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ABSTRACT OF THE THESIS

MEASURING IMPACTS OF NEEM OIL AND AMITRAZ ON VARROA
DESTRUCTOR AND APIS MELLIFERA IN DIFFERENT AGRICULTURAL
SYSTEMS OF SOUTH FLORIDA
by

Stephany Alvarez-Ventura

Florida International University, 2011
Miami, Florida
Professor Krish Jayachandran and Professor Mahadev Bhat, Major Professors

This thesis analyzes mixtures of neem oil and amitraz as alternative control for Varroa
destructor, a major pest of Apis mellifera, under different agricultural settings. In organic
and conventional farms, the different treatments were applied in colonies to determine
impacts on mite loss, colony strength, and honey yield. The results demonstrated neem to
have the least effective control on mite mortality, while the neem and amitraz mixture
had the most. Furthermore, no long term impacts on queen fecundity and colony strength
were noticed between treatments. However, queen fecundity and honey yield was
significantly higher in sites with higher flower abundance and diversity, demonstrating
higher colony strength in these sites. Further understanding of the relationship between
apiculture and agricultural management is vital for conservation of pollinator health and

associated habitats.
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I. Introduction

The decline of pollinators in recent decades is threatening the structure and
function of natural and agricultural ecosystems. Pollinators provide essential ecosystem
services by aiding plant and tree reproduction that require pollination assistance. Large
scale production of food crops in agricultural systems is in many cases, only possible
with the assistance of pollinators, primarily honeybees (USDA 2009). Recent declines in
many of these pollinators have been blamed on land-use changes, diseases, chemicals and
climate change (Mullin 2010). Honey bees are proving to be excellent indicators of the
state of an ecosystem: Not only do honey bees contribute significant economic values to
humans, but also the trapped information found in the form of honey, wax, and pollen can
provide information on impacts of xenobiotics in the surrounding environment (Devillers
and Pham-Delegue 2002).

Valued for the honey they make and pollination services they perform,
honeybees, Apis mallifera, are the most exploited of all pollinators. While honey
production is a 330 million dollar industry in the United States (US), their pollination
service brings in $15-20 billion in added crop value (USDA 2009). Produce such as
watermelons, berries, nuts (mainly almonds), and many other fruits and vegetables need
proper pollination in order to bear fruit and ensure larger yields. According to the United
States Department of Agriculture (USDA) about one third of the human diet comes from
pollinated crops, and the honeybee is responsible for 80% of that pollination. Managing
these bees, however, is proving to be much more difficult these days.

Managed colonies have declined by 50% in the last 50 years, in large part because

of the infestation of the Varroa mite, Varroa destructor (USDA et al. 2008). Controlling



this pest has become difficult because of rising costs of synthetic acaricides, along with
residue issues and developed resistance from the mites, which has led to great losses in
many colonies (USDA 2009). In addition to pests, the recent disappearance of significant
number of colonies worldwide, termed Colony Collapse Disorder (CCD), is directing
many beekeepers to leave the practice, which may affect agricultural production systems
and food prices (USDA 2009). Therefore, adaptive management approaches, such as the
2008 Farm Bill, are currently being formulated to improve pollinator habitat and function
in agricultural settings to protect honey bees and other pollinators. Likewise, beekeepers
are looking for alternative acaricides, such as essential oils, to control Varroa in light of
the large colony declines. My study focuses on reducing dependence on mite chemical
controls while touching on possible implications drawn from agricultural management.

My thesis analyzed mixtures of Neem oil and amitraz as alternative mite controls
under different agricultural settings. The first objective of this study is to determine Neem
alone or in conjunction with amitraz (a chemical insecticide) is most effective in
controlling mites without negatively impacting honey bees through the measurement
colony strength, honey yield and mite loss. Although it is hoped that neem will provide
sufficient control, it is hypothesized that the neem and amitraz (NA) mixture will be most
effective at controlling mite levels. However, impacts to the colony, particularly queen
production, are unknown. The purpose of using these substances is to find an effective
measure at controlling mite levels with essential oils in order for beekeepers discontinue
the increase of chemical applications to hives.

The second objective of this study is to determine how different agricultural

settings may influence colony health and response to acaricides applications. To measure



this, the experiment was carried out on two organic farms and two conventional farms.
The purpose of choosing several sites is to monitor possible impacts from agricultural
management on colony strength under these different treatments. Although queen
production was not expected to be different between sites, it was hypothesized that honey
yields, which demonstrate colony strength, would be different between organic farms and
conventional farms. Therefore, this study is significant in that it may demonstrate how
multiple stressors (mite populations as well as agricultural management) may be linked to
colony health and possibly, affect yields. My study will provide new information on
acaricide effectiveness, and will also demonstrate the relationship between site selection
and colony strength. The information gained on acaricide effectiveness can be used by
beekeepers to control Varroa mite, and the relationship between agriculture and
apiculture management may be useful in assisting the development of USDA’s pollinator

conservation programs’ initiatives.



II. Literature Review

Importance of studying honeybees and agricultural management

The loss of natural pollinators as a result of habitat loss and pesticide application
has forced farmers to depend on domesticated honey bees for pollination. While natural
habitats can provide full pollinator services, conventional agriculture clears these lands
and adds pesticide amendments for crop production, greatly reducing habitat availability
for pollinators and killing beneficial insects (Kremen et al. 2002). Honey bees are the
most efficient pollinators of 80% of the crops in the United States (USDA 2009), and
farmers prefer their services because they greatly improve crop yields, and can be
transported when pesticides are applied. Until native pollinators and their habitats can be
better protected or restored, we will continue to depend on managed honey bees. With
growing populations and demand for food products, honey bees are in high demand to
provide their honey and pollination services.

With honey bees and other pollinators in serious declines, it is imperative that we
understand how to improve their well being. While many pollinators can be used for
studying environmental impacts of agricultural management, honey bees are the best
qualified because not only can they trap dust particles, including bioavailable
contaminates, on their body hairs, but they can also provide clues to environmental state
through their honey, wax, and royal jelly (Devillers & Pham-Delegue 2002). The high
economic importance of these insects provides the political will to study what

environmental impacts seem to be affecting them.



