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ABSTRACT OF THE DISSERTATION

THREE ESSAYS ON HOSPITAL EFFICIENCY

by

Alfonso Rodriguez

Florida International University, 2011

Miami, Florida

Professor Peter Thompson, Major Professor

This dissertation analyzes hospital efficiency using various econometric techniques. The

first essay provides additional and recent evidence to the presence of contract manage-

ment behavior in the U.S. hospital industry. Unlike previous studies, which focus on

either an input-demand equation or the cost function of the firm, this paper estimates the

two jointly using a system of nonlinear equations. Moreover, it addresses the longitudi-

nal problem of institutions adopting contract management in different years, by creating

a matched control group of non-adopters with the same longitudinal distribution as the

group under study. The estimation procedure then finds that labor, and not capital,

is the preferred input in U.S. hospitals regardless of managerial contract status. With

institutions that adopt contract management benefiting from lower labor inefficiencies

than the simulated non-contract adopters. These results suggest that while there is a

propensity for expense preference behavior towards the labor input, contract managed

firms are able to introduce efficiencies over conventional, owner controlled, firms.

Using data for the years 1998 through 2007, the second essay investigates the pro-

duction technology and cost efficiency faced by Florida hospitals. A stochastic frontier

multiproduct cost function is estimated in order to test for economies of scale, economies

of scope, and relative cost efficiencies. The results suggest that small-sized hospitals ex-
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perience economies of scale, while large and medium sized institutions do not. The

empirical findings show that Florida hospitals enjoy significant scope economies, regard-

less of size. Lastly, the evidence suggests that there is a link between hospital size

and relative cost efficiency. The results of the study imply that state policy makers

should be focused on increasing hospital scale for smaller institutions while facilitating

the expansion of multiproduct production for larger hospitals.

The third and final essay employs a two staged approach in analyzing the ef-

ficiency of hospitals in the state of Florida. In the first stage, the Banker, Charnes,

and Cooper model of Data Envelopment Analysis is employed in order to derive over-

all technical efficiency scores for each non-specialty hospital in the state. Additionally,

input slacks are calculated and reported in order to identify the factors of production

that each hospital may be over utilizing. In the second stage, we employ a Tobit re-

gression model in order to analyze the effects a number of structural, managerial, and

environmental factors may have on a hospital’s efficiency. The results indicated that

most non-specialty hospitals in the state are operating away from the efficient produc-

tion frontier. The results also indicate that the structural make up, managerial choices,

and level of competition Florida hospitals face have an impact on their overall technical

efficiency.
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CHAPTER 1

CONTRACT MANAGEMENT IN U.S. HOSPITALS

1.1 Introduction

The subletting of an institution’s management to a third-party firm has been around for

many years. This is known as contract management and it has been gaining traction in

the hospital industry in recent years. Contract management is the act of turning over

the day to day operations of an institution to a third-party firm which reports directly

to the institution’s board of directors or trustees (Brown & Money, 1976). However,

the third-party managers may or may not pursue the same objectives as the controllers

of the institution. For instance, the owners or controllers of an institution may be

profit maximizers, while the third-party managers may not be. Instead, the third-party

managers may have positive preferences for staff levels or wages well above the profit

maximizing amount. The idea that third-party managers may not have the same goals

as an institution’s controllers is know in the incentives literature as expense preference.

Expense preference is the notion that third-party managers are out to maximize

their utility instead of the institution’s profits. That is, third-party managers may have

preferences for inputs above and beyond the profit maximizing, or cost minimizing,

amount. Oddly enough, in the last two decades, contract management of U.S. hospitals

has been steadily rising. From 1980 to 2007, the share of U.S. hospitals under contract

management has increased around 70%, with roughly 18% of all current U.S. hospitals

choosing to outsource their management (See Figure 1.1).
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Figure 1.1: Percent of Non-Federal, Non-Specialty U.S.
Hospitals Under Contract Management

The question that comes readily to mind then is, has this increase in the adoption

of contract management by the U.S. hospital industry lead to expense preference be-

havior? And has it lead to greater inefficiency when compared to non-contract managed

hospitals?

This paper, thusly, sets out to test whether the adoption of contract manage-

ment, by U.S. hospitals, has lead to expense preference behavior and therefore to a

higher degree of inefficiency than conventionally managed hospitals. The paper contin-

ues as follows: section two reviews the related literature; a test for expense preference

is presented in section three; section four describes the data and outlines the creation

of the different samples used in the study; results are discussed in section five; and the

paper concludes in section six.
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1.2 Background

An alternative to the standard profit maximization theory is that of expense preference

behavior. The expense preference behavior theory hypothesizes that a firm’s third-party

manager may not have the goal of maximizing the firm’s profits. Instead, expense prefer-

ence suggests that the third-party manager may be a utility maximizer with preferences

for expenses above the profit maximizing level. That is, the separation of ownership from

control permits third-party managers to pursue non-profit maximizing objectives such

as higher salaries, job security, prestige, etc. The idea of expense preferences has been

around in the economic literature for some time and is one of that has been the founda-

tion for very interesting work (e.g., Baumol, 1957; Alchian & Kessel, 1962). However,

in the hospital industry this theory has been rarely examined, even though the majority

of institutions are not-for-profit and are rarely owned and managed by the same agents

(Carey & Dor, 2008).

The idea that utility maximizing managers indulge in excessive spending was first

suggested by Becker (1971). But, Baumol (1957); Marris (1957); Williamson (1963) took

the first steps in pioneering the theory of expense preference behavior. In particular,

Williamson (1963) was the first to argue that third-party managers derive additional

some sort of positive utility from expenditures above cost minimizing levels. Williamson

theorized that third-party managers derived utility from expenditures on salaries, ad-

ditional staff, or other fringe benefits for which the third-party managers may have a

positive preference. Williamson was also one of the first to argue for the importance of

empirical work in order to test for the existence of expense preference behavior.
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Yet, very few studies have been done in this field. The studies that have tested for the

existence of expense preference have mainly been in the banking and saving-and-loans

industry with results that have been somewhat mixed.

The first empirical framework capable of testing for the presence of expense prefer-

ence behavior was developed by Edwards (1977). Edwards postulated that the existence

of expense preference behavior was readily distinguishable in the institution’s demand

for labor. If an institution’s demand for labor was above the profit maximizing level,

then expense preference behavior was present. Applying his framework to the banking

industry, Edwards found that banks in his sample showed evidence of expense preference

behavior. Adding to Edwards, Hannan (1979) argued that the organizational structure

of the firm is an important element in determining the level of separation between an

institution’s owners and its third-party managers. Taking this into account, Hannan and

Mavinga (1980), along with Verbrugge and Jahera Jr (1981) used a similar test as that

proposed by Edwards, but incorporated more detailed information on the dispersion of

firm ownership in their model. They found that banks controlled by third-party man-

agers exhibited a tendency to spend more on items likely to be preferred than managers

from owner-controlled banks; thus, exhibiting expense preference behavior and lending

support to Edward’s results.

However, subsequent studies focusing on expense preference behavior in the bank-

ing industry, by Rhoades (1980), and Smirlock and Marshall (1983) found conflicting

evidence. Rhoades argued that Edward’s test was too limiting in just focusing on the

excess of labor and wages. Instead, Rhoades incorporated a greater number of variables

in Edward’s labor demand function, and used a much broader data set than previous

studies. Rhoades found no support for the expense preference hypothesis. Similarly,
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using data on the banking industry Smirlock and Marshall conclude that Edward’s test

was too narrow and also focused on a broader labor demand equation. After running

several hypothesis tests, Smirlock and Marshall reject the existence of expense prefer-

ence behavior in the banking industry. In a similar study, Awh and Primeaux Jr (1985)

applied an intercept test similar to Edward’s and came to the conclusion that there was

no evidence of expense preference behavior in the U.S. electricity industry. Likewise,

Blair and Placone (1988) found no evidence of expense preference behavior in the U.S.

savings and loans industry.

In a departure from Edward’s test, Mester (1989) derived a more general test

for expense preference. She argued that Edward’s intercept test would be valid only if

the firms in question all shared the same Cobb-Douglas type production function. So,

Mester derived a test that only took into account the firm’s cost function, and set out to

test for expense preference via an input specific parameter included in the cost function.

Applying this new general approach to the U.S. savings and loans industry, Mester found

no evidence of expense preference behavior, lending evidence to the results in Blair and

Placone (1988).

Following Mester, Dor, Duffy, and Wong (1997) studied whether hospitals that

became contract managed, during a well-defined period, employed managers who used

more than the cost-minimizing amounts of labor and capital. Dor et al. added to

Mester’s framework by including the input demand functions in the estimation pro-

cedure. They found that expense preference behavior is present in contract managed

hospitals, but the behavior depends on the discretionary input being studied. A limit-

ing factor of Dor et al., however, is that the study was applied to a conditional sample

of U.S. hospitals; only those hospitals that adopted third-party contract management
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agreements in the time period studied. Therefore, making cost comparisons with owner

controlled hospitals impossible.

This paper builds on Dor, et al. with an attempt to provide additional and recent

evidence to the presence of expense preference behavior in U.S. hospitals. In particular,

it adds a control group in order to make reasonable cost comparisons between hospitals

that contracted third-party management firms to run the day to day operations of the

hospitals and those hospitals that did not.

1.3 A Test for Expense-Preference Behavior

Firms in the industry produce a vector, y, of n outputs usingm inputs. A firm exhibiting

expense preference behavior prefers the first k inputs. The expense preferring manager

first selects the cost-minimizing level of output and inputs (xk+1, . . . , xm) from which she

does not derive any utility. Then, the expense preferring manager increases spending on

the inputs she prefers, the first k inputs (x1, . . . , xk), above their cost-minimizing levels.

Let, x∗ denote the cost-minimizing input level, while z denotes the expense preference

or inefficiency parameter (e.g. Edwards, 1977; Mester, 1989; Dor et al., 1997). So, the

expense-preferring firm demands x0i = (1 + zi)x
∗
i , i ∈ (1, . . . , k) of the preferred input,

and demands x∗j , j ∈ (k + 1, . . . ,m) of the cost-minimizing input.
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The observed costs for the expense-preferring firm can then be written as,

C =
k∑
i=1

w∗i x
0
i +

m∑
j=k+1

w∗jxj

=
k∑
i=1

ziw
∗
i x
∗
i +

k∑
i=1

w∗i x
∗
i +

m∑
j=k+1

w∗jx
∗
j

=
k∑
i=1

ziw
∗
i x
∗
i + C∗ (1.1)

where w∗ is a vector of exogenously determined input prices and C∗ is the cost-minimizing

cost level. Using the cost-minimizing cost share of input i, S∗i = w∗i x
∗
i /C

∗, in (1.1) we

can write observed costs for the expense-preferring firm as,

C = C∗

(
1 +

k∑
i=1

ziS
∗
i

)
(1.2)

and using Shephard’s lemma, we have that the observed cost share is,

Si =
w∗i x

∗
i (1 + zi)

C
. (1.3)

Plugging (1.2) into (1.3) and rewriting, we have that the observed cost share is given by,

Si = S∗i
1 + zi

1 +
∑m

i=1 ziS
∗
i

. (1.4)

We can now see that if zi = 0, then C = C∗ and Si = S∗i and no expense preference

behavior occurs, i.e., the observed costs and observed input shares are equal to their

cost-minimizing values.

