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ABSTRACT OF THE THESIS 

STATISTICAL TEST FOR MULTI-DIMENSIONAL UNIFORMITY 

by 

Tieyong Hu 

Florida International University, 2011 

Miami, Florida 

Professor Zhenmin Chen, Major Professor 

Testing uniformity in the univariate case has been studied by many researchers. Many 

papers have been published on this issue, whereas the multi-dimensional uniformity 

test seems to have received less attention in the literature. A new test statistic for the 

multi-dimensional uniformity is proposed in this thesis. The proposed test statistic can 

be used to test whether an underlying multivariate probability distribution differs from 

a multi-dimensional uniform distribution. Some important properties of the proposed 

test statistic are discussed. As a special case, the bivariate test statistic is discussed in 

detail and the critical values of test statistic are obtained. By performing Monte Carlo 

simulation, the power of the new test is compared with the Distance to Boundary test, 

which was a recently proposed statistical test for multi-dimensional uniformity by 

Berrendero, Cuevas and Vazquez-Grande (2006). It has been shown that the test 

proposed in this thesis is more powerful than the Distance to Boundary test in some 

cases. 
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1.  INTRODUCTION  

Testing uniformity in the univariate case has been studied by many researchers. Many 

papers have been published on this issue, whereas the multi-dimensional uniformity 

test seems to have received less attention in the literature. The problem of testing 

whether the pattern of points in the multi-dimensional space is distributed uniformly 

has applications in biology, astronomy, computer science and some other fields.  

A commonly used goodness-of-fit test for uniformity is the chi-square test 

proposed by Pearson (1900). Theoretically, the chi-square test can be applied for any 

multivariate distribution test. However, the problem for the chi-square test is how to 

determine the cell limits. Two other well-known methods are the Kolmogorov-Smirnov 

test proposed by Kolmogorov (1933) and Smirnov (1939) and the Cramer-von Mises 

test proposed by Cramer (1952) and von Mises. Those two methods are derived from 

the empirical distribution and are widely used for univariate case. However, Berrendero, 

Cuevas and Vazquez-Grande (2006) pointed out that the probability distributions of 

those multivariate statistics don not have distribution free property. Therefore, those 

two methods are not applied for high dimensional distributions.  

Justel, Pena and Zamar (1997) proposed a multivariate goodness-of-fit test based 

on the Kolmogorov-Smirnov test. By using Rosenblatt’s transformation, they reduce 

the Kolmogorov-Smirnov test from multivariate case to univariate case. The test has 

distribution free property and can be applied to any dimensional case. However, the 

computation of the test is complicated especially for over two dimensions. In their 

paper, the authors presented bivariate statistic test (d=2) and performed power study. It 
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showed that the test is powerful when sample size is moderately large. 

In the paper by Liang, Fang, Hichernell and Li (2001), several statistical tests are 

proposed for testing uniformity in multivariate case. Those tests are use 

number-theoretic and quasi-Monte Carlo methods for measuring the discrepancy of the 

point in multidimensional unit. They proved that the test statistics can be approximated 

by the standard normal distribution (0,1)N  or the chi-squared distribution 2 (2)χ

under the null hypothesis that the underlying distribution is uniformly distributed. The 

Monte Carlo simulation is performed for three special cases: the symmetric discrepancy, 

the centered discrepancy and the star discrepancy. They take the sample size as n=25, 

50, 100, 200. Since the sample size is moderately large, the approximation is quite 

reasonable. It is shown that the power will increase as the dimension increases.  

Berrendero, Cuevas and Vazquez-Grande (2006) proposed a test based on the 

distance to the boundary. They define the distance from a point X to the boundary as

( , ) min{ : }D X S x S x X∂ = ∈ ∂ − . They also define R as the maximum distance to the 

boundary which can be obtained in support S. Then, they get the relative distance from 

X to the boundary which is ( , ) /Y D X S R= ∂ .  In the paper, they prove that the relative 

depth will follow the beta distribution with parameters 1 and p (p is dimensional size ) if 

the data are uniformly distributed on compact support. In the two dimensional case, the 

relative depth Y will follow the beta distribution (1, 2)Beta  and it also makes sense in 

univariate case. In univariate case, the relative depth Y will follow the beta distribution 

(1,1)Beta  which is also the uniform distribution. Then, the test will be reduced from p 

dimensional case to one dimensional case. Finally they used Kolmogorov-Smirnov 
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method to test whether the distribution of relative depth Y, which is from underlying 

distribution sample, follows the corresponding beta distribution. By performing the 

Monte Carlo simulation, under the same situations (same sample size and same 

dimension), the Distance to Boundary test is more powerful in the case of mixture 

model than the test proposed by Liang, Fang, Hichernell and Li (2001). The other 

advantage of the Distance to Boundary test is easy to compute and easy to explain. 

Chen and Ye (2009) developed an alternative test for uniformity in univariate case. 

