
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-13-2011

A Domain Specific Modeling Approach for
Coordinating User-Centric Communication
Services
Yali Wu
Florida International University, ywu001@fiu.edu

DOI: 10.25148/etd.FI11081201
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Wu, Yali, "A Domain Specific Modeling Approach for Coordinating User-Centric Communication Services" (2011). FIU Electronic
Theses and Dissertations. 465.
https://digitalcommons.fiu.edu/etd/465

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/465?utm_source=digitalcommons.fiu.edu%2Fetd%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A DOMAIN SPECIFIC MODELING APPROACH FOR COORDINATING

USER-CENTRIC COMMUNICATION SERVICES

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Yali Wu

2011

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Yali Wu, and entitled A Domain Specific Modeling
Approach for Coordinating User-Centric Communication Services, having been ap-
proved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

S. Masoud Sadjadi

Xudong He

Vagelis Hristidis

Armando Barreto

Peter J. Clarke, Major Professor

Date of Defense: July 13, 2011

The dissertation of Yali Wu is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Interim Dean Kevin O’Shea
University Graduate School

Florida International University, 2011

ii

c©Copyright 2011 by Yali Wu

All rights reserved.

iii

DEDICATION

To my mom, dad and friends, for your enduring support through this journey.

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to all who contributed to the success

of my PhD study and the completion of this thesis. I would especially like to thank

the members of my committee, Drs. S. Masoud Sadjadi, Xudong He, Vagelis Hristidis

and Armando Barreto, for their insightful comments, and thorough questioning, which

helped me focus on my research ideas in completing my thesis. I am also grateful

for Dr. Deng, the formal dean of the school, for his stimulating discussions with me,

motivating research ideas and guidance during his service at FIU.

I would like to thank all students who have been working in the CVM team, in-

cluding Yingbo Wang, Andrew Allen, Frank Hernandez, Juan Carlos Matinez, for

their support and patience, and always willing to offer suggestions for improvement.

To Professor Jean-Marc Jézéquel and fellow researchers of the University of Rennes

I in France, and the great opportunity provided by the Partnership for International

Research and Education (PIRE) program, for the generous support during my in-

ternship at Rennes, France in the summer of 2009.

Finally, I would like to express my deepest and foremost gratitude to my advisor,

mentor and friend, Dr. Peter J. Clarke, for his guidance and continuous support

of my PhD. study and research. Especially during my difficult times, when I am

bewildered, confused and unsure about myself, it is Dr. Clarke who led me out of

the way through constant encouragement. I thank him for his patience, perseverance,

and hard support during my preparation for, and writing of this thesis.

v

ABSTRACT OF THE DISSERTATION

A DOMAIN SPECIFIC MODELING APPROACH FOR COORDINATING

USER-CENTRIC COMMUNICATION SERVICES

by

Yali Wu

Florida International University, 2011

Miami, Florida

Professor Peter J. Clarke, Major Professor

Rapid advances in electronic communication devices and technologies have re-

sulted in a shift in the way communication applications are being developed. These

new development strategies provide abstract views of the underlying communica-

tion technologies and lead to the so-called user-centric communication applications.

One user-centric communication (UCC) initiative is the Communication Virtual Ma-

chine (CVM) technology, which uses the Communication Modeling Language (CML)

for modeling communication services and the CVM for realizing these services. In

communication-intensive domains such as telemedicine and disaster management,

there is an increasing need for user-centric communication applications that are

domain-specific and that support the dynamic coordination of communication ser-

vices commonly found in collaborative communication scenarios. However, UCC

approaches like the CVM offer little support for the dynamic coordination of commu-

nication services resulting from inherent dependencies between individual steps of a

collaboration task. Users either have to manually coordinate communication services,

or reply on a process modeling technique to build customized solutions for services in

a specific domain that are usually costly, rigidly defined and technology specific.

This dissertation proposes a domain-specific modeling approach to address this

problem by extending the CVM technology with communication-specific abstractions

of workflow concepts commonly found in business processes. The extension involves

vi

(1) the definition of the Workflow Communication Modeling Language (WF-CML),

a superset of CML, and (2) the extension of the functionality of CVM to process

communication-specific workflows. The definition of WF-CML includes the meta-

model and the dynamic semantics for control constructs and concurrency. We also

extended the CVM prototype to handle the modeling and realization of WF-CML

models. A comparative study of the proposed approach with other workflow environ-

ments validates the claimed benefits of WF-CML and CVM.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivation . 4
1.2 Problem Definition . 7
1.3 Outline of Work . 9

2 LITERATURE REVIEW . 10
2.1 Background . 10
2.1.1 User-Centric Communication . 10
2.1.2 Model Driven Software Development 12
2.1.3 Modeling User-Centric Communication Services 18
2.1.4 Workflow Fundamentals . 22
2.2 Related Work . 25
2.2.1 User-Centric Communication Initiatives 25
2.2.2 Workflow Modeling Languages . 27
2.2.3 Combining Workflow with Multimedia Communication 32

3 WF-CML: WORKFLOW COMMUNICATION MODELING LANGUAGE 34
3.1 Identifying Design Goals . 34
3.2 Domain analysis of User-Centric Communication 35
3.2.1 User-Centric Communication Scenarios 35
3.2.2 Feature Oriented Domain Analysis . 37
3.3 Abstract Syntax of WF-CML . 40
3.4 Static Semantics of WF-CML . 43
3.5 Concrete Syntax of WF-CML . 44
3.6 Modeling with WF-CML . 45
3.7 Chapter Summary . 46

4 SEMANTICS FOR DYNAMIC SYNTHESIS OF WF-CML 48
4.1 Overview of Dynamic Synthesis For Realizing WF-CML 48
4.1.1 High-Level Synthesis Process . 49
4.1.2 Using WF-CML Hypergraphs During Synthesis 52
4.2 Towards a Formal Approach For Dynamic Synthesis 56
4.2.1 Formal Semantics Specification for CML 56
4.2.2 Formal Semantics Specification for WF-CML 61
4.2.3 Synthesis Algorithms For Realizing WF-CML 67
4.3 Validation of Dynamic Synthesis . 73
4.3.1 Model Simulation Using Kermeta . 73
4.3.2 Case Study . 76
4.4 Chapter Summary . 80

viii

5 PROTOTYPE AND EVALUATION . 82
5.1 CVM Prototype . 82
5.2 Evaluating The Effort of Using WF-CML 88
5.2.1 Metrics . 89
5.2.2 Design of Experiment . 94
5.2.3 Experimental Results . 98
5.2.4 Discussions . 99
5.3 Chapter Summary . 103

6 CONCLUSION . 104
6.1 Contribution Summary . 104
6.2 Future Work . 105

BIBLIOGRAPHY . 107

APPENDICES . 114

VITA . 141

ix

LIST OF TABLES

TABLE PAGE

2.1 Comparison Between Different Workflow Techniques 28

4.1 Mapping Control Nodes to Hyperedges 54

4.2 Applying the execution semantics to the healthcare scenario. 78

4.3 Applying the execution semantics to the healthcare scenario - cont. . . . 78

5.1 Static metrics for the CVM prototype. 87

5.2 Cognitive Weight for BCSs defined in [57] 92

5.3 Metrics for CVM and YAWL Engine. 94

5.4 Experimental Setup and Procedure . 97

5.5 Development Effort . 98

5.6 Runtime Effort . 99

A1 State machine for schema (re)negotiation. 139

A2 State machine for media transfer. 140

x

LIST OF FIGURES

FIGURE PAGE

1.1 Sequence of Communication in the Patient Discharge Scenario. 4

1.2 Communication Models for: (1) 3-way call between DP, SC
and runtime added PCP (dotted notation) (2) 2-way call be-
tween SC and CP (3)3-way call between DP, NP and AP 6

2.1 Paradigm Shift in Developing Communication Services/Applications . 12

2.2 Modeling and DSLs: A Roadmap [27] 14

2.3 Layered architecture of the Communication Virtual Machine. 19

2.4 Abstract Syntax of X-CML. 21

2.5 G-CML representation for: (a) the control instance for 2-way
call between Dr. Burke and Dr. Monteiro, (b) data instance
to enable LiveAudio, (c) data instance to send form DisPkg 1. . . . 22

3.1 Feature Oriented Diagram for the Communication Domain. 39

3.2 Abstract Syntax for WF-CML Using a Class Diagram. 41

3.3 Static Semantics for WF-CML . 43

3.4 WF-CML model for Healthcare Use Case. 46

4.1 (a) Execution of a schema in the CVM. (b) Execution of a
schema in the synthesis engine (SE). CI - Control instance;
DI - Data exchange instance. 49

4.2 EBNF-like Grammar for Communication Control Script 51

4.3 Elimination of Control Nodes in Generating Hypergraphs 54

4.4 Converting WF-CML Model to WF-CML Hypergraph 55

4.5 A Metamodel Ecore File Before Conversion to Kermeta File. 75

4.6 Kermeta Code For CommProcessNode class 76

4.7 Kermeta Code For WFController class 77

xi

4.8 CML models and Output Control Scripts for Healthcare Scenario . . 81

5.1 Top Level Architecture of the CVM prototype. 82

5.2 Class Diagram for the Synthesis Engine 86

5.3 Modeling Environment for Coordinated UCCSs. 87

5.4 Dr. Burke’s GUI showing (1) the message window requesting
confirmation to advance in the workflow, and (2) Baby Jane’s
discharge package received from Dr. Monteiro. 88

5.5 Feature Diagram to Classify Effort. 90

A1 XML Version of WF-CML For Modeling Healthcare Use Case - 1 . . 115

A2 XML Version of WF-CML For Modeling Healthcare Use Case - 2 . . 116

A3 XML Version of WF-CML For Modeling Healthcare Use Case - 3 . . 117

A4 XML Version of WF-CML For Modeling Healthcare Use Case - 4 . . 118

A5 WF-CML Model in EMF for Kermeta Validation - 1 119

A6 A WF-CML Model in EMF for Kermeta Validation - 2 120

A7 Kermeta Code For Checking Static Semantics of WF-CML - 1 121

A8 Kermeta Code For Checking Static Semantics of WF-CML - 2 122

A9 User Interface For CVM In Realizing Scenario - First step 123

A10 User Interface For CVM In Realizing Scenario - Second step 124

A11 User Interface For CVM In Realizing Scenario - Third step 125

A12 User Interface For CVM In Realizing Scenario - Fourth step 126

A13 Kermeta Simulation Trace in Realizing Sunny Day Scenario - 1 127

A14 Kermeta Simulation Trace in Realizing Sunny Day Scenario - 2 128

A15 Kermeta Simulation Trace in Realizing Sunny Day Scenario - 3 129

A16 Kermeta Simulation Trace in Realizing Rainy Day Scenario - 1 130

A17 Kermeta Simulation Trace in Realizing Rainy Day Scenario - 2 131

A18 Kermeta Simulation Trace in Realizing Rainy Day Scenario - 3 132

xii

A19 Static Semantics for WF-CML . 133

A20 YAWL Process Editor for Creating YAWL Specification 137

A21 WF Process Editor for Creating WF Solution 138

xiii

CHAPTER 1

INTRODUCTION

Electronic communication has become pervasive in recent years. The advances

in communication technologies and mobile devices (e.g. iPhone[2], iPad[3] and An-

droid [29]) are dramatically expanding our communication capabilities and enabling a

wide range of multimedia communication applications. Examples range from general-

purpose applications that support voice calls, video conferencing, and instant messag-

ing using a one-size-fits-all approach, to specialized applications in disaster manage-

ment, distant learning and telemedicine [6, 16, 26, 42, 43]. The traditional stovepipe

approach of developing communication intensive application binds the user-level com-

munication logic with device types and underlying networks, results in rigid technol-

ogy, limited utility, lengthy development cycle, and difficulty in integration. The

challenges in creating flexible, interoperable communication services have led to new

development strategies that move towards service convergence and user-centricity.

These approaches provide abstract views of the underlying communication technolo-

gies and allow end-users to become more involved in the development of the so-called

user-centric communication applications.

One of these user-centric communication initiative is the Communication Virtual

Machine (CVM) technology, a new paradigm investigated by Deng et al.[17] for de-

veloping and realizing user-centric communication services to respond to increasing

communication needs. The term user-centric is used to refer to those applications that

provide services to the user, offer operating simplicity, and mask the complexity of the

underlying technology [48]. The CVM technology consists of a domain-specific mod-

eling language (DSML), the Communication Modeling Language (CML) [82], that is

used to create communication models, and a semantic rich platform, the CVM, that

1

realized the created communication models. The time and cost of developing commu-

nication service can be largely reduced by using the CVM technology for formulating,

synthesizing and executing new communication services.

However, user-centric communication approaches such as the CVM are limited

to realizing individual communication scenarios. They only provide partial solutions

for more elaborate domain-specific applications that require the composition and co-

ordination of several individual communication scenarios to realize a collaborative

process. In communication intensive domains like disaster management and health-

care, there is an increasing need for domain-specific communication applications that

are user-driven and that support dynamic coordination of various communication ser-

vices in a collaborative process [13, 22]. In such applications, collaboration and data

sharing between geographically dispersed team members have inherent dependencies

between individual steps of a collaboration task, and individual communication ser-

vice instances need to be dynamically coordinated to ensure these dependencies. One

scenario that typifies the need for this coordination is the patient discharge process,

where the discharging physician may need to communicate with several other physi-

cians, and to exchange various parts of the patient’s electronic discharge package

depending on specific healthcare information exchange rules. Another scenario might

involve the coordination and communication between emergency and primary care

physicians to treat patients in hospital emergency departments [22].

To realize these applications using existing techniques, users have to manually

coordinate individual communication services in an ad-hoc manner, or rely on a gen-

eral purpose process modeling technique to build customized solutions for services

in a specific domain. For instance, modeling and realizing these scenarios using the

CVM would require the scenario be modeled in several different communication mod-

els (CML models) and the users have to manually coordinate them. Customized

2

communication solutions could also be built on top of open communication APIs or

application frameworks (e.g.,[35, 44]) and a process modeling techniques(e.g., CPL

[51]) for specifying coordinated telephony services. However, the resulting appli-

cations are usually rigidly defined, technology-specific, costly, and inflexible when

it comes to the adaptation of executing applications based on changing user prefer-

ences. The emergence of next generation networks has resulted in various user-centric

service creation and delivery facilities [63, 58, 84]. While these approaches enable non-

technically skilled users to create, manage and share their own convergent services,

many of them lack the ability to coordinate individual communication services using

the appropriate level of abstraction.

One way to address the above challenges of dynamically coordinating user-centric

communication services is to raise the level of abstraction that user-centric commu-

nication services are coordinated through the use of model-driven engineering and

domain-specific modeling techniques. In this dissertation, we investigate a domain-

specific modeling language (DSML), Workflow Communication Modeling Language

(WF-CML), that supports the rapid realization of coordinated user-centric communi-

cation services (UCCSs). WF-CML is an extension of the previously developed Com-

munication Modeling Language (CML) [77] with communication-specific abstractions

of workflow concepts commonly found in business processes. The current version of

CML is limited to specifying structural specifications of the user’s communication

needs, leaving out the specification of control flow. Extending CML with a set of

workflow abstractions introduces a natural solution for the required service coordina-

tion. Models created using WF-CML are interpreted using an extended implemen-

tation of the Communication Virtual Machine (CVM)[17], a run-time environment

to dynamically synthesize, and execute UCCSs. The CVM is extended to coordinate

the negotiation and media transfer processes based on events generated during the

collaboration of UCCSs.

3

1.1 Motivation

To further motivate this research, we describe a detailed scenario from the health-

care domain. The authors have been collaborating with members of the Cardiology

Division of Miami Children’s Hospital (MCH) over the last 5 years to study the appli-

cation of CVM in healthcare. One such scenario illustrates the process of discharging

a patient involving discharge physician, senior clinician, primary care doctor, clini-

cal pharmacist, attending physician and nurse practitioner. The associated flow of

communication in this scenario is shown in Figure 1.1.

Figure 1.1: Sequence of Communication in the Patient Discharge Scenario.

Patient Discharge Scenario:

(1) On the day of discharge, Dr. Burke (DP - discharging physician) establishes an

audio/video communication with Dr. Jones (SC - senior clinician) to discuss the

discharge of baby Jane. During the conversation, Dr. Burke composes a discharge

package and sends it to Dr. Jones to be certified. The package consists of a sum-

mary.pdf (non-stream file), summary of patient’s condition and prescription; x-Ray

of the patient’s heart, heat image.jpg(non-stream file); and a EcCard1.wmv(video

4

file), an echocardiogram (echo) of the patient’s heart. After sending the package, Dr.

Burke decides to contact Dr. Sanchez (PCP - primary care physician) to join the

conversation with Dr. Jones to discuss the patient’s condition.

(2) When Dr. Jones receives the request to certify the discharge package from Dr.

Burke, Dr. Jones sends a request to Dr. Allen (CP - clinical pharmacist) to get

the prescription certified i.e., check that the prescription meets specified hospital

standards. The prescription is contained in the summary.pdf file. After Dr. Allen

receives the request he initiates an audio communication with Dr. Jones to discuss

the prescription. Dr. Allen then certifies the prescription and returns it to Dr. Jones.

(3) Upon receipt of the certified prescription Dr. Jones certifies the discharge package

and sends it to Dr. Burke. Since the package is received within 24 hours and is

certified, Dr. Burke then sends it to Nurse Smith (NP - nurse practitioner) and Dr.

Wang (AP - attending physician).

If the package had not been certified and received within 24 hours, Dr. Burke would

have sent an interim discharge note to Nurse Smith and Dr. Wang.

The scenario starts with a two-way communication between DP and SC, with the

PCP being added to the call at a later time. It then includes the communication

between SC and CP, followed by the communication between DP and AP and NP.

The existing CVM technology captures the communication needs of this scenario in

separate communication model instances [82], as shown in Figure 1.2. Figure 1.2(1)-

(3) illustrates the three individual communication instances needed for this scenario.

Each communication model specifies the structure of a communication scenario in

a declarative manner (electronic media and form types to be exchanged among a

set of participants, see Section 2.1.3 for more details). Dotted notations mean that

5

Figure 1.2: Communication Models for: (1) 3-way call between DP, SC and runtime
added PCP (dotted notation) (2) 2-way call between SC and CP (3)3-way call between
DP, NP and AP

the participant is added or information exchange initiated by the user during the

conference at runtime.

To achieve a more efficient collaborative communication process, these different

communication instances need to be coordinated during the execution of the scenario.

The lack of support in existing approaches for dynamic coordination of communication

services motivates us to introduce communication-specific abstractions of workflow

concepts into communication models.

6

1.2 Problem Definition

We now introduce the main research problem of this dissertation: Despite the in-

creasing complexity and high demand for coordinating user-centric communication

services in a collaborative environment, currently there is no approach to quickly

model and realize coordinated communication services in a way that is driven by end

users and yet enables rapid realization.

To answer this question, we formulate the primary goal of this dissertation as: the

design of an appropriate modeling abstraction for end users to model and realize co-

ordinated user-centric communication services in a collaborative environment. Such

a modeling abstraction should facilitate the specification and realization of commu-

nication services that require coordination.

We further decompose the goal into three specific objectives, therefore highlighting

the specific contributions of this work:

First Subgoal: the design of a modeling language (WF-CML) for specifying coor-

dinated user-centric communication services: Appropriate modeling abstraction for

the coordination of user-centric communication should be designed that uses user-

intuitive concepts and yet enables rapid realization.

Contribution: the syntactic design of WF-CML that includes a detailed do-

main analysis, a definition of its metamodel (abstract syntax and static semantics),

and case studies to show how WF-CML is used to model and realize coordinated

communication services.

Second Subgoal: the design of dynamic semantics for the modeling language (WF-

CML) that enable dynamic synthesis and adaption for communication service coor-

7

dination. Semantics should be defined for the modeling language that facilitate the

rapid realization of communication service involving workflows.

Contribution:: the definition of dynamic semantics for WF-CML that extends

semantic specification of CML to incorporate control flow behavior required for service

coordination. This extension includes the design of synthesis algorithms for analyzing

WF-CML models, semi-formal definitions of a labeled transition system for managing

the coordination logic, and a conceptual design of an execution architecture for WF-

CML models. To evaluate the dynamic semantics, we use Kermeta [69] to perform

simulations of the language’s behavioral model.

Third Subgoal: the development of a runtime platform that supports the dynamic

synthesis of coordinated user-centric communication services. A functional prototype

is developed that demonstrates the feasibility of the presented modeling abstraction.

Comparative studies are also performed using the prototype to provide arguments for

the claimed benefits of the approach.

Contribution: the extension of the current CVM prototype to provide func-

tionalities for service coordination. To evaluate the cost of developing the WF-CML

infrastructure, including supporting tools and execution environments, we measured

both static and dynamic properties of the resulting system characteristics. Static

metrics include the static measurement of the prototype in terms of various proper-

ties that reflects the size of the system, including number of lines of code, number of

packages and classes and methods. Performance metrics include the measurement of

various dynamic system properties that reflect the runtime performance of system,

including memory usage, CPU time and number of threads.

8

1.3 Outline of Work

The outline of this dissertation is structured as follows:

Chapter 2, the literature review, explains and surveys background techniques that

lead to the proposed problem and existing approaches in user-centric communication

initiatives, workflow modeling and the combination of the two.

Chapter 3, presents the syntactic design of WF-CML, including domain analysis,

the abstract syntax and static semantics of WF-CML models. It also presents the

application of WF-CML to model a real-world healthcare scenario.

Chapter 4, states the semantic specifications of WF-CML required for dynamic

synthesis, including the use of a labeled transition system for formalizing WF-CML

semantics, synthesis algorithms that realized the semantics, and the evaluation of the

semantics using Kermeta as a metamodeling tool for model simulation.

Chapter 5, describes the implementation of the CVM prototype and a compar-

ative study to validate the claimed benefits of WF-CML. The experimental studies

we conducted showed that using WF-CML lead to reduced development and run-

time effort and improved development productivity, comparing with general purpose

workflow languages.

Chapter 6, presents a summary of this dissertation in terms of an overview of the

contribution and future directions of this research.

9

CHAPTER 2

LITERATURE REVIEW

This chapter presents background knowledge of this research and the related work.

Background on user-centric communication services, model-driven software develop-

ment (MDSD) and workflow techniques are presented. In addition, we also discuss

related work on other user-centric communication initiatives, workflow modeling tech-

niques and approaches for combining workflow and multimedia collaboration.

2.1 Background

We start with introducing the concept of user-centric communication (UCC) and the

Communication Virtual Machine (CVM) technology to support model creation and

realization of user-centric communication services. We also present fundamentals on

model driven software development and workflow modeling techniques.

2.1.1 User-Centric Communication

Advances in communication devices and technologies (e.g. iPhone [2], iPad[3] and

Android [29]) are dramatically expanding our communication capabilities and en-

abling a wide range of multimedia communication applications. Examples range

from general-purpose applications that support voice calls, video conferencing, and

instant messaging using a one-size-fits-all approach, to specialized applications in dis-

aster management, distant learning and telemedicine. It is likely that the pace of

innovation of new communication applications will accelerate even further. However,

many of these applications have been conceived, designed and custom-built using a

10

silo approach with little connection to each other, resulting in fragmented and in-

compatible technologies [46]. The growing heterogeneities of network infrastructure

and communication platforms make it both time-consuming and error-prone to de-

velop new communications applications entirely from scratch. Much of the cost and

effort stems from the fact that the heterogeneities and complexities of network-level

communication control and media delivery are tightly bound with the diversity of

application-dependent collaboration logic. This tight coupling also results in appli-

cations that are incapable of responding to changing user needs and the dynamics of

underlying networks or devices.

