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ABSTRACT OF THE THESIS 

MODELING OF PIPELINE TRANSIENTS: MODIFIED METHOD OF 

CHARACTERISTICS 

by 

Stephen Wood 

Florida International University, 2011 

Miami, Florida 

Professor George S. Dulikravich, Co-Major Professor 

Professor Igor Tsukanov, Co-Major Professor 

The primary purpose of this research was to improve the accuracy and robustness 

of pipeline transient modeling.  An algorithm was developed to model the transient flow 

in closed tubes for thin walled pipelines.  Emphasis was given to the application of this 

type of flow to pipelines with small radius 90° elbows.  An additional loss term was 

developed to account for the presence of 90° elbows in a pipeline.   The algorithm was 

integrated into an optimization routine to fit results from the improved model to 

experimental data.  A web based interface was developed to facilitate the pre- and post- 

processing operations.   

Results showed that including a loss term that represents the effects of 90° elbows 

in the Method of Characteristics (MOC) [1] improves the accuracy of the predicted 

transients by an order of magnitude. Secondary objectives of pump optimization, 

blockage detection and removal were investigated with promising results. 
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CHAPTER I 

1. INTRODUCTION 

Pressure and flow rate oscillations, transients, occur in pipelines and control 

systems operated in processes vital to societies’ resource utilization worldwide.  Accurate 

modeling of the transient phenomenon which occur in such systems enables efficient and 

safe operation which reduces costs, the occurrence of accidents and the likely-hood of 

adverse environmental impacts.   

1.1. Fundamentals of Pipeline Technology  

The term pipe is defined herein as a closed conduit of circular cross section made 

of steel.  The term pipeline refers to a long line of connected segments of pipe, with 

pumps, valves, control devices, and other equipment/facilities necessary for operating the 

system.  It is intended for transporting a fluid (liquid or gas), mixture of fluids, solids or 

fluid-solid mixture [2]. Unless otherwise specified, the pipelines discussed in this thesis 

have a diameter of 3 inches (7.62 cm). 

Water hammer (or, more generally, fluid hammer) is a pressure surge or wave 

resulting when a fluid (usually a liquid but sometimes also a gas) in motion is forced to 

stop or change direction suddenly (momentum change). Water hammer commonly occurs 

when a valve is closed suddenly at an end of a pipeline system, and a pressure wave 

propagates in the pipe. 

This pressure wave can cause major problems for the system, from noise and 

vibration to pipe collapse. It is possible to reduce the effects of the water hammer pulses 

with accumulators and other features. 
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Pipelines experience severe dynamic forces during a water hammer event. When 

these forces make the system move significant fluid structure interaction (FSI) may 

occur.   When FSI takes place the liquid and pipe systems cannot be treated separately in 

a theoretical analysis: interaction mechanisms have to be taken into account.   

1.2. Motivation 

In this work the primary application considered is the transfer of High Level 

Waste (HLW) at Department of Energy (DOE) sites in the United States of America. In 

the past, some of the pipelines at DOE sites have plugged during HLW transfers, 

resulting in schedule delays and increased costs. Availability of a pipeline unplugging 

tool/technology is crucial to ensure smooth operation of the waste transfers and to ensure 

tank farm cleanup milestones are met. Florida International University’s (FIU) Applied 

Research Center (ARC) has previously tested and evaluated various unplugging 

technologies through an industry call. Based on mockup testing, two technologies were 

identified that could withstand the rigors of operation in a radioactive environment and 

had the ability to handle small radius 90° elbows. These technologies were NuVision 

Engineering’s Fluidic Wave-action Technology and AIMM Technologies’ Hydrokinetics.  

As a DOE Fellow in the DOE/FIU Science & Technology Workforce Development 

Initiative, I participated in the technology evaluation by preparing stimulant blockages, 

constructing the test apparatus and assisting to conduct the tests. 

The testing and qualification was comprised of a heavily instrumented 3-inch 

diameter full-scale pipeline, facilitating extensive data acquisition for design optimization 

and performance evaluation as it applies to three types of plugs typical of DOE HLW. 
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One of these plug types is a kaolin-water mixture typically used in emulating slurry 

mixes. The other two plug types are crystallized salt plug simulants recommended by 

Hanford Waste Treatment Plant (WTP) engineers. Three different test bed lengths (285, 

621, and 1797 ft.) were utilized to determine the effectiveness of NuVision’s technology 

with respect to pipe length. Erosion rates were determined for each plug type and at each 

test bed length. An amplification of the inlet pressure was observed at the blockage area 

that demonstrated the need for a complete analysis of the pressure pulse propagation 

through the pipeline. Wave speeds have also been analyzed to determine correlations 

between the amplification factors, unplugging rates and equipment control parameters 

utilized by NuVision  [3]. 

Cross-site lines at Hanford can extend almost eight miles. With access locations at 

either end, maximum pipe lengths to plugs could reach as far as 19,000 ft. from an entry 

point. For this reason, the experimental test data was extrapolated to 19,000 ft. 

Extrapolated test data include maximum pressure, unplugging rates, energy input, and 

wave speeds. During the experimental testing, variations in the process control 

parameters were observed and became more extreme at the longer test bed length. These 

variations are believed to be due to changes in the environmental conditions during 

testing. The variability in process control parameters makes it difficult to extrapolate test 

results to longer pipeline lengths [3]. 

An alternative method to predict some parameters of the testing at the scaled up 

pipe lengths is to use a simplified quasi-linear model of the transient flow in the pipe 

based upon the Method of Characteristics (MOC). 
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1.3. Problem Statement 

Safe and efficient operation of pipeline systems is a challenging dynamic task.  It 

is difficult to anticipate or predict the effects of changing pump, valve, tank, or other 

facility states.  It is also difficult to determine how quickly the operational state of a 

pump, valve, tank, or other facility can be altered without causing damage or 

unacceptable performance elsewhere in a pipeline [2].  Carrying out experiments to 

evaluate the various operational scenarios is time consuming, costly and the results may 

not apply to unanticipated situations.   

There is a lack of software capable of characterizing a pipeline by determining the 

damping parameters in the model in a timely fashion [4].  The damping parameters in a 

model represent the energy lost as a pressure wave propagates in a pipeline due to the 

fluid properties, the internal reflections caused by the geometry of the pipeline, and the 

vibration of the pipeline. 