In modeling the cost function, the translog (dual) cost function is used. The

translog can be regarded as a quadratic approximation to the unspecified cost function
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and is a widely used functional form in the hospital efficiency literature (e.g. Vita, 1990;

Chirikos & Sear, 2000; Ludwig, Groot, & Van Merode, 2009). A general form translog

cost function is given by,

lnC =α0 + α1 ln y + α2 (ln y)
2 +

n∑
i=1

βi lnwi +
1

2

n∑
i=1

n∑
j=1

βij lnwi lnwj

+
n∑
i=1

γi lnwi ln y, (1.5)

where C is total cost, y is output, and wi is the factor price of the ith input. From the

translog cost function and Shephard’s lemma, the share of input j in costs is given by,

Si =
∂ lnC

∂ lnwi
= βi + βii lnwi +

n∑
j 6=i

βji lnwj + γi ln y. (1.6)

Berndt and Christensen (1973) showed that estimating the full dual system (i.e., cost

and share equations together), via the method of seemingly unrelated regressions, leads

to much higher efficiency than just estimating the single cost function.

Using equations (1.5) and (1.6) along with equations (1.2) and (1.4) gives us the

following testable specification,

lnC = α0 + α1 ln y + α2 (ln y)
2 +

n∑
i=1

βi lnwi

+
1

2

n∑
i=1

n∑
j=1

βij lnwi lnwj +
n∑
i=1

γi lnwi ln y

+ ln

[
1 +

n∑
i=1

zi

(
βi + βii lnwi +

n∑
j 6=i

βji lnwj + γi ln y

)]
(1.7)
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Si =
(1 + zi)

(
βi + βii lnwi +

∑n
j 6=i βji lnwj + γi ln y

)
1 +

∑n
i=1 zi

(
βi + βii lnwi +

∑n
j 6=i βji lnwj + γi ln y

) . (1.8)

Parameter estimates in the above system of equations can be obtained via the method

of iterative seemingly unrelated non-linear regressions (NLSUR). This method has been

shown to be equivalent to maximum likelihood estimation (Gallant, 1986). In estimating

this system of equations, the normal symmetry condition (βij = βji ∀ i, j) is imposed on

the coefficients. Furthermore, in order for the translog cost function to be homogeneous

of degree 1 in input prices the following restriction are also compulsory,

n∑
i=1

βi = 1,
n∑
i=1

βij = 0 for all j,
n∑
i=1

γi = 0.

Since the cost shares sum to unity, in estimating the system of equations one cost share

must be dropped to avoid a singular covariance matrix.

1.4 Data and Sample Creation

1.4.1 Data

The bulk of the data for this paper come by way of the American Hospital Association

(AHA) Annual Survey Database. The AHA database contains hospital specific data on

over 6,000 hospitals with variables covering organizational structure, personnel, hospital

facilities and services, and financial performance. My analysis uses data for the years

1984 to 2007. Patient case-mix data comes from the Center for Medicare and Medicaid

Services, and inflation data from the Bureau of Labor Statistic’s Hospital Producer Price

Index.
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The AHA reports total cost as a measure that incorporates all hospital operating

expenses, including interest and depreciation expenses. This variable was used as the

dependent variable representing total cost. Cost data in the survey is disaggregated

into labor costs and other costs. Thus, two inputs were used; labor and non-labor

(hereafter referred to as capital). Input prices were unfortunately not readily available

in the AHA survey data set, but, following previous studies using a similar data set,

reasonable measures were created. Wages, the measure of labor costs, was created by

dividing labor costs by full-time equivalent employees. While the rental rate of capital,

the measure of capital costs, was created by dividing capital costs by the total number

of hospital beds.

Since this study was not interested in looking at specific output inefficiencies, a

single output variable was chosen. Adjusted patient days, transforms outpatient services

into inpatient day unit equivalents via formula documented in the AHA codebook (e.g.,

see AHA Annual Survey Database Documentation), and takes into account total hospi-

tal output. Hospitals coordinate care for patients across many departments, including

intensive care units, emergency departments, surgical wards, and diagnostic services.

So, a control for differentiated product mix across hospitals was needed to account for

a varying hospital output. To control for product heterogeneity, the Medicare diagnosis

related group (DRG) case-mix index was added to the cost function along with patient

average length of stay. The DRG was used as it measures the complexity of both inpa-

tient stays and outpatient visits in such a way that can be aggregated into an index. In

addition to the case-mix index and average length of stay, other commonly used control

variables were included in the cost function (e.g. Vita, 1990; Dor et al., 1997; Li &

Rosenman, 2001); hospital size as determined by the number of hospital beds, whether
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the hospital is public or private, hospital profit status, whether or not the hospital was

part of a larger multi-system of hospitals, and a set of binaries to control for year of

observation.

1.4.2 Sample Creation

My study examines hospitals that made the transition from an owner controlled man-

agement system to contract management between 1984 and 2007. Since the goal of the

paper is to compare the estimates for both the hospitals that chose to outsource their

management and the hospitals that did not, two group samples were created; a treatment

group, and a control group. The treatment group of hospitals were those which went

from being conventionally managed to contract managed in the time frame under study.

A binary variable available in the AHA survey was used in selecting institutions that

made the transition from a conventional management system to contract management.

Given that both pre-contract management estimates and post-contract manage-

ment estimates were of interest, the treatment group was divided into two subsampless; a

pre-contract sample and a post-contract sample. The pre-contract samples include data

for the year falling two years before the year of adopting contract management. While

the post-contract samples include data for the year following two years after adoption of

contract management. A two year lag, before and after contract management, was used

in order to allow the effects of a change in management to fully appear in the data.

Hospitals with contracts shorter than three years were dropped from the samples,

along with hospitals with incomplete or missing data. In addition, given that specialty

hospitals and Federal hospitals produce different products, they too were dropped from

the samples.
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Institutions that adopted contract management differed from those that did not,

so a random selection of conventionally managed hospitals did not produce an ade-

quate match for the control group. Therefore, a control group of hospitals was selected

using the Mahalanobis matching propensity score (conditional treatment probability)

matching method, following Rosenbaum and Rubin (1985) and using the Stata match-

ing algorithm provided in Leuven and Sianesi (2003). Hospitals with similar adjusted

patient days, labor expenses, capital expenses, case-mix index, average patient length

of stay, government control, and profit status were used for each year as the main cri-

terion for the matching algorithm. The matching algorithm allowed for a selection of

non-adopters, the control group, that shared the same longitudinal distribution as the

treatment group. And just like the process for the treatment group, the control group

was divided into pre-contract and post-contract subsamples. Summary statistics for

both the treatment group and the control group can be found on the following page in

Table 1.1.

12



Table 1.1: Summary Statistics

Variable Definition Treatment Control

Pre Post Pre Post

Dependent
ln cost Total cost 16.22(1.29) 16.21(1.06) 16.21(1.31) 16.18(1.06)
share 1 Labor cost/TC 0.54(0.07) 0.52(0.06) 0.54(0.06) 0.55(0.07)
share 2 Capital cost/TC 0.45(0.08) 0.47(0.07) 0.45(0.06) 0.44(0.07)
Independent
ln y Adj. patient days 9.97(1.11) 9.88(1.01) 9.90(1.16) 9.82(0.97)
lnw1 Labor cost per FTE 10.31(0.29) 10.36(0.26) 10.32(0.29) 10.37(0.29)
lnw2 Capital cost per bed 11.09(0.79) 11.28(0.67) 11.14(0.72) 11.20(0.67)
cmi Medicare case-mix index 1.15(0.19) 1.12(0.15) 1.14(0.19) 1.12(0.13)
los Avg. length of stay 21.48(28.2) 21.77(30.3) 23.21(36.4) 26.99(58.14)
govt Govt control binary 0.43(0.50) 0.43(0.49) 0.45(0.50) 0.41(0.49)
nprof Nonprofit status binary 0.47(0.22) 0.51(0.24) 0.49(0.22) 0.53(0.25)
system System status binary 0.25(0.43) 0.31(0.47) 0.27(0.44) 0.31(0.46)
church Church operated binary 0.07(0.25) 0.04(0.19) 0.11(0.31) 0.08(0.27)
large >100 beds binary 0.37(0.48) 0.29(0.45) 0.34(0.48) 0.27(0.45)
n 886 664 875 657
Standard deviations in parentheses. All values in 1998 dollars.
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1.5 Estimation Results

Results for the estimation of the system of equations found in (1.7) and (1.8) were derived

via non-linear iterative seemingly unrelated regressions (ITSUR). Starting values were

obtained from the linear ITSUR model wherein the parameter zi is set to zero, with all

iterations taking 8-14 interactions to converge. Considering that all input shares add up

to one, one input demand equation must always be dropped to avoid multicollinearity.

Given the aforementioned and that no a priori assumption was made as to which input

would be the preferred input, the expense preference parameter was allowed to differ for

the two inputs. The first step in the estimating procedure was to include the labor share

equation in the cost function and drop the capital share equation. The process was then

repeated but with the capital share equation in the cost function and then dropping

the labor share equation. This procedure was followed for both the pre-contract and

post-contract samples for both the control group and the treatment group. Tables 1.2

and 1.3 report the full estimation results for the labor share equation and the capital

share equation, respectively.

Comparing the inefficiency results from Tables 1.2 and 1.3 it becomes apparent

that labor is the preferred input, with all inefficiency parameters greater than zero. For

contract adopters there was an 18% increase in labor inefficiency from the pre-contract

period to the post-contract period, z1 increased from 1.682 to 1.99. While for the control

group, there was a 97% increase in labor inefficiency between the pre-contract and post-

contract period, z1 increased from 2.815 to 5.57. For the control group in particular, the

increase in z1 indicates a strong propensity towards labor inputs.
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Table 1.2: Nonlinear ITSUR Regressions Results for ln Cost, Labor Share

Coefficient Variable Treatment Control

Pre Post Pre Post

α0 Constant 3.359(0.834) –2.983(1.367) 1.345(0.743) 1.244(1.35)
α1 ln y –0.536(0.173) 0.846(0.288) –0.090(0.150) –0.170(0.280)
α2 ln y · ln y 0.060(0.009) –0.013(0.015) 0.036(0.008) 0.040(0.015)
β1 lnw1 –0.054(0.095) 0.017(0.123) –0.166(0.076) –0.195(0.075)
β2 lnw2 1.054(0.096) 0.983(0.123) 1.166(0.076) 1.195(0.075)
β11 lnw1 · lnw1 0.055(0.006) 0.050(0.008) 0.046(0.006) 0.039(0.009)
β22 lnw2 · lnw2 0.018(0.005) 0.018(0.007) 0.001(0.004) 0.001(0.004)
β12 lnw1 · lnw2 –0.073(0.006) –0.068(0.009) –0.047(0.006) –0.040(0.009)
γ1 ln y · lnw1 0.005(0.003) –0.002(0.003) –0.003(0.002) –0.000(0.003)
γ2 ln y · lnw2 –0.005(0.003) 0.002(0.003) 0.003(0.002) 0.000(0.003)
δ1 cmi 0.612(0.098) 0.656(0.142) 0.777(0.107) 0.946(0.167)
δ2 los –0.006(0.001) –0.005(0.001) –0.004(0.000) –0.001(0.000)
δ3 govt 0.015(0.028) –0.032(0.034) –0.008(0.029) –0.018(0.037)
δ4 nprof –0.035(0.057) –0.050(0.071) –0.144(0.062) –0.062(0.069)
δ5 system 0.035(0.032) –0.016(0.038) –0.025(0.033) –0.010(0.040)
δ6 church 0.002(0.051) –0.006(0.085) 0.039(0.045) –0.009(0.067)
δ7 large 0.237(0.041) 0.368(0.057) 0.298(0.042) 0.314(0.059)
z1 1.682(0.460) 1.99(0.814) 2.815(0.728) 5.57(2.023)
n 886 664 875 657
Adj R2 (ln cost) 0.972 0.9534 0.970 0.9466
Adj R2 (ln share 1) 0.458 0.453 0.304 0.393
Standard errors in parentheses. All values in 1998 dollars.
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This is consistent with studies in the literature that find a direct correlation between

staffing level of nurses and health outcomes (e.g. Mobley & Magnussen, 2002; Mark,

Harless, & McCue, 2005; Kane, Shamliyan, Mueller, Duval, & Wilt, 2007). These results

lead one to the conclusion that absent contract adoption, the degree of labor inefficiency

would of have been more pronounce over the same time period.

