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ABSTRACT OF THE THESIS 

UNDERSTANDING THE ROLE OF BACTERIA, ISOLATED FROM THE 

HANFORD SITE SOIL, ON THE FATE AND TRANSPORT OF URANIUM by 

by 

Denny A. Carvajal 

Florida International University, 2011 

Miami, Florida 

Professors Anthony J. McGoron and Yelena Katsenovich, Major Professors 

Bacteria are known for their abilities to influence the geochemical processes and affect 

the mobility of contaminants in the subsurface. Arthrobacter strain G975 was studied to 

improve our understanding of their effect on uranium’s fate and transport. The research 

experimentally identified and compared several parameters, including cell growth rate, 

cell viability, and the bacteria partition coefficient, Kd, under various uranium and 

bicarbonate concentrations mimicking Hanford Site subsurface environmental conditions, 

as well as the microbes ability to interact with uranyl phosphate minerals. The results 

show that the G975 strain can uptake up to 90% of the U(VI) concentrations tested, 

following linear isotherm models whose uptake capacity was measured up to 150.2 ± 

71.4 mg/g and decreased with increasing bicarbonate concentrations. AFM and 

SEM/EDS analysis confirmed surface membrane uranium precipitates. The research 

presented here is part of a large effort to advance the understanding of the 

biogeochemistry processes and plausible remediation strategies concerning uranium 

contamination.   
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I. INTRODUCTION 

From 1943 until 1989, the Hanford Site in Washington State, approximately 1,500 

km2, produced plutonium for nuclear weapons. Materials research and fuel fabrication 

that occurred at the site’s southern extremity, also known as the 300 Area, generated 

wastes that were sluiced into process ponds constructed and maintained to avoid 

contamination of the nearby Columbia River, less than 1,000 feet away. The ponds 

received constant and intermittent releases of waste varying in composition and volume, 

including caustic alkaline and acidic fluids, as well as slurries containing uranium, 

aluminum, and copper. The North and South 300 Area Process Ponds received long-term 

historic seepage/spills of acidic or neutral uranium wastes (58,000 kg of disposed 

uranium over 32 yr) to the thin and shallow 300 Area vadose zone soil (Hanford 

formation sediment, primarily flood deposited sands and gravels) and groundwater. 

Despite extensive remediation efforts, persistent uranium groundwater plumes formed in 

multiple locations at Hanford. These sites contain uranium concentrations exceeding the 

U.S. Environmental protection Agency (EPA) 30 ppb standard for drinking water 

supplies. Due to the water table fluctuations (i.e., multiple rise-and-fall cycles in the 

river), uranium levels in some areas varied greatly from ~50 ug/L to >300 ug/L (1). 

Uranium (VI), or U(VI), is the most stable valence of uranium under oxidizing 

conditions that readily forms complexes with a variety of ligands (2). Common ligands in 

the environment that form stable uranyl complexes include: hydroxyl, phosphate, 

carbonate, silicate and organic substances (3)(4)(5). Thus, it’s not surprising to see 

remedial actions implementing phosphate treatments in order to sequester uranium 
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through the formation of stable and insoluble autunite minerals (6). However, aqueous 

orthophosphate may jump-start microbial activity because it’s a readily available nutrient 

for various microorganisms that thrive under oligotrophic conditions (7), much like the 

nutrient poor Hanford soil. Arthrobacter sp., a common soil isolate in Hanford soil, are 

aerobic, high-G+C, chemoorganotrophic, gram-positive bacteria (8). The abundance of 

Arthrobacter sp. in the bacterial populations of the actinide-contaminated Hanford Site 

sediments makes them a representative species to study their impact on the fate and 

mobility of uranium in the soil and groundwater. Bacterial cell walls are rich in proteins 

and lipids that contain functional groups such as carboxyl and phosphate, which are able 

to bind with uranium. This research is focused on investigating the uranium 

biogeochemical processes that get catalyzed by Arthrobacter sp., and the effect of 

bicarbonate concentration on those processes (i.e., sorption, sorption kinetics, and 

bioavailability).  

This study demonstrates the significance of bacteria–uranium interactions by focusing 

on Arthrobacter sp. This bacteria is one of the most common groups in soils and is found 

in fairly large numbers in Hanford soil as well as other subsurface environments 

contaminated with heavy metals and radioactive materials (9)(10)(11)(12). Balkwill et al. 

(10) reported the predominance of the genus Arthrobacter among the culturable aerobic 

heterotrophic bacteria from the Hanford Site sediments. In addition, Arthrobacter-like 

bacteria were the most prevalent in the highly radioactive sediment samples collected 

underneath the leaking high-level waste storage tanks and accounted for about of one-

third of the total soil isolatable bacterial population (8). This research provides a more 
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comprehensive understanding of Arthrobacter bacteria and their role in the fate and 

transport of uranium in the subsurface under the oxidized environmental conditions 

pertaining to the Hanford Site.   
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II. BACKGROUND 

Arthrobacter bacteria 

Gram-positive Arthrobacter sp., which comprises a very diverse bacteria group known 

for their ability to survive in extreme conditions, are among the most numerous groups 

found in subsurface environments contaminated with heavy metals and radioactive 

materials; which includes the contaminated Hanford vadose zone soil (9)(10)(11). 

Previous studies have revealed that this genus is well adapted to nutrient-deprived 

(oligotrophic) conditions and, in addition, are highly desiccation-tolerant soil-inhabiting 

bacteria (9)(13)(14).  Arthrobacter can survive in extreme conditions associated with 

UV-irradiation and radioactivity (14). Microorganisms with the closest match to a 

member of the genus Arthrobacter were the most prevalent in the highly radioactive 

sediment samples collected underneath the leaking radionuclide storage tanks at the 

Hanford Site and accounted for about one-third of the total soil isolatable bacterial 

population (8). 

In this study, we attempted to demonstrate the significance of bacteria–uranium 

interactions by focusing on a bacterial strain of Arthrobacter sp. Balkwill et al. (10) 

reported the predominance of the genus Arthrobacter among the culturable aerobic 

heterotrophic bacteria from the Hanford Site sediments with this group accounting for 

roughly up to 25% of the subsurface isolates. In addition, Arthrobacter-like bacteria were 

the most prevalent in the highly radioactive sediment samples collected underneath the 

leaking high-level waste storage tanks and accounted for about of one-third of the total 
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soil isolatable bacterial population (8). Their abundance and their relatively high 

resistance to the toxic form of U(VI) made microorganisms of the genus Arthrobacter 

species the focus of this investigation to provide a more comprehensive understanding of 

their biogeochemistry in oxidized conditions and to study fate and transport of uranium in 

subsurface environments pertaining to the Hanford Site.   

Uranium in soil and groundwater 

The element uranium (U) has a standard atomic weight of 238.03 g/mol with an atomic 

number of 92.  U exists as aqueous (mobile) and sorbed/precipitated (immobile) phases in 

sediments where their relative concentrations are governed by equilibrium and/or kinetic 

reactions involving sorption/desorption and precipitation/dissolution (15). The rapid 

reduction rate of oxidized U(VI) in some bacteria and the low solubility of reduced U(IV) 

makes this biogeochemistry process an attractive bioremediation option for removing U 

from contaminated groundwater which typically exists as uranyl carbonate (16).  At most 

sites, where molecular oxygen is present, most U in the aqueous phase will be in the form 

of the hexavalent uranyl cation UO2
2+. The uranium contamination in Washington state’s 

Hanford Site is primarily found in oxic circumneutral-to-mildly-basic geochemical 

conditions, where U(VI) dominates as the highly soluble and stable uranyl ion, UO2
2+ 

(17)(18). Being very soluble and possessing complicated chemical behavior in natural 

systems, uranium (VI) is a very difficult contaminant for mobility predictions. Aqueous 

uranium can easily adsorb onto soil minerals and bacterial surfaces such that its mobility 

and speciation in the environment are affected (19).  
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Effect of carbonate and dissolved organic carbon in U(VI) biosorption   

Uranium’s behavior in natural systems depends on aqueous speciation and concentration 

of ligands (e.g. carbonate, calcium) forming uranyl complexes (17). Carbonate, 

phosphorus (P), and pH are influential because in solutions above pH 5, the uranyl ion 

hydrolyzes, forming aqueous hydroxide complexes and polymers of uranyl hydroxide (1). 

These complexation reactions often result in the formation of mobile aqueous species or 

precipitation of insoluble U-bearing minerals (20). According to Langmuir, the hydroxy 

complexes are relatively weak and, in most groundwater, uranyl occurs as stronger 

complexes with dissolved carbonate (1).  

Aqueous carbonate at a common groundwater CO2 pressure of 10-2 to 10-3.5 atm are the 

predominant species affecting the dissolution of actinides and facilitating uranium 

desorption reactions from soil and sediments, thus increasing uranium mobility in natural 

waters (21). The mobility of U(VI) in aquifers with circumneutral pH conditions is 

explained by the formation of highly soluble and stable uranyl-carbonato complexes, 

UO2(CO3)2
2- and UO2(CO3)3

4- . In a calcium-rich environment, the large formation 

constants of soluble calcium uranyl carbonate complexes, [Ca2UO2(CO3)3
0(aq); 

CaUO2(CO3)3
2-], influences the speciation of uranium (21)(22). The stability constants 

for these reactions are presented in Table 1. (23). 
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Table 1. Stability Constants for Some Reactions Involving Uranyl-Carbonate Aqueous 

Species 

Reactions Log10K 

𝑈𝑂22+ + 𝐶𝑂32− = 𝑈𝑂2𝐶𝑂30 9.94 

𝑈𝑂22+ + 2𝐶𝑂32− = 𝑈𝑂2(𝐶𝑂3)22− 16.61 

𝑈𝑂22+ + 3𝐶𝑂32− = 𝑈𝑂2(𝐶𝑂3)34− 21.84 

2𝐶𝑎2+ + 𝑈𝑂22+ + 3𝐶𝑂32− = 𝐶𝑎2𝑈𝑂2(𝐶𝑂3)3 29.80a 

𝑈𝑂22+ + 𝐶𝑎2+ + 3𝐶𝑂32− = 𝐶𝑎2𝑈𝑂2(𝐶𝑂3)3−2 25.4 

a (24). 

Effect of phosphate on uranium precipitation/dissolution 

The presence of phosphate in soil and groundwater systems can control the actinide 

behavior in geological settings due to the formation of uranyl-phosphate complexes that 

feature extremely low solubilities under circumneutral pH conditions (25). Autunite and 

meta-autunite minerals {Xn+
3-n[(UO2)(PO4)]2 xH2O} largely limit the mobility of 

dissolved U(VI) in soils contaminated by actinides such as at the Hanford Site and are an 

extremely important group of uranyl minerals when considering U sequestration. 

Autunite minerals precipitation, as a result of polyphosphate injection, was identified as 

the most feasible remediation strategy for sequestering uranium in contaminated 

groundwater and soil in situ (26).  The autunite mineral features a basal sheet-like 

structure due to the ability of uranyl ion to polymerize and bond with ligands along its 

equatorial plane (27). Autunite sheet structure, normally characterized by tetragonal 
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morphology, is formed by the sharing of vertices between uranyl square bipyramids and 

phosphate tetrahedra, with a composition of [(UO2)(PO4)]-. The solubility constant of the 

calcium form of autunite, log Ksp, has been measured as -44.7 (2)(17). Associated 

solubility products are presented in eq. 1.  

Ca(UO2)2(PO4)2•xH2O(s) = xH2O(l) + Ca
2+ 

+ 2PO4

3- 
+ 2UO2

2+
 1 

The release of U and P during dissolution, as previously investigated by Wellman et al. 

(28), was found to be non-stoichiometric over the pH 7-10 range conditions. The aqueous 

phosphate concentrations were basically unchanged during the equilibrations, indicating 

that the solid phase dissolution reactions did not significantly affect the phosphate 

concentrations (29). 