To effectively decouple the development of application logic from the network

infrastructure, different initiatives have developed open APIs or application frame-

works that allow for rapid creation and deployment of converged communication ser-

vices. These approaches (e.g.,OSA/Parlay[35], JAIN-SLEE[62], and JAIN-SIP[68])

reduced the complexity of service creation by exposing a single point of interfacing

with multiple protocols and resources. They simplified service creation by reducing

the amount of telecommunication knowledge required for building communication

solutions. However, the creation of communication applications are still limited to

IT developers who have to use a general programing language such as Java in their

respective IDEs and invoke such API interfaces to create a functional composition or

program client-side applications (with potentially sophisticated collaborative logic).

The programing-level nature of these APIs or frameworks makes them complex to

use, and less usable than the user-level sessions of CVM, see Figure 2.1.

There is a strong demand for an easy and flexible way of building communica-

tion applications that are driven by end-users and that support the dynamic nature

of communication-based collaboration. The user-centric approach of communication

service creation has emerged to address this need. We use the term user-centric

11

Figure 2.1: Paradigm Shift in Developing Communication Services/Applications

communication to refer to communication applications that are driven by end-users

and mask device and network complexity while preserving the diversity and power

of advanced communication tools. The trend towards service convergence and user-

centricity in communication service development is summarized in Figure 2.1, which

illustrates this paradigm shift in creating and realizing communication-intensive ser-

vices or applications. This evolution is also accompanied by decreasing complexity

and increasing level of abstraction of the development process.

2.1.2 Model Driven Software Development

Model-Driven Software Development (MDSD) is typically used to describe software

development approaches in which abstract models of software systems are created

and systematically transformed to concrete implementations. Model-Driven Software

Development (MDSD)[61] provides us with a more systematic support for realizing

user-centric communication by letting end-users play a greater role in customizing

communication services. It is expected that successful MDSD practices will help to

12

cope with the ever-present problem of growing software complexity by raising the

level of abstraction that software is conceived.

A MDSD process starts with the specification of software solutions using a formal

modeling language (e.g. a UML Profile [32], or a domain specific language [27] that

captures problem-level abstractions). Then, model transformation techniques are

used for bringing problem-level specifications down to low-level languages that are

directly executable. During this process, other model management issues need to be

addressed as well, including maintaining model consistency, maintaining traceability

links among model elements, and using runtime models to observe system behaviors.

These are presented as major challenges to fully achieve the MDSD vision in [27].

However, despite the wicked nature of MDSD, various MDSD initiatives have been

around and providing useful experiences in this field.

Domain Specific Modeling (DSM): In achieving the MDSD vision, DSM is an enabling

field. DSM is concerned with providing support for creating and using problem-level

abstractions in modeling languages in a way that is easy to use and facilitates machine

automation. Arie et al. [73] defines a domain-specific language as:

A domain-specific language (DSL) is a programming language or executable speci-

fication language that offers, through appropriate notations and abstractions, expres-

sive power focused on, and usually restricted to, a particular problem domain.

In this dissertation, we do not distinguish DSL and domain specific modeling

language(DSML), since programs and executable specifications are essentially models.

A DSL consists of constructs that capture phenomena in the domain it describes. The

final software products can then be generated from these high-level specifications.

This automation is possible because the modeling language and generator only need

to fit the requirements of one domain.

13

Figure 2.2: Modeling and DSLs: A Roadmap [27]

The development of a DSL typically involves four phases : analysis, design, im-

plementation, and use. The Analysis phase is about the identification of the problem

domain and gathering all relevant domain knowledge used as input for the design of

the DSL. The design phase produces a specification of the DSL that concisely describes

applications in the domain. The implementation phase deals with the construction of

libraries that implement the semantics notions and the design and implementation of

a compiler or interpreter that translates DSL programs to sequences of library calls.

And finally, the Use phase is about writing programs (models) using the DSL for

creating applications in the domain.

Volter et al. [74] presented a DSL design roadmap that connects different concepts

in a DSL design process, and reflect the set of steps we go through in achieving this

work. We show this roadmap in Figure 2.2 [27]. A DSL design always starts from

14

a domain. The domain describes a bounded field of interest or knowledge. The

result of domain analysis is used in the development of several syntactic artifacts

including Abstract Syntax, Static Semantics, and Concrete Syntax. Static Semantics

are specified based on Abstract Syntax and they are jointly called Meta-Model, which

is an instance of a Meta-Meta Model. Then, Semantics are attached to the DSL which

provides meaning to a Formal Model specified based on the Concrete Syntax. DSL

is a synonym for Modeling Languages. For the rest of this dissertation, we will be

using the concepts in this roadmap for the design and development of WF-CML.

During the DSL development process, various language engineering tools could

be used to support the development activities [10, 19, 69]. Tool-based language de-

velopment allows an early detection of problems with the language definition and

increases the reliability of the language and its supporting tools. Kermeta [69] is an

executable metamodeling language as well as a language development framework for

language engineering activities. Built on the Eclipse framework [67], the Kermeta

framework provides a powerful metaprogramming environment for metamodel engi-

neering activities including the specification of abstract syntax, static semantics and

operational semantics, as well as the rapid prototyping of DSML specific tools. Using

Kermeta helps to validate language design decisions early in the development process

long before implementation occurs.

Formal semantics for DSMLs: Formal semantics specifications for DSMLs, especially

in the MDSD context, is essential for automatic manipulation of models by the under-

lying platform. Various approaches for specifying formal semantics for DSMLs have

been investigated, such as semantics specifications through transformational tech-

niques(translational approach), and semantics descriptions through interpretive tech-

niques(operational approach). In programing language semantics research, a trans-

lational approach allows the specification of semantics of a high-level programing

15

language by mapping to a low-level target language via program transformation. The

execution of the target language on a machine captures the semantics of the high-level

language. An operational approach, on the other hand, uses an abstract machine,

or interpreter, to model how the state of the machine is altered when an program is

executed. It could loosely be associated with the operational semantics of programing

languages. We explain in more details on how translational and operational semantics

could be used for specifying the dynamic behaviors of DSMLs.

Using a translational approach for specifying the semantics of DSMLs usually in-

volve model-to-model transformations that define the semantics of a language model

by translating into a target modeling language. The resulting model is usually an

executable model, e.g. a program in a general purpose programming language. For in-

stance, the Model Driven Architecture [34], the OMG’s standard for MDE, suggests

the transformation of platform independent models into platform specific models.

By providing standard means for these transformations, QVT forms the center of

this approach. Since DSMLs rely on a semantic domain to formalize the seman-

tics specification, the choice of the semantic domain becomes an important issue.

Usually, the target domain should be a simpler language whose execution rules are

well-established, and facilitate the definition of the “behavior” of each abstract syn-

tax element in the DSML through a suitable mapping on the semantic domain. The

role played by graph transformation depends on the chosen formal method. If it is

a textual one, the productions of the grammar that defines the abstract syntax can

be augmented with textual annotations to build the semantic representation. For

example, high-level timed Petri nets are used as semantic domain and the rules are

pairs of graph grammar productions: The first production defines how to modify the

abstract syntax representation, while the second production states the corresponding

changes on the functionally equivalent Petri nets.

16

The operational semantics of a language, on the other hand, describes the meaning

of a language instance as a sequence of computational steps. It originates from the

idea of structural operational semantics from grammar-based language engineering

practices. Plotkin pioneered the work on structural operational semantics [54](SOS),

in which formal semantics of programing languages are given by transition systems.

Generally, a transition system < C, T > forms the mathematical foundation, where C

is a set of configurations and T is a transition relation. Inference rules are a common

way to define the valid transitions in the system inductively. The SOS of a language

defines an interpreter for this language working on its abstract syntax. This can be

instrumented as a reference to test implementations of compilers and interpreters.

Recently, the idea of SOS has been adopted to semantics specifications of DSMLs

for model-driven language engineering practices, in which configurations are defined

based on meta-models, and transition relations specified based on changes in the

metamodel configurations using standard notations such as QVT Relations [33].

The semantics choice of whether to use a translational or an interpretive style for

specifying DSML semantics depends on many factors, such as the characteristics of

the domain, the purpose of the semantics specification (e.g., validating the prototype,

implementations of programing languages, or analyzing more advanced implementa-

tions of programing languages). But in general, using translational semantics in a

domain-specific context tend to bring many challenging issues such as (1)domain ex-

perts find it hard to understand the target language given its low level of details;

(2)complicated translations hide the underlying language semantics in the details of

the target language;(3)it is a sophisticated task to map error messages and debug-

ging information back into the source domain. Thus, translational semantics do not

provide an appropriate level of abstraction for prototyping DSMLs purpose.

17

Therefore, in many cases, an operational approach is more suited to testing, val-

idation than the translational approach. We stay in the expert domain to describe

the operational semantics of the language in terms of its structure (usually syntac-

tic structure). The domain experts understand these structures and should be able

to explain the effects of execution. Furthermore, the SOS description is instantly

executable in the expert domain. This enables us to test and validate the specified

behavior together with the domain experts. Thus, an operational approach is well

suited for prototyping.

2.1.3 Modeling User-Centric Communication Services

One of the initiatives for realizing the vision of user-centric communication services is

the Communication Virtual Machine (CVM) [17] technology. It consists of a declara-

tive Communication Modeling Language (CML) for specifying users’ communication

needs, as well as a model driven runtime environment that supports the modeling

and realization of user-level communication services using a model driven approach.

We limit the scope of the term communication in this paper to denote the exchange

of electronic media of any format (e.g., file, video, voice) between a set of participants

(humans or agents) over a network (typically IP). Figure 2.3 shows the layered ar-

chitecture of the CVM. The realization of communication service is divided into four

major levels of abstraction, which correspond to the four key components of CVM:

• User Communication Interface (UCI), which provides a language environment

for users to specify their communication requirements in the form of a user

communication schema or schema instance;

18

Figure 2.3: Layered architecture of the Communication Virtual Machine.

• Synthesis Engine (SE), generates an executable script (communication control

script) from a CML model and negotiates the model with other participants in

the communication;

• User-centric Communication Middleware (UCM), executes the communication

control script to manage and coordinate the delivery of communication services

to users, independent of the underlying network configuration;

• Network Communication Broker (NCB), which provides a network-independent

API to UCM and works with the underlying network protocols to deliver the

communication services.

The Communication Modeling Language (CML) was developed by Clarke et al.

in [11] for modeling user-centric communication requirements. CML was designed to

19

be simple and intuitive, be independent of the network and device characteristics and

be expressive enough to model a majority of user communication models. There are

currently two equivalent variants of CML: the XML-based (X-CML) and the graphical

(G-CML). The primitive communication operations that can be modeled by CML

include: (1) connection establishment, (2) data (primitive and user-defined) transfer,

(3) addition/removal of participants to/from a communication, (4) dynamic creation

of structured data, and (5) specification of properties associated with a particular data

transfer. Figure 2.4 shows the abstract syntax of CML using metamodeling notations.

The class diagram shows the various CML constructs that are used in modeling user-

centric communication. We also use OCL to specify the static semantics rules for

CML, and refer the readers to the project’s website1 for more details.

Two categories of communication models can be described using CML, commu-

nication schemas and communication instances. The relation between a schema and

an instance is similar to the relation between a class and an object in programming

languages. An instance captures all information in a communication at a particular

point in time and can be directly executed. On the other hand, a schema describes

the possible communication configurations of a conforming instance. To give a look

and feel of CML and how to use it to model communication services, we present a

CML model for realizing a heathcare scenario in Figure 2.5. As Figure 2.5 shows,

CML models a two-way conferencing supporting the transfer of certain types of media

(LiveAV)and structured data (Generic Form) in a declarative manner. Note that the

intuitive nature of CML is compliant with the concept of user-centric communication.

In the context of Service-Oriented Architecture(SOA), CVM serves as a client-

side architecture, as opposed to server-side frameworks such as OSA/Parlay [35] and

JAIN-SIP [68]. The server-side architecture has different concerns than the client-

1http://www.cis.fiu.edu/cml/

20

Figure 2.4: Abstract Syntax of X-CML.

side architecture, which is the focus of CVM. As end-hosts are capable of handling

sophisticated collaborative logic in IP networks, client-side architecture is getting

as important and complicated as server-side architecture in building next-generation

multimedia communication applications. In addition, client-side architecture is be-

coming increasingly pertinent as more and more communication applications are de-

ployed and executed on mobile devices. A big issue for developing communication

software on mobile devices is the variety of platforms. For example, to develop com-

munication applications on smart phones, two major platforms are iOS and Android.

The CVM architecture, being inherently platform-independent, could be hosted on

various mobile platforms.

21

ConnectionID: C1

person
Name: Burke
UserID: burke23
Role: DP

DeviceID 001
isAttached isAttached

person
Name: Monteiro
UserID: monteiro41
Role: SC

DeviceID: 002

medium
LiveAudio

form
Discharge_Pack

medium
TextFile

medium
NonStreamFile

LiveAudio

TextFileVideoFile TextFileVideoFile

medium
VideoFile

NonStream LiveAudio NonStream

(a)

(b)

medium
LiveAudio
AV-C1

form
DisPkg_1
send

medium
xRay-Jane.jpg
D:Jane/xRay-Jane.jpg

medium
HeartEcho-Jane.mpg
D:Jane/HeartEcho-Jane.mpg

(c)

medium
LiveAudio
AV-C1

ConnectionID: C1 ConnectionID: C1

medium
RecSum-Jane.txt
D:Jane/RecSum-Jane.txt

Figure 2.5: G-CML representation for: (a) the control instance for 2-way call between
Dr. Burke and Dr. Monteiro, (b) data instance to enable LiveAudio, (c) data instance
to send form DisPkg 1.

2.1.4 Workflow Fundamentals

Workflow is concerned with the automation of procedures where documents, infor-

mation or tasks are passed between participants according to a defined set of rules to

achieve, or contribute to, an overall business goal [12]. Workflow is essential to auto-

mate business processes as it coordinates the work of different participants without

human intervention. In general, different dimensions of workflow could be specified,

including the process dimension (control flow of activities), organization dimension

(“who” should do “what”) and functionality dimension (functional decomposition of

activities). The process dimension of a workflow model defines a template process

model which depicts a formalized sequence of separate activities. Each activity is

viewed as a unit of work that is performed in a non-zero span of time by an actor.

The Workflow Management Coalition (WFMC) [12] defines a process activity as “a

logical step or description of a piece of work that contributes towards the accom-

plishment of a process”. Actors are either humans or external systems. They are

22

grouped into roles according to their responsibility, skills, and authority for humans,

or computing capabilities for systems. Assigning roles to activities belong to the

organization dimension of workflow modeling.

WFMC defines four possible ordering relationships, or routing rules between ac-

tivities: sequence, choice, parallelism and iteration.

• Sequence: Tasks are executed sequentially if the execution of one task is followed

by the next task.

• Parallelism: Tasks are executed at the same time or in any order. To model

parallel routing, AND-Split and AND-Join are used to split into multiple flows

and to synchronize multiple flows.

• Choice: Tasks are executed according to certain conditions. To model a choice

between multiple alternatives, the Or-Split and Or-Join are used to condition-

ally branch into alternative flows and re-converge them into one activity.

• Iteration: A workflow activity cycle involving the repetitive execution of one

(or more) workflow activity(s) until a condition is met.

Depending on the characteristics of a given workflow modeling language, workflow

models might look different and have semantic variations, but the underlying approach

for workflow modeling in the process dimension remains: designing a set of activities

(tasks) as well as their ordering relationships or routing rules.

Workflow models are interpreted by Workflow Management Systems according

to the specified semantics of the model. An executable workflow model requires its

semantics be defined in an unambiguous manner. In the literature, various formalisms

have been used to design workflow models with precise semantics, including abstract

23

state machines [5], labeled transition systems [25], and Petri nets [71]. For example,

Eshuis in [25] viewed workflow systems as labeled transition systems that react to

input events from the environment and respond accordingly by transition relations.

Activities are viewed as action states, and wait states are also used to model the local

state that is waiting for some external event or temporal event. When an action state

is terminated (indicated by occurrence of the activity termination event) or a wait

state is completed (indicated by the occurrence of the waiting-upon event), relevant

edges are enabled and transitions made according the even-condition-action (ECA)

rules of the workflow specification.

Petri nets are also widely investigated for workflow modeling due to its formal

semantics and support for reasoning of system properties. Aalst et al. [71] described

the use of Petri nets in the context of workflow management. Petri nets are an

established tool for modeling and analyzing processes. On the one hand, Petri nets

can be used as a design language for the specification of complex workflows. On the

other hand, the theory of Petri net provides for powerful analysis techniques which

can be used to verify the correctness of workflow procedures. In a specialized Petri

net known as the WorkFlow Net (WF-net), workflow concepts are described using

Petri net constructs: activities are modeled by transitions, conditions are modeled

by places, and cases are modeled by tokens, and other routing constructs modeled by

customized places. The token-game semantics of Petri nets yield executable workflow

specifications that are readily for processing by the underlying workflow management

systems.

Note that the distinction between workflow processes and communication pro-

cesses should be made. Communication processes focus on multimedia connectivity

and the sharing of information rather than the definition of processes. For communi-

cation processes, it is not necessary to explicitly define the workflow processes since

24

it main involves unstructured group activities with no particular order of the col-

laboration. On the other hand, a workflow process supports a formalized sequence

of separate activities to coordinate a work process. There has been some work that

investigate the integration of the two different approaches to enables a continuous

stream of tasks and activities in which fast, informal, ad-hoc actions can be taken

through conferences within the usual formal workflow[78]. The proposed work in this

dissertation also brings the advantages of workflow processes and collaborative com-

munication processes in modeling and realizing user-centric communication services.

2.2 Related Work

We investigated three classes of related work. First, existing user centric commu-

nication initiatives are presented, including the Alcatel’ s user-centric interactions

approach, next-generation network approach, and the CVM approach. Then, several

workflow modeling languages are surveyed and compared. Finally, we present some

other approaches of combining multimedia collaboration and workflow management.

2.2.1 User-Centric Communication Initiatives

Lasserre et al. [48] proposed a user-centric interaction approach that is used by Alcatel

to provide a simple user-centric experience that masks device and application com-

plexity while preserving the diversity and power of advanced communication tools.

Alcatel’s approach is designed to enable enterprises to obtain the maximum benefit

from communication technology by unifying the interactions between the three key

elements of any business: people, process and technology. To implement and benefit

from user centric interaction, a three-step plan needs to be taken: (1) understanding

the users in terms of their requirements, usage patterns and reasons for their frustra-

25

tion; (2) revisiting business processes to find out communication-intensive processes

and then integrate communication capabilities into these processes; and (3) translate

the people and business needs into technology and solution requirements. Alcatel

has developed various communication solutions to integrate telephony voice services

and business processes, including “IP Communication Server”, “an IP Unified Com-

munication Application Suite”,“Communication Web Service”. It is expected that

user-centric communication could potentially accelerate business processes sens06.

Industrial user-centric communication initiatives have been described in different

contexts such as: providing various customized communication services like telecon-

ferencing and data services to businesses in specific domains [48, 70], modeling of

communication environments [4], content applications that interact with communi-

cation sessions [18], and aligning user-centric communication with the unified com-

munication paradigm. Unified communication has a similar objective to user-centric

communication i.e., simplifying end-user experiences [40]. It aims to provide a way

to integrate audio, video and data technologies on IP networks and allow switch-

ing among them while masking the complexities of heterogeneous back-end systems.

These technologies, however, usually cannot accommodate unanticipated communi-

cation needs without first incurring a lengthy development cycle, resulting in a high

cost to modify the functionality and interfaces required. Also in these approaches,

user-centricity focuses on enhancing end-user experiences by providing rich yet easy-

to-use communication applications. In our approach end-users drive the specification

of the communication applications using an intuitive notation that provides them full

control over the application functionality.

Recently, along with the emergence and popularity of Next Generation Networks

(NGN), various convergent environments have appeared that provide user-centric

service creation and delivery facilities. These include OPUCE (Open Platform for

26

User-centric service Creation and Execution) [84], SPICE (Service Platform for Inno-

vative Communication Environment) [63], among others [50, 58]. These environments

support the combination of Internet IT services with communication services such as

presence, voice calls and audio/video conferencing. They broadened the range of

service creators and show directions towards user-centricity. While these approaches

enable non-technically skilled users to create, manage and share their own conver-

gent services, many of them lack the ability to coordinate individual communication

services using the appropriate level of abstraction. For instance, the users are still

required to choose or select the “base” services that they want to reuse, and build

service mashups by composing two or more “base”services. Also, since mashup exe-

cution is driven by event triggers, users have to specify the service composition logic

through a directed graph or flowchart like diagrams.

We argue that the CVM approach hides the details of service logic by presenting

an abstract and declarative interface that does not require imperative encoding. In

CVM, end-users are not aware of the specific set of services and resources available and

only focused on their high-level application needs. Service composition is made very

natural by updating the CML model to incorporate additional service specifications

(such as transferring new media types and domain-specific forms). This dissertation

focuses on the logic for orchestrating different services via workflow-like constructs.

In addition, there is a trade-off between domain-specificity and service generality in

CVM, so that it can adopt a lightweight execution engine instead of a heavyweight

open service creation and delivery platform.

2.2.2 Workflow Modeling Languages

There exist many workflow modeling languages with various specializations on differ-

ent domains(e.g.,[39],[79],[21],[36] [28] and [23]). Some languages are designed for the

27

Modeling Domain Modeling Target Executa- Base
Technique Scope bility Model

UML Activity General process Describe flow of control of a target system no null
Diagrams modeling
BPML Business process Describe business processes by a common no null

modeling notation no null
BPEL Business process Specifying business process behavior based yes web

modeling on interaction between web services services
YAWL Business process Specifying workflow systems, integration yes web

modeling with organizational resources, web service services
integration modeling

WebWorkflow Interactive web Web applications that contain the yes WebDSL
application dev. coordination of diff. activities performed

by parties
WF-CML user-centric Dependencies between comm. activities at yes CML

communication the app. level model

Table 2.1: Comparison Between Different Workflow Techniques

specification of a wide variety of workflows or business processes ranging from office

task automation to patient discharge in a hospital setting; while other languages are

more focused on a specific domain such as web application development. In this sub-

section, we will survey four general purpose workflow modeling languages including

BPEL [39], BPMN [79], UML Activity Diagrams [21] and YAWL [72], as well as

several domain-specific workflow modeling languages, including WebWorkflow [36].

General purpose workflow modeling languages such as those investigated in this work

are designed to cover a broad spectrum of workflow design notations. The general-

ity results in a lack of support for automation and integration with other languages

necessary for generating full applications, while the domain-specific ones provide a

customized workflow solution.