Impacts of land use on honey bees and other pollinators must be considered to
reduce the current decline rates of these pollinators. The management of modern
pollinated-dependent agriculture is, many times, only effective in conjunction with
several honey bee colonies. For this reason, many farmers rent colonies in order to
pollinate their large monocultures. Habitat loss as a result of agriculture conversion
results in less diversity in food sources for pollinators. A study done in Yolo County,
California observed pollination by native bees in several agricultural management
regimes (organic versus conventional) and proximity to natural habitat (Kremen et al.
2002). The study observed that full pollination services can be met by native bees in
organic farms near natural habitat, including crops that require heavy pollination (e.g.,
watermelon). Every other farm, however, could not meet pollination requirements
because of reduced diversity and species abundance of pollinators (Kremen et al. 2002).
The authors noted that full pollination services provided by native bees would be
destroyed by continued degradation of natural habitat. Furthermore, it indicated that
farmers can become resilient to the current declines in managed hives by conserving and
restoring bee habitats through sustainable farming practices. The impact agricultural
management has on pollination services demonstrates the need to observe colonies in
agricultural sites in order to determine whether agricultural management, on the basis of
flower diversity and availability, influences colony strength. This information can
demonstrate that honey bees can serve as environmental indicators for agricultural
impacts on other pollinators and, as per the 2008 Farm Bill, assist in the formulation of

pollinator protection protocols in agricultural sites.



Apis mellifera

Apis mellifera falls under the cavity-nesting honey bee, subgenus Apis, which
originated in South/Southeast Asia. While some species of honeybees nest in single,
exposed combs, Apis mellifera make multiple combs, making them easily manageable
colonies. In the US, the only known honeybee ancestor, Apis nearctica, was recently
identified from a single 14-million-year old specimen in Nevada (Engel 2009). The
commercial honey bee (as it is now known) was introduced into the US more than 300
years ago. This particular species has been bred for their efficiency in honey production,
pollination services and overall docile disposition. While the native bee of North America
is the bumblebee (Bombus), their colonies are not as extensive as the honeybees, lasting
usually only a season, and therefore serve as poor honey producers. However, their
ability to pollinate at high latitudes and using the buzz pollination technique make
bumblebees more efficient at pollinating some crops, like green-house grown tomatoes
and peppers. There are also nonnative bees used in agriculture, like the Eurasian
leafcutter bee, which has been recently domesticated for its effectiveness in pollinating
alfalfa; still, 80% of commercial crops that require pollinators are pollinated by the
Western honey bee (USDA 2009).

A typical established honeybee colony is made up of one mated queen, 0-200
male drones, and 20-200 thousand small sterile female workers. The drones’ primary
function is mating with virgin queens. On the other hand, workers clean and rebuild the
hive, cap/uncap and tend larvae cells, gather nectar, pollen, and propolis, make honey,
and defend the colony. The queen can lay around 1500 eggs/day and can last up to two

years (depending on the spermatozoids). The queen communicates with colony members



through pheromone secretions that, among other functions, signal attacks on the colony
or promote swarming. Through their egg laying patterns, queens can indicate colony
strength and therefore adequate honey production and pollination services.

The life cycle of honeybees is different for each caste. The metamorphic process
of worker bees take 21 days and begin with fertilized eggs deposited at the bottom of a
cell. After three days, the egg hatches into a first-instar larva and is fed by nurse bees.
Throughout seven days in this stage, the first-instar larva grows through successive
molting stages. The brood is then sealed by the nurse bees to allow nine days of pupa
growth. The adult worker bee chews its way out its cell after spending one day as an
unemerged adult. Complete metamorphosis in drones is similar to workers; however it
takes 3 days longer to fully develop due to the larger size of the cell. Queens take only 16

days to develop from egg to adult as a result of the nutritious royal jelly feeding.

Varroa destructor

The Varroa mite is an external mite that can reproduce in honey bee colonies. The
Varroa mite attaches to the body of bees and sucks their hemolymph while transmitting
viruses, which ultimately weakens or kills the bees. The Varroa mite has become the
most serious of honey bee pests leading to declines in honey bee colonies, honey yields,
and crop pollination (USDA 2009). Although the Varroa mite was originally described as
Varroa jacobsoni in 1904, genotypic variation found in the mitochondrial DNA of the
western honey bees and North Asia’s Apis cerana gave rise to the new species, Varroa
destructor (Anderson and Trueman 2000). According to Anderson and Trueman (2000),

the 18 different haplotypes found explain bee susceptibility to the mite. On the basis of



their findings and other studies (Amrine et al. 1997; Anderson & Trueman 2000; Colin et
al. 1999; Vargas-Sarmiento 2000), it is assumed the mites in this study are Varroa
destructor.

The Varroa mite’s morphology and biology make it an excellent parasite of the
honey bee. The size of the female body is 1.0-1.8 mm long by 1.5-1.9mm wide and is
reddish dark brown in color, while the males are 0.7 mm by 7mm, and yellowish-gray in
color (Vargas-Sarmiento 2000). It is dorso-ventrally flatten with a transverse oval shape
which allows them to fit between the abdominal sternites of adult bees. The mites feed on
the honey bee’s hemolymph through their piercing and sucking mouthparts while
transmitting viruses such as deformed wing virus (DWV), acute bee paralysis virus
(APV), slow paralysis virus (SPV), and Israeli acute paralysis virus (IAPV) (USDA
2009).

The life cycle of the mite also aids the mite’s parasitism on the honey bee (Figure
1). A female mite can detach itself from a bee host or craw out of one cell and enter a
new cell just before it is capped. If the cocoon has not been spun, the female mite begins
feeding and lays her eggs. The first egg, which usually develops into a male, is laid after
60 hours of the cell being capped. Then, every 30 hours the mother lays an egg which
develops into a female; she can lay between 1-5 female eggs in total. The immature mites
feed on a wound which their mother opens on the developing bee. The eggs develop into
larvae and then into a pronymph within 60-65 hours, after which the pronymph develops
into a deutonymph and then into an adult. The process from egg to adult is 5-6 days for
males and 7-8 days for female. Once the adult bee emerges from the cell, immature

female mites will die but adult female mites will enter new cells and begin the



reproductive cycle again. Mite reproduction is more successful and preferred in drone
cells than worker cells because of the longer pre and post capping periods, larger cells,
higher protein content, and chemical composition of cuticle (Rosenkranz et al. 1993).

Figure 1: Honey bee and Varroa mite life cycle
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Diagram credit: “FAQs related to Varroa Mite” (from Biosecurity 2010)

The infestation of the Varroa destructor to the Apis mellifera brood is known as
varroatosis (Ball 1988). By feeding on the bee’s hemolymph, protein content and

hemocytes can be reduced up to 50% and 30% respectively, which leads to weight loss



and deformity in wings and limbs (Ball 1988). In addition, the viruses and other
pathogens the mites transmit aid in reducing the bee’s life span. Depending on the
climate, season and level of infestation, the health of a honey bee colony can deteriorate
within a few months’ time (Corniffe, personal communication; Downey and Winston
2001). Evidence of infestation can be seen by inspecting the colony and visibly seeing the

mites, or by observing deformity in wings or paralysis in the bees.