Biosorption 

A variety of mechanisms exist for the removal of heavy metal from solutions by 

biomaterials, ranging from purely physico-chemical interactions, such as adsorption to 

cell walls, to mechanisms dependent on metabolism, such as transport, internal 

compartmentation, and extracellular precipitation by excreted metabolites (30). 

Biosorption can be defined as the ability of biological materials (solid phase biosorbent, 

biomass) to bind and accumulate heavy metals (sorbate) from aqueous solutions (solvent) 

through metabolically mediated or physico-chemical pathways of uptake (31)(32). Due to 

the higher affinity of the sorbent for the sorbate species, the latter is attracted and bound 

there by different mechanisms. The biosorption process continues until equilibrium is 

reached between the solid-bound sorbate species and its remaining portion in solution due 
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to the higher affinity of the biosorbent for the sorbate (31). A metal is only “removed” 

from solution when it is appropriately immobilized (33). Adsoption reactions can retard 

the migration of radionuclides, preventing them from escaping to the accessible 

environment, and dampen radionuclide peak releases that might otherwise exceed health 

standards (17). A plot that describes the amount of a species sorbed as a function of its 

concentration in solution, measured at constant temperature, is called a sorption isotherm. 

The distribution coefficient, Kd, for uranium can be extracted from these curves. The Kd 

value depends on the oxidation state of the actinide, pH, competitive adsorption, the 

nature and extent of actinide complexing, and the characteristics of sorbent phases (17). 

Biosorption is an economically attractive treatment alternative suited for metal removal 

and recovery (33).   

Microbial sorption and toxicity mechanism of actinides  

Microbial activities in many environmental systems are additional layers of complexity that 

affect U(VI) mobility. In nature, a variety of bacteria may enhance the mobility of heavy 

metals or radionuclides by dissolution and desorption due to the secretion of protons and 

various ligands. Physical and chemical interactions involving adsorption, ion exchange, 

and complexation are the driving forces for extracellular association of uranium with 

bacterial cell surfaces, which does not depend on metabolism. The bacterial cell wall 

contains proteins and lipids with functional groups such as the carboxyl and phosphate 

that help in the adsorption of the uranyl species at environmentally relevant pH values 

(34)(35)(36). The results of EXAFS analysis of the association of U with bacterial cells 

showed that it was associated predominantly with phosphate in the form of uranyl 

phosphate, and with other ligands such as the carboxyl species (37)(35). In addition, 
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Arthrobacter sp. can sequester uranium intracellularly in precipitates closely associated 

with polyphosphate granules. This phenomenon is associated with cell metabolism and 

possibly involves the transport of metals across the cell membrane, which can be 

mediated by the mechanism used to convey metabolically essential ions such as sodium 

and potassium (34). Previous research identified uranium precipitations on the bacteria 

surface as autunite/meta-autunite mineral phases at pH ranging from 4.5 to 7 

(38)(39)(40). There has also been reports of precipitation found around the cells of 

Citrobacter sp. composed of HUO2PO4 and NaUO2PO4 at pH 6.9 (41)(42). 

Uranium sorption and toxicity mechanism 

Bacterial resistance to heavy metals is ecologically important. Arthrobacter have 

developed very efficient molecular adaptation mechanisms that enhance the stability of 

nucleic acids, proteins, and lipids, allowing the bacteria to survive in stressful conditions 

(43). The tolerance to U exhibited by Arthrobacter strains can be explained by several 

cellular mechanisms, as previously reported by other researchers (39)(36)(44). One 

mechanism is bioadsorption, which was a focus of Tsuruta, who examined the adsorptive 

capabilities of Arthorbacter nicotianae, Bacillus, and Streptomyces spp. (45)(46)(47). 

Tsuruta demonstrated an extremely high microbial ability to adsorb uranyl ions, with 

removal of up to 95%, and hypothesized that cell surface adsorption was the prevailing 

mechanism in removing uranyl ions from aqueous solution. Fowle et al. (48) studied U 

sorption onto B. subtilis and reported that U sorption onto that bacterium was governed 

by the formation of U-carboxyl and U- phosphoryl surface species. It was suggested that 

polyphosphates (PolyP) perform numerous biological functions, including phosphate 



11 
 

storage in the cell, a chelator of metals (Mn2+ and Ca2+), a pH buffer, physiological 

adjustments to growth, stress, and variety of nutritional limitations (34). In addition, 

PolyP plays an important role in intracellular uranium accumulation as a detoxification 

mechanism in limiting U toxicity (38).  
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III. STATEMENT OF PURPOSE 

Research objectives 

The objective of this study is to determine if Hanford Site Arthrobacter isolate G975 

influences uranium mobility in the subsurface via biogeochemical processes such as 

biosorption and bioleaching, and to better understand their affect on uranium’s transport. 

The research will experimentally study and compare several parameters, including cell 

growth rate, cell viability, and the bacteria partition coefficient, Kd, under various 

uranium and bicarbonate concentrations mimicking Hanford Site subsurface 

environmental conditions. Field Emission Scanning Electron Microscope (FE-SEM), 

Atomic Force Microscopy (AFM), and Energy Dispersive X-Ray Spectroscopy (EDS) 

microscopy analysis will help to visualize and characterize processes that may occur at 

the cell surface. 

Hypothesis 

It is hypothesized that: Abundant native Hanford Site soil bacteria isolates like the 

Arthrobacter sp. influence the uranium transport in soil and groundwater. 

Experimental hypothesis 

It is hypothesized that: 

1. Hanford Site Arthrobacter bacteria isolate G975 remain viable when exposed to 

uranium concentrations currently found in the 300 Area groundwater (300 ppb U 

(VI)).  
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2. The adsorption coefficient, Kd, of the Arthrobacter G975 bacteria isolate is 

greater than that of the Hanford Site soil for uranium (Kd = 0.86-1.85 mL/g).   

3. U(VI) complexation with bicarbonate ion reduces its adsorption reactions rates, 

adsorption capacity and uranium toxicity to bacteria.  

4. Uranium uptake by bacteria occurs by both internal accumulation and 

extracellular adsorption onto bacterial cell surfaces.  

5. Bacterial secretion of metabolites will decrease the stability of uranyl phosphate 

by causing uranium to leach out from autunite minerals. 

Research Questions 

1. Is the Arthrobacter bacteria isolate from Washington state’s Hanford Site soil 

capable of withstanding the toxic effects of uranium? 

2. Do bacteria influence the processes that govern the fate and transport of uranium 

in the Hanford Site soils and sediments? 

3. How do bicarbonate concentrations affect bacterial growth and uranium uptake in 

uranium containing matrix?  

4. How does the uptake and binding of U(VI) change the chemical surface 

composition of Hanford Site bacteria compared to its U(VI) free counterpart? 

5. Are the Arthrobacter bacteria isolates from Washington state’s Hanford Site able 

to influence the mobility of radionuclides by dissolution of autunite mineral 

created in soil as a result of remedial actions?   
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Importance of the Study 

The adsorption phenomenon is a very important physico-chemical process in the 

distribution of soluble uranium at solid-water interfaces (e.g., soils, rocks and sediments) 

that affects uranium transport in the subsurface (49). This study helped to identify the 

U(VI)- bacteria partition coefficient, Kd, a measure of how tightly uranium binds to the 

bacteria, and evaluated the microbial effect on the mobility of uranium in the subsurface. 

This knowledge advances our understanding of the role of bacteria in phosphate 

remediation technology. In addition, this research investigated bacteria- U(VI) 

interactions under oxidizing pH-neutral conditions, and evaluated microbial growth and 

tolerance in the presence of the uranyl cation (UO2
2+), which is a predominant 

contaminant at the Hanford Site. The research presented here is part of a larger effort to 

advance the understanding of the biogeochemistry processes and plausible remediation 

strategies concerning uranium contamination.  
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IV. MATERIALS AND METHODS 

Arthrobacter Strains and Growth Culture Conditions  

The Arthrobacter strain, previously isolated from the Hanford subsurface as a part of the 

geomicrobiological investigation conducted for the DOE Deep-Subsurface Science 

Program, was obtained from the Subsurface Microbial Culture Collection (SMCC) 

(Florida State University, Tallahassee). Detailed descriptions of site geology, sample 

collections procedures, and methods of bacteria isolation are available from Van 

Waasbergen et al. (11). The strain identification, previously confirmed by 16S rDNA 

phylogeny, was Arthrobacter oxydans G975 (10)(11). The strains were cultured in a 

PYTG medium consisting of 5 g/L peptone, 5 g/L tryptone, 10 g/L yeast extract, 10 g/L 

glucose, 0.6 g/L MgSO4.7H2O, 0.07 g/L CaCl2.2H2O and 15 g/L agar. The media was 

prepared in deionized water (DIW) (Barnstead NANOpure Diamond Life Science 

(UV/UF), Thermo Scientific), autoclaved at 121oC and 15 psi for 15 minutes, then 

allowed to cool to about 50oC before being poured into sterile petri dishes. The 

Arthrobacter strains were aerobically grown to reach confluence in 150 ml sterile 

Erlenmeyer tubes amended with 50 ml of PYTG media at 29˚C in the shaker/incubator.  

Uranium Amendments 

The uranyl nitrate stock solution was prepared from uranyl nitrate hexahydrate in DIW 

water and subsequently diluted to U(VI) concentrations varying from 1 to 80 ppm. The 

U(VI) in the stock solution was analyzed using a Kinetic Phosphorescence Analyzer 

KPA-11 (Chemcheck Instruments, Richland, WA) in the amount close to the theoretical 

value of 47.4%. 
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Cell viability & cell count 

To account for viable bacteria, a well-mixed homogeneous aliquot (0.01 mL - 0.1 mL) of 

the suspension from each test vial was uniformly spread on the sterile petri dishes 

containing a 5% PTYG growth media mixed with 15 g/L of agar in serial dilutions, and 

then the grown colonies on the plate were counted. Viable microorganisms were 

calculated from the number of colony-forming units (CFU) found on a specific dilution. 

A serial dilution helped to obtain a colonies number on each plate ranging between 30 

and 300. The colony-forming units were then calculated as eq. (2).  

𝐶𝐹𝑈
𝑚𝑙

=
𝐶𝐹𝑈 ∗ 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙)

 2 

 Inoculated plates were kept inverted in an incubator at 29oC. In addition, the agar plating 

was used to provide a quick visual check for contamination and to maintain colonies from 

each stage of the enrichment for the duration of the experiment. 

The morphological details, such as cell size and the presence of a rod-coccus growth 

cycle, were continually monitored using an optical microscope. The morphological 

features recorded for colonies included the presence of pigmentation, shape, type of edge, 

type of surface, and elevation. The cell density (cells/mL) was calculated with the help of 

a glass hemocytometer (Fisher Scientific, Pittsburg, PA). Cell counts in the samples 

containing uranium employed INCYTO C-Chip disposable hemocytometers. The 

hemocytometer is a microscope slide with a rectangular indentation, creating a chamber 

that is engraved with a grid of perpendicular lines (Figure 1). 
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Figure 1. INCYTO C-Chip disposable hemocytometer and counting grid 

Having known the area bounded by the lines as well as the depth of the chamber, the cell 

density in a specific volume of fluid and in a bacterial broth solution was calculated from 

a sample, homogenously distributed inside the chamber. Once the average cells count 

was obtained, it was multiplied by the dilution factor and the volume factor, 104, in order 

to obtain the final concentration of cells per mL. In addition, cell density was determined 

by measuring the absorbance at 660 nm by means of spectrophotometer (UV-1601, 

Shimadzu) and relating them to known cell numbers counted via the use of the 

hemocytometer. 

Bacterial resistance to uranium 

Sterile polypropylene tubes containing 3mL of 5% PTYG media were prepared for each 

bacterial strain G975. Tubes were covered with a foam stopper to provide aerobic 

conditions and kept in the incubator set to 29oC. All of the sets were inoculated with 

approximately 1.2E+06 cells of the G975 strain to bring the final concentration of ~ 

4.E+05cells/mL. Prior to inoculation, cell stock suspensions were vortexed for 10 
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seconds and counted using an INCYTO C-Chip disposable hemocytometer to calculate 

the amount of cell suspension needed to obtain the desired cell concentration in the tubes. 