There are at least three further functions of a software package that are highly 

desired by pipeline operators which have not yet been implemented.  These capabilities 

are: 

• predicting the necessary pump or reservoir operation schedule to achieve 

desired pressures or flow rates elsewhere in the pipeline in a timely 

fashion   

• locating blockages within pipelines    

• modeling and predicting blockage extrusion by fluid forces   
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1.4. Research Objective  

The primary purpose of this research is to improve the accuracy and robustness of 

pipeline transient modeling.  An algorithm is developed to model the transient flow in 

closed tubes for thin walled pipelines from the Method of Characteristics (MOC) [1].  

Emphasis is given to the application of this type of flow to pipelines with small radius 

90° elbows.   

Secondary objectives are to:  

2.1) Validate the integration the developed algorithm into an optimization routine 

to enable the timely determination of damping parameters which characterize 

the pipeline.  

2.2) Validate the integration of the developed algorithm with an optimization 

routine to enable the timely determination of the necessary pump or reservoir 

operation schedule to achieve desired pressures or flow rates.   

2.3) Validate the integration of the developed algorithm with an optimization 

routine to enable the timely location of full blockages in a pipeline.  

 2.4) Verify the integration of the developed algorithm with a developed Finite 

Element Method model of a pipeline blockage for the purpose of modeling 

and predicting blockage extrusion by fluid forces. 

1.5. Thesis Structure  

In Chapter 2 a literature review of the past and current work in transient 

modeling, elbow modeling, pipeline characterization, pump operation, blockage 

detection, pipeline unplugging, and the deployment on engineering software through web 
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applications is presented. In Chapter 3 the physical problems and their mathematical 

formulations are presented.  In Chapter 4 the method of solution for the physical 

problems is presented.  In Chapter 5 the results and discussions for each of the physical 

problems is presented.  In Chapter 6 the conclusions reached in this work are presented.  

The references utilized in the work are listed in Chapter 7.  A code snippet is provided for 

the MMOC air pocket at the downstream end boundary condition in the appendix.  

1.6. Personal Contributions 

1. A loss term to account for the effect of 90° elbows on pipeline transients:G j =
cg

s j

 

2. Coupling of the MMOC solver with a differential evolutionary optimization 

algorithm for user specified parameters and objectives 

3. Coupling of the MMOC solver with a blockage locating routine 

4. Coupling of the MMOC solver with a solid mechanics solver, meshFree [5],  to 

enable modeling of blockage removal 

5. Web-based tool which facilitates users setting up and viewing results of pipeline 

transients simulations 

 

1.7. Expected Outcomes 

1. The inclusion of a loss term which accounts for the effect of 90° elbows on 

pipeline transients will improve accuracy of peak pressures and wave form shapes 

predicted by the MMOC code 

2. Optimization through the use of a differential evolutionary algorithm will enable 

characterization of a pipeline through the determination of the friction factor, f, 
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and the coefficient of geometric impedance, cg 

3. Optimization through the use of a differential evolutionary algorithm will enable 

determination of time varying inlet reservoir pressures for user specified 

objectives such as blockage extrusion 

4. The web-based tool will enable the timely modeling and analysis of pipeline 

transients 
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CHAPTER II 

2. LITERATURE REVIEW 

2.1. Transient Modeling 

The first significant contributions to the study of wave propagation in 

’incompressible’ fluids were made by Newton and later by Laplace [4, 6] who related the 

speed of sound in air to the pressure and density under the assumptions of isothermal and 

isentropic compression respectively. These relations, or equations of state, were 

complemented by the development of the equations of motion for a compressible fluid. 

Their development was due to the work on inviscid flow by Euler in 1755, and to the 

later addition of frictional resistance terms by Navier in 1827 and by Stokes in 1845. It 

was Stokes who introduced the coefficient of viscosity and presented the momentum 

equations in their currently accepted form. Early attempts to analyze observed surge and 

water hammer effects were not directly based upon these fundamental equations, but 

were based upon the one-dimensional wave equation, originally derived and solved by 

d’Alembert around 1750 [6]. 

Various methods of analysis were developed for the problem of transient flow in 

pipes from the pioneering efforts of Newton, Laplace, Euler, Navier, Stokes and 

d’Alembert. They range from approximate analytical approaches whereby the nonlinear 

friction term in the momentum equation is either neglected or linearized, to numerical 

solutions of the nonlinear system. The Method of Characteristics which converts the two 

partial differential equations (PDE’s) of continuity and momentum into four different 
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ordinary differential equations and solves them numerically using finite difference 

techniques is the most popular approach for handling hydraulic transients [7]. 

In the majority of the analyses reviewed, the pipes are slender, thin-walled, 

straight, prismatic and of circular cross-section . The liquid and the pipe-wall material are 

assumed linearly elastic and cavitation is assumed not to occur.  The theories developed 

are valid for long (compared to the pipe diameter) wavelength, acoustical (convective 

velocities neglected) phenomena.  Important dimensionless parameters in FSI analyses 

are (i) the Poisson ratio , (ii) the ratio of pipe radius to pipe-wall thickness , (iii) the ratio 

of fluid  mass density to pipe-wall mass density , and (iv) the ratio of fluid bulk modulus 

to pipe-wall Young’s modulus [2, 8]. 

2.1.1. Analytic and Graphic approaches 

 
Figure 2-1: Application of Arithmetic Water Hammer equations to a single pipe 
 

Analytic methods often neglect friction and minor losses to simplify the unsteady 

momentum and continuity equations [6,9].  The reduced momentum equation is stated as 

∑ ܪ∆ = ± ௔௚ ∆ܸ          (2.1) 
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The plus sign is taken for a pressure wave traveling upstream from B to A (Figure 

2-1) as from a sudden valve closure and takes the form 

஺ܪ + ௔௚ ஺ܸ = ஻ܪ + ௔௚ ஻ܸ        (2.2) 
 Conditions at A occur ܮ ܽ⁄  seconds after the conditions at B. With ܪ஻, ஻ܸ known, 

then one additional piece of information known at A,  ܮ ܽ⁄  seconds from a boundary 

condition permits ܪ஺and ஺ܸ to be determined.  For a wave traveling downstream from A 

to B 

஺ܪ − ௔௚ ஺ܸ = ஻ܪ − ௔௚ ஻ܸ        (2-3) 
 In which conditions at A, ܪ஺, ஺ܸoccur ܮ ܽ⁄  seconds before ܪ஻, ஻ܸ.  From the 

application of this pair of equations many times, plus the required boundary conditions 

(such as a reservoir, a valve, or a dead end), the transient solution is developed and 

solved.  This method was used until the early 1930’s, when the graphical methods were 

developed [1]. 