Table (1.3) summarizes the results for the capital inefficiency parameter. Inter-

pretation of these results, however, needs to be treated with caution. The estimates

are a result of the aggregation of non-labor and “other” inputs that could not be readily

identified in the data. This was, as discussed in the previous section, due to the nature in

which the AHA survey presents the data. It is likely that some disaggregated categories

may have resulted in positive values for the inefficiency parameter.
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Table 1.3: Nonlinear ITSUR Regressions Results for ln Cost, Capital Share

Coefficient Variable Treatment Control

Pre Post Pre Post

α0 Constant 4.400(0.894) –2.282(1.405) 2.096(0.747) 2.298(1.362)
α1 ln y –0.584(0.179) 0.820(0.291) –0.102(0.149) –0.184(0.280)
α2 ln y · ln y 0.063(0.009) –0.012(0.016) 0.037(0.008) 0.041(0.015)
β1 lnw1 0.074(0.113) 0.310(0.140) 0.085(0.111) 0.074(0.133)
β2 lnw2 0.926(0.113) 0.690(0.140) 0.915(0.111) 0.926(0.133)
β11 lnw1 · lnw1 –0.089(0.012) –0.076(0.015) –0.085(0.012) –0.096(0.014)
β22 lnw2 · lnw2 –0.040(0.003) –0.040(0.003) –0.029(0.003) –0.036(0.004)
β12 lnw1 · lnw2 0.129(0.014) 0.116(0.017) 0.114(0.014) 0.132(0.017)
γ1 ln y · lnw1 –0.005(0.003) 0.001(0.004) 0.001(0.003) –0.001(0.004)
γ2 ln y · lnw2 0.005(0.003) –0.001(0.004) 0.001(0.003) 0.001(0.004)
δ1 cmi 0.571(0.098) 0.671(0.141) 0.793(0.102) 0.966(0.159)
δ2 los –0.005(0.001) –0.004(0.001) –0.004(0.000) –0.001(0.000)
δ3 govt 0.029(0.029) -0.038(0.035) –0.008(0.029) –0.015(0.037)
δ4 nprof 0.029(0.028) –0.045(0.071) –0.149(0.071) –0.080(0.069)
δ5 system –0.052(0.059) –0.019(0.038) –0.026(0.032) 0.001(0.040)
δ6 church 0.053(0.033) –0.007(0.087) 0.040(0.045) –0.006(0.067)
δ7 large –0.003(0.053) 0.347(0.058) 0.288(0.042) 0.316(0.059)
z2 –0.889(0.078) -0.212(0.097) -0.192(0.081) -0.354(0.082)
n 886 664 875 657
Adj R2 (ln cost) 0.971 0.953 0.972 0.946
Adj R2 (ln share 1) 0.467 0.456 0.283 0.415
Standard errors in parentheses. All values in 1998 dollars.
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1.6 Conclusion

Unlike previous studies, which focus on either an input-demand equation or the cost

function of the firm, this paper estimates the two jointly using a system of nonlin-

ear equations. Moreover, this paper addresses the longitudinal problem of institutions

adopting contract management in different years, present in previous studies, by creat-

ing a matched control group of non-adopters with the same longitudinal distribution as

the treatment group. Thus, this study was able to compare the inefficiency parameters

of institutions that outsourced their management with those institutions that did not.

The results of the estimation procedure finds that labor, and not capital, is the

preferred input in all U.S. hospitals regardless of managerial contract status. However,

institutions that adopt contract management benefit from lower labor inefficiencies than

the simulated non-contract adopters. These results suggest that while there is a propen-

sity towards expense preference in the labor input, contract managed firms are far more

efficient in the allocation of their inputs, in particular labor, than their owner controlled

counterparts. That is, subletting contracts to third-party managers is a way by which

owners, board of directors, or board of trustees can impose greater efficiencies and market

discipline on the institutions they control.
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CHAPTER 2

ECONOMIES OF SCALE AND SCOPE, AND RELATIVE COST EFFICIENCY OF
FLORIDA HOSPITALS

2.1 Introduction

The costs associated with operating a hospital in the state of Florida has been rising

to historically unprecedented levels. Over the last four decades the average annualized

growth rate of hospital spending has exceeded the growth rate of Florida’s Gross State

Product by a fairly large margin, 17.1%, see Figure 2.1. With hospitals facing ever

increasing costs, many to the point of insolvency – including one of the nation’s top

ranked trauma centers, Jackson Memorial Hospital – questions have been raised about

the future structure of the industry. State policy makers have been advocating the notion

that greater efficiency may be achieved through consolidations within the industry. As

a first step, in the search for cost cutting measures, a clear understanding of potential

production efficiencies faced by hospitals in the state is needed.

Two different production efficiencies may be achieved by hospitals in the state,

economies of scale and economies of scope. The presence of economies of scale means

that there are gains to efficiency by increasing hospital size, while economies of scope

means that gains to efficiency may be experienced by focusing on expanding a product

line. Economies of scale exist if production costs increase proportionally less than output

when there are increases to a hospital’s output mix. Economies of scope exist when two

or more products can be produced jointly at a lower cost than producing the products

separately.

The Florida hospital industry is greatly influenced by the presence and nature

of these production efficiencies. Do average costs decrease as hospitals increase their
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output? If so, then economies of scale are present and the industry will tend to be

made up of large institutions. These large institutions can produce their output at lower

average costs than smaller ones and therefore take advantage of the cost savings. Are

costs for Florida hospitals less when they provide a multitude of services, or is it less

costly for them to provide a few selective services? If economies of scope are present,

then the industry will potentially be made up of largely diversified institutions; if not,

then the industry will mostly be comprised of smaller more specialized hospitals. My

study will attempt to answer these questions by providing information on economies of

scale and scope, as well information on a measure of relative cost efficiencies for Florida

hospitals.

This paper continues as follows. The second section discusses the specification

of the multiproduct cost function along with describing the measures of economies of

scale, economies of scope, and relative cost efficiency. The third section describes the

data samples used in the study. The fourth, presents and reviews the empirical results.

While the fifth and final section summarizes the results and concludes the paper.

2.2 Estimating Efficiency

The production structure of the Florida hospital industry can be empirically studied

by estimating either a production function or a cost function. Direct estimation of the

production function is the most straightforward and attractive way to proceed. However,

the process of estimating the production function entails certain assumptions that are

not appropriate for to the hospital industry, in particular, that hospitals are free to

choose the level of output that maximizes their profits.
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Figure 2.1
Annualized Growth Rates of Florida’s Gross State
Product (GSP) and Hospital Costs (in 2005 dollars)

1970s 1980s 1990s 2000-2007 1970-2007
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12.2%

Sources: Bureau of Economic Activity and American Hospital Association

Florida hospitals are required to provide emergency services to all that seek it and

as the need arises. With few exceptions, they have little to no control over the number

of illnesses they treat, nor the severity of such illnesses. They supply health services

as it is demanded. It is, then, reasonable to assume that the output mix that Florida

hospitals must contend with is not within their control and therefore exogenous. Florida

hospitals also compete, in the health service market, for factors of production. This

competition for inputs leads to the plausible assumption that, along with the output

mix, the factor prices Florida hospital face are also exogenous. This paper, therefore,

studies output efficiency via the dual of production, the cost function 1. Unlike the

1Duality theory shows that for every production function there is a corresponding or dual cost
function. See (Diewert, 1973) for more details.
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production function, which assumes that the firm has control over how much to produce

and what factor prices to pay, the cost function treats a firm’s output mix and input

prices as exogenous.

2.2.1 The Cost Function

In modelling hospital costs, the present study uses the Transcendental Logarithmic Cost

Function (translog). The translog cost function is a second-order Taylor approximation

to an arbitrary cost function that places no restrictions on substitutions between inputs

and allows economies of scale to vary with output (Caves, Christensen, & Tretheway,

1980). The translog estimated in this paper has the following form:

lnTC = α0 +
n∑
i=1

αi lnYi +
1

2

n∑
i=1

n∑
j=1

αij lnYi lnYj +
m∑
k=1

βk lnWk

+
1

2

m∑
k=1

m∑
h=1

βkh lnWk lnWh +
n∑
i=1

m∑
k=1

δik lnYi lnWk + γX + ε, (2.1)

where TC is total cost, Yi is the ith output, Wk is the price of the kth factor input,

and X is a vector of other variables that have been shown, in the hospital literature, to

affect hospitals costs. When estimating the above cost function, the normal symmetry

conditions, αij = αji ∀ i, j and βhk = βkh ∀ h, k, are imposed in order to ensure

continuity in output and input prices. For the translog to behave according to general

economic principles, total cost must increase in proportion with increases in factor prices,

when output is held fixed. That is, in order for the translog to be a well behaved

cost function2, it must be linearly homogeneous in input prices (concave in Wk), and

increasing and continuous in output (Yi) and input prices (Wk). Therefore, the following

2For a more detailed description of the translog cost function see (Diewert, 1973).
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restrictions are imposed on equation (2.1):

m∑
k=1

βk = 1 (2.2)

m∑
k=1

βkh = 0 for all h (2.3)

n∑
i=1

δik = 0 for all i. (2.4)

By Shephard’s lemma (Shephard, 1953) the share of each input in cost can be

derived from the translog. The cost share of input h is derived as:

Sk =
∂ lnTC

∂ lnWk

= βk + βkk lnWk +
m∑
k 6=h

lnWk +
n∑
i=1

δik lnYi (2.5)

Since the cost share equations sum to unity, one cost share must be dropped in order to

avoid a singular covariance matrix. Estimating the full system, the translog cost function

along with the corresponding share equations, via the iterative seemingly unrelated

regression (ISUR) approach, yields much more robust estimates than just estimating

the cost function alone. It also addresses any problems that may arise with degrees of

freedom and small sample sizes (Berndt & Christensen, 1973).

2.2.2 Economies of Scale

For multi-output institutions, economies of scale can be subdivided into two types.

The first is known as overall or ray scale economies, while the second is known as

product-specific scale economies. Overall scale economies are present when a hospital’s

average total cost decreases as output increases while maintaining a consistent output

mix. Product-specific scale economies are present when the average total cost of a

specific output decreases as the production of that specific output increases.
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Overall scale economies are measured by calculating the inverse of the sum of

individual output cost elasticities. Following Panzar and Willig (1977), overall scale

economies (OScale) can be derived as

OScale =
TC(Y,W )∑

i YiMCi
. =

1∑
i ηtc,yi

, (2.6)

where MCi is the marginal cost associated with the ith output, and ηtc,yi
is the ith

output cost elasticity. For the multi-output translog cost function described in (2.1) the

overall scale measure is given by

OScale =

[
n∑
i=1

∂ lnTC

∂ lnYi

]−1

=

[
n∑
i=1

(
αi +

n∑
j=1

αij lnYj +
m∑
k=1

δik lnWk

)]−1
. (2.7)

The summation of the individual output cost elasticities is equivalent to the percent

change in total cost that is a result of a percent change in overall output. Hospitals ex-

hibit constant, increasing, or decreasing returns to scale when OScale is equal to, greater

than, or less than one. If constant returns to scale are present, then no production effi-

ciencies are being derived in the over-all output range. If increasing returns to scale are

present, then hospitals are enjoying production efficiencies in the over-all output range.

And, if decreasing returns to scale are exhibited, then over-all production efficiencies are

not being realized.