Methods of Controlling Varroa Mites

There are a variety of methods for controlling Varroa mite population in honey
bee colonies. These include: bottom board inserts, worker and drone comb traps,
chemical controls, and essential oils application. Bottom board inserts are boards
(cardboard, paper, or sticky material) inserted on top of the bottom boards with the
purpose of acting as a physical barrier between the bees and mites. These boards are
usually coated with Vaseline, cooking spray, or other sticky substance to trap the mites
and not allow them to re-infest the brood. Research has demonstrated this method to be
effective at slowing the population growth of the mites but insufficient at controlling
Varroa mites (Pettis and Shimanuki 1999). This research used bottom boards as a means
of measuring the effectiveness of the treatments issued by counting the fallen
morbid/dead mites on cooking spray coated board.

Worker and drone comb traps offer a different means of slowing mite population
growth. These traps work differently. Drone comb traps work by removing drone brood
but it is time consuming and may increase selection for worker brood preference;

therefore impractical for large scale beekeeping and cannot completely replace chemical

10



treatments (Delaplane 1997). Worker comb traps are different in that high temperatures
or formic acid is used. Worker comb traps are preferred over drone traps because they
can be used throughout the season and an infinite amount of brood can be used (Calis et

al. 1999).

Conventional Chemical Treatments

Controlling Varroa mites is especially complicated as the mites prefer sealed
brood during reproduction and are therefore protected from various treatments by the
hive (Hoppe et al., 1989). In order to control mite and other pest infestations, beekeepers
use a variety of chemical additives, primarily using the active acaricides
fluvalinate(Apistan ®) and coumaphos (Checkmite ®), which have been shown to leave
residues in over 95% of honey, wax, and propolis samples (Bogdanov et al. 1998, Mullin
et al. 2010). The use of the pyrethroid, fluvalinate, has also made the honey bees more
susceptible to pesticides sprayed on crops, such as bifenthrin, and block detoxification
mechanisms for some fungicides in bees (Pilling et al. 1995). Another study
demonstrated that the combinations of some pesticides can increase toxicity in honeybees
by 1,000 folds (Iwasa et al. 2004). This demonstrates a clear link between apiculture and
agricultural management that affects colony health. Moreover, because of the misuse of
the pesticides in many countries and states, including Florida, mites have developed
resistance. These concerns have led to beekeepers to turn to other methods of controlling

the mites.
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Amitraz

Amitraz, a triazapentadiene compound part of the amidine family, was a chemical
method approved for temporary use to control mites during the 1990s. Amitraz is
classified as a Class III (slightly toxic) under the EPA guidelines. It has been used as an
insecticide to control red spider mites, leaf miners, scale insects, and aphids, while on
animals it is used to control ticks, mites, lice and other animal pests (Thomson 1983,
Budavari 1989). Although Amitraz is lipophilic and can contaminate beeswax, it breaks
down rapidly and is therefore usually below detection levels (Bogdanov et al. 1998,
Smodis et al. 2010). While Amitraz was thought to be relatively non-toxic to bees
(Thomson 1983, Briggs 1992), miss-use and health concerns have made this chemical
illegal for use on honey bee colonies. Nevertheless, many beekeepers still use this
chemical because it is easy to apply and works extremely well (Corniffe, personal
communication). Lately, beekeepers have been increasing the application dosage (up to
3% mixture). Research has demonstrated Amitraz resistance in some colonies (Elzen et
al. 2000), so beekeepers are looking for ways to reduce their dependence on Amitraz
while still controlling for mites.

In order to reduce mite resistance and wean off amitraz, a mixture of amitraz and
essential oils has been proposed. Colin (1990) demonstrated that aerosol application of
water emulsions of 1 % thyme oil and 0.5 % sage oil with 0.25 % Amitraz solution
removed 99% of mites. However, mites have shown resistance to these low amitraz

levels but not to higher levels (Corniffe, personal communication).
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Essential Oils

Essential oils are a natural, safer alternative to chemical control measures.
Essential oils are highly volatile compounds that plants have evolved as a defense or
reproduction mechanism (Rohloff 1999). Their constituent hydrocarbons, terpenes and
phenylpropanes emit strong odors that attract insect pollinators while repelling
phytophagous insects (Imdorf et al. 1999). Depending on cultivation and climatic
conditions, plants develop different compositions of oil that determines its chemotype
(Imdorf et al 1999). The final chemical composition of the essential oil can also be
determined by extraction methods. They compare favorably to other mite treatments
because they degrade rapidly, are usually nontoxic to non-target species, and less
susceptible for insects developing resistance in comparison to other pesticides (Gerard et
al. 1997, Imdorf et al. 1999).

While more than 150 essential oils have been screened, few remain viable at
controlling mites without affecting honey bees (Imdorf et al. 1999). On the basis of a
collection of studies, Imdorf et al. (1999) favored wintergreen oil as an excellent mite
control measure (100% mortality within 48 hours) with an attractant, non-lethal response
by honeybees. Among the lethal results, onion, garlic, wormwood, thyme, oregano, and
peppermint all resulted in 100% mite mortality within 72 hours, but also produced high
bee mortality. Although thymol has shown to be toxic in both contact and respiration, and
has been demonstrated to increase aggressiveness, stimulate robbing and affect colony
development, it has become a leading mite control alternative under the name Apilife
VAR ® (Imdorf et al 1999, Mautz 1982). In South Florida, using essential oils treatments

can prove challenging. The higher temperatures rapidly releases the aroma trapped in the
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oil, which can agitate honey bees and may not provide long term protection against
Varroa (Corniffe, personal communication).
Neem

Neem oil is an essential oil that deserves a closer look. Neem oil comes from the
Indian neem tree, Azadirachta indica A. Juss. The medicinal values of the tree,
particularly its anti-bacterial, anti-parasitic, anti-fungal, anti-protozoal and anti-viral
properties, are commonly known in India. It is an approved natural pesticide for use on
organic farms because of their low environmental persistence and is considered non-toxic
to animals. Its main constituent, Azadirachtin, is thought to affect insects by ceasing
intestinal function or creating hormonal dysfunction. While neem oil has not been widely
studied for apiculture uses, the results vary with different studies. While one highly cited
study indicates negative impact on colony health (Melathopoulos 2000), other studies
state that by controlling multiple types of mites, neem oil can improve colony health. In
a field study in Canada, 10% neem oil sprayed provided between 50-80% reductions in
mite population, indicating possible uses for this oil in hive treatments (Melathopoulos
2000). However, Melathopoulos (2000) found that neem treatments caused a significant
loss of queens and may be acutely toxic to immature bees. Both Colin (1990) and
Melathopoulos (2000) found the oil to have a repellent effect on the bees and not useful
as a sugar patty1 additive. On the other hand, Allam et al. (2003) and Liu (1995) both
agree that low percentage of neem in patties can control other bee diseases (i.e.,
chalkbrood and Nosema) while controlling mites if the essential oil is evaporated. The
multiple mite controls can reduce the need for additional chemicals and may aid in

improved colony strength.