BPEL4WS (Business Process Execution Language for Web Services) [39] defines

a notation for specifying and implementing business process behaviors based on Web

Services. It is layered on top of web service models defined by WSDL and specifies

the interactions between these services in a platform-independent manner. The lan-

guage defines a set of basic activities: those that describe elemental steps of a process

behavior such as the invocation of a web service, as well as structured activities:

those that encode control-flow logic, and therefore can contain other basic and/or

28

structured activities recursively. The structural activities include control flow con-

structs expressing sequence, branching, parallelism, synchronization, etc. There has

been various approaches to express the BPEL semantics in a formal language. Most

of that work is focused on proving certain properties; an approach where a formal

system, in this case a process description, is transformed into a mathematical model,

such as Petri Net [53], Abstract State Machine[5], Pi Calculus [55]. A property of the

mathematical model, for example the reachability of activities may then be proven to

be a property of the original system. Due to the lack of complete formal semantics in

the original specification, BPEL is often used in conjunction with Java to fill in the

“missing” semantics. As a result, BPEL is often tied to proprietary implementations

of workflow or integration broker engines.

BPMN (Business Process Modeling Notation) [79] is standard for business process

modeling, and provides a common graphical notation for specifying business processes

in a Business Process Diagram (BPD). The objective of BPMN is to enable better

mutual understanding between different stakeholders from business analysts to tech-

nical developers. The modeling in BPMN is made by simple diagrams with a small

set of graphical elements (three flow objects and two connection ojects, swimlanes

and artifacts). It is designed to be easy to use for business users as well as devel-

opers to understand the flow and the process. While the main intent of BPMN is

to standardize the business process design notations, its lack of semantics leads to

ambiguity and confusion in sharing BPMN models. Graphical models specified in

BPMN need to be mapped to executable environments as BPEL, and has been im-

plemented in a number of open source tools [30]. However, the development of these

tools has exposed fundamental differences between BPMN and BPEL, which make it

very difficult, and in some cases impossible, to generate human-readable BPEL code

from BPMN models.

29

UML Activity Diagram [21]: As a workflow specification language, the expres-

siveness and adequacy of UML activity diagrams for workflow specification, has been

systematically evaluated in [21]. It is shown that UML activity diagrams, as speci-

fied by the OMG specifications [32], are expressive enough to model the majority of

constructs needed in workflow models. Unfortunately, the syntax and semantics of

activity diagram defined by OMG [32] are only partially formalized and leave room

for semantic ambiguities. This prevents the adoption of activity diagrams in the con-

text of model driven software development. Also, since UML activity diagrams focus

on the control aspects of workflow systems, it can not model a complete workflow

system alone, and needs to be integrated with other languages or other system code

to produce executables.

Yet Another Workflow Language (YAWL) [72]: YAWL is proposed as a result of a

rigorous analysis of existing workflow management systems and workflow languages.

Aals et al. [72] find that none of the available workflow management systems could

provide suitability for all the workflow patterns and that the expressive power of con-

temporary workflow management systems leaves much to be desired. They decide

to create a new workflow language based on Petri Net. As a complete workflow lan-

guage, YAWL is intended to capture most of the workflow patterns in contemporary

workflow management systems. YAWL extends the class of Petri Net with additional

features (e.g., composite tasks, OR-joins, removal of tokens and directly connected

transitions), to facilitate the modeling of complex workflows with multiple instances.

The operational semantics of YAWL are described using transition systems inspired

by token concepts in colored petri nets. Workflow states are defined as bags of tokens

each token represented by its location and identifier, and state transitions rules are

defined using special “binding relations”. Finally, the language is supported by an

extensible software system including an execution engine, a graphical editor, and a

30

worklist handler. The YAWL system is extensible by allowing external applications

to interconnect with the workflow engine using a service-oriented approach.

The more expressive a modeling language is, the more difficult it might be to

formally reason about the language and define executable semantics for automation.

For instance, the one-size fits all approach of the above mentioned BPMN and UML

activity diagram makes it difficult to automate the execution of these models without

precisely defined formal semantics. This in turn motivates researchers in designing

domain specific workflow modeling languages that facilitate rapid realization of work-

flow applications by targeting at a specific application domain.

There has been plethora of work on defining workflow modeling languages for

specific domains. Hemel in [36] proposes WebWorkflow, which extends WebDSL, a

domain specific language for web application development, with workflow abstrac-

tions. The extension is realized by means of model transformations in which the

target model is a core WebDSL. Since WebWorkflow only focus on interactive web

application development, domain concepts like high level data model, user interface,

procedural events, and access control abstractions could be first-class citizens in the

modeling phase. Webworkflow allows the generation of a complete application that

can be customized at the modeling level to better suit application-specific needs.

Freutenstein et al. in [28] proposed the model-driven construction of workflow

based web applications with domain specific languages. In this approach, a core

DSL is used for workflow modeling which supports various modeling notations like

BPMN or Petri nets, and a set of DSLs are outlined for designing workflow activities

like dialog construction, data presentation and web service communication. Rich

workflow-based web applications can be built by modeling workflow and activities and

pass them to an associated technical platform. Again, dedicated modeling constructs

necessary for generating running workflow-based web applications are included in the

31

DSL, and activity building blocks are used for the realization of different types of

activities. The ongoing research work in domain-specific workflow modeling provide

insights for our work of integrating workflow into user-centric communication.

As a summary of our investigation, we presented the comparison between different

workflow modeling languages in Table 2.1. We distinguished between Domain Scope,

Modeling Target, Executability and Base Model of these languages. We could see that

by restricting the domain scope and modeling target of these languages, the work-

flow abstractions have direct executability as opposed to general purpose workflow

modeling.

2.2.3 Combining Workflow with Multimedia Communication

The integration of workflow concepts and multimedia communication systems is not

new. Weber et al. [78] proposed the integration of multimedia collaboration (MMC)

tools into WFMS in order to furnish a synchronous collaboration work. To model

conferences in a workflow environment, he introduced a new modeling construct “con-

ference activity” to denote activities that take place during a MMC conference. Con-

ferences could either be pre-scheduled, or ad-hoc, depending on if the conference

activities could be foreseen at model time. The integration of MMC and WFMS

occurs through a separate conference broker, which serves as a mediator between the

two systems. The broker takes conference descriptions from the WFMS and pass it to

the MMC system. The disadvantage is that users have to model the workflow using

a workflow modeling language, and use another language for modeling conference de-

scriptions, making it difficult to use in a real-life scenario. By using a unified modeling

approach for bringing together the workflow and the communication requirements,

users could more easily specify their communication process needs without switching

between tools. Another limitation of this approach is the fixed coupling of a WFMS

32

with a particular MMC system. Bringing the integration to the modeling level results

in more flexibility and platform independence.

In [56], a multimedia workflow-based collaborative engineering environment(CEE)

is proposed. The environment is composed by the integration of WFS, MMC systems,

and collaborative virtual environment. It is intended to control the execution of

engineering projects involving many geographically distributed teams and allow an

easy integration of different applications providing the team workers with means of

information exchange. However, similar to Weber’s approach, the proposed CEE

environment only addresses the integration from a system and architectural point

of view, without regarding for integration of the different concepts at the modeling

level. More research needs to be done to clearly specify the conceptual integration

as well as to refine the architectural integration. The lack of appropriate modeling

techniques for integrating workflow with multimedia communication motivates the

proposed research problem presented in the next chapter.

33

CHAPTER 3

WF-CML: WORKFLOW COMMUNICATION MODELING LANGUAGE

In this section, we present the syntactical design of the Workflow Communication

Modeling Language (WF-CML). It starts with an overview of the design goals of the

language, followed by a detailed domain analysis of user-centric communication ser-

vices, including the extraction of communication-intensive healthcare scenarios, and

the application of Feature Oriented Domain Analysis (FODA) methodology. Then,

we introduce the syntactical design of the WF-CML language that involves its ab-

stract syntax, static semantics, and concrete syntax (including both a graphical and

an XML notation. After that, we show how WF-CML is used to model a patient

discharge scenario listed earlier in Section 1.1.

3.1 Identifying Design Goals

We identified the following criteria to guide the development of WF-CML:

• should be simple, yet expressive enough, to model the coordination of UCCSs

by domain experts

• should support rapid realization - dynamic synthesis and automatic execution

of models

• supports dynamic adaptation of executing models at runtime

The need for seeking simplicity and expressiveness in the language design motives

us to raise the level of abstraction at which communication solutions should be spec-

ified, and is the main reason that we adopted a domain-specific modeling approach.

34

The need for being amenable to rapid realization requires the semantics of the lan-

guage be specified and synthesis techniques be designed that are independent from

network and device characteristics. Finally, the need for dynamic adaption of services

at runtime requires the semantics be specified in a flexible manner.

CVM is intended to support lightweight and agile communication processes, and

thus we chose to extend CML with the necessary constructs rather than integrate

a full-blown workflow modeling language. Furthermore, instead of software devel-

opers, CVM targets at “domain experts”, persons within a communication-intensive

application domain (e.g., healthcare) that have some IT knowledge, but are not soft-

ware engineers or programmers. The “domain-specificity” of our approach results in

reduced development effort for creating coordinated communication services.

3.2 Domain analysis of User-Centric Communication

The purpose of domain analysis of user centric communication services is to extract

recurring behavioral patterns in communication, which are then used as input to the

design of a workflow language targeted for communication orchestration. The output

of the domain analysis is a domain model (ontology) describing the domain concepts

and their relationships. In this section, we presented three scenarios from the user

centric communication domain and applied Feature-Oriented Domain Analysis to

extract a domain model (in the form of a feature diagram) from these scenarios.

3.2.1 User-Centric Communication Scenarios

We investigated several communication intensive domains like healthcare, disaster

management, and scientific collaboration. For each of these domains, a representative

35

set of scenarios is chosen. We present three scenarios from the healthcare domain to

motivate the need for collaborating user-centric communication services:

Patient Discharge Scenario: (1) On the day of discharge, Dr. Burke (DP) establishes

an audio communication with Dr. Monteiro (SC) to discuss the discharge of baby

Jane. During the conversation, Dr. Burke sends Jane’s discharge package to Dr.

Monteiro for validation. The discharge package consists of a summary of the patients

condition (text file); x-Ray of the patient’s heart (non-stream file); and an echocar-

diogram (echo) of the patient’s heart (video clip). (2) After the package is sent, Dr.

Burke contacts Dr. Sanchez (PCP) to join the conversation with Dr. Monteiro to dis-

cuss the patient’s condition. During the conversation, Dr. Monteiro validates Jane’s

discharge package and sends it back to Dr. Burke. (3) If the discharge package is

received within 24 hours and is validated, Dr. Burke then sends it to Nurse Smith

(NP) and Dr. Wang (AP). Otherwise, Dr. Burke sends out an interim discharge note

(text file) to the AP. At the same time Dr. Burke continues his conference with Drs.

Monteiro and Sanchez.

Medical Emergency Response Scenario: Patient X presents to emergency room of

General Hospital in State A. She has been in a serious car accident. The patient is

an 89 year old widow who appears very confused. (1) The law enforcement personnel

Y investigating the accident contacted her adult daughter to indicate that the pa-

tient was driving and there are questions concerning her possible impairment due to

medications. Her adult daughter informed the ER staff that her mother has recently

undergone treatment at a hospital in a neighboring state B and has a prescription

for an antipsychotic drug. (2) The emergency room physician W determines there is

a need to obtain information about Patient X’s prior diagnosis and treatment during

36

the previous inpatient stay and requested the required information to the hospital in

state B.

Disaster Management Scenario: The policy department responds to a fire on the FIU

(Florida International University) campus near the biology labs; on arriving the police

establish a communication with the Sweetwater fire department and FIU library using

the level 1 emergency communication workflow for a fire on campus. The FIU library

is contacted to obtain the blueprints for the Biology labs which are downloaded and

shared with the policy and fire department. When the fire squad arrives on the scene,

it is established that there is hazardous material in the biology labs ad the FIU police

updates the level 1 workflow by integrating the level 3 emergency communication

workflow and deploys it. The level 3 communication workflow contacts the Dade

County fire chief, Dade County health supervisor and the Dade County hazmat team.

3.2.2 Feature Oriented Domain Analysis

From the identified set of scenarios, we perform domain analysis using the FODA

(Feature-Oriented Domain Analysis) [9] methodology to yield a taxonomy model for

coordinated user centric communication. The taxonomy model is presented in the

form of a feature diagram that captures commonalities (mandatory features) and

variabilities (variable features) of the domain. It also represents a hierarchical de-

composition of the features and their character, that is, whether they are mandatory,

alternative, or optional. More specifically, we extended the feature-oriented domain

analysis done by Wang [75] to include workflow related features thus making commu-

nication services workflow-aware. Figure 3.1 shows the feature model that represents

the domain model for user-centric communication services. The class of user-centric

communication services has a hierarchy of features that characterize common and

37

variable domain properties. The root of the hierarchy, “Communication Service”, has

“communication flow” as a required feature, which may be a trivial flow consisting

of one communication process (“basic communication”), or a set of communication

processes coordinated by a control flow. Basic communication involves (1) connec-

tion, (2) media (primitive and composite) (3) devices for supporting the connection

and media transfer, and (4) user behaviors for setting up the connection or initiat-

ing data transfer. Connection includes participants in the connection and connection

properties. We show several control constructs for coordinating the behavior of ba-

sic communication activities, including (1) Sequencing of communication processes,

(2) Branching and merging of communication processes, (3) Repetition of commu-

nication activities, and (4) Parallel and synchronization of several communication

processes. The service management includes features related to loading, saving and

runtime adaption of communication services, and is usually offered by the service

platform. The rest of the concepts in the feature diagram are self-explanatory. Note

that the identified features are by no means an exhaustive set. We chose essential

features in order to build a minimal, intuitive and adequately expressive first version

of WF-CML. Advanced features such as requested properties for a connection or a

particular data transfer are postponed for later versions of the language. These fea-

tures include quality of service policies (e.g., if bandwidth is low then do not send

video streams), security, access rights policies, and timing commands (e.g., transfer

the sensor output every 5 seconds). Note that we follow an inductive approach by

incrementally introducing workflow abstractions that allow one to capture a set of

common programming patterns for a particular domain. This is in contract with a de-

ductive approach, where an exhaustive domain analysis process needs to occur before

any language design activities. The inductive approach enables a quick turn around

time for the development of workflow abstractions in the modeling of communication

services.

38

Figure 3.1: Feature Oriented Diagram for the Communication Domain.

Figure 3.1 shows the domain of user-centric communication service consisting of

two features: basic communication, coordinated communication and service manage-

ment. Coordinated Communication includes various control constructs for coordinat-

ing the behavior of basic communication activities. The service management includes

features related to loading, saving and runtime adaption of communication services,

and is usually offered by the service platform. The rest of the concepts in the feature

diagram are self-explanatory.

3.3 Abstract Syntax of WF-CML

As indicated in the previous subsection, by investigating domain-specific scenarios

in healthcare, disaster management, we have gained preliminary results in terms of

the most common patterns and event. These results have helped us to identify the

39

modeling abstractions for coordinated communication services. Some of the model-

ing constructs we have identified include: Communication Process, Workflow Event,

Decision and Merge. Each Communication Process incorporates a CML model that

represents the functionality of the communication service. That is, each Communi-

cation Process includes a CML model, the execution of which realizes the services

specified. Also, a specific type of Communication Event is attached to the activity as

trigger or temporal event, indicating the termination of this activity. Communication

events drive the execution of WF-CML models through the initiation, termination

and triggering of communication activities.

To perform a classification of the events that could potentially drive the progress

of communication workflows, we categorize Workflow Event into four categories: Ne-

gotiation Event, Media Transfer Event, Temporal Event and Exception Event. Nego-

tiation Event indicates the result of a connection establishment, and could be either

Failed, or Successful, or Updated, while Data Event signifies the reception, or sending

of a particular medium, and could be sub-categorized into Form Event and Medium

Event. The Temporal Event and Exception reflects a time occurrence and an unex-

pected failure separately. Note that the Temporal Event are related with a Negotia-

tion Event or a Data Event to denote the start of a time count. Therefore,Temporal

Event could be represented by temporal properties integrated with Negotiation Event

or Data Event, as shown later.

We defined the meta-model of WF-CML using an abstract syntax, shown in Figure

3.2, and static semantics described in the next subsection. In short, a WF-CML model

is a graph (CommWorkFlow) consisting of nodes (WF-Node), edges (WF-Edge), and

trigger events (TriggerEvent) as shown in Figure 3.2.

InitialNode and FinalNode signify the beginning and ending of a model represent-

ing the coordination of communication processes. CommProcNod (communication

40

-workFlowID : EString
CommWorkFlow

InitialNode

#commProcName : EString
CommProcNode

ControlNode

FinalNode

-edgeID : EString
-edgeType : EdgeType

WF-Edge1

edges1..*

1
cmlSchema1

1

triggerEvent0..1

CompositeCommProcNode

AtomicCommProcNode

1

nestedWorkflow

1

#nodeID : EString
WF-Node

1

nodes

1..*

-IsElse : EBoolean
EdgeAnnotation

1

annotation0..1

ForkNode JoinNode

MergeNode

DecisionNode#communicationID : EString
#schemaID : EString

cml::CommSchema

-eventID : EString
-communicationID : EString
-connectionID : EString
-workflowID : EString
-nodeID : EString

Events::TriggerEvent

+GT
+LT
+EQ
+NEQ

«enumeration»
RelOpTypes

target 1

incomingEdge

0..*

source

1

outgoingEdge 0..*

Events::CommProcEvent

1

commProcEvents1..*
-eventID : EString
-temporalOp : TemporalOp
-temporalValue : EDouble

Events::AtomicEvent

1

atomicEvents

1..*

-dataContent : Data
Events::DataTransferEventEvents::ExceptionEvent

-statusFT : FormTransferState
-temporalStart : FormTransferState

Events::FormEvent

-statusMT : MediaTransferState
-temporalStart : MediaTransferState

Events::MediaEvent

-status : NegotiationState
-temporalStart : NegotiationState

Events::NegotiationEvent

+After
+Before
+Every

«enumeration»
Events::TemporalOp

+Sent
+Received
+NotReceived

«enumeration»
Events::FormTransferState

+Sent
+Received
+Enabled
+Disabled

«enumeration»
Events::MediaTransferState

+Success
+Updated
+Failed

«enumeration»
Events::NegotiationState

1

guardedEvent0..*

cml::MediumType

cml::FormType

1
formType

0..*1 mediumType1

1

formType1

-key : EString
-oper : RelOpTypes
-value : EString

Condition

*

guard

0..*

+ReguarEdge
+DecisionEdge

«enumeration»
EdgeType

Figure 3.2: Abstract Syntax for WF-CML Using a Class Diagram.

41

process node) is either an atomic communication model (AtomicCommProcNode)

or a nested workflow model (CompositeCommProcNode) and has zero or one trigger

events associated with the node. The atomic communication model has a CML model

(cml::Comm Schema) and represents a communication service between participants,

an example of which is shown in Figure 2.5. The meta-model for CML is also avail-

able on the project’s website1. We will use the term CS process to refer to an atomic

communication process, and communication process to refer to either a composite

communication process or an atomic communication process from this point on in

the paper. DecisionNode, ForkNode, JoinNode and MergeNode express control flow

between communication processes. There are two types of edges (decision and reg-

ular). A decision edge is annotated with zero or more atomic events. If there is no

event annotation on the decision edge it is considered an else edge.

TriggerEvent is composed of one or more communication process events termed

as CommProcEvent. AtomicEvent may be either a NegotiationEvent e.g., “negotia-

tion success”; ExceptionEvent e.g., “connection interrupted”; MediaEvent e.g., “file

A received”; or a FormEvent e.g., “form DisPkg 1 received”. Each atomic event may

have a temporal property associated with the event e.g., “DisPkg 1 not received 24

hrs after being sent”. To support the definition of trigger events we defined sev-

eral temporal operators (TemporalOp), negotiation states (NegotiationState), media

transfer states (MediaTransferState), and form transfer states (FormTransferState).

We also specify the static semantics for the integrated WF-CML metamodel using

OCL, which is discussed in the next subsection.

42

Figure 3.3: Static Semantics for WF-CML

3.4 Static Semantics of WF-CML

Figure 3.3 presents the static semantics for WF-CML specified as OCL invariants.

These invariants correspond to structural constraints that are not captured by the

abstract syntax. The first rule states that a WF-CML model must have at least one

Communication Process node, for any node that is not a Decision node the outgoing

edges are Regular edges, the number of Decision nodes is equal to the number of

Merge nodes, and the number of Fork nodes is equal to the number of Join nodes.

Another constraint specifies that decision nodes should have two or more outgoing

edges, each with edge annotations as a guard except one with the reserved word

“else” as a guard. We also specify restrictions for the guards on the decision edges.

1http://www.cis.fiu.edu/cml/

43

A restriction for decisions (and any edge in general) in UML Activity Diagrams is

that guards are not allowed to use data from the activity context (i.e., only the data

from the current token may be used). Similarly in WF-CML, guards are predicates

based on the triggering events for the associated communication process node, not

from other data sources. Other rules are fairly easy to follow. We have posted a more

complete set of semantic rules in Appendix A19.

3.5 Concrete Syntax of WF-CML

In defining the concrete syntax of the WF-CML language, we extended the CML con-

crete syntax with graphical notations for modeling the coordination of communication

processes. Since CML has two forms of concrete syntax: a graphical representation

(G-CML) as well as an XML representation (X-CML), the addition of workflow no-

tations will be defined in both graphical and XML formats.

Visually, the concept of communication processes could be viewed as a compart-

ment that includes the configuration of the communication services, and potentially

events that will trigger the advancement of the process flow. Therefore, we design the

graphical notations for Communication Process as an nesting rectangle. The contain-

ment relation between Communication Process and Communication Schema is also

represented in spacial containment. Control nodes are assigned different shapes as fol-

lows: and-control nodes (Fork and Join) are represented as horizontal bars, or-nodes

represented as diamonds. The specification of X-CML formats for WF-CML is more

straightforward due to the strict mapping from the abstract syntax of WF-CML to

its XML presentation. We integrated different XML tags for the workflow constructs

in the XML Schema Definition (XSD) of the Communication Modeling Language to

match the identified abstract syntax in Figure 3.2. Abstractly, classes in the WF-

44

[FormEvent_1][Else]

Trigger Event

1. FormEvent_1: Discharge_Pack Received
and Discharge_Pack.validity EQ True

2. FormEvent_2: Discharge_Pack
NotReceived 24 hrs After Sent

Trigger Event
1. MediaEvent: InterimNote_1 Sent

Trigger Event
1. FormEvent: Discharge_Pack Sent

CommProc_1

CommProc_2 CommProc_3

DP SC

DP
AP

NP

DP AP

Figure 3.4: WF-CML model for Healthcare Use Case.

CML meta-model that have aggregation or composition relations are mapped to child

XML tags inside the parent XML tags. An association relation, on the other hand,

is mapped to an additional XML tag to connect the two classes. The XML format

for the patient discharge scenario is listed in Appendix A1-A4.

Note that the G-CML representation are intended for user-friendliness purposes,

while the X-CML representation are designed for the internal representation and

manipulation. They are equivalent in terms of expressive power.

3.6 Modeling with WF-CML

We can use WF-CML to model communication-intensive use cases that coordinate

individual communication services. As an example, we show the WF-CML model rep-

resenting the patient discharge scenario presented in Section 3.2 in Figure 3.4. The

45

model includes three communication process nodes, each one containing a separate

CML model and a trigger event. The CML model in CommProc 1 specifies the com-

munication between the DP and the SC, which is instantiated when the WF-CML

model is executed by Dr. Burke and he loads the contact information of the SC.