Each tube was independently sampled in a sacrificial manner at different time intervals to 

eliminate any effects from sampling on bacteria cultures to obtain cell counts in the 

hemocytometer. After the tubes’ inoculation, uranium was injected as uranyl nitrate from 

a U(VI) stock solution of 0.005 M to achieve the desired concentrations ranging between 

0.5 ppm-57 ppm.  Samples from each group were assayed at days 0, 1, 3, 5, and 7 by 

obtaining a representative sample.  At each time interval, subsamples were aseptically 

removed to estimate cell numbers by means of hemocytometer, and to conduct a cell 

viability assessment by plating on the sterile petri dishes. Inoculated plates were kept 

inverted in an incubator at 29oC. Viable microorganisms were calculated from the 

number of colony forming units (CFU) found on a specific dilution. In addition, the agar 

plating was used to provide a quick visual check for contamination and to maintain 

colonies from each stage of the enrichment for the duration of the experiment. 

Bacterial response to bicarbonate and uranium 

The hypothesis that the presence of aqueous bicarbonate may affect the toxicity of U(VI) 

on cells was tested by measuring the total organic carbon (TOC) and monitoring bacterial 

cells growth via spectrophotometer in a separate time-based experiment conducted in 

triplicate. Initially, cells in a concentration of log 8 cells/mL were exposed to 20 ppm of 

U(VI) in bicarbonate-bearing solutions composed of 0 mM, 5 mM and 10 mM of HCO3. 

The controls were prepared U(VI)–free and amended with the same concentration of 

bicarbonate. Cells were harvested 24 h after exposure, washed with DIW to remove the 

remaining bicarbonate and U(VI) and then re-suspended in fresh 5% PTYG media to a 
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concentration of log 6.8 cells/mL to monitor changes in cell densities and to a 

concentration of log 7.7 cells/mL to determine the consumption of TOC.   

The TOC of centrifuged cell-free solutions was analyzed using a Shimadzu TOC analyzer 

with an autosampler (TOC‐V CSH). Each analysis was repeated until the standard 

deviation was less than 3%. The bacterial cell densities in suspension at different time 

intervals were measured by optical density (OD) at 660 nm wavelength by a 

spectrophotometer (UV-1601, Shimadzu) at the same time for all treatments over a two 

day period.  

Biosorption experiments 

Synthetic groundwater and changes in bicarbonate concentrations 

The sorption experiments were conducted with carbonate-free (CF-SGW) and carbonate 

amended synthetic groundwater (SGW) under conditions relevant to the 300 Area 

Hanford Site subsurface. The CF-SGW formulation that mimics the natural groundwater 

composition at an excavation site above the former South Process Pond in the 300 Area 

was made from available salts. The formulation was based on the April 19, 2003 analysis 

(50). The CF-SGW consists of 88.21 mg/L of CaCl2.2H2O, 19.99 mg/L of MgCl2, 5.22 

mg/L of KCl, 520.58 mg/L (2 mM) of HEPES, dissolved in DIW. The SGW amended 

with various bicarbonate concentrations was created using KHCO3 with pH adjusted to 

7.3  by 0.5 M HCL or 0.5M NaOH, as required. SGW solutions with ambient levels of 

bicarbonate concentrations and those amended with 0, 0.5, 2.5, and 5 mM of KHCO3 

were tested in the sorption experiments.  
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Bacterial mass and cell count correlation 

The direct cell count by a hemocytometer was applied to find a correlation between 

bacterial mass based on the dry weight and cell count for future uranium biosorption 

studies. Bacteria were cultured in aerobic conditions at 29oC until high turbidity and 

confluency was reached. The procedures to find a bacterial mass followed the modified 

EPA 340.2 method using an analytical balance, capable of weighing to 0.01 mg, and 

Nylon membrane filters (Whatman) with 0.45 µm pore size. Homogeneous bacteria 

samples of increasing volume (i.e 0.5, 1, 2, 4, and 6 mL) were pipetted onto the filter for 

vacuum filtration, placed in an oven at 70oC for 24 hrs, and then cooled for another 24 

hrs in a desiccator to remove moisture and stabilize sample weight. Obtained bacterial 

mass values were plotted against the estimated cell number count corresponding to the 

particular volume of sample used.  

Biosorption kinetics 

A preliminary experiment was conducted to determine the appropriate sampling rate for 

future experiments. A CF-SGW solution amended with 917.2 ±120.6 ppb of U(VI) and 

inoculated with 4E+10 cells of G975 strain bacteria was randomly sampled for 5.25 

hours. Based on the preliminary results discussed in the Results & Discussion section, the 

experiment was modified with the changes outlined below. 

The U(VI) biouptake rate was studied by conducting a 22 factorial design approach using 

uranium and bicarbonate concentrations at two different levels or concentrations as the 

two independent variables, and the bacterial uranium uptake as the dependent variable. 

SGW solutions at equilibrium with atmospheric CO2 were referred to as the low-

bicarbonate media and SGW modified with 2.5 mM KHCO3 was referred to as the high-
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bicarbonate concentration. The low and high concentrations of U(VI) in SGW media, 0.3 

ppm/0.005 µM and 14.7 ppm/0.247 µM respectively, was made by the addition of the 

appropriate volumes from an 100 ppm uranyl nitrate [UO2(NO3)2
.6H2O] stock solution 

prepared in DIW. The chosen experimental design scheme allowed us to investigate the 

influence of bicarbonate on the uranium biosorption kinetics and statistically model the 

relationships between two major variables, U(VI) and bicarbonate at equilibrium. The 

design provided four possible treatments (Figure 2) sampled at different time intervals. 

The time–based experiment was conducted in triplicate and all treatments were sampled 

and measured at the same time (0.25, 0.75, 2, 4, 6, 24, and 48 hours) to avoid statistical 

blocks with their respective controls. Experiments were conducted in triplicate using 4 ml 

of SGW inoculated with 4E+10 cells of G975 strain in 15 ml polypropylene sterile tubes. 

The tubes were kept in the incubator shaker at 60 rpm and 25°C for 24 hours. Tubes were 

centrifuged for 5 min at 3000 rpm and cell-free supernatants from all treatments were 

sampled and processed for U(VI) by means of KPA. In addition, bacterial samples after 

24 hours of U(VI) exposure were tested for cell viability, by plating subsequently diluted 

homogeneous aliquots on the sterile agar-containing petri dishes. The metal uptake q (mg 

ion metal / g bacteria) was determined by solving the mass balance equation presented in 

eq. 3.  

𝑞 =
(𝐶0 − 𝐶𝑡) ∗ 𝑉

𝑚
 

3 

       

Where C0 and Ct are the initial and final metal ion concentrations (mg/L), respectively, V 

is the volume of solution (mL), and m is the bacteria dry weight (g). 
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Figure 2. Outline of 22 factorial design to study biosorption kinetics. 

Adsorption isotherm  

The equilibrium U(VI) adsorption was carried out at different initial concentrations of 

U(VI) ranging from 0.5 to 20 ppm while maintaining the dry weight of Arthrobacter sp. 

G975 at 0.24 ± 0.05 mg in each treatment. The dry weight of bacteria was indirectly 

estimated by relating the direct cell count obtained by a hemocytometer and the bacterial 

mass acquired by following the modified EPA method 340.2 for the same number of 

cells. The role of bicarbonate ions and their impact on U(VI) adsorption by bacteria was 

investigated using bicarbonate-bearing SGW at concentrations up to 5 mM.   

The bacteria-inoculated uranium solutions were prepared in triplicate, having equal 

volumes of 4 ml in 15 ml polypropylene sterile tubes that were kept in the incubator 

shaker at 60 rpm and 25°C, allowing 24 hours for equilibration time. This time was 
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determined from the results of the preliminary adsorption kinetics experiments previously 

described. In addition, the abiotic control tubes were prepared to quantify U(VI) losses 

due to adsorption on tube walls and caps. The pH for each solution remained unchanged 

for 24 hours, adjusted to 7.3 using 0.5 M of NaOH or HCL.  Tubes were centrifuged for 5 

min at 3000 rpm and then supernatant samples were assayed with the KPA instrument. 

The uranium uptake by the bacteria was calculated with eq. (3). Sorption isotherms were 

created by plotting the amount of metal uptake (q) against the equilibrium concentration 

of metal ions detected in the solution. The slope of this correlation is known as the 

partition coefficient, Kd, that corresponds to the distribution of metal ions between the 

aqueous and solid phases.   

The linear, Freundlich, and the Langmuir sorption isotherms were used to simulate the 

adsorption capacity of uranium by Arthrobacter sp. G975 at equilibrium 

(51)(52)(53)(54). The Linear isotherm is presented in eq. (4) by the measured uranium 

concentration at equilibrium Ce, and the partition coefficient, Kd, eq. (5). 

𝑞 = 𝐾𝑑𝐶𝑒 4 

𝐾𝑑 =
𝑞
𝐶𝑒

=
𝑚𝑜𝑙 𝑔−1

𝑚𝑜𝑙 𝑚𝐿−1
= (

𝑚𝐿
𝑔

) 5 
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The Freundlich isotherm is an empirical generalization of the linear isotherm, with Kf and 

1/n as empirical constants (eq. 6).  

𝑞 = 𝐾𝑓𝐶𝑒
1/𝑛or   log (𝑞) = log (𝐾𝑓) +

1
𝑛

log (𝐶𝑒) 6 

The Langmuir isotherm equation, eq. (7), describes the adsorption of gases onto clean 

solids and implies uniform adsorption on the saturated monolayer surface (Stumm et al. 

1996). 

1
q

=
1

Smax
+

1
CeKLSmax 

 7 

A basic assumption of the Langmuir theory is that adsorption occurs at specific 

homogenous sites of the sorbent, and once a metal ion resides on a site, no further 

adsorption can take place (Ho et al. 2008). The characteristic constants of the Langmuir 

equation are Smax, the maximum adsorption for a complete monolayer (mg/g), and KL, the 

adsorption equilibrium constant (mg/mL). 

After the 24-hour exposure time to U(VI) in the biosoption experiment, each biotic 

treatment was tested for cell viability.  

Uranium desorption 

After biosorption experiments, the U(VI)- loaded G975 cells were harvested from the 

solutions to measure the amount of  U(VI) adsorbed onto the bacterial surface versus 

U(VI) accumulated inside the cell. Cells were rinsed in DIW and re-suspended in 10 ml 

of a strong uranium chelating agent, 10 mM Ethylenediaminetetra-acetic acid disodium 

salt (Na2EDTA) with the pH adjusted to 7.2 (Acharya 2009). ASTM-A-380 defines 

chelating as "chemicals that form soluble, complex molecules with certain metal ions, 

inactivating the ions so that they cannot normally react with other elements or ions to 
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produce precipitates." After 10 min of gentle agitation, the samples were centrifuged and 

the U(VI) concentrations in the supernatant were determined with the KPA instrument. 

This process allowed the U(VI) bound to the cell membrane to desorb back into solution. 

The mass of desorbed U(VI) was counted using eq. 8. 

U(VI) adsorbed in µg = Cdesorbed
µg
L
∗ EDTA volume (L) 8 

The mass of uranium in solution at equilibrium and the total uranium mass was calculated 

in the same fashion, using initial (C0) and equilibrium (Ce) U(VI) concentrations along 

with the 4 ml of starting solution volume. Thus, the mass of internal accumulated U(VI) 

was estimated by solving the mass balance equation (eq. 9).   

[𝑈]𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = [𝑈]𝑡𝑜𝑡𝑎𝑙 − [𝑈]𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−[𝑈] 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 9 

Microscopy  

To identify surface bound uranium adsorbed at the cell membrane and describe 

possible mechanisms for uranium uptake, several microscopy techniques where utilized, 

including: FE-SEM, to observe changes in the cell-surface morphology [JOEL, JSM-

6330F SEM]; AFM, to observe the morphological and physiological changes of live 

bacterial cell surface at a nanoscale spatial resolution [Veeco Instruments (Santa Barbara, 

California)]; and EDS, to determine the composition analysis of the microbial surface 

[Noran System Six Model 200]. The Meiji ML 2000 microscope was used for 

nondestructive examination of bacterial samples and quantification of cells by means of a 

hemocytometer. 

