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ABSTRACT OF THE THESIS

INFERENCE ABOUT RELIABILITY PARAMETER WITH UNDERLYING

GAMMA AND EXPONENTIAL DISTRIBUTION

by

Zeyi Wang

Florida International University, 2011

Miami, Florida

Professor Jie Mi, Major Professor

The statistical inference about the reliability parameter R involving indepen-

dent gamma stress and exponential strength is considered. Assuming the shape pa-

rameter of gamma is a known arbitrary real number and the scale parameters of

gamma and exponential are unknown, the UMVUE and MLE of R are obtained. A

pivot is proposed. Some inference about R derived from this pivot is presented. It

will be shown that the pivot can be used for testing hypothesis and constructing con-

fidence interval. A procedure of constructing the confidence interval for R is derived.

The performances of the UMVUE and MLE are compared numerically based on ex-

tensive Monte Carlo simulation. Simulation studies indicate that the performance of

the two estimators is about the same. The MLE is preferred because of the simplicity

of its computation.

Keywords: Stress-Strength, Exponential Distribution, Gamma Distribution, UMVUE,

MLE, MSE, Pivot, Bias.
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1. Introduction

Extensive research has been conducted on the stress-strength model. This

model involves two independent random variables X and Y , and the parameter of

interest is the probability R ≡ P (X ≥ Y ). This function has attracted a great

deal of attention in the literature because of its wide applications. Naturally, from

the engineering point of view X and Y can represent the strength of a structure

and the stress imposed on it. With this interpretation the probablility R is often

called the reliability parameter which will be used in this article. In addition to

its applications in engineering, stress-strength model is also applied in many other

fields. For example, in a medical application let X represent the response for a control

group and Y represent the response for a treatment group (Simonoff, Hochberg, and

Reiser (1986); Hauck, Hyslop, and Anderson (2000)). In this case the probability

P (X ≥ Y ) measures the effect of the treatment. The probability R ≡ P (X ≥ Y ) can

also be used for bioequivalence assessment (Wellek (1993)). It is frequently used to

assess the effectiveness of diagnostic markers in distinguishing between diseased and

healthy individuals (Reiser (2000)). In biology, this probability is useful in estimating

heritability of a generic trait (Schwarz and Wearen (1959)).

An extensive review of this model is presented in Kotz, Lumelsdii, and Pensky

(2003). The most recent work on the topic was published by Saracoglu and Kaya

(2007), Krishnamoorthy, Mukherjee, and Guo (2007), Baklizi (2008a, b), Eryilmaz

(2008a, b, c; 2010), Kundu and Raqab (2009), Rezaei, Tahmasbi, and Mahmoodi

(2010) and the references therein.
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In the literature, various distributions of X and Y are considered which in-

clude exponential, normal, Weibull, etc. Krishnamoorthy et al. (2007) gave the test

and interval estimation procedures derived from the generalized variable approach for

two-parameter exponential case when both the location and scale parameters are un-

known. Baklizi (2008a, b) derived estimators and confidence intervals by considering

both one and two-parameter exponential cases with record values and lower record

values. Constantine, Karson, and Tse (1986) considered the case when both X and

Y have gamma distributions. It was assumed there that the two scale parameters are

unknown but the two shape parameters are known integers. Under these assumptions

they derived UMVUE and MLE of R and obtained exact interval estimation of R.

In this article we will study the same model while X has exponential distribu-

tion and Y has gamma distribution. It is assumed that the shape parameter of the

gamma distribution is known, however it can be any positive real number and is not

restricted to be an integer. The thesis is organized as follows. The MLE and UMVUE

of R are derived in Section 2. A pivotal quantity is presented in Section 3. Some

inference about R derived from this pivot will also be shown in Section 3. It has been

discovered that the pivot can be used for testing hypothesis, and the rejection region

are obtained accordingly. A procedure of constructing the confidence intervals for R

is derived. In section 4, I present results of numerical studies based on Monte Carlo

simulations. It is observed numerically that even though the MLE of R is biased, it is

superior to the UMVUE for its MSE is about the same as that of the UMVUE, and

is actually smaller most the time, and furthermore its computation is much easier.
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2. Point Estimation of Reliability Parameter

Let the random strength X have exponential distribution with probability

density function

fX(x) = λe−λx, x > 0

and the random stress Y have gamma distribution with probability density function

fY (y) =
τ γ

Γ(γ)
yγ−1e−τy, y > 0

where the shape parameter γ is known but the scale parameters λ and τ are unknown.