 Graphical water hammer solutions neglect friction in their theoretical 

development, but utilize means to take it into account by a correction.  The integrated 

 may be adapted (2.1)          ܸ∆݃ܽ±=ܪ∆

to a graphical solution, since they plot as straight lines on an HV-diagram.  Graphical 

methods were used as the principal way of solving transient problems from the early 

1930’s to the early 1960’s.  They have been generally supplanted by digital computer 

methods [1, 4, 6]. 



11 
 

2.1.2. Numerical approaches 

2.1.2.1 Implicit methods 
 The centered implicit method is a finite difference procedure that can be used 

successfully for the solution of a class of unsteady fluid flow problems.  Its broadest 

application is in unsteady free surface flow calculations [10]. This procedure is 

particularly applicable in situations where inertial forces are not as important as the 

storage or capacitance effects.  The method is formulated in such a way that the 

requirement to maintain a specific relationship between the time increment ∆ݐ and the 

length increment ∆ݔ is relaxed.  This feature offers the opportunity for a more flexible 

scheme than other methods in dealing with complex systems, however, it is necessary to 

simultaneously solve for all of the unknowns in the system at each time step.  When 

applied to water hammer problems it is necessary to adhere to the Courant-Friedrichs 

Lewy condition in the time step-distance interval relationship in order to maintain a 

satisfactory level of accuracy.  In these cases the advantage of the method are lost and 

other methods are recommended [1].  

2.1.2.2 Linear analyzing methods 
 By linearizing the friction term, and dropping other nonlinear terms in the 

equation of motion, an analytical solution to the equations may be found for sine wave 

oscillations.  These analyses may be considered in two categories: steady-oscillatory 

fluctuations set up by some forcing function such as by a positive displacement pump; 

and free vibrations of a piping system.  This latter method does not inquire into the nature 

of the forcing functions, but determines the natural frequencies of the system, and 

provides information on the rate of damping of the oscillations when forcing is 
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discontinued.  By the means of harmonic analysis, complex periodic forcing functions 

may be decomposed into a family of sine wave motions.  Each of these may be handled 

by the momentum and continuity equations, then the solutions added to yield the 

complete solution [1, 6].  

2.1.2.3 Characteristic methods 
The method of characteristics converts the two partial differential equations of 

motion and continuity into four total differential equations.  These equations are then 

expressed in finite difference form, using the method of specified time intervals, and 

solutions are carried out with the use of a computer [4].   

The characteristic method has many advantages:  

1. Stability criteria are firmly established. 

2. Boundary conditions are easily programmed. 

3. Minor terms may be retained if desired. 

4. Very complex systems may be handled. 

5. It has the best accuracy of the finite difference methods. 

6. Programs are easy to debug because steady state satisfies all conditions, and an 

error in programming shows up as a change from steady state. 

7. It is a detailed method which allows the print out of complete tabular results 

[1]. 
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2.2. Elbow Modeling 

In Wood & Chao a valuable series of tests was carried out on 30°, 60°, 90°, 120° 

and 150° miter bends and on a 90°– 90 ° T-junction. No attempt was made to model the 

structure; measured junction velocities were used as input to the analysis. It was shown 

that a single rigidly supported elbow had a negligible influence on pressure waves, 

whereas unrestrained elbows affected them considerably [11, 12]. Jones & Wood gave an 

analytically derived expression for the junction-coupling induced pressure oscillations 

around Joukowsky’s value in the case of rapid valve closure downstream in a single pipe 

[13]. The pipe was regarded as a spring-mass system. Calculated results were compared 

with measurements in an unrestrained vertical pipe. In 1994 and 1996 Tijsseling 

presented experimental and numerical results on a one-elbow pipe system where the 

concentrated cavity model was incorporated in the FSI eight equation model.  Little has 

been published on the effect of multiple elbows have on pipeline transients due to the 

multitude of possible pipeline configurations [14].  The attention has rather been on the 

importance of rigid supports for pipelines and junctions and the effect of flexible supports 

on pipeline transients.  Dzodzo et al. published full 3D CFD simulation results in 2006 

that clearly indicate the large effects small radius elbows have on pipeline flows.  

Notably the results show that the spacing and relative orientation of the elbows in the 

pipeline both effect the velocity and pressure profiles for many pipe diameters 

downstream [15]. 
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2.3. Pipeline Characterization 

The comparison of analytic and numerical simulations with experimental results 

for the purpose of validating a method has been done extensively by Wylie, Streeter, 

Wood, Chao, Tijsseling and nearly every other contributor to the field [1, 4, 13, 14].  In 

these studies the experimental apparatus was established and preliminary work was done 

to establish the parameters that represented the losses in the system, that is the friction 

factor, f, the support coefficient(s), c1, the volume of trapped air, V, or the maximum 

allowed air release (not considered in this work).  In these publications the researchers 

frequently note the influence of these parameters on simulations and present results from 

a selection of the parameter values which best fit or bracket the experimental results [1, 

11, 16 - 19].  Little has been published on the development of a procedure for 

determining the loss parameters for a pipeline system.  The dominant approach has been 

to conduct preliminary experiments at steady state conditions to determine the range of 

parameters representing losses in isolated components of a particular experimental setup. 

Values within these ranges have then been utilized in the model to achieve the greatest 

agreement with experimental results. In 2005, Ghidaoui highlights the success of inverse 

design methods applied to structural engineering problems of system identification and 

damage detection and to identify parameters in 2D ground water flow and suggest that 

similar approaches could be employed for complex piping systems [20]. 

2.4. Pump Operation 

The kinematics and dynamics of flow through pumps, especially reciprocating 

pumps, employed in pipeline systems have been extensively studied by Streeter, Wylie, 
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Tullis and others [1, 22, 23].  The focus of these examinations has been on modeling the 

short duration transients produced by the cyclic pressure variation of the pump’s 

discharge pressure.  The often high frequency pulsation generated by pump operation can 

produce pressure waves with wave lengths near the length of the pipeline diameter.  

When transient wavelengths and the pipe diameter are of the same order of magnitude it 

is necessary to consider frequency dependent friction factors in the model of the pipeline 

[1, 4, 21, 23 - 25].   

In long and complex pipelines such as transport and distribution systems the use 

of holistic procedures such as the Transient Risk Assessment Procedure (TRAP) to 

design pipeline systems and guide the operation pumps was prevalent until the early 

1990’s [23].  In the early 1990’s genetic algorithms (GA) rose in popularity in nearly 

every engineering discipline including the study of hydraulics and pipeline transients [26] 

as a method of determining design variables to achieve desired objectives.  The 

applications of GA’s to pipeline transients can be grouped into three categories, system 

design, leak detection and calibration, and optimization to minimize expenditure on 

power [20, 24, 25].  GA’s have been successfully utilized to improve the accuracy of 

pipeline models, to aid engineers in isolating leaks and to provide long term operational 

schedules to provide services when needed by operating pumps when electricity is most 

affordable [27]. 