In that paper, the authors proposed a new test statistic based on the order statistics in 

support set [0, 1].   The test statistic proposed in the paper is  

( )
1

2
1 2 ( ) ( 1)

1

( 1) 1
, , , ( )

1

n

n i i
i

n
G X X X X X

n n

+

−
=

+= − −
+ . 

By performing the Monte Carlo simulation, it has been shown that the test is more 

powerful when the alternative distribution is V-shape distribution and when the sample 

size is small compared with the Kolmogorov-Smirnov test. By using the probability 

integral transformation, the uniformity test can be used to check whether the underlying 

distribution follows any specified distribution. The idea is adopted in this research to 

develop a test for the multi-dimensional case.  

The main purpose of this research is to propose a new test statistic for testing 

multi-dimensional uniformity. It has been shown that the newly proposed test improves 

the power of the multi-dimensional uniformity tests. Since the Distance to Boundary 

test is a recently published paper in multivariate uniformity test, the power of the 

proposed test is compared with the power of the Distance to Boundary test when 
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different alternative distributions are used. 

The thesis is organized as follow. In Section 2, we propose a new test statistic and 

discuss some important properties of the proposed test statistic. As a special case, the 

bivariate statistic test will be discussed in detail. In Section 3, the performance of the 

proposed test is evaluated using Monte Carlo simulation. Critical values of the new test 

statistic are obtained and tabulated. Power study is conducted for evaluating the test 

statistic. Several different alternative distributions are used in the power study. The 

final conclusions are given in Section 4. 

Monte Carlo simulation is performed to find the critical values of the new test 

statistic and to conduct power study. The SAS/IML and SAS/Base are used for 

statistical simulation. 
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2. NEW TEST STATISTIC 

2.1 General Case 

In this research, a new test statistic is proposed. The basic idea of the proposed test 

statistic follows the paper of Chen and Ye (2009). The univariate uniformity test is 

discussed and evaluation of the test statistic is performed by power comparison in that 

paper. The result is extended to the multi-dimensional case.  

Suppose 

11 21 1

12 22 2
1 2

1 2

, , ,

n

n
n

k k nk

X X X

X X X

X X X

     
     
     = = =
     
     
     

X X X
  

 

is a random sample from a k-dimensional population distribution with support set 

[ ]( )
0,1

k
. Here [ ]( )

0,1
k

 is the k-dimensional unit cube which the set is defined as 

1

2 : 0 1 ( 1,2, , )i

k

t

t
t i k

t

  
  
   ≤ ≤ =       




. 

Let ( ) ( ) ( )1 2, , ,i i n iX X X  be the ordered values of 1 2, , ,i i niX X X  ( 1, 2, , )i k=  .  

The purpose of the multi-dimensional uniformity test is to test 

0 :H  The population distribution is a uniform distribution on [ ]( )
0,1

k
, 

:aH  The population distribution is not uniform distribution on [ ]( )
0,1

k
. 

The test statistics proposed in this research is  

( ) ( )
( ) ( ) ( )( ) ( )1 2

2
1 1 1

1 2 1
1 1 1 1

1 1
, , , .

1 1 1j j
k

k kn n n

k n k ki j i j
i i i j

n
G X X

n n

+ + +

−
= = = =

 +
= − − 

+ − +  
   ∏X X X 
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Here it is assumed that ( )0 0jX =  and ( )1 1n jX + = ( )1, 2,j k=  . It can be seen that if the 

underlying distribution is a uniform distribution on [ ]( )
0,1

k
, then 

( ) ( )( ) ( )1
1

1

1j j

k

ki j i j
j

E X X
n−

=

 
− = 

+ 
∏

  

( )( )1,2, 1 1,2,ji n j k= + = 
.
 

Therefore, if the value of ( )1 2, ,k nG X X X  is too far away from zero, it could be an 

indication that the underlying distribution is not uniform distribution on [ ]( )
0,1

k
. This 

motivates the following test procedure. Under 0H , let ,1kG α− be a number such that 

( )( )1 2 ,1, , ,k n kP G G α α−> =X X X
 

(0 1)α< < . 

Then 0H should be rejected at significant level α if ( )1 2 ,1, , ,k n kG G α−>X X X . It can 

be shown that ( )1 2, , ,k nG X X X  is always between 0 and 1. 

 

2.2 Bivariate Case 

The bivariate test statistic is discussed in detail as a special case of the 

multi-dimensional G test. The critical values of the test statistic are obtained and 

tabulated. Power comparison is performed in Section 3.  

The purpose of the bivariate uniformity test is to test 

0 :H  The population distribution is a uniform distribution on [ ] [ ]0,1 0,1× , 

:aH  The population distribution is not uniform distribution on[ ] [ ]0,1 0,1× . 

In order to raise the power of the proposed test statistic, the definition of 

( )2 1 2, , , nG X X X is modified by adopting the idea of the Kendall’s τ  statistic 

(1938).  
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Suppose 111 21
1 2

212 22

, , , n
n

n

XX X

XX X
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X X X  form a random sample from a 

bivariate population distribution with support set [ ] [ ]0,1 0,1× . 
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 are said to be half concordant and half discordant if 

( )2 1 2 10 0j j i iX X X X− = − ≠ . 