Our quantity of interest is the reliability parameter R defined as

R = P (X > Y ).

Suppose that X = {X1, ..., Xm} is a simple random sample from the strength pop-

ulation and Y = {Y1, ..., Yn} is a simple random sample from the stress population,

where m and n do not have to be the same.

In this section we will first derive the uniformly minimum variance unbiased

estimator (UMVUE) of R. Then we will derive the maximum likelihood estimator

(MLE) of R.
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Theorem 1. The UMVUE of R based on sample {X1, ..., Xm} and {Y1, ..., Yn} is

given by

R̃ =



1∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B
(
γ,(n−1)γ

) · tγ−1(1− t)(n−1)γ−1dt)ds,
if u =

m∑
i=1

xi ≤
n∑
j=1

yj = v

v/u∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B
(
γ,(n−1)γ

)tγ−1(1− t)(n−1)γ−1dt)ds
+ (1− v

u
)m−1, if u =

m∑
i=1

xi >
n∑
j=1

yj = v.

Proof. Obviously the indicator function

I(X1 > Y1) =

 1, if X1 > Y1,

0, if X1 ≤ Y1.

is an unbiased estimator of R. Moreover, (U, V ) is the sufficient and complete statis-

tic, where U =
m∑
i=1

Xi and V =
n∑
j=1

Yj. Hence, according to the Blackwell-Rao and

Lehmann-Scheffe Theorem E
(
I(X1 > Y1)

∣∣U, V ) = P (X1 > Y1
∣∣U, V ) is the unique

UMVUE of R.

In order to find P (X1 > Y1
∣∣U, V ) we need to derive the conditional distribution

of X1 given U = u and the conditional distribution of Y1 given V = v. By using the

routine way of multivariate change of variables it can be shown that the conditional

probability density function (pdf) of X1 given U = u is

fX1|U(x|u) =
m− 1

u
(1− x

u
)m−2, 0 < x < u <∞;

and the conditional pdf of Y1 given V = v is

fY1|V (y|v) =
Γ(nγ)

Γ(γ)Γ
(
(n− 1)γ

) · yγ−1
vγ

(1− y

v
)(n−1)γ−1

4



=
1

B
(
γ, (n− 1)γ

) · yγ−1
vγ

(1− y

v
)(n−1)γ−1, 0 < y < v <∞.

Here B(a, b) is the beta function, i.e.,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

.

Thus, the desired UMVUE R̃ is given by

R̃ = P (X1 > Y1
∣∣U = u, V = v)

=

∞∫
0

∞∫
0

I(x > y)fX1|U(x|u)fY1|V (y|v)dxdy

=

∞∫
0

∞∫
0

I(y < v)

B
(
γ, (n− 1)γ

) · yγ−1
vγ

(1− y

v
)(n−1)γ−1 · (m− 1)I(x < u)I(y < x)

u

·(1− x

u
)m−2dxdy

=

∞∫
0

∞∫
0

(m− 1)I(x < u)

u
(1− x

u
)m−2 ·

I
(
y < min{x, v}

)
B
(
γ, (n− 1)γ

) · y
γ−1

vγ
(1− y

v
)(n−1)γ−1

dxdy

=

u∫
0

m− 1

u
(1− x

u
)m−2

( min{x, v}∫
0

1

B
(
γ, (n− 1)γ

) · yγ−1
vγ

(1− y

v
)(n−1)γ−1dy

)
dx

=

u∫
0

m− 1

u
(1− x

u
)m−2

( min{x, v}∫
0

1

B
(
γ, (n− 1)γ

) · (y
v

)γ−1(1− y

v
)(n−1)γ−1d

y

v

)
dx. (1)

In the following let us consider two cases:

Case 1: u ≤ v.

In this case x ≤ u implies x ≤ u ≤ v and min(x, v) = x. Let t = y/v and

5



s = x/u, then from (1)

R̃ =

u∫
0

m− 1

u
(1− x

u
)m−2

( x∫
0

1

B
(
γ, (n− 1)γ

)(
y

v
)γ−1(1− y

v
)(n−1)γ−1d

y

v

)
dx

=

u∫
0

m− 1

u
(1− x

u
)m−2

( x/v∫
0

1

B
(
γ, (n− 1)γ

) · tγ−1(1− t)(n−1)γ−1dt)dx
=

1∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B
(
γ, (n− 1)γ

) · tγ−1(1− t)(n−1)γ−1dt)ds. (2)

Case 2: u > v.