There has been little work published on the application of GA’s or other 

optimization techniques to short term pump operation in order to rapidly achieve desired 

effects within a pipeline.  Holistic methods and best practices have continued to be the 
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prevalent methods used in this area because most pipeline systems are under 

instrumented [27].  In most long pipelines a rapid response requires a high amplitude 

transient which can be harmful to the pipeline and facilities connected to it.  A rapid 

response to the desired effect can be ensured with accurate instrumentation and a 

calibrated model.   

2.5. Blockage Detection 

Blockage development is a common problem in pipeline and pipe network 

systems for the energy, chemical, and water industries. A blockage can be formed either 

by localized chemical or physical deposition or by a (negligently) partially closed valve. 

The existence of a pipeline blockage not only reduces the operation efficiency of a 

pipeline system, but it can cause severe safety problems if the blockage is not identified 

in a timely manner [28].  The efforts of many researchers including Wang, Lambert, 

Simpson, Mohapatra, Chaughry, Kassem, and Moloo, have focused on detecting partial 

blockages.  Partial blockages can be detected by measuring the change in flow velocity 

caused by the reduced pipe cross-section where a partial blockage exists.  This approach 

requires a pipeline to be instrumented throughout its length, or frequency analysis at the 

outlet [28 - 30].   

Little work has been published on detecting complete blockages where no flow 

reaches the outlet.  Complete blockages can arise suddenly during operation due to debris 

entrainment, chemical reaction, improper pipeline operation, or changes in environmental 

conditions.  In short single pipes a complete blockage’s location can be estimated by 

measuring how long it takes for a transient pressure pulse to be reflected back to the inlet 
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from the blockage [31].  This measured time of travel is then divided by the assumed 

constant wave speed in the single pipe and an estimate of the complete blockage location 

is obtained.    

In long series pipelines the wave speed will not be consistent if the pipe diameter 

changes, the way the pipeline is anchored varies, or elbows are present [1, 2, 32].  This 

variable wave speed makes the time of travel method of detecting a complete blockage 

difficult.     

2.6. Unplugging of Complete Blockages 

Pipeline blockages can result from a number of different mechanisms: wax or 

solid hydrates can build up over time, pigs can become lodged in the lines, and pigging 

can also draw solids down the line to accumulate into a plug. Once a pipeline is blocked, 

production is lost and it becomes a matter of urgency to locate and remove the blockage 

[30]. 

Complex-wide, DOE has a need for a non-invasive method of clearing plugged 

radioactive waste transfer lines. A range of traditional techniques are currently used, 

despite their hazards. Over-pressurizing a line to attempt blockage removal is a common 

method, but this is often unsuccessful and undesirable. Other traditional invasive 

techniques include sewer snakes and water jetting. Since DOE waste transfer lines are 

usually buried, have few access connections, and contain radioactive material, inserting a 

snake or water jetting tool is not a good solution. While these methods can be effective, 

they create a significant problem with contamination cleanup and exposure of personnel 

to the pipe contents. In one case, a water jet hose lodged in the radioactive waste transfer 
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line and had to be removed by dissolving it, which added a sticky, caustic substance to 

the system. Clearly a non-invasive technique is needed. Non-invasive methods would be 

much easier to use in highly contaminated systems, pose fewer problems, reduces risk to 

personnel, and reduce the risk of equipment lodging in the piping [98]. 

2.7. Web Application for Engineering Software  

As the World Wide Web and its programming tools mature, we increasingly find 

analytical applications with Web interfaces and other Web sites with content generated 

instead of hand-created [33]. Most engineering software requires a specialized hardware 

and software environment to function.  This is especially true for engineering software 

which takes advantage of multiple processing cores to perform analysis faster.  The 

creation and maintenance of these specialized computing environments, commonly called 

clusters, is expensive and requires expertise.  Consequently, at the time of writing there 

are relatively few computational clusters for scientific research when compared to the 

number of web servers or personal computers.   

The United States is ranked in 29th place for consumer download speed. Results 

were obtained by analyzing test data between May 28, 2011 and Jun 26, 2011. Tests from 

46,724,752 unique IPs have been taken in the United States and of 231,987,432 total 

tests, 7,457,005 are being used for the current Index [34].  The ability of high-speed 

internet to provide remote access to data has made it possible for users around the world 

to connect to cluster computers and for computing clusters to pool their resources to 

tackle large scale problems.  Text base User Interfaces (TUI), have been the primary 

mode of access over the internet to computing clusters.  TUI are immensely capably but 



19 
 

require users to be know a large set of commands in order to perform basic tasks involved 

with submitting jobs and monitoring them.  Consequently the learning curve is steep and 

the interface is not viewed as user friendly.   

Web pages provide a computationally efficient Graphical User Interface (GUI) to 

many web applications such as search engines, e-commerce store fronts, and online 

games.  Harnessing the ability of web pages to provide a GUI interface for parallel 

computing applications is a logical step in the effort to develop high performance user 

friendly applications. 
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CHAPTER III 

3. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 

The safe and efficient operation of pipeline systems is a vital part of high level 

waste processing and many other industrial endeavors such as oil and natural gas 

refinement and distribution, water purification and distribution, and process cooling.  In 

all of these applications the hydraulic fluid pressure generated at a remote location is sent 

through the pipeline to motivate the transport of the fluid to a facility for further 

processing or use or in a closed loop for heat removal.  In all of these systems the 

pipelines may have highly complex configurations with numerous features such as 

branches, small radius 90° elbows, surge tanks, reservoirs and valves.   

The physical problem analyzed in this thesis is the effect of small radius 90° on 

transients in series pipelines.  The goal of the analysis is to determine the appropriate 

model and parameters for the damping effect of small radius 90° elbows on pipeline 

transients.  The loss parameters in the model are then determined through optimization 

with the objective of matching the peak pressure and transient profile from experimental 

data.   

3.1. Mathematical Formulation for Transient Flow in Closed Channel 

Hydraulic transient problems in pipeline systems have received increased attention 

in recent years, but few researchers have studied the effect of small radius 90° elbows.  

No publications have been made on the application of optimization methods to transient 

modeling in pipelines with small radius 90° elbows.  The mathematical formulation 

herein described is based on transient flow in closed channel. 
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Hydraulic transients occur when the steady-state conditions at a given point in the 

pipeline start changing with time, e.g., closing of a valve, failure of a pump, etc. This 

disturbance in the steady-state conditions causes a pressure wave will travel along the 

pipeline starting at the point of the disturbance.  The pressure wave will be reflected back 

from the pipe boundaries (e.g., reservoirs) until a new steady-state is reached [6, 10, 34, 

36]. 

