin-3-one (MCLA), and 2-(4-hydroxybenzyl)-6-(4-

hydroxyphenyl) 8-benzyl-3,7-dihydroimidazol[1,2- ]pyrazin-3-one (coelenterazine).268 

Luminol is oxidized by various ROS such as hydrogen peroxide, hydroxyl radical, 

peroxynitrite, and hypochlorous acid besides superoxide anion. MCLA has also shown to 

emit light in response to hydroxyl radical and other ROS.269 Thus, these molecules are 

not specific for detecting superoxide anion. 

The potential mechanism of reaction of lucigenin with superoxide anion is 

illustrated in Fig. 2. Lucigenin first undergoes one electron reduction by superoxide anion  
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     Figure 9. Reaction between lucigenin and superoxide radical 

to produce lucigenin cation radical which, in turn, reacts with a second molecule of 

superoxide     anion     to     yield   a   highly    unstable   energy-rich  lucigenin  dioxetane 

intermediate.270 The lucigenin dioxetane finally decomposes to produce two molecules of 

N-methylacridone, one in an exicited state, which relaxes to the ground state by emitting 

photons. By measurement of the photon emission, superoxide production in biological 

systems can be detected.  

 



48 
 

However, the credibility of lucigenin-derived chemiluminescence for biological 

superoxide detection has been criticized because superoxide production might be 

incorrectly detected as a result of a phenomenon called redox cycling.4 It turned out that 

in in vitro enzymatic systems, lucigenin itself can produce superoxide via autoxidation of 

lucigegnin cation radical5 (Fig. 3). The reaction is accelerated by flavin containing 

enzymes such as xanthine oxidase, endothelial NO synthase, and cytochrome P450 

monooxygenases. Furthermore, the autoxidation reaction depends on the concentration of 

superoxide anion. If the biological superoxide anion level is low, the relative contribution 

of superoxide via redox cycling to the measured superoxide anion will be higher than the 

contribution when biological superoxide level is higher. Several groups reported that 

redox cycling depends on the concentration of lucigenin. At higher concentration, 

lucigenin reacted with several flavin containing enzymes to generate superoxide anion 

but at low concentration it failed to stimulate  superoxide  generation. If  lucigenin has to 

be used to detect superoxide anion under a particular condition, a safe non- redox cycling 

concentration of lucigenin has to be determined by either the measurement of stimulation 

of oxygen consumption by oxygen polarography or detection of stimulation of 

superoxide production by the DEPMPO spin trap.271 Thus, this experiments suggests that 

to validate the result obtained from lucigenin-derived chemiluminescence, a second 

method has to be used for confirmation. 
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Figure 10.  Formation of superoxide anion from lucigenin cation radical  

[1.12.3] Fluorescent probes for detecting superoxide radical 

The fluorescence-based technique has been widely used for in vitro and in vivo 

detection of superoxide anion. Recently, the most popular fluorogenic probe used for 

detecting intracellular superoxide production is hydroethidine (HE), also known as 

dihydroethidium (DHE) and its mitochondria-targeted analogue (MitoSox red), in which 

the ethyl group of hydroethidine was replaced by a triphenylphosphonium moiety to 

enhance  the accumulation of the  molecule into mitochondria. Although the intracellular 

distribution of HE and MitoSox red is different, their chemical reactivities in redox 

reactions are quite similar.272 

N

H

NH2

R

H2N

 

R=  -C2H5         20 HE 
       -(CH2)6P

+(Ph)3     21 MitoSox red 
 

   Figure 11. Structure of hydroethidine and MitoSox red 
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Initially, it was assumed that hydroethidine, upon exposure to superoxide anion, 

formed the two-electron-oxidized product ethidium cation (E+),6 which would, in turn, 

intercalate with DNA due to its charge,273 yielding red fluorescence (exicitation ~ 500 nm 

and emission ~ 600 nm), and the intensity of the signal would reflect the level of 

superoxide production. However, recent publications suggest that hydroethidine reacts 

with superoxide anion to form a specific product, 2-hydroxyethidium (2-OH-E+). The 

mass spectrometric analysis indicated that the molecular weight of the product is 16 U 

greater than E+ which is consisted with  2-OH-E+ (Fig. 4).274  

Detection of superoxide using hydroethidine has been executed in many 

biological systems including whole cells and whole organs in live animals over the past 

two decades.275 Red fluroresence derived from the reaction of hydroethidine and MitoSox 

red with superoxide anion have been observed in many studies such as neurodegeneration 

and neuroprotection,276 neurosignaling,277 ischemia and reperfusion,278 diabetes,279 

hypertension,280 oxidative burst in leukocytes,281 vascular signaling and pathology,282 

renal function and pathology,283 the anti and proapoptotic action of drugs,284 and 

mitochondrial and radiation-induced damages.285 All of these studies demonstrated the 

involvement of superoxide anion in many physiological and pathological conditions. 

Using HE, Sorescu et al286 described the dramatic increased production of superoxide 

anion in human atherosclerotic lesion, especially plaques of the shoulder.  
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Figure 12. Reaction of hydroethidine and MitoSox red with superoxide anion 

Many researchers found the fluorescence-based assay using hydroethidine and 

MitoSox more convenient compared to the ESR technique which requires specific 

training. Currently, MitoSox red is commercially available for research purposes.  

In a recent review, the detection of intracellular superoxide anion through 

observation of red fluorescence derived from hydroethidine and MitoSox red was 

described as an unreliable approach for superoxide detection.275,287 Hydroethidine and 

MitoSox red are prone to poor specificity for detecting superoxide anion because they 

can be easily oxidized (via loss of the elements of a hydride anion) by other oxidants 

besides superoxide anion in biological systems, and some of which yield a red 

fluorescence product different from 2-OH-E+ and 2-OH-Mito-E+. Generally, the reaction 

between HE and superoxide anion, generated by potassium superoxide, produces the 

increased red fluorescence intensity, however, some reporters observed the decreased 

fluorescence intensity in the presence of a higher concentration of superoxide anion. The 

decreased fluorescence intensity could be because of the oxidation reaction between HE 

and other oxidants. Earlier it was reported that HE does not readily react with hydrogen 
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peroxide.288,289 However, in the presence of metal ions such as iron or copper290 and 

horseradish perxodase (HRP)291 HE is easily oxidized by hydrogen peroxide and organic 

peroxide with the formation of E+ along with nonfluoresent products. Since 

ferricytochrome c (cyt c3+) can react with HE with the formation ferrocytochrome c (cyt 

c2+),6 complexes of iron and/or cytochromes may accelerate the reaction of HE and 

peroxides in the biological systems. The same review reported the reduction of up to four 

molecules of cyt c3+ by one molecule of HE to form E+ and, most likely, the dimeric 

products. HPLC analysis of the products from the reaction between HE and cyt c3+  

indicated the formation of E+, E+-E+ , HE-HE and HE-E+.272 Similar reaction has been 

observed from MitoSox red with the mitochondrial cytochrome forming Mito-E+ and 

several dimeric products.  

In addition to this, HE has also been found to react with hydroxyl radical and with 

H2O2 under Fenton conditions to provide the fluorescent product 2-OH-E+.291,292 

However, other publication indicated the formation of HE radical cation from the 

reaction of HE with hydroxyl radical by direct monitoring of pulse radiolysis.293 Some 

evidences indicated the reaction of HE with NO radical, and nitrogen dioxide radical 

(•NO2) yielding flurescent products.290 Other oxidants that can oxidize HE include 

peroxynitrite with274 or without CO2,
291 hypochlorous acids and singlet oxygen.294 Upon 

irradiation with UV light, HE undergoes photooxidation in the presence of oxygen with 

the formation of 2-OH-E+, which further undergoes oxidation to form E+.295 

Given that the excitation light between 350 and 400 nm represent 2-OH-E+ and 2-

OH-Mito-E+ but not E+ or Mito- E+ , E+ can still absorb light at this wavelength and emit 

fluorescence. On the other hand, since the level of detected E+ in the biological systems is 
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almost 10 fold higher than that of 2-OH-E+, the fluorescence intensity could be 

significantly contributed by E+.296 These drawbacks emphasize the present limitations of 

using fluorescence-based detection of superoxide in intact cells or tissue. Several groups 

find that high performance liquid chromatography (HPLC) is the only currently available 

methodology to separate HE and its oxidation products including 2-OH-E+ thus allowing 

unambiguous determination of the origin of the red fluorescence. Up until now, HPLC 

based assay is the only method of choice for superoxide detection using MitoSox red. 

Some drawbacks of using HPLC could be the lengthy analysis time and the optimization 

of the sample extraction method. 

[2] RESEARCH OBJECTIVE 

The objectives of this research are to design and synthesize various novel silylated 

azulenyl nitrones as spin traps for chromotropic detection of superoxide anion radical, to 

study their chemical properties and to study their reaction with superoxide anion. 

Towards this aim, the following nitrones were pursued.  

[2.1] Silylated azulenyl nitrones: 

Nitrones are known as good candidates to react with superoxide anion by spin 

trapping yielding detectable diamagnetic spin adducts. A silyl substituent, a non-polar, 

oxophilic, electropositive group, has a strong propensity to react with an oxygen anion 

such as that which is present in a superoxide spin adduct. Hence, the presence of a nearby 

silyl group in nitrone molecules is expected to confer distinctive reaction pathways with 

superoxide that are not available in traditional nitrones. Moreover, because of 

colorimetric properties of azulene compounds, the end products of the spin trapping 

would likely yield characteristically colored molecules.  Hence, the following silylated 
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azulenyl nitrones 22, 23 and 24 are putatively equipped specifically for superoxide anion 

detection by likely yielding characteristically colored end products with a characteristic 

UV-VIS spectral profile upon reaction with superoxide anion. 

Si

N

O

   

N

Si

O

H

O
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                   Compound 24 

 [2.2] Mitochondria-targeted silylated azulenyl nitrone: 

Mitochondria are the major sites of superoxide production. To detect 

mitochondrial superoxide, the chemical structure of compound 24 was modified by 

incorporation of a guanylhydrazone moiety. Since guanylhydrazones are protonated at 

physiological pH, the attachment of this moiety to compound 24 is expected to increase 

the permeability of compound 25 into the mitochondrial membrane to reach sites of 

superoxide anion generation. The structure of compound 25 is given below: 
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[3] RESULT AND DISCUSSION 

[3.1] Synthesis of azulenylsilane nitrones: 

Nitrones have been shown to exhibit an efficient antioxidant activity in vitro and 

likely in vivo by trapping reactive free radicals.223,297 Because of their spin trapping 

properties, numerous nitrones have been developed for detecting superoxide anion in 

biological systems in assays that require ESR spectroscopy. Superoxide adducts thereby 

formed were found to be very unstable and this reduced persistence complicates their 

detection by ESR. The research project described here was to synthesize silylated 

azulenyl nitrones for superoxide detection that could selectively yield a characteristic 

product after the oxidation reaction with superoxide anion, which could be detected by 

UV-VIS and simple colorimetric techniques without using ESR spectroscopy.  