We express the integral in (1) as the sum of two other integrals as follows

R̃ =

v∫
0

+

u∫
v

m− 1

u
(1− x

u
)m−2

( min{x, v}∫
0

1

B
(
γ, (n− 1)γ

) ·(y
v

)γ−1(1− y
v

)(n−1)γ−1d
y

v

)
dx

Note that on the interval (0, v) we have x ≤ v and so min{x, v} = x, and on the

interval (v, u) it holds that x ≥ v and consequently min{x, v} = v. From these

observations we see that

R̃ =

v∫
0

m− 1

u
(1− x

u
)m−2

( x∫
0

1

B
(
γ, (n− 1)γ

) · (y
v

)γ−1(1− y

v
)(n−1)γ−1d

y

v

)
dx

+

u∫
v

m− 1

u
(1− x

u
)m−2

( v∫
0

1

B
(
γ, (n− 1)γ

) · (y
v

)γ−1(1− y

v
)(n−1)γ−1d

y

v

)
dx

=

v∫
0

m− 1

u
(1− x

u
)m−2

( x/v∫
0

1

B
(
γ, (n− 1)γ

) · tγ−1(1− t)(n−1)γ−1dt)dx
+

u∫
v

m− 1

u
(1− x

u
)m−2

( 1∫
0

1

B
(
γ, (n− 1)γ

) · tγ−1(1− t)(n−1)γ−1dt)dx
6



=

v/u∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B
(
γ, (n− 1)γ

) · tγ−1(1− t)(n−1)γ−1dt)ds
+

u∫
v

m− 1

u
(1− x

u
)m−2dx

=

v/u∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B
(
γ, (n− 1)γ

) · tγ−1(1− t)(n−1)γ−1dt)ds
+

1∫
v/u

(m− 1)(1− s)m−2ds

=

v/u∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B
(
γ, (n− 1)γ

) · tγ−1(1− t)(n−1)γ−1dt)ds
+(1− v

u
)m−1. (3)

Finally, from (2) and (3) we obtain the desired result.

The expression of R̃ given in Theorem 1 is complicated because the known

shape parameter γ can be any positive real number. However, in the case when γ is

an integer, then simple expression for R̃ can be obtained as follows.

Theorem 2. Suppose that the shape parameter γ is a known integer. Then it follows

that

R̃ =



m−1
B
(
γ,(n−1)γ

) (n−1)γ−1∑
j=0

(
(n−1)γ−1

j

) (−1)(n−1)γ−1−jB
(
nγ−j, m−1

)
nγ−j−1

·(u
v
)nγ−j−1, if u =

m∑
i=1

xi ≤
n∑
j=1

yj = v

m−1
B
(
γ,(n−1)γ

) m−2∑
i=0

(n−1)γ−1∑
j=0

(
m−2
i

)(
(n−1)γ−1

j

) (−1)(n−1)γ−j+m−i−3

(nγ−j−1)(nγ−j+m−i−2)

·( v
u
)m−i−1 + (1− v

u
)m−1, if u =

m∑
i=1

xi >
n∑
j=1

yj = v

7



Proof. For the case of u =
m∑
i=1

Xi ≤
n∑
j=1

Yj = v, according to Theorem 1 the UMVUE

R̃ is given as

R̃ =

1∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B
(
γ, (n− 1)γ

) · tγ−1(1− t)(n−1)γ−1dt)ds
=

1∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B
(
γ, (n− 1)γ

) · tγ−1 (n−1)γ−1∑
j=0

(
(n− 1)γ − 1

j

)