'Edible patties are made with shorting, sugar, and essential oils to control mite populations in honey

bees
14



II1. Methodology

Selection of Study Sites

Four sites were used: two organic farms and two conventional farms. The farm
sites were chosen because of relative similarities in farming practices (i.e., field crops and
fruit trees) and size of farm. The first organic farm (O1) is located close to 191 Street and
137th Avenue, Southwest Miami, FL. This 15 acre farm contains fruit trees and field
crops as well as high weed/wildflower availability. Neighboring site O1 is a conventional
plant nursery, a conventional tomato field and residential areas. The first conventional
farm (C1) was selected because of its relatively close proximity to the organic farm. The
conventional farm is located by 168 Street and SW 137 Avenue in Miami, FL. This 10
acre conventional farm contains a plantation of plantains with a smaller area for field
crops, such as tomatoes and squash, and limited weeds/wildflowers availability. Located
across six lanes of traffic is a pine rockland habitat with residential areas nearby. Sites 3
and 4 were located farther south in the Redlands area of Miami-Dade county. The second
organic farm (O2) is located by 184 Avenue SW 248th St, in Homestead, FL. This 5 acre
farm also contains fruit trees and a small area of field crops with wide weed/wildflower
availability. Neighboring this site is the Fruit and Spice Park as well as other farms and
nursery plantations that offer large flower availability. The second conventional farm
(C2) is located by 258 Street and SW 152 Ave, in Homestead FL. This 2.5 acre farm
consists of only field crops; however, farms of fruit trees border its fences with plant
nurseries nearby. The actual site has limited weed/wildflower availability but area overall

has a good abundance of these nectar sources.
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Figure 2: Site locations in Southwest Miami Dade.
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Preparation of essential oil and Amitraz mixtures

Forty-eight hives were used in this experiment with 12 colonies at each site. Three
colonies were used for each treatment type and three untreated hives served as control.
Two batches of the mite control mixtures (Table 1) were prepared to treat all the hives.

Table 1: Treatment preparations

Neem oil, (N) prepared by mixing 30 ml oil with canola oil (approximately 83ml)
to obtain 200 ml of solution.

Amitraz (A) prepared by mixing 12.5ml of 6.25%amitraz with canola oil
(approximately 187.5ml) to obtain 200 ml of solution.

Neem oil and prepared by mixing 30 ml oil with 12.5ml of amitraz canola oil
Amitraz (approximately 157.5ml) to obtain 200 ml of solution.
mixture (NA)
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Treatment Procedure

The treatment procedure was adapted from Allam et al. (2003), where each
experimental colony is treated once by placing one strip of thick cotton paper towel (13
in by 5 in, folded once) saturated with oils (15 ml) from the respective solutions. The
strip was placed on the top center of the brood box and remained during the treatment
period of 5 weeks. The treatments were prepared with canola oil as an additive.

After 5 weeks, sampling was repeated for all the hives. Based on the observed
results from the initial treatment, each hive was treated with the NA mixtures. Since the
NA mixture was the strongest of the treatments, it was an efficient means to determine
the true effectiveness of each of the treatments. By treating with the NA mixtures, the
mites that did not die during the first treatments would be captured by this second
treatment and therefore, the more mites captured the second time, the less effective the
initial treatment was.

It is important to note that statistical analysis could not be determined in this
second phase since the untreated hives could not remain untreated for the five weeks and
had to be treated two weeks after the initial treatment. This was because of the loss of two
hives that died. Since each hive is worth $3000 for a yearly production, the beekeeper did
not want to risk losing more hives by not treating them and therefore each untreated hive

was treated with one of the treatments by random selection.
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Sampling Procedure
Materials

The materials used in this experiment included: quart mason jar w/ modified lid (8
mesh screen), powdered sugar, tablespoon; white [mite] counting dish; cooking spray,
white cardboard, measuring cup (1/4 cup); beekeeping tools (hive tool, tweezers,
smoker), and beekeeping suit and veil.

Queen fecundity to measure colony strength

Queens play a vital role in the overall inclusive fitness of all colony members and
honey production (Corniffe 2010; Tarpy and Guilley 2004). Through pheromone releases
and egg laying patterns, a queen can guide her colony to thrive, starve, or absconding of
the hive. The brood area was observed to determine colony strength by observing queen’s
fecundity. Excellent queens (E) were those whose egg laying pattern took up greater than
85% of frame area; Good queens (G) lay eggs between 65-85%; Fair queens (F) between
40-65%, and Poor queens (P) lay eggs in less than 40% of frame surface area.

Measurement of mite levels

Many small scale beekeepers usually observe colonies for mite infestation levels
before determining treatment options. In order to measure the level of mites in the
colonies, samples were taken by adapting the Allam et al. (2003) method. While more
mites can be found in cells during the summer months, in the fall/winter more mites are
found on the live bees. However, Miami’s warm climate allows for year-long brood
rearing and therefore mites can be found in both groups. Therefore, although this method
was tedious, it provides an adequate representation of infestation levels for different

colony groups in addition to fallen mites due to the treatment. Treatment was selected for
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the month of December where brood rearing was expected to be lower and more mites
could be found on adult bees. The infestation levels were determined before treatment,
and at 5 weeks of treatment. The following data was recorded: number of live mites
found in ~70 live bees; number of mites in 10 cells worker and drone brood or in 20
worker cells if drone not available; and number of dead mites fallen during treatment.