There are two types defined for this communication, a form type Discharge Pack

and a built-in media type LiveAudio. The media type and form type are instanti-

ated when Dr. Burke enables the audio stream, Figure 2.5(b), and loads the patient

form DisPkg 1, Figure 2.5(c), respectively. The trigger event in CommProc 1 states

that this node is exited when a validated patient form of type Discharge Pack is

received, in this case DisPkg 1; or the patient form is not received 24 hours after

being sent. The occurrence of either event will result in the communication flow leav-

ing the node CommProc 1. Then, depending on which event triggers the exit, either

the CommProc 2 node or the CommProc 3 will be activated. Finally, in either cases, a

MediaEvent (InterimNote 1 Sent or Discharge Pack Sent) will take the flow out

the respective node and the flow of communication will terminate afterwards.

3.7 Chapter Summary

In this chapter, we introduced the syntactic design of the Workflow Communication

Modeling Language (WF-CML) for coordinating user-centric communication services.

It consists of a feature oriented domain analysis, a meta-model and concrete syntax.

The syntactic design of WF-CML defines all the first-class modeling constructs of the

language, as well as its “ look and feel” for the user. An equally important, if not

more important task is the semantics specifications of WF-CML. In the next chapter,

we introduce the dynamic semantics of WF-CML that provides the basis for dynamic

synthesis and rapid realization of coordinated communication services.

46

CHAPTER 4

SEMANTICS FOR DYNAMIC SYNTHESIS OF WF-CML

In this chapter we describe the dynamic semantics (behavioral model) of WF-

CML that enables dynamic synthesis of coordinated user-centric communication ap-

plications. We first present an overview of the process to dynamically synthesize

WF-CML models, and then formalize the high-level semantics of WF-CML models

using labeled transition systems. The semantics specifications are then instantiated

by synthesis algorithms and detailed state machines for negotiation and media trans-

fer. To partially validate the semantics, we simulated the WF-CML models using a

meta-modeling language development framework that supports the rapid prototyping

of domain-specific modeling languages.

4.1 Overview of Dynamic Synthesis For Realizing WF-CML

In this section we provide an overview of the process to dynamically synthesize WF-

CML models. We use the term synthesis to refer to the automatic derivation of an

executable form called communication control script from a WF-CML model; and dy-

namic refers to the possibility of runtime updates to an executing WF-CML model.

These runtime updates may include adding new media types to an executing com-

munication application, or adding a new participant, which requires renegotiation, or

changing the flow of communication services. We first present a high-level flow of the

synthesis process of realizing WF-CML models, and then introduce the hypergraph

concept and explain how it is used during the synthesis process.

47

��� �� ��� ��	

��
����������� �������������� ��������

�������
�
��
���
�
��

�

�

��� ��������!�

"���
#��$

���

���

��
�����������

%"&��'

��������
�

%"&��'�

��
����
�

 ��������

��
��
(��������

��
(�

�������(

�
)�������

�

��*�

�������(

���)�
�����
�

�
(!�
�����
���
(!�+����
�
��

�*�
�����
��

�*�+����
�
��

������
� ������

%"&��'�

����,-
�

����
������

����!�
��
���

��������
�

����!�
��
���

����,-
�

�
(!�+��*�
�
��
�+���.�
������
�
��

��
��
����

���������

��
��
�� ����

���

����/����������
����
�0
���-������
����
�����)�������

��������

����!�

��
����

� ���

���

%"����$

��

Figure 4.1: (a) Execution of a schema in the CVM. (b) Execution of a schema in the
synthesis engine (SE). CI - Control instance; DI - Data exchange instance.

4.1.1 High-Level Synthesis Process

To assist the reader in understanding the process of dynamic synthesis, we show

a high-level view of the overall realization process in Figure 4.1(a) and dynamic

synthesis in Figure 4.1(b). Recall that realization refers to the dynamic synthesis

of control scripts from WF-CML models and subsequent execution of the behavior

specified in the models by executing these control scripts. As Figure 4.1(a) illustrates,

realization of WF-CML models starts when the user loads and instantiates a WF-

CML model in UCI. The realization process could be summarized as the following

steps:

1. UCI validates the WF-CML instance with respect to well-formed rules and

passes it along to SE

2. SE, upon receiving a WF-CML instance, analyzes and synthesizes it into a

control script to be executed by the UCM. It also maintains the runtime state

of communication services and service coordination as specified in the model

48

3. UCM then executes the script and makes API calls to the NCB, which interfaces

with the underlying communication frameworks

4. NCB interacts with the communication frameworks and generates UCM or SE

events that are handled by their respective CVM layers.

In the above realization process that involves all CVM layers, SE is the layer

that specifically handles the dynamic synthesis. Figure 4.1(b) shows a block diagram

representing the executing processes in SE. The seven major processes of SE include:

WF-CML Controller, WF Proci (representing the i
th process in the WF-CML model),

WF-CML Analyzer, Comm. Schema Controller, Schema Analyzer, Connectionj (rep-

resenting the jth connection in the CML model), and SE Dispatcher [76]. We describe

the functionality of each component as follows:

• WF-CML Controller: coordinates the execution of communication services as

specified in the WF-CML model by starting, updating, or deleting an executing

communication process (represented in theWF Proci). It interacts directly with

the Comm. Schema Controller for realizing communication services, and receive

negotiation, media transfer and excepetion events from the SE Dispatcher to

trigger the progression of communication processes.

• WF Proc: represents a specific currently executing WF-CML process. It is

coordinated directly by the WF-CML Controller. Each WF Proci executes in-

dependently from each other.

• WF-CML Analyzer: analyzes a WF-CML instance and converts it to a flattened

data structured (a WF-CML hypergraph, discussed in more details later) that

will be executed in WF Proc.

49

Figure 4.2: EBNF-like Grammar for Communication Control Script

• Comm. Schema Controller: manages the execution of incoming CML instances

by interacting with the Schema Analyzer and Connection process. It also main-

tains and updates the SE environment accordingly during dynamic synthesis.

• Schema Analyzer: performs an analysis of the input instance pair and extracts

the changes in the model, which are then fed into the Connection process.

• Connection: consists of (re)negotiation and media transfer processes. The ne-

gotiation process handles the negotiation logic for a given connection instance,

while the media transfer process maintains the state of media transfer within

the connection.

• SE Dispatcher: coordinates outgoing schemas to be displayed to UCI, control

scripts to be passed to UCM, and action requests invoked back to the SE con-

troller for updating the SE environment.

50

We show the attributed grammar of the control script language using EBNF-like

notation in Figure 4.2. The grammar contains productions for all of the script com-

mands used in the control script language. Rule 1 states that a control script consists

of one or more script commands, and Rule 2 shows the various script commands.

The strings in bold represent the actual command, and the attributes represent the

parameters that the command can take. For example, Rule 3 states that createCon-

nectionCmd is composed of the string createConnection and takes one parameter

connection ID. The complete metamodel definitions for the control script language

can be found on our project website 1.

4.1.2 Using WF-CML Hypergraphs During Synthesis

In this subsection, we present an important data structure used in the dynamic syn-

thesis of WF-CML models, the WF-CML hypergraph. Inspired by the concept of

activity hypergraphs as introduced by [25], we used the WF-CML hypergraph con-

cept as a simplified runtime representation of the WF-CML model. Next we present

the intuition behind and definition of the WF-CML hypergraph concept, and then

introduce a two-step process that is used for realizing WF-CML models based on the

WF-CML hypergraph.

Control nodes in WF-CML models like Decision and Merge nodes act like syntac-

tic sugar that denote routing rules without mapping into executable specifications.

They could be viewed as transient nodes that leave the system in an unstable state,

and process execution will immediately continue from there. Existing techniques for

eliminating these nodes using the concept of UML activity hypergraphs and hyper-

edges have been proposed in [24]. Activity hypergraph is similar to an UML activity

digram except that control nodes are removed and replaced by a compound tran-

1http://www.cis.fiu.edu/cml/

51

sition (hyperedge) [24]. Note that hyperedges here are defined as edges that have

multiple source nodes and multiple target nodes. The compound transition, essen-

tially a hyperedge, basically is a chain of atomic transitions linked by control nodes.

The compound transition could be executable simultaneously as a single transition.

Figure 4.3 shows an example of eliminating Decision, Merge Join and Fork nodes by

replacing them with compound transitions.

Inspired by the activity hypergraphs, we decided to use the concept of hyper-

graphs and hyperedges [24] in the manipulation of WF-CML models. The immediate

benefit is that they provide for the removal of nodes (Decision, Merge, Fork and

Join) that do not map to any real communication processes but are used mainly for

modeling routing rules. These control nodes can be replaced with “composite transi-

tions”, annotated edges, directly connecting communication process nodes. Note the

difference between UML activities and communication processes: an UML activity

terminates its execution when it advances to the next node while a CS process con-

tinues execution after a hypernode is exited. We defined a WF-CML hypergraph as

follows:

WF-CML HyperGraph = {HyperNodes, HyperEdges, HyperEdgeAnn}

where:

HyperNodes = {InitialNode} ∪ {FinalNode} ∪ CS ProcNodes ∪ WaitNodes,

CS ProcNodes - a set of atomic communication process nodes.

WaitNodes - a set of wait nodes for handling synchronization for a join.

HyperEdges ⊆ HyperNodes × HyperNodes

HyperEdgeAnn: HyperEdges→EdgeAnn

EdgeAnn - events required to enable a transition.

52

Figure 4.3: Elimination of Control Nodes in Generating Hypergraphs

Table 4.1: Mapping Control Nodes to Hyperedges

Control # of Hyperedge # of Source # of target Has labels
Nodes nodes nodes

Decision N 1 1 yes
Fork 1 1 N no
Join 1 N (wait node) 1 no
Merge N 1 1 no

Next, we define the detailed execution semantics of workflow models through the

notion of WF-CML hypergraphs in terms of a two step process:

Mapping WF-CML process to WF-CML hypergraphs: The algorithm for convert-

ing WF-CML models into WF-CML hypergraphs is similar to the transformation of

UML Activity Diagrams to Activity Hypergraphs designed by Eshuis et al. in [24].

The main steps are: (1) flattening the hierarchy by elimination of nested WF-CML

models, (2) replace the join node with wait nodes, (3) combine edges of control nodes

53

Figure 4.4: Converting WF-CML Model to WF-CML Hypergraph

to create hyperedges, including concatenation of edge annotations. The resulting ac-

tivity hypergraph would essentially be a collection of communication activities, wait

nodes, as well as initial and final nodes, connected by composite transitions, termed

hypergraph. Note that each hyperedge is essentially a chain of transitions that are

atomic: they are executed at the same time in the sense that it is not possible to

execute the first part of the transition and then put it on hold. The mapping rules for

converting control nodes is summerized in Table 4.1 In Figure 4.1(b), this mapping

is done by the WF-CML Analyzer process.

To illustrate the mapping process, we show a simple example of how a WF-CML

program is converted to a WF-CML hypergraph in Figure 4.4. Figure 4.4 shows now

how a WF-CML model is mapped to its corresponding hypergraph.

54

Stepwise execution of Communication Process Nodes: After getting the WF-CML

hypergraph, we would do a step-wise event-driven execution of the communication

processes according to the prescribed order. We define the state space of a communi-

cation workflow system and use two algorithms to represent how the system behaves

given certain inputs. Note that similar to other semantic specifications proposed

for reactive systems, we also incorporate information about the environment in the

definition of the system state space, including the input events, etc. In the next

subsection, we formalize the semantics of WF-CML models using labeled transition

systems, defined as extensions of the semantics for CML.

4.2 Towards a Formal Approach For Dynamic Synthesis

As previously mentioned, the semantic specifications of WF-CML are built on top

of the semantic specifications for CML. In this subsection, we first formalize the

semantics for CML models [77], and then extend it for WF-CML that provides the

basis for dynamic synthesis of coordinated communication services.

4.2.1 Formal Semantics Specification for CML

We formalize the behavioral model of dynamically synthesizing CML models using a

labeled transition system (LTS) defined in terms of states (or configurations) stored in

the SE environment, and a transition relation. A LTS consists of a collection of states

and a collection of state transitions between them. The transitions are specified by a

labeled transition relation. This behavioral model is an extension and refinement of

the work presented by Wang et al. [77]. The transition relation essentially specifies

the rules for state changes based on the input CML model and the SE environment.

It also defines the mapping from the input CML model to the output communication

55

control script. The transition relation (RSyn) is defined as follows:

((CIin, DIin), Envi) =⇒ ((CIout, DIout), (ScriptNeg, ScriptMT), Envi+1) (4.1)

where:

• (CIin, DIin) - input control and data instance pair to be processed(see left side

of Figure 4.1(b)).

• Envi - current environment including the complete user’s view of the communi-

cation schema instance currently being executed (userSchema) and a connec-

tion environment (Conn Envi) for each of the connection processes currently

being executed. The state of each connection, Conn Envi, is defined as a two-

tuple (Negi,MTi), where:

– Negi - current environment of a specific connection process with respect

to (re)negotiation and it includes the control instance (CIi) currently

being negotiated or executed (CIi ∈ {CINeg, CIexe}), negotiation state

(Neg State), number of received responses (num responses) and the pres-

ence of a negotiation token (hasNegToken). Neg State is maintained in

the Negotiation state machine discussed in Table A1.

– MTi - current environment of a specific connection process with respect to

media transfer and it includes the currently executing DI (DIexe), media

transfer state (MT State), and list of streams (num streams). MT State

is maintained in the Media Transfer state machine discussed in Table A2.

• (CIout, DIout) - output instance pair generated during the transition process.

This pair contains the CI and DI that may be sent to the UCI representing the

56

currently executing connection process. The UCI updates the user’s view of the

communication using this instance pair.

• (ScriptNeg, ScriptMT) - control script pairs generated for the UCM to invoke the

execution of the negotiation and media transfer macros. Note that these scripts

may contain control instances and data instances for the remote participants in

the communication. (see the rightmost column of Figure 4.1).

• Envi+1 - updated environment after the most recent transition. The structure

is similar to Envi stated above.

The behavior model associated with a connection is based on a sequence of instance

pairs of the form (CIi, DIi), where i = 0, 1 · · ·n, CI is a control instance and DI a

data instance. The initial instance pair (CI0, DI0) represents the initial state of the

system with respect to some new connection to be established.

Then the incoming CI1 is compared to CI0 resulting in changes to the system

state and the negotiation process initiated. The future behavior of the system is

determined based on subsequent incoming instance pairs and the current state of the

system.

The input instance pair (CIin, DIin) may contain the user’s specifications for mul-

tiple connections. Each instance pair is broken down into a set of instances per con-

nection and handled separately. For each connection, we break down the transition

relation RSyn, defined in equation (4.1), into a relation for handling control instances

during negotiation, and one for handling data instances during media transfer. The

following relations are defined per connection j:

(CIin, Envi.Connj.Negk) =⇒ (CIout, ScriptNeg, Envi+1.Connj.Negk+1) (4.2)

57

(DIin, Envi.Connj.MTk) =⇒ (DIout, ScriptMT , Envi+1.Connj.MTk+1) (4.3)

RNeg, shown in equation (4.2), represents the relation transforming the control

instance during negotiation, and RMT , equation (4.3), the relation for transforming

the data instance during media transfer. A key part in our semantic definition is the

changes identified between two successive models, therefore we define the functions

analyzeCS and analyzeDS that identify the changes in the control schema instances

and data schema instances, respectively. These changes are used to trigger events

in the labeled transition systems for negotiation and media transfer. To specify the

transition relations, RNeg and RMT in more detail, we define the following functions

:

analyzeCI : ControlSchema× EnvNeg → ControlChangeType (4.4)

analyzeDI : DataSchema× EnvMT → DataChangeType (4.5)

updateNeg : ControlSchema× EnvNeg × ControlChangeType →

ControlSchema× EnvNeg ×NegScript

(4.6)

updateMT : DataSchema× EnvMT ×DataChangeType →

DataSchema× EnvMT ×MediaScript

(4.7)

58

where:

• ControlSchema is the type for control instances, CI (CIin or CIout), or the CI

stored in the environment (Negi.CINeg)

• DataSchema is the type for data instances, DI (DIin or DIout) or DI stored

in the environment(MTi.DIexec)

• ControlChangeType andDataChangeType are the enumerated types for changes

related to the input CI or DI, respectively

• EnvNeg and EnvMT are the types for the negotiation environment (Negi)

and media transfer state (MTi), respectively in Conn Envj

• NegScript and MediaScript are the types for the control scripts generated for

negotiation (ScriptNeg) and media transfer (ScriptMT), respectively

The transition relation RNeg can be defined by analyzeCI in equation (4.4) and

updateNeg in equation (4.6) as follows:

RNeg = updateNeg(CIin, Envi.Connj.Negk, analyzeCI(CIin, Envi.Connj.Negk))

(4.8)

Similarly, we specify the translation relation RMT as follows, using analyzeDI in equa-

tion (4.5) and updateMT in equation (4.7) :

RMT = updateMT (DIin, Envi.Connj.MTk, analyzeDI(DIin, Envi.Connj.MTk)) (4.9)

Relating the above definition with the execution flow shown in Figure 4.1(b), the

Envi is maintained in the Comm.Schema Controller, which also realizes synthesis

59

algorithms including RSyn, RNeg and RMT . The negotiation and media transfer states

are maintained by the negotiation and media transfer processes, respectively.

The specifics of these functions are explained further in terms of synthesis algorithms

and labeled transition systems in [82]. Although it is not the major contribution of

this dissertation, for complete reasons, we show synthesis algorithms for synthesizing

CML models in Appendix 6.1, analyzing CML control and data schema instances

in Appendix 6.2, 6.3, and the details of the negotiation and media transfer state

machines in Table A1,A2 in the Appendix.

4.2.2 Formal Semantics Specification for WF-CML

We formalize the behavioral model of dynamically synthesizing WF-CML models by

extending the labeled transition system (LTS) defined previously for CML. This is

done through expanding the state space (all possible configurations) stored in the

SE environment, and designing new transition relations based on existing transition

rules. More specifically, the following steps are needed:

1. Formalize the state space of collaborative communication systems at runtime

2. Define auxiliary functions to query/modify the system runtime state defined in

step 1

3. Specify transition relations to realize the execution of the communication-specific

workflow models, through the use of auxiliary functions defined in step 2

Next we present our approach to formalize the semantics of WF-CML models based

on the semantics of CML models:

1. Modeling the environment of the WF-CML runtime using a 4-tuple:

60

WF Envi =⇒ (WFexec, Comm Env, CurNodes, WFinput), in which:

• WFexec - the currently executing WF-CML hypergraph in this WF Proc process.

• Comm Env - a list of executing CS processes in the executing WF Proc process.

• Cur Nodes - currently active CS process nodes or wait nodes with respect to

the WF Proc process.

• WFinput - inputs that trigger the progress of collaborative systems:

In the above definition, we have covered the syntactical description of the WFexec and

the definition for Comm Env in previous sections. Here, we focus on the definition

for Cur Nodes and WFin next.

Cur Nodes ⊂ Set〈 CS ProcNodes 〉 ∪ WaitNodes, in which,

• CS ProcNodes represent a set of atomic communication process nodes

• WaitNodes and a set of wait nodes for handling synchronization for a join in a

WF-CML hypergraph separately, as mentioned previously

WFinput =⇒ WF Eventin ∪ WF Updatein, in which:

• WF Eventin - an input event that may trigger the execution of the next node

in the WF-CML model. These events include negotiation events, data transfer

events and exception events.

• WF Updatein - an updated workflow model passed down from the user interface,

a trivial case might be a new communication schema wrapped up in a trivial

workflow model

61

2. Defining auxiliary functions for inspecting and modifying the system state. We

identified the following auxiliary functions and grouped them into mutator functions

(functions that modify the system state) and accessor functions (functions that only

inspect or query the system state). These functions facilitate the specification of

transition relations in the next step.

Mutator functions:

• addComm → create a new communication process

• updateComm → update an existing communication process

• next → return the next node of an existing node

Accessor functions:

• isTrigger → check if an input event is a trigger event

• checkEquivProc→ check if the current configuration of a process is semantically

equivalent with its initial configuration

• eval → evaluate the truth value of a boolean expression

• next → return the next node of a given node

• enabled → return the set of enabled edges given the current environment

• isWaitNode → check if a given node is a wait node or not

• num → return the number of elements in a given set

Formally, these auxiliary functions are defined as mappings from the domain to its

image as follows:

addComm : ControlSchema× EnvNeg → EnvNeg (4.10)

62

updateComm : ControlSchema× EnvNeg → EnvNeg (4.11)

isTrigger : WF Event → {True, False} (4.12)

checkEquivProc : CommProcNode× EnvNeg → {True, False} (4.13)

eval : EnvNeg → {True, False} (4.14)

next : EnvNeg → CommProcNode (4.15)

enabled : WF Event× EnvNeg → HEdge (4.16)

isWaitNode : CS ProcNodes ∪WaitNodes → {True, False} (4.17)

63

num : Set → Integer (4.18)

3. Specify the transition relation for executing communication-specific workflow mod-

els, including advancing the process model as well as updating communication service

configurations. We first give a brief explanation of the identified six transition rela-

tions, and then formalize each relation separately.

• RaddComm - represents the addition of a new communication

• RupdateComm - represents the update of an existing communication

• RtriggerComm - represents triggering the communication process to the next node

• RchoiceComm - represents the choice of different paths in a communication process

• RconcurComm - presents parallel paths in a communication process

• RsyncComm - presents the synchronization of parallel paths in a process

We then formalize these transition relations using set theoretic notations to rep-

resent semantic concept [52]. Note that we use s and s′ to represent the states before

and after the transition, respectively. Two states s, s′ are related by the transition

if and only if the system can change state from s to s′. We use the notation s.* to

access specific components of the state definition, and use the form s[x mapsto a0]

to represent a new state in which each occurrence of a variable x is replaced with

another expression a0. This is called substitution in [52] to represent the semantics

64

of expressions. Also, we use OCL collection operations such as select to iterate and

filter through set elements.

RaddComm
df⇔ ¬ ∃ n ∈ s.comm env • ciin.cid = n.cid

∧ s′ =s[comm env �→ addComm(ciin, s)]

(4.19)

RupdateComm
df⇔∃ n ∈ s.comm env • ciin.cid = n.cid

∧ s′ =s[comm env �→ updateComm(ciin, s)]

(4.20)

RtriggerComm
df⇔ ∃ e ∈ s.wf event ∃ n ∈ s.cur nodes • isTrigger(e, n)

∧ num(n.edges) = 1 ∧ num(enabled(e, s)) = 1

∧ s′ =s[cur nodes -{n} + next(s, n)]

(4.21)

RchoiceComm
df⇔ ∃ e ∈ s.wf event ∃ n ∈ s.cur nodes • isTrigger(e, n)

∧ num(n.edges) >1 ∧ num(enabled(e, s)) = 1

∧ s′ =s[cur nodes - {n} +(n.edges.select{e| eval(e,s) })]

(4.22)

RconcurComm
df⇔ ∃ e ∈ s.wf event ∃ n ∈ s.cur nodes • isTrigger(e,n)

∧ num(n.edges) >1 ∧ num(enabled(e, s))>1

∧ s′ =s[cur nodes - {n} + next(n,s)]

(4.23)

65

RsyncComm
df⇔∃ n ∈ s.cur nodes • isWaitNode(n) ∧ ∀ n′ ∈ n.edges.srcs

• isWaitNode(n′) ∧ n′ ∈ s.cur nodes

∧ s′=s[cur nodes - n.edges.srcs + next(n,s)]

(4.24)

As mentioned earlier, the transitions relations make use of the auxiliary functions

defined previously to query about the system state as well as to affect changes in the

system states as a result of the transition. Next we present synthesis algorithms that

realize this semantics formalism by taking an instance of a WF-CML model, acting

upon it based on the runtime state of the system and affecting the system state at

the same time.