No comparison is made if 2 1=0i iX X− . 

Let cn be the total number of concordant pairs, and let dn be the total number of 

discordant pairs. 

Suppose also that ( ) ( ) ( )1 1 2 1 1, , , nX X X are the ordered values of 11 21 1, , , nX X X , and 

( ) ( ) ( )1 2 2 2 2, , , nX X X are the ordered values of 12 22 2, , , nX X X . 

Define 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

22
1 1

2 1 2 1 1 1 2 1 2 2
1 1

1 1 1
, , , .

2 1 1

n n
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n i i j j
i jc d

n n n
G X X X X

n n n n n

+ +

− −
= =
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Here it is assumed that ( ) ( )0 1 0 2 0X X= = and ( ) ( )1 1 1 2 1n nX X+ += = . 

It can be seen that if the underlying distribution is a uniform distribution on 

[ ] [ ]0,1 0,1× , then  

( ) ( )( ) ( ) ( )( ) ( )
( )1 1 1 2 1 2 2

1
1,2, , 1; 1,2, , 1 .

1
i i j jE X X X X i n j n

n
− −

 − − = = + = +  +
 
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Therefore, if the value of ( )2 1 2, , , nG X X X  is too far away from zero, it could be an 

indication that the underlying distribution is not uniform distribution on [ ] [ ]0,1 0,1× . 

This motivates the following test procedure. Under 0H , let 1G α− be a number such that 

( )( )2 1 2 1, , , nP G G α α−> =X X X
 

(0 1).α< <  

Then 0H should be rejected at significant level α if ( )2 1 2 1, , , nG G α−>X X X . 

The purpose of including the term 
1

1
c d

c d

n n

n n

− +
+ +  

is to raise the power of the test when the 

two variables of alternative bivariate distribution are correlated. 

It can be shown that ( )2 1 20 , , , 1nG≤ ≤X X X
 
for any [ ] [ ]1 2, , 0,1 0,1n ∈ ×X X X . 

The lower and upper bounds of the inequality ( )2 1 20 , , , 1nG≤ ≤X X X  cannot be 

improved. It means that one may construct bivariate data sets such that the values of 

( )2 1 2, , , nG X X X  will reach 0 and 1, respectively. 
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3. CRITCAL VALUES AND POWER STUDY  

3.1 Critical Values 

In this research, we focus on the bivariate case of the ( )1 2, , , nG X X X  test. Critical 

values of the G test in bivariate case are obtained by applying the Monte Carlo method 

in SAS/IML.  

Firstly, a pseudo-random sample 111 21
1 2

212 22

, , , n
n

n

XX X

XX X

    
= = =     
     

X X X  is drawn 

from the uniform distribution on the support set [ ] [ ]0,1 0,1× . Since the marginal 

distributions of the bivariate uniform distribution are independent and uniform on 

[ ]0,1 , 11 21, 1, , nX X X and 12 22, 2, , nX X X  can be generated by the univariate 

uniform distribution. Secondly, the coefficient of the G test,  
( ) ( )

( )( )

2
1 1

2 1
c d

c d

n n n

n n n n

+ − +
+ + +

 , is 

calculated by SAS. Then we sort the values of 11 21 1, , , nX X X  to obtain

( ) ( ) ( )1 1 2 1 1, , , nX X X and sort the values of 12 22 2, , , nX X X  to obtain

( ) ( ) ( )1 2 2 2 2, , , nX X X  . Finally, G value can be calculated by using the formula: 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

22
1 1

2 1 2 1 1 1 2 1 2 2
1 1

1 1 1
, , , .

2 1 1

n n
c d

n i i j j
i jc d

n n n
G X X X X

n n n n n

+ +

− −
= =

 + − +
= − − − 

+ + + +  
 X X X  

In this research, 100,000 replications are used. Then the 100,000 calculated G 

values are sorted in ascending order. Theoretically, the value of the 95,000th is treated as 

the 95th percentile. For more accuracy, the following formula is used to calculate the 

critical values at 95% confidence level: 

( ) ( )( )0.95* 0.95* 1

1 2

rep repG G
G α

+
−

+
=  

Here 0.05α =  is the significant level and rep is the number of replications. 
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The critical values of the bivariate G test are displayed in the Table 1. The first 

column in the table is the sample size (from 5 to 50). Columns 2 to 5 are the critical 

values for significant levels 0.10,0.05,0.025,0.01α = . In the table, the values are the G 

test critical value corresponding to the sample size and significant level. The critical 

values in this research are moderately small, so we keep five decimal places for all the 

values. 
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Table1: Critical values of G2 test statistic 

 

α=0.10 α=0.05 α=0.025 α=0.01

n G0.900 G0.950 G0.975 G0.990

5 0.05194 0.06722 0.083 0.10584
6 0.03355 0.04323 0.05385 0.06894
7 0.02321 0.02997 0.03695 0.04726
8 0.01676 0.02154 0.02678 0.0343
9 0.01256 0.0161 0.0199 0.02562