The measurement of ray scale economies is ideal for understanding the efficiencies

being realized by the over-all output mix, but in order to get a more detailed view of

the production efficiencies of each individual output, a measurement of product-specific

scale is employed. Product-specific scale economies measure how the change in a specific

output, while holding the remaining output mix constant, affects cost. Product-specific
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scale economies exist if the average cost of a specific output decreases as the production

of that output increases. Baumol, Panzar, and Willig (1982) derived a measure for

product-specific scale economies for good i (PScalei) as

PScalei =
ICi(Y,W )

YiMCi
=
ICi(Y,W )

/
TC

ηtc,yi

, (2.8)

where ICi is the incremental cost of the ith output. Incremental cost can be calculated as

the difference in total costs when the firm produces a given level of output i while keeping

the remaining output mix constant (Baumol et al., 1982), ICi = TC(Y1, . . . , Yn,W ) −

TC(Y1, . . . , Yi−1, 0, Yi+1, . . . , Yn,W ).

Measuring product-specific scale economies with equation (2.8) requires the cal-

culation of the total cost function at zero output levels. The calculation of (2.1) at zero

output levels is infeasible given the nature of hospital output, i.e., hospitals have little to

no control over the output mix that is produced. However, a work around method has

been proposed by Kim (1986). The problem associated with the calculation of incremen-

tal costs can be resolved by using a reference point, with the suggested reference point

being ten percent of the sample mean outputs. Following (Kim, 1986), product-specific

scale economies for the translog cost function, at the approximation point, can then be

derived as

PScalei =
exp (α0)− exp

(
α0 + αi ln z + 1

/
2 αii(ln z)

2
)

αi exp (α0)
. (2.9)

Given that both the dependent and independent variables of the cost function are in

natural logarithms, and that ln = 0 is not defined, the suggested ten percent, z = 0.1,

of the sample means is used in place of the zero output levels.
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Additionally, product-specific scale economies between a set of outputs (PScaleij)

can be calculated, at the approximation point, as,

PScaleij =
exp (α0)− exp

[
α0 + αi ln z + αj ln z + 1

/
2 αii(ln z)

2 + 1
/
2 αjj(ln z)

2
]

(αi + αj) exp (α0)
.

(2.10)

Product-specific scale economies between sets of output measures whether or not cost

savings can be had by increasing only a given set of products.

2.2.3 Economies of Scope

Just like with scale economies, there are two types of scope economies that can be

calculated for multi-output institutions: overall scope economies, and product-specific

scope economies. Overall scope economies arise if the total cost associated with the joint

production of all the products in the output mix are less than the sum of the costs of

producing each product separately. While product-specific economies of scope exist if

the cost associated with the addition of a specific product to the output mix is lower

than the cost of producing that product alone.

Following Panzar and Willig (1977) overall scope economies (OScope), for the

multi-product firm can be calculated as

OScope =
∑n

i=1 TCi(Y,W )− TC(Y,W )

TC(Y,W )
, (2.11)

where TCi(Y,W ) is the total cost associated with the production of the specific output

Yi. If OScope is greater than zero, then hospitals are experiencing cost savings that

result from the joint production of their output mix, thereby exhibiting overall scope

economies.
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If OScope is less than zero, then hospitals are experiencing overall diseconomies of scope

and are incurring increased costs that are a result from the joint production of the

output-mix.

Product-specific scope economies are present when the joint production of an out-

put, along with the existing output mix, is less costly than independently producing the

output alone. According to Kim (1986) product-specific economies of scope (PScopei),

for the translog cost function at the point of approximation, for a product Yi is given by

PScopei =
exp

(
α0 +

∑
j 6=i αj ln z + 1

/
2
∑

j 6=i αjj(ln z)
2
)

exp (α0)

+
exp

(
α0 + αi ln z + 1

/
2αii(ln z)

2
)
− exp (α0)

exp (α0)
. (2.12)

A PScopei value greater than zero indicates the existence of product-specific scope

economies for the ith output. Meaning that the firm is experiencing cost savings due to

the joint production of the ith output along with the existing output mix. If PScopei

yields a value less than zero, then the firm is exhibiting diseconomies of product-specific

scope. That is, the firm is incurring higher costs by jointly producing the ith product

with the remaining output mix.

2.2.4 Relative Cost Efficiency

When a hospital is technically efficient it means that it is deriving the maximum output

from its inputs. In order to derive a general sense of a hospital’s technical efficiency,

when estimating the relationship between total cost and outputs, this study estimates

the translog cost function via the stochastic frontier approach (SFA). Estimation of

the translog via SFA is particularly attractive as it has been shown that the method

tends to explain the true structure of cost reasonably well (Worthington, 2004). Unlike
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estimation of the cost function via ISUR, SFA focuses on the residual deviation between

a hospital’s true cost and the predicted costs.

Stochastic frontier analysis separates the error term from the regression into a

stochastic component and an efficiency component (Jondrow et al., 1982). So, the error

term in Equation (2.1) takes the form

ε = v + u, (2.13)

where v represents the stochastic component of the regression, which is assumed to be

an independently and identically distributed (i.i.d.) normal variable with a mean of

zero and variance σ2; and, u is the inefficiency component, which is assumed to have a

strictly non-negative i.i.d. half-normal distribution. The inefficiency component shows

panel-specific effects and is modelled as a truncated-normal random variable which is

multiplied by a function of time,

u = γtu = {exp [−γ(t− T )]}u, (2.14)

where γ is an unknown scalar paramater at the tth period of observation over T time

periods (Battese & Coelli, 1992). Equation (2.14) is such that the inefficiency component

increases, decreases, or remains constant as t increases. That is, the exponentional

specification constrains, over time, the inefficiency component to either decrease at an

increasing rate, increase at a decreasing rate, or remain constant when γ > 0, γ < 0, or

γ = 0, respectively. So, when γ is positive hospital inefficiency can be assumed to be

decreasing.

Once the coefficients of the translog are estimated, a technical inefficiency score

is calculated. The inefficiency component is interpreted as the percentage difference
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between actual observed hospital costs and the minimum costs represented by the best-

practice cost frontier.3 The best-practices cost frontier, determined by the other hospitals

in the sample, represents the minimum feasible cost given the inputs being employed in

the industry.

2.3 Data

The majority of the data used in this analysis come from the American Hospital Associa-

tion (AHA) Annual Survey Database and the Department of Health and Human Services

(HHS) Cost Reports. The patient case-mix data comes from the Center for Medicare

and Medicaid Services (CMS). While the Hospital Producer Price Index comes by way

of the Bureau of Labor Statistics.

The sample is made up of an unbalanced panel of 181 short-term care hospitals

from the state of Florida, for the period of 1998 through 2007, consisting of 1725 ob-

servations. The dependent variable of total cost (TC) is made up of total operating

expenses, including interest and depreciation. Three main output variables were used

in the analysis; inpatient admissions, emergency room visits, and outpatient visits. In-

patient admissions (Y1) report the total number of acute and intensive care patients

admitted to the hospital. Emergency room visits (Y2) consist of the number of patients

admitted through the hospital’s emergency room.

3For more information on SFA see (Kumbhakar, Kumbhakar, & Lovell, 2003).
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Table 2.1
Summary Statistics

Standard
Variable Description Mean deviation

Dependent
TC Total cost (000 dollars) 117,952 141,636
Independent
Y1 Inpatient admissions 97,847 72,844
Y2 Emergency visits 39,185 42,756
Y3 Outpatient visits 25,260 26,338
W1 Labor costs 55,668 14,742
W2 Capital costs 232,760 112,765
Explanatory
DRG DRG Case-mix index 1.40 0.238
GOV Govt binary 0.09 0.296
NPROF Non-profit binary 0.51 0.500
SY S System binary 0.57 0.495

Values in 2005 dollars.

Outpatient visits (Y3) report the number of same day, non-emergency, patient proce-

dures. Input prices were not readily available in any of the data sets so, following

previous studies, reasonable measures were constructed. The price of labor (W1) was

created by dividing total labor costs by the number of full-time equivalent employees.

The price of capital inputs (W2), i.e., drugs, medical supplies, materials, utilities, capital

stock and the book value of land, was created by dividing the cost of capital by the total

number of facility beds. All cost measures along with input prices and other monetary

values are expressed in 2005 dollars.

In order to account for product heterogeneity, the CMS diagnostic related group

(DRG) case-mix index was added to the cost function. The DRG case-mix measures, on

a per unit basis, the severity of inpatient care, emergency room visits, and outpatient

visits in such a way that can be aggregated into an index representing the overall severity
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of health service demanded. In addition to the DRG case-mix index, commonly used

variables, which have been shown to explain variation in hospital costs, have been added

to the cost function (e.g. Vita, 1990; Dor et al., 1997; Li & Rosenman, 2001). Binary

variables indicating whether a hospital was a member of a multi hospital system (SY S),

whether it was organized as a non-profit (NPROF ), and whether the hospital was

government operated (GOV ) were added. Table 2.1 contains a summary of the variables

along with descriptive statistics.

2.4 Empirical Results

The SFA results of the translog cost function were derived using the xtfrontier routine

in STATA 11. All models converged after 21 iterations.

2.4.1 Cost Function Results

Table 2.2 presents SFA estimates of the translog cost function coefficients, by hospital

size, for the state of Florida. Using the definition of hospital size provided by Preyra and

Pink (2006), the sample was partitioned into three groups: (1) small hospitals consisting

of institutions with fewer than 100 hospital beds; (2) medium sized hospitals consisting

of hospitals that have more than 100 beds but fewer than 300; and, (3) large hospitals

consisting of institutions that have 300 or more beds. With the exception of the labor

cost coefficient for large hospitals, the estimated results with respect to the outputs

(αi’s), input prices (βk’s), and treatment complexity mix (cmi) take on plausible values.

As expected, regardless of hospital size, the leading output contributing the most

to a hospital’s cost is inpatient care, followed by emergency room service, then by out-

patient visits. The labor component contributes the most to overall hospital costs, for
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small and medium sized hospitals. Capital costs, however, is bigger than expected for

large institutions, and is significantly larger than the capital cost faced by medium and

small sized hospitals. In return, the labor cost component for large institutions is neg-

ative, which is not reasonable. This result may be related to the inability of flexible

form cost functions, such as the translog, to accurately represent a firm’s technology for

outputs that are far from the point of approximation (Wales, 1977).

Flexibility is the notion that the functional form of the cost function places no

restrictions on the substitution and scale elasticities of a firm’s inputs; it is a local

property. It is not a global property and thus flexible form cost functions may perform

poorly for data points far from the mean (Caves & Christensen, 1980). That is, the

translog is able to match the first and second derivatives of an arbitraty cost function at

a given point, generally at the sample means. But, the translog may be a poor indicator

of the unknown true cost function at distances far from the sample means.