 Analysis of hydraulic transients in pressurized systems are carried out assuming 

quasi one-dimensional flow and are based on the continuity and momentum equations 

describing the general behavior of fluids in a closed channel.    

In this chapter, the differential equations of continuity and momentum for 

transient flows are presented. The wave speed equation for thin-walled pipe is given and 

the effective bulk modulus, assuming presence of air/gas dispersed through the liquid, is 

discussed. 

3.1.1. Assumptions 

 The following assumptions are made in the derivation of the equations: 

• The flow is assumed to be one-dimensional (ݔ) and vary with respect to time 

• The fluid is assumed to be compressible 

• The average velocity and pressure distribution at a cross-section are assumed to 

be uniform on that cross-section 

• Formulas for computing the steady-state friction losses in closed channels are 

valid during transient flows 
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3.1.2. Fluid Bulk Modulus 

 The speed that a pressure wave propagates in a hydraulic line can only be 

determined by considering the compressibility of the fluid.  A fluid’s compressibility is 

quantified by its fluid bulk modulus. 

The fluid bulk modulus describes the elasticity of the fluid at a certain 

temperature. This property is determined experimentally using a stress-strain test in 

which the volume of fluid is decreased while keeping the mass constant [37]. During this 

process, the stress of the fluid is measured by measuring the fluid pressure. A plot of the 

fluid pressure versus the fluid strain is then generated, and the slope of this plot is used to 

describe the elasticity of the fluid. This slope is generally referred to as the fluid bulk 

modulus. 

 The fluid bulk modulus is defined by the slope of a line that is anywhere tangent 

to the stress-strain curve, which is not linear. This quantity is expressed mathematically 

as ࡷ = ૙→ࢿ∆࢓࢏࢒ ࢿ∆࢖∆ =  (1-3)        ࢿࢊ࢖ࢊ

The non-dimensional fluid strain, ε, for the calculation of fluid bulk modulus is 

defined by ࢿ ≡ ࢔࢒− ቀ  ቁ         (3-2)࢕࢜࢜

where ݌ is the fluid pressure, ݒ଴ is the fluid volume at atmospheric pressure and ݒ is the 

volume at another point of interest. 

 Differentiating ࢔࢒−≡ࢿ ቀ         ቁ࢕࢜࢜

 (3-2) results in 
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ߝ݀ = − ଵ௏  (3-3)          ݒ݀
Therefore, the fluid bulk modulus may be expressed as ܭ = ݒ− ௗ௣ௗ௩          (3-4) 
Because mass is conserved ݉ =  (5-3)         ݒߩ
Differentiation of both sides gives − ଵఘ ߩ݀ = ଵ௩ ݒ−=ܭ into (6-3)         ݒ݀ݒ1=ߩ݀ߩ1 (6-3)         ݒ݀ ௗ௣ௗ௩          (3-4) gives 

ܭ = ߩ ௗ௣ௗఘ         (3-7) 
3.1.2.1 Bulk Modulus for a liquid-air/gas mixture 
 The fluid bulk modulus has been used to describe the elasticity of a fluid as it 

undergoes a volumetric deformation. This elasticity describes a spring like effect and the 

interaction of this restoring effect with the mass of mechanical parts gives rise to a 

resonance in nearly all hydraulic components. 

The fluid bulk modulus can be substantially lowered by entrained air.  Even a 

small amount of air can reduce the fluid bulk modulus by a factor of 10.   It is extremely 

important to know the resultant bulk modulus of the liquid and air/gas mixture because of 

its significant effect on the speed of propagation of pressure pulses in the mixture. 

Let us consider a flexible pipe filled with a fluid which is a mixture of liquid and 

air/gas in form of bubbles. The total initial volume of the fluid, ݒ௙, can be written as ݒ௙ = ௟ݒ +  ௚         (3-8)ݒ
where ݒ௟ and ݒ௚ are initial volumes of the liquid and gas, respectively. 
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 As a pressure increase ∆݌ is exerted on the fluid mixture, a change in the initial 

volume of fluid is observed and can be mathematically written as ∆ݒ௙ୀ∆ݒ௟ +  ௚        (3-9)ݒ∆
 The bulk modulus of the fluid (mixture of liquid and gas) can be defined, 

following the bulk modulus definition, as ܭ௙ = ௙ݒ− ∆௣∆௩೑         (3-10) 
or 

ଵ௄೑ = − ∆௩೑௩೑∆௣         (3-11) ݂ܭ ,(9-3)        ݃ݒ∆+݈ݒ∆=݂ݒ ,(8-3)         ݃ݒ+݈ݒ=݂ݒ= ௙ݒ− ∆௣∆௩೑         (3-10)and 

=݂ܭ1 − ∆௩೑௩೑∆௣         (3-11) yields 

ଵ௄೑ = ௩೗௩೑ ቀ− ∆௩೗௩೗∆௣ቁ + ௩೒௩೑ ൬− ∆௩௩೒∆௣൰      (3-12) 
Using the bulk modulus definition, ݒ−=ܭ ௗ௣ௗ௩      

    (3-4), the liquid bulk modulus and the gas bulk modulus 

with respect to the their total initial volume, may be expressed, respectively, as ܭ௟ = ௟ݒ− ∆௣∆௩೗         (3-13) 
and ܭ௚ = ௚ݒ− ∆௣∆௩೒         (3-14) 
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Substituting ܭ௟, and ܭ௚ into expression 1݂ܭ= ௩೗௩೑ ቀ− ∆௩೗௩೗∆௣ቁ + ௩೒௩೑ ൬− ∆௩௩೒∆௣൰  

    (3-12) gives 

ଵ௄೑ = ௩೗௩೑ ቀ ଵ௄೗ቁ + ௩೒௩೑ ൬ ଵ௄೒൰        (3-15) 
This is a general equation which gives the bulk modulus for a liquid-gas mixture.  