10 0.00973 0.0125 0.01525 0.01955
11 0.00773 0.00984 0.0121 0.01509
12 0.00618 0.0079 0.00972 0.01212
13 0.00515 0.00657 0.00802 0.01002
14 0.00426 0.0054 0.00657 0.00829
15 0.00359 0.00455 0.00552 0.00698
16 0.00308 0.00388 0.00468 0.00585
17 0.00265 0.00334 0.00404 0.00502
18 0.00231 0.00292 0.00356 0.00439
19 0.00201 0.00254 0.00308 0.00379
20 0.00177 0.00222 0.0027 0.00333
21 0.00158 0.002 0.00241 0.00298
22 0.0014 0.00176 0.00212 0.00262
23 0.00126 0.00158 0.00191 0.00236
24 0.00113 0.00141 0.00169 0.00211
25 0.00102 0.00127 0.00153 0.00188
26 0.00093 0.00116 0.00139 0.00171
27 0.00085 0.00106 0.00127 0.00156
28 0.00077 0.00096 0.00114 0.00139
29 0.00071 0.00088 0.00106 0.00129
30 0.00065 0.00081 0.00096 0.00117
31 0.0006 0.00074 0.00089 0.00108
32 0.00055 0.00069 0.00082 0.00099
33 0.00052 0.00064 0.00077 0.00094
34 0.00048 0.00059 0.0007 0.00085
35 0.00044 0.00055 0.00065 0.00079
36 0.00041 0.00051 0.00061 0.00075
37 0.00039 0.00048 0.00057 0.0007
38 0.00036 0.00045 0.00053 0.00064
39 0.00034 0.00042 0.0005 0.0006
40 0.00032 0.0004 0.00047 0.00057
41 0.0003 0.00037 0.00044 0.00053
42 0.00028 0.00035 0.00041 0.0005
43 0.00027 0.00033 0.00039 0.00047
44 0.00025 0.00031 0.00037 0.00044
45 0.00024 0.00029 0.00035 0.00041
46 0.00023 0.00028 0.00033 0.0004
47 0.00021 0.00026 0.00031 0.00037
48 0.0002 0.00025 0.00029 0.00035
49 0.00019 0.00024 0.00028 0.00034
50 0.00018 0.00022 0.00026 0.00032
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3.2 Power Study 

The power of a test is the probability of rejecting the null hypothesis when the null 

hypothesis is false. It means the power is the probability of making correct decision, so 

the power is desired to be as large as possible. The power of the test statistic mentioned 

in this research is  

( )( )2 1 2 1, , , n aP G G Hα−>X X X
,
 

where α is the significant level and aH is alternative hypothesis. 

Theoretically, the power of a statistical test depends on the sample size, the 

significant level and the sensitivity of the data. In this research we focus on the case that 

the sample size is less than or equal to 50. Significant level 0.10,0.05,0.01α =  and 

several alternative distributions are used in this power study.  

In this section, the performance of the ( )2 1 2, , , nG X X X  test is evaluated by the 

power study and the bivariate case of the ( )2 1 2, , , nG X X X  test is compared with 

other existing test statistics. Several alternative distributions are used to evaluate the 

performance of the ( )2 1 2, , , nG X X X  test proposed in this research. As mentioned 

before, the recent research results in the multivariate uniformity test found in the 

literature are the “discrepancy measures” tests proposed by Liang, Fang, Hichernell and 

Li (2001) and the Distance to Boundary test proposed by Berrendero, Cuevas and 

Vazquez-Grande (2006). Since the Distance to Boundary test is better than the 

“discrepancy measures” tests in many cases, the power of the ( )2 1 2, , , nG X X X  test 

is compared with the Distance to Boundary test proposed by Berrendero, Cuevas and 

Vazquez-Grande (2006). 
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Let 111 21
1 2

212 22

, , , n
n

n

XX X

XX X

    
= = =     
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X X X  be the observed sample points from 

the underlying population distribution in the support set [ ] [ ]0,1 0,1× . Let 

( ) ( ) ( )1 1 2 1 1, , , nX X X  be the ordered values of 11 21 1, , , nX X X , and let 

( ) ( ) ( )1 2 2 2 2, , , nX X X  be the ordered values of 12 22 2, , , nX X X . Then, the value of the 

( )2 1 2, , , nG X X X can be calculated by the test statistic formula. To test whether or not 

the underlying population distribution is a uniform distribution in the support set

[ ] [ ]0,1 0,1× , the null and alternative hypotheses are  

0 :H  The population distribution is a uniform distribution on [ ] [ ]0,1 0,1× , 

:aH  The population distribution is not uniform distribution on[ ] [ ]0,1 0,1× . 

If the value of test statistic ( )2 1 2, , , nG X X X is greater than 1G α− , the null 

hypothesis should be reject at the significant levelα . Otherwise, the null hypothesis is 

not rejected. Here, 1G α− is the critical value of the G test and can be found from the 

Table 1 corresponding to the different significant level. 