4.2.3 Synthesis Algorithms For Realizing WF-CML

To realize the semantics specifications described in the previous section, we now

describe synthesis algorithms that take a WF-CML model instance, analyze it and

execute the communication services and control behavior specified in the instance.

We present a top level realization algorithm, a WF-CML analysis algorithm, and a

detailed execution algorithm that traversals the WF-CML hypergraph to realize the

required service coordinations.

Realization: The top level algorithm realize WF, shown in Algorithm 4.1, is the entry

point for any input WF-CML model. It invokes the algorithm analyze WF, line 2,

to dynamically analyzing WF-CML models. The analyze WF is shown in Algorithm

4.2. Based on the result of the analysis, realize WF either instantiates a new process,

wf proc, to handle the realization of a new WF-CML model, lines 3-6; delegates the

realization of a new or existing CS process to the controller for the communication

66

Algorithm 4.1 Algorithm to synthesize WF-CML.
1: realize WF (ref WFin)

/*Input: WFin - WF-CML model */
2: wfc ← analyze WF(WFin, WFProcs)
3: if wfc.diff == “Initial” then
4: wf proc ← new WFProc(wfc.WF HPG)
5: WFProcs.add(wf proc)
6: wf proc.Exec HPG(wf hpg, WF Envi)
7: else if wfc.diff == “CS ProcUpdate” then
8: CS Controller.execute(wfc.cmlSchema)

/*Extract the new (CI, DI) and updates the executing comm. instances. Communication
control scriptsare generated during updates to the comm. instances */

9: else if wfc.diff == “WFUpdate” then
10: wf proc ← WFProcs.find(wfc)
11: wf proc.update(wfc, WF Envi)

/* Update the executing WF-CML model using wfc */
12: else if wfc.diff == “Terminate” then
13: wf proc ← WFProcs.find(wfc)
14: wf proc.terminate(WF Envi)
15: end if

schema [77], lines 7-8; handles dynamic updates to the WF-CML model, lines 9-11; or

terminates the currently executing WF-CML model, lines 13-16. Instantiating a new

WF-CML model requires the execution of the WF-CML hypergraph, line 6, returned

from analyze WF.

Algorithm analyze WF performs a runtime analysis of the incoming WF-CML

model and returns a workflow change object (wfc). The wfc object contains three

fields: diff containing the change type, WF-HPG the WF-CML hypergraph, and

a CML schema pair (CI, DI). If the input WFin contains a new WF-CML model,

lines 2-4, then a WF-CML hypergraph is built and returned as a part of wfc. If

WFin contains a trivial WF-CML model (a model with one CS process) then either

it signals the termination of the workflow, lines 6-7, or an update to a CS process,

lines 8-10. The update to the CS process results in the CML model being extracted

from WFin and returned as part of wfc, line 10. If WFin is an update to an existing

WF-CML model, lines 12-15, a new hypergraph is created a returned in wfc.

67

Algorithm 4.2 Algorithm to analyze WF-CML.
1: analyze WF (ref WFin, ref WFProcs)

/*Input: WFin - WF-CML model
Output: wfc - WF-CML change object */

2: if !WFProcs.contains(WFin) then
3: wfc.diff ← “Initial”
4: wfc.WF HPG ← Map2HPG(WFin)

/* An initial WF-CML model */
5: else if WFin.isTrivial() then
6: if WFin.csProcNode.isEmpty() then
7: wfc.diff ← “Terminate”

/*Model has no workflow related nodes */
8: else
9: wfc.diff ← “CS ProcUpdate”

/* Update to a CS process */
10: wfc.cmlSchema ← WFin.csProcNode.commSchema
11: end if
12: else
13: wfc.diff ← “WFUpdate”
14: wfc.WF HPG ← Map2HPG(WFin)

/* Update to the flow in WF-CML model */
15: end if
16: return wfc

Analysis of Algorithm: The running time of realize WF shown in Algorithm 4.1 is

dependent on the running time of analyze WF. Although there are different algorithms

for converting WF-CML models to WF-CML hypergraphs, here we focus on analyzing

the worse case running time. Using a naive implementation, the running time for

converting WF-CML models to hypergraphs depends on the number of nodes in the

model, as well as the maximum degree (in-degree or out-degree) of each node. We

deduce that the worst case running time for the algorithm synthesisCML is O(‖N‖ ∗
D)) where N is the number of nodes in the WF-CML model, and D is the maximum

degree of all nodes in the model. Since in most cases, the maximum degree of the nodes

will be a relatively small number, the worst case running time could be approximated

to O(‖N‖).

Execution of WF-CML Hypergraphs: The execution of a WF-CML hypergraph in-

volves traversal of the hypergraph supported by the underlying event mechanism.

The approach we use is similar to that described by Eshuis et al. [24] except for the

68

following differences: (1) the restrictions we place on the trigger events in the CS

processes and the guards annotating the hyperedges, and (2) the ability for a CS pro-

cesses to continue execution after a hypernode is exited. We present an explanation

of the execution algorithms for the hypergraph traversal and focus on the differences

previously stated.

Execution algorithm: Inspired by Eshuis et al. in [24], we designed the execution

algorithm for the traversal of the WF-CML hypergraph. Besides initialization, the

algorithm mainly involves a loop that repeatedly execute the following steps:

1. Pick an event from the event queue in the system runtime

2. Compute a step based on the event and the system runtime

3. Execute the step while updating the event queue and current system state

Details of this algorithm is shown in Algorithm 4.3. As we see, line 2-5 initializes

the environment of this WF-CML process, and starts the execution of the first com-

munication service specified in the model. Then, line 6-16 details the loop for the

repeatedly traversal of the WF-CML hypergraph based on events received and the

current state of the WF-CML process. Note that the calculation of enabled edges in

line 6 is detailed out in the Eval WF Step algorithm. For each of the enabled edges

that is returned from the algorithm, we replace the source nodes of the edge with

target nodes (note that both source and target nodes could be multiple), as shown in

line 10-11. Then we execute the services in each of the target nodes by passing it to

the communication schema controller.

The Eval WF Step algorithm works in a straightforward way: it first calculates

the nodes that are triggered to be exited. And for each of these nodes, it basically

considers three cases: (1) one outgoing edge with one source (sequence or merge),

69

line 25-26; (2) one outgoing edge with multiple source (fork), line 27-28; (3) multiple

outgoing edges (join), line 31-35. The set of enabled edges are then returned to the

Exec WF HPG for further execution.

Next we introduce how events are being generated and confused in the synthesis

process. Also how advanced control concepts like looping are currently being handled

and will be handled in the future. Event mechanism: In Section 3.3, we classify

atomic events into data transfer events, negotiation events, exception events, and

so on. These events could either be generated externally, or internally. Given that

the current design of WF-CML allows for the concurrent execution of multiple WF-

CML processes, a central event manager is needed to receive events, queue them

and dispatch them to corresponding WF-CML processes. The event manager is also

responsible for generating timeout events. Here, we assume the events that a CS

process is waiting for will eventually arrive. In addition, since the trigger event for a

CS process is based on events generated by the executing CS processes in the active

hypergraph node, events that belong to a future CS process is ignored. Our design

of WF-CML ensures that if the trigger event of a CS process fires then there is at

least one edge that can be taken out of the node. This is more restrictive than the

semantics defined by Eshuis et al. [24] for UML activity diagrams.

Handling Loops: When a WF-CML model contains a loop that connects a CS process

node to a previous CS process that is still executing, there is an option of restarting a

new CS process, or reusing the currently executing CS process. To make a decision,

we first need to define the notion of equivalence of CS processes. Recall that a CS

process consists of an executing communication instance pair (CI, DI) and a trigger

event. At this stage in the development of WF-CML we define equivalence only on

the CI. We currently define “total equivalence” of CI based on the attributes of, and

number of, the Connections, Persons, MediumTypes and FormTypes. For example,

70

Algorithm 4.3 Algorithm to Execute WF-CML Hypergraph.
1: Exec WF HPG (ref wf hpg, ref WF Envi)

/* Method to execute the WF hypergraph */
/* Input: wf hpg - WF hypergraph to be executed

WF Envi - current workflow environment */
2: enabled ← wf hpg.initialNode.outEdge
3: WF Envi.CurNodes.add(enabled.targetNode)
4: schema ← enabled.targetNode.schema
5: CommSchemaController.execute(schema, WF Envi.Comm Env)
6: while true do
7: wfEvent ← queue.nextEvent()

/* wait for input events from environment */
8: enabled ← Eval WF Step(WF Envi, wfEvent) /* compute a super step */
9: for each edge ∈ enabled do
10: WF Envi.CurNodes.add(edge.targets)
11: WF Envi.CurNodes.remove(edge.srcs)
12: for each node ∈ edge.targets do
13: CommSchemaController.execute(node.schema, WF Envi.Comm Env)
14: end for
15: end for
16: end while

17: Eval WF Step (ref WF Envi, wfEvent)
/* method to evaluate and return a set of enabled edges */
/* Input: WF Envi - current state of SE environment, wfEvent - external event */
/* Output: edges - set of enabled edges */

18: for each n ∈ WF Envi.CurNodes do
19: if wfEvent ∈ n.triggerEvents then
20: nodeToLeave ← n
21: end if
22: end for
23: if nodeToLeave.outEdges.size() == 1 then
24: oe = nodeToLeave.outEdges.any

/* when the hyperedge has one source node, it is directly enabled */
25: if oe.sources.size()== 1 then
26: return oe
27: else if oe.sources.size()> 1 && oe.sources.forAll{s| s ∈ WF Envi.CurNodes} then
28: return oe
29: end if
30: else
31: for all oe ∈ nodeToLeave.outEdges do
32: if oe.eval() == true then
33: return oe
34: end if
35: end for
36: end if

71

starting with Connections: the number of connections must be equal, the number

of attached devices, medium types and form types for each connection must also be

equal. Similarly we check equality for Persons, MediumTypes and FormTypes. We

expect to relax this strict definition of equivalence of CIs in the future.

Analysis of Algorithm: The algorithm for executing WF-CML hypergraphs is an

interactive process which depends on real-time information such as the arrival rate

of the events. It also depends on runtime information such as the number of current

nodes (‖N‖), the number of enabled edges(‖E‖), and the number of target nodes for

each enabled edge (‖D‖) at any point in time. Since in most cases, the maximum

degree of the nodes will be a relatively small number (constant), the worst case

running time could be approximated to O(‖N‖+ ‖E‖).

4.3 Validation of Dynamic Synthesis

In this section, we validate the behavioral semantics of WF-CML models, described

in Section 4.2, using Kermeta [69] as our simulation framework. We simulated several

scenarios from a cross-section of use cases using our implementation, however we only

present the result of a scenario for the healthcare use case described in Section 3.2.1.

4.3.1 Model Simulation Using Kermeta

Choice of Simulation Tool: The goal of our simulation is to validate the correctness

of the operational semantics of WF-CML models for dynamic synthesis. Therefore,

a meta-modeling tooling facility is needed that could help us define WF-CML both

syntactically and semantically. In addition, a meta-modeling facility that allows us to

define executable models would be very helpful. As a result of a comparison of several

72

meta-modeling frameworks, we chose Kermeta [69], an executable meta-modeling

language with a full-fledged workbench environment, as our simulation framework.

Kermeta [69] allows description of metamodels whose models are executable. The

characteristics of Kermeta are as follows:

• It is a powerful meta-programming environment for engineering domain specific

languages like WF-CML, with strong tooling support

• It allows the description of meta-models whose models are directly executable

• It is easy to use due to the extensive documentation available online

Simulation Approach: Kermeta program specifies the meta-model of domain spe-

cific languages conforming to the EMOF standard. Moreover, actions of the language

constructs are specified as class operations in the metamodel. Kermeta is integrated as

a plug-in to the Eclipse IDE, and it provides a generation tool Ecore2Kermeta which

has allowed us to translate our WF-CML metamodel (Figure 3.2(a)) to a Kermeta

compatible version. An example of a ECORE file before converting to a Keremta

version is shown in Figure 4.5

In our simulation, we first specified the WF-CML metamodel using ECORE and

used the generation tool Ecore2Kermeta in the workbench to translate the meta-

model (Figure 3.2) to a Kermeta compatible version. Then we coded the semantics

specification defined in Section 4.2 in the Kermeta language. As an example of how

Kermeta is used to specify executable metamodels, a piece of Kermeta code is shown

in Figure 4.6 and in Figure 4.7. We see that operations like execute provides the

execution logic for the CommProcessNode.

In order to simulate the dynamic synthesis of WF-CML models we created a

harness which included stubs and drivers. The stubs included a pretty printer that

73

Figure 4.5: A Metamodel Ecore File Before Conversion to Kermeta File.

generated control scripts, as well as updated models for the user. A test driver was

also created, which basically initiated a workflow controller object (WF-CML con-

troller), loaded a WF-CML model instance and passed it to the workflow controller.

In terms of events that trigger the workflow execution, two ways of feeding events into

the workflow controller were designed: (1) A set of predefined events that triggered

the workflow progression were provided to the workflow controller all at once before

execution. (2) Having the user input events on-the-fly at runtime. Note that workflow

events generated at runtime during execution could also be fed back into the work-

flow controller for further execution. At runtime, when a WF-CML model instance

is loaded into the environment, Kermeta will execute the model (an instance of the

WF-CML metamodel) based on the specified behavioral semantics in the metamodel.

As a result of the WF-CML model execution, target model instances (communication

control scripts) are generated, as well as feedbacks to the user.

Limitations of the Simulation: One limitation is the current event mechanism

due to Kermeta’s lack of support for generating temporal events, timeout events like

74

1 aspect class CommProcessNode inherits FlowNode {
2 attribute cmlSchema : CommSchema[1..1];

3 attribute owner : ecore::EString;

4 attribute triggerEvent : Event[1..*];

5 attribute processName : ecore::EString;

6 attribute status : procStatus;

7 operation execute(procExcutor:CommProcExecutor,

8 queue:BlockingQueue<Event>): Boolean is do {
9 status := procStatus.active;

10 stdio.writeln("Process"+processName+"executing");
11 result:= procExcutor.executeCommProc

12 (cmlSchema.controlSchema, queue);

13 end}
14 operation re execute(newSchema:Object,procExcutor:

15 CommProcExecutor,queue: BlockingQueue<Event>):

16 Boolean is do {
17 stdio.writeln("Still in Process "+ processName);

18 result:= procExcutor.executeCommProc

19 (newSchema,queue);

20 end}
21 operation deactivate(): Void is do {
22 status := procStatus.inactive;

23 stdio.writeln("Process"+processName+"inactive");
24 end}

Figure 4.6: Kermeta Code For CommProcessNode class

“After 24 hours” would have to be manually entered into the controller, instead of

being automatically generated through a system clock. Another limitation is the con-

currency mechanism in Kermeta. Due to Kermeta’s indirect support for concurrent

operations, we had to use an interleaving semantics for modeling concurrency between

the Negotiation and Media Transfer during each communication process as well as

inter-process concurrency. Interleaving semantics proved enough for the purpose of

simulating WF-CML models.

4.3.2 Case Study

As part of the case study, we use the follow scenario that is modeled and simulated in

the Kermeta framework. We show the WF-CML and event inputs that is fed as into

the simulation tool that we built, and analyzed the execution trace of the simulator.

Scenario: On the day of discharge Dr. Burke (DP) creates a discharge package

consisting of a text file (RecSum-Jane.txt), summary of patient’s condition; and a

75

1 aspect class WFController {
2 attribute block queue: BlockingQueue<Event>;

3 attribute fileio: FileIO;

4 reference csManager: CMLScheduler;

5 operation execute(ah: CommWorkFlowAH): Boolean is do {
6 block queue := BlockingQueue<Event>.new

7 stdio.writeln("WF Controller started");

8 var isEventsSeperate: String init stdio.read
9 ("Will subsequent events be input seperately or all in one file?");

10 if(isEventsSeperate == "no") then
11 varinputs: Collection<String> init makeCollection(readFromStdIO())

12 inputs.each i| ah.queueEventsByID(block queue, i)

13 end
14 ah.start(block queue)

15 end}

16 operation getInstance(): WFController is do {
17 if (self == void) or (csManager == void) then
18 csManager := CMLScheduler.new

19 csManager.initialize()

20 csManager.local user :=‘‘yali1028’’

21 fileio:= FileIO.new

22 end
23 result := self

24 end}

25 operation readFromStdIO():kermeta::standard::String is do {
26 var s : kermeta::standard::String

27 from var found: kermeta::standard::Boolean init false ;

28 until found
29 /* code to getting input file that has a list of input models */

30 end}

Figure 4.7: Kermeta Code For WFController class

video clip (HeartEcho-Jane.mpg), an echocardiogram (echo) of the patient’s heart.

Dr. Burke then establishes an audio video connection with Dr. Monteiro (SC) to

discuss the patient’s condition and shares the discharge package with him. During

the conversation with Dr. Monteiro, Dr. Burke decides to contact Dr. Sanchez (PCP)

(via an audio video connection) to join the conversation to discuss specific treatments.

After the conference call is terminated Dr. Monteiro validates the discharge package

and returns it to Dr. Burke who then sends it to Dr. Sanchez and the patient.

We used an incremental approach to simulate how the above scenario is realized

in the CVM. First, we simulated the execution of basic communication processes such

as the establishment of audio video connections, adding participants to join conver-

sations as well as data transfer between participants in the same connection. The

execution of each communication process is realized by the generated communication

76

Table 4.2: Applying the execution semantics to the healthcare scenario.

Row # Active Node Received Is Trigger Guard Target
wfEvent Event

1 Initial - - None Comm. Process 1:
Exec(X-CML 1)

2 Comm. Process 1: NegComplete N - -
Exec(X-CML 1)

3 Comm. Process 1: - - - -
Exec(X-CML Data1)

4 Comm. Process 1: MediaSent: N - -
Exec(X-CML 1) Form D1

5 Comm. Process 1: MediaReceived: Y Form D1 Comm. Process 2:
Exec(X-CML 1) Form D1 validated Exec(X-CML 2)

6 Comm. Process 2: NegComplete N - -
Exec(X-CML 2)

7 Comm. Process 2: MediaSent : Y None WorkflowFinal
Exec(X-CML 2) Form D1

8 WorkflowFinal - - - -

Table 4.3: Applying the execution semantics to the healthcare scenario - cont.

Row # Active Node Received Generated
wfEvent Script

1 Initial - -
2 Comm. Process 1: NegComplete createConnections(”connection1”)

sendSchema (”connection1” , ”burke” ,
”monteiro”,”test1.cmlcontrolsyntax” , ””)
addParticipants(”connection1”,”monteiro”)

3 Comm. Process 1: - enableInitiatorMedia(”connection1”,”LiveAudio”)
Exec(X-CML Data1)

4 Comm. Process 1: MediaSent: sendForm(”connection1”,”D1”,”RecSum-Jane.txt,
Exec(X-CML 1) Form D1 HeartEcho-Jane.mpg”,”send”)

5 Comm. Process 1: MediaReceived: -
Exec(X-CML 1) Form D1

6 Comm. Process 2: NegComplete -
7 Comm. Process 2: MediaSent : sendForm(”connection1”,”D1”,”RecSum-Jane.txt,

Exec(X-CML 2) Form D1 HeartEcho-Jane.mpg”, ”send”
8 WorkflowFinal - -

control script, which is then deployed on the UCM, a lower layer in the Communi-

cation Virtual Machine(CVM). Simulation results show that the correct sequence of

control scripts are generated when the communication process executes the commu-

nication schemas.

To visualize the process of dynamically synthesizing CML models, we show a series

of CML instances and the control scripts generated as a result of dynamic synthesis in

Figure 4.8. The table has three columns: the source of input, G-CML representations

of the X-CML instances, and the generated control scripts. The synthesis of these

CML instances at runtime realized the scenario described in Section 3.2.1. For easy

77

readability, we only show a skeleton graphical version of the CML instance. We

also break down the realization of communication services into three phases: initial

negotiation of a two-way communication, enabling live audio/video, renegotiation

into a three-way communication, and the media transfer of the patient discharge

form. Note that SE also utilizes its environment during this process updating it

accordingly, not shown in Figure 4.8. Then, we simulated the execution of WF-CML

models that handle the coordination of basic communication processes. A WF-CML

model instance is loaded by Dr. Burke and realized by the CVM. Table 4.2 shows the

execution trace of the scenario generated by applying the algorithms in Algorithms

4.1 and 4.2. Columns 2 through 7 represent the active node, received wfEvent - event

received by the workflow controller, a check for the trigger event, the guard, the

target node and generated control script during the execution of the communication

process. Each communication process will not move forward until the incoming event

matches the trigger event condition. Incoming events are either an external event,

like a MediaReceived event, or a system generated event, like ”After 24 hours”. Note

that the communication schema contained within a process node could be updated,

as show in Row 3 in Table 4.2. We do not show all possible events generated by the

SE dispatcher due to space limitations.

To demonstrate the potentially different paths of execution for the scenario that

we used, we simulated two different cases (1) the patient discharge package is received

within 24 hours and is validated; (2) a time-out event occurs. The execution trace

of the simulation shows that different paths are taken depending on the specific type

of events received during the execution of the scenario. We show the output of the

simulation trace in Appendix A13-A15 and Appendix A16-A18 . Note that Appendix

A13-A15 show the execution trace when for the first case, while Appendix A16-A18

illustrate the other case.

78

4.4 Chapter Summary

In this chapter, we presented the dynamic semantics of WF-CML that is essential for

the rapid realization of coordinated communication services. We started the semantic

specifications with the introduction of the overall synthesis process, detailed labeled

transitions systems, and synthesis algorithms for realizing the transition systems. The

result of this semantics formalism is then simulated using the Kermeta metamodeling

framework [69] for validation and verification of correctness. The simulation also

serves the purpose of rapid language prototyping of WF-CML. In the next chapter, we

introduce the Communication Virtual Machine prototype and related experimental

studies of the usage of WF-CML using the prototype.

79

Source Skeleton of input CML Output Control Script
Negotiation: (Establishing two-way communication)

UCI
Layer

createConnection(“C1”);

sendSchema(“C1”, “burke23”,
“monteiro41”, “CI1, null”)

UCM Layer
(from

monteiro41)

sendSchema(“C1”, “burke23”,
“monteiro41”, “CI2, null”)

addParticipant(“C1”, “monteiro41”)

monteiro41burek23 C1

CI1

CI2

monteiro41burek23 C1

ReNegotiation: (Establishing three-way communication)

UCI
Layer sendSchema(“C1”, “burke23”,

“monteiro41, sanchez12”, “CI3, DI3”)

UCM Layer
(from

monteiro41)

sendSchema(“C1”, “burke23”,
“monteiro41, sanchez12”, “CI5, DI3”)

addParticipant(“C1”, “sanchez12”)

monteiro41

burek23 C1
sahchez12

monteiro41

burek23 C1
sanchez12

CI3

CI4

NA

UCM Layer
(from

sanchez12)
monteiro41

burek23 C1
sanchez12

CI5

Media Transfer: Audio streaming

medium
LiveAudio

C1

UCI Layer

UCM Layer
(from

monteiro41)

C1

enableInitiator(“C1”, “LiveAudio”)

sendSchema(“C1”, “burke23”,
“monteiro41”, “CI2, DI1”)

enableReceiverMedia(“C1”, “LiveAudio”);
medium
LiveAudio

DI1

DI2

Media Transfer: Audio streaming and transfer of patient record

UCI
Layer

medium
LiveAV

form
Patient-Jane
send

medium
TextFile
URL: U:\burke23\files\vital_signs.pdf

medium
VideoFile
URL: U:\burke23\files\EcCard1.wmv

connID: C1

medium
NonStreamFile
URL: U:\burke23\files\heart_image.jpg

sendForm(“C1”, “Patient-Jane”,
“D:Jane/RecSum-Jane.txt”);

sendForm(“C1”, “Patient-Jane”,
“D:Jane/heartEcho-Jane.mpg”);

sendSchema(“C1”, “burke23”,
“monteiro41, sanchez12”, “CI5, DI5”);

...
...