[3.1.1] Synthesis of ethylated azulenylsilane mononitrone 22:  

Towards our goal, the first synthetic effort in the preparation of ethylated 
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azulenylsilane nitrone (22) involved four efficient steps starting from commercially 

available 3-hexyne as illustrated in scheme 1. Allenylsilane (27) was prepared in one step 

employing a metalation  reaction according to the method reported in the literature.298 

The metalation reaction was carried out by the addition of 3-hexyne to a cooled sec-BuLi 

solution in THF and left for 3 hr which formed the monolithiated product. The metalation 

mixture was then silylated by treatment with excess tert-butyldimethylsilylchloride at -

70oC and then left overnight at room temperature (10 %). Danheiser and Becker reported 

the preparation of several azulenylsilanes via cyclization reaction between allenylsilanes 

and tropylium cations.299 Following the same protocol, azulenylsilane (28) was 

synthesized by addition of 2.2 equiv. of tropylium tetrafluoroborate and 3.3 equiv. of 

poly-4-vinylpyridine in acetonitrile (53 %) which underwent (3 + 2) annulation involving 

rearrangement and cyclization. Attempted oxidation of the 1-ethyl and 3-methy group of 

azulene (28) by treatment with 4 equiv. of 2,3-dichloro-5,6-dicyanobenzoquinone 

(DDQ)300 failed to give the expected ketoaldehyde (29). Instead the unexpected product 

ethyl aldehyde (30) in 53 % yield and the by-product alcohol (31) were obtained from 

NMR data. It is obvious from the product that partial oxidation might have taken place 

due to steric hindrance of the silyl group and its substituents. It was possible to optimize 

the yield of ethylaldehyde (30) from 53 % to 70 % using only 2 equiv. of DDQ for 

oxidation reaction. In one attempt, during the preparation of aldehyde (30), 

approximately 2.5 % of bis-aldehyde (32) was also recovered. Condensation of 
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   Scheme 1. Synthesis of azulenylsilane ethylnitrone 2 
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ethylaldehyde (30) with N-tert-butylhydroxylamine hydrochloride in pyridine at 45oC 

ethylated azulenylsilane nitrone (22) in 47 % yield. 

Synthetically, bis-aldehyde 32 was a desirable intermediate for the synthesis of 

other compounds. For example, compound 32 would prove to be a useful precursor for 

the preparation of other nitrones that might have significance in trapping superoxide 

anion (vide infra). Keeping this in mind, efforts were made to synthesize 32 efficiently. 

Si

H

O

H

O

 

   32 

[3.1.2] Synthesis of azulenylsilane carboxaldehyde nitrone: 

In an attempt to synthesize mononitrone (23) from the red aldehyde 32, readily 

available acetaldehyde (33) was used as the starting material. N-tert-butylimine (35) was 

prepared from addition of  acetaldehyde to tert-butylimine (34) at 0oC (without any 

solvent) followed by distillation according to the modified method of Chancel301,302 as 

illustrated in scheme 2. The N-tert-butylimine (35) was then deprotonated with LDA and 

silyated by using TBDMSCl followed by repeated deprotonation with BuLi, and 

methylation with iodomethane which afforded mono methylated α-silylimine (36) in a 

one-pot process reported by Tietze.303 The methylated silylimine (36) is quite unstable 

and was easily hydrolyzed by washing through a silica gel column using petroleum ether 
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Scheme 2. Synthesis of azulenylsilane carbaldehydenitrone 23  
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and ethylacetate which gave aldehyde (37). A Corey-Fuchs reaction involving the 

treatment of aldehyde (37) with a mixture of triphenylphosphine and tetrabromomethane 

in CH2Cl2 at 0oC provided dibromoalkene (38) via a Wittig-like reaction. Subsequently, 

treatment of dibromoalkene (38) with BuLi followed by exposure to iodomethane yielded  

alkynylsilane (39) via the generation of  a bromoalkyne intermediate that formed in a 

process consisting of dehydrohalogenation and metal-halogen exchange. A (3+2) 

annulation reaction between alkyneylsilane (39) and  tropylium tetrafluoroborate in 

acetonitrile in the presence of excess poly-4-vinylpyridine resulted in formation of blue 

azulenylsilane (40).299 Oxidation of two methyl groups of azulenylsilane (40) with four 

equivalents of DDQ300 in the presence of acetone afforded bis-aldehyde (32) which was 

converted into the ethylated azulenylsilane mononitrone (23) by reaction with two 

equivalents of N-tert-butylhydroxylamine hydrochloride in pyridine at 45oC.  

It was presumed that the incorporation of electron withdrawing group such as the 

cyano moiety in nitrone 23 might produce a stable end product generated from the spin 

trapping reaction. Spin trapping of superoxide anion by nitrone 23 would produce an 

unstable intermediate, containing oxygen with a negative charge at the 2- position, which 

can undergo nucleophilic attack at the cyano group forming a stable six membered α-

pyrone ring, diagnostic for the superoxide detection, with a characteristic UV-vis spectral 

profile. 
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Scheme 3. Attempted synthesis of malononitrile derivative 41 

However, several attempts to synthesize the malononitrile derivative 41 either by 

using weak lewis acid in DMF304 or weak basic condition with malonitrile failed (scheme 

3). The NMR analysis of the product indicated the absence of silyl methyl-protons and 

the silyl tert-butyl protons. Failure to form the desired malononitrile derivative could be 

the result of the fact that alkoxide might have attacked the silyl group which was 

eventually cleaved from the azulene ring.305  

After failure to synthesize compound 41, other attempts were made to incorporate 

an ester group to mononitrone 23 in hopes of preparaing tricarboxylicacid triester nitrone 

42 via 1,3-cycloaddition reaction. For example, compound 42 might undergo a spin 

trapping reaction with superoxide anion to produce a stable six membered α-pyrone ring 

system, which might have a characteristic UV-VIS spectral profile. Nitrones are well 

known to undergo 1,3-dipolar cycloaddtion reaction efficiently  with a variety of  alkynes 

to afford 4-isoxazoline.306,307 It is known that nitrones react with DMAD (dimethyl 

acetylenedicarboxylate) to give  4-isoxazolines which undergo  rearrangement to afford 

azomethine ylides via the isomerization to acylaziridines.308 Generated azomethine ylides  
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               Scheme 4. Attempted synthesis of tricarboxylic acid triester derivative 42  

can be trapped by a second cycloaddition with DMAD to potentially obtain compound 

44. 
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   Scheme 5. Attempted synthesis of nitrone 45  

Unfortunately, the reaction failed to give the expected product when nitrone 23 

was treated with 4 equivalent of DMAD. Instead, the intermediate product 43 was 

obtained, illustrated in scheme 4, which was identified by NMR data. Failure to achieve 

the formation of triester 43 suggests that only one equivalent of DMAD had been 

consumed in a 1,3-dipolar cycloaddition reaction to afford cyaloaddition adduct  43, 

which thereafter failed to open the isoxazoline ring to rearrange to azomethine ylide  

before a second cycloaddtion reaction with another equivalent of DMAD could occur. 



64 
 

Another alternative could be the synthesis of nitrone 45 from nitrone 23. A 

condensation reaction of nitrone 23 with hydroxylamine hydrochloride was postulated to 

give oxime 46. Treatment of oxime  with trichloroacetyl isocyanate would afford 

carbamoylaldoxime 45 as described by Stokker et al.309 (scheme 5). Subsequently, spin 

trapping of superoxide anion with nitrone 45 would give the end product 47 which would 

be formed from the intramolecular cyclization by nucleophilic substitution of the ortho-

negative charge of oxygen to nitrogen as shown in figure 13. The evidence of 

spontaneous cyclization309 has been observed by Stokker in his effort to synthesize 

carbamoylaldoxime from the compound containing a phenolic group and an oxime group 

in ortho position. Instead, the only product obtained was 1,2-benzisoxazole that appeared 

to be formed via spontaneous cyclization by attack of the ortho-OH group on nitrogen 

without addition of any base. A similar cyclization mechanism that leads to 

benzisoxazole was also suggested by Searcey.310 However, the reaction failed to give 

nitrone 45. The only product formed from this reaction was dioxime 48 which was 

identified by its NMR spectrum and its low resolution mass spectrum. 
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     Figure 13. Expected product 47 from spin trapping of superoxide anion with 45 
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[3.1.3] Synthesis of azulenylsilane aminofuran nitrone: 

Unsuccessful synthesis of nitrone 45 led to the development of a synthetic route 

to aminofuran 49 as illustrated in the scheme 6. A one-pot approach involving the 

treatment of bis-aldehyde 8 with cyclohexyl isocyanide and DMAD at 80oC in anhydrous 

benzene provided aminofuran derivative 50. The reaction proceeded with the initial 

formation of a zwitterionic intermediate derived from isocyanide and DMAD which is 

trapped by bis-aldehyde 32.311 The condensation reaction between aminofuran derivative 

50 and N-tert-butylhydroxylamine hydrochloride in pyridine at 45oC afforded 

aminofuran nitrone 49.  
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  Scheme 6. Synthesis of aminofuran nitrone 49 
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With the successful synthesis of aminofuran nitrone, an attempt was made to 

improve hydrophilicity by modifying compound 49 in order to detect superoxide 

generated in mitochondria. The incorporation of a guanylhydrazone moiety was sought as 

a means of increasing hydrophilicity. Since a guanylhydrazone is positively charged at 

physiological pH, it may traverse across cellular membranes and therefore aid in the 

accumulation of nitrone into mitochondria. 
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 Scheme 7. Attempted synthesis of aminoguanidine hydrazone derivative 51  
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In an attempt to synthesize mitochondria-targeted nitrone 51, p-formylbenzoic 

acid 52 was first refluxed with triethylamine in the presence  of diphenylphosphoryl azide 

for 6 hr according to the protocol of the modified curtius rearrangement312 as outlined in 

scheme 7 which afforded p-formylphenyl isocyanate 53 exclusively. However, treatment 

of  isocynate 53 with aminofuran adduct 50,313 employing Fowler’s method, failed to 

give the desired urea 54 either in anhydrous benzene or in anhydrous toluene which was 

planned to be transformed into nitrone 51 by treatment wih aminoguanidine 

hydrochloride followed by treatment with N-tert-butylhydroxylamine hydrochloride. 