Growth conditions  

The Arthrobacter strains were aerobically grown to reach confluence in 15 ml 

polypropylene sterile foam-stoppered centrifuge tubes amended with 3 mL of 5% PYTG 
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media at 29̊ C. Experimental tubes were inoculated with approximately 3.E+08 cells of 

the corresponding strain to bring the concentration of bacterial cells close to 1.E+08 (Log 

8) cells/mL. Prior to inoculation, cells stock suspension was counted using an INCYTO 

C-Chip disposable hemocytometer to determine the amount of cells in the media needed 

to obtain the desired concentration in the tubes. Uranium was injected as a uranyl nitrate 

from a stock solution of 0.005 M of U(VI) to achieve the required concentration ranging 

between 0.5 ppm-27 ppm. Each set was prepared in triplicate and tubes were 

independently sampled at 24 hrs to (i) obtain cell counts, (ii) prepare samples for the 

microscopy assays via atomic force microscope (AFM) and energy dispersive X-ray 

spectroscopy (EDS), and (iii) determine aqueous uranium concentrations. Aliquots of 

solution were collected for analysis of dissolved U(VI) followed by centrifugation of the 

tubes for 10 min at 2000 rpm. Analyses were conducted by means of a KPA using a 

dilution factor of 1:200. Bioaccumulation of uranium was calculated against bacteria-free 

controls. They were prepared with the same media solution amended with corresponding 

uranium concentrations and sampled at the same time intervals as experimental vials. 

SEM/EDS analysis 

The confirmation of precipitated uranium on the bacterial surface was obtained via 

SEM/EDS analysis. Sample preparation procedures for SEM/EDS analysis included the 

following steps. Cells were harvested by centrifugation at 4000 rpm for 5 min from 

PTYG media amended with a specific concentration of U(VI) and washed twice with 50 

mM of 2-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid sodium salt hydrate 

(HEPES) prepared in DIW. The pH was adjusted to 7.2 with concentrated Fisher 

Scientific nitric acid (HNO3). The cells were fixed in the 5 ml of 2% glutaraldehyde in 
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0.1M HEPES buffer at pH 7.2 for 2 h at 4oC. The fixative was changed at least two times. 

The material was removed by centrifugation and washed with 50 mM HEPES buffer 

three times for 10 min. The rinsed cells were then dehydrated in ethanol/ water solutions 

of 35% (v/v), 70% (v/v), and 90% (v/v) each for 10 min, and two times in 100% (v/v) for 

10 min. Dehydrated samples were immersed for 10 min each in 50% and 100% pure 

hexamethyldisilazane (HMDS) (Pierce Biothechnology, Inc, obtained from Fisher 

Scientific) followed by 10 min of air-drying to allow liquid to evaporate from the sample 

(55)(56). The dehydrated specimens were then kept in the desiccators until the time of 

SEM/EDS assay. Treated and control samples were mounted on aluminum stubs with 

double-sided sticky carbon tape and then coated for 30 seconds with a thin layer of gold 

to increase conductivity. The microstructure of the gold-coated samples (Pelco SC-7, 

Auto sputter coater) was characterized using a JOEL, JSM-6330F SEM at a voltage of 15 

kV. The cell surface composition was analyzed using a SEM-Energy-Dispersive-

Spectrometry (SEM-EDS) Noran System Six Model 200 at magnification of 2000. 

Atomic force microscopy 

A Multimode Nanoscope IIIa system from Veeco Instruments (Santa Barbara, California) 

was used for all AFM imaging analysis. Phase imaging was performed by using Si3N4 

soft tapping tips (BudgetSensors, Bulgaria) in order to ensure minimal sample damage 

with a force constant 7.4 N/m and resonating frequency of 150 kHz. Phase imaging is an 

extension of TappingModeTMAFM that provides detailed information about the surface 

structure and its properties beyond the simple topography, which is not possible with any 

other scanning probe microscopy (SPM) techniques. The phase image was obtained by 

mapping the phase of cantilever oscillation in tapping mode scans to detect variations in 
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composition, friction and adhesion. Frictional imaging was performed by using the 

contact mode tip with a force constant 0.2 N/m and resonating frequency of 15 kHz. In 

addition, AFM was used to acquire information on the surface topography of cells 

exposed to U(VI) at the three-dimensional (3D) level. 3D phase images were obtained in 

the tapping mode. Imaging was performed in laboratory conditions at 25ºC and 55% 

relative humidity. Further, roughness analysis was conducted for quantifying the change 

in roughness of bacterial surfaces under different uranium concentrations. To ensure cell 

viability, the complete AFM analysis was performed within two hours after the sample 

was prepared.  

Roughness measurements 

A roughness value for bacterial cell surfaces was calculated from high resolution AFM 

topography images. The roughness value was calculated according to the relative heights 

of individual pixels in the image (57) over a selected area. The average roughness (Ra) 

was calculated from the average of the absolute values of profile height deviations from 

the mean level, as shown below. 

Ra =
1
n
��𝑍𝑗�
𝑛

𝑗=1
 10 

Here, Z is the maximum vertical distance between highest and lowest data points and n is 

the number of scan points. 

Force Spectroscopy 

Force spectroscopy (FS) is a powerful tool for studying surface topography and 

nanometer-scale resolution changes in the surface physiochemical and mechanical 

properties, including bacterial cells. The dynamic changes occurring on the bacterial cell 
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membrane before and after exposure to the various concentrations of uranium were 

evaluated using force spectroscopy analysis. The interaction force between the tip and the 

sample surface was recorded during intermittent approach and retraction of the tip 

(tapping) from the bacterial surface by monitoring the laser reflection from the deflecting 

cantilever using a position sensitive diode (PSD). This experimental approach allows for 

the monitoring of forces on the piconewton scale.   

These interaction forces detect physiochemical changes over the desired region when 

scanned with similar tips (size and material), since the force is unique for the tip and 

underlying chemical domains on the cell membrane. The force was calculated by using a 

force distance (FD) curve (58)(59)(60) obtained by plotting the deflection of cantilever 

against the Z position of piezo. These FD curves were processed using SPIP software by 

ImageMetrology, Denmark (version 4.8), to determine adhesion forces. The average 

adhesion force reported in this study was obtained from 20 different FD curves generated 

randomly from an area on the sample surface of approximately  2 µm × 2 µm. 

Bioleaching of U(VI) from Autunite 

To address the role of microbes enhancing the mobility of radionuclides by 

dissolution of autunite minerals created in the soil as part of a remedial action, a study 

was conducted to determine if bacteria-mineral contact is necessary for uranium to leach 

from autunite mineral. Soluble uranium concentrations from a known amount of autunite 

mineral inside a sterile 6-well plate cultureware were monitored over time with and 

without the presence of bacteria. The bacteria was separated from the autunite mineral 

with a 0.4 um pore size membrane cell culture insert.  



30 
 

Bicarbonate media solution preparation 

Autunite leaching solutions were made from 5% minimal PTG media consisting of 5 g/L 

peptone, 5 g/L tryptone, 10 g/L glucose, 0.6 g/L MgSO4.7H2O, and 0.07 g/L CaCl2.2H2O. 

Yeast extract, due to the high phosphorus content, was not included in the media. Media 

was prepared in deionized water (DIW) (Barnstead NANOpure Diamond Life Science 

(UV/UF), Thermo Scientific), autoclaved at 121oC, 15 psi for 15 minutes, and allowed to 

cool to about 30oC. The media solution was then equally distributed between five 250 ml 

bottles and separately amended to contain 0, 1 mM, 3 mM, 5 mM and 10 mM of KHCO3. 

Media pH in each bottle was adjusted to pH 7.5 with 0.1 mol/L HCl or NaOH and 

buffered with 20 mM 2-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid sodium salt 

hydrate (HEPES-Na). Each bicarbonate media solution was filter-sterilized (0.2 µm) and 

kept refrigerated until the time of the experiment.  

Non-contact autunite bioleaching   

Natural Ca meta-autunite, Ca[(UO2)(PO4)]2·3H2O, obtained from Pacific North National 

Laboratory (PNNL), was characterized prior to experiments using ICP-OES, ICP-MS 

analyses, X-ray diffraction and SEM/EDS  to confirm the mineral composition, structure, 

and morphology as 98-99% pure autunite. The autunite sample was powdered to have a 

size fraction of 75 to 150 μm or -100 to +200 mesh with a surface area of 0.88 m2/g (28).  

The surface area of the samples used in the dissolution experiments was determined by 

Kr-adsorption BET analysis (28). Sterile 6-well cell culture plates with inserts (Figure 3) 

were used in the non-contact bioleaching experiments where natural Ca meta-autunite 

and bacteria cells were kept separately. The maximum recommended volume for the 

cultureware was used to increase the sampling number. A 3.2 ml aliquot of sterile 
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KHCO3 amended media prepared as previously described was dispensed in the 

appropriate well and 2.5 ml inside the insert receptacle. The total volume inside each well 

added up to 5.7 ml. The cultureware inserts have 0.4 µm cylindrical pores that transverse 

the membrane and only allow the diffusion of soluble uranium. Ten mg (10 mg) of 

sterilized autunite powder was added to the bottom of the well to reach a U(VI) 

concentration of 4.4 mmol/L with the insert in place. G975 cells in the amount of log 106 

cells/ml were injected into the reactors at day 14 when autunite dissolved was close to a 

steady state. Abiotic controls were prepared to compare results with bacteria- bearing 

wells. Uranium leaching from autunite was determined by taking a 10 µL sample from 

the inserts, at regular daily intervals, and processed on the KPA instrument after 

following the wet/dry ashing analytical procedures.  The samples were analyzed with a 

175 dilution factor. Prior to KPA analysis, sample aliquots were ashed on a hot plate in 

the presence of concentrated plasma grade nitric acid and hydrogen peroxide solutions. 

Wet digestion in 20 ml scintillation glass vials was continued until a dry white precipitate 

was obtained, then vials were dry ashed in a furnace at 450oC for 15 min. Samples were 

allowed to cool at room temperature followed by the dissolution of the precipitate by the 

addition of 1 M nitric acid (HNO3). Uranium calibration standards (SPEX certiPrep), 

blanks and check standards (95-105% recovery) were analyzed for quality control. At the 

end of the leaching experiments, suspension pH was measured.  

 

Figure 3. Cell Culture Inserts (BD Falcon) 
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Speciation modeling 

Lastly, the equilibrium speciation modeling was performed by means of Visual MINTEQ 

(v. 3.0, maintained by J.Gustafsson at KTH, Sweden, available at 

http://www.lwr.kth.se/English/OurSoftware/vminteq/ updated with the Nuclear Energy 

Agency’s thermodynamic database for uranium) (23) to specify the predominant uranium 

species in aqueous media solutions that could be considered as possible inhibitors due to 

binding to negatively charged bacterial cell surfaces. The modeling was performed in the 

aqueous synthetic groundwater matrix amended with 0 mM, 0.5 mM, 2.5 mM, 5 mM 

KHCO3 concentrations. The pH of the solutions was measured after the completion of the 

experiment, and U(VI) data were collected following the inoculation of bacteria when 

U(VI) sorption reached its maximum. In bicarbonate-free solutions, a CO2 partial 

pressure (pCO2) was assumed to be 10-3.5 atm.  

Statistical Analysis  

All experiments were conducted in duplicate or triplicate to obtain descriptive statistics 

such as mean, standard deviation, and confidence interval of the mean. Where applicable, 

such as the experimental data for sorption isotherm, relationships were modeled and 

evaluated with least squares regression analyses. Uranium calibration standards (SPEX 

certiPrep), blanks, and check standards (95-105% recovery) were analyzed for quality 

control before each experiment utilizing the KPA to check the variability of the machine. 