Measuring the number of live mites found in ~70 live bees provides a good
indication of adult mite infestation. In order to collect the samples, first the colony was
opened to the brood cluster and one or more frames were selected and observed for brood
production. The bees were shaken from 1-3 brood frames into a 5 gallon bucket and 4
cup of bees were scooped and transferred into a mason jar, quickly covering with a lid.
After collecting all the samples, 1-2 heaping tablespoons of powdered sugar were added
to the bees in the sample jar. The jar was shaken vigorously for 1-2 minutes to distribute
the powdered sugar over the bees — if bees were not covered, more sugar was added. The
jar was inverted over a white dish and vigorously shaken and tapped to remove the mites
and sugar from jar. This was repeated about three times or until no more mites were
observed. The numbers of mites obtained were then recorded and the bees were then
released. Dr. Caron from the University of Delaware, and others have found this method
more effective, removing about 90% of live mites, when compared to the traditional
ethanol procedure that removes about 50% and destroys live bee samples (Schuler,
NIDA).

In order to obtain adequate infestation levels, samples of mites in brood were
needed. The number of mites in 10 cells worker and drone brood or in 20 worker cells (if

drone not available) were obtained for each hive before treatment and at 5 weeks of
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treatment. To obtain these mites, first the colony was opened to the brood cluster and one
or more frames were randomly selected. Then the cells were uncapped using tweezers
and the developing brood/drone was removed and placed on a petri dish for observation
of mites. The mites were then summed for each hive.

In order to measure the effectiveness of the treatments, dead mites were collected
three days after treatment. This was done by placing a white cardboard coated with
cooking spray underneath the colony. Sometimes, a machete was used to break up hard
wax under the hive. After three days of treatment, the cardboard was carefully removed
and the number of dead/morbid mites was counted.

Honey yield

It is known that there is a strong correlation between a colony’s strength and food
supply, and honey yield provides a good indication of this relationship (Jevtic et al.
2009). By measuring the total honey yield from each colony, we can determine whether
the sites had any influence on colony strength and whether the treatments had any long
term effects. The [almost] empty honey supers were weighed in early January (after the
treatment period). After five months the honey was ready to be harvested, so the weight
of the full supers was estimated based on type of super and known full weight of super.

Assessment of the efficacy levels
Similar to Allam et al. (2003), Girdani & Leporati (1989)’s equation was also used to test
the efficacy of the tested essential oil mixtures:
Rate of efficacy % = _No. of dead mites* x 100
Total No. of mites **

* Dropped mites due to treatment +natural mortality
** Dropped mites + no. of mites on ~70 live bees + no. of mites in 10 (or 20) brood cells
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Statistical analysis was determined using one-way ANOVA with a completely
randomized design. Generalized linear models were used because it allowed for nesting
of site and type of site (i.e., conventional vs. organic). A Bonferroni test was used to
compare different treatments to the untreated. A Shapiro-Wilk test was used to test for
normality. A maximum likelihood estimator was used to control for pre-treatment mite
samples within the population. Chi-square tests were used to demonstrate difference in
queen fecundity change between the treatments and sites. One-way ANOV As were used
to determine differences in honey weight for each site. Moreover, after the treatment
period of five weeks, all the hives were treated with the NA treatment to determine
whether the treatments were effective at capturing all the mites. Statistical analysis could
not be used because the untreated hives were treated during the 5 week treatment period

as a precautionary measure; therefore, qualitative observations were made.
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IV. Results

Assessment of the efficacy levels

The Girdani & Leporati assessment of the efficacy levels demonstrates the Neem
and Amitraz (NA) mixture to be most effective at controlling mite levels. To obtain the
rate of effectiveness at each site, the equation used the total number of dead mites on the
sticky board in the untreated hives of each site as natural mortality (see table 2). In
addition, data for each treatment type was totaled for each farm site. The average rate was
then calculated for each treatment type. Although the natural mortality of each site was
used, the untreated hives had an average mite mortality of 15%. Two of the untreated
hives in C1 containing large amounts of mites died. Although mites are usually to blame,
for this study we cannot conclude that mites were the primary cause of absconding the
hive, or if lack of resource availability, diseases, or Colony Collapse Disorder (CCD) also
influenced this phenomenon. As a result of this loss, all untreated hives were treated with
one of the treatment variables after data were collected but before the five weeks when
the second NA treatment was given.

The neem treatment was the least effective at killing the mites, despite its
similarity to amitraz treated hives with respect to pretreatment mite levels. In addition,
data for the dead mites on sticky board could not be obtained for C1 because the bees
chewed the sticky board. As a result of board consumption, the average rate of
effectiveness for neem was 46%; however not including C1 increases the effectiveness to

54%.
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Amitraz was more effective than neem at treating mites. With similar mite levels,
the amitraz treatment was almost twice as effective as the neem treatments. The average
rate of effectiveness for amitraz was 86%. However, C1 hives also seem to affect the
results of the equation because the hives chosen for this treatment had much fewer mites
than the untreated, therefore resulting in an efficacy rate of only 10% at this site. This
demonstrates that this equation may not be adequate in all cases and that Amitraz
effectiveness was probably higher.

The neem and amitraz mixture was most effective at treating mite levels in all
sites. The average rate of efficacy for NA was 96%. Possibly influencing this high
effectiveness is the high pretreatment mite levels in O1. Nevertheless, the mixture still
has a higher effectiveness than Amitraz (not including O1 still gives NA an efficacy rate
0f 93.67%). Although two of O1 hives contained productive queens, without treatment
these hives would have not survived the season (Corniffe, personal communication). The
high mite mortality in C2 hives treated with NA demonstrates its true effectiveness,
giving that very few pretreatment mite levels and exceptionally high mite mortality after

treatment.

23



Table 2: Rate of efficacy for each site and treatment type

Dead mites
Mites in live on sticky
Neem Mites in brood bees board Rate
o1 5 6 16 50%
C1 5 8 - -
02 5 9 21 55%
C2 7 7 30 56%
Totals 22 30 57* 46%*
*Results not collected due to bees chewing up sticky board
Dead mites
Mites in live  on sticky
Amitraz Mites in brood bees board Rate
o1 2 16 126 85%
C1 2 0 5 10%
02 3 1 92 93%
C2 9 17 187 84%
Totals 16 34 410 86%
Dead mites
Mites in live  on sticky
Neem&Amitraz  Mites in brood bees board Rate
01 24 66 1448 94%
C1 3 15 862 93%
02 4 1 59 88%
C2 5 615 97%
Totals 36 86 2984 96%
Dead mites
Mites in live  on sticky
Untreated Mites in brood bees board Rate
01 3 3 5 45%
C1 11 37 43 47%
02 2 9 3 21%
C2 7 9 39%
Totals 23 56 60 38%
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A one-way ANOVA was used to determine whether there was a

difference between initial mite infestations for the different sites and

treatments (Table 3 & 4). Both ANOV As demonstrated no significant

difference in initial mite levels between types of site or between hives selected

for treatments (F = 1.182, p = 0.327 for the treatment teste; F = 1.712, p =

0.134) for the site test, which demonstrates randomness in mite levels and

therefore strengthens observed results.