[3.1.4] Synthesis of isoxazoline azulenylsilane nitrone 24: 

Azulenylsilane dinitrone 55 was found to be a useful precursor for the synthesis 

of other nitrones which allowed incorporation of other substituents on either the 1 or 3 

position via a cycloaddition appraoch (vide infra). A simple condensation reaction 

between mononitrone 23 and three equivalents of N-tert-butylhydroxylamine 

hydrochloride in pyridine at 45oC yielded azulenylsilane dinitrone 55. It was also 

possible to prepare this dinitrone in 33 % yield from bis-aldehyde 32 by using five 

equivalent of N-tert-butylhydroxylamine hydrochloride as outlined in the scheme 8.  
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                   Scheme 8. Synthesis of azulenysilane dinitrone 55  
 
One of the possibilities to introduce an electron withdrawing cyano moiety to the 

azulenylsilane nitrone is a 1,3-dipolar cylcoaddition approach using dinitrone 55. Coates, 

who has studied the regioselective cycloaddition between and cyclic nitrones with 

various alkene nitriles and alkyne nitriles, demonstrated successful formation of 

cycloadducts using phenylpropiolonitrile.314 Using the same protocol, isoxazoline 

nitrone, 24 was prepared regiospecifically from dinitrone 55 and phenylpropiolonitrile in 

benzene at 50oC for 6 days (scheme 9). 
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         Scheme 9. Synthesis of isoxazoline nitrone 24  

Initially, the product nitrone 24 was thought to undergo ring opening of the 

isoxazoline system to produce enamine derivative 56 on basis of an the earlier study.315   

But such rearrangement was not observed in this case (figure 14). 
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       Figure 14. Expected product 56 via ring opening 

Since the expected product 56 was not observed, effort was made to open the 

isoxazoline ring system. Oxidation of the nitrogen atom of a 2-substituted-4-isoxazoline 

activates the system to undergo a ring opening reaction. It is reported that using an excess 

amount of iodomethane improves the lability of the N-O bond thus leading to the 

formation of an α,β-unsaturated ketone via an isoxazolinium salt intermediate.316,317On 
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the other hand, the presence of an easily abstractable proton at the 3-position in the 

isoxazoline ring could open the ring to form the corresponding enamino derivative.318  
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     Scheme 10. Attempted synthesis of compound 57 

Unfortunately, treatment of nitrone 24 with excess iodomethane and excess poly-

4-vinylpyridine did not provide the expected enamine product 57. However, three 

different unexpected products were observed as shown in figure 2. Their structures are 

identified as 58, 59 and 60 determined by their molar mass (MH+) 342, 497 and 271 
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respectively, detected by mass spectrum. The formation of these three products suggests 

the two possible processes. Hydroiodic acid that has formed under the reaction conditions 

probably underwent a substitution reaction with the azulene ring to give compound 58, 

and hydrolysis of the nitrone might have occurred to form aldehyde 59. Both processes 

could have led to the formation of compound 60. The results are not unexpected due to 

the fact that azulene, with high electron density on the five membered ring, is liable to 

electophilic attack at either  postions 1 or 3.319 

[3.1.5] Synthesis of isoxazoline azulenylsilane guanylhydrazone nitrone (25): 

Isoxazoline nitrone 24 seemed to be a promising agent for in vitro superoxide 

detection. However, the drawback to this compound is that it is not a lipophilic cation 
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Scheme 11. Synthesis of [3-(3-Formyl-phenylethynyl)-phenyl]-propyne nitrile 61 
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which limits towards its accumulation in mitochondria. Therefore, effort has been made 

to enhance its mitochondriotropic activity by incorporating a guanylhydrazone moiety. 

The effort resulted in the preparation of guanylhydrazone nitrone 25 from [3-(3-Formyl-

phenylethynyl)-phenyl]-propyne nitrile 61. 

Aldehyde 61 was prepared in two steps as shown in scheme 11. According to the 

method reported by Wang,320,321 cyanation  of  one  terminal  acetylene of 1,3-

diethynylbenzene 62, using two equivalents of cuprous cyanide in the presence of  

TMSCl, water and a  catalytic amount of  sodium iodide at 50oC afforded nitrile 

derivative 63. The crucial factor in this cyanation process was the composition of solvent. 

Thus, DMSO and a co-solvent (CH3CN) should be in the ratio of 3:1. Sonogashira 

coupling of compound 63 with 3-iodobenzaldehde322 in THF using 

tetrakistriphenylphosphine palladium at room temperature for 24 hour provided [3-(3-

Formyl-phenylethynyl)-phenyl]-propyne nitrile 61. Treatment of one equivalent of nitrile 

61 with dinitrone 55 in benzene at 50oC engendered 1,3-dipolar cycloaddition that 

provided adduct 64. A condensation reaction between compound 64 with aminoguanidine 

hydrochloride in the presence of triethylamine in pyridine at 45oC afforded 

guanylhydrazone nitrone 25 (scheme 12). 
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Scheme 12. Synthesis of guanylhydrazone nitrone 25  
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 Figure  15. Synthetic scheme of compound 65 

Unfortunately, nitrone 25, despite the presence of the polar guanylhydrazone, is 

found to be poorly water soluble (but could still be mitochondriotropic). Another 

possibility of making mitochondria-targeted compounds involves the synthesis of salts of 

nitrones 65 and 66. The presence of the aldehyde group in compound 64 is ideal for such 

a purpose. Nitrone 65 could theoretically be prepared by treatment of aldehyde 64 with 

Girard’s reagent as shown in figure 15. Alternatively, transformation of aldehyde 64 into 

salt 66 could proceed in several steps as illustrated in figure 16. First, a reduction reaction 

converts aldehyde 64 into the alcohol derivative which upon treatment with tosylchloride 

would give the corresponding tosylate congener. Subsquently, SN
2 reaction of the tosylate 

with triphenylphosphine would afford the potential mitochondriotropic phosphonium salt 

66. 
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  Figure  16. Synthetic scheme of compound 66  

[3.2] The in vitro investigation of the reaction of novel nitrones with superoxide 

radical: 

After the successful synthesis and characterization of several nitrones, 

experiments were conducted to test the properties and potential diagnostic application of 

these novel nitrones for detecting superoxide radical anion.  

[3.2.1] Attempts at in vitro detection of superoxide with ethylated azulenylsilane 

mononitrone 22 

The first attempt to detect superoxide involved reaction of nitrone 22 with 

potassium superoxide in the presence of 18-crown-6 in benzene at room temperature323 

No reaction was observed when nitrone 22 was treated with a solution of one to five 

equivalents of potassium superoxide and one equivalent of crown ether dissolved in 

benzene. Thus, the amounts of potassium superoxide and crown ether were increased to 5 

equivalents. Still no product was observed. The result could be because of the fact that 
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not enough superoxide radical anion was present because of poor solubility of potassium 

superoxide. Therefore, 20 equivalents of potassium superoxide and crown ether were 

directly treated with nitrone 22. These conditions gave a product in very low yield which 

was impossible to identify. Finally, nitrone 22 was directly treated using 6 equivalents of 

potassium superoxide. In this case, oxidation reaction was conveniently followed by TLC 

by monitoring the appearance of a less polar orange product which was analyzed by 1H 

NMR spectroscopy. The product was identified as aldehyde 67 by observing the 

aldehyde-proton signal and the up-field shifting of the ethyl signal of the azulene ring. 

N

Si

O
KO2/crown ether

O

H

O

Si

 

22     67 orange 

Figure 17. Formation of aldehyde end product 67  

Formation of a ketone from analogous reaction between a ketonitrones and 

potassium superoxide has been previously reported.323 Thus, α-diphenylene-N-

phenylnitrone 68 was treated with superoxide and ketone 69 was found as a major 

product as shown in figure 18. Interestingly, aldehyde 67 was found to be very unstable 

because it decomposed while another orange product was started to appear as the reaction 

proceeded. As a result of difficulty in purification of aldehyde 67, identification of the 

second orange product was not possible. The 1H NMR data showed no aldehyde-proton, 
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and a low resolution mass peak at MH+ of 663 was observed for this second orange 

product. The possible explanation could be that the aldehyde product is very liable to 

oxidation with superoxide anion and oxidized faster than nitrone 22 to form the second 

product. 
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Figure 18: Formation of ketone from α-diphenylene-N-phenylnitrone with KO2 

[3.2.1.1] Mechanism of superoxide radical anion with nitrone 22 

On the basis of the above result, expected aldehyde 67 was observed as an initial 

orange product which is supported by the proposed mechanism of oxidation of nitrone 

with superoxide (figure 19). Superoxide radical adds to nitrone 22 by radical addition to 

form intermediate nitroxide anion 70. Since silicon has high affinity towards oxygen, 

intramolecular nucleophilic attack of the anionic oxygen on silicon gives rise to an 

unstable pentavalent intermediate324 71 which subsequently undergoes rearrangement  by  

migrating the azulenyl group to the adjacent oxygen as an alkoxide ion departs. Finally, 

collapse of the tetrahedral intermediate provides aldehyde 67. Such an oxidative 

desilylation process was initially described by Tamao and Kumada.325,326 
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Information regarding the paramagnetic superoxide spin adduct, an intermediate 

presumed to be formed from the reaction of nitrone 22 with superoxide anion, remained 

unknown since ESR measurement was not available. However, similar to the superoxide 

spin adducts of the conventional acyclic nitrones, such a superoxide spin adduct would be 

expected to be highly unstable at room temperature. Grulke et al., in his ESR spin 

trapping study of DMPO with metmyoglobin and hydrogen peroxide at varying 

temperature, has found the nitrone peroxyl spin adduct unstable even at 0oC.327 
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Figure 19. Proposed mechanism of the reaction of nitrone 22 with superoxide radical  
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[3.2.2] The in vitro detection of superoxide with azulenylsilane mononitrone 23 

The detection of superoxide with azulenysilane mononitrone 23 was based on the 

previous method as described (vida supra). Six equivalents of potassium superoxide were 

used as before. As mentioned earlier, the previous reaction was monitored by observing 

an orange product on thin layer chromatography (TLC). In this case, the reaction mixture 

turned completely from green to orange in 90 min. On the basis of the previous 

mechanism, it was expected to obtain the bis-aldehyde 72 as an end product. However, 

1H NMR spectral information of the orange end product indicated the loss of the silyl 

group, and presence of only the mono-aldehyde. The low resolution mass spectrum 

detected a MH+
 of 448. Unfortunately, it was not possible to purify enough for the NMR 

characterization. Hence, the structure identification of end product remained unsolved. It 

is believed that the superoxide spin adduct that formed was unstable and fragmented into 

another compound rather than the expected one. The loss of the silyl group could result 

after rearrangement via a nucleophilic attack on silicon by a second superoxide anion 

since an excess of superoxide anion was used and due to the high affinity of silicon 

towards oxygen. 
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      Figure 20. Expected product from the reaction of nitrone 23 with superoxide radical 
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[3.2.3] The in vitro detection of superoxide with isoxazoline azulenylsilane nitrone 24 

The unidentified end product from superoxide radical anion with nitrone 23 led 

me to synthesize an analogue, the isoxazoline azulenylsilanenitrone 24, and test it for its 

possible utility in superoxide detection. Using the same method as described earlier, 

superoxide was solubilized in benzene by employing crown ether. The only difference in 

this case was the use of three equivalents of potassium superoxide instead of six 

equivalents. The green reaction mixture was completely turned into orange solution. As 

in the previous case, aldehyde product 73 was expected to be formed. But surprisingly, 

NMR analysis showed the absence of an aldehydic proton, and a molecular mass of 469 

was detected, which did not match with the aldehyde product. A high resolution mass 

spectrum of the major product was obtained and it was found to possess a molecular 

formula of C29H31N3O3. With HRMS and NMR spectral analyses, the orange product was 

identified as amide 74. 
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Figure 21. Structures of the expected product 73 and observed product 74 from the 
reaction   of superoxide radical with nitrone 24 