A comparison between specific experimental Kd values against soil of the study area was 

investigated using a one sample t-test. Results with multiple experimental groups and 

independent factors, such as the study on the effects of U(VI) uptake due to different 

bicarbonate and uranium concentrations, were examined with ANOVA statistics. The 
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Holm-Sidak multiple comparison test was performed when significant differences were 

found between samples; this is a more powerful test than the Turkey and Bonferroni tests 

and its recommended as the first line procedure. All statistical tests were carried out by 

Sigma plot 11.2 (Systat Software Inc). Significant levels were set to α= 0.05. 
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V. RESULTS AND DISCUSSION 

Assessment of Arthrobacter strains growth 

Uranium sorption and autunite leaching experiments require knowledge of the growth 

profile and tolerance to uranium of the individual bacterial strain obtained from the 

SMCC. The nature of bacteria to multiply its numbers in an exponential growth pattern 

makes it very important to quantify their growth rate in response to changes in 

environmental conditions; failure to do so would result in an additional dependent 

variable in future experiments. The 5% PYTG media used in our experiments provided 

the bacteria with all the necessary nutrients for growth and metabolism, creating the ideal 

growth conditions for studying any particular phenomena using the cultivation- based 

time-dependent approach. The increase in cell density was calculated over a period of 

seven days using a hemocytometer (Figure 4). The results confirmed the typical 

exponential growth pattern for bacteria.  
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Figure 4.  Growth for Athrobacter strain G975 over 7 days in HEPES buffered PYTG 

5%. A) Cell growth normalized to their initial cell number. B) Cell density, Log cell/ml, 

over time (n=2). 
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Assessment of Arthrobacter sp. G975 resistance to uranium (VI)  

Wet chemistry, microscopic, and microbiological methods were used to elucidate the 

resistance mechanisms of Arthrobacter G975 isolate to U(VI) and determine the highest 

tolerable concentration of uranium for this strain while still remaining viable. The goal of 

the bacterial cultivation experiments carried out in 5% PYTG liquid media amended with 

various concentrations of uranium was to determine the cell tolerance mechanism to 

U(VI), investigate time-dependent changes in viable cell numbers and prepare for the 

following uranium biosorption and autunite microbial leaching experiments. 

Recording of pH values in the bacterial broth solution showed a decrease from 6.0-6.5 to 

4.75-5.00 over a period of 7 days, which remained unchanged thereafter. By this time, the 

bacterial cell numbers exponentially increased and plateaued at approximately 8.6 

logCells/mL or 7.1 logCFU/mL (Figure 6, Figure 7). The decline in pH has been 

attributed to several factors: the addition of uranyl nitrate, a weak nitric acid solution, and 

bacterial activities that typically result in the production of acids when metabolizing 

glucose. The accession of 20 ppm and 30 ppm of U(VI) caused the initial pH to drop 

from 6.5 to 5.5 and 6.5 to 5, respectively. To prevent any adverse effects on cell viability 

due to the decline in pH, the following experiments were conducted with media 

augmented with HEPES buffer (0.1 M, pH 7.2) in a quantity of 10 mL/L; this amount 

was found sufficient in preventing acidification of the culture broth (Figure 5).  
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Figure 5. pH changes in bacterial broth solutions spiked with U(VI). G975 at 0, 100, 

&120ppm of U(VI), 5% PTYG media buffered with HEPES 
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Figure 6. Changes in colony forming units of 

G975 over 7 days period in the presence of 

U(VI) (n=3). 

Figure 7. Changes in G975 density over 7 days 

period in the prescence of U(VI) (n=3). 
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Cell viability in control media without uranium, determined via colony forming units 

cfu/mL, ranged  from 4.75±0.5 log CFU/mL at the beginning of the experiment, to 7.89 

log CFU/mL for G975 over 7 days of cultivation. The mean population density for the 

same period changed from 5.6 log cells/mL to 9 log cells/mL. With the addition of 

uranium to the cultivation media, the bacteria tolerance changed, and the viability of the 

cells was inhibited under the influence of high uranium concentrations. G975 exhibited a 

high tolerance towards U(VI), remaining viable in the presence of 9.5-19 ppm of U(VI) 

over the study period. The cell density and CFU counts of viable colonies were increased 

to values comparable to the control without uranium. G975 was capable of tolerating up 

to 38 ppm U(VI); however, the number of viable cells gradually declined from initial log 

4 cfu/mL to zero over 6 days (Figure 6). A decline in growth was observed for cultures 

amended with 48-57 ppm of U(VI), and no viable colonies were detected on day 3. The 

decrease in CFU counts did not appear to be due to cell lysis, as the initial cell density 

determined by direct microscopy remained unchanged over the study period (Figure 7). 

Experiments conducted with a smaller initial concentration of cells, 100,000 cells/mL (5 

logcells/mL), showed less viable cells compared to experiments with higher cell counts 

for a given uranium concentration. Thus, the cell viability is dependent on the initial 

concentration of cells. This finding is compatible with Tsuruta’s (45) results; he found 

that the relative amount of uranyl ion adsorbed per cell was decreased with increasing 

cell density and hypothesized that the lower relative concentrations of U could enhance 

cellular survival in the presence of toxic substances.  

After U(VI) exposure, the colonies observed on the plates were small in diameter, 

uniformly circular, entire, and smooth on the agar surface. The G975 strain exhibited the 
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rod-coccus growth cycle. The G975 colonies were golden in color. Control samples taken 

from the bacterial broth without dilution formed large areas of clusters when cultured on 

glucose media with CFUs not able to be counted. All of these morphological properties 

are consistent with those described for the genus Arthrobacter (61). 

Culture media components are readily degradable by microorganisms; therefore, a 

reduction in TOC consumption indicates a significant inhibition to the microbial activity. 

Measurements of centrifuged supernatant solutions in control tubes inoculated with 

Arthrobacter showed, by day 7, a decrease in the total organic carbon (TOC) content. 

The initial TOC value of 1014±56 mg/L was reduced by 40.7% for G975. The bacteria 

degraded TOC in the range of 30.7-34.7% after the addition of 9.5-27 ppm of U(VI); but 

the addition of 38 ppm of U(VI) inhibited the organic carbon consumption to 16.95%, 

and it remained as low as 4.8% in the presence of 48 ppm (Figure 8). These results 

revealed that the cell metabolism was altered by uranium, but the inhibitory effect was 

concentration-dependent. Triggered by the addition of U(VI) to the media, a decrease in 

TOC consumption was found for the G975 strain, consistent with the loss in cell viability 

(Figure 6 & Figure 7).  

When exploring the effects of bicarbonate on a separate experiment where the cells are 

exposed to 20 ppm U(VI), the initial TOC value of 818.8±59 mg/L in the fresh 5% PTYG 

media was reduced in U-free samples on average by 44-52% and 71-75% for 24 h and 48 

h, respectively (Figure 9). However, in the presence of 20 ppm of U(VI), the TOC 

degradation was less. Substantial inhibition was observed in bicarbonate-free samples 

resulting in only 14.0±1.2% and 36.8±2.8% reduction in TOC values over 24 h and 48 h, 

respectively (P=<0.001). The addition of 5 mM and 10 mM of bicarbonate in the U(VI)- 
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amended media increased the organic carbon consumption to 40.7±12.7% and 

47.9±13.2% for 24 h; it further increased to 67.2±19.3% and 73.7±22.9% for 48 h of 

uranium exposure, respectively. These results revealed that the cell metabolism was 

altered by uranium, but the inhibitory effect in the presence of bicarbonate was curtailed. 

Triggered by the addition of U(VI) to the media, a decrease in TOC consumption was 

found consistent with the loss in cell density. 

Inhibition of bacteria activity appears to be associated with the binding of uranyl to the 

cell envelope. This finding correlates with Southam (2000) research who suggested that 

cell-surface associated mineralization results in limitations of nutrient transport and 

disruption of the proton motive forces. The passive binding of uranyl to cell surfaces 

reduces membrane fluidity and permeability, thus limiting media nutrient uptake. 

However, the presence of bicarbonate can strip uranyl from the cell surface by forming 

uranyl-carbonate complexes in solution (62). 
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Figure 8. Organic substrate TOC consumption in the presence of U(VI) for Arthrobacter 

G975 (n=1)  



40 
 

Added [KHCO3], mM

0 2 4 6 8 10

N
or

m
al

iz
ed

 T
O

C
 C

on
su

m
pt

io
n

0.0

0.2

0.4

0.6

0.8

1.0

0ppm U, 24 hrs 
20ppm U 24 hrs 
0ppm U 48 hrs 
20ppm U 48 hrs 

*

*

* p=<0.001

 

Figure 9. Time-depended changes in TOC consumption of Arthrobacter G975 cells 

grown in U(VI)-free and 20ppmU(VI) amended 5%PTG media altered with 0mM, 5mM, 

and 10mM  of KHCO3, pH 7.3, 250C (n=6). 

Correlation between bacterial mass and cell counts 

The execution of sorption equilibrium experiments requires the accurate weighing of 

cells used as a biosorbent in each batch test and a recording of each amount in mass units. 

However, such procedures do not account for cell numbers present in the batch reactors.  

For this purpose, as described in the methods section, we have experimentally derived the 

weight of a single Arthrobacter cell as 600±100 fg for G975, which is comparable with 

value of 628±770 fg/cell obtained for E.Coli (63). The results presented in Figure 10 

were obtained from bacteria in their exponential growth phase, which suggests that the 

actual weight of the cells can change once they enter the stationary phase. Results show 

90% linear correlations between cell mass and cell number for G975 bacterial strains, 

which allows for the prediction, with <10% error, of the weight of bacteria based on the 
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cell number used in future biosorption experiments. In addition, these values were used to 

account for uranium absorbance on the bacterial surface in SEM/EDS microscopic assay. 

 

Figure 10. Correlation between weight vs. cell number for Arthrobacter G975 stain(n=2). 

The recorded variations between experiments can be attributed to variations in size and 

shape of the studied strains. The ability of A. species to undergo marked changes in form 

during their growth was observed during the course of this study and confirmed with the 

literature (11). Cells can be rod shaped during the phase of exponential growth and cocci 

in their stationary phase; in addition, they can change from gram positive to gram 

variable. The morphology of G975 as observed under a light microscope, SEM, and AFM 

are shown in Figure 11. Some Arthrobacter cells are characterized by the formation of 

typical V-shaped pairs, this strain showed a brain-like surface area. 



42 
 

 

Figure 11. Morphology of G975. A) 100X magnification via light microscope. B) 

20,000X magnification via SEM. C) 3.75 µm2 area via AFM  

Visual MINTEQ speciation modeling 

The presence of bicarbonate can reduce the U(VI) toxicity by stripping uranyl from the 

cell surface and then forming uranyl-carbonate complexes in solution (62). This 

phenomena is supported by the results of the MINTEQA2 modeling of the speciation of 

uranium under the different treatments shown in Figure 12. Based on the modeling 

results, the species that undergoes the largest change in concentration due to added 

uranium at ambient CO2 levels, 0.229 mM, or due to added bicarbonate concentration at a 

constant uranium concentration, was (UO2)3(OH)5+. It is likely that toxicity in our 

experiments, in an open system where CO2 is allowed to equilibrate, is ruled by this 

species. The fact that it is a trimetric form of uranium, and that it is the most positive 

species, gives it the most potential to interact and damage negatively charged cells.  The 

MINTEQA2 modeling of the 75 ppb U vs. 20 ppm U with increasing carbonate 

concentrations, shown in Figure 12, demonstrates how increasing the carbonate 

concentration in solution also increases the uranium-carbonate complexes, reducing the 

concentration of the total positive species.  For carbonate concentrations of 0.2, 2.7, 5.2, 

and 10.2 mM, with 20 ppm of U, the % of total uranium concentration in CaUO2(CO3)3
-2 

A) B) C) 
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species is 7.3, 53.4, 56.45, 61.0, respectively.  Increased soluble bicarbonate 

concentrations makes free uranium ions less available to the negatively charged cells 

surface.  
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Figure 12. MINTEQA2 speciation modeling of U(VI) species vs. added bicarbonate 

concentrations. A)  Low [U(VI)], 75ppb.  B) High [U(VI)], 20ppm. 