...

Figure 4.8: CML models and Output Control Scripts for Healthcare Scenario

80

CHAPTER 5

PROTOTYPE AND EVALUATION

In this chapter, we present details of the Communication Virtual Machine pro-

totype, and measured static and dynamic metrics of the prototype. To show the

advantages of using a DSML versus a general purpose workflow language, we also

perform a comparative study between WF-CML and other workflow languages and

measure the associated effort for the development process. The result of the compar-

ative studies provides evidence on potential productivity gains of using WF-CML.

5.1 CVM Prototype

In this section, we explain the design and implementation of the Communication

Virtual Machine (CVM) prototype that could dynamically synthesize, and execute

coordinated UCCSs. First, the original implementation of the CVM prototype is

introduced, then we introduce the extensions required to realize the coordination of

communication models.

uci se ucm ncb

utils

Figure 5.1: Top Level Architecture of the CVM prototype.

The original design of the CVM prototype consists of four major subsystems and

a utility package as shown in Figure 5.1. These subsystems are the four components

previously described in Section 2.1.3. A more in-depth conceptual description of

81

these components are presented by Deng et al. [17]. We present a summary of the

components used in the prototype given below:

cvm::uci - the User Communication Interface (UCI) subsystem provides users will

the ability to create, load, save and validate WF-CML models. The UCI also passes

WF-CML models to SE for realization. Validation ensures that the models have

appropriate values for all the required fields making them communication instances,

for example each participant needs to have a valid user id. The main components

of the UCI include (1) Communications Modeling Environment (CME), a graphical

model environment, that provides expert users with the facility to create domain-

specific communication models; (2) User Interface (UI), a user-friendly interface, that

provides casual users with the facility to create communication models, both control

and data instances, and (3) Schema Transformation Environment (STE) converts and

validates models created in CME and UI into X-CML model instances before being

passed onto SE. Figure 5.3 shows a diagram of the model created for the scenario

described in Section 1.1. Appendix A9-A12 show the UI representation of the model

for the control instance and two data instances. The original implementation of

the Communication modeling Environment was developed using a combination of

the Graphical Modeling Framework (GMF) [80], the Eclipse Modeling Framework

(EMF)[66] and the Graphical Editing Framework [65]. A summary of the steps used

to create the graphical diagram editor are as follows:

1. Create a UML class diagram for the G-CML metamodel

2. Use the class diagram in Step (1) to generate the Ecore model in EMF

3. Generate G-CML editor from EMF via a series of transformations

4. Create models using G-CML editor and output its XML representation

82

5. Transform the XML representation of G-CML model generated by G-CML ed-

itor into equivalent X-CML representation.

cvm::se - the functionality of SE is described in details in Section 4.1 and will not

be revisited in its entirety at this point. Figure 5.2 shows a class diagram containing

the main classes and packages used by SE. SE interfaces with UCI and UCM via

the classes SE Facade and UCM Facade, respectively. The SE Manager coordinates

the activities of SE and the ConnectionProcessManager keeps track of the Connection-

Process objects created per connection. The basic functionality of the SE Manager

(same as SE Controller in Figure 4.1(b)) is described in Algorithm 6.1. The Con-

nectionProcess class coordinates the activities associated with each connection which

includes the (re)negotiation and media transfer processes, shown in Figure 4.1. The

classes NegotiationObject and MediaTransferObject define the state machines shown

in the Tables A1 and A2, respectively. Schema analysis is performed in the utility

package utils::handlers::schema. This functionality, described in algorithms analyze CI

(Algorithm 6.2) and analyze DI (Algorithm 6.3) is, placed in the utils package since

the UCI also needs to track changes to the control and data instances when updating

the UI after receiving updated instances from SE.

cvm::ucm - UCM is designed to support the execution of communication control

scripts, including system initialization, macro loading and interpretation, and excep-

tion and event handling and runtime media management. UCM handles events from

the network communication broker (NCB) as well as internal events. Macros are

loaded dynamically by the UCM manager which then delegates the the execution

of the macros to the script interpreter. The runtime media management supports

temporary storage of non-stream media, handling local user media request, and per-

forming the actions associated with different form types. Wu et al. [81] describe the

83

UCM subsystem used in the current version of the prototype, providing additional

details on how the functionality is implemented.

cvm::ncb - NCB exposes an API to the UCM that allows it to interact with the

underlying communication frameworks/applications. The current version of the pro-

totype interacts with Skype [60] through Java API Skype4Java [38]. NCB is developed

using an autonomic architecture that will support other communication framework-

s/applications and self-* capabilities. The prototype uses a bridge, NCBBridge, that

interacts the Skype adapter, SkypeAdapter. Other adapters under development in-

clude Smack [41], JMML [45], and SIP Communicator [59]. The NCB is coordinated

by the NCBManager that interacts with the communication services manager Comm-

ServicesManger that coordinates the activities of the various adapters that implement

the NCBBridge. Allen et al. [1] provide additional details on the design and imple-

mentation of the NCB.

cvm::utils - this package provides support for the operations in other packages. The

classes contained in cvm::util are used to analyze a schema since this functionality

is required for both the UCI and SE. Schema analysis in the UCI is required when

changes are made to the schema in SE and it is then sent to the UCI to be displayed

in the UI. Chapter 4 describes the use of the schema analysis in SE. There is also an

abstract class defined for event handlers that is used by all the layers in the CVM.

We extended the CVM platform to handle WF-CML models. The CVM still

maintains the layered architecture as defined in Section 2.1.3. The major extensions

were done in the synthesis engine (SE) and some changes were applied to the user

communication interface (UCI). The two lower layers of CVM, User-centric Commu-

nication Middleware (UCM) and Network Communication Broker (NCB) were left

unchanged. Prior to developing WF-CML, the communication modeling environ-

ment (CME) in the UCI was developed using Eclipse Modeling Framework (EMF)

84

Figure 5.2: Class Diagram for the Synthesis Engine

[66]. However, since WF-CML models required nesting we decide to use the Visual

Studio DSL Tools [14] to create the CME. Figure 5.3 shows a screen shot of the CME

that the expert user uses to create the WF-CML model for the healthcare use case in

Section 3.2.1. Figure 5.4 shows the user-friendly GUI that Dr. Burke uses to realize

the WF-CML model.

SE was extended to handle the coordination of the communication services. Fig-

ure 5.2 shows the high-level design of the SE. Each executing WF-CML model

has its thread of execution represented as WorkFlowMachine. Events are received

from handlers::events::manager and managed by the WF Manager and dispatched to

the WorkFlowMachine during execution. Each WorkFlowMachine is responsible for

traversing and maintaining its own WF-CML Hypergraph.

Table 5.1 shows some of the static metrics for the individual layers of the CVM.

The first column contains the names of metrics, columns two through six contain

the values of the metrics for the packages cvm::utils, cvm::uci, cvm::se, cvm::ucm and

85

Figure 5.3: Modeling Environment for Coordinated UCCSs.

cvm::ncb, respectively. The last column on the left of the table contains the totals

for the entire CVM. For example, the first row represents the single lines of code

(SLOC), where package cvm::utils has 1,949 lines of code and the CVM has 10,416

lines of code. The metrics were obtained using Dependency Finder [64].

Table 5.1: Static metrics for the CVM prototype.

Metrics utils uci se ucm ncb Totals

SLOC 1,949 5,108 963 737 1,659 10,416

packages 5 6 6 5 7 29

classes 48 192 22 28 59 349

methods 407 746 156 131 333 1,773

86

Figure 5.4: Dr. Burke’s GUI showing (1) the message window requesting confirmation
to advance in the workflow, and (2) Baby Jane’s discharge package received from Dr.
Monteiro.

5.2 Evaluating The Effort of Using WF-CML

In this section, we present a comparative study betweenWF-CML, Yet Another Work-

flow Language(YAWL)[72] and Microsoft Workflow Foundation (WF)[15] to show the

advantages of using a domain-specific modeling language versus general purpose mod-

eling language. We argue that by raising the level of abstraction, WFCML requires

less development effort and expertise for modeling and realizing coordinated user-

centric communication services.

YAWL is a workflow language based on a rigorous analysis of existing workflow

management systems and workflow languages [72]. YAWL is supported by an ex-

tensible software system including an execution engine, a graphical editor, and a

87

worklist handler. The YAWL system is extensible by allowing external applications

to interconnect with the workflow engine using a service-oriented approach.

Microsoft Workflow Foundations(WF) provides a programming model, in-process

workflow engine and rehostable designer to implement long-running processes as work-

flows within .NET applications [15]. In WF, workflows are defined in XAML, but are

usually edited using a graphical designer in Visual Studio. To execute the workflows,

a WF Runtime is provided in the .NET Framework that includes common facilities

for running and managing the workflows, providing feedback on execution progress,

and hosting individual workflow instances.

5.2.1 Metrics

Based on our own experiences in designing and using DSML, as well as an extensive

literature review of DSMLs, we identify and classify the effort associated with using

DSMLs by breaking it down into categories. Figure 5.5 uses a feature diagram to

present an initial pass at such a classification. The overall effort involves both the

development effort for creating an application and runtime effort for executing the

application. Development Effort is decomposed into Modeling Effort, Cognitive Ef-

fort and Scaffolding Effort. Modeling effort is the effort required to create the model,

cognitive effort the effort to form the mental solutions to a problem, and the scaffold-

ing effort the effort to complete the solution thereby making it executable. Runtime

Effort is categorized into User Interaction Effort and System Execution Effort, de-

noting the required user interaction with the system, as well as the system resource

utilization in realizing the application. Note that we do not claim this classification

to be complete. Preliminary tasks such as learning effort, and binding effort (e.g.

during code generation to customize coding components) that are technology and

domain dependent are left out in this thesis.

88

Figure 5.5: Feature Diagram to Classify Effort.

The details for the development effort are provided in this section using the struc-

ture provided in Figure 5.5. The development effort includes: modeling effort, cogni-

tive effort and scaffolding effort.

Modeling Effort: In evaluating the modeling effort for developing DSML models we

use the following graph-based metrics:

Size of model (SOM): defined as the “number of model elements” in a DSML

model. It is analogous to SLOC used to represent program size. Various metrics have

been proposed to measure the size of models, such as number of nodes, number of

edges, number of attributes[8]. A generalized definition of SOM could be a weighted

sum of each potential metric, with the weight validated by empirical studies:

SOM =

n∑

i=0

wi ×mi (5.1)

where mi denotes a single measure of the model size, like number of nodes or edges,

and wi represents its weight satisfying
∑n

i=0wi=1. A simple form of SOM is given

89

below where ‖N‖ is the number of nodes:

SOM = ‖N‖ (5.2)

Control Flow Complexity of Model (CFC): defined as the number of possible

control flows in a DSML model (assuming it has explicit control structures). Cardoso

[7] extended McCabe’s cyclomatic number to measure the CFC of process models.

He proposed that the CFC metric equates the number of decisions in the process

flow. Every split in the model adds to the number of possible decisions as follows:

CFCand - AND-split adds 1; CFCxor - XOR-split adds n; and CFCor - OR-split adds

2n − 1. The CFC could be applied in the measurement of DSML models that have

explicit control structures. The higher the CFC, the more complex the structure of

the DSML model.

CFC(m) =
∑

i∈xor
CFCi +

∑

j∈and
CFCj +

∑

k∈or
CFCk (5.3)

When computing the SOM and CFC for a given DSML model it may be necessary

to flatten it if there are nested components.

Cognitive Effort: To determine the cognitive effort involved when developing DSML

models, we use techniques from the work on software complexity metrics [57] and

usability analysis of visual programing environments [31] .

Cognitive Weight(CW): measures the psychological complexity of a model in terms

of the relative ease to understand and modify the model. Shao et al. [57] presents

a metric to measure the difficulty or relative time and effort for comprehending a

given piece of software modeled by a number of basic control structures (BCSs). The

CWs for each BCS, based on empirical studies, are shown in Table 5.2. The CW of a

software component (described as the component’s cognitive functional size (CFS))

90

Table 5.2: Cognitive Weight for BCSs defined in [57]

Category Basic Control Structure Cognitive Weight

Sequence Sequence 1
Branch If-then-else 2

Case 3
Iteration For-do 3

Repeat-until 3
While-do 3

Embedded Function Call 2
Component Recursion 3

Concurrency Parallel 4
Interrupt 4

is defined as the sum of cognitive weights of its q linear blocks composed in individual

BCSs, with each block consisting of m layers of nesting BCSs, and each layer with n

linear BCSs.

CW (m) =

q∑

j=0

m∏

k=0

n∑

i=0

CWcs(j, k, i) (5.4)

In general to determine the CW of a DSML model we use Equation CW. Note that

if the model does not have any nested structures then the CW is the sum of the

CWs of all of its control structures. The higher the CW, the more difficulty it is to

comprehend the model.

Closeness of Mapping Ratio (COMR): measures the effort needed to mentally

construct a solution to the problem by translating the users’ high-level goals into lan-

guage primitives. Green [31] used the number of primitives and amount of syntax in

different languages to infer the potential distance between the problem world and the

program world. The more unusual primitives and lexical clutter, the more effort the

developer has to put in arranging the components in a hard-to-remember structure

with finicky syntax rules[31]. As an initial attempt we use COMR as the ratio of

the number of problem-level language primitives (that are related to the user’s in-

herent goals) divided by the number of solution-level primitives (that are “structural

or semantic glue” and do not have counterparts in the problem domain). COMR

91

approximates the closeness of the mapping from the problem domain to the solution

domain.

Scaffolding Effort: In evaluating the scaffolding effort in using DSMLs for creating

applications, we introduced the following metrics:

Number of Additional LOC (NALOC): number of additional lines of code needed

to generate a complete executable from a DSML model. It measures the additional

coding effort required to realize applications using DMSLs.

Number of Additional Variables (NAV): number of additional variables be de-

fined. In languages like YAWL [72] and BPEL [39], additional variables have to be

defined that capture the data flow and storage needs of processes, contributing to the

overall effort of adopting the DSML.

Number of Additional Methods (NAM): number of additional methods defined

for completing the behavioral specification of the DSML model.

Number of Additional Components (NAC): number of external dependent soft-

ware components that the developer has to manage or configure, such as additional

database back-end support, servlet containers for hosting web services, required li-

braries, or DLLs that have to be imported or configured. It measures additional

infrastructural support required for realizing the DSML model.

Runtime Effort: To determine the runtime effort for using DSML models at runtime,

we consider two forms of effort: the user’s effort in interacting with the DSML exe-

cution interface, and the system effort in terms of resource utilization. We proposed

the following metrics:

Number of Mouse Clicks (NMC): number of mouse clicks to realize a user sce-

nario.

92

Table 5.3: Metrics for CVM and YAWL Engine.

Static # Single Lines # of Classes # of Methods
Metrics of Code

CVM 11250 276 1522
YAWL 43072 485 6738
Engine

Dynamic Avg. Memory # Of Threads Avg. Time for Executing
Metrics Usage (Page File) WF Nodes(milliseconds)

CVM 184 87 Audio Call – 874.2
Form Transfer – 944.4

YAWL 374 161 Audio Call – 1950
Engine Form Transfer – 1869.6

Number of Drag-and-Drops (NDD): number of drag and drop operations to

realize a user scenario.

Number of Keystroke Inputs (NKI): number of keystroke inputs required from

the user to realize a user scenario.

Memory Utilization (MU): amount of memory required by the underlying plat-

form to realize the user scenario.

CPU Utilization (CPUU): the amount of CPU resources required by the under-

lying platform to realize the user scenario. We use the CPU time allocated to the

related processes, and the thread count of the processes to infer the CPU utilization.

5.2.2 Design of Experiment

Experimental Set-up: The purpose of the experiment is to perform a comparative

study that involves modeling and executing a scenario using WF-CML and two other

DSMLs (YAWL and WF)and evaluate the effort involved in each case by using the

metrics proposed in [83].

We modeled the same patient discharge scenario using their respective model-

ing environments in WF-CML (Figure 5.3), YAWL(Figure A20) and WF(Figure

93

A21)executed the models in their respective execution engines. YAWL requires the

exact sequence of atomic communication tasks (calling the doctor followed by sending

the discharge package, followed by inviting another doctor into the call, etc.) to be

specified at design time. Also it requires explicit data flows to be specified through

the mapping of input/output parameters to task variables. In WF-CML, basic nodes

of communication processes are modeled with declarative CML models, which spec-

ify high level communication needs as opposed to detailed steps of communication.

Finally in WF, the specific sequences of communication activities also need to be

explicitly defined and the custom activities implemented for invoking communication

services required. The generic steps for the experimental setup are as follows:

• Set up CVM and YAWL engine on Skype as communication service provider;

implement custom activities in WF to perform communication-specific tasks

• Specify the same collaborative communication process using WF-CML, YAWL

and Microsoft WF model in their respective graphical editors or designers

• Load and execute service specifications in respective execution platforms

The detailed procedure of the experiment is shown in Table 5.4. The table is

divided into two rows, the first row describes the system setup, and the second row

the steps to develop the executable for the DSML model.

Data Collection: Collecting the development effort data involved obtaining the

values for SOM, CFC, and CW which were straightforward. The values for COMR

required the classification of language primitives into problem-level and solution-level

constructs. Measuring the user effort required counting the number of mouse clicks,

drag-and-drop operations and user inputs during the execution of the scenario. The

data for system effort was obtained by: (1) instrumenting the code with time stamps

94

to measure the elapsed execution time for the workflow engine to interpret the work-

flow specification, and (2) using the task manager to obtain the number of threads

allocated to the workflow process. We use the number of page files allocated for the

execution engine as an approximate indication of memory utilization.

Table 5.4 shows the comparison of YAWL, WF and WF-CML in terms of setup

prerequisites, development effort (including the specification of the high level process

flow and the specification of the service for each task node), required expertise as

well as ease-of-change. Table 5.3 shows the collected static metrics of the YAWL

implementation and CVM implementation, including number of lines of node, number

of classes and methods. Dynamic metrics for the two implementations are also shown

in Table 5.3, including the number of threads and the memory usage needed to start

up the CVM and YAWL engine, and the average execution time for realizing certain

workflow nodes. We discuss the results of the experiments in the next subsection.

95

T
ab

le
5.
4:

E
x
p
er
im

en
ta
l
S
et
u
p
an

d
P
ro
ce
d
u
re

Y
A
W

L
W

F
W

F
-C

M
L

S
y
s
t
e
m

1
.Y

A
W

L
sy
st
em

(e
d
it
o
r,

en
g
in
e)

1
.N

E
T

F
ra
m
ew

o
rk

1
.C

V
M

sy
st
em

S
e
t
u
p

2
.S
er
v
le
t
C
o
n
ta
in
er

(A
p
a
ch

e
T
o
m
ca

t)
2
.S
k
y
p
e4

C
O
M

(S
k
y
p
e

A
P
I

fo
r

C
#
)

2
.S
k
y
p
e4

J
a
v
a

(S
k
y
p
e

A
P
I

fo
r

J
a
v
a
)

3
.D

a
ta
b
a
se

b
a
ck

-e
n
d
(P

o
st
g
re
S
Q
L
)

4
.
S
k
y
p
e4

J
a
v
a
(S

k
y
p
e
A
P
I
fo
r
J
a
v
a
)

D
e
v
e
l
o
p
m
e
n
t

1
.C

re
a
te

m
o
d
el
s
in

Y
A
W

L
ed

it
o
r

1
.C

re
a
te

m
o
d
el
s
in

W
F

D
es
ig
n
er

1
.C

re
a
te

m
o
d
el
s
in

W
F
-C

M
L

ed
i-

to
r

P
r
o
c
e
s
s

2
.D

ev
el
o
p
a
n
d
d
ep

lo
y
w
eb

se
rv
ic
es

th
a
t
in
-

v
o
k
e
S
k
y
p
e
A
P
I
ca

ll
s

2
.I
m
p
le
m
en

t
cu

st
o
m
iz
ed

w
o
rk
fl
o
w

a
ct
iv
it
ie
s

th
a
t

re
a
li
ze

S
k
y
p
e

a
c-

ti
o
n
s

2
.S
p
ec
if
y

co
m
m
u
n
ic
a
ti
o
n

se
rv
ic
es

n
o
d
es

u
si
n
g
C
M
L

3
.R

eg
is
te
r
d
ep

lo
y
ed

se
rv
ic
e
in

Y
A
W

L
en

-
g
in
e

3
.D

ev
el
o
p
th

e
w
o
rk
fl
o
w

cl
ie
n
t
to

in
-

3
.S
p
ec
if
y

tr
ig
g
er

ev
en

ts
fo
r

a
d
-

v
a
n
ci
n
g
co

m
m
u
n
ic
a
ti
o
n
n
o
d
es

4
.B

in
d
co

m
m
u
n
ic
a
ti
o
n
ta
sk
s
in

th
e
Y
A
W

L
sp

ec
ifi
ca

ti
o
n
to

re
g
is
te
re
d
w
eb

se
rv
ic
es

te
ra
ct

w
it
h

th
e

w
o
rk
fl
o
w

en
g
in
e

a
n
d
S
k
y
p
e

5
.D

efi
n
e
ta
sk

v
a
ri
a
b
le
s
a
n
d

n
et

v
a
ri
a
b
le
s

a
n
d

m
a
p
p
in
g

b
et
w
ee
n

in
p
u
t/
o
u
tp

u
t

p
a
-

ra
m
et
er
s
to

th
es
e
v
a
ri
a
b
le
s

b
y

h
o
st
in
g
th

e
w
o
rk
fl
o
w

a
n
d

co
n
-

n
ec
ti
n
g
to

th
e
S
k
y
p
e
p
ro
x
y

R
e
q
u
i
r
e
d

1
.

D
ev

el
o
p
in
g
/
d
ep

lo
y
in
g
cu

st
o
m
iz
ed

w
eb

se
rv
ic
es

in
ID

E
B
a
si
c

u
n
d
er
st
a
n
d
in
g

o
f
M
ic
ro
so
ft

W
in
d
o
w
s
F
o
u
n
d
a
ti
o
n

B
a
si
c
u
n
d
er
st
a
n
d
in
g
o
f
W

F
-C

M
L

E
x
p
e
r
t
i
s
e

2
.
U
n
d
er
st
a
n
d
in
g
o
f
w
eb

se
rv
ic
e
b
in
d
in
g
s

u
si
n
g
p
a
ra
m
et
er

m
a
p
p
in
g
s

3
.
U
n
d
er
st
a
n
d
in
g
o
f
d
a
ta

fl
o
w
s
a
n
d
p
re
d
i-

ca
te

sp
ec
ifi
ca

ti
o
n

E
f
f
o
r
t
s

F
o
r

1
.
F
o
r
ch

a
n
g
es

in
Y
A
W

L
p
ro
ce
ss
,
u
p
d
a
te

m
o
d
el

in
Y
A
W

L
ed

it
o
r

re
p
ea

t
fo
u
r
st
ep

s
o
u
tl
in
ed

a
b
o
v
e

1
.
F
o
r
ch

a
n
g
es

in
W

F
-C

M
L

p
ro
-

ce
ss
,
u
p
d
a
te

m
o
d
el

in
W

F
-C

M
L

ed
it
o
r

C
h
a
n
g
i
n
g

N
e
e
d
s

2
.