(−t)(n−1)γ−1−jdt
)
ds

=

1∫
0

(m− 1)(1− s)m−2

B
(
γ, (n− 1)γ

) (n−1)γ−1∑
j=0

(
(n− 1)γ − 1

j

)
(−1)(n−1)γ−1−j

·
( us/v∫

0

tnγ−j−2dt

)
ds

=

1∫
0

(m− 1)(1− s)m−2

B
(
γ, (n− 1)γ

) (n−1)γ−1∑
j=0

(−1)(n−1)γ−1−j
(

(n− 1)γ − 1

j

)
1

nγ − j − 1

·(us
v

)nγ−j−1ds

=
m− 1

B
(
γ, (n− 1)γ

) (n−1)γ−1∑
j=0

(
(n− 1)γ − 1

j

)
(−1)(n−1)γ−1−j

nγ − j − 1
(
u

v
)nγ−j−1

·
1∫

0

snγ−j−1(1− s)m−2ds

=
m− 1

B
(
γ, (n− 1)γ

) (n−1)γ−1∑
j=0

(
(n− 1)γ − 1

j

)
(−1)(n−1)γ−1−jB

(
nγ − j, m− 1

)
nγ − j − 1

·(u
v

)nγ−j−1

On the other hand, if u > v, then

R̃ =

v/u∫
0

(m− 1)(1− s)m−2
( us/v∫

0

1

B(γ, (n− 1)γ)
tγ−1(1− t)(n−1)γ−1dt

)
dt

+(1− v

u
)m−1

8



=
m− 1

B
(
γ, (n− 1)γ

) (n−1)γ−1∑
j=0

(
(n− 1)γ − 1

j

)
(−1)(n−1)γ−j−1

nγ − j − 1
(
u

v
)nγ−j−1

·
v/u∫
0

snγ−j−1(1− s)m−2ds+ (1− v

u
)m−1

=
m− 1

B
(
γ, (n− 1)γ

) (n−1)γ−1∑
j=0

(
(n− 1)γ − 1

j

)
(−1)(n−1)γ−j−1

nγ − j − 1
(
u

v
)nγ−j−1

·
m−2∑
i=0

(
m− 2

i

)
(−1)m−2−i

v/u∫
0

snγ−j+m−i−3ds+ (1− v

u
)m−1

=
m− 1

B
(
γ, (n− 1)γ

) (n−1)γ−1∑
j=0

(
(n− 1)γ − 1

j

)
(−1)(n−1)γ−j−1

nγ − j − 1
(
u

v
)nγ−j−1

·
m−2∑
i=0

(
m− 2

i

)
(−1)m−2−i

nγ − j +m− i− 2
(
v

u
)nγ−j+m−i−2 + (1− v

u
)m−1

=
m− 1

B
(
γ, (n− 1)γ

) m−2∑
i=0

(n−1)γ−1∑
j=0

(
m− 2

i

)(
(n− 1)γ − 1

j

)

· (−1)(n−1)γ−j+m−i−3

(nγ − j − 1)(nγ − j +m− i− 2)
(
v

u
)m−i−1 + (1− v

u
)m−1

Therefore, the desired result follows.

To derive the MLE R̂ of R we need to derive the closed-form formula of R.

Theorem 3. The reliability parameter R is given as

R = (
τ

λ+ τ
)γ.

Proof. The reliability parameter R is given by R = P (X > Y ). By conditioning on

Y we have

R =

∞∫
0

P (X > y)fY (y)dy

9



=

∞∫
0

e−λy · τ γ

Γ(γ)
yγ−1e−τydy

= τ γ
∞∫
0

1

Γ(γ)
yγ−1e−(λ+τ)ydy

=
τ γ

(λ+ τ)γ

∞∫
0

(λ+ τ)γ

Γ(γ)
yγ−1e−(λ+τ)ydy

= (
τ

λ+ τ
)γ

So, the result follows.

With the help of Theorem 3 the MLE of R is readily available.

Theorem 4. The MLE R̂ of R is given as

R̂ = (
γX̄

Ȳ + γX̄
)γ. (4)

Proof. It is easy to see that the MLEs of λ and τ are

λ̂ =
1

X̄
and τ̂ =

γ

Ȳ

respectively where

X̄ =

m∑
i=1

Xi

m
and Ȳ =

n∑
j=1

Yj

n
.

Because of the invariance property of MLE we immediately obtain

R̂ = (
τ̂

λ̂+ τ̂
)γ =

( γ/Ȳ

(1/X̄) + (γ/Ȳ )

)γ
= (

γX̄

Ȳ + γX̄
)γ.

Thus, the desired result follows.