Table 3: Initial mite levels based on treatment type

Sum of Squares df Mean Square F Sig.
Between Groups 285.667 3 95.222 1.182 327
Within Groups 3544.000 44 80.545
Total 3829.667 47
Table 4: Initial mite levels based on site type

Sum of Squares df Mean Square F Sig.

Between Groups 882.667 7 126.095 1.712] 134
Within Groups 2947.000 40 73.675
Total 3829.667 47

A Shapiro-Wilk test demonstrated that the number of dead mites on sticky board
had a normal distribution. After running statistical analysis on, only NA treatments were
significant when compared to the untreated hives at a= .05 (Table 5). A Bonferroni test
was used for multiple comparisons and specifically, to compare each treatment to the
control group (i.e., untreated). The NA treatment was significantly different from all the

other treatments, while Neem, Amitraz, and the Untreated hives were all similar to each

other.
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Table 5: Multiple Comparison of dead mites in sticky board (after first treatment)

Bonferroni
o ,
Mean 95% Confidence Interval
Difference (I-| Std. Lower Upper

(1) First Treatment (J) First Treatment J) Error Sig. Bound Bound

Untreated Neem -417| 47.380 1.000 -131.32 130.49
Amitraz -29.000| 47.380 1.000 -159.90 101.90
Neem 15% and -243.500°| 47.380 .000 -374.40 -112.60
Amitraz 3.125%

Neem Untreated A417| 47.380 1.000 -130.49 131.32
Amitraz -28.583| 47.380 1.000 -159.49 102.32
Neem 15% and -243.083"| 47.380 .000 -373.99 -112.18
Amitraz 3.125%

Amitraz Untreated 29.000( 47.380 1.000 -101.90 159.90
Neem 28.583| 47.380 1.000 -102.32 159.49
Neem 15% and -214.500| 47.380 .000 -345.40 -83.60
Amitraz 3.125%

Neem 15% and Untreated 243500 47.380 .000 112.60 374.40

Amitraz 3.125% Neem 243.083°| 47.380]  .000 112.18 373.99
Amitraz 214.500°| 47.380 .000 83.60 345.40

The multiple factors present in the design, such as the nestedness of treatment
types within the type of site and the use of sampling data, required closer observation.
Therefore, several modifications were made to the ANOVA to confirm the results
obtained and to see if there were any differences among the type of site and treatments. In
order to understand whether the type of site had any impact on treatment effectiveness, a
generalized linear model was used to control for nestedness of treatment variables within
the type of site (Table 6).By grouping the types of sites together, we were able to see that

the all the treatments were slightly more effective in the organic sites, with NA showing
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the highest difference in effectiveness (B=7.373 for [NA] (conventional) and B=14.035
[NA] (Organic)). Also, a maximum likelihood estimator was used to control for
pretreatment mite samples within the population. The normality test was skewed at first,
but after a transformation of the square-root, the Akaike Information Criteria was
lowered and therefore mite mortality results became more normal. The Bonferroni test
demonstrated that mite mortality was not different among sites. The similar p values for
each treatment indicates that the site does not impact the effectiveness of the treatment
applied. Analysis of the multiple comparison of each of the treatment to the untreated at
both organic sites and conventional sites showed that both NA and A treatments were
significantly different from the untreated in both organic sites and conventional sites.
Amitraz treatments probably became significant because the sample size increased by 3

colonies when the type of sites were combined. Still, the NA treated group was about 1.5

Table 6: Comparison of treatments to untreated for organic and conventional sites

Std. 95% Wald Confidence Interval Hypothesis Test
Parameter B Error Lower Upper Wald Chi-Square| df Sig.
[NA] (conventional) 7.373| 1.8869 3.675 11.072 15.269 1 .000}
[A] (conventional ) 4.113] 1.7002 .780 7.445 5.851 1 .016
[N] (conventional) 1.010] 1.7172 -2.356 4.375 .346 1 .557
[Untreated] (conventional) 0?
[NA] (Organic) 14.035| 1.7400 10.624 17.445 65.060 1 .000
[A] (Organic) 4.518| 1.7492 1.090 7.946 6.672 1 .010
[N] (Organic) 1.838| 1.7495 -1.591 5.267 1.104 1 .293
[Untreated] (Organic) 0?
(Scale) 8.635°| 1.7627 5.788 12.884

a. Set to zero because this parameter is redundant.

b. Maximum likelihood estimate.
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times more effective at treating mites. This was evident from the coefficient B
which demonstrates this ratio.

In order to determine true effectiveness of the treatments, all hives were treated
with NA after 5 weeks of the initial treatments. Statistical analysis could not be
calculated because of the loss of the untreated group. However, results from the second
dosage of NA demonstrated Neem to be least effective (Figure 2). Mite count was higher
for neem treated groups, indicating that initial (Neem) treatment was not effective and
mite levels were increasing during the five weeks. Mite levels were controlled in both
the Amitraz and NA groups.

Figure 3: Count of mite mortality after different treatments
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Queen fecundity can provide information about the queen’s fertility, colony
strength, and possible treatment impacts. Northern states usually experience a decrease in
egg laying pattern during the winter months as a result of cold temperature and reduced

flower availability, and highest egg laying pattern during the summer. Although there
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was a cold front present during initial treatment measurements, the queens were still
producing new brood (Figure 3). The initial estimates showed that queen fecundity was
lowest in O1 and very similar in C1, O2, and C2. When queen fecundity was measured
after five weeks, the temperature was warmer. As expected, there was an increase in the
total number of Excellent queens and a reduction in Fair and Poor queens (Figure 5).
Queen fecundity increased in all the sites except C1, with C2 having the highest increase
(Figure 3). Per treatment type, there was an increase in the mean value of queen fecundity
in Neem and Amitraz treated groups, while a decrease in the untreated group (because of
the loss of two hives); no change was observed in the NA group (Figure 4). Chi-square
tests demonstrated no difference in queen fecundity change between the treatments or
sites. There was only a significant difference in queen fecundity change between C1 and
O2. This was because of C1 losing two hives and O2 showing improvement in queen
fecundity for all hives. Seven of the 48 hives experienced a decrease in queen fecundity,
four of which were in C1. Mites and poorly mated queens were the reasoning behind five
of the seven hives. Reasoning behind this reduction was not evident for CIN1, and
C2NAZ2; but both produced low and high honey yields respectively, thereby indicating a

possible relationship between colony health and site.
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Figure 5: Mean value of queen fecundity before treatment and after five weeks of

treatment
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between C1 and O3 in queen fecundity