Figure 22 shows the proposed mechanism for the formation of amide 74 from the 

spin trapping of superoxide radical anion by nitrone 24. The addition of superoxide 
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radical to the double bond of nitrone 24 leads to radical anion 75, which then suffers 

nucleophilic attack by the negatively charged oxygen on the silicon to give an 

intermediate 76 with a six-membered ring.328 Then subsequent desilylation by migrating 

the azulenyl group to the adjacent oxygen atom transforms 76 into anion 77 in analogy to 

the work of Tamao and Kumada.325 Rearrangement involving a nucleophilic attack of the 

anionic oxygen on silicon leaves the negative charge on oxygen at the 2-position, which 

in turn, undergoes a nucleophilic attack on the nitrile moiety thus resulting in the 

compound 78, a six-membered ring intermediate. This step might also result in the rapid 

opening of the isoxazoline ring. Meanwhile, oxygen radical may be reduced by 

disproportionation (or reduced by ascorbic acid in a biological system) to form the 

corresponding hydroxylamine. Dehydration     followed    by desilylation affords amide 

74. In addition to amide 74, a trace of orange compound 79 was also obtained which is 

identified by MS data 584 (MH+). The formation of 79 suggests a divergent mechanism 

that might have taken place in the reaction. Contrary to the first mechanism, the second 

mechanism pathway might have involved addition of one molecule of superoxide anion 

followed by dehydration to give 79. 
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  Figure 22. Hypothetical mechanism of the reaction of nitrone 24 with superoxide radical  
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Figure 23. Potential structure of the second product from the reaction of nitrone      24 
with superoxide radical  
 
[3.2.3.1] UV-vis and fluorescence of amide 74 

The UV-vis (ultra visible) absorption spectrum and fluorescence of chromotropic 

amide 74 was measured in ethanol. As shown in figure 24, the UV-vis is indicated by the 

blue signal which consists of two strong absorbances in the range of 250-400 nm and one 

weak absorbance in the range of 400-500 nm. The fluorescence signal, indicated by red 

signal, was obtained by irradiating at the excitation wavelength 390 nm as shown in the 

spectrum. The wavelength dependence of the intensity of emitted light has been recorded 

at ~490 nm (emission). The quantum yield of amide was measured at 2.7 %. These 

results suggest that compound 74 has fluorescence, and this probe may possibly be 

employed to detect superoxide anion in biological system by identifying its orange 

fluorescence. In addition to its chromotropic behavior, it may bring an advantage over 

conventional cyclic nitrones which require ESR for superoxide detection.   
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Figure 24. UV-vis absorbance and fluorescence of amide 74 taken in ethanol  

One of the advantages of fluorescence detection is the possibility of real time 

monitoring of the oxidation process.  

[3.2.4] The in vitro detection of superoxide with azulenylsilane guanylhydrazone 

nitrone 25 

Guanylhydrazone nitrone 25 is a congener of nitrone 24. Incorporation of 

guanylhydrazone moiety may make it mitochondriotropic, and thereby render it useful to 

detect superoxide anion present in the mitochondria. As expected, nitrone 25 has also 

shown to trap superoxide efficiently in analogy to the other aforementioned nitrones. 

Using the same method as described for the other nitrones, nitrone 40 turned into 

brownish orange upon reaction with potassium superoxide. The brownish orange end 

product was isolated and identified as amide 80 using low resolution mass spectrum 
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(MH+ = 654) which is analogous to the end product 74. In addition to amide 80, a trace of 

another orange product was also observed which is identified as amide 81 (MH+ = 768) 

analogous to amide 79 end product. 

 

                                              

 80 brownish orange 

Figure 25. Structure of the product amide 80 from the reaction of nitrone 25 with 

superoxide radical  
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Figure 26. Potential structure of the product amide 81 

[3.3] The solubility study of nitrone 25 with solutol HS 15 

 Since nitrone 25 was poorly water soluble, its solubility in an aqueous systems 

was examined using solutol HS 15 compound. Solutol HS 15 is a non-ionic solubilizer 

and emulsifying agent produced from 1 mole of 12-hydroxystearic acids and 15 moles of 

ethylene oxide. It provides excellent solubility to poorly soluble (lipophilic) molecules in 

water, and hence, it is used for formulation of drugs in the pharmaceuticals industry.  

 In this experiment, as expected, solutol HS 15 was found to increase the solubility 

of nitrone 25 in water. To prepare the concentration of 0.64 mg/ml of nitrone 25 in 3:7 

solutol HS 15:1 % saline solution, 1 ml of solutol HS 15 was heated until it turned into a 

clear liquid and cooled to room temperature.  Meanwhile, 2.1 mg of nitrone 25 was 

crushed to a fine powder and dissolved in 1 ml of clear solutol HS 15. It was then diluted 

with 2.3 ml of 1 % saline solution in water with frequent shaking and warming. It was 
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then cool to room temperature to obtained green solution. The green solution was kept in 

a freezer, and found to be stable. The aqueous formulation of nitrone 25 with solutol HS 

15 is believed to be amenable for mitochondrial superoxide detection and other biological 

studies. 

[4] CONCLUSION 

 Superoxide radical anion generation and its reactions in biological systems have 

received considerable attention because of the involvement of superoxide in 

physiological process as well as in the pathogenesis of various diseases. In biomedical 

research, it is important to characterize the specific free radical and its exact role in 

diseases which will allow investigators to design molecular or pharmacological 

approaches to prevent or ameliorate free radical-mediated maladies. But the direct 

detection of biologically generated superoxide radical anion, the identification of its sites 

of production, and its quantification are of the major challenges. By their nature, the 

inherent reactivity of most free radicals makes their direct in vivo detection impossible. 

Because of this difficulty, various techniques based on an indirect detection of superoxide 

have been developed with some degree of success.  

Thus, techniques such as ESR (with cyclic nitrone spin traps), fluorescence, 

chemiluminescence and cytochrome c reduction have been used to study in vitro and in 

vivo detection of superoxide radicals in hopes of gaining insight with regard to cellular 

metabolism and pathogenesis of diverse cytotoxic events but each exhibits potential 

pitfalls as well as advantages. The fluoresence-based technique using MitoSox red is 

considered as a simple and accurate method for estimation of biological superoxide, and 

hence it has been widely used for this purpose. However, it was found unreliable for 
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intracellular detection because it does not detect superoxide specifically. 

In a search for a more reliable, selective, and convenient method, this research 

developed structurally diverse novel azulenylsilane nitrones. Structurally, these novel 

nitrones are set up in such a way that they are specific for superoxide detection. For 

example, a nitrone moiety and an adjacent silyl group react readily with radicals and 

oxygen anion respectively. Such nitrones can trap superoxide efficiently because 

superoxide is both radical and an oxygen anion. Moreover, such nitrones allow 

chromotropic detection of superoxide by the virtue of their azulene core. Synthesis of 

dinitrone 55 has made it possible to design and synthesize other nitrone congeners with 

the incorporation of the electron-withdrawing cyano group, which yields a stable, 

characteristically colored, end product from its spin trapping reaction with superoxide. As 

expected, 2-terbutyldimethylsilyl-1ethyl-3-azulenylnitrone (22), 2-tert-

butyldimethylsilyl-3-azulenecarboxaldehyde1-1nitrone (23), 2-tert-butyldimethylsilyl-3-

tert-butylnitrone-1-(2-tert-butyl-4-cyano-5-phenyl)-azulenylisoxazoline (24) and 

mitochondria-targeted 2-tert-butyldimethylsilyl-1-[5-(3-aminoguanidinyl-

phenylethynyl)-phenyl) 2-tert-butyl-4-cyano-5-phenyl isoxazole]-3-tert-

butylazulenylnitrone (25) have been shown to trap superoxide radical anion efficiently  

yielding UV-VIS identifiable and even potentially fluorescence-detectable orange 

products. The in vitro results suggest that the chromotropic detection of superoxide using 

these nitrones can be a promising method in contrast to other available methods. Further 

work involves synthesis of mitochondria-targeted nitrones 65 and 66. Examination of 

superoxide reaction with nitrone 25 in biological systems encountered is underway. The 

in vivo detection of superoxide radical anion may provide additional information. Thus, 
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nitrone 25 may be mitochondriotropic, and may have significant potential as a diagnostic 

tool for biological superoxide detection. 

[5] EXPERIMENTAL SECTION 

General notes: 

All of the moisture sensitive reactions have been carried out using syringe septum 

rubber cap technique under N2 or Ar atmosphere or in a vial by flushing N2 or Ar gas into 

it. The reactions at -78o C have been performed employing compressed CO2 and acetone 

bath. All of the reactions were monitored by TLC analysis (Whatman pre-coated silica 

gel F254 plates, 250 μm layer thickness), and visualization was achieved by 254 nm UV 

light. The crude reaction mixtures have been purified by column chromatography using 

60A (200-300 mess) on silica gel. 1H and 13C NMR spectra were recorded on Bruker 

AVANCE-400 spectrometer in deuterated chloroform. Chemical shifts were measured in 

parts per million with residual solvent peak used as an internal standard. The 1H NMR 

spectra were run at 400 MHz and 13C NMR spectra were recorder at 400 MHz with 

proton decoupled sequence. Coupling constants were measured in Hertz. All low 

resolution mass spectra were obtained on Finnigan Navigator LC/MS instrument and 

DECA LC/MS by direct injection into the mass spectrometer and detecting molecular ion 

with ESI, and GC/MS. The UV-vis spectrum was recorded using a Varian Cary 50 Bio 

spectrophotometer. The fluorescence (FL) spectrum was obtained using a Fluoromax-3 

spectrofluorometer (Jobin Yvon/Habira). For determination of quantum yield (QY), 9,10-

bis(phenylethynyl)anthracene (QY=1.0) in cyclohexane was used as a fluorescence 

standard. 
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[5.0.1] Synthesis of 1-tert-butyldimethylsilyl-1-ethyl-3-methylallene (27) 

C

Si H

 

In a 150 ml three-necked round bottom flask 12.57 ml (17.6 mmol) of sec-

butyllithium was cooled to -30oC under argon and stirred with magnetic stirrer. To this 

was added 0.723 g (8.8 mmol) of 3-hexyne via a syringe and stirred for 3 hours. The 

reaction mixture was then cooled to -78oC and, 2.6 gm (17.6 mmol) of TBDMSCl in THF 

was added with a syringe and left the mixture overnight. Subsequently, the reaction 

mixture was poured on ice and aqueous layer was extracted with ether (3 x 20 ml). The 

combined ether layers were then washed with 15 ml of saturated   sodium chloride, dried 

over MgSO4 and, concentrated in a rotavap. The resulting residue was distilled (b.p. 90-

95oC) and column chromatographed using pentane to yield 172 mg of solution colorless 

oil containing allenylsilane (27). The crude solution was used to prepare compound 28 

without further purification.  