10



3. Inference about R Based on Pivot

We will keep the same notation used in the previous section. For example, the

MLE of λ is λ̂ = 1/X̄ and the MLE of τ is τ̂ = γ/Ȳ .

First let us search for a pivot.

Theorem 5. Define

Q =
λ

τ
· γX̄
Ȳ

=
1

ρ

γX̄

Ȳ

where ρ = τ/λ. Then Q is a pivotal quantity and has F-distribution with numer-

ator degrees of freedom 2m and denominator degrees of freedom 2nγ, i.e., Q ∼

F (2m, 2nγ).

Proof. Note that 2λXi ∼ χ2(2), where χ2(ν) denote Chi-Square distribution with ν

degrees of freedom, since Xi follows exponential ditribution with mean 1/λ. Thus

2λ
m∑
i=1

Xi ∼ χ2(2m).

Similarly, we see that

2τ
n∑
j=1

Yj ∼ χ2(2nγ).

Therefore,

Q =
1

ρ

γX̄

Ȳ
=

γλ
m∑
i=1

Xi/m

τ
n∑
j=1

Yj/n
=

2λ
m∑
i=1

Xi/2m

2τ
n∑
j=1

Yj/2nγ

d
= F (2m, 2nγ),

because of the independence of X̄ and Ȳ .

11



On the basis of Theorem 5 the reliability parameter R can be expressed in

terms of F-distribution.

Theorem 6. The reliability parameter R is given by R = R(ρ) = 1− F (γ/ρ; 2, 2γ)

and strictly increase in ρ.

Proof. By the definition of the reliability parameter R it follows that

R = P (X > Y )

= P (
X

Y
> 1)

= P (
2λX

2τY
>
λ

τ
)

= P (
2λX/2

2τY/2γ
>
γ

ρ
)

= P (ξ >
γ

ρ
)

= 1− F (
γ

ρ
; 2, 2γ) (5)

where random variable ξ ∼ F (2, 2γ) and F ( · ; 2, 2γ) is its cumulative distribution

function (CDF).

From Eq.(5) it is clear that R strictly increases in ρ > 0.

For any R0 ∈ (0, 1) it is easy to see that there exists a unique ρ0 > 0 such that

R(ρ0) = R0. Actually ρ0 is determined by the equation

F (γ/ρ0; 2, 2γ) = 1−R0 (6)

according to Theorem 6.

12



Now we can use Q for testing hypothesis about R.

Theorem 7. (Two-Sided Test) Consider testing hypothesis

H0 : R = R0 vs. Ha : R 6= R0.

Then statistic Q0 = γX̄/ρ0Ȳ can be used as test statistic with rejection region

R.R. = {(X,Y) : Q0 ≤ F1−α/2(2m, 2nγ) or Q0 ≥ Fα/2(2m, 2nγ)}

where X = (X1, ..., Xm) and Y = (Y1, ..., Yn).

Proof. Note that the null hypothesis R = R0 is equivalent to H ′0 : ρ = ρ0. From

Theorem 5, it follows that Q0 ∼ F (2m, 2nγ). Therefore, the size of this test is α.

Following the similar argument, we can obtain the two results below.

Theorem 8. The pivot Q0 can be used for testing hypothesis

H0 : R ≤ R0 vs. Ha : R > R0.

The associated rejection region is

R.R. = {(X,Y) : Q0 ≥ Fα(2m, 2nγ)}.

Proof. It is sufficient to show that the size of this test is α, i.e.,

sup
R≤R0

PR(rejecting H0) = α. (7)
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Then null hypothesis R ≤ R0 is equivalent to H ′0 : ρ ≤ ρ0 by Theorem 6, where ρ0 is

determined by Eq.(6). Hence, it suffices to show that

sup
ρ≤ρ0

Pρ(rejecting H′0) = α. (8)

We have

Pρ(rejecting H′0) = Pρ
( γX̄
ρ0Ȳ

≥ Fα(2m, 2nγ)
)

= Pρ
(γX̄
ρȲ
≥ ρ0

ρ
Fα(2m, 2nγ)

)
= 1− F

(ρ0
ρ
Fα(2m, 2nγ); 2m, 2nγ

)
.

Thus

sup
ρ≤ρ0

Pρ(rejecting H′0)

= sup
ρ≤ρ0
{1− F

(ρ0
ρ
Fα(2m, 2nγ); 2m, 2nγ

)
}

=1− F
(
Fα(2m, 2nγ); 2m, 2nγ

)
=1− (1− α)

=α.