This may very well be the case in this instance, since there is no upper bound

restriction in the number of beds that make up the sample group of large hospitals. Of

the 594 observations in the sample of large hospitals, 217 have capital cost, per bed,

in excess of $432,000. Which is almost two standard deviations larger than the group’s

mean capital cost of $255,360 per bed. However, regardless of the limitations of flexible

functional form cost functions, the translog cost function still provides insight into the

behavior of an institution’s costs. In particular, the degree of scale and scope economies

exhibited by hospitals. The results reported here are local estimates, not global, meaning

that they are valid for small changes in output near the point of approximation and may

not hold for very large changes or deviations in output.
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Table 2.2
SFA Results

Coefficient Variable Results

Small Medium Large

Constant α0 2.085(1.842) 16.69(2.012) 18.64(2.051)
lnY1 α1 0.490(0.139) 0.579(0.079) 0.635(0.273)
lnY2 α2 0.239(0.116) 0.278(0.042) 0.369(0.081)
lnY3 α3 0.186(0.056) 0.208(0.029) 0.249(0.113)
lnY1 · lnY1 α11 0.006(0.007) 0.007(0.026) -0.013(0.026)
lnY1 · lnY2 α12 0.105(0.041) 0.028(0.026) 0.047(0.027)
lnY1 · lnY3 α13 -0.146(0.044) -0.030(0.029) -0.002(0.031)
lnY2 · lnY2 α22 0.027(0.029) 0.093(0.029) 0.127(0.028)
lnY2 · lnY3 α23 0.001(0.024) 0.013(0.024) -0.159(0.029)
lnY3 · lnY3 α33 0.076(0.018) 0.146(0.029) 0.366(0.047)
lnW1 β1 0.560(0.131) 0.591(0.083) -0.182(0.091)
lnW2 β2 0.441(0.131) 0.409(0.083) 1.182(0.091)
lnW1 · lnW1 β11 0.019(0.013) 0.020(0.007) 0.050(0.007)
lnW1 · lnW2 β12 -0.027(0.004) -0.038(0.003) -0.003(0.002)
lnW2 · lnW2 β22 0.008(0.013) 0.018(0.007) -0.046(0.008)
lnY1 · lnW1 δ11 0.015(0.005) 0.021(0.003) 0.004(0.004)
lnY1 · lnW2 δ12 0.080(0.017) 0.212(0.022) -0.039(0.018)
lnY2 · lnW1 δ21 0.009(0.006) 0.001(0.004) 0.008(0.004)
lnY2 · lnW2 δ22 -0.150(0.032) -0.339(0.032) 0.216(0.034)
lnY3 · lnW1 δ31 -0.018(0.006) -0.010(0.004) 0.003(0.005)
lnY3 · lnW2 δ32 0.064(0.033) 0.115(0.029) -0.192(0.033)
DRG γ1 0.446(0.086) 0.266(0.038) 0.227(0.031)
GOV γ2 0.133(0.037) 0.009(0.022) -0.034(0.017)
NPROF γ3 -0.032(0.025) 0.048(0.013) 0.111(0.014)
SY S γ4 -0.025(0.024) 0.008(0.012) 0.007(0.012)
N 342 805 578

Standard errors in parentheses.
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2.4.2 Economies of Scale Results

The first step in determining if there are any potential gains to production efficiency for

Florida hospitals is to look at economies of scale. From the stochastic frontier results

of the translog cost function, overall scale economies were derived using Equation (2.7).

The result are presented below in Table 2.3 along with their standard errors.4

Table 2.3
Scale economies∗

Small 1.113 (0.014)
Medium 0.963 (0.008)
Large 0.839 (0.006)
All 0.948 (0.008)
∗ Mean values derived via Equation (2.7). Values greater than, equal to, or
less than one indicate increasing, constant, or decreasing returns to scale.

The results show that, on average, only small sized institutions enjoy gains from

overall scale economies; while, medium and large sized hospitals exhibit diseconomies

of scale. It is curious to note that even though medium sized institutions exhibit dis-

ceconomies of scale, they are very close to the point of constant returns. That is to

say, small hospitals enjoy overall production efficiencies, while large hospitals, and to a

lesser extent, medium sized hospitals, are not enjoying efficiency gains from their overall

output. As a whole, the results suggests that, for the state of Florida, as hospital size

increases the gains from overall scale economies decreases.

4The results were derived from the predicted economies of scale function along with the data. Thus,
the results are vectorized over the observations and are not scalars. The standard errors were generated
by the statistical software, Stata, using the predictnl command which uses the delta method in deriving
the test statistics. For more information see the Stata 11 Base Reference Manual.
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Point estimates of product-specific scale economies for both single outputs and

combinations of outputs are presented in Table 2.4. Given that the measurement of in-

cremental cost is not feasible, as detailed in the section of the text dealing with economies

of scale, only point estimates are presented. Therefore, no standard errors are reported

in Table 2.4.

Table 2.4
Product-specific scale economies at point of estimation∗

Y1 – Inpatient admissions 1.397
Y2 – Emergency visits 1.450
Y3 – Outpatient visits 1.129
Y1 and Y2 1.009
Y1 and Y3 1.052
Y2 and Y3 1.082

∗ Point of approximation values derived via Equations (2.9) and (2.10). Values
greater than one indicate that economies of scale are present.

Product-specific scale economies are present for all three outputs. With emer-

gency room visits and inpatient admissions, 1.450 and 1.397 respectively, being larger

than outpatient visits, 1.129. While hospitals as a whole exhibit product-specific scale

economies, we would have expected them to have more control over the average costs

associated with outpatient visits, as outpatient procedures are generally scheduled and

can be planned for in advance, unlike emergency room visits and most inpatient admis-

sions. The results suggests that hospitals have focused on achieving cost efficiencies on

the outputs which contribute the most to costs but are the most stochastic. Florida

hospitals can then obtain greater output efficiencies and therby greater cost savings by

the expansion of emergency room visits and inpatient admissions.
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Product-specific scale economies associated with the combined output groups

reveals that hospitals in the state are enjoying a little more than constant returns to scale

in all combinations of product sets. With the product sets that include outpatient visits

providing the most gains in cost efficiencies; 1.082 for emergency room visits combined

with outpatient visits, 1.052 for inpatient admissions combined with outpatient visits,

and 1.009 for inpatient admissions combined with emergency room visits.

Hospitals exhibit overall diseconomies of scale while enjoying product-specific

scale economies. This is because of the fact that the measurement of product-specific

scale economies only takes into account the cost associated with the output being con-

sidered. So, if hospitals produced solely one ouput, say inpatient admissions, then

economies of scale, of magnitude 1.397, would be present. However, hospitals are mul-

tiproduct institutions and as such produce mutliple outputs simultaneously. It is in

the production of multiple outputs that Flodia hospitals, as a whole, experience overall

disceonomies of scale.

2.4.3 Economies of Scope Results

Results on scope economies are presented in Table 2.5. All three partitioned groups

enjoy the presence of overall scope economies. Large hospitals experience particularly

pronounced economies of scope of 2.186, followed by medium-sized hospitals at 1.869.

Small hospitals enjoy the least gains from expanding scope, at 1.421. The results on

overall scope economies can be interpreted as the percentage difference between the

cost associated with joint production and the cost associated of producing each output

seperately. That is, the value of overall economies of scope of 1.421 for small hospitals

means that it would cost small hospitals, on average, 142.1 percent more to produce the

outputs seperately rather than jointly.
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Table 2.5
Scope economies∗

Small 1.421 (0.032)
Medium 1.869 (0.012)
Large 2.186 (0.063)
All 1.732 (0.033)
∗ Mean values derived via Equation (2.11). Values greater than zero indicate
the existence of scope economies. Standard errors in parentheses.

The results reported imply that small Florida hospitals benefit the least from out-

put diversification, while large hospitals benefit the most. The results suggest that small

hospitals can benefit more, relative to larger institutions, from focusing on expanding

the scale of production rather than diversifying their product mix. The opposite is true

for large hospitals, they can benefit by continuing to expand and diversify the services

they provide.

Table 2.6
Product-specific scope economies at point of estimation∗

Y1 – Inpatient admissions 0.302
Y2 – Emergency visits 0.270
Y3 – Outpatient visits 0.318
∗ Point of approximation values derived via Equation (2.12). Values greater
than zero indicate that product specific economies of scope are present.

Point estimates of product-specific scope economies are reported in Table 2.6. All

values are positive giving rise to the existence of product-specific economies of scope.
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Evidently, Florida hospitals enjoy cost savings due to the joint production of each output

along with the remaining output mix, rather than the production of each output separate

and apart from the rest of the output mix.

2.4.4 Relative Cost Efficiency Results

The results presented in this section report an inefficiency score that is derived as the per-

centage difference between the actual observed hospital cost and the minimum feasible

cost, or the frontier created statistically from the samples. The estimation of the translog

cost function via SFA creates an inefficiency score for each observation in the samples.

Table 2.7 presents the average inefficiency scores of the three partitioned Florida hospital

groups, along with the average inefficiency score for all Florida hospitals. The inefficiency

results indicate the existence of inefficiencies across all Florida hospitals regardless of

size. The inefficiency score of 0.289, for “All”, indicates that Florida hospital output

is being produced at a cost inefficiency of 28.9%. That is, Florida hospitals, on aver-

age, are producing at a cost that is 28.9% higher than hospitals employing best practices.

Table 2.7
SFA inefficiency scores ∗

Small 0.171 (0.048)
Medium 0.308 (0.087)
Large 0.359 (0.072)
All 0.289 (0.055)
∗ Mean values reported with standard errors in parentheses.
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From the inefficiency results we conclude that large institutions are the most

inefficient, producing at a cost that is 35.9% higher than that of large hospitals employing

best practices. Medium sized hospitals, on average, are operating at a cost that is 30.8%

higher than their best practices, same sized, counterparts. Small hospitals are the least

inefficient, operating on average at a cost that is 17.1% higher than the small hospitals

operating at the minimum feasible cost frontier.

2.5 Conclusion

The assumption that efficiency gains can be readily had by consolidating smaller firms

into larger institutions does not necessarily hold for the Florida hospital industry. This

paper analyzed output and cost efficiencies for Florida hospitals over the period between

1998 and 2007. When comparing the output efficiency results with those of relative cost

efficiency, some tentative conclusions can be drawn.

First, the empirical evidence supports the conclusion that only small sized hos-

pitals in the state, those with fewer than 100 beds, enjoy overall economies of scale.

The same evidence also suggests that medium and large hospitals exhibit diseconomies

of scale. Albeit, medium sized institutions are very close to enjoying constant returns

to scale. Second, the empirical evidence suggests that, regardless of size, all Florida

hospitals, on average, enjoy significant overall scope economies. Larger institutions eno-

joy the greatest benefits from product diversification, followed by medium, and then

by small, sized hospitals. Third, the empirical evidence also supports the conclusion

that, on average, all Florida hospitals enjoy costs savings due to the joint production of

output. Finally, small hospitals, which enjoy the highest levels of overall economies of

scale, also are the institutions operating closest to the minimum cost frontier.
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From a policy perspective, the lack of a cost advantage for large diversified hos-

pitals implies that the industry appears to be in no danger of being dominated by a

few large firms. Policy choices that can help the process of consolidation, especially

between relatively small hospitals, may be desirable. Smaller hospitals appear to stay

competitive by operating closer to the efficient frontier. These smaller hospitals can then

improve output efficiency by expanding their scale of production or merging with other

institutions. Even though there is a threat that smaller hospitals can and may be taken

over by larger more diversified firms, the evidence suggests that there is opportunity for

smaller and less diversified hospitals to operate efficiently. To conclude, the results have

shown that policy should be geared towards increasing scale for institutions with fewer

beds and towards facilitating multiproduct production in larger institutions.
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CHAPTER 3

EFFICIENCY OF FLORIDA HOSPITALS: A DATA ENVELOPMENT ANALYSIS
APPROACH

3.1 Introduction

In spite of continued efforts to curb health spending, healthcare costs in the United

States continue to rise. According to a recent publication by the National Center for

Health Statistics, health expenditures totaled $2.3 trillion and accounted for 16% of

Gross Domestic Product (GDP) in 2008, compared to $1.3 trillion and 13.6% of GDP in

2000 (National Center for Health Statistics, 2010). Furthermore, during the same period

real per capita spending on hospital care rose by approximately 68%. It is believed that a

large contributing factor associated with the rising cost of hospital care is the inefficiency

of health care institutions (Worthington, 2004). Having a clear understanding of the

causes of hospital inefficiency, along with the inputs of production, and environmental

factors that lead to those inefficiencies is of central importance to the managers of

healthcare establishments. It is particularly important when they are making policy

and budgeting decisions that will affect their institutions.