The Distance to Boundary test is proposed by Berrendero, Cuevas and 

Vazquez-Grande (2006). They define the distance from a point X to the boundary as

( , ) min{ :D X S x S x X∂ = ∈ ∂ − . They also define R as the maximum distance to the 

boundary which can be obtained in support S. Then, they get the relative distance from 

X to the boundary which is ( , ) /Y D X S R= ∂ . The test is based on the real variables

( , ) / , 1,i iY D X S R i n= ∂ =  . It is proved in the paper that if X is from the uniform 

distribution, the relative distance Y would follow the beta distribution with parameters 

1α =  and pβ =  (p is the number of dimension). Let ( )G y  be the distribution 
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function of Y and ( )nG y be the empirical distribution function associated with the 

sample. The test statistic is  

sup ( ) ( ) ,n
y

n G y H y−  

where H(y) is the distribution of Y under the null hypothesis.   

The null hypothesis assumes that the underlying distribution is the bivariate 

uniform distribution and the alternative hypothesis is that the underlying distribution is 

not the bivariate uniform distribution. As for the power study, two different models of 

the alternative distributions including beta distribution and meta-type uniform 

distribution are used. 

Monte Carlo simulation is used to find the power of the G test and the Distance to 

Boundary test. Sample sizes n=5,10,15,20,25,30,35,40,45,50 are selected to compare 

the power and the selected significant levels 0.10,0.05,0.01α = . Based on the principal 

of efficiency and accuracy, 100,000 replications are performed in simulation. 

The procedure for the power calculation is summarized as follows: 

1. Generate 111 21
1 2

212 22

, , , n
n

n

XX X

XX X

    
= = =     
     

X X X samples in the support set

[ ] [ ]0,1 0,1×  follow the alternative distribution. 

2. Let ( ) ( ) ( )1 1 2 1 1, , , nX X X be the ordered values of 11 21 1, , , nX X X , and let

( ) ( ) ( )1 2 2 2 2, , , nX X X be the ordered values of 12 22 2, , , nX X X . 

3. Calculate the value of the G test statistics. 

4. Compare the value of the test statistic with the critical value for specific 

significant level and determine whether the null hypothesis is rejected. 
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5. Repeat steps 1 to 4 for 100,000 times. 

6. Calculate the rejection rate which is the power for the G test. 

The power of the Distance to Boundary test can be obtained by performing the 

same procedure.  

In this research, three different models are chosen as the choice of the alternative 

distribution in power study. In the following subsections the alternative distributions 

are described and the performance of the two tests under different alternative 

distributions is compared. 

 

3.2.1 Beta Distribution 

The Beta distribution family is used by authors as an alternative distribution to 

conduct power study for univariate uniformity test. By choosing different shape 

parameter and scale parameter, it gives rich and flexible result in power comparison. 

The probability density function of the Beta distribution is displayed as follow: 

( )
( )

( ) ( ) ( ) 11x 1 x 0 x 1
f x

0 elsewhere

β−α− Γ α + β
− < <= Γ α Γ β




( )0, 0 .α β> >  

To derive an alternative distribution for k-dimensional case, let iY be random 

variable following ( , )i iBeta α β  distribution (i 1, 2, , k)=  . It is assumed that 

1 2 kY ,Y , ,Y  are independent. Then, the distribution of 1 2 k(Y , Y , ,Y )′=Y   can be 

treated as a k-dimensional alternative distribution. For convenience, such a distribution 

is called the k-dimensional distribution derived from 1 1( , )Beta α β  , 2 2( , )Beta α β  ,…, 
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( , )k kBeta α β  distributions. 

Alternative Distribution 1 

The bivariate distribution derived from Beta (5, 2) and Beta (5, 2). The variance of 

the marginal distribution is 0.629. 

Alternative Distribution 2 

The bivariate distribution derived from Beta (5, 1) and Beta (5, 1). The marginal 

distribution is a left-skewed Beta distribution and the variance of marginal distribution 

is 0.34. 

Alternative Distribution 3 

The bivariate distribution derived from Beta (0.5, 0.5) and Beta (0.5, 0.5). The 

marginal distribution is a symmetric Beta distribution and the variance of marginal 

distribution is 0.1667. 

Figures 1-3 show the power comparisons for the G test and the Distance to 

Boundary test in the condition that the alternative distributions are derived from 

1 1( , )Beta α β  and 2 2( , )Beta α β . Figure 1 shows that the G test is more powerful than 

the Distance to Boundary test if the marginal distribution is not symmetric and the 

variance is large. Figure 2 shows that the G test is more powerful when sample size is 

less than 25 and with the sample size increasing the power of two tests close to each 

other and almost close to 1. In this case, the marginal distribution is left–skewed and the 

variance is not large. Figure 3 shows that the power of the Distance to Boundary test is 

significantly large than the G test when the alternative distribution 3 is used which is 

marginal distribution is symmetric and the variance is small.   
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The symmetric situation is presented in the paper of Berrendero, Cuevas and 

Vazquez-Grande (2006). It has shown the power of Distance to Boundary is much high 

in this case. After changing the symmetric condition, the result seems different.  