Table 7: Chi-Square Test demonstrating difference
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Figure 7: Chi-square test showing difference
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Honey yield

Honey yield can provide a good measurement of food availability, thereby
demonstrating colony strength (Jevtic 2009). Weight of initial honey yield was taken by
weighing the supers after the treatment period (January), while final weight (after five
months) was taken by estimating known weight of full supers derived from the size of
supers and assuming the super was full. During initial observations, there was a much
higher incidence of honey robbing in C1 than the other sites. The hives in O2 and C2
were placed in their location two months before the experiment, while O1 and C1 hives
were placed only one month before beginning the experiment. Naturally, we expected O2
and C2 to have more winter honey stores than O1 and C1 (Figure 7). However, both
organic sites had significantly higher honey yield before and after five month (when the
honey was ready to be harvested) than C1. In addition, although C2 was not different
from the organic sites, it was also not different from C1. While C2 is a conventional site,
it is situated within the Homestead growing area with a diversity of nearby flower
sources. The larger flower availability and better protection from frost allowed for better

preparedness for winter and may have reduced treatment impacts.
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Figure 8: Total honey yield before treatment and after season (5 months)
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While O1 contained less honey than C2 initially, final honey harvest was higher.
Therefore, further analysis was done to determine differences in improvement of honey
weight for each site. The results demonstrated that O1 had the highest improvement;
however, it was not different from O2 and C2 (Figure 8). Site C1 demonstrated the least

improvement. The data coincides with visual observation of flower availability around

each site.
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Figure 9: Improvement in honey weight for each site
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Table 8: One-way ANOVA demonstrating differences in improvement of
honey by each site

Sum of Squares df Mean Square F Sig.
Between Groups 92030.277 3 30676.759 3.872 .015
Within Groups 348586.373 44 7922.418
Total 440616.650 47
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V. Discussion

Treatment Effectiveness

On the basis of the results, neem oil alone is not an effective alternative to
synthetic acaricides at controlling mite levels. In addition, aggressive chewing behavior
was noticed in the three neem treated hives in C1. One possible explanation for this could
be that the neem treated hives contain hygienic genes, which was somewhat noticed from
the cleanliness of the hive. The behavior may have also been provoked by food source
availability, observed by the flower abundance and subsequent low honey stores at this
site, which may have provoked starvation behavior. It could also indicate that neem
causes agitation in the bees. Earlier studies indicated neem to be somewhat effective at
controlling mite levels with some negative impacts on queen survival and developing
brood (Melathopoulos et al. 2000; Mordue and Blackwell 1993; Naumann and Isman
1996, Rembold et al. 1980). Other studies have shown no effects on bee development,
adult bee, or Varroa control (Bunsen J. 1991). The contradicting findings indicate the
need for further research on toxic components of neem, which may differ based on
cultivation growing climatic conditions, and extraction. Azadirachtin, a component of
neem, is thought to affect bee brood without impacting Varroa (Schenk 2001). It is
difficult to assess whether our 15% neem treatment contained azadirachtin since the
experiment demonstrated no significant difference in mite control between not treating
and treating with neem, yet no long term impact was observed on queen fecundity and
developing brood when treating with neem. However, short term impacts on developing

brood was not recorded because of cold fronts experienced during treatment period, so
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impact on brood cannot be concluded with full confidence. Nevertheless, brood rearing
increased in all of the neem treated hives, with CIN1 being the exception. Combination
of neem and other essential oils or natural substances may increase its effectiveness
against Varroa and should be further researched.

Amitraz proved to be a better acaricide with no noticed long term effect on colony
strength as well. When sample size included all the colonies and variables, amitraz
became significantly different from the untreated in treatment effectiveness (table 6).
Research has indicated mite resistance to amitraz in Minnesota and other areas (Elzen et
al. 2000; Milani 1999). However, on the basis of the results of this study, we can
conclude that mites in South Florida are not resistant to amitraz, but are showing signs of
increased tolerance'. While concerns on amitraz impact to honey bees is still reasonably
prevalent, this study demonstrated no long term impact to queen fecundity (Figure 4).
All hives treated with amitraz experienced improvement in brood rearing after five weeks
of treatment. A possible likelihood to this finding is that these hives were probably
treated with amitraz previously. Therefore, although amitraz was effectiveness, it should
still remain as a last resort, reactive approach.

As hypothesized, NA treatments were most effective at combating mite levels.
However, there was no long term difference in mite control between A and NA treated
groups. Lower pre-treatment mite levels in A treated groups could be the reasoning
behind this lack of long term difference. The NA treated groups did have a higher pre-
treatment mite levels, although this difference was not significant. If A treated colonies
contained a higher amount of mite infestation initially, the treatment might have shown a

higher level of effectiveness. There was also no long term impact on queen fecundity in

'Since Fluvinate resistance in Florida began, beekeepers in Florida have been slowly increasing their use of Amitraz to
combat mites.
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NA treated hives (Figure 4).Three of the hives treated with NA experienced reduced
queen fecundity after five weeks, while four improved and five remained equal in terms
of fecundity. It was confirmed that poor mating was the reasoning in reduced brood
rearing for one of these hives (CINA2). Hives OINA1, OINA2, and C1U2 contained the
most mites and although the queens in these hives were all good, mite persistence would
have resulted in reduced colony strength or mortality (as was the case with C1U2). The
large honey yield in both OINA1 and O1NA2 indicated that NA treatments did not
impact long term colony strength and may have actually improved it. Further studies
should consider taking lower dosage of this mixture as a possible therapeutic last resort

treatment.

Implications on queen fecundity

As previously mentioned, several studies have shown possible impacts of both
neem and amitraz to brood rearing, but this study demonstrated no long term impact on
queen fecundity. Overall, queen fecundity improved in all treatment types except the
untreated group (Figure 4), and there was an increase in total number of excellent queens,
with a decrease in poor, fair, and good queens, which also indicated overall improved
brood rearing (Figure 5). Moreover, all the sites showed increase in queen fecundity with
the exception of C1 (Figure 3). The significant difference between queen fecundity in the
conventional monoculture farm located closer to a residential area (C1) versus the
organic, highly diverse farm surrounded by other farms and natural habitat (02)
demonstrates a possible link between queen fecundity and flower availability. With

ample resources and protection from the cold, the queens in cites O1, O2, and C2 were
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able to continue brood production during the short Florida winter season. On the other
hand, short resource availability and possibly, lack of protection from the frost in C1,
may have influenced the reduced brood production. Furthermore, these multiple factors,
along with mite infestation and lack of treatment, may have led to the dying of C1U2 and
C1U3. The observations and results imply that long term effect of brood rearing is more
dependent on proper mating of queens, and resource availability and/or temperature may

also play a significant role.