By introducing void fraction (relative volume of gas or vapor in the fluid mixture) 

defined as ݕ௚ = =݂ܭ௙, this 1ݒ/௚ݒ ௩೗௩೑ ቀ ଵ௄೗ቁ + ௩೒௩೑ ൬ ଵ௄೒൰      

  (3-15) becomes 

ଵ௄೑ = ଵି௬೒௄೗ + ௬೒௄೒        (3-16) 
or ܭ௙ = ௄೗ଵା௬೒൬ ಼೗಼೒ିଵ൰        (3-17) 

3.1.3. Wave Propagation Speed 

 To introduce the concept of wavespeed or celerity, imagine firstly a case of 

instantaneous stoppage of flow at a downstream valve as described in Figure 3.1. Then 

the unsteady momentum and continuity equation is applied to a control volume 

containing a section of pipe Figure 3-1a. The instant the valve is closed, the fluid 

immediately adjacent to it is brought from ଴ܸ to rest by the impulse of the higher pressure 

developed at the face of the valve. As soon as the first layer is brought to rest, the same 

action is applied to the next layer of fluid bringing it to rest. In this manner, pulse wave of 

high pressure is visualized as travelling upstream at some sonic wavespeed, ܽ, and at 

sufficient pressure to apply just the impulse to the fluid to bring it to rest [1]. 
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 The momentum equation is applied to a control volume, Figure 3-1b, within 

which the wave front is moving to the left with an absolute speed of ܽ − ଴ܸ due to a small 

change in valve setting. The pressure change ∆݌ at the valve is accompanied by a 

velocity change ∆ܸ. The momentum equation for the ݔ-direction states that the resultant ݔ-component of force on the control volume is just equal to the time rate of increase of  ݔ-momentum within the control volume plus the net efflux of ݔ-momentum from the 

control volume. The volume of fluid having its momentum changed is ܣ(ܽ − ଴ܸ)∆ݐ, so 

the time rate of increase of linear momentum, neglecting friction and minor effects, is 

 

Figure 3-1: (a) Instantaneous stoppage of frictionless fluid in horizontal pipe;                

 (b) Momentum equation applied to control volume [1]. 

ܣߩ  ଴ܸ − ߩ) + )ܣ(ߩ∆ ଴ܸ + ∆ܸ) = ஺(௔ି௏బ)∆௧ሾ(ఘା∆ఘ)ିఘሿ∆௧             (3-18) 

a

a
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 When simplified and combined with momentum equation in its simplified 

version, the following basic equation results ∆݌ =  (3-19a)         ܸ∆ܽߩ−
 Since ∆݌ =  the head ,ܪ∆ in which ݃ is the acceleration of gravity, and ,ܪ∆݃ߩ

change, ∆ܪ = − ௔∆௏௚ =݌∆           ܸ∆ܽߩ−

        (3-19b) 

 If the flow is stopped completely ∆ܸ = − ଴ܸ and ∆ܪ = ܽ ଴ܸ ݃ൗ . Equations 

=݌∆  also (3-19)         ܸ∆ܽߩ−

show that for an increase in velocity at the gate, the head there must be reduced. If the 

valve is on the downstream end of long pipe and is closed by increments, the equations 

become ∑ ݌∆ = ܽߩ− ∑ ∆ܸ        (3-20a) ∆ܽߩ−=݌∆        ܸ∆݃ܽ−=ܪ∆ܸ  

      (3-20b) 

which holds for any movements of the valve as long as the pressure pulse wave 

has not reached the upstream end of the pipe and returned as a reflected wave, i.e., so 

long as the time is less than 2ܮ ܽൗ , with ܮ the pipe length. 

 For adjustments in an upstream gate, a similar derivation shows that ∆݌ =  (3-21)          ܸ∆ܽߩ−
 So ∑ ݌∆ = ܽߩ± ∑ ∆ܸ        (3-22a) 
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  ܸ∆ܽߩ±=݌∆        ܸ∆݃ܽ±=ܪ∆

      (3-22b) 

describe the change in the flow related to a change in pressure. The minus sign 

must be used for waves traveling upstream and the plus sign for waves traveling 

downstream. It is the basic equation of waterhammer and always holds in the absence of 

reflections. 

 The magnitude of the wavespeed, ܽ, has not been determined yet. Application of ∆(3-20)        ܸ∆ܽߩ−=݌, the numerical 

value of celerity, ܽ, can be calculated. With reference to Figure 3-2, if the gate at the 

downstream end of the pipe is suddenly closed, the pipe may stretch in length ∆ݏ, 

depending on how it is supported [1]. 

 

Figure 3-2: Continuity relations in pipe [1] 

 Assuming that the gate moves this distance in ܮ ܽൗ  seconds, or has the speed  ܽ∆ݏ ൗܮ , hence, the velocity of the fluid at the gate has been changed by                      ∆ܸ = ൫ܽ∆ݏ ൗܮ ൯ − ଴ܸ. During ܮ ܽൗ  seconds after gate closure, the mass entering the pipe is ܣߩ ଴ܸ ܽൗ , which is accommodated within the pipe by increasing its cross-sectional area, by 

a 
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fitting the extra volume due to pipe extension ∆ݏ, and by compressing the fluid due its 

higher pressure, or, representing mathematically ૉ܄ۯ૙ ܋ۺ = ૉۯ∆ۺ + ૉܛ∆ۯ +  ૉ      (3-23) by substituting∆ۯۺ+ܛ∆ۯૉ+ۯ∆ۺૉ=܋ۺ૙܄ ૉ      (3-23)∆ۯۺ

into it ∆ܸ = ൫ܽ∆ݏ ൗܮ ൯ − ଴ܸ − ܉܄∆ = ۯۯ∆ + ∆ૉૉ         (3-24) 

 By use of ∆݌=         ܸ∆ܽߩ−

 (3-19a) in order to eliminate ∆V, 

૛܉ = ۯۯ∆ૉܘ∆ ା∆ૉૉ          (3-25) 

 The equation is valid for pipe with or without expansion joints. The fluid bulk 

modulus definition may be used to rearrange, ߩ=ܭ ௗ௣ௗఘ     

        ૉૉ∆+ۯۯ∆ૉܘ∆=૛܉

 (3-25) to yield 

૛܉ = ۯ܎૚ାቀ۹܎ૉ܎۹ ቁቀ∆ܘ∆ۯቁ         (3-26) 

 The evaluation of the wave speed in a typical transient flow in thin-walled elastic 

pipeline requires knowledge of the fluid bulk modulus and density, and the evaluation of 

the pipe elasticity expressed by ∆ܣ ൗ݌∆ܣ . According to Streeter and Wylie [1], this 

parameter is given by 

∆஺஺∆௣ = ஽஼భா௘          (3-27) 
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 Here, ݁ is the wall thickness, ܧ is the modulus of elasticity of the wall material, ܦ 

is the inner diameter of the tube and ܥଵ is a non-dimensional parameter accounting for the 

degree of restraint applied to the system or hose. For a hose fully restrained along its 

whole length, ܥଵ =  ,(26-3)        ܘ∆ۯ∆ۯ܎૚+۹܎ૉ܎૛=۹܉ (27-3)         ݁ܧ1ܥܦ=݌∆ܣܣ .1

yields an equation that may be evaluated for a specific thin-walled elastic pipeline. 