[5.0.2] Synthesis of 2-tert-butyldimethylsilyl-1-ethyl-3-methylazulene (28) 

Si

 

In a 250 ml three-necked round bottom flask, fitted with an argon inlet adapter 

and a magnetic stirring bar, allenylsilane (232 mg, 1.18 mmol) was treated with 10 ml of 

acetonitrile, and  0.415 g of poly-4-vinylpyridine (3.94 mmol) and stirred for a minute. 
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Tropylium tetrafluoroborate (0.470 g, 2.63 mmol) was then added to the resulting 

suspension in one portion. The reaction mixture turned blue in one minute, which was 

then stirred in the dark for 24 h at the room temperature. The dark blue reaction mixture 

was filtered, and the solid residue was washed with hexane 100 ml of hexane followed by 

10 ml of acetonitrile until washing were clear. The filtrate was transferred into a 

separatory funnel and the top hexane layer was separated from the bottom acetonitrile 

layer. The separated acetonitrile layer was further extracted from hexane (3 x 20 ml) until 

the extract was clear. The combined hexane layers were then washed with 15 ml of 

saturated sodium chloride, dried over anhydrous magnesium sulfate, filtered, and 

evaporated in a rotavap. The blue green solid was then purified by chromatography on 

silica gel (eluent hexane) to give 0.1678 g of azulenylsilane as blue-green crystals. 1H 

NMR δ 8.11 (d, 1H, J = 9.4), 8.09 (d, 1H,J = 9.5), 7.39 (t, 1H, J = 9.7), 6.87 (t, 2H, J = 

9.8), 3.17 (q, 2H, J = 7.5), 2.70 (s, 3H), 1.26 (t, 3H, J = 7.5), 0.91 (s, 9H), 0.5 (s, 6H); 13C 

NMR δ 147.7, 140.9, 139.3, 138.1, 137.6, 134.2, 134.0, 133.4, 121.9, 121.8, 28.4, 23.0, 

20.5, 19.0, 15.8, 0.00. LRMS (LC/MS-ESI, MeOH) m/e 285 (MH+) 

[5.0.3] Synthesis of 2-tert-butyldimethylsilyl-1ethyl-3-azulenecarboxaldehyde (30) 

Si

H

O

 

In a 250 ml round bottom flask, azulenyl silane (290 mg, 1.021 mmol) was 

dissolved in 2ml of acetone and was added 2,3-dichloro-5,6-dicyano-1-benzoquinone 
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(463.5 mg, 2.042 mmol) and stirred at room temperature for 30 minutes in the dark. The 

reaction mixture immediately turned from blue to violet color. When all the reactant was 

gone, 15 ml of saturated sodium thiosulfate was added and stirred for 5 min to remove 

unreacted DDQ (2,3-dichloro-5,6-dicyano-1-benzoquinone). To this reaction mixture, 15 

ml of sodium carbonate was added and stirred for 5 minutes to remove acidic DDQH2 

(2,3-dichloro-5,6-dicyanohydroquinone). The resulting reaction mixture was then poured 

into 250 ml of chloroform and transferred into separatory funnel. The separation of two 

layers was hard to visualize. The bottom chloroform layer was separated from the top 

aqueous layer then the aqueous layer was extracted with chloroform (2 x 25 ml). The 

combined chloroform layers were washed with 15 ml of saturated sodium chloride, dried 

over anhydrous magnesium sulfate, and concentrated in a rotavap. The residue violet 

solid was then purified by column chromatograpghy with eluent 2:8 ethyl acetate:hexane 

to provide 228 mg of azulenylsilane aldehyde (30) in 75 % yield. 1H NMR δ 10.54 (s, 

1H), 9.85 (d, 1H, J = 9.85), 8.44 (d, 1H, J = 9.80), 7.79 (t, 1H, J = 9.77 ), 7.55 (t, 1H, J = 

9.86), 7.47 (t, 1H, J = 9.76), 3.18 (q, 2H J = 7.54), 1.30 (t, 3H, J = 7.53), 0.97 (s, 9H) 0.56 

(s, 6H); 13C NMR δ 190.16, 153.14, 142.63, 142.42, 142.11, 140.4, 138.69, 135.74, 

130.85, 130.15, 127.61, 127.49, 21.64, 18.72, 17.23, 0.00; LRMS (LC/MS-ESI, MeOH) 

m/e 299 (MH+). Elution with 3:7 ethylacetate:hexane gave 32 mg of azulenysilane 

alcohol-aldehyde (31) in 10 % yield. 1H NMR δ 10.52 (s, 1H), 9.92 (dd, 1H), 9.36 (dd, 

1H), 7.86 (tm, 1H), 7.62 (t, 1H), 7.54(t, 1H), 5.72 (q, 1H), 1.95 (s, 1H), 1.77 (d, 3H, J = 

6.64) 1.1 (s, 9H), 0.55 (s,3H) ).50 (s,3H); 13C NMR δ 189.82, 152.25, 142.83, 141.82, 

141.77, 140.76, 139.02, 138.84, 130.36, 130.18, 127.97, 67.81, 27.01, 24.29, 18.16, 0.25, 

0.10; LRMS (LC/MS-ESI, MeOH) m/e 315 (MH+) 
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[5.0.4] Synthesis of 2- tert-butyldimethylsilyl-1ethyl-3-azulenylnitrone (22) 

Si

N

O

 

According to Becker et al. protocol, 101 mg (0.34 mmol) of compound 30 was 

treated with N-tert-butyl hydroxylamine (212.84 mg, 1.69 mmol) and anhydrous 

magnesium sulfate (204 mg, 1.69 mmol) in 2 ml of anhydrous pyridine under argon. The 

reaction mixture was stirred at 40oC for 21 days. The TLC showed the product as well as 

some starting material. The reaction mixture was then poured into 20 ml of water and 

extracted with ether (3 x 25 ml). The ether layer was washed with 10 ml of saturated 

sodium chloride, dried over magnesium sulfate and concentrated in a rotavap. The 

residue product was then purified by column chromatography using 7:3 

ethylacetate:hexane to provide 58.6 m of nitrone (22) in 47 % yield. 1H NMR δ 8.25 (d, 

2H J = 9.75), 8.11 (s, 1H), 7.60 (t, 1H), 7.22 (t, 1H), 7.18 (t, 1H), 3.16 (q, 2H), 1.7 (s, 

9H), 1.26 (t, 3H), 0.94 (s, 9H), 0.49(s, 6H); 13C NMR δ 146.71, 141.68, 140.04, 138.54, 

137.88, 135.03, 133.63, 129.53, 124.12, 123.93, 123.31, 69.81, 28.46, 26.87, 21.65, 

18.77, 17.43, -1.56; LRMS (LC/MS-ESI, MeOH) m/e  369 (MH+) 
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[5.0.5] Synthesis of acetaldehyde tert-butylimine (35) 

H

N

 

Following Tieze’s method, I placed 16.5 g of tert-butylamine (226 mmol) in a 

three-necked round bottom flask, fitted with a dropping funnel and a magnetic stir bar, 

(under argon and kept on ice bath). Ten 10 g of acetaldehyde (226 mmol) was introduced 

dropwise at 0oC into the flask. The mixture was stirred at this temperature for 3 hr, then 

600 mg of solid KOH (10.7 mmol) was added and kept in a refrigerator at 4oC for 12 hr 

to allow two layers to seperate. The bottom aqueous layer was removed using a 

separatory funnel and the top organic layer was transferred into a flask which was then 

distilled (bp 66-70oC) to provide 19.9 g of aldiimine (35) in 88% yield as a colorless oil. 

The product was found identical to an authentic sample by using 1H NMR.  1H NMR δ 

7.61 (q, 1H J = 4.8 Hz), 1.90 (dd, 3H, J = 4.8 Hz), 1.10 (s, 9H)  

[5.0.6] Synthesis of 2-tert-butyldimethylsilyl-propylimine (36) 

 

H

N tB u

S i

                    

Following the procedure of Tietze’s,303 13.4 ml of 1.5 M LDA in THF (20.20 

mmol) was treated with 2 g of acetaldehyde aldimine 35 in THF (20.20mmol) at 0oC and 

the reaction mixture was stirred at this temperature for 30 min under argon. Initially the 

reaction mixture turned into yellow, and later it turned into red. To this mixture, 3.05 g of 
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TBDMSCl in THF (20.20 mmol) was added followed by the addition 0.373 g of Bu4NI 

(1.01 mmol) at 0oC. The reaction mixture was then stirred at room temperature for 3 hr. 

The resulting yellow color solution was then treated with 8.08 ml of BuLi in hexane 

(20.20 mmol) at 0oC and stirred for 1 hr at this temperature. Subsequently, 2.86 g of 

iodomethane (20.20 mmol) was added at this temperature and then allow the mixture to 

warm up to room temperature over 12 hr. The reaction mixture was then diluted with 40 

ml of diethyl ether and poured onto ice-water. The organic layer was separated and the 

aqueous layer was extracted with diethyl ether (2 x 40 ml). The combined organic layers 

were washed with saturated NaCl, dried over MgSO4 and concentrated in a vacuo to 

provide 6.5 g of crude 36 which has been used to prepare compound 37 without further 

purification.  

[5.0.7] Synthesis of 2-tert-butyldimethylsilyl-propylaldehyde (37) 

H

O

S i

 

The crude product 36 was hydrolysed by dissolving in 2 ml of petroleum 

ether/EtOAc (7:1) and filtered through a column of silica gel using petroleum 

ether/EtOAc (7:1) as eluent to furnish 2.82 g of  silylaldehyde (81 %) as an orange oil. 

The product is identical to the authentic sample. 1H NMR δ 9.72 (d, 1H, J = 1.6), 2.49 

(dq, 1H J = 6.7, 1.6), 1.16(d, 3H, J = 6.7), 0.92 (s, 9H), 0.03 (s, 3H), 0.01(s, 3H); 13C 

NMR δ 203.22, 40.95, 26.69, 17.50, 8.95, -6.71, -6.88; LRMS (GC-MS) m/e 172 (M+) 
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[5.0.8] Synthesis of 1-dibromo-3-tert-butyldimethylsilyl-1-butene (38) 

H

B r B r

S i

 

2.7 g of tetrabromomethane (8.14 mmol) was stirred in CH2Cl2 (1M) and kept at 

0oC. To this solution was added 4.35 g triphenylphosphine (16.6 mmol) in CH2Cl2 (2M) 

and stirred at this temperature for 30 min. Then the solution of 500 mg of aldehyde 37 

(2.90 mmol) in CH2Cl2 (0.5M) was added and stirred at 0oC for 2 hr. The reaction 

mixture was then treated with 42 ml of ether and the resulting white precipitates were 

filtered off.  The filtrate was then washed with 9 ml of H2O, 9 ml of saturated NaHCO3, 9 

ml of saturated NH4Cl, 9 ml of saturated NaCl, and dried over MgSO4. The solvent was 

then evaporated in vacuo and the residue was eluted with 30:1 petroleum 

ether:ethylacetate  in a column chromatography to furnish 733 mg of dibromo compound 

38 in  77 % yield as a colorless oil. 1H NMR δ 6.25 (d, 1H, J = 11.5), 2.08 (dq, 1H, J = 

11.5, 7.2), 1.10 (d, 3H, J = 7.2), 0.94 (s, 9H), 0.00 (s, 3H), -0.01(s,3H); 13C NMR δ 

142.82, 84.41, 27.04, 26.52, 17.37, 14.79, -7.28, -7.34; LRMS (GC-MS) m/e 328 (M+) 

[5.0.9] Synthesis of 4-tert-butyldimethylsilyl-1-pentyne (39) 

Si

 

340 mg of 38 (1.07 mmol) was dissolved in THF (0.25M) and kept in dry ice/ 

acetone water bath. To this solution 1 ml of  BuLi ( 2.28 mmol) was added at -78oC under 
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argon and stirred for 30 min. The reaction mixture was then quenched with 0.08 ml (182 

mg) of iodomethane (1.28 mmol) and heated at 40oC for 2 hr. After 2 hr stirring, the 

reaction mixture was brought to room temperature and stirred for another 18 hr. To this 

reaction mixture 10 ml of 1:1 ether/water was added and then aqueous layer was 

separated and washed with ether (3x 20 ml). The organic layers were combined and 

washed with 20 ml of saturated NaCl, drie over MgSO4 and concentrated in rota vap. The 

residue was then purified by column chromatography using petroleum ether to furnish 

160 mg of 39 as pale yellow oil (82 %). 1H NMR δ 1.78 (s, 3 H), 1.75-1.79 (m, 1 H), 1.17 

(d, 3 H, J = 7.2), 0.95 (s, 9 H), -0.02( s, 3H), 0.04 (s, 3H); 13C NMR δ   83.20, 74.89, 

27.12, 17.40, 16.29, 10.29, 3.61, -7.42, -7.82; LSMS (GC-MS) m/e 182 (M+) 

[5.1.0] Synthesis of 2-tert-butyldimethylsilyl-1,3-dimethylazulene (40) 

 

 

In a three necked round bottomed flask, containing a magnet stirrer, 2.13 mg of 

38 (11.69 mmol) was treated with 85 ml of acetonitrile and 4.06 g of poly(4-

vinylpyridine (38.57 mmol) and stirred under argon at room temperature. To the resulting 

suspension was added 4.58 g of tropylium tetrafluoroborate (25.72 mmol) in one portion. 