This ends the proof.

Theorem 9. Consider testing hypothesis

H0 : R ≥ R0 vs. Ha : R < R0.

The test that uses test statistic Q0 along with rejection region

R.R. = {(X,Y) : Q0 ≤ F1−α(2m, 2nγ)}

14



has size α.

Proof. It is the same as Theorem 8.

At the end of this section we derive a procedure for constructing confidence

interval of R can be obtained as

(
1− F

( Ȳ
X̄
Fα/2(2m, 2nγ); 2, 2γ

)
, 1− F

( Ȳ
X̄
F1−α/2(2m, 2nγ); 2, 2γ

))
.

Proof. According to Eq.(5) the reliability parameter R is given as

R = 1− F
(γ
ρ

; 2, 2γ
)
.

It then follows from Theorem 5 that

1− α

=P
(
F1−α/2(2m, 2nγ) < Q < Fα/2(2m, 2nγ)

)
=P
(
F1−α/2(2m, 2nγ) <

1

ρ

γX̄

Ȳ
< Fα/2(2m, 2nγ)

)
=P
( Ȳ
X̄
F1−α/2(2m, 2nγ) <

γ

ρ
<
Ȳ

X̄
Fα/2(2m, 2nγ)

)
=P

(
F
( Ȳ
X̄
F1−α/2(2m, 2nγ); 2, 2γ

)
< F (

γ

ρ
; 2, 2γ) < F

( Ȳ
X̄
Fα/2(2m, 2nγ); 2, 2γ

))
=P

(
1− F

( Ȳ
X̄
Fα/2(2m, 2nγ); 2, 2γ

)
< 1− F (

γ

ρ
; 2, 2γ) <

1− F
( Ȳ
X̄
F1−α/2(2m, 2nγ); 2, 2γ

))
=P

(
1− F

( Ȳ
X̄
Fα/2(2m, 2nγ); 2, 2γ

)
< R < 1− F

( Ȳ
X̄
F1−α/2(2m, 2nγ); 2, 2γ

))
.

and consequently the desired result.
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4. Numerical study

In this section we will conduct simulation studies in which the shape parameter

of the gamma distribution is γ = 1.25 and γ = 4.5 in Example 1 and Example 2

respectively. Three cases of R = 0.3, 0.6 and 0.9 are considered. Using N = 10000

replications, in Tables 1-3 we list the average of R̃, ̂MSE(R̃) which is the estimates of

MSE of R̃, and the counterparts of the MLE R̂ corresponding to various sample sizes

m = n = 5, 6, · · · , 40, for the case of γ = 1.25. Tables 4-6 show the results for the

case of γ = 4.5. In these tables eR̂,R̃ =
̂

MSE(R̂)/ ̂MSE(R̃) is the relative efficiency.

Example 1.

In this example, shape parameter of gamma distribution γ = 1.25 is used. The

scale parameters λ = 2 and τ = 1.235, 3.962, 22.742 so that the reliability parameter

R = P (X > Y ) equals to 0.3, 0.6, 0.9 accordingly based on Theorem 6. From the

table 1-3, it is obvious that the average of the 10000 values of the UMVUE R̃ is

very close to the true value of R, which is certainly consistent with the unbiasedness

property of R̃, the estimate MSE of R̃ is only 0.02 even the sample sizes are only

m=n=5 and it decreases to 0.0025 as the sample sizes increase to m=n=40. As far

as the MLE R̂, similar pattern is also observed. In addition, the bias of R̂ is positive

when R = 0.3, 0.6 and is negative when R = 0.9. Tables and Figures can be found in

the Appendix.

Figure 1 is the plot of the average of the observed N = 10000 values of R̃ and

the average of the observed N = 10000 values of R̂ versus the true value of R ∈ (0, 1).
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Because of the unbiasedness property of R̃, the average of R̃ is almost a straight line

from (0, 0) to (1, 1). The average of R̂ has only very slight deviation from the true R.

For the case of m = n = 5 the solid line curve in Figure 2 shows the behavior

of the difference between the average of the observed N = 10000 values of R̃ and the

true value of R ∈ (0, 1). The difference is of the order of 10−3. The dotted curve in

Figure 2 shows the similar picture for the MLE R̂ with error of order of 10−2. And it

is notable that the MLE R̂ overestimates when R is small and underestimates when

R is large.