 

U(VI) biosorption 

Kinetics analysis  

The dry weight of bacteria was calculated indirectly from the cell count in their 

exponential growth phase by means of a hemocytometer based on the linear relationship 

shown in Figure 10. This relationship between cell numbers and dry cell weight is 

outlined in eq. 11 (R2= 0.90, n=2).  
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Dry cell weight (mg) =
6−10mg

Cell
∗ Number of Cells 11 

The uptake rate of U(VI), 𝑚𝑔
𝑔∗𝑚𝑖𝑛

, under various environmental conditions, provides insight 

on the mechanisms of bioadsorption and establishes the exposure time required for 

soluble U(VI) to reach sorption equilibrium, characterized by the unchanging U(VI) 

concentration in the solution.  

Initial results for the G975 bacteria and uranium adsorption kinetics with carbonate-free 

SGW are shown in Figure 13. The results show that within the first 15 minutes, 29.09 

±16.3% of the U(VI) was taken up by the cells following a linear relationship (R2 =0.99) 

with the rate of 99.53 𝜇𝑔
𝐿 ℎ𝑟

. However, the large standard deviation for each sample does not 

reject the possibility of second order kinetics. Within 5.25 hours, 87.57±17.48 % of the 

total uranium concentration was removed by the bacteria. Based on these results, we 

determined that the sampling process required continuing beyond 5.25 hours in order to 

determine if the process had reached equilibrium. Consequently, subsequent sorption 

kinetics samples were taken in 2-hour intervals up to 6 hours, followed by 24 and 48 

hours.  
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Figure 13. Preliminary results on biosorption kinetics using G975 strain with 

917.2 ±120.6 ppb of initial U(VI) in CF-SGW; (n=3). 

 

The bioadsorption experiments conducted with bicarbonate-free SGW solutions showed 

that Athrobacter sp. G975 can effectively remove soluble U(VI). In aqueous solutions at 

equilibrium with CO2 atmospheric pressure, the total uranium uptake by bacteria rises to 

90±19% and 83±21% for low and high initial uranium concentrations, respectively. The 

system reached equilibrium at 24 h (Figure 14); however, U(VI) adsorption was noted 

12-32% across the studied concentration range within the initial 25 minutes of bacterial 

exposure to uranium. 
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Figure 14. Percent of U(VI) uptake by Arthrobacter sp.  G975 vs. Time, under low (0.3 

ppm U(VI) and high (14.7 ppm U(VI)) concentrations of U(VI) and 0 and 2.5 mM of 

bicarbonate in SGW, pH 7.3, 250C, (n=3). 

 

The system amended with 2.5 mM of bicarbonate exhibited at equilibrium a significant 

decrease in bioadsorption to 47±4% at high initial concentration of U(VI), and with a 

more pronounced decrease to 30±2% in the systems with lower initial U(VI) 

concentrations. The low removal efficiency of U(VI) in the presence of competing 

ligands like carbonate is expected in these conditions considering the strong binding 

affinity of actinides toward carbonate ligands. 

All bicarbonate-bearing experiments showed an increase of U(VI) adsorption by 

Arthrobacter sp. G975 within the first hour under all test conditions; however, after the 

initial fast uptake period, the process of U(VI) uptake was gradually slowed until it 

reached equilibrium at 24 hours (Figure 15).   
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Figure 15. U(VI) uptake by Arthrobacter sp. G975 (mg/g) vs. Time, under low and high 

U(VI) concentrations and in bicarbonate amended SGW at pH 7.3, 250C. Calculated 

values are based on the cells dry weight (n=3). 

 

Kinetics data analysis to interpret the experimental data and understand the controlling 

mechanisms of biosorption kinetics were conducted by means of the first-order, second-

order, and the pseudo-second-order kinetic models (54)(53). Only the pseudo-second-

order model could delineate our results with very little error; its equation is expressed as: 

           dqt/dt = k2(qe – qt)2 12 

Integrating leads to 

           [1/ (qe – qt)] = (1/qe) + k2t 13 

Or 

            (t/qt)=(1/k2qe
2)+(1/qe) t 14 

Where qe is the equilibrium adsorption capacity, qt represents the adsorption capacity of 

time t (mg/g). The plot of t/qt (mg/g) against time, t, gave a linear relationship and the k2 

and qe was obtained from the intercept and slope, respectively (Figure 16).  
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Figure 16. Pseudo second -order rate equation regressions for Athrobacter sp. G975, 

under low and high U(VI) concentrations in bicarbonate amended SGW at pH 7.3, 250C, 

(n=3). 

 

The model provides a good fit to the observed adsorption behavior in the bicarbonate-

bearing experiments over the U(VI) concentrations tested. The correlation coefficient 

(R2>0.991) adequately describes the kinetics of uranium biosorption by the bacteria and 

the U(VI) uptake rates determined by the model agree very well with the experimental 

data shown in Table 2. In addition, the theoretical qeq values were in accordance with the 

experimental qeq values.  From these two facts, we can conclude that adsorption follows 

the pseudo second-order model with the assumption that biosorption may be the rate 

limiting step and the rate is proportional to the square of the number of unoccupied sites. 

 

 



49 
 

Table 2. Pseudo 2nd-order model simulation sorption kinetic rates, k rate constant 

(mgU(VI)/g/min), and equilibrium adsorption capacity (Qe=mgU(VI)/g) for Arthrobacter sp. 

G975 in carbonate amended SGW at pH 7.3, 25oC, (n=3). 

  

Factor B 

Pseudo 2nd Order 
[KHCO3] 

Low 

0 mM 

[KHCO3] 

High 

2.5 mM 

𝑑𝑄𝑡
𝑑𝑡

= 𝑘(𝑄𝑒 − 𝑄𝑡)2 

𝑡
𝑄𝑡

=
1
𝑘𝑄𝑒2

+
𝑡
𝑄𝑒

 

Fa
ct

or
 A

 

[U(VI)] Low  

299.1  ppb 

k=0.014 ± 0.01 

Qe=3.76 

(R2=0.997) 

k =0.012 ± 0.01 

Qe=1.37 

(R2=0.997) 

[U(VI)] High  

14,721.4 ppb 

k =7.16E-5 ± 1E-5 

Qe=213.7 

 (R2=1) 

k =3.24E-5 ± 8E-6 

Qe=132.6 

(R2=0.991) 

 

22 Factorial design uranium sorption at equilibrium 

The results from the three-factors factorial design experiment indicated that the efficiency 

of the bioadsorption process is strongly dependent on the initial U(VI) concentrations, the 

concentrations of bicarbonate in the solution and time. The trend effect on the U(VI) 

adsorption by bacterial cells for each of the factors is shown in Figure 17.  
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Figure 17. Profile plots derived from the factorial design experiment; least square means 

of U(VI) uptake (mg/g), time, and HCO3 concentrations.  

 

The plots present sharp changes in the metal uptake, which increases directly 

proportional to the initial U(VI) concentration, and inversely proportional to the 

bicarbonate concentration in solution. As bacterial exposure time increases, the metal 

uptake follows smoothly. The 2-Way ANOVA statistical analysis at equilibrium, shown 

in Table 3, concludes that both the uranium initial concentration and the bicarbonate 

concentration are statistically significant factors that control the response variable of 

metal uptake (p<0.001, Power=1). Because the interaction between uranium and 

bicarbonate concentrations is also statistically significant, knowing the main effects may 

have little practical meaning. However, the response variable can still be successfully 

predicted with the regression model representation of the two factor factorial experiment, 

revealed in Table 3, whose parameters are estimates related to the effect of the factors. 

The non-linear response surface plot1

                                                 
1 A missing sample for high uranium and high bicarbonate was replaced by the mean substitution method. 

 obtained from the model describing the U(VI) and 
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bicarbonate interactions at equilibrium is in agreement with the experimentally derived 

data (R2=0.995) (Figure 18)(64).  

Table 3. Two Way ANOVA: Effects of U(VI) and bicarbonate concentrations on the 

uranium uptake by Arthrobacter sp. G975 at equilibrium (24 hours), in SGW pH 7.3, 

25oC. 

  
Normality Test (Shapiro-Wilk):  Passed      (P = 0.081)      Equal Variance Test: Passed     (P = 0.352) 

Source of Variation  DF   SS   MS    F    P 

[Uranium], ppb 1 63919.90 63919.90 1049.66 <0.001 

[KHCO3], mM 1 5302.70 5302.70 87.08 <0.001 

[Uranium], ppb x [KHCO3], mM 1 4712.75 4712.75 77.39 <0.001 

Residual  7   426.271 60.90 

  Total               10       82335.378        8233.54 

Power of test with alpha = 0.05:  1.00 for [Uranium], [KHCO3], and [U(VI)]x[KHCO3]. 

Regression of U(IV) 𝑈𝑝𝑡𝑎𝑘𝑒 𝑚𝑔
𝑔

= 79.9 + 77.4 ∗ (𝑥1) − 22.3(𝑥2) − 21.0(𝑥1)(𝑥2) 

Where 

𝑥1 =
�[𝑈] −

([𝑈]𝐿𝑜𝑤 + [𝑈]𝐻𝑖𝑔ℎ)
2 �

([𝑈]𝐻𝑖𝑔ℎ − [𝑈]𝐿𝑜𝑤)
2

    &     𝑥2 =
�[𝐻𝐾𝐶𝑂3] −

([𝐻𝐾𝐶𝑂3]𝐿𝑜𝑤 + [𝐻𝐾𝐶𝑂3]𝐻𝑖𝑔ℎ)
2 �

([𝐻𝐾𝐶𝑂3]𝐻𝑖𝑔ℎ − [𝐻𝐾𝐶𝑂3]𝐿𝑜𝑤)
2
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Figure 18  Response surface model, Arthrobacter sp. G975 uranium uptake (mg/g) vs. 

U(VI) and bicarbonate concentrations at equilibrium (24 hours), in SGW, pH 7.3, 250C. 

Sorption isotherm  

To examine the relationships between the bacteria adsorbed (q) and equilibrium 

concentrations (Ce) in solution, the Langmuir, Freundlich, and linear isotherms were 

fitted to the experimental data of different bicarbonate concentrations. It is generally 

observed that as the concentration of a species in solution increases, the amount of it 

sorbed to contacting surfaces also increases (17). The different models are illustrated in 

Figure 19, Figure 20, and Figure 21. Biosorption isotherms may exhibit an irregular 

pattern due to the complex nature of both the sorbent material and its varied multiple 

active sites, as well as the complex solution chemistry of some metallic compounds (33). 

The results presented here strongly suggest that linearity prevails in the equilibrium 

relationship between adsorbed and solution concentrations for the entire range of initial 

U(VI) and bicarbonate concentrations studied.  
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Figure 19. Calculated Langmuir U(VI) biosorption isotherms of Arthrobacter sp. G975 

with bicarbonate concentrations varying in SGW from 0.0 to 5mM at pH 7.3, 250C, 24 

hours (n=3). 

 

 

Figure 20. Calculated Freundlich U(VI) biosorption isotherms of Arthrobacter sp. G975 

with bicarbonate concentrations varying in SGW from 0.0 to 5mM at pH 7.3, 250C, 24 

hours (n=3). 
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Figure 21. Calculated Linear U(VI) biosorption isotherms of Arthrobacter sp. G975 with 

bicarbonate concentrations varying in SGW from 0.0 to 5mM at pH 7.3, 250C, 24 hours 

(n=3). 