The reaction mixture was turned into blue in 60 seconds and stirred at room temperature 

in the dark for 24 h. The dark blue reaction mixture was then filtered, and the solid 

residue was washed with 300 ml of hexane and 20 ml of acetonitrile until the washing 

Si
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became clear. The filtrate was transferred into a separatory funnel, shaken vigorously, 

and the top blue hexane layer was separated from the bottom brown acetonitrile layer. 

The acetonitrile layer was extracted with hexane (4 x 40 ml). The combined hexane 

layers were washed with 15 ml of saturated sodium chloride, dried over anhydrous 

MgSO4, filtered, and evaporated the solvent to obtain blue-green solid. The blue green 

residue was then purified by column chromatography using hexane to furnish 687 mg of  

azulene 40 as blue-green crystals in 22% yield. 1H NMR δ 8.18 (d, 2H, J = 9.8), 7.46 (t, 

1H, J = 9.8), 6.96 (t, 2H, J = 9.8), 2.81 ( s, 6H), 1.05 ( s, 9H), 0.6 (s, 6H); 13C NMR δ   

147.12, 137.87, 136.89, 132.68, 132.28, 120.38, 26.99, 19.33, 14.38, - 1.46; LRMS 

(LC/MS-ESI, MeOH) m/e  271 (MH+) 

[5.1.1] Synthesis of 2-tert-butyldimethylsilyl-1,3-azulenedicarboxaldehyde (32) 

Si

H

O

H

O

 

  90 mg of 40 (0.33 mmol) was dissolved in 5 ml of acetone at room temperature. 

To this solution was added 359 mg of DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) 

(1.58 mmol) in one portion. The reaction mixture immediately turned color from blue to 

red as it was stirred in the dark for 1 hour. When all reactant was gone the reaction 

mixture was stirred with 15 ml of saturated sodium thiosulfate solution to remove 

unreacted DDQ for 2 min and then 15 ml of saturated sodium bicarbonate was added, and 

then it was stirred for 2 min to remove acidic DDQH2 (2,3-dichloro-5,6-
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dicyanohydroquinone). The reaction mixture was then extracted with chloroform (5 x 40 

ml). The combined bottom red organic phases were subsequently washed with 15 ml of 

saturated NaCl solution, dried over anhydrous MgSO4, filtered and evaporated. The red 

residue was then purified by column chromatography using 7:3 hexane:ethylacetate to 

provide 88.4 mg of bis-aldehyde 32 in 89 % yield as red crystals. 1H NMR δ 10.59 (s, 

2H), 10.12 (dd, 2H, J = 10), 8.11 (tt, 1H, J = 10), 7.94 ( t, 1H, J = 10), 1.05 ( s, 9H), 0.61 

( s, 6H); 13C NMR δ   190.28, 162.4, 144.9, 142.75, 140.94, 134.14, 132.73, 27.06, 17.99, 

0.98; LRMS (LC/MS-ESI, MeOH) m/e  299 (MH+) 

[5.1.2] Synthesis of 2-tert-butyldimethylsilyl-3-formyl-azulene-1-nitrone (23) 

H N

Si

O

O

 

To the mixture of 50 mg of bis-aldehyde 32 (0.167 mmol), 42.2 mg of tert-

butylhydroxylamine hydrochloride (0.335 mmol) and 40.4 mg of anhydrous magnesium 

sulfate (0.335 mmol) was added 1.4 ml of  pyridine to dissolve. The reaction mixture was 

then stirred and heated to 40oC for 1 week under argon. The color of the reaction solution 

changed from red into green. The crude product was then poured into 5 ml of water and 

extracted with 5 ml of ether. Then aqueous layer was separated from ether layer. The 

aqueous layer was further extracted with ether (2 x 5 ml). The combined ether layer was 

washed with saturated sodium chloride, dried over magnesium sulfate, filtered and, 

evaporated in a vacuo. The residue was then purified by silica gel column 
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chromatography using 5:5 hexane:ethylacetate to produce 20.3 mg of mononitrone 23 in 

33 % yield as green crystals. 1H NMR δ 10.51 (s, 1H), 9.95 (d, 1H, J = 9.9), 8.27 (d, 1H, 

J = 9.9), 8.10 ( s,1H), 7.94 (t, 1H, J = 9.9), 7.74 (t, 1H, J = 9.9), 7.69 (t, 1H, J = 9.9), 1.71 

(s, 9H), 0.99 (s, 9H), 0.53 (s, 6H); 13C NMR δ   189.25, 156.37, 143.34, 140.97, 140.49, 

139.84, 139.52, 132.35, 131.69, 129.2, 128.19, 127.83, 70.46, 28.35, 26.81, 18.35, -0.65; 

LRMS (LC/MS-ESI, MeOH) m/e  370 (MH+) 

[5.1.3] Synthesis of 2-tert-butyldimethylsilyl-1,3-azulenyldinitrone (55) 

N N

Si

OO

 

A solution of 77 mg of dialdehyde 32 (0.26 mmol), 162 mg of tert-

butylhydroxylamine hydrochloride (1.3 mmol), 155 mg of anhydrous magnesium sulfate, 

and 1 ml of pyridine was stirred at 45oC for 2 weeks under argon. The resulting mixture 

was then pour into 5 ml of water and extracted with 5 ml of ether. The aqueous layer was 

extracted with (2 x 5 ml) ether. The combined ether layers were washed with saturated 

sodium chloride, dried over MgSO4, filtered and concentrated in vacuo. The resulting 

residue was then purified by column chromatography using 100:1 chloroform:methanol 

as eluenting solvent to furnish 35.4 mg of 55 in 31 % yield as green crystals. Compound 

55 was also prepared in 35 % yield by heating 66 mg of mononitrone 23 (0.18 mmol), 

67.4 mg of tert-butylhydroxylamine hydrochloride (0.54 mmol), 64.6 mg of anhydrous 

MgSO4 (0.54 mmol) and 1 ml of pyridine at 45oC for 10 days. 1H NMR δ 8.35 (d, 2H, J = 
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9.5), 8.07 (s, 2H), 7.76 (t, 1H, J = 9.7), 7.48( t, 2H, J = 9.9), 1.70 (s,18H), 0.95 (s, 9H), 

0.48 (s, 6H); 13C NMR δ 149.62, 139.58, 138.71, 138.04 128.74, 126.86, 126.11, 70.08, 

28.44, 26.53, 18.70, -2.05; LRMS (LC/MS-ESI, MeOH) m/e  441 (MH+) 

[5.1.4] Synthesis of 2-[2-(tert-butyldimethyl-silanyl)-3-formyl-azulen-1-yl]-5-

cyclohexylamino-furan-3,4-dicarboxylic acid dimethyl ester (50) 

O

Si

H

O

MeO2C CO2Me

NH

 

A mixture of 250 mg of bis-dialdehyde 32 (0.84 mmol) and 92 mg of DMAD 

(dimethyl acetylenedicarboxylate) (0.84 mmol) was dissolved in 8.5 ml of anhydrous 

benzene and heated at 80oC under argon. To the solution was added 119 mg of 

cyclohexylisocyanide (0.84 mmol) by syringe, and the heating was continued at 80oC for 

further 5 days. The color of the reaction changed from red into brown. The solvent was 

then evaporated in a vacuo, and the crude residue was purified on column 

chromatography using 8:2 hexane:ethylacetate to obtaine first starting material, and then 

polarity was increased to 7:3 hexane:ethylacetate to furnish 117 mg of 50 as wine red 

solid in 25 % yield. 1H NMR δ 10.59 (s, 1H), 9.99 (dd, 1H, J = 9.9, 0.8), 8.40 (dd, 1H, J = 

9.9, 0.8), 7.90 (t, 1H, J = 9.8), 7.71 (t, 1H, J = 9.8), 7.40 (t, 1H, J = 9.7), 6.72 (d, 1H, J = 

8.9), 3.82 (s, 3H), 3.52-3.365 (m, 1H), 3.49 (s, 3H), 1.20-2.05 (m, 10H), 0.95 (s, 9H),0.34 

(s, 3H), 0.23 (s, 3H);  13 C NMR δ 189.84, 165.34, 164.39, 162.04, 157.31, 146.20, 

141.70, 141.15, 139.83, 139.73, 138.19, 131.24, 130.20, 129.45, 125.96, 118.56, 86.09, 
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51.74, 51.35, 51.03, 34.01, 33.89, 27.34, 25.27, 24.69, 24.60, 17.95, -1.86, -3.42; LRMS 

(LC/MS-ESI, MeOH) m/e  550 (MH+) 

[5.1.5] Synthesis of 2-[2-(tert-butyldimethyl-silanyl)-3-tert-butylnitrone-azulen-1-yl]-

5-cyclohexylamino-furan-3,4-dicarboxylic acid dimethyl ester (49) 

N

Si

O

CO2MeMeO2C

N
H

O

 

A solution of 13.5 mg of aminofuran adduct 50 (0.025 mmol), 9.3 mg of tert-

butylhydroxylamine hydrochloride (0.074 mmol), 8.9 mg of magnesium sulfate (0.074 

mmol), and 0.3 ml of pyridine was purged with argon and stirred at 50oC for 7 days. The 

reaction mixture was then poured into 5 ml of water and extracted with ether (3 x 5 ml). 