 

3.2.2 Meta-type Uniform Distribution 

Meta-type uniform distribution is mentioned in the papers of Liang, Fang, 

Hichernell and Li (2001) and Berrendero, Cuevas and Vazquez-Grande (2006). They 

introduce this distribution for the power comparison. 

The basic idea for creating meta-type multivariate distribution is as follows. Let the 

random vector ( )1 2,X X ′=X have a distribution function ( )F X .It is defined that  

( )1 1F X  is the marginal distribution function of 1X and ( )2 2F X is the marginal 

distribution function of 2X . Then random vector Y as ( ) ( )( )1 1 2 2,F X F X ′=Y can be 

obtained. The new random vector Y has those properties: ( )1 1F X and ( )2 2F X  are 

uniform distributed in the support set [0, 1] and the joint distribution is different from 

the bivariate uniform distribution since ( )1 1F X  and ( )2 2F X  are not independent. 

This kind of multivariate distribution is easily generated by statistical software and is 

useful to check the multivariate uniform distribution. Specifically, two kinds of the 

meta-type uniform distributions are considered in power study. 

Alternative Distribution 4 

MNU (Meta Normal Uniform): obtained from bivariate normal distribution with 

[ ]0,0 ′=μ and
1 0.5

0.5 1

 
=  
 

Σ . For the consistence of comparison, the same parameters 
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are chosen as in the paper of Berrendero, Cuevas and Vazquez-Grande (2006). 

Alternative Distribution 5 

MTU (Meta T distribution Uniform): obtained from bivariate Student’s-t 

distribution with [ ]0,0 ′=μ ,
1 0.5

0.5 1

 
=  
 

Σ  and 5 degree of freedom. 

The power comparison results under meta-type uniform distribution are shown in 

the Figure 4 to 5. The G test is more powerful than Distance to Boundary test in each 

case. With the sample size increasing, the power of G test increase and the power of 

distance to boundary test still don’t change too much. Based on the paper of Liang, 

Fang, Hichernell and Li (2001), the G test is also powerful compare with the 

“discrepancy measures” tests. 

 

3.3.3 Dirichlet Distribution 

Dirichlet distribution is a family of continuous multivariate probability 

distributions with parameter vector α . It is the multivariate generalization of the beta 

distribution. In this research, the two dimensional Dirichlet distribution is used in 

power comparison. The probability density function of the two dimensional Dirichlet 

distribution is displayed as follow: 

( ) ( ) ( )
( ) ( ) ( ) ( )1 2 31 1 11 2 3

1 2 1 2 3 1 2 1 2
1 2 3

( , ; , , ) 1f x x x x x x
α α αα α α

α α α
α α α

− − −Γ Γ Γ
= − −

Γ + +
. 

for 1 2 1 20, 0,1 0x x x x> > − − > and 1 2 3, , 0α α α >  
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Alternative Distribution 6 

Choose ( )2, 2, 2 ′=α . This is the symmetrical Dirichlet distribution. 

Alternative Distribution 7 

Choose ( )3, 4, 9 ′=α . This is the nonsymmetrical Dirichlet distribution. 

Figures 6-7 show the power comparisons for the G test and the Distance to 

Boundary test in the condition that the alternative distribution is Drichlet distribution. 

The G test is more powerful than Distance to Boundary test in each case. One is 

symmetrical Dirichlet distribution and the other is nonsymmetrical Dirichlet 

distribution. 

 

3.2.4 Summary of the Power Comparison 

1. In i.i.d case which is the marginal distribution are independent and identical 

distributed, if the marginal of the Beta distribution is not symmetric and 

variance is high, the G test performs better than the Distance to Boundary test. 

2. In i.i.d case, if the marginal of the Beta distribution is left-skewed and variance 

is not high, the G test is more powerful than the Distance to Boundary test under 

the sample size of 25. When sample size goes over 25, two tests perform in 

same way. 

3. In i.i.d case, if the marginal of the Beta distribution is symmetric and the 

variance is low, the Distance to Boundary test performs much better than the G 

test. 

4.  For the meta-type uniform distribution, the G test has more power than the 
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Distance to Boundary test both in MNU and MTU cases. 

5. For the Dirichlet distribution, the G test has more power than the Distance to 

Boundary test especially in nonsymmetrical case. 