For the case of γ = 1.25 Figure 3 shows the behavior of the Mean Squared

Error of R̃ for sample sizes m = n = 5, 10, 20, 30, 40. It is obvious that the MSE of R̃

decrease while the sample sizes increase. And the decreasing speed is also decelerated

with the increasing sample sizes. The behavior of the MSE of R̂ follow the same

pattern as shown in Figure 4.

Example 2.

In this second example, similar computation is done but with shape parameter

of gamma distribution γ = 4.5 and the scale parameter λ = 2 and τ = 6.520, 16.638, 84.425

according to R = 0.3, 0.6, 0.9 following Theorem 6. The estimates of R and MSE in

the cases R = 0.3, 0.6 and 0.9 are listed in the Table 4-6. For m = n = 5 the average

of the observed N = 10000 values of R̃ and the average of the observed N = 10000

values of R̂ versus the true value of R ∈ (0, 1) is given in Figure 5. The difference of

R and the average of N = 10000 simulated values are plotted in Figure 6. Figure 7
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and Figure 8 show the behavior of the MSE of R̃ and R̂ respectively.

From the above two examples, it is noticed that even though R̂ is a biased

estimator of R its MSE is about the same as that of R̃ and actually is smaller than

the MSE of R̃. Considering this and the fact that the computation of R̃ based on

Theorem 1, is more complicated than that of R̂ based on Theorem 4, the MLE R̂ is

recommended for estimating the reliability parameter R.
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Table 1: γ = 1.25, N = 10000, R = 0.3

R = 0.3

n=m
UMVUE MLE

eR̂,R̃
¯̃R ̂MSE(R̃)

¯̂
R

̂
MSE(R̂)

5 0.299369975 0.021279000 0.310376827 0.01829164 0.859609965

6 0.299523479 0.017760656 0.308708997 0.015683022 0.883020411

7 0.299292717 0.014429986 0.307318211 0.012968356 0.898708837

8 0.300009584 0.012872568 0.306994261 0.011736233 0.911724289

9 0.299753452 0.011397359 0.305995936 0.010497408 0.921038646

10 0.300468633 0.010144365 0.306096257 0.009427346 0.929317856

15 0.297289393 0.006532654 0.301154861 0.006203776 0.949656208

20 0.299774005 0.004927652 0.302650196 0.004749709 0.963888827

30 0.300264421 0.003291566 0.302169468 0.003214554 0.976603089

40 0.300526101 0.002447211 0.301964775 0.002404573 0.982577042

Table 2: γ = 1.25, N = 10000, R = 0.6

R = 0.6

n=m
UMVUE MLE

eR̂,R̃
¯̃R ̂MSE(R̃)

¯̂
R

̂
MSE(R̂)

5 0.599437387 0.025788302 0.584773681 0.022158098 0.859230578

6 0.598951392 0.021275287 0.586602364 0.018790494 0.883207535

7 0.599970666 0.017585521 0.589170604 0.015815761 0.899362678

8 0.600670353 0.015258057 0.591108310 0.013906348 0.911410146

9 0.601236847 0.013549913 0.592677321 0.012478542 0.920931571

10 0.598439557 0.012276553 0.590800967 0.011435631 0.931501813

15 0.601083104 0.007743077 0.595824107 0.007374462 0.952394235

20 0.601455459 0.005807437 0.597482208 0.005594458 0.963326552

30 0.600660345 0.003859331 0.597988242 0.003765890 0.975788279

40 0.598942225 0.002933121 0.596957569 0.002886043 0.983949489
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Table 3: γ = 1.25, N = 10000, R = 0.9

R = 0.9

n=m
UMVUE MLE

eR̂,R̃
¯̃R ̂MSE(R̃)

¯̂
R

̂
MSE(R̂)