The combined ether layers were then washed with 10 ml of saturated sodium chloride, 

dried over anhydrous magnesium sulfate, filtered, and evaporated in a vacuo. The 

resulting green residue was then purified by column chromatography using 5:5 

ethylaetate/hexane to produce 3 mg of nitrone 49 in 20 % yield. 1H NMR δ 8.48 (d, 1H, d 

= 9.9), 8.25 (d, 1H, d = 9.2), 8.2 (s, 1H), 7.74 (t, 1H, d = 9.8), 7.44 (t, 1H, d = 9.9), 7.37 ( 

t, 1H, d = 9.8), 6.68 (d, 1H, d = 8.8), 3.81 (s, 3H), 3.50 - 3.57 (m, 1H), 3.49 (s, 3H), 1.85 

– 2.00 ( m, 2 H), 1.7 ( s, 9H), 1.10 – 1.40 ( m, 8H), 0.28 ( s, 3H), 0..2 ( s, 3H); 13C NMR 

δ 165.47, 164.61, 161.99, 151.19, 144.02, 140.27, 139.60, 139.55, 136.68, 136.10, 

129.02, 126.50, 125.40, 125.33, 125.22, 118.07, 86.11, 70.15, 51.11, 51.37, 51.00, 33.97, 
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28.47, 27.17, 25.36, 24.79, 24.63, 18.48, 0.00, -3.20, -4.15 ; LRMS (LC/MS-ESI, MeOH) 

m/e  621 (MH+) 

[5.1.6] Synthesis of p-formylphenyl isocyanate (53) 

N C O

O

 

According to the modified method of Yamada, 1 gm of 4-carboxybenxzaldehyde 

(6.67 mmol) was suspended in 16 ml of anhydrous methylene chloride and added 0.9 ml 

(0.66 g) of triethylamine (6.67 mmol). After all the solid had dissolved, 1.44 ml of 

diphenylphosphoryl azide (6.67 mmol) was added dropwise through a syringe. The 

content was then refluxed for 6 hr. The reaction mixture changed the color from colorless 

to pale yellow. The solvent was then evaporated in a vacuo. The resulting yellow solid 

was then dissolved in 40 ml of ether and washed with aqueous sodium bicarbonate at PH 

9 (2 x 25 ml). The ether layer was dried over anhydrous magnesium sulfate, filtered, and 

evaporated ether to provide 1 gm of 53 as a pale yellow solid in 100 % yield. 1H NMR δ 

10.12 (s, 1H), 8.20 (d, 2H, J = 8.3), 7.80 (d, 2H, J = 8.3); 13C NMR δ 191.33, 171.73, 

140.03, 135.34, 130.05, 129.70; LRMS (GC-MS, CH2Cl2) m/e 147 (M+), 146, 118, 90, 

63, 51; IR (NaCl) 2136 cm-1 for isocyanate group. 
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[5.1.7] Synthesis of 2-tert-butyl-3-[2-(tert-butyldimethyl-silanyl)-3-nitrone-azulen-

1-yl]-5-phenyl-2,3-dihydro-isoxazole-4-carbonitrile (24) 

N

Si

N

O

O

NC

 

The mixture of 26 mg of dinitrone 55 (0.06 mmol) and 7.5 mg of 

phenylpropiolonitrile (0.06 mmol) was dissolved in 1 ml of anhydrous benzene and 

heated at 50oC for 6 days. The solvent was then dried in a vacuo to provide green solid. 

The resulting green residue was then purified by column chromatography on silica gel 

using 7:3 hexane:ethylacetate which afforded  25 mg of 24 as green crystals in 75 % 

yield and 19 % of  starting materials. 1H NMR δ 9.22 (d, 1H, J = 9.5), 8.21 (d, 1H, J = 

9.5), 8.19 ( s, 1H), 7.92 (dd, 2H, J = 8, 1.3), 7.65 (t, 1H, J = 9.7), 7.47 (m, 3H), 7.32 (t, 

1H, J = 9.7), 7.25 (t, 1H, J = 9.7), 6.33 (s, 1H), 1.70 ( s, 9H), 1.25 (s, 9H), 1.00 (s, 9H), 

0.73 (s, 3H), 0.40 (s, 3H); 13C NMR δ 161.62, 146.75, 140.63, 139.34, 138.55, 137.21, 

136.95, 135.44, 131.68, 129.30, 128.86, 127.12, 125.87, 125.66, 124.90, 124.63, 

116.20, 85.80, 70.06, 65.28, 61.87, 28.38, 28.03, 25.39, 19.18, 0.27, -1.26; LRMS 

(LC/MS-ESI, MeOH) m/e  568 (MH+) 
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[5.1.8] Synthesis of (3-ethynyl-phenyl)-1-propyne nitrile (63) 

CN

 

Three-necked round bottom flask, fitted with argon inlet and  containing a 

magnetic stirring bar, is charged with 11.3 ml of DMSO, (dimethyl sulfoxide), 3.75 ml of 

acetonitrile and 0.2 ml of water, and stirred the solution rapidly. To the rapidly stirring 

solution, 1.35 g of cuprous cyanide (15 mmol) was added very slowly to avoid formation 

of lumps. Then 113 mg of sodium iodide (0.752 mmol) was added to the reaction 

mixture, and was stirred for 1 min. Then 1 ml (0.940 g) of 1,3-diethynylbenzene (7.53 

mmol) was added slowly via syringe. Subsequently, 2.9 ml (2.45 g) of 

chlorotrimethylsilane (22.56 mmol) was added dropwise via syringe over 20 min and 

stirred the reaction mixture at 50oC for 24 hr. The reaction mixture was then cooled to 

room temperature and then 5 ml of water was added. It was then extracted with ether (5 x 

10 ml). The combined ether layers were then washed with 25 ml of saturated sodium 

bicarbonate, 25 ml of saturated sodium chloride, dried over anhydrous magnesium 

sulfate, filtered and evaporated the solvent by rotatory evaporation to give crude yellow 

oil. The crude residue was then purified by silica gel column chromatography using 

pentane as eluenting solvent to afford 147 mg of (3-ethynyl-phenyl)-1-propyne nitrile as 

white crystals in 13 % yield. 1H NMR δ 7.72 (sm, 1H), 7.63 (dt, 1H, J = 0.02), 7.58 (dt, 

1H, J = 0.02), 7.39 (t, 1H, J = 0.02), 3.16 (s, 1H); 13C NMR δ 136.74, 135.26, 133.39, 
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129.03, 123.44, 118.06, 105.19, 81.67, 81.49, 79.26, 63.59; LRMS (GC/MS, CH2Cl2) m/e 

151 (M+) 

[5.1.9] Synthesis of [3-(3-formyl-phenylethynyl)-phenyl]-propyne nitrile (61)

O

H

NC  

The mixture of 87 mg of (3-ethynyl-phenyl)-1-propyne nitrile 63 (0.576 mmol), 

120.3 mg of 3- iodobenzaldehyde, and 0.8 ml triethylamine (58.5 mg, 0.576 mmol) were 

dissolved in 1.5 ml of anhydrous THF, and the solution was deoxygenated by purging 

argon in it. Then 22 mg of tetrakistriphenylphosphine palladium (0.019 mmol) was added 

to the solution, and the reaction was allowed to stir for 20 min at room temperature. After 

20 min, 0.9 mg of cuprous iodide (4.5 x 10 -3 mmol) was added to the stirring solution 

and stirred  at room temperature for 2 hr, followed by heating further at 50oC for 2 hr. 

The solvent was then evaporated in a rotatory evaporation to give brown solid. The 

residue was then purified by silica gel column chromatography using 1:9 

dichloromethane:hexane to collect starting material. The polarity was increased to 2:8 

dichloromethane:hexane to afford 80 mg of 61 as a golden solid in 55 % yield. 1H NMR 

δ 10.2 (s, 1H), 8.04 (sm,1H), 7.89 (dm, 1H, J = 7.7), 7.78 (m, 2H), 7.69 (dm, 1H, 7.8), 

7.60 (dm, 1H, J = 7.8), 7.56 (t, 1H, J = 7.7), 7.44 (t, 1H, J = 7.8); 13C NMR δ 191.30, 

137.13, 136.59, 136.27, 134.81, 133.21, 132.90, 129.61, 129.26, 123.99, 123.69, 118.16, 

105.22, 89.72, 88.64, 81.77, 63.62; LRMS (GC/MS, CH2Cl2) m/e   255 (M+) 
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[5.2.0] Synthesis of 2-tert-butyl-3-[2-(tert-butyldimethyl-silanyl)-3-nitrone-azulen-1-

yl]-5-[3-(3-formyl-phenylethynyl)-phenyl]-2,3-dihydro-isoxazole-4-carbonitrile (64) 

N

Si

O
N

O

NC

CHO

 

A mixture of 288 mg of dinitrone 55 (0.65 mmol) and 17.4 mg of [3-(3-Formyl-

phenylethynyl)-phenyl]-propyne nitrile 63 (0.65 mmol) was dissolved in 8 ml of 

anhydrous benzene. The reaction mixture was then heated at 50oC for 1 week. The 

solvent was then dried in a vacuo to afford a green solid which was purified by column 

chromatography on silica gel .The column was washed with 7:3 hexane:ethylacetate to 

elute 380 mg of aldehyde 64 as green crystals in 84 % yield with 16 % of  starting 

materials 55. 1H NMR δ 10.02 (s, 1H), 9.23 (d, 1H, J = 9.8), 8.21 (d, 1H, J = 10.1), 8.19, 

(s, 1H), 8.06 (s, 1H,),8.04 (s, 1H), 7.94 (dm, 1H, J = 8.1), 7.87 (dm,  1H, J = 7.7), 7.80 

(dm, 1H, J = 7.7), 7.68 (m, 2H), 7.54 (t, 1H, J = 7.7), 7.47 (t, 1H, J = 7.8), 7.34 (t, 1H, J = 

9.8), 7.28 (t, 1H, J = 10.1), 6.36 (s, 1H), 1.71 (s, 9H), 1.27 (s, 9H), 1.00 (s, 9H); 13C NMR 

δ 191.43, 160.59, 146.86, 140.65, 139.46, 138.62, 137.19, 137.17, 137.02, 136.57, 

135.05, 134.61, 133.13, 130.03, 129.37, 129.25, 129.20, 129.12, 127.20, 126.33, 125.72, 

124.98, 124.77, 124.02, 123.70, 115.89, 89.64, 89.19, 86.61, 70.12, 65.39, 61.96, 28.39, 

28.03, 25.43, 19.20, 0.27, -1.25; LRMS (LC/MS-ESI, MeOH) m/e  696 (MH+) 
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[5.2.1] Synthesis of 2-tert-butyl-3-[2-(tert-butyldimethyl-silanyl)-3-nitrone-azulen-1-

yl]-5-[3-(3-guanylhydrazone-phenylethynyl)-phenyl]-2,3-dihydro-isoxazole-4-

carbonitrile (25) 

N

Si

O
N

O

NC

N N

N

N

H

H

H

H

 

A mixture of 554 mg of 64 (0.797 mmol), 88.2 mg of aminoguanidine 

hydrochloride (0.797 mmol) and 0.33 ml of triethylamine (2.39 mmol) was dissolved in 