Differences in agricultural management and honey production

This experiment examined a practical approach to treating mites. The random
selection of hives with various mite levels, as well as the method of treatment application,
was designed to be applicable to common practices of large scale beekeepers. Some large
scale beekeepers treat all of their hives because of the time consuming nature of checking
for mite levels, and to reduce the spread of mites between colonies. Other beekeepers
take an integrated pest management (IPM) approach by taking samples in order to
determine the necessary treatment measures. The latter approach should be the preferred
method but requires more observation and understanding of natural control measures.

One aspect is to consider the sites where their bees are situated. If the
agroecosystem is organic and diverse in flower abundance and diversity, there may be
natural elements that act as preventative strengths which can keep these pests within
acceptable bounds (Lewis et al. 1997). Particularly, diversity in flower sources can
provide necessary nutrients to increase colony strength. A study in Michigan State

University shows that transportation can have a negative impact on honey bee
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development and that lack of pollen nutrition affects longevity more so than infections of
Nosema ceranae (Huang 2008). In addition to these stresses, many beekeepers feed
supplements to their honeybees in the form of sucrose and high fructose corn syrup
because of the limited flowering time and diversity found in monocultures, which leads to
a poor diet. While chemically similar, the implication of feeding these sugars on bee
behavior is poorly studied. Huang’s study also indicated that worker bees fed corn syrup
experienced significant negative impacts on their longevity. Another study produced by
Huang also demonstrated that nutrition affects long-term behavior patterns and foraging
efficiency, which was also observed in C1 (Schulz et al. 1998).

Although the organic sites demonstrate higher colony strength than C2 in terms of
honey yield, the role of pesticide and colony strength could not be assessed in this study.
Additional research is needed to better understand the relationship between organic and
conventional management and colony strength as the sites in this study are quite small
compared to other farms in other states. Sites O1, O2, and C2, which all contained higher
flower abundance and diversity than C1, produced similar honey yield, with O1 and O2
producing significantly higher amount of honey than C1. Although C2 was not
significantly different from the organic sites, it was also not different from C1. My study
does indicate that farms with multiple crops and sustainable practices can improve the
resilience of pollinator survivorship by providing abundance resources. For example,
both OINA2' and C1U2? contained good brood rearing patterns and similarly high level
of mites, yet C1U2 died while OINA2 produced one of the highest honey yields,
demonstrating the multiple factors affecting long term colony strength. Although honey
production was highest in both organic farms, the results demonstrated that sites with

'OINA2 was in a resource abundant site and treated
2C1U2 was in a resource limited site and was not treated
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highest resource availability and/or abundance play a stronger role than the type of site in
colony strength.

In addition, medicating your bees as a protective measure can actually diminish
the effectiveness of medication when you absolutely, positively need it. Also, the mites
can build a resistance when medications are used too frequently. While it would have
been interesting to measure this effect in our untreated colonies, concerns by the
beekeeper that more hives would die forced treatment when samples still indicated low
mite levels in these colonies. This indicates a need for beekeepers to shift from their
practices from a reactive approach to proactive measures and not treat unless necessary.

While this approach is sustainable in the long run, it may not be practical at the
moment for some colonies and transition may be necessary. When conventional farms
turn organic, there is a period of withdraw and time is required for the system to develop
inherent strengths to reach stability. Similarly, if treatments are ceased completely, some
colonies may not contain the inherent strengths to fight the mites and related diseases. A
combination of stable environments, along with transitioning treatments may allow the
colonies to build up sufficient strength while still controlling mite levels. Therefore,
beekeepers already using Amitraz could try supplementing with essential oil mixtures to
wean off this chemical and should place their hives in nutrient diverse, stable
environments. This combination of proactive and reactive approaches can lead to

improved wellbeing of colonies and sustainable management of mites.
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VI. Conclusion

Controlling mite levels in colonies is imperative to improving the well being of
honey bees. While essential oils have been demonstrated to be effective measures in the
past, this study demonstrated neem as an ineffective treatment in colonies that have been
previously treated with other acaricides. Using either amitraz or a mixture of neem and
amitraz demonstrated control of mite levels over a period of five weeks, with the NA
mixture providing the highest effectiveness. Although no long term impact was observed
to brood rearing and colony strength, it is still not recommended to use amitraz on
colonies. Consequently, beekeepers already using this chemical should consider reducing
dosage level of amitraz by mixing with neem or other essential oil in order to slowly
reduce applications of this chemical. On the basis of the results of this experiment, where
a significant difference in queen fecundity and honey production (demonstrating colony
health) was met not by the type of farm but rather the proximity to flower sources and
reduced land use change, it can be inferred that flower abundance and/or diversity may
play an important role on the wellbeing of the colony. Similar to Kremen et al. (2002),
the organic site closest to a natural habitat demonstrated highest honey production and
queen fecundity, signifying that land management practices affect pollinator wellbeing.
Therefore beekeepers should also take proactive steps to address long term sustainable
management of mites by providing stable, flower abundant agroecosystems that can
increase their colonies’ inherent strengths.

My study adds to the growing body of knowledge by demonstrating that using

essential oil/chemical mixtures may be used to control mites when commercially
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available treatments are no longer effective. As the pollinator crisis continues, we must
seek proactive approaches for farm and pollinator management. By shifting our paradigm
to better understanding the natural process in these systems, we can allow natural
regulators to maintain sustainable control of pests and use therapeutic measurements as
last resort supports. On the basis of the results, the USDA pollinator protection program
should provide monetary incentives to farms that provide large abundance/diversity of
flower sources for extended periods of time. In addition, the program’s goal will not
benefit as much from large farms that practice monoculture. Furthermore, farms with
high pesticide application and Bt crop production should be highly evaluated before
receiving subsidies for this program due to their known effects on pollinators (Aliouane
et al. 2000; Decourtye et al. 2004; Decourtye et al. 2005; Devillers & Pham-Delegue
2002; Iwasal et al. 2004; Mullin 2010; Schmuck et al. 2001; Villa et al. 2000; Waller et
al. 1984). It is important to continue using honeybees in experiments to monitor
environmental state and to develop sustainable methods of management so that we may

reverse the decline of these ecosystem supporters.
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