5 0.899956395 0.003996736 0.883237769 0.004917556 1.230393001

6 0.899237509 0.003331532 0.885480325 0.004000368 1.200759341

7 0.900913634 0.002561014 0.889323033 0.003006483 1.173942495

8 0.899956223 0.002219019 0.889836889 0.002584197 1.164567713

9 0.900111754 0.001893262 0.891174761 0.002175035 1.148829488

10 0.899542968 0.001704741 0.891516085 0.001946139 1.141603929

15 0.900531192 0.001072896 0.895301095 0.001167840 1.088493108

20 0.900265017 0.000796210 0.896371635 0.000850527 1.068218699

30 0.900390881 0.000503877 0.897815471 0.000526223 1.044348352

40 0.900002028 0.000389978 0.898075443 0.000403973 1.035885512

Table 4: γ = 4.5, N = 10000, R = 0.3

R = 0.3

n=m
UMVUE MLE

eR̂,R̃
¯̃R ̂MSE(R̃)

¯̂
R

̂
MSE(R̂)

5 0.296872619 0.025408893 0.287073599 0.019896770 0.783063229

6 0.300113926 0.021019930 0.291196503 0.017083109 0.812710063

7 0.300667283 0.018255329 0.292798374 0.015255130 0.835651899

8 0.298696893 0.016043637 0.291807129 0.013724330 0.855437620

9 0.299821243 0.013995597 0.293504456 0.012166139 0.869283352

10 0.299779049 0.012428744 0.293990368 0.010948896 0.880933413

15 0.299262754 0.008531467 0.295251008 0.007840245 0.918979678

20 0.299880526 0.006128631 0.296777791 0.005748820 0.938026761

30 0.299364740 0.004188645 0.297256181 0.004014880 0.958515092

40 0.300307335 0.003101096 0.298688676 0.003002087 0.968072876
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Table 5: γ = 4.5, N = 10000, R = 0.6

R = 0.6

n=m
UMVUE MLE

eR̂,R̃
¯̃R ̂MSE(R̃)

¯̂
R

̂
MSE(R̂)

5 0.599389361 0.024387944 0.564472844 0.023398279 0.959419910

6 0.599688353 0.019630258 0.570183433 0.019129410 0.974485892

7 0.600578072 0.016886692 0.575131398 0.016559874 0.980646452

8 0.599963775 0.014397779 0.577551599 0.014264567 0.990747739

9 0.599991750 0.012655836 0.579975345 0.012571633 0.993346729

10 0.600430646 0.011223082 0.582347269 0.011178991 0.996071413

15 0.600478265 0.007443647 0.588302793 0.007449730 1.000817231

20 0.600086320 0.005312875 0.590917543 0.005334720 1.004111740

30 0.600607212 0.003530196 0.594446145 0.003536547 1.001799057

40 0.600846263 0.002605547 0.596235883 0.002608081 1.000972441

Table 6: γ = 4.5, N = 10000, R = 0.9

R = 0.9

n=m
UMVUE MLE

eR̂,R̃
¯̃R ̂MSE(R̃)

¯̂
R

̂
MSE(R̂)

5 0.899390142 0.003219176 0.879422528 0.004501926 1.398471344

6 0.899063717 0.002563739 0.882758182 0.003463913 1.351117541

7 0.900024744 0.001992949 0.886356606 0.002590682 1.299923891

8 0.900258673 0.001690681 0.888467592 0.002135483 1.263090530

9 0.899443294 0.001464135 0.888995104 0.001825548 1.246843941

10 0.899677805 0.001296352 0.890367763 0.001580357 1.219080431

15 0.900546980 0.000773028 0.894525921 0.000879501 1.137734760

20 0.900092707 0.000575634 0.895614830 0.000637670 1.107769709

30 0.900036277 0.000376961 0.897085859 0.000403962 1.071627494

40 0.900065063 0.000286674 0.897866175 0.000301752 1.052595974
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Figure 1: γ = 1.25, m = n = 5, N = 10000

Figure 2: γ = 1.25, m = n = 5, N = 10000
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Figure 3: γ = 1.25, N = 10000, UMVUE

Figure 4: γ = 1.25, N = 10000, MLE
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Figure 5: γ = 1.25, N = 10000

Figure 6: γ = 1.25, N = 10000

27



Figure 7: γ = 4.5, m = n = 5, N = 10000

Figure 8: γ = 4.5, m = n = 5, N = 10000
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Figure 9: γ = 4.5, N = 10000, UMVUE

Figure 10: γ = 4.5, N = 10000, MLE
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Figure 11: γ = 4.5, N = 10000

Figure 12: γ = 4.5, N = 10000
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