F
o
r
ch

a
n
g
es

in
th

e
se
rv
ic
e
o
f
a
ct
iv
it
y

n
o
d
es
,
re
p
ea

t
fo
u
r
st
ep

s
o
u
tl
in
ed

a
b
o
v
e

2
.

F
o
r
ch

a
n
g
es

in
co

m
m
.

se
r-

v
ic
e

n
o
d
es
,
u
p
d
a
te

C
M
L

m
o
d
el

d
y
n
a
m
ic
a
ll
y

96

5.2.3 Experimental Results

Table 5.5: Development Effort

Modeling/ SOM CFC CW COMR
Cognitive Top Level/Total

YAWL 21/21 9 61 14/17
WF 77/77 20 22 13/64

WF-CML 7/54 2 3 7/4

Scaffolding NALOC NAV NAM NAC

YAWL 857 34 3 38
WF 1265 77 1 58

WF-CML 0 0 0 0

Models for the scenario using the three DSMLs, WF-CML, YAWL, and WF were

created during the study. We show the screen shots of these models in the appendices.

The collected metrics for the three techniques are shown in Tables 5.5 and 5.6. Table

5.5 presents the comparison of YAWL, WF and WF-CML in terms of manual, cogni-

tive and scaffolding effort. We used the designed metrics to measure the manual effort

in terms of size of model (SOM), to measure the cognitive effort in terms control flow

complexity (CFC), cognitive weight (CW) and closeness of mapping ratio (COMR),

and finally to measure the scaffolding effort in terms of number of additional lines of

code (NALOC), number of additional variables (NAV), number of methods (NAM)

and number of additional components (NAC).

Table 5.6 illustrates the runtime metrics in terms of user effort and system exe-

cution effort. To measure the user effort, we collected the number of mouse clicks

(NMC), number of drag and drop operations (NDD) as well as the number of key-

board inputs (NKI). The system execution effort, which mainly involved with the

utilization of system resources during the runtime execution of DSML models, is

measured using the memory utilization (number of page files) and CPU utilization

(number of thread counts and number of milliseconds).

97

Table 5.6: Runtime Effort

User NMC NDD NKI
Effort

YAWL 3 0 9
WF 15 0 1

WF-CML 3 5 1

System MU CPUU
Effort (Page File) Threads (milliseconds)

YAWL 374 161 1909.8
WF 128 49 303

WF-CML 184 87 909.3

5.2.4 Discussions

The results of our experiments provide evidence on potential productivity gains of

WF-CML over general purpose workflow languages like YAWL and WF: WF-CML

leads to reduced development effort during the service creation process and less user

execution effort during runtime. In addition, by avoiding full-blown workflow so-

lutions, it could achieve a lightweight resource utilization comparing with general

purpose workflow languages such as YAWL, but might result in additional mem-

ory and CPU usage compared to a low-level languages such as WF. We discuss the

experimental results in more details below:

Development Effort: Table 5.4 and Table 5.5 illustrate the effort involved in creating

coordinated communication services. In using YAWL, modelers need to develop,

deploy and register web services (known as YAWL services) with the YAWL engine,

define task and net variables, use parameter mapping to specify data flow, and define

predicate guards for conditional branching. In using Windows WF, developers need

to develop a workflow host application that interacts with Windows WF through

the WorkflowRuntime class, implement customized workflow activities/services using

C#programing language, and populate the WorkflowRuntime class with implemented

98

activities for use during the workflow execution. Using WF-CML, the modeler is

only required to specify the communication services using CML model and define

trigger events. These development tasks, classified as scaffolding effort, illustrates

the amount of effort developers have to go through to produce complete workflow

solutions. Moreover, the complexities of the created models, which is measured in

terms of the modeling effort and cognitive effort also provides insights

System Runtime Efficiency: Table 5.3 provides evidence on the lightweight nature of

the CVM platform over the YAWL engine and its supporting systems e.g., Apache

Tomcat and PostgreSQL. Since YAWL offers complete workflow solutions, it has the

most resource utilization due to its heavy weight workflow engine. Also, YAWL sup-

ports the interaction between running workflow instances with external applications

exposed as services, which also contributes to a more heavyweight workflow solution.

Due to our restriction to coordinated UCCSs, we trade generality for a lightweight

workflow approach, demonstrated by the decrease in the size () as well runtime over-

head of the system. In addition, the additional level of indirection (caused by the

increased level of abstraction) might cause extra utilization of system resources, as

demonstrated by more memory and CPU usage of WF-CML compared to WF. This

illustrate a trade off between ease-of-use and runtime system resource utilization.

Runtime effort: Table 5.6 provides evidence on the reduced user execution effort in

interpreting these models at runtime. While using WF-CML, users are required to

use more drag-and-drop operations, but less number of mouse clicks and keyboard

inputs. Assume that drag and drop operation, mouse click operations and keyboard

input operations have the same level of ease, we could appropriate the overall effort by

summing up three different types of user execution effort. The results will be leaning

forwards the WF-CML requiring less overall effort during the service realization.

99

Conclusion: We argue that by raising the level of abstraction, WF-CML requires less

development effort and expertise for modeling and realizing coordinated user-centric

communication services. In addition, the restricted domain of WF-CML results in

a more lightweight execution engine (the CVM) than a general purpose workflow

engine.

Limitations on the experiment: The prototype is a proof-of-concept implementa-

tion of the research ideas proposed. Therefore, evaluations using the current prototype

must be subject to implementation and performance constraints that might leads to

not-optimal experimental results. Also, the evaluation of “expressive and efficiency”

is a hard problem, and require extensive user studies, which is not feasible due to the

length of the program. This leads to potential biased comparison of the user-studies

due to the lack of a more comprehensive set of user participants.

On the other hand, since our work is just an initial attempt towards quantitative

measurement of effort in using DSMLs during application development. There needs

to be more empirical studies to validate the metrics presented in the paper. Also there

are several limitations with our study as described below: (1) Only three DSMLs

are investigated in this study. There needs to be a more comprehensive review of

different categories of DSMLs to consolidate the classification of effort presented in

the paper. (2) Metrics like CFC only measure a class of DSMLs that have explicit

flow structures, such as process modeling languages (e.g., BPEL [39]) and the Call

Processing language[51]. For declarative DSMLs, CFC would not be appropriate

to measure the structural complexity. (3) The measurement of the cognitive effort

in using DSMLs lack empirical evidence. More empirical evaluation is required to

determine the impact of the cognitive effort in creating DSML models. The long

term vision of this research includes the estimation of a single effort value for each

DSML by doing a weighted sum of each of the potential metrics.

100

Threats to validity: The threats to our experimentation can be classified under

two major headings 1) threats to internal validity, and 2) threats to external validity.

Threads to internal validity includes: (1) the occurrence of unexpected network delays

and events in actual communication channels; (2) the response delay at various partic-

ipant end-points, and (3) the instrumentation of the synthesis engine using TPTP as

a single measuring instrument appears not to be suitable for the experiments. Using

Eclipse TPTP to capture the metrics during execution of the SE resulted in the time

for each iteration for a scenario being much longer than anticipated. In addition, the

machine on which the experiments were performed had to be restarted several times

during the experiments. To mitigate the threats to internal validity, we repeated each

scenario ten times, removed the maximum and minimum values and computed the

average of the reaming 8 values.

Threats to external validity include: the generalization of the chosen networks,

demonstration computers and specific communication frameworks that CVM uses

e.g., Skype [60]. To avoid threats to external validity, we chose different machines

(both desktops and laptops), in a combination of wired and wireless local area net-

works. However, the current prototype implementation relies on Skype for actual

delivery of communication services, which diminishes the generality of the approach

on multiple communication frameworks. Skype does not identify the machine it uses

to mix the audio in a conference call and this may have impacted the results for

realization times. Part of our future work is to integrate other frameworks such as

Smack[41], Asterisk [20] and MSN Messenger [45] into the NCB. We are also working

on an approach for dynamic adaptation that would move a conference call from Skype

to Asterisk when the numbers of participants in a call reaches a particular threshold.

Asterisk is a software implementation of a telephone private branch exchange (PBX)

that supports VoIP services.

101

5.3 Chapter Summary

In this chapter, we presented implementation details of the Communication Virtual

Machine prototype to demonstrate the practicality of this approach. We also designed

and performed comparative studies with other workflow languages and measured the

effort of creating communication applications using different approaches. The studies

provide arguments for the productivity gains of using WF-CML.

102

CHAPTER 6

CONCLUSION

In this chapter, we conclude this dissertation by presenting a summary of the

research as well as future directions. The first section summarizes the major contri-

butions of this dissertation. Then, we list several future directions of this work.

6.1 Contribution Summary

This dissertation applies a domain-specific modeling approach to the specification and

realization of coordinated user-centric communication services. The major contribu-

tion is: the design of a domain specific modeling language tailored for coordinating

user-centric communication services. This language facilitates the specification of co-

ordinated user-centric communication services in a way that is driven by end users

and yet enables rapid realization. The specific objectives that have been achieved in

this dissertation include:

• The syntactic design of a domain specific modeling language for coordinating

user-centric communication services, including a domain analysis and a meta-

model definition that is comprised of an abstract syntax and static semantics.

• The definition of dynamic semantics for WF-CML models that includes detailed

semantic specifications and a conceptual design of an execution architecture for

the dynamic synthesis of WF-CML models.

• The development of a Communication Virtual Machine (CVM) prototype for

the rapid realization of coordinated communication services and experimental

studies to demonstrate the benefits of this modeling technique.

103

Next, we list the future directions of this dissertation work.

6.2 Future Work

In this section, we present the future work of this dissertation research in multiple

directions. First, we will further consolidate the semantic specifications of WF-CML

for more complicated scenarios involving distributed workflow execution. The cur-

rent semantics of WF-CML are limited to the coordination of communication services

locally. It does not support service coordination logic that migrates among partici-

pants. We plan to revisit the dynamic semantics of WF-CML to support distributed

service coordination. A WF-CML model may include a global view of the service

coordination logic in a communication process. As the WF-CML model is passed on

to different participants, each participant will extract his/her local view (a subset of

the model that is of his concern), either for efficiency or security reasons. Depending

on the policies specified in the model, each party will be limited to access or modify a

particular part of the model. This will also raise interesting questions on how to keep

consistency among multiple local views of the model. We plan to investigate further

in this direction.

Second, we plan to generalize this approach into a generic approach for describing

interpreted domain-specific modeling languages (i-DSMLs). Although this disserta-

tion focus on the user-centric communication domain, it provides significant insights

into how user-driven modeling approaches can be used to support the development

of domain-specific services. Defining the semantics for WF-CML to support the

direct interpretation of models (without first generating code) raises the level of ab-

straction potentially addressing the essential problems of software complexity and

visibility. Especially we are looking at definition dynamic semantics for i-DSMLs

104

through model comparison and infer actions based on changes in models. i-DSMLs

provide a simple graphical modeling language for domain experts(e.g. in healthcare,

scientific collaboration or disaster management,microgrid) to quickly create domain-

specific application. In fact, some PhD students in the research group are currently

working on developing a DSML for the MicroGrid domain [49, 47] to monitor loads,

activate and deactivate energy consumers and producers, using the same methodolo-

gies introduced in this dissertation. The initial results show that the concepts used

in CML and CVM, including the semantics specification approach, translate easily to

the MicroGrid domain.

Last but not least, we plan to extend the current comparative studies to include

more control groups. For instance, we will incorporate BPEL [39], UML activity

diagrams, and analyze how these languages could be used to model and realize the

patient discharge scenario. The ultimate goal is to perform user studies in a realistic

setting and get their feedbacks about the usability of this language. Their feedbacks

will be used to further improve the language features. We plan to conduct surveys

amongst developers that use WF-CML while developing applications for coordinating

user-centric communication services. Motivated by [37], we will use the known success

factors of the use of DSMLs, such as improved maintainability and ease of re-use, and

assert how well WF-CML scores on all of them. The analysis of the results of such

case studies will also provide insights on which conditions should be fulfilled in order

to increase the chances of success in using a DSML in a real life case.

105

BIBLIOGRAPHY

[1] Andrew A. Allen. Abstractions to Support Dynamic Adaptation of Communica-
tion Frameworks for User-Centric Communication. PhD thesis, Florida Interna-
tional University, April 2011.

[2] Apple Inc. Facetime for iphone 4, October 2010. http://www.apple.com/iphone.

[3] Apple Inc. ipad, 2010. http://www.apple.com/ipad/.

[4] Stefan Arbanowski, Sven Van Der Meer, and Stephan Steglich. User-centric
communications. In Proceedings of the 8th IEEE International Conference on
Telecommunications (ICT 2001), pages 425–444, 2001.

[5] Egon Börger and Bernhard Thalheim. Modeling workflows, interaction patterns,
web services and business processes: The asm-based approach. In ABZ ’08:
Proceedings of the 1st international conference on Abstract State Machines, B
and Z, pages 24–38, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] R. P. Burke and J. A. White. Internet rounds: A congenital heart surgeon’s web
log. Seminars in Thoracic and Cardiovascular Surgery, 16(3):283–292, 2004.

[7] Jorge Cardoso. How to measure the control-flow complexity of web processes
and workflows. In The Workflow Handbook, pages 199–212, 2005.

[8] Michel Chaudron and Christian F. Lange. Second international workshop on
model size metrics. InModels in Software Engineering: Workshops and Symposia
at MoDELS 2007, pages 89–92, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] Kyo C.Kang, Sholom G. Cohen, james A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-oriented domain analysis. Technical Report
CMU/SEI-90-TR-21, CMU, Nov 1990.

[10] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied Metamod-
elling, A Foundation for Language Driven Development. 2004.

[11] Peter J. Clarke, Vagelis Hristidis, Yingbo Wang, Nagarajan Prabakar, and
Yi Deng. A declarative approach for specifying user-centric communication.
In Proceeding of the International Symposium on Collaborative Technologies and
Systems (CTS 2006), pages 89 – 98. IEEE, May 2006.

[12] Workflow Management Coalition. The workflow reference model, 2008.
http://www.wfmc.org.

[13] Louise K. Comfort, Kilkon Ko, and Adam Zagorecki. Coordination in rapidly
evolving disaster response systems. American Behavioral Scientist, 48(3):295–
313, 2004.

106

[14] Steve Cook, Gareth Jones, Stuart Kent, and Alan Wills. Domain-specific devel-
opment with visual studio dsl tools. Addison-Wesley Professional, 2007.

[15] Microsoft Corporation. Windows workflow foundation, 2010.
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx.

[16] Cyberbridges. Center for Internet Augmented Research and Assessment.
http://www.cyberbridges.net/archive/summary.htm (Nov2007).

[17] Yi Deng, S. Masoud Sadjadi, Peter J. Clarke, Vagelis Hristidis, Raju Ran-
gaswami, and Yingbo Wang. CVM - a communication virtual machine. Journal
of Systems and Software, 2008. (in press).

[18] Krishna Kishore Dhara, Tim I. Ross, and Venkatesh Krishnaswamy. A framework
for developing user-centric services for communication end-points. In Global
Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, pages 1 –6,
30 2009-dec. 4 2009.

[19] Davide Di Ruscio, Frédéric Jouault, Ivan Kurtev, Jean Bézivin, and Alfonso
Pierantonio. Extending amma for supporting dynamic semantics specifications of
dsls. Technical Report n. 06.02, Laboratoire d’Informatique de Nantes-Atlantique
(LINA), 2006.

[20] Digium. Asterisk, June 2010. http://www.asterisk.org/.

[21] Marlon Dumas and Arthur ter Hofstede. Uml activity diagrams as a workflow
specification language. 2185:76–90, 2001. 10.1007/3-540-45441-1 7.

[22] Tracy Yee Emily Carrier and Rachel A. Holtzwart. Coordination between emer-
gency and primary care physicians, national institute for health care reform.
http://www.nihcr.org/ED-Coordination.html#section2.

[23] Naeem Esfahani, Sam Malek, ao P. Sousa, Jo Hassan Gomaa, and Daniel A.
Menascé. A modeling language for activity-oriented composition of service-
oriented software systems. In MODELS ’09, pages 591–605, Berlin, Heidelberg,
2009. Springer-Verlag.

[24] Rik Eshuis and Roel Wieringa. An execution algorithm for uml activity graphs.
In Proceedings of the 4th International Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools, pages 47–61, London, UK,
2001. Springer-Verlag.

[25] Rik Eshuis and Roel Wieringa. A formal semantics for uml activity diagrams
- formalising workflow models. Number TR-CTIT-01-04 in CTIT technical re-
ports series, Enschede, 2001. University of Twente, Centre for Telematics and
Information Technology. http://doc.utwente.nl/37504/.

[26] FEMA. DisasterHelp. http://www.disasterhelp.gov/start.shtm (May 2008).

107

[27] Robert France and Bernhard Rumpe. Model-driven development of complex soft-
ware: A research roadmap. In FOSE ’07: 2007 Future of Software Engineering,
pages 37–54, Washington, DC, USA, 2007. IEEE Computer Society.

[28] Patrick Freudenstein, Jan Buck, Martin Nussbaumer, and Martin Gaedke.
Model-driven construction of workflow-based web applications with domain-
specific languages. In Proceedings of the 3rd International Workshop on Model-
Driven Web Engineering MDWE 2007, Como, Italy, July 17, 2007, volume 261
of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[29] Google. Android developers, May 2010. http://developer.android.com.

[30] Google Project Hosting. bpmn2bpel: A tool for translating bpmn models into
bpel processes, June 2011. http://code.google.com/p/bpmn2bpel/.

[31] T. R. G. Green and M. Petre. Usability analysis of visual programming envi-
ronments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and
Computing, 7:131–174, 1996.

[32] Object Management Group. Omg unified modeling language (omg uml), infras-
tructure, v2.1.2. Technical report, November 2007.

[33] Object Management Group. Technical report, May 2011.
http://www.omg.org/technology/documents/modeling spec catalog.htm#QVT.

[34] Object Management Group. Omg model driven architecture. Technical report,
May 2011. http://www.omg.org/mda/.

[35] The Parlay Group. Parlay/osa specifications, August 2010.
http://etsi.org/WebSite/Technologies/OSA.aspx.

[36] Zef Hemel, Ruben Verhaaf, and Eelco Visser. Webworkflow: An object-oriented
workflow modeling language for web applications. In MoDELS ’08: Proceedings
of the 11th international conference on Model Driven Engineering Languages and
Systems, pages 113–127, Berlin, Heidelberg, 2008. Springer-Verlag.

[37] Felienne Hermans, Martin Pinzger, and Arie Deursen. Domain-specific languages
in practice: A user study on the success factors. In MODELS ’09, pages 423–437,
Berlin, Heidelberg, 2009. Springer-Verlag.

[38] Koji Hisano and Bart Lamot. Skype4Java.
https://developer.skype.com/wiki/Java API [10 March 2010].

[39] IBM. BPEL4WS, Business Process Execution Language for Web Services Ver-
sion 1.1, 2003.

[40] IBM. The power of unifying communications and collaboration. Unified com-
munications and collaboration White paper, November 2009.

108

[41] Ignite Realtime. Smack api 3.1.0, Jan. 2009. http://www.igniterealtime.org/.

[42] Internet2. Internet2 working groups, and special interest groups.
http://www.internet2.edu/working-groups.html (Sept 2006).

[43] Jack Jachner, Emmanuel Darmois, Scott Petrack, and Tim Ozugur.
Rich presence: A new user communications experience. Al-
catel Telecommunications Review, 2005. http://www1.alcatel-
lucent.com/doctypes/articlepaperlibrary/pdf/ATR2005Q1/T0503-
Rich presence-EN.pdf.

[44] JML Development Team. The java media framework api, March 2010.
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html.

[45] JML Development Team. Java msn messenger library, March 2010.
http://sourceforge.net/projects/java-jml/.

[46] David Krebs. The mobile software stack for voice, data, and converged hand-
held devices, April 2005. Mobile and Wireless Practice Venture Development
Corporation.

[47] J. D. Kueck, R.H. Staunton, S. D. Labinov, and B.J.
Kirby. Microgrid energy management system, Jan 2003.
http://www.ornl.gov/sci/btc/apps/Restructuring/ORNLTM2002242rev.pdf
(Dec. 2010).

[48] Philippe Lasserre and Dennis Kan. User-centric interactions beyond communi-
cations. Alcatel Telecommunications Review, March 2007.

[49] Michael R. Lavelle. Micro-grid applications, January 2010.
http://www.lavelleenergy.com/index.php/micro-grids/72-micro-grid-
applications.

[50] MORFEO open source community. Ezweb project, 2010. http://ezweb.tid.es.

[51] Columbia University Network Working Group. Call Processing Language (CPL),
2004. http://www.ietf.org/rfc/rfc3880.txt.

[52] Hanne R. Nielson and Flemming Nielson. Semantics with applications: a formal
introduction. John Wiley & Sons, Inc., New York, NY, USA, 1992.

[53] J. L. Peterson. Petri net theory and modeling of systems. Journal of Networks,
1981.

[54] Gordon D. Plotkin. A structural approach to operational semantics. The Journal
of Logic and Algebraic Programming, 60-61:17–139, 2004.

[55] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Processes.
Cambridge University Press, New York, NY, USA, 2001.

109

[56] Ismael H. F. Santos, Martin Göbel, Alberto B. Raposo, and Marcelo Gattass.
A multimedia workflow-based collaborative engineering environment for oil gas
industry. In VRCAI ’04: Proceedings of the 2004 ACM SIGGRAPH international
conference on Virtual Reality continuum and its applications in industry, pages
112–119, New York, NY, USA, 2004. ACM.

[57] Jingqiu Shao and Yingxu Wang. A new measure of software complexity based
on cognitive weights. IEEE Canadian Journal of Electrical and Computer Engi-
neering, 83:69–74, 2003.

[58] Youngmee Shin, Chorong Yu, Seunghwa Chung, and Sangki Kim. End-user
driven service creation for converged service of telecom and internet. Advanced
International Conference on Telecommunications, 0:71–76, 2008.

[59] SIP Communicator Development Team. SIP Communicator. http://sip-
communicator.org/ [14 March 2010].

[60] Skype Limited. Skype developer zone, Feb. 2010. https://developer.skype.com/.

[61] Thomas Stahl, Markus Voter, Jorn Bettin, Arno Haase, Simon Helsen, and
Krzysztof Czarnecki. Model-Driven Software Development: Technology, Engi-
neering, Management. John Wiley & Sons, first edition, 2003.

[62] Sun Microsystems and OpenCloud. Jain-slee, 2008. http://www.jainslee.org/.