 

The linear isotherm model provides the closest fit to the experimental results. This 

observation is supported by the Freundlich model whose mean n value of 0.93±0.3 is 

close to 1 and indexes of determination are as high as those calculated for the linear 

isotherm. Because neither the linear nor the Freundlich isotherms provide an approximate 

of the maximum adsorption capacity of the bacterial surface, Smax, we attempted to obtain 

the estimate from a regression of the data with the Langmuir isotherm model. The 

regression results show very low indexes of determination for all bicarbonate 

concentrations tested; that reaffirms the Linear isotherm as the best relationship to 

represent the equilibrium behavior of U(VI) based on the A.G975 strain used in this 

study. A summary of the results fitted to the simulated models are shown in Table 4. The 

agreement of the data with the Linear isotherm and the low correlation for the Langmuir 

is conclusive. 
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Table 4. Results for biosorption isotherms with Langmuir (KL), Freundlich (KF), and 

linear (Kd) equations Arthrobacter sp. G975 at various bicarbonate concentrations in 

SGW, pH 7.3, 25oC, 24 hours (n=3). 

KHCO3,
mM 

KL, 
mL/mg Smax R2 KF, mL/g n R2 Kd, 

mL/g R2 

0 624.0± 
205.6 

62.1± 
20.1 0.983 2,660.7± 

79.2 
1.4± 
0.1 0.988 11,161.0

± 555.3 0.988 

0.5 
1,783.7

± 
2,225.5 

2.7± 
1.9 0.193 11,803.2

± 2,933.4 
0.8± 
0.3 0.738 6,654.7± 

513.8 0.977 

2.5 10.2± 
17.9 

95.2± 
166.9 0.999 2,119.3± 

153.6 
0.9± 
0.1 0.974 1,394.7± 

253.3 0.883 

5 110.8± 
692.7 

0.2± 
1.2 0.416 5,623.4± 

1,391.6 
0.6± 
0.1 0.853 352.5± 

93.1 0.782 

 

The U(VI) adsorption capacity of A.G975 at equilibrium with atmospheric CO2 partial 

pressure and at an initial U(VI) concentration up to 14.5 mg/L was calculated as 150.2 ± 

71.4 mg/g. This value is high compared with other bacterium like Bacillus sp. (38 mg/g) 

and low compared to other Citrobacter sp. (8000 mg/g) whose dry weight was not 

assessed and showed metal microprecipitates (33). We observed a decrease in the 

adsorption capacity in bicarbonate–bearing experiments similar to data derived from the 

factorial design experiments with the initial U(VI) concentrations ranging between 0.4-14 

ppm. In fact, based on the Kd values of the linear isotherm depicted in Figure 22, the 

adsorption capacity exponentially decays (R2=0.99) as the bicarbonate concentration is 

increased in solution. We can, therefore, assume that there exists a limit close to 5 mM of 

HCO3 at which point carbonate-bearing experiments exhibit little or no measurable loss 

of U(VI) due to sorption onto the bacterial surface. According to the EPA, when the Kd 

value is greater than 5, contaminants are less likely to leach or occur as surface runoff; 



56 
 

the Kd results for Arthrobacter G975 are very high, which means that uranium strongly 

adsorbs onto the microbes and should not move throughout the subsurface. 

 

Figure 22. Kd values from the linear isotherm of Arthrobacter sp. G975 with bicarbonate 

concentrations varying in SGW from 0.0 to 5mM, pH 7.3, 250C, 24 hours (n=3). 

 

Further evidence of diminishing uranium uptake by bacteria under increasing carbonate-

bearing experiments is presented in Figure 23. The results strongly support the 

observation that the percent of U(VI) uptake is decreased with increasing concentrations 

of dissolved carbonate in the solution.  
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Figure 23. Percent of U(VI) uptake by Arthrobacter sp. G975 in SGW amended with 

bicarbonate concentrations varying from 0.0 to 5mM, pH 7.3, 250C, 24 hours (n=3). 

 

In solutions without additional bicarbonate but at equilibrium with atmospheric CO2, 

70% of U(VI) was removed by bacteria. The increase in initial U(VI) concentrations tend 

to diminish the percentage of U uptake to 40-50%; however, this effect could be 

attributed to the U(VI) toxicity on bacterial cells. A pronounced decrease in percentage of 

U(VI) uptake by bacteria was originated from increasing bicarbonate concentrations in 

the SGW media. The addition of 5 mM bicarbonate concentration yielded substantially 

lower values of bacterial uptake of U(VI), measured as 3%. The biosorption process 

becomes considerably repressed in the presence of bicarbonate due to the formation of 

highly soluble and stable uranyl-carbonate and calcium uranyl carbonate complexes, 

UO2(CO3)3
4- and CaUO2(CO3)3

2-. 



58 
 

Desorption experiments 

Desorption experiments were conducted to differentiate the amount of U(VI) externally 

adsorbed on the cell surface from that taken up by cells for internal accumulation. A 10 

mM Na2EDTA washing solution, a strong complex forming agent, successfully released 

U(VI) from the cell surface.   

The theoretical value of accumulated U(VI) inside the cell was calculated via mass 

balance. The results shown on Figure 24 revealed the presence of U(VI) accumulation 

inside the cell across the experimental range of studied U(VI) concentrations (0.4-14 

ppm). The percentage of U(VI) uptake inside the cell was found comparable to the 

external accumulation on cells wall. The addition of 2.5 mM of bicarbonate to the media 

solution resulted in limited biosorption and, as a consequence, accumulation inside the 

cell.  Further studies on TEM/EDS microtome microscopy are required to identify 

uranium inside the bacteria. 
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Figure 24. Calculated percentages of U(VI) distribution in SGW solution, adsorbed on 

bacterial cell, and accumulated inside cells. A) 0 mM of added bicarbonate. B) 2.5 mM of 

added bicarbonate concentration (at pH 7.3, 250C, 24 hours) (n=3). 

Cell Viability 

We previously determined that Arthrobacter sp. G975 is able to withstand the toxic 

effects of uranium to concentrations up to 40 ppm of U(VI). Cell viability was further 

evaluated through a 2x2 factorial design experiment with procedures previously 

described in this chapter. Viability assays were performed after 24 hours of cell 

incubation with the appropriate uranium and bicarbonate concentration treatment.  

Samples of each treatment were plated and incubated on 5% PTYG hard media and then 

counted for colony-forming units (CFU) (Figure 25). As expected, the cells treated with a 
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high concentration of U(VI) and low bicarbonate were less viable than those treated with 

a high bicarbonate concentration. 

 

Figure 25. Colony Forming Units (CFU/mL) of all treatments after 24 hours of exposure 

to bacteria (n=3). 

 

These results support the theory that bicarbonate bound uranium forms highly soluble 

U(VI)-carbonate complexes that apparently lessen the U toxicity on bacterial cells. The 

same trend was not observed for the low concentrations of uranium tested. This could be 

attributed to a higher cell density in one of the samples bearing the low uranium and 

bicarbonate concentrations, which apparently caused higher standard deviations for this 

treatment. To test the hypothesis that the presence of bicarbonate reduces the toxicity of 

U(VI) on bacterial cells growth, the experiment was extended to evaluate the cell growth 

by means of a spectrophotometer at 660 nm wavelength. The measurement of cell 

concentrations in bacterial suspensions by optical density yielded a linear relationship 

with a high correlation coefficient (R2>0.99) (Figure 26). The time-dependent changes in 
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absorbance in a parallel experiment, examining the toxicity of U(VI) on cells growth, 

revealed that the addition of bicarbonate in the control set did not impair cell growth 

(P>0.718). The cell densities for uranium-free controls converged at 8.7E8 cells/mL over 

the testing period of 51 h (Figure 27). The addition of 20 ppm of U(VI) caused an 

average 68.5%, 24.3%, and 10% reduction in cell density over the same time period for 

bicarbonate-free, 5 mM and 10 mM [HCO3] concentrations, correspondingly,  compare to 

U(VI)-free controls (Figure 27). 

 

Figure 26. Spectrophotometer calibration curve for A. G975 in 5% PYTG medium. 
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Figure 27.Time-depended changes in Arthrobacter G975 cells density grown in U(VI)-

free and 20ppmU(VI) amended 5%PTG media altered with 0mM, 5mM, and 10mM  of 

KHCO3, pH 7.3, 250C (n=3). 

 
Effect of uranium on microbial surfaces using atomic force microscopy  

Arthrobacter have developed very efficient molecular adaptation mechanisms that 

enhance the stability of nucleic acids, proteins, and lipids, allowing the bacteria to survive 

in stressful conditions (65). This phenomenon is associated with cell metabolism and, 

reportedly, with a very efficient phosphatase-mediated mechanism that the bacteria 

created to activate the secretion of phosphate groups. In fact, they can produce excess 

orthophosphate protecting cells from the toxic effects of radionuclides via passive U(VI) 

complexation by the negatively charged cell wall extracellular polymers (42)(66)(39). 

Uranium bioprecipitation reactions involving ligands, liberated by phosphatase activity, 

result in a deposition of U(VI) on the bacterial cell wall as crystalline uranyl phosphate 
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minerals (67). Despite considerable efforts to develop an understanding of how bacteria 

mediate biomineralization, our knowledge is far from complete and further research is 

needed to evaluate the interactions between uranyl ions and microbes. 

Atomic force microscopy (AFM) was used to monitor changes at the nanoscale level in 

cell surface topography, roughness and adhesion before and after the cells exposure to 

various concentrations of uranium. The aim of this task was to present high-resolution 

AFM results on the formation of microbial uranyl-phosphate precipitates on the bacterial 

surface. The results demonstrated the ability of this method to qualitatively and 

quantitatively analyze uranium precipitation on live bacterial cell surfaces of various 

strains of Arthrobacter sp. 

Uranium precipitation on the microbial cell surface 

Microscopic observations specified the cell surface localized bioprecipitation of uranium. 

The phase images in  Figure 28-Figure 29 [the image on the left represents the height data 

(Z range 250 nm) and the image on the right represents the phase data (phase angle 60º)] 

revealed extracellular precipitates deposited on the surface of uranium-loaded cells. 

Uranium precipitation is distinctly visualized as clearly defined crystalline deposits on 

the cell surface of uranium-treated samples. For the uranium-free control samples, the 

formation of precipitates was not observed (Figure 28).  
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Figure 28. G975 control sample (scan size 2.94 

× 2.94 µm2) showing its unusual wrinkled 

surface morphology. The topagraphy image on 

the left (Z range 200 nm) and frictional image 

(0.3 V) on the right. 

 
Figure 29. G975 cultured in the media 

amended with 10ppm of U(VI), (scan size 

1.45 × 1.45 µm2; phase angle 60º). Phase 

image clearly shows crystalline deposition on 

the cell surface. 

 

 
Figure 30. 3D micrograph of cell surface 

topology of G975 cultured in the media 

amended with 10ppm of U(VI). Scan size 2µm. 

 

 
Figure 31. 3D micrograph of cell surface 

topologies of G975 cultured in the media 

amended with 10ppm of U(VI). Scan size 

389nm. 

3D AFM phase images show the variation in the G975 bacterial surface when treated 

with 10 ppm of U(VI). Brighter areas are an indication of higher adhesion regions due to 

higher surface elevation of uranium precipitates on the surface and darker regions 

correspond to lower adhesion areas of bacterial surface (Figure 30, Figure 31). Brighter 

regions visualized on the cell surface can explain a significant increase in the surface 

roughness and changes in the adhesion forces. 
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The identification of the deposit composition was achieved by EDS analysis. EDS 

spectrums of uranium-loaded samples has confirmed the presence of uranium in the cell 

surface elemental composition, which was primarily composed of uranium (U), oxygen 

(O), phosphorus (P), sodium (Na), silica (Si) and potassium (K). The identity of cell-

surface localized crystals was proven to be uranyl phosphate, as reported in previous 

research (35)(66)(67). 