Efficiency analysis can be an extremely helpful tool for decision makers that al-

lows for a better understanding of the performance of the health care institutions under

their control. The primary aim of this study is, therefore, to measure hospital efficiency

in the state of Florida by applying a nonparametric empirical approach, known as Data

Envelopment Analysis (DEA), in order to derive relative efficiency scores for each hospi-

tal. Data Envelopment Analysis allows the identification of hospitals that are inefficient

relative to their peers and report by how much their inefficiencies differ. Additionally,

the approach taken in this study will identify the factors of production that hospitals
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are over utilizing and that are causing added inefficiencies. This analysis will help man-

agers to directly target those specific inputs when trying to improve their institution’s

performance. Finally, I will identify structural, managerial, and environmental factors

that lead to improved efficiency results.

The present paper continues as follows. The second section discusses the two

stage approach and the models used in each stage. The third section describes the data

and the variables used in the study. The fourth section presents and reviews the empirical

results from each stage of the analysis, with the fifth and final section summarizing the

results and concluding the paper.

3.2 Methodology for Estimating Efficiency

In this paper a two-stage approach is used to analyze a hospital’s overall technical

efficiency and the factors that may explain variations therein. The first stage uses the

Banker, Charnes, and Cooper (1984) (BCC) DEA model in order to derive a technical

efficiency score, from a set of inputs and outputs, for each non-specialty hospital in

the state of Florida. In addition to the individual efficiency scores, in the first stage

the amount of input over utilization (inputs slacks) associated with each hospital are

calculated. The second stage involves regressing the efficiency score generated in the

first step on a number of structural, managerial, and environmental factors that may

have an impact on the efficiency of Florida hospitals via a Tobit regression model.

3.2.1 Data Envelopment Analysis

Data Envelopment Analysis is a nonparametric method for measuring the overall tech-

nical efficiency of a decision making unit (DMU), in this case Florida hospitals. It
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constructs a production frontier from the data set based on the best observed practices.

The DEA approach is a nonparametric technique based on linear programming. Being

nonparametric makes DEA highly attractive for measuring hospital efficiency. The hos-

pital industry is one of the very few markets where not-for-profit, for-profit, church and

government owned institutions produce similar outputs simultaneously. Unlike para-

metric methods of estimating a one-size-fits-all production, or cost, function in order to

measure efficiency, DEA constructs a linear-segmented piece-wise production frontier,

from the available data, without making any assumptions about the underlying produc-

tion technology. This frees the DEA results from any sort of error due to misspecification

of the production technology1.

In DEA, technical efficiency is defined as the ratio of the weighted sum of a

DMU’s outputs to the weighted sum of its inputs. Assuming convexity of production

possibility sets, technical efficiency is then derived by solving the following mathematical

programming problem for each DMU,

max
u,v


S∑
s=1

usysi

M∑
m=1

vmxmi

 (3.1)

1A full and comprehensive treatment of DEA can be found in Fare and Knox Lovell (1978); Fare,
Grosskopf, and Lovell (2008); Lovell et al. (1994); Charnes (1994); Coelli, Rao, and Battese (1998);
Cooper, Seiford, and Tone (2000).
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subject to:
S∑
s=1

usysj

M∑
m=1

vmxmj

≤ 1, j = 1, . . . , I

us, vm ≥ 0

where ysi is the quantity of output s for DMUi, us is a positive weight associated with

output ys, xmi is the quantity of input xm for DMUi, and vm is a positive weight asso-

ciated with input xm.

If we let the M inputs and S outputs for the ith DMU be represented by the

column vectors xi and yi, respectively; the formulation in (3.1) can be more succinctly

written as,

max
u,v

(
u′yi
v′xi

)
, (3.2)

subject to:

u′yj
v′xj

≤ 1, j = 1, . . . , I

u,v ≥ 0.

Intuitively, the mathematical programming problem in (3.2) seeks to find the

output and input weights that maximize the efficiency of the ith DMU, relative to all

its peers, with the constraints that the maximum efficiency any DMU may attain is

equal to one. The optimal weights are computed for each DMU and are calculated in

order to maximize a DMU’s weighted output-input ratio. However, a problem with the

formulation in (3.2) is that there are an infinite number of solutions (Coelli et al., 1998).
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If (u∗,v∗) is a solution to the mathematical programming problem, then (αu∗, αv∗), for

any positive value of α, must also be a solution. In order to overcome this issue either

the numerator or the denominator must be restricted to equal to one (Cooper et al.,

2000). Thus, the problem becomes to either maximize the weighted outputs subject to

the weighted inputs being equal to one, or to minimize the weighted inputs subject to

the weighted outputs being equal to one.

According to Coelli et al. (1998) the problem of multiple solutions can be over-

come by rewriting the mathematical programing problem in multiplier form, as opposed

to ratio form, as follows

max
µ,ν

(µ′yi) , (3.3)

subject to:

ν ′xj = 1,

µ′yj − ν ′xj ≤ 0, j = 1, . . . , I,

µ, ν ≥ 0,

where u and v have been replaced with µ and ν in order to emphasize that the math-

ematical programming problem has changed. The maximization problem in (3.3), sets

out to measure efficiency by maximizing the output given the level of inputs a DMU

employs. However, hospitals are not free to choose the level of output they produce.

Florida hospitals are required to provide emergency services to all that seek it and as

the need arises. With few exceptions, they have little to no control over the number of

illnesses they treat, nor the severity of such illnesses. They supply health services as it is

demanded. Therefore, this study is interested in the dual of the maximization problem

in (3.3). That is, we are interested in measuring efficiency by minimizing the amount of
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inputs a hospital employs given the level of outputs it produces. According to Coelli et

al. (1998), following the duality in linear programming, (3.3) can also be written as the

following minimization problem

min
θ,λ

θ, (3.4)

subject to:

− yi + λY ≥ 0,

− θxi −Xλ ≥ 0,

λ ≥ 1,

where θ is the efficiency component, λ is an a I × 1 vector of weights that is associated

with each specific DMU, X and Y are the input and output matrices representing the

data of all the DMUs.

The linear programming model in (3.4) is known as the input-oriented technical

efficiency DEA Model with variable returns to scale. The input-oriented DEA model

seeks optimal values for θ and λ that will radially contract the ith DMU’s input vector,

xi, while maintaining output constant. The input-oriented model in essence measures

by how much and to what extent it is possible for a DMU to reduce its inputs without

affecting the level of its outputs. The value of θ is the efficiency score obtained for the

ith DMU, with a value of one indicating a technically efficient point and thus a point

on the frontier. The linear programming problem must be solved for each DMU in the

sample in order to derive the value of θ for each hospital.
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Figure 3.1
Production Possibility Set
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To illustrate, suppose there are four hospitals using two inputs, x1 and x2, in

order to produce one output y. Figure 3.12 shows that hospitals C and D form the

piece-wise linear isoquant that is the efficient production frontier. Hospitals A and B are

off the frontier and are thus inefficient. The efficiency measure can then be calculated for

hospital A as OA′/OA and for hospital B as OB′/OB. A point such as A′ is considered

to be Farrell-Efficient (Farrell, 1957). However, whether a point such as A′ is efficient is

questionable because the hospital at point A′ can further reduce its use of x2, by CA′, to

the level employed by hospital C. A situation like A′ occurs when there is the presence

2Figure 3.1 was adopted from Coelli et al. (1998) and Cooper et al. (2000) .
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of input slacks in the input constraint of the linear programming problem found in (3.4),

−θxi −Xλ 6= 0. A value greater than zero in the input slack represents the additional

amount by which a DMU can decrease its input after accounting for its inefficiency,

while producing the same level of output. A point such as B′, which is on the frontier

and exhibits zero input slack is known as being Koopmans-Efficient (Koopmans, 1951).

Both the value of overall technical efficiency, θ, and the corresponding input slacks are

derived and reported in this study.

3.2.2 Tobit Regression

In the second stage, a Tobit regression (Tobin, 1958) model is used in order to evaluate

the affect various structural, organizational, and environmental factors may have on the

overall technical efficiency of Florida hospitals. A Tobit regression model was selected

since the dependent variable of the regression, overall hospital technical efficiency which

reports values within the interval (0, 1], is censored from above. In this instance, using

an ordinary least square (OLS) regression was ruled out given that the results would

have been biased and inconsistent (Amemiya, 1973). The Tobit regression is specified

as follows

θi = β0 + β′Z+ εi (3.5)

where θi is the relative overall technical efficiency score for the ith DMU, the β’s are

coefficient estimates for the numerous structural, organizational, and environmental fac-

tors, Z, thought to affect a hospital’s overall technical efficiency, and εi is a normally

distributed error term.
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3.3 Data

The data for this study were obtained from the American Hospital Association (AHA)

Annual Survey Database, the Department of Health and Human Services (HHS) Cost Re-

ports, and the Center for Medicare and Medicaid Services (CMS) for the year 2007. The

sample consists of all short-term care, non-specialty, hospitals for the state of Florida.

Focusing on a single state eliminates variation in the results from different state level

regulatory and economic factors. Additionally, the study excludes long-term care, psy-

chiatric care, and cancer centers from the sample and focuses solely on general acute

short-term care hospitals. Four output variables and four input variables are used in

the study, along with a range of variables that may help explain variation in hospital

efficiency.

Following previous studies (Cowing and Holtmann (1983); Grannemann, Brown,

and Pauly (1986); Hollingsworth and Parkin (1995)) hospital output is measured as an

array of outputs. Four separate intermediate outputs are considered in this study; acute

care (AC), intensive care (IC), surgeries (SU), and emergency care (EC). It must be

noted that these measures of output are a second-best alternative to the conceptually

ideal measure of improved health status. Unfortunately, a measurement of patient health

status is unavailable in the data. We have, however, focused on in-hospital care and the

most common outputs produced by hospitals. The acute care variable consists of short-

term medical treatment for patients having an illness or injury, it is measured in the

number of admissions. The intensive care variable is also measured in the number of

admissions, and accounts for the treatment of critically ill patients.
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Surgeries are counted as the number of inpatient and outpatient surgical operations

performed during the period under study. Finally, the emergency care variable consists

of all ambulatory outpatient visits and emergency room visits.

Inputs include the number of full-time equivalent physicians (DR), the number

of full-time equivalent licensed and registered nurses along with the number of nurses’

assistants (RN), the number full-time equivalent medical technicians (EM), and the

number of beds (BD). The physicians variable includes all residents plus all physicians

that are employed, associated, or affiliated with the hospital. The registered nurses

variables includes all the licensed practical nurses, registered nurses, and nurse assistants

employed by the the institution. The medical technicians variable is comprised of all

radiology, laboratory, pharmacy, respiratory technicians, and other medical personnel

employed at the hospital. Following previous studies (Fare, Grosskopf, Lindgren, &

Roos, 1992; Linna, 1998; Maniadakis, Hollingsworth, & Thanassoulis, 1999; Blank &

Valdmanis, 2010) the number of fully staffed beds is included as a proxy for the hospital’s

physical capital. Capital, particularly in the health care sector, is a notoriously difficult

variable to collect accurately. Since the number of fully staffed beds a hospital has

represents each hospital’s capacity, we will follow the current literature and allow it to

proxy each hospital’s level of capital.