[63] Sasu Tarkoma, Bharat Bhushan, Erno Kovacs, Herma van Kranenburg, Erwin
Postmann, Robert Seidl, and Anna V. Zhdanova. Spice: A service platform
for future mobile ims services. In World of Wireless, Mobile and Multimedia
Networks, 2007. WoWMoM 2007. IEEE International Symposium on a, pages 1
–8, June 2007.

[64] Jean Tessier. Dependency Finder. http://depfind.sourceforge.net/ [21 March
2010].

[65] The Eclipse Foundation. Graphical editing framework (gef).
http://en.wikipedia.org/wiki/Eclipse Modeling Framework (March 2007).

[66] The Eclipse Foundation. Eclipse modeling framework project (emf), 2011.
http://www.eclipse.org/modeling/emf/.

[67] The Eclipse Foundation. Eclipse software development kit, 2011.
http://www.eclipse.org/.

[68] The JAIN-SIP Project. Java api for sip signaling, March 2010. https://jain-
sip.dev.java.net/.

[69] Triskell Team. Kermeta - breathe life into your metamodels, July 2010.
http://www.kermeta.org/.

110

[70] NY User Centric Communications New York. User centric communications, 2009.
http://www.usercentric.net/.

[71] Wil M. P. van der Aalst. The application of petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[72] W.M.P. van der Aalst and A. H. M. Ter Hofstede. Yawl: Yet another workflow
language. Information Systems, 30:245–275, 2003.

[73] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an
annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

[74] Markus Völter and Thomas Stahl. Model-Driven Software Development : Tech-
nology, Engineering, Management. John Wiley & Sons, June 2006.

[75] Yingbo Wang. Modeling Communication Services for Rapid Realization. PhD
thesis, Florida International University, August 2009.

[76] Yingbo Wang, Peter J. Clarke, Yali Wu, Andrew Allen, and Yi Deng. Runtime
models to support user-centric communication. Models@runtime Workshop in
conjunction Models 2008. http://www.comp.lancs.ac.uk/ bencomo/MRT/ (Jan.
2009).

[77] Yingbo Wang, Yali Wu, A. Allen, B. Espinoza, P.J. Clarke, and Yi Deng. To-
wards the operational semantics of user-centric communication models. In Com-
puter Software and Applications Conference, 2009. COMPSAC ’09. 33rd Annual
IEEE International, volume 1, pages 254 –262, july 2009.

[78] M. Weber, S. Hock, G. Partsch, A. Scheller-Huoy, G. Schneider, and
J. Schweitzer. Combining multimedia collaboration and workflow management.
pages 114–119, Sep 1997.

[79] S.A. White. Introduction to bpmn. Technical report, 2004.
http://www.bpmn.org/Documents/Introduction20to20BPMN.pdf.

[80] Wikipedia. Graphical modeling framework.
http://en.wikipedia.org/wiki/Graphical Modeling Framework (March 2007).

[81] Yali Wu, Andrew Allan, Yingbo Wang, Frank Hernandez, Peter J. Clarke, and
Yi Deng. A user-centric communication middleware for cvm. 2008.

[82] Yali Wu, Andrew A. Allen, Frank Hernandez, Robert B. France, and Peter J.
Clarke. A domain-specific modeling approach to realizing user-centric communi-
cation. Journal of Software Practice and Experience (SP&E), 2011. (to appear).

[83] Yali Wu, Frank Hernandez, Francisco Ortega, Peter J. Clarke, and Robert
France. Measuring the effort for creating and using domain-specific models.
In Proceedings of 10th DSM Workshop, 2010.

111

[84] Juan C. Yelmo, Jose M. del Alamo, Ruben Trapero, and Yod-Samuel Martin.
A user-centric approach to service creation and delivery over next generation
networks. Computer Communications, In Press, Corrected Proof:–, 2010.

Appendix

112

APPENDICES

WF-CML For Patient Discharge Scenario

Graphical WF-CML For Validation in Kermeta

Kermeta Code For Checking WF-CML Static Semantics

Screenshots for Realizing the Patient Discharge Scenario

Execution Trace in Kermeta Simulation - 1

Execution Trace in Kermeta Simulation - 2

Complete Static Semantics for WF-CML

113

Figure A1: XML Version of WF-CML For Modeling Healthcare Use Case - 1

114

Figure A2: XML Version of WF-CML For Modeling Healthcare Use Case - 2

115

Figure A3: XML Version of WF-CML For Modeling Healthcare Use Case - 3

116

Figure A4: XML Version of WF-CML For Modeling Healthcare Use Case - 4

117

Figure A5: WF-CML Model in EMF for Kermeta Validation - 1

118

Figure A6: A WF-CML Model in EMF for Kermeta Validation - 2

119

Figure A7: Kermeta Code For Checking Static Semantics of WF-CML - 1

120

Figure A8: Kermeta Code For Checking Static Semantics of WF-CML - 2

121

Figure A9: User Interface For CVM In Realizing Scenario - First step

122

Figure A10: User Interface For CVM In Realizing Scenario - Second step

123

Figure A11: User Interface For CVM In Realizing Scenario - Third step

124

Figure A12: User Interface For CVM In Realizing Scenario - Fourth step

125

Figure A13: Kermeta Simulation Trace in Realizing Sunny Day Scenario - 1

126

Figure A14: Kermeta Simulation Trace in Realizing Sunny Day Scenario - 2

127

Figure A15: Kermeta Simulation Trace in Realizing Sunny Day Scenario - 3

128

Figure A16: Kermeta Simulation Trace in Realizing Rainy Day Scenario - 1

129

Figure A17: Kermeta Simulation Trace in Realizing Rainy Day Scenario - 2

130

Figure A18: Kermeta Simulation Trace in Realizing Rainy Day Scenario - 3

131

1. Context CommWorkFlow
inv: (Self.nodes.getCommProcNodes() >0)
and (Self.allInstances()->forAll(wf1,wf2 | wf1 <> wf2 implies wf1.workflowID <>

wf2.workflowID))
and (Self.nodes−>forAll(node| not node.oclIsTypeOf(DecisionNode) implies

node.outgoingEdge−>forAll(e| e.edgeType== edgeType::regularEdge))
and (Self.nodes−>select(n|n.oclIsTypeOf(DecisionNode))−>size() ==

Self.nodes−>select(n|n.oclIsTypeOf(MergeNode))−>size()
and (Self.nodes−>select(n|n.oclIsTypeOf(ForkNode))−>size() ==

Self.nodes−>select(n|n.oclIsTypeOf(JoinNode))−>size()
and (not (self.nodes−>exists (n1,n2...np| n1. outgoingEdge== n2.incomingEdge and

n2. outgoingEdge== n3.incomingEdge and
n3. outgoingEdge== n4.incomingEdge and
……...
np. outgoingEdge== n1.incomingEdge)))

2.Context WF-Node
Inv: (Self.allInstances()->forAll(n1,n2 | n1 <> n2 implies n1.nodeID <> n2.nodeID))

3.Context WF-Edge
Inv: (Self.allInstances()->forAll(e1,e2 | e1 <> e2 implies e1.edgeID <> e2.edgeD))
and (Self.edgeType == edegeType:;DecisionEdge implies not (

Self.annotation.oclIsTypeOf(OclVoid)))
and (Self.edgeType == edegeType:;RegularEdge implies

Self.annotation.oclIsTypeOf(OclVoid))

4. Context InitialNode
inv: (Self.outgoingEdge−>size()==1)
and (Self.incomineEdge−>size()==0)

5. Context FinalNode
inv: (Self.outgoingEdge−>size()==0)
and (Self.incomineEdge−>size()==1)

6. Context DecisionNode
inv: (Self.outgoingEdge−>size() >1)
and (Self.incomingEdge−>size()==1)
and (Self.outgoingEdge−>forAll(edge|edge.edgeType == edgeType::DecisionEdge)
and (Self.outgoingEdge−>select(edge| edge. annotation.isElse == true)−> size() ==1
and (Self.outgoingEdge−> forAll(edge|

Self.incomingEdge.source.triggerEvent.one.comProcEvent−>exists(ce|
ce−>exists(ae | ae == edge. annotation. guardedEvent))

7. Context MergeNode
inv: (Self.outgoingEdge−>size() == 1)
and (Self.incomingEdge−>size() > 1)

8. Context ForkNode
inv: (Self.outgoingEdge−>size() >1)
and (Self.incomingEdge−>size()==1)

9. Context JoinNode
inv: (Self.outgoingEdge−>size() ==1)
and (Self.incomingEdge−>size() >1)
and (Self.incomingEdges−>forAll(edge| edge.edgeType == edgeType::RegularEdge)

10.Context AtomicEvent
Inv: (Self.allInstances()->forAll(e1,e2 | e1 <> e2 implies e1.eventID <> e2.eventID))
and self.isTypeOf(MediumEvent) implies self.mediumType−>exists(property | property ==

Self.guard.key)
and self.isTypeOf(MediumEvent) implies self.formType−>exists(property | property ==

Self.guard.key)
and self.isTypeOf(NegotiationEvent) implies self.controlSchema−>exists(property |

property == Self.guard.key)

11.Context MediaEvent
inv: not (Self.statusMT == Self. temporalStart)

12.Context FormEvent
inv: not (Self.statusFT == Self. temporalStart)

13.Context NegotiationEvent
inv: not (Self.status == Self. temporalStart)

14.Context CommProcEvent
Inv: (Self.allInstances()->forAll(e1,e2 | e1 <> e2 implies e1.eventID <> e2.eventID))

15.Context TriggerEvent
Inv: (Self.allInstances()->forAll(e1,e2 | e1 <> e2 implies e1.eventID <> e2.eventID))

16.Context AtomicCommProcNode
inv: (Self.triggerEvent−>size()==1)
and (Self.cmlSchema.communicationID == self.triggerEvent.one.communicationID)
and (self.cmlSchema.controlSchema.connections->exists(c| c.connectionID ==

self.triggerEvent.one.connectionID))
and (Self. nodeID == self.triggerEvent.one.nodeID)
and (Self. containingWF.workflowID == Self.triggerEvent.one.workflowID)

17.Context CompositeCommProcNode
inv: Self.triggerEvent->size()==0

Figure A19: Static Semantics for WF-CML

132

Synthesis Algorithms for Analyzing CML Semantics

Algorithm 6.1 Algorithm of Comm. Schema Controller for Synthesizing CML mod-
els.
1: synthesisCML (ref (CIin, DIin))
2: connSchemas ← decomposer.split((CIin, DIin))
3: /*connSchemas contains a list of (CIj,DIj), each

being an input instance pair for jth connection */
4: if (CIin, DIin) is from UCI then
5: new conn ← getNewConn(Envi.userSchema, connSchemas)
6: /* getNewConn returns the set of connections to be created */
7: if not (new conn == null) then
8: for each conn ∈ new conn do
9: conn proc ← ConnProc.create(conn)
10: addConnProc(Envi, conn proc)
11: conn proc.start()
12: end for
13: end if
14: end if
15: for each (CIj , DIj) ∈ ConnSchemas do
16: conn proc ← locateConnProc (j)
17: exec CML CI(conn proc, CIj)
18: exec CML DI(conn proc, DIj)
19: end for
20: old conn ← getOldConn(Envi.userSchema, connSchemas)
21: /* GetOldConn returns the set of connections to be torn down */
22: if not (old conn == null) then
23: for each conn in old conn do
24: conn proc ← locateConnProc(j)
25: exec CML CI(conn proc,null)
26: exec CML DI(conn proc,null)
27: /* clean up the state machines before tearing down the process */
28: conn proc.terminate()
29: end for
30: end if

31: exec CML CI(ref conn proc, ref CI)
32: CCI ← analyzer.analyzeCI(CI, conn proc.Conn Envi, source)
33: /* Extract the difference in control instance and pass it

to the Negotiation machine in the connection process */
34: conn proc.Nego.stepNego(CCI)

35: exec CML DI(ref conn proc, ref DI)
36: /* Assume a data schema carries one piece of media to be transferred */
37: CDI ← analyzer.analyzeDI(DI, conn proc.Envi,source)
38: conn proc.MT.stepMT(CDI)

133

Algorithm 6.2 Algorithm to Analyze CML Control Schema.
1: analyze CI (ref CIi+1, ref Conn Envi, sourceCI)

/*Input: CIi+1 - schema from the UCI or UCM
Conn Envi - current environment object for a specific connection
sourceCI - source of CIi+1, UCI or UCM

Output: cci, an object with CI changes and an event trigger */
2: cci ← compare(CIi+1, Conn Envi.CIi)
3: if sourceCI == UCI then
4: if cci.enum ∈ {initialCI} then
5: cci.addEvent(initiateNeg)

/* SE Controller uses this event to start the state
machines (SMs) for negotiation and media transfer
and passes the initiateNeg to the negotiation SM */

6: else if cci.enum ∈ {partyRemoved} then
7: cci.addEvent(removeSelf)
8: else if cci.enum ∈ {selfRemoved} then
9: cci.addEvent(removeParty)
10: else if not cci.enum ∈ {no Change}} then
11: cci.addEvent(initiateReNeg)
12: end if
13: else if sourceCI == UCM && self.isInitiator then
14: if cci.enum ∈ {partyRemoved} then
15: cci.addEvent(removeParty)
16: else if cci.enum ∈ {no Change} then
17: cci.addEvent(localSameCI)
18: else
19: cci.addEvent(localChangeCI)
20: end if
21: else
22: /*sourceCI == UCM && !self.isInitiator */
23: if Conn Envi.CIi == null then
24: cci.addEvent(inviteNeg)

/* CI Controller uses this event to start the state
machines (SMs) for negotiation and media transfer
and passes the inviteNeg to the negotiation SM */

25: else if cci.enum ∈ {partyRemoved} then
26: cci.addEvent(removeParty)
27: else if cci.enum ∈ {no Change} then
28: cci.addEvent(remoteSameCI)
29: else
30: cci.addEvent(remoteChangeCI)
31: end if
32: end if
33: return cci

134

Algorithm 6.3 Algorithm to Analyze CML Data Schema.
1: analyze DI (ref DIi+1, ref Conn Envi, sourceDI)

/*Input: DIi+1 - schema from the UCI or UCM
Conn Envi - current environment object
sourceDI - source of DIi+1 is either UCI or UCM

Output: - cdi, an object with DI changes and an event trigger */
2: cdi ← compare(DIi+1, Conn Envi.DIi)
3: if sourceDI == UCI then
4: if cdi.enum ∈ {streamAdded} then
5: cdi.addEvent(enableStream)
6: else if cdi.enum ∈ {streamRemoved} then
7: cdi.addEvent(disableStream)
8: else if cdi.enum ∈ {nonStreamAdded} then
9: cdi.addEvent(sendNonStream)
10: else if cdi.enum ∈ {formAdded} then
11: cdi.addEvent(sendForm)
12: end if
13: else
14: /*sourceDI == UCM*/
15: if cdi.enum ∈ {streamAdded} then
16: cdi.addEvent(enableStreamRec)
17: else if cdi.enum ∈ {streamRemoved} then
18: cdi.addEvent(disableStreamRec)
19: else if cdi.enum ∈ {nonStreamAdded} then
20: cdi.addEvent(recNonStream)
21: else if cdi.enum ∈ {receiveForm} then
22: cdi.addEvent(recForm)
23: end if
24: end if
25: return cdi

135

Figure A20: YAWL Process Editor for Creating YAWL Specification

Comparative Studies using YAWL and Microsoft WF

State Machines for Negotiation and Media Transfer

136

Figure A21: WF Process Editor for Creating WF Solution

137

Table A1: State machine for schema (re)negotiation.
T. Source State Target State Event Guard Action

0 Initial NegReady
1 NegReady NegInitiated initiateNeg hasNegToken addNegBlock(CIneg)

genConnection Script
2 NegReady NegInitiated initiateReNeg hasNegToken addNegBlock(CIneg)
3 NegInitiated WaitingSameCI # remoteParty !=

0
genSendCS Script

4 WaitingSameCI WaitingSameCI localSameCI # responses < #
remoteParty

5 WaitingSameCI NegComplete localSameCI # responses == genSendCS Script
remoteParty

6 NegComplete NegReady CIexe ← CIneg

UCI.notify(CIexe)
7 WaitingSameCI WaitingAnyCI localChangeCI # responses < #

remoteParty
update(CIneg)

8 WaitingSameCI NegComplete localChangeCI # responses == update(CIneg)
remoteParty genSendCS Script

9 WaitingAnyCI WaitingAnyCI localSameCI # responses < #
remoteParty

10 WaitingAnyCI WaitingAnyCI localChangeCI # responses < #
remoteParty

update(CIneg)

11 WaitingAnyCI NegComplete localSameCI # responses == #
remoteParty

genSendCS Script

12 WaitingAnyCI NegComplete localChangeCI # responses == update(CIneg)
remoteParty genSendCS Script

13 WaitingSameCI WaitingAnyCI after t sec. # remoteParty > 1 update(CIneg)
14 WaitingAnyCI WaitingAnyCI after t sec. # remoteParty > 1 update(CIneg)
15 WaitingSameCI NegTerminateInit after t sec. # remoteParty ==

1
16 WaitingAnyCI NegTerminateInit after t sec. # remoteParty ==

1
17 NegReady NegRequested inviteNeg notifyUCI InviteNeg
18 NegRequested NegTermRemote UCI.rejectInvite genRejectInvite Script
19 NegTermInit Final UCI.notify(CIexec)

genCloseConnect Script
20 NegTermRemote Final
21 NegRequested WaitingConfirm UCI.acceptInvite genConnection Script

genSendCS Script
22 WaitingConfirm NegComplete remoteSameCI
23 WaitingConfirm WaitingConfirm remoteChangeCI update(CIneg)

genSendCS Script
24 WaitingConfirm NegTermRemote after t sec. UCI.notify(CIexe)

genCloseConnect Script
25 NegReady SelfRemoved removeSelf hasNegToken genRemoveSelf Script
26 NegReady NegReady removeParty # remoteParty > 1 update(CIneg)

CIexe ← CIneg

genRemoveParty Script
27 NegReady Final removeParty # remoteParty ==

1
genCloseConnect Script

UCI.notify(CIexe)
28 SelfRemoved Final

138

Table A2: State machine for media transfer.

Tr. Source State Target State Event Guard Action

0 Initial Ready initiateNeg ‖ in-
tiateInviteNeg

1 Ready StreamEnabled enableStream genStreamEnable Script
2 Ready StreamEnabled enableStreamRec genStreamEnableRec Script

UCI.notify(DSi+1)
3 StreamEnabled StreamEnabled enableStream !IsStreamEnabled genStreamEnable Script
4 StreamEnabled StreamEnabled disableStream IsStreamEnabled

&& # streams >
1

genStreamDisable Script

5 StreamEnabled StreamEnabled enableStreamRec !IsStreamEnabled genStreamEnableRec Script
UCI.notify(DSout)

6 StreamEnabled StreamEnabled disableStreamRec IsStreamEnabled
&&

genStreamDisableRec Script

streams > 1 UCI.notify(DSout)
7 StreamEnabled StreamEnabled sendNonStream genNonStreamSend Script
8 StreamEnabled StreamEnabled sendForm genSendForm Script
9 StreamEnabled StreamEnabled recNonStream UCI.notify(DSout)
10 StreamEnabled StreamEnabled recForm UCI.notify(DSout)
11 StreamEnabled Ready disableStream # streams == 1 genCloseStream Script
12 StreamEnabled Ready disableStreamRec # streams == 1 genCloseStreamRec Script

UCI.notify(DSout)
13 Ready Ready sendNonStream genNonStreamSend Script
14 Ready Ready sendForm genSendForm Script
15 Ready Ready recNonStream UCI.notify(DSout)
16 Ready Ready recForm UCI.notify(DSout)
17 Ready Final terminate

139

VITA

YALI WU

2006 B.S., Software Engineering
Beihang University
Beijing, China

2009 Computer Science
Florida International University
Miami, Florida

2011 Doctoral Candidate in Computer Science
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Yali Wu, Andrew A. Allen, Frank Hernandez, Robert France and Peter J. Clarke:A
Model-Driven Approach to Realizing User-Centric Communication Services. SOFT-
WARE PRACTICE AND EXPERIENCE (journal accepted for publication 2011)

Yali Wu, Frank Hernandez, Robert France and Peter J. Clarke: A DSML for Co-
ordinating User-Centric Communication Services. Proceedings of the 35th Annual
IEEE International Computer Software and Applications Conference (COMPSAC 11)

Tariq M. King, Andrew A. Allen, Yali Wu, Peter J. Clarke, and Alain E. Ramirez:
A Comparative Case Study on the Engineering of Self-Testable Autonomic Software.
Accepted to the 8th IEEE International Conference on the Engineering of Autonomic
and Autonomous Systems(Apr 2011)

Yali Wu, Frank Hernandez, Francisco Ortega, Peter J. Clarke and Robert B. France:
Measuring the Effort for Creating and Using Domain-Specific Models. The 10thWork-
shop on Domain-Specific Modeling (DSM’10) in conjunction with SPLASH 2010. Oct.
17-18, 2010

Peter Clarke, Jairo Pava, Yali Wu, Tariq M. King. Collaborative Web-Based Learning
of Testing Tools in SE Courses. Submitted to 42nd ACM Technical Symposium on

140

Computer Science Education, 2011. Accepted October 2010

Peter J. Clarke, Yali Wu, Andrew A. Allen and Tariq M. King: Experiences of Teach-
ing Model-Driven Engineering in a Software Design Course. Proceedings of the Mod-
els 2009 Educators’ Symposium (Oct 2009)

Yingbo Wang, Yali Wu, Andrew A. Allen, Barbara Espinoza, Peter J. Clarke and Yi
Deng: Towards the Operational Semantics of User-Centric Communication Models.
Proceedings of the 33rd Annual IEEE International Computer Software and Appli-
cations Conference (COMPSAC 09)

Paola Boettner, Mansi Gupta, Yali Wu and Andrew A. Allen: Towards Policy Driven
Self-Configuration of User-Centric Communication. Proceedings of the 47th ACM
Southeast Conference (ACMSE 09)

Andrew A. Allen, Yali Wu, Peter J. Clarke, Tariq M. King and Yi Deng: An Au-
tonomic Framework for User-Centric Communication Services. Proceedings of the
2009 Conference of the Center for Advanced Studies on Collaborative research (CAS-
CON 09)

Andrew A. Allen, Sean Leslie, Ricardo Tirado, Yali Wu and Peter J. Clarke: Self-
Configuring User-Centric Communication Services. The Third International Confer-
ence on Systems (ICONS 2008)

Yali Wu, Andrew A. Allen, Frank Hernadez, Yingbo Wang and Peter J. Clarke: A
User-Centric Middleware for CVM. Proceedings of the IASTED International Con-
ference on Software Engineering and Applications (SEA 2008)

Yingbo Wang, Peter J. Clarke, Yali Wu, Andrew A. Allen and Yi Deng: Runtime
Models to Support User-Centric Communication. Proceedings of the 3rd Interna-
tional Workshop on Models@runtime(Sept 2008)

Yingbo Wang, Peter J. Clarke, Yali Wu, Andrew A. Allen and Yi Deng: Realiz-
ing Communication Services Using Model Driven Development. Proceedings of the
IASTED International Conference on Software Engineering and Applications (SEA
2007)

141

	Florida International University
	FIU Digital Commons
	7-13-2011

	A Domain Specific Modeling Approach for Coordinating User-Centric Communication Services
	Yali Wu
	Recommended Citation

	A Domain Specific Modeling Approach for Coordinating User-Centric Communication Services