 

 
Figure 1. Power Comparison: Alternative Distribution 1 

The bivariate distribution derived from Beta (5, 2) and Beta (5, 2) 
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Figure 2. Power Comparison: Alternative Distribution 2  

The bivariate distribution derived from Beta (5, 1) and Beta (5, 1) 

 

 
Figure 3. Power Comparison: Alternative Distribution 3  

The bivariate distribution derived from Beta (0.5, 0.5) and Beta (0.5, 0.5) 
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Figure 4. Power Comparison: Alternative Distribution 4 

 Meta-type Uniform Distribution: MNU 

 

 
Figure 5. Power Comparison: Alternative Distribution 5 

 Meta-type Uniform Distribution: MTU 
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Figure 6. Power Comparison: Alternative Distribution 6 

Dirichlet distribution: Dir (2, 2, 2) 
 
 

 

Figure 7. Power Comparison: Alternative Distribution 7 
Dirichlet distribution: Dir (3, 4, 9) 
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4. CONCLUSION AND DISCUSSION 

In this research, a new multi-dimensional uniformity test is proposed. The basic 

idea is from the univariate uniformity test proposed by Chen and Ye (2009). The 

method is extended to the multi-dimensional case and the bivariate case is discussed in 

detail. The new test can be used to test whether an underlying multivariate probability 

distribution differs from a uniform distribution. The critical values of bivariate 

uniformity test are obtained and the power study is performed by comparing with the 

recently published multivariate uniformity test. 

On the basis of the central limit theorem, if the sample size is sufficiently large with 

finite mean and variance, the distribution of the sample points will be approximately 

normally distributed. In this research, we focus on the small sample study which is the 

case that the sample size is less than or equal to 50. 

The Distance to Boundary test is a recently published multivariate uniformity test 

by Berrendero, Cuevas and Vazquez-Grande (2006). The result of the power 

comparison shows that the test proposed in this research is more powerful than the 

Distance to Boundary test in some cases. Especially, when the marginal distribution of 

alternative distribution is not symmetric and all the marginal distributions are 

independent and identical distributed. The meta-type uniform distribution is introduced 

in this research. We generate the meta-type uniform distribution from normal 

distribution and student’s t distribution. The power study shows that new test is more 

powerful than Distance to the Boundary test in this case. The two dimensional Dirichlet 

Distribution is used as an alternative distribution. The G test has more power than the 
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Distance to Boundary test both in symmetrical case and nonsymmetrical case.  

Theoretically, we can generate the multivariate distribution under the condition 

that all the marginal distributions are independent and identical distributed. However, 

when random samples are drawn from a multivariate population distribution, the 

marginal distributions are usually dependent. Because of the inclusion of the term

( )
( )

1

1
c d

c d

n n

n n

− +
+ +

 in the bivariate case, the power of the modified test statistic will be raised 

significantly when the marginal distributions are not independent.  
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APPENDIX 

Tables 2-7: Power of G test and Distance to Boundary test 

The bivariate distribution derived from Beta (5, 2) and Beta (5, 2) 

sample 
Size 

DB test 
(α=0.10) 

G test 
(α=0.10)

DB test 
(α=0.05)

G test 
(α=0.05)

DB test 
(α=0.01) 

G test 
(α=0.01) 

5 0.4615 0.7024 0.3336 0.6036 0.132 0.3748 
10 0.6867 0.837 0.5505 0.7726 0.2806 0.6296 
15 0.8377 0.8867 0.7325 0.8472 0.4645 0.7519 
20 0.92 0.9174 0.8505 0.8876 0.6323 0.8224 
25 0.9628 0.9329 0.9239 0.9122 0.7609 0.864 
30 0.9837 0.9445 0.9622 0.9289 0.8544 0.8895 
35 0.993 0.954 0.9829 0.9388 0.9149 0.9086 
40 0.9968 0.9592 0.9919 0.9461 0.9516 0.9208 
45 0.9988 0.9643 0.9965 0.9542 0.973 0.9327 
50 0.9994 0.9682 0.9984 0.96 0.9874 0.9403 

 

The bivariate distribution derived from Beta (5, 1) and Beta (5, 1) 

sample 
Size 

DB test 
(α=0.10) 

G test 
(α=0.10)

DB test 
(α=0.05)

G test 
(α=0.05)

DB test 
(α=0.01) 

G test 
(α=0.01) 

5 0.0742 0.3429 0.0314 0.2259 0.0037 0.0766 
10 0.1553 0.5747 0.08 0.4657 0.0158 0.2659 
15 0.2347 0.6946 0.1307 0.6114 0.0319 0.437 
20 0.3088 0.7635 0.1847 0.6992 0.0505 0.5601 
25 0.3857 0.8059 0.2494 0.7552 0.0757 0.6437 
30 0.4602 0.8377 0.3069 0.7976 0.1025 0.7055 
35 0.5276 0.8592 0.3754 0.8255 0.1337 0.7467 
40 0.5892 0.8773 0.4299 0.8487 0.1664 0.7789 
45 0.6458 0.8915 0.4872 0.8649 0.2056 0.8052 
50 0.6996 0.9024 0.5527 0.8796 0.2506 0.8302 
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The bivariate distribution derived from Beta (0.5, 0.5) and Beta (0.5, 0.5) 

 
sample 

Size 

DB test 
(α=0.10) 

G test 
(α=0.10)

DB test 
(α=0.05)

G test 
(α=0.05)

DB test 
(α=0.01) 

G test 
(α=0.01) 