ܽ = ඨ ಼೑ഐ೑ଵା௄೑ವ಴భಶ೐         (3-28) 
 This equation represents the wave propagation speed, ܿ, or celerity in a fluid 

mixture in a elastic pipeline. (17-3)        1−݃ܭ݈ܭ݃ݕ+1݈ܭ=݂ܭ 

into ܽ=ඨ ಼೑ഐ೑ଵା௄೑ವ಴భಶ೐         (3-28), and 

writing fluid density in terms of liquid  and gas density, represented respectively by ߩ௟ 
and ߩ௚ the celerity may be expressed in terms of bulk modulus of liquid and gas as 

follows 

ܽ = ඩ ௄೗൤ଵା௬೒൬ ಼೗಼೒ିଵ൰൨൫ଵି௬೒൯ఘ೗ା௬೒ఘ೒൦ଵା௄೗ವ಴భಶ೐ భቈభశ೤೒ቆ ಼೗಼೒షభቇ቉൪
   (3-29) 

If no gas/vapor is present in the fluid, then ݕ௚ = 0, resulting in 

ܽ = ඨ ಼೗ഐ೗ଵା௄೗ವ಴భ೐ಶ         (3-30) 
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 Similarly, when the fluid is only gas or vapor (no liquid), the wave speed becomes 

        (3-31) 
 Notice that in both cases, the presence of the bulk modulus of the material of the 

tube wall is prominently displayed in the second term of the denominator. 

3.2. Equation of Motion 

 

Figure 3-3: Free body diagram for application of the equation of motion [1] 

 

Figure 3-3 above shows a free body diagram of a slice of fluid of cross sectional 

area A and thickness ∂x.   The area A is, in general, a function of x, which is the 

coordinate distance along the axis of the tube from an arbitrary origin.  The tube is 

inclined at an angle, α, positive when the elevation increases in the +x direction.  The 

forces on the free body in the x direction are the surface contact normal pressures on the 

transverse faces, and shear and pressure components on the periphery.  In addition 
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gravity, the body force, has an x component.  The shear force τ0 is considered to act in 

the –x direction.  With reference to the figure the summation of forces on the slice of 

fluid is equated to its mass times its acceleration: ܣ݌ − ሾܣ݌ + ሿݔ௫߲(ܣܲ) + ቀ݌ + ௫݌ డ௫ଶ ቁ ࢞ࣔࡰ૙࣊࣎−        ݔ௫߲ܣ − (ࢻ)࢔࢏࢙࢞ࣔ࡭ࢽ = ሶࢂ࢞ࣔ࡭࣋   (3-32) 

By dropping out the small quantity containing (∂x)2 and simplifying

࡭࢞࢖  + ࣎૙࣊ࡰ + (ࢻ)࢔࢏࢙࢞ࣔ࡭࣋ + ሶࢂ࡭࣋ = ૙     (3-33)

 In transient flow calculations the shear stress τ0 is considered to be the same as if 

the velocity was steady [1].  An expression for τ0 in terms of the Darcy-Weisbach friction 

factor, f, can be developed by beginning with a force balance on the pipe in steady flow ∆࢖ ૛૝ࡰ࣊ = ࣎૙࣊(34-3)        ࡸࡰ 

and the Darcy-Weisbach equation ∆࢖ = ࡰࡸࢌ࣋ ૛૛ࢂ          (3-35)

  where L is the length of the horizontal pipe.  Combining ∆ࡰ࣊࢖૛૝ = ࣎૙࣊ࡸࡰ  

      (3-34) and ∆࢖= ࡰࡸࢌ࣋ ૛૛ࢂ     

     (3-35) produces 

࣎૙ = ૡ|ࢂ|ࢂ࣋          (3-36)

 ࣎૙=࣋ࢂࢂૡ         (3-36) ensures 

that the shear stress always opposes the direction of the velocity [1].  ܸin equation ࡭࢞࢖+࣎૙࣊ࢂ࡭࣋+ࢻ࢔࢏࢙࢞ࣔ࡭࣋+ࡰ=૙     (3-33) 

is for the slice of fluid having a velocity V, hence 
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ሶࢂ = ࢞ࢂࢂ + (37-3)         ࢚ࢂ

 by use of equations ∆ࡰ࣊࢖૛૝ = ࣎૙࣊࡭࢞࢖ ,(37-3)         ࢚ࢂ+࢞ࢂࢂ=       ࡸࡰ+࣎૙࣊ࢂ࡭࣋+ࢻ࢔࢏࢙࢞ࣔ࡭࣋+ࡰ=૙     (3-33) takes the form 

࣋࢞࢖ + ࢞ࢂࢂ + ࢚ࢂ + (ࢻ)࢔࢏࢙ࢍ + ࡰ૛|ࢂ|ࢂࢌ = ૙     (3-38)

 which is valid for converging or diverging pipe flow as well [1].  The piezometric 

head H (or elevation of hydraulic grade line above an arbitrary datum) may replace p. 

From Figure 3-3: 

࢖  = ࡴ)ࢍ࣋ −  (39-3)         (ࢠ

where z is the elevation of the centerline of the pipe at x.  Then ࢞࢖ = ࢞ࡴ)ࢍ࣋ − (࢞ࢠ = ࢞ࡴ൫ࢍ࣋ − ൯     (3-40)(ࢻ)࢔࢏࢙

  

The partial differential considered ρ to be substantially constant, as compared ࢂࢂࢌ+ࢻ࢔࢏࢙ࢍ+࢚ࢂ+࢞ࢂࢂ+࣋࢞࢖૛ࡰ=૙     (3-38) is valid for (40-3)     ࢻ࢔࢏࢙−࢞ࡴࢍ࣋=࢞ࢠ−࢞ࡴࢍ࣋=࢞࢖ is restricted to ࢂࢂࢌ+ࢻ࢔࢏࢙ࢍ+࢚ࢂ+࢞ࢂࢂ+࣋࢞࢖૛ࡰ=૙     (3-38) yields ࢞ࡴࢍ + ࢞ࢂࢂ + ࢚ࢂ + ࡰ૛|ࢂ|ࢂࢌ = ૙       (3-41)

 also restricted to liquid flow.  The hydraulic grade line form of the equation is somewhat 

simpler, as the slope of the pipeline drops out [1].  