The independent variables used in the Tobit regression analysis portion of this

study were chosen from previous research as factors that may possibly have an effect on

hospital efficiency. A hospital’s ownership structure along with other managerial and

environmental factors have been closely related to a hospital’s cost structure and have

been linked to overall inefficiencies in the hospital literature (Valdmanis, 1990; Chien,

Rohrer, Ludke, & Levitz, 1995; Wang, Ozcan, Wan, & Harrison, 1999; Chen, Hwang,
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& Shao, 2005). Namely, we look at the effect ownership status has on a hospital’s

overall efficiency; that is, whether structured as a for-profit or not-for-profit institution

(NPROF), being affiliated to a church (CHRCH), or whether being government operated

(GOVT) has any effect on a hospital’s overall efficiency measure. Managerial decisions

may also affect a hospital’s efficiency outcome. Managerial variables considered in this

study include: whether a hospital is contract-managed (MNGMT); whether it is a mem-

ber of a system of hospitals (SYSTM); whether it is a member of the Council of Teaching

Hospitals (TEACH); and whether it is a community hospital as defined by the Hospital

Association of America (CMNTY). Moreover, in order to account for output hetero-

geneity, variables for patient average length of stay (AVLOS) and the CMS’s diagnostic

related group (DRG) case-mix index (CMI) are also considered. Both the AVLOS and

CMI variables serve as proxies for the complexity of care each hospital provides. The

CMI measures, on a per unit basis, the severity of inpatient care, emergency room visits,

and outpatient visits in such a way that can be aggregated into an index representing the

overall severity of health services provided by a hospital; while, AVLOS represents the

average length of bed-days or the amount of factor resources consumed by longer-term

patients. Finally, we constructed a Herfindahl-Hirschman Index (HHI) to account for

the level of competition in a DMU’s county. Market share was computed as the ratio

between a hospital’s total admissions and the total hospital admissions in the county

of operation. The market share for each DMU was then squared and then summed in

order to create an index of competition for each county. Summary statistics, along with

a brief description of each variable, are reported in Table 3.1.
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Table 3.1
Summary Statistics for all Non-Specialty Florida Hospitals

Standard
Variable Description Mean Deviation

Outputs
AC Acute care admissions 139,123 173,901
IC Intensive care admissions 1,162 1,888
SU Total surgeries 7,495 7,519
EC Emergency & ambulatory visits 65,191 77,296
Inputs
DR FTE physicians & residents 132 105
RN FTE nurses 505 513
EM FTE medical technicians & medical personnel 1158 1190
BD Total number of staffed beds 306 285
Explanatory variables
NPROF Not-for profit hospital 0.562 0.497
CHRCH Church operated hospital 0.057 0.238
GOVT Government controlled 0.173 0.376
MNGMT Contract managed hospital 0.0392 0.174
SYSTM Member of a system of hospitals 0.773 0.419
TEACH Teaching hospital 0.541 0.496
CMNTY Community hospital 0.943 0.603
AVLOS Average length of stay, in days 9.694 8.571
CMI Case-Mix index 1.395 0.258
HHI Herfindahl-Hirschman index 0.347 0.291

N = 194

3.4 DEA Results

The DEA efficiency results measure each hospital’s performance relative to the best

practice frontier, which is constructed from the observations in the data. Therefore, all

the results in this study are relative measures and not absolute. Table 3.4 in section

3.7 presents, for all non-specialty Florida hospitals, the full results of overall technical

efficiency, θ, along with the corresponding input slacks, as derived from the linear pro-

gramming model in (3.4). The overall technical efficiency value reports how efficient
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a hospital is relative to its peers or the best practice frontier. The overall technical

inefficiency score indicates, in percentage terms, the amount by which each input can

be proportionally reduced, while keeping the level of outputs constant, in order to move

the DMU onto the production frontier. The input slacks, on the other hand, represent

sources of additional inefficiency to a DMU. Input slacks in the linear programming

problem in (3.4) indicate the additional amount by which inputs can be reduced after

moving onto the efficient production frontier. That is, input slacks that are greater than

zero represent the additional amount by which an individual input can be reduced after

eliminating overall technical inefficiency. Therefore, it is important to keep in mind,

when looking at the results, that a DMU is completely efficient only when θ equals

to 1 and the associated input slacks are all equal to 0, i.e., the DMU is Koopman’s-

Efficient (Koopmans, 1951). For example, DMU 14 has an efficiency score of 0.805.

This means that hospital 14 can reduce the use of all inputs by the amount of its ineffi-

ciency, 1− θ14 = 0.195, or 19.5%. Moreover, DMU 14 has positive slacks for the inputs

RN and EM. This means that not only can DMU 14 reduce the use of all it’s inputs by

19.5%, but it can also reduce the number of RNs it employs by 343 and the number of

EM’s by 86. That is, there is input over-utilization by DMU 14, relative to it’s peers,

of 19.5%, plus there is over-utilization of RNs and EMs by the amount of the overall

technical inefficiency plus the amount of each input slack.

Table 3.2 reports average technical efficiency and input slack results for all non-

specialty Florida hospitals by Metropolitan Statistical Area (MSA).
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Table 3.2
Mean Efficiency and Input Slack Results for all Non-Specialty Florida Hospitals, by MSA

Input Slacks

MSA θ BD DR RN EM

Cape Coral-Fort Myers, FL 0.88(0.16) 6.29(10.27) 0.25(0.57) 0.22(0.49) 4.95(5.64)
Crestview-Fort Walton Beach-Destin, FL 0.90(0.19) 7.05(14.09) 3.81(6.86) 8.16(9.43) 8.29(16.58)
Delton-Daytona Beach-Ormond Beach, FL 0.82(0.17) 5.31(11.86) 1.24(1.71) 75.46(150.1) 40.43(56.35)
Gainesville, FL 0.92(0.12) 0.00(0.00) 5.74(9.95) 7.17(10.89) 0.00(0.00)
Jacksonville, FL 0.97(0.07) 5.35(11.02) 0.00(0.00) 24.55(48.72) 47.68(99.07)
Lakeland-Winter Haven, FL 0.90(0.15) 1.92(4.30) 0.00(0.00) 3.47(7.76) 6.57(14.68)
Miami-Fort Lauderdale-Pompano Beach, FL 0.85(0.15) 4.38(13.10) 4.43(22.44) 14.90(26.36) 28.55(79.45)
Naples-Marco Island, FL 0.98(0.03) 66.06(90.15) 0.00(0.00) 1.65(2.34) 3.45(4.89)
North Port-Bradenton-Sarasota, FL 0.86(0.19) 23.42(17.81) 0.00(0.00) 11.69(13.81) 10.69(16.61)
Ocala, FL 0.92(0.12) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Orlando-Kissimmee-Sanford, FL 0.87(0.13) 1.52(4.81) 0.00(0.00) 11.82(16.62) 23.88(38.62)
Palm Bay-Melbourne-Titusville, FL 0.95(0.13) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Palm Coast, FL 0.68(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 4.51(0.00)
Panama City-Lynn Haven-Panama City Beach, FL 0.95(0.08) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Pensacola-Ferry Pass-Brent, FL 0.91(0.12) 10.60(16.86) 0.00(0.00) 2.29(6.05) 0.00(0.00)
Port St. Lucie, FL 0.96(0.07) 0.00(0.00) 0.00(0.00) 0.00(0.00) 44.22(76.59)
Punta Gorda, FL 0.68(0.14) 0.00(0.00) 0.86(0.91) 23.61(30.62) 0.00(0.00)
Sebastian-Vero Beach, FL 0.71(0.21) 0.00(0.00) 0.00(0.00) 22.09(21.28) 0.00(0.00)
Tallahassee, FL 0.99(0.02) 15.17(21.46) 12.94(18.31) 13.10(18.52) 24.41(34.52)
Tampa-St. Petersburg-Clearwater, FL 0.81(0.14) 5.01(11.66) 8.49(29.21) 24.03(75.97) 6.67(14.53)
Non-MSA 0.89(0.15) 3.36(9.50) 0.09(0.26) 3.06(7.64) 11.64(38.49)

N = 194
Number of Koopmans-Efficient DMUs = 62
Standard deviations in parentheses
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3.5 Tobit Regression Results

Using the overall technical efficiency score derived from DEA, θ, as a dependent variable,

we use a Tobit model in order to understand the effects non-production factors may have

on a DMU’s overall efficiency. This second step is particularly important in order to

understand which factors may affect a hospital’s efficiency. For example, from Table

3.4, DMUs 79 and 94 have identical technical efficiency scores, θ79 = θ94 = 0.827. The

major source of inefficiency, however, for DMU 79 comes from the over utilization of

nurses, DMU 74’s input slack for RN is 83.7. By comparison, DMU 94 uses all its inputs

efficiently, all the input slacks associated with it are equal to zero. There are obvious

factors at work, in the above example, that are not explained by DEA. Thus, the purpose

of this second step is identify some of the structural, managerial, and environmental

factors that can influence a hospital’s overall technical efficiency.

Table 3.3 reports the results of the second stage Tobit regression. With the

exception of SYSTM, CMNTY, and AVLOS all independent variables are statistically

significant. The results indicate that a hospital’s ownership or organizational type has a

significant impact on a hospital’s overall technical efficiency. Hospitals that are not-for-

profit experience, on average, an overall efficiency scores that is .087 higher than for-profit

hospitals. Inversely, church (CHRCH) and government (GOVT) owned hospitals are less

technically efficient than hospitals that are not.

In line with the incentives literature (Baumol, 1957; Williamson, 1963; Becker,

1971), the results show that institutions whose management (MNGMT) is contracted

to third-party firms are less technically efficient than those institutions managed by

its own managers. The logic behind the theory is that third-party managers have a

preference for employing factors of production well above the cost minimizing level. That
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is, third-party managers are not driven by cost-minimization and the efficiencies that are

derived therefrom. The Tobit results indicate this very fact. Contract managed hospitals

experience lower efficiency scores, 0.148 less, than hospitals which do not outsource their

management.

Teaching hospitals often require more investment in capital and equipment for

teaching purposes and often take one more complicated and severe cases for instructional

purposes. The results for the TEACH coefficient reflect this fact. Teaching hospitals,

on average, are less technically efficient than non-teaching hospitals, by a magnitude of

0.236. Similarly, community (CMNTY) hospitals are less technically efficient than their

non-community peers.

The two variables chosen to account for product heterogeneity indicate that there

are small efficiency losses from treating more severe medical cases. It should be noted

that the average length of stay (AVLOS) variable, chosen as a measure of the proportion

of factor resources used by inpatients and thus as a proxy for case severity turns out to

be statistically insignificant. The case-mix index (CMI), which measures, on a per unit

basis, the severity of inpatient care, emergency room visits, and outpatient visits serves

as a proxy for overall severity of health services provided by the hospital. The results as

they relate to CMI indicate that hospitals with more severe cases experience a minimal

reduction, on average, in overall efficiency of 0.011.

The Herfindahl-Hirschman Index (HHI) accounts for the level of competition

in a hospital’s county of operation. The results, indicate that the higher the level of

concentration, or the less the competition a hospital faces, the higher the gains to overall

technical efficiency. That is, institutions that operate in higher concentrated counties

experience, on average, higher levels of overall technical efficiency.
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Table 3.3
Tobit Regression Results for Non-Specialty Florida Hospitals

Standard
Variable Coefficient Error

Constant 0.986∗∗∗ 0.089
NPROF 0.087∗∗ 0.034
CHRCH -0.109∗ 0.063
GOVT -0.045∗∗ 0.016
MNGMT -0.148∗∗ 0.057
SYSTM 0.020 0.034
TEACH -0.236∗∗∗ 0.030
CMNTY -0.005 0.043
AVLOS 0.001 0.002
CMI -0.011∗∗∗ 0.003
HHI 0.112∗∗ 0.059
∗p< 0.1, ∗∗p< 0.05, ∗∗∗p< 0.01

3.6 Conclusion

The purpose of this study was to introduce an approach that enables the measurement

of hospital efficiency by decision makers in order to evaluate the policy choices they

make with respect to their institutions. I employed this approach on a sample of Florida

hospitals in order to derive a technical efficiency score for each institution, and derived

over utilization rates for the factors of production being employed by each hospital. I

found that 112 Florida hospitals, from a sample of 194 observation, are operating away

from the efficient production frontier, while 132 hospitals exhibit factor over utilization.