The precipitates accumulated on the surface of the G975 bacteria were clearly seen on the 

surface. Its large adsorption capacity may be due to the unique irregular surface structure 

of the G975 strain, which is seen in the topographic image (on the left, Z range 200 nm) 

and frictional image (on the right, 0.3 V) presented in Figure 29. The unusual wrinkled 

cell wall region may offer a larger surface area to provide higher accessibility for reaction 

with the soluble uranium for the formation of biogenic uranium precipitates. It was noted 

earlier that high surface area geometries can enhance reaction turnover rates (68). In 

addition, it was observed that higher concentrations of uranium in media solutions are 

well correlated with an increase in uranium bioprecipitation on the cell surface. This was 

supported by EDS analysis of samples prepared on cells cultivated in media amended 

with various concentrations of U(VI). The EDS spectrum data indicate that higher U(VI) 

content found on the bacterial cell surface correlates with higher concentrations of 

uranium loaded to the culture broth (Table 5). In addition, samples with added 

bicarbonate have less U(VI) content compared to the control  (P<0.004).  

Table 5. Average U(VI) bioaccumulation by Arthrobacter bacterial cells (n=3) 

Strain G975 
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U(VI), ppm 9.5 20 20 20 27 

[KHCO3], mM 0 0 5 10 0 

U weight, % 0.52±0.25 2.29±0.88 0.58±0.37 0.29±0.24 2.82±0.8 

Roughness Analysis 

Changes in the cells’ surface roughness for the bacteria before and after exposure to 

various concentrations of uranium were monitored using AFM roughness analysis (Table 

6). Exposure was for 24 hrs and the concentrations of uranium ranged from 0.5 ppm to 

19.5 ppm. 

Table 6. The average roughness (Ra) and a standard deviation (SD) of three Arthrobacter 

strains grown at various concentrations of uranium. 

Uranium 
Concentration 

G975 

Mean Ra 
(nm) 

SD 

U-free controls 3.88 2.33 
0.5ppm 8.48 2.64 
5ppm 6.05 1.59 
10ppm 7.12 1.09 

19.5ppm 9.01 2.67 

From Table 6, it is clear that the difference in the mean roughness values among the 

treatments is not great enough to exclude the possibility that its due to random sampling 

variability (P=0.8). For this reason, no trend or correlation was observed between the 

increase in uranium concentration and the roughness values for G975 Arthrobacter. It 

was anticipated that the roughness parameter would increase with higher uranium 

concentration, since an increase in uranium bioprecipitation on the bacterial surface was 
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detected via EDS analysis and AFM. The relationship between roughness values and 

bacterial cells surface changes occurring with uranium exposure are not fully understood 

and require further investigation. 

Force Spectroscopy Analysis 

In previous studies, it has been shown that adhesion forces are very sensitive to surface 

modifications (69).Therefore, physiochemical changes occurring on bacterial cell surface 

membranes, when treated with various concentrations of uranium, were monitored with 

force spectroscopy analysis. Table 7 demonstrates that changes in the adhesion force 

values of the control and uranium-treated samples is due to the increase in uranium 

concentration in the cultivation media, which caused chemical modifications of the 

bacterial cell surface. This significant change may be due to the physico-chemical 

reactions on the cells surface resulting in extracellular uranium deposition via secretion of 

extra orthophosphate, protecting cells from the toxic effects of uranium (35). The results 

shown in Table 7 indicate a significant statistical difference in adhesion values between 

control samples and those exposed to uranium: 10.02 nN for G975 treated with 5 ppm of 

U(VI). The data suggests that the bacteria has a unique adhesion force parameter 

(P<0.001) that decreases exponentially as the uranium concentration is increased.  

 

 

Table 7. Comparison of adhesion forces for G975 Arthrobacter sp. 

 G975 
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Adhesion 

(nN) SD 

Control 26.48 0.69 

5 ppm 16.45 0.15 

10 ppm 15.86 0.7 

10.5 ppm 6.1 0.15 

 

Bioleaching of U(VI) from autunite 

In the non-contact mode experiments using sterile cultureware with inserts (Figure 32), 

the U(VI) leaching was investigated with the autunite mineral separated from the 

bacteria. The release of aqueous U(VI) over time during the autunite leaching in non-

contact experiments is presented in Figure 33. The steady-state maximum concentrations 

of U(VI) detected were 1.0±0.7, 1.1±0.6, 1.2±0.9, and 4.6±3.11 fold higher than the 

abiotic control without the bicarbonate amendment. Even though these values are lower 

than those found in the bacteria-mineral mixed contact experiment, the amount of leached 

U(VI) between treatment groups is not great enough to exclude the possibility that the 

difference was due to random sampling variability (P=0.161). Factors that may have 

attributed to this increase in variability include slower uranium diffusion between the 

autunite- containing wells and the bacteria-bearing inserts, and the possible presence of 

bacterial cells in the aliquot samples withdrawn from the inserts, which were not filtered 

before KPA analysis. Similarly, after bacteria inoculation, U(VI) concentrations, 

measured in the reactors, increased 0.5±0.3, 1.1±0.9, 3.1±1.3, 4.3±3.0, and 3.2±1.4 fold, 
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respectively, compared to the U(VI) concentration at steady-state prior to inoculation 

(Figure 34). More replicates are required to draw statistically significant results.  

 

Figure 32. Top and bottom view of Cell Culture Insert with autunite mineral powder 
separated from bacteria.
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Figure 33. Changes for aqueous U(VI) as a function of time for the non-contact natural 

autunite dissolution insert experiments inoculated with Arthrobacter G975 strain 

separated by a 0.4um porous membrane (n=2). 
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Figure 34. Measured U(VI) concentrations before and after inoculation with G975 in the 

insert non-contact natural autunite dissolution experiment (n=2). 

The results show that bacteria could be responsible for further autunite dissolution 

through secretion of metabolites, and are able to influence U(VI) leaching while not in 

direct contact with the mineral. This process was not related to media acidification since 

a substantial drop in pH on the surrounding medium was not recorded. The pH of 20 mM 

Na-HEPES buffered media was not stable over the course of the experiment and was 

observed in the range of 7-8.4, slowly drifting from the initial value of 7.5. This change is 

mostly due to the equilibration of carbonate-containing media solution with the 

atmosphere. Thus far, there is no available research that investigated microbial 

dissolution of autunite in the aerobic conditions to which the results can be compared. 

Phosphorous (P) is an essential nutrient requirement for bacteria for the synthesis of 

DNA, ATP, polyphosphates, and cell wall phospholipids. In addition, bacteria create a 
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very efficient phosphatase-mediated mechanism to activate excess secretion of 

orthophosphate, protecting cells from the toxic effects of radionuclides via passive U(VI) 

complexation by the negatively charged cell wall extracellular polymers 

(35)(42)(66)(39). These requirements force microorganisms to access insoluble 

phosphate-bearing minerals via microbial dissolution. It is well known that many soil 

microorganisms are able to dissolve P-bearing minerals (70)(71). These results indicate 

that such mechanisms may not depend on physical contact with uranium bearing 

minerals. The mechanisms to scavenge P from insoluble mineral sources are discussed by 

several authors. Some considered that microorganisms produce and exudates low 

molecular weight organic acids that play a role in the solubilization of inorganic 

phosphate from minerals (70)(71).  

Grown in phosphorus-limiting 5% PTG media, bacteria were forced to liberate P by 

breaking the O-P bond from autunite sheets. A similar effect was noted by Smeaton et al. 

(72), who examined the release of U from the meta-autunite mineral by the dissimilatory 

metal-reducing bacterium Shewanella putrefaciens 200R. Their spectroscopy 

measurements (XANES) indicated that the U dissolution was promoted by the uptake and 

immobilization of P by the bacterial cells. It is possible that the bacteria can oxidize 

media organics to powerful organic acids which, in turn, dissolve the phosphate in the 

solution. 
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VI. CONCLUSIONS AND FUTURE WORK 

It was confirmed that Arthrobacter sp. G975, which roughly accounted up to 25% of 

subsurface isolates, can effectively remove soluble U(VI) ions from aqueous solution. 

The U(VI) biouptake for these microbes obtained by conducting a 22 factorial design 

experiment was between 83-90% for the aqueous solutions at equilibrium with CO2 

atmospheric pressure and uranium concentrations up to 15 ppm.  

Kinetics data analysis confirmed that the process follows a pseudo second-order kinetics 

model (R2>0.991). The equilibrium for biosorption experiments was reached at 24 hours. 

It was conclusively proven that bicarbonate ions affect the sorption behaviors of U(VI). 

The maximum biosorption capacity of U(VI) ions at 25°C by Arthrobacter sp. G975 was 

observed at 154.7±60.6, 42.4±10.8, 20.6±6.5, and 5.5±8.0 mg/g for 0, 0.5, 2.5, 5 mM 

bicarbonate-bearing solutions, respectively. The incremental increase in aqueous 

bicarbonate concentrations exponentially reduced the U(VI) microbial uptake compared 

to values obtained in carbonate-free SGW. Experimental data indicates that bicarbonate 

concentrations of 0, 0.5, 2.5 and 5 mM reduced the maximum U(VI) uptake by 0%, 

72±13%, 87±7% and 96±5%, respectively. The linear isotherm models produced a higher 

correlation coefficient with the experimental data than the Freudlich and Langmuir 

adsorption models. Despite the large biosorption capacity, there is experimental evidence 

to suggest that in addition to uranium adsorbed on the cell surface, some uranium is also 

accumulated inside the cell. In the presence of bicarbonate, when highly soluble and 

mobile carbonate complexes dominate the aqueous speciation of U(VI), the viability of 

cells treated with high concentration of U(VI) was noted to increase. 
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Visual MINTEQ was applied to evaluate the aqueous speciation of the solutions with 

respect to key minerals and aqueous phases. The most positive and trimeric species of 

uranium changed in concentration as a function of bicarbonate and uranium 

concentrations present in solution. Uranium bioavailability to the cells that may be sorbed 

or toxic to the cells is reduced with concentrations greater than 2.5 mM of bicarbonate.  

AFM was used to investigate qualitative and quantitative changes on microbial cell 

surfaces when the cells interact with the uranyl ion. Quantitative results show the ability 

to capture the surface phenomenon for G975 strains of Arthrobacter sp. It was found that 

the level of precipitation is not uniform across the cell membrane. Roughness analysis 

shows that an increase in the uranium concentration does not have any significant effect 

on cell surface roughness for all strains (P>0.012). The force spectroscopy results reveal 

an exponential decay relationship between the adhesion force and the concentration of 

uranium added to the growth media. The microbes have a unique adhesion force 

parameter (P<0.001) that decreases as the uranium concentration is increased. Further, 

force spectroscopy results indicate that the cell membrane adhesion properties change 

due to chemical interactions with various concentrations of uranium. 

The effect of bicarbonate on autunite mineral microbial leaching was evaluated in a 

bacteria- autunite non-contact mode employing cultureware with inserts comprised of 

autunite powder, media solution and bacteria.  

In a non-contact autunite biodissolution, the steady-state maximum concentrations of 

U(VI) detected were 1.0±0.7 - 4.6±3.1 fold higher than the abiotic control without the 

bicarbonate amendment. After bacteria inoculation, U(VI) concentrations increased 
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0.5±0.3 - 3.2±1.4 fold compared to U(VI) concentration at steady-state prior to 

inoculation. A non-statistically significant increasing trend from the effect of bacteria on 

autunite leaching was observed as bicarbonate concentrations were increased in the 

solution. The data suggests that bacteria is responsible for autunite dissolution and is able 

to influence U(VI) leaching while not in direct contact with the mineral.  

This study provides a better understanding of the capabilities of one of the most prevalent 

bacteria species at the Hanford Site. We can conclude that Arthrobacter G975 bacteria 

can influence the fate and transport of uranium in the subsurface since they possess a Kd 

value that is greater than that of the native soil, are able to survive in oligotrophic and 

uranium rich environments, have the ability to adsorb and accumulate U efficiently, and 

can indirectly breakdown stable uranyl-phosphate minerals found in the subsurface as a 

result of remedial actions. This specific Arthrobacter strain is a distinguished microbe 

ideal for subsurface uranium bioremediation.  The research presented here provides new 

parameters useful for modeling and evaluating uranium mobility, and remedial actions. 

Further testing is recommended to completely understand the mechanism of microbial 

uranium uptake and the bacterial effect on uranium leaching from minerals. Future 

studies should involve other factors that may affect this process including pH, calcium 

concentrations, and temperature.    
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