3.3. Continuity Equation 

In this section a derivation of the continuity equation developed by T. P. Propson 

(private communications) is presented.  It is quite general and has the advantage of 
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portraying the various total derivatives, i.e., derivatives with respect to the motion.  Two 

come directly into the continuity equation; (1) differentiation with respect to the axial 

motion of the pipe, and (2) differentiation with respect to a particle of fluid mass.  The 

third total derivative which arises from the characteristics method [1]. 

With reference to Figure 3-4 a moving control volume of length δx at time t may 

be considered to be fixed relative o the pipe-it moves and stretches only as the inside 

surface of the pipe moves and stretches.  The conservation of mass law may be stated that 

the time rate of mass inflow into this control volume is just equal to the time rate of 

increase of mass within the control volume, or −ሾܣߩ(ܸ − ݔߜሿ௫(ݑ = ஽ᇱ஽௧  Let the upstream face be at x, and is the velocity of the pipe wall at x.  The total (42-3)      (ݔߜܣߩ)

derivative with respect to the axial motion of the pipe is given by 

஽ᇱ஽௧ = ݑ డడ௫ + డడ௧         (3-43) and the time rate of increase of length δx of the control volume is given by 

஽ᇱ஽௧ ݔߜ = ௫(ܸܣߩ)  (44-3)         ݔߜݔݑ=ݔߜݐܦ′ with use of (42-3)      ݔߜܣߩݐܦ′ܦ=ݔߜݔݑ−ܸܣߩ (44-3)         ݔߜ௫ݑ + ௫(ݑܣߩ) + ஽ᇱ஽௧ (ܣߩ) = 0      (3-45)  
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Figure 3-4:Control volume for continuity + + ′ =0      (3-45), using equation ′ = +          (3-43) 

yields   (3-46) 
or by simplifying         (3-47) which now may be written as         (3-48) 
The last two terms represent the derivative of ρA with respect to the motion of a 

mass particle, or         (3-49) in which          (3-50) This total derivative is also indicated by a dot over the dependant variable, so 
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ଵఘ஺ ஽஽௧ ൫ܣߩሶ + ൯ܣሶߩ + ௫ܸ = ܸ డడ௧ + డడ௫      (3-51) or 

஺ሶ஺ + ఘሶఘ + ௫ܸ = 0        (3-52) It is informative to introduce the effect of Poisson’s ratio on wave-speeds for the (52-3)        0=ݔܸ+ߩߩ+ܣܣ 

௣ሶ௄ = ఘሶఘ          (3-53) where K is the bulk modulus of elasticity of the fluid. ܭ = ∆௣∆ఘ ఘ⁄ = − ∆௣∆௏ ௏⁄         (3-54) The pipe wall expansion per unit area per unit time ܣሶ ⁄ܣ  is  

஺ሶ஺ = ߦ2 ሶ்          (3-55) Where from the Poisson’s ratio relations ߦ ሶ் = ଵா ଶሶߪ) − ଵሶߪߤ  ,(3-53)          ߩߩ=ܭ݌ (3-56)        (

 REF _Ref296427277 \h  \* MERGEFORMAT ܭ=
∆௣∆ఘ ఘ⁄ = − ∆௣∆௏ ௏⁄   (52-3)        0=ݔܸ+ߩߩ+ܣܣ in (3-55)         ܶߦ2=ܣܣ    

ଶா ଶሶߪ) − ଵሶߪߤ ) + ௣ሶ௄ + ௫ܸ = 0       (3-57) The transverse, or circumferential, tension is related to pressure by ߪଶ = ܦ݌ (2݁)⁄         (3-58) or ߪଶሶ = ܦሶ݌ (2݁)⁄         (3-59) 
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D changes so little with time, as compared to p in transient flow that it is 

considered constant for this differentiation.  The axial rate of chance of the tensile stress ߪଵሶ  is given for the case of a pipeline anchored throughout [1]. ߪଶሶ = ଵሶߪߤ          (3-53) 

Equation (3-51) through substitution of equations (3-52) and (3-53) may be written  

ఘሶఘ + ܽଶ ௫ܸ = 0         (3-54)

 where a is  a constant that is a collection of properties if the fluid, the pipe, and its 

means of support, and so far has been given no meaning relating it to acoustic speed. ܽଶ = ௄ ఘ⁄ଵାሾ(௄ ா⁄ )(஽ ௘⁄ )ሿ௖భ        (3-55)

 and  ܿଵ = 1 −  ଶ         (3-56)ߤ

for a pipe line anchored throughout. 

The piezometric head may be introduced into equation (3-54); from Figure 3-4 ݌ = ܪ)݃ߩ − (57-3)        (ݖ

 and ݌ሶ = ሶܪ൫݃ߩ − ሶ൯ݖ = ௫ܪܸ)݃ߩ + ௧ܪ − ௫ݖܸ − ௧)    (3-58)ݖ

 If the pipe has no transverse motion, zt=0, and zx=sin(α) then equation (3-54) 

becomes ܸܪ௫ + ௧ܪ − (ߙ)݊݅ݏܸ + ௔మ௚ ௫ܸ = 0      (3-59)

 which is a convenient form of the continuity equation with V and H as dependent 

variables, and with x and t the dependent variables.  Through a2 the fluid and wall 

properties are included. 
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CHAPTER IV 

4. METHOD OF SOLUTION 

In chapter 3, the equations of motion and continuity that govern the unsteady fluid 

flow in closed channels were presented. These equations form a system of quasi-linear, 

hyperbolic partial differential equations in terms of two dependent variables, average 

velocity ܸ(ݔ, ,ݔ)݌ and pressure (ݐ ,ݔ)ܪ  or hydraulic-grade line elevation (ݐ  and two ,(ݐ

independent variables, distance along pipe length ݔ, and time ݐ. 
Knowing that a general solution for a system of hyperbolic partial differential 

equations is not available, the employment of numerical methods is necessary. Some 

methodologies such as the graphical method, the impedance method, the method of 

characteristics may be used in order to approximate the solution. The choice of one of 

these methods is based on the restrictive assumptions that each one employs and if such 

assumptions can be applied in the model. 

The method of characteristics is the most used when it is desirable to approximate 

the solution of a hydraulic transient problem in pipes because, according to Streeter [1], it 

has the best accuracy of any of the other methods. Another advantage is that this method 

does not neglect the non-linear terms of partial differential equations. 

Details of the method of characteristics will be presented in this chapter. The 

system of partial differential equations will be transformed to ordinary differential 

equations, so that, those new equations may be later integrated to yield finite difference 

equations, which are conveniently handled numerically. The chapter concludes with the 

developing of boundary conditions for a number of simple inlet and outlet conditions.  



40 
 

4.1. Method of Characteristics 

 The