Additionally, I regressed the relative overall efficiency score of each hospital on a number

of structural, managerial, and environmental factors in order to explain variations in

hospital efficiency. I found several factors that affect a hospital’s efficiency conditional

on its input mix, these include an institution’s for-profit status, external agency control,

teaching status, case-mix severity, and market competition. With additional and less
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aggregated data, the approach outlined in this paper can be expanded and built upon by

hospital managers to derive a complete analysis of their institution’s relative efficiency

and the factors of production that may need specific attention.
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3.7 Complete Results

Table 3.4
DEA Results for all Non-Specialty Florida Hospitals

Input Slacks

DMU θ BD DR RN EM

1 1.000 23.657 0.000 1.107 5.809
2 1.000 0.000 0.000 0.000 0.000
3 0.787 0.000 0.000 0.000 13.759
4 0.969 7.791 0.000 0.000 5.182
5 0.654 0.000 1.268 0.000 0.000
6 0.626 0.000 1.185 0.000 0.000
7 1.000 0.000 0.000 0.000 0.000
8 1.000 28.181 0.000 15.709 33.164
9 0.993 0.000 14.063 16.913 0.000
10 0.681 0.000 2.732 0.000 0.000
11 0.626 0.000 3.457 0.000 0.000
12 1.000 26.529 0.000 34.740 115.947
13 1.000 0.000 0.000 0.000 0.000
14 0.805 0.000 0.000 342.570 86.179
15 0.982 0.000 0.000 19.703 0.000
16 1.000 0.000 0.000 0.000 0.000
17 0.780 0.000 17.234 1.805 0.000
18 1.000 0.000 0.000 0.000 0.000
19 1.000 0.000 0.000 0.000 0.000
20 0.862 0.000 0.000 79.056 333.376
21 0.960 14.475 0.000 0.000 0.000
22 1.000 14.044 0.000 151.719 76.574
23 1.000 0.000 0.000 0.000 0.000
24 1.000 0.000 0.000 0.000 0.000
25 1.000 0.000 0.000 0.000 0.000
26 1.000 0.000 0.000 0.000 0.000
27 0.795 0.000 0.000 0.000 30.754
28 1.000 35.666 0.000 63.847 131.437
29 1.000 0.000 0.000 0.000 0.000
30 1.000 0.000 0.000 0.000 0.000
31 0.855 0.000 0.000 0.000 0.000
32 0.665 0.000 0.000 0.000 0.000
33 1.000 9.610 0.000 17.351 32.833

Continued on next page
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Table 3.4 – continued from previous page

Input Slacks

DMU θ BD DR RN EM

34 1.000 0.000 0.000 0.000 0.000
35 1.000 19.876 0.000 18.162 92.682
36 1.000 0.000 0.000 0.000 0.000
37 1.000 0.000 0.000 0.000 0.000
38 0.700 0.000 6.068 18.782 0.000
39 0.816 0.000 0.000 66.621 0.000
40 1.000 0.000 0.000 0.000 0.000
41 0.930 0.000 0.000 0.000 0.000
42 0.865 0.000 154.352 10.323 276.688
43 0.664 0.000 0.000 76.219 0.000
44 1.000 0.000 0.000 0.000 0.000
45 1.000 5.406 0.000 9.570 97.840
46 0.930 0.000 0.000 0.000 446.988
47 0.751 24.741 0.000 0.000 0.000
48 0.691 0.000 0.000 32.361 0.000
49 1.000 0.000 0.000 0.000 0.000
50 0.756 0.000 0.000 0.000 0.000
51 0.769 0.000 0.000 0.000 0.000
52 0.863 0.000 0.000 0.000 0.000
53 0.719 0.000 0.114 0.000 0.000
54 1.000 0.000 0.000 0.000 0.000
55 0.765 26.702 0.256 0.000 0.000
56 0.582 0.000 0.009 37.609 0.000
57 1.000 0.000 0.000 0.000 0.000
58 0.807 0.000 0.000 0.000 0.000
59 0.943 0.000 6.398 26.081 151.206
60 1.000 0.000 0.000 0.000 0.000
61 0.682 6.599 0.000 9.303 0.000
62 0.833 0.000 0.000 0.000 0.000
63 0.634 0.000 47.065 0.131 0.000
64 1.000 60.360 0.000 56.639 156.688
65 0.842 0.000 0.000 0.000 97.216
66 0.895 0.000 0.000 0.000 61.436
67 0.620 0.000 6.729 0.000 0.000
68 1.000 0.000 0.000 0.000 0.000
69 0.679 0.000 0.000 6.231 0.000
70 0.821 0.000 0.000 0.000 0.000
71 1.000 1.276 0.000 1.801 34.413
72 0.747 62.983 0.000 27.002 0.000

Continued on next page
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Table 3.4 – continued from previous page

Input Slacks

DMU θ BD DR RN EM

73 0.823 4.013 0.000 85.279 0.000
74 0.857 0.000 0.000 0.000 0.000
75 0.333 11.670 0.000 13.852 24.216
76 0.761 0.000 0.000 0.000 16.681
77 1.000 0.000 0.000 0.000 0.000
78 0.944 0.000 4.428 90.458 0.000
79 0.827 0.000 0.000 83.743 0.000
80 0.819 0.000 0.000 67.785 0.000
81 1.000 0.000 0.000 0.000 0.000
82 1.000 0.000 0.000 0.000 0.000
83 0.588 0.000 0.000 21.810 0.000
84 1.000 0.000 0.000 0.000 0.000
85 1.000 0.000 0.000 0.000 0.000
86 1.000 2.314 0.000 3.306 6.909
87 0.951 129.810 0.000 0.000 0.000
88 0.544 42.047 0.000 0.000 0.000
89 0.894 39.700 0.000 32.786 0.000
90 1.000 0.000 0.000 0.000 0.000
91 0.722 6.358 0.000 0.000 0.000
92 1.000 33.900 0.000 18.188 30.185
93 1.000 18.537 0.000 19.171 33.973
94 0.827 0.000 0.000 0.000 0.000
95 1.000 0.000 0.000 0.000 0.000
96 0.871 0.000 0.000 16.624 0.000
97 0.704 0.000 0.000 3.904 0.000
98 0.952 0.000 0.000 0.000 71.037
99 1.000 15.195 0.000 25.037 85.376

100 1.000 0.000 0.000 0.000 0.000
101 0.727 0.000 0.000 23.614 0.000
102 1.000 0.000 0.000 0.000 0.000
103 0.746 0.000 0.000 49.055 0.000
104 1.000 0.000 0.000 0.000 0.000
105 0.720 0.000 0.000 0.000 82.427
106 1.000 0.000 0.000 0.000 0.000
107 1.000 0.000 0.000 0.000 0.000
108 1.000 0.000 0.000 0.000 0.000
109 1.000 0.000 0.000 0.000 0.000
110 0.671 0.000 0.000 0.000 0.000
111 1.000 0.000 0.000 0.000 0.000

Continued on next page
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Table 3.4 – continued from previous page

Input Slacks

DMU θ BD DR RN EM

112 0.681 0.000 0.000 0.000 4.507
113 0.856 0.000 0.000 0.000 0.000
114 1.000 0.000 0.000 0.000 0.000
115 1.000 0.000 0.000 0.000 0.000
116 0.927 43.128 0.000 0.000 0.000
117 1.000 0.000 0.000 0.000 0.000
118 0.769 24.200 0.000 16.019 0.000
119 0.985 0.000 0.000 0.000 0.000
120 1.000 0.000 0.000 0.000 0.000
121 1.000 0.000 0.000 0.000 0.000
122 0.704 6.896 0.000 0.000 0.000
123 0.998 0.000 0.000 0.000 132.655
124 0.875 0.000 0.000 0.000 0.000
125 1.000 0.000 0.000 0.000 0.000
126 0.525 0.000 0.773 0.000 0.000
127 0.737 0.000 0.000 58.215 0.000
128 0.783 0.000 1.806 12.625 0.000
129 0.562 0.000 0.000 21.921 0.000
130 0.866 0.000 0.000 22.255 0.000
131 0.973 0.000 25.888 0.000 0.000
132 1.000 30.343 0.000 26.195 48.812
133 0.640 5.421 0.000 0.000 0.000
134 0.787 0.000 1.356 9.300 0.000
135 1.000 31.532 0.000 106.585 51.915
136 0.651 0.000 1.273 0.000 0.000
137 0.770 0.000 0.000 95.656 0.000
138 0.984 0.000 0.000 413.008 0.000
139 0.738 0.000 0.000 0.000 0.000
140 0.998 0.000 116.822 0.000 0.000
141 0.617 0.000 0.000 0.000 0.000
142 0.758 0.000 0.000 0.000 0.000
143 0.745 0.000 0.000 0.000 35.112
144 0.699 0.000 0.000 0.000 13.931
145 0.816 3.187 0.000 0.000 0.000
146 1.000 0.000 0.000 0.000 0.000
147 0.764 0.000 0.000 8.010 6.309
148 0.749 23.719 0.000 0.000 0.000
149 0.603 0.000 0.632 0.000 0.000
150 0.768 0.000 24.151 0.000 0.000

Continued on next page
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Table 3.4 – continued from previous page

Input Slacks

DMU θ BD DR RN EM

151 0.801 37.500 0.000 0.000 0.000
152 1.000 0.000 0.000 0.000 0.000
153 0.700 0.000 7.143 0.000 49.870
154 1.000 0.000 0.000 0.000 0.000
155 0.703 0.000 0.000 53.707 0.000
156 0.677 0.000 0.000 0.000 30.461
157 0.713 0.000 0.000 52.656 0.000
158 0.650 0.000 0.000 0.000 0.000
159 0.723 43.497 0.000 20.602 0.000
160 1.000 0.000 0.000 0.000 0.000
161 0.847 8.553 120.274 0.000 0.000
162 1.000 0.000 0.000 0.000 0.000
163 1.000 0.000 0.000 0.000 0.000
164 1.000 6.958 0.000 9.482 16.236
165 1.000 13.099 0.000 18.304 38.084
166 0.688 0.000 0.000 3.419 0.000
167 1.000 19.125 0.000 5.270 14.004
168 0.754 28.699 0.000 0.000 0.000
169 1.000 0.000 0.000 0.000 0.000
170 1.000 0.000 0.000 0.000 0.000
171 0.668 0.000 0.000 1.647 0.000
172 1.000 0.000 0.000 0.000 0.000
173 1.000 0.000 0.000 0.000 0.000
174 0.981 0.000 0.000 0.000 0.000
175 0.939 0.000 0.000 0.000 0.000
176 0.701 0.000 0.162 0.000 2.602
177 0.621 0.000 1.166 0.000 0.000
178 0.673 0.000 0.532 5.781 0.000
179 0.829 0.000 0.000 12.886 0.000
180 1.000 0.000 0.000 0.000 0.000
181 1.000 39.966 0.000 36.503 207.567
182 1.000 0.000 0.000 0.000 0.000
183 1.000 0.000 0.000 0.000 0.000
184 1.000 0.000 0.000 0.000 0.000
185 1.000 0.000 0.000 0.000 0.000
186 0.896 0.000 0.042 0.000 17.448
187 0.829 0.000 0.000 0.000 0.000
188 1.000 0.000 0.000 0.000 0.000
189 1.000 0.000 0.000 0.000 0.000

Continued on next page
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Table 3.4 – continued from previous page

Input Slacks

DMU θ BD DR RN EM

190 1.000 0.000 0.000 0.000 0.000
191 0.956 0.000 0.000 8.032 38.928
192 0.540 0.000 0.000 0.000 16.556
193 1.000 0.000 0.000 0.000 0.000
194 0.752 0.000 0.768 0.000 14.140
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