5 0.488 0.3203 0.3688 0.2158 0.1841 0.0865 
10 0.674 0.3223 0.5555 0.2226 0.3242 0.0926 
15 0.8152 0.3248 0.7177 0.2267 0.4904 0.0944 
20 0.898 0.3228 0.831 0.2289 0.6367 0.0978 
25 0.9458 0.3204 0.9036 0.2306 0.7535 0.1022 
30 0.9728 0.3219 0.9461 0.2333 0.8359 0.105 
35 0.9862 0.3253 0.9714 0.2314 0.8966 0.1052 
40 0.9935 0.3253 0.9843 0.2326 0.9359 0.1056 
45 0.997 0.3233 0.9919 0.2338 0.9621 0.1095 
50 0.9985 0.326 0.9963 0.2357 0.978 0.1085 

 

Meta-type uniform distribution: MNU 

sample 
Size 

DB test 
(α=0.10) 

G test 
(α=0.10)

DB test 
(α=0.05)

G test 
(α=0.05)

DB test 
(α=0.01) 

G test 
(α=0.01) 

5 0.0997 0.16196 0.05027 0.0914 0.00868 0.02374 
10 0.1065 0.29389 0.05476 0.17659 0.01098 0.05111 
15 0.1139 0.42999 0.05936 0.28619 0.01316 0.09358 
20 0.1162 0.56441 0.06017 0.39789 0.01388 0.1497 
25 0.119 0.67094 0.06461 0.50956 0.01455 0.21915 
30 0.1236 0.76164 0.06599 0.61473 0.01437 0.29748 
35 0.1284 0.83164 0.07084 0.70064 0.0162 0.37723 
40 0.1318 0.88216 0.07053 0.77079 0.01589 0.45411 
45 0.1327 0.91995 0.07232 0.83584 0.01747 0.54819 
50 0.1397 0.94617 0.07774 0.88545 0.01866 0.62383 
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Meta-type uniform distribution: MTU 

sample 
Size 

DB test 
(α=0.10) 

G test 
(α=0.10)

DB test 
(α=0.05)

G test 
(α=0.05)

DB test 
(α=0.01) 

G test 
(α=0.01) 

5 0.1038 0.17149 0.05187 0.09686 0.00937 0.02696 
10 0.1185 0.29977 0.06338 0.18476 0.0139 0.05605 
15 0.1304 0.43545 0.06915 0.29283 0.01674 0.09927 
20 0.1382 0.56048 0.07509 0.40396 0.02015 0.15653 
25 0.1447 0.66351 0.0825 0.51075 0.02078 0.22316 
30 0.1586 0.7505 0.08887 0.60855 0.02398 0.30418 
35 0.1648 0.81941 0.09691 0.69431 0.02582 0.38331 
40 0.1727 0.86871 0.10195 0.76063 0.02868 0.45699 
45 0.1811 0.9065 0.10786 0.8213 0.02977 0.54708 
50 0.1929 0.93458 0.11566 0.86891 0.03342 0.61896 

 

Dirichlet distribution: Dir (2, 2, 2) 

sample 
Size 

DB test 
(α=0.10) 

G test 
(α=0.10)

DB test 
(α=0.05)

G test 
(α=0.05)

DB test 
(α=0.01) 

G test 
(α=0.01) 

5 0.1228 0.2325 0.0561 0.1185 0.0061 0.0212 
10 0.3109 0.7070 0.1914 0.5644 0.0536 0.2553 
15 0.4717 0.9079 0.3216 0.8573 0.1143 0.6622 
20 0.5989 0.9676 0.4430 0.9514 0.1893 0.8866 
25 0.7026 0.9865 0.5592 0.9815 0.2761 0.9608 
30 0.7901 0.9944 0.6555 0.9923 0.3614 0.9862 
35 0.8510 0.9975 0.7439 0.9965 0.4487 0.9938 
40 0.8973 0.9989 0.8059 0.9986 0.5333 0.9977 
45 0.9277 0.9995 0.8570 0.9993 0.6096 0.9989 
50 0.9532 0.9999 0.8987 0.9997 0.6851 0.9994 
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Dirichlet distribution: Dir (3, 4, 9) 

sample 
Size 

DB test 
(α=0.10) 

G test 
(α=0.10)

DB test 
(α=0.05)

G test 
(α=0.05)

DB test 
(α=0.01) 

G test 
(α=0.01) 

5 0.040 0.762 0.012 0.643 0.001 0.372 
10 0.121 0.907 0.040 0.871 0.002 0.771 
15 0.273 0.956 0.108 0.939 0.009 0.896 
20 0.446 0.978 0.217 0.969 0.027 0.944 
25 0.618 0.987 0.357 0.980 0.057 0.966 
30 0.764 0.990 0.508 0.987 0.103 0.979 
35 0.865 0.993 0.657 0.991 0.176 0.987 
40 0.927 0.996 0.766 0.995 0.263 0.991 
45 0.965 0.997 0.850 0.996 0.364 0.994 
50 0.983 0.998 0.919 0.997 0.482 0.996 
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