1.5 ml of pyridine. The reaction mixture was then stirred for 7 days at 45oC. The resulting 

green reaction solution was then treated with 5 ml of water and extracted with 

dichloromethane (6 x 10 ml). The combined organic phases were then washed with 10 ml 

of saturated sodium chloride, dried over anhydrous magnesium sulfate, filtered, and 

evaporated in a vacuo to obtain green solid. The green residue was then purified by 

column chromatography on silica gel. The column was first washed with 60:40 

hexane:ethylacetate to collect 10 mg of starting material 64. The polarity of solvent was 

then increased to 95:5 chloroform:methanol to wash the column to afford 570 mg of 

nitrone 25 in 95 % yield as a green crystal. 1H NMR δ 9.43 (d, 1H, J = 9.88), 8.33 (s, 
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1H), 8.01 (s, 1H), 8.00 (d, 1H, J = 9.50), 7.90 (s, 1H), 7.70-7.80 (m, 4H), 7.39 (d, 1H, J = 

7.80) 7.58 (d, 1H, J = 8.29), 7.20-7.44 (m, 5H), 6.30 (s, 1H), 1.7 (s, 9H), 1.25 (s, 9H), 

1.04 (s, 9H), 0.7 (s, 3H), 0.5 (s, 3H); 13C NMR δ 160.71, 155.80, 147.18, 146.03, 140.26, 

140.10, 137.81, 137.75, 136.79, 134.90, 134.26, 133.40, 132.76, 131.74, 130.58, 130.17, 

128.97, 128.75, 127.63, 126.47, 126.22, 125.87, 125.39, 124.06, 123.79, 123.02, 116.18, 

90.66, 88.85, 86.22, 70.20, 65.40, 61.77, 28.26, 28.01, 25.36, 19.17, -0.08, -1.17; LRMS 

(LC/MS-ESI, MeOH) m/e  752 (MH+)  

[5.2.2] Synthesis of 2-tert-butyldimethylsilyl-1,3-azulenyldioxime (48) 

Si

N N
HO OH

 

In an attempt to synthesize nitrone oxime 46, 13 mg of mononitrone 23 (0.0352 

mmol) was mixed with 2.5 mg of hydroxylamine hydrochloride (0.0352 mmol) and 

dissolved in 1 ml of pyridine in a small vial under argon. The reaction mixture was 

heated at 40oC. After 2 hr of stirring no product has been observed by TLC so 1 more 

equivalent of hydroxylamine hydrochloride was added and stirred the reaction mixture 

for further 24 hr. When TLC showed no more reactant, 8 ml of water was added to the 

resulting reaction mixture and extracted with ethylacetate (3 x 10 ml). The combined 

organic layer was washed with 10 ml saturated sodium chloride solution, dried over 

anhydrous magnesium sulfate, filtered and concentrated in a vacuo. Purification of the 

resulting green solid by column chromatography on silica gel using 7:3 hexane: 
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ethylacetate failed to provide nitrone oxime 46 indicated by NMR and LRMS. Instead 10 

mg of dioxime 48 as green crystals in 87 % yield was obtained confirmed by NMR and 

LRMS. 1H NMR δ 9.22 (d, 2H, J = 9.6), 8.80 (s, 2H), 7.70 (t, 1H, J = 9.8), 7.5 (br s, 2H), 

7.39 (t, 1H,  J = 10) 0.99 (s, 9H), 0.52 (s, 6H);  13C NMR δ 150.80, 150.05, 140.67, 

139.87, 138.51, 127.38, 127.08, 26.98, 18.46, -0.74; LRMS (LC/MS-ESI, MeOH) m/e  

329 (MH+) 

[5.2.3] Attempted synthesis of 2-tert-butyldimethylsilyl-3-nitrone-1-

azulenemalonolitrile (41) 

A mixture of 15 mg of mononitrone 23 (0.041 mmol) and 2.7 mg of malononitrile 

(0.041 mmol) in 0.5 ml of dimethylformamide (DMF) was treated with 1.7 mg of LiCl 

(0.0041 mmol) and stirred either at room temperature for 24 hour. Thin layer 

chromatography showed one reactant spot and another orange spot. The reaction mixture 

was then treated with 2 ml of water and extracted with 5 ml ethylacetate several times. 

The combined ethylacetate layers were dried over magnesium sulfate and concentrated in 

vacuo. The resulting residue was purified by column chromatography. The column was 

washed first with 5:5 ethylacetate/ hexane to collect 3.6 mg of starting material then 

polarity was increased to 80 % to collect 7.3 mg of an orange product. An unidentified 

orange product has been observed by 1H NMR that contained no tert-butyl and methyl 

groups attached to silyl group. The compound has not been identified yet.  

[5.2.4] Attempted synthesis of isoxazole tricarboxylic acid trimethylester (44) 

A mixture of 10 mg of mononitrone 23 (0.0271 mmol) and 13.3 μl dimethyl 

acetylenedicarboxylate (0.108 mmol, 4 equiv.) was dissolved in 0.2 ml of 

dichloromethane. The reaction mixture was stirred at room temperature for 11 hr. 
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Evaporation followed by purification on column chromatography using 7:3 

hexane:ethylacetate gave 5 mg of purple product. However, the purple compound is 

identified as an intermediate 43 based on 1H NMR and MS. Therefore, the reaction is 

further stirred for 7 days at 35oC but only the intermediate compound was recovered. 

[5.2.5] Attempted synthesis of 54 from p-formyl isocyanate and aminofuran adduct 

(50)  

Following the modified method of Fowler,313 treatment of 3.4 mg of p-formyl 

isocyanate 53 (0.022 mmol) with 12 mg of aminofuran adduct 50 (0.022 mmol) dissolved 

either 0.2 ml of benzene or toluene and heated at 90oC for 7 days failed to show any 

product by TLC. The solvent was then removed by rotator evaporation. Recrystallized 

from ether gave 12 mg of  wine red solid (89 %) which is identical to the starting material 

50 confirmed by  TLC and 1H NMR.  

[5.2.6] Attempted synthesis of α,β–unsaturated ketone derivative of isoxazoline (57) 

A mixture of 7.2 mg of carboxynitrile compound 24 (0.0127 mmol), 0.04 ml of 

iodomethane (0.609 mmol) and 64 mg of poly-4 vilylpyridine (0.609 mmol) was 

dissolved in 0.5 ml of tetrahydrofuran. The reaction was stirred 40oC for 36 hour. After 

three product were observed by TLC, the reaction mixture was filtered and washed with 

15 ml of hexane:ethylacetate and concentrated in a vacuo. The resulting residue was then 

chromatographed on silica gel by washing the column with 8:2 hexane:ethylacetate to 

collect the first two purple products 1.5 mg and 3 mg respectively and then polarity was 

increased to 5:5 ethylacetate:hexane to collect 1 gm of green product and 0.8 mg of 

starting material. However, the mixture of products failed to indicate the presence of 57 
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by 1H NMR and LRMS. Three products were presumed to be 58, 59 and 60 based on 

their LRMS data. 

[5.2.7] Aldehyde product (67) of superoxide trapping with nitrone 22  

O

H

O

Si

 

A mixture of 6 mg of nitrone 22 (0.0163 mmol), 6.9 mg of potassium superoxide 

(0.097 mmol, 6 equiv.) and 8.6 mg of crown ether (0.032 mmol, 2equiv.) was dissolved 1 

ml of benzene. The reaction was stirred for 3 hr at room temperature. The product was 

washed with 10 ml of saturated sodium chloride several times, dried over magnesium 

sulfate and concentrated. The mixture was purified by column chromatography using 5:5 

hexane:ethylacetate to give 2.2 mg of crude 67 (43 %). It was not possible to obtain 67 

pure enough for definitive NMR characterization. Nevertheless, the presence of 

aldehyde-proton and up-field shifting of ethyl-proton in 1H NMR data suggested the 

compound 67. When the same reaction was stirred for three days, another orange product 

was observed. The 1H NMR was observed with no aldehyde-proton signal and LRMS 

detected MH+ of 663. It was not possible to isolate the product 67 in a pure form for 

structure identification. 
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[5.2.8] Amide products 74 and 79 of superoxide trapping with nitrone 24 

 

N

O

H
NH

O

NH O

   

N

O

H
N

O

NCSi

O

 

     74              79 

 A mixture of 20 mg of nitrone 24, 7.5 mg of potassium superoxide and 18.6 mg of 

crown ether was dissolved in 1 ml of benzene. The reaction was stirred for 16 hr at room 

temperature. The mixture was then washed with 10 ml of saturated sodium chloride 

several times, dried and concentrated. Purification of the mixture product by column 

chromatography using 5:5 ethylacetate:hexane afforded 7.2 mg of orange amide 74 in 44 

% yield.  1H NMR δ 8.8 (s, 1H), 7.7 (d, 1H J = 10.3), 7.63 (m, 2H), 7.56 (m, 1H), 7.40 (t, 

1H J = 7.3), 7.7.33-7.22 (m, 4H), 7.0 (m, 1H), 6.24 (s, 1H), 1.57 (s, 9H), 1.48 (s, 9H); 13C 

NMR δ 190.81, 172.62, 168.62, 157.58, 138.93, 138.43, 135.46, 133.20, 131.36, 128.35, 

127.83, 127.12, 125.92, 125.11, 124.81, 122.05, 116.53, 115.0, 83.68, 63.42, 52.90, 

29.90, 28.99; LRMS (LC/MS-ESI, MeOH) m/e 470 (MH+); HRMS calculated for 

C29H31O3N3 found 470.2438. In addition to compound 74, trace of amide 79 was also 

recovered which was not enough for NMR characterization. However, it was possible to 

obtain consistent MS data: LRMS (LC/MS-ESI, MeOH) m/e 584 (MH+). 
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[5.2.9] Amide products 80 and 81 of superoxide trapping by nitrone 25 

 

      80 

O

Si

N N

H

O

NC

N

H
N NH2

NH

O

 

        81 

A mixture of 15 mg of nitrone 25 (0.021 mmol), 4.4 mg (3 equiv.) of potassium 

superoxide and 11.1 mg (2 equiv.) of crown ether was dissolved  in 1 ml of benzene and 

stirred for 19 hr. Work up was done as aforementioned method. The mixture product was 

separated by column chromatography beginning with 98:2 dichloromethane:methanol 

and increasing the polarity to 94:6 dichloromethane:methanol to provide crude brownish 

orange product. LRMS analysis indicated the compound 80 with 654 (MH+) as a major 

product and the compound 81 with 768 (MH+) as a minor product along with some 

N

O

H
NH

O

NH O N
N
H

NH2

NH
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starting material. It was not possible to separate the mixture pure enough for NMR 

characterization.  

[5.3.0] UV-vis and fluorescence analysis 

UV-vis and fluorescence experiments were performed with assistance of Dr. 

Moon’s students. The orange product 74 from the reaction of 2-tert-butyldimethylsilyl-3-

tert-butylnitrone-1-(2-tert-butyl-4-cyano-5-phenyl)-azulenylisoxazoline (24) with 

superoxide was tested. Compound 74 was dissolved in ethanol for UV-vis absorbance 

measurement in scan range of 200-400 nm with scan rate of 600 nm/min at average time 

0.1 s and data interval of 1.00 nm. Fluorescence signal was obtained in scan range of 

400-700 nm using 0.1 s integration time with an increment of 0.1 nm. Both the excitation 

slit wide and the emission slit wide were selected 1.5 nm with the excitation wavelength 

fixed at 390 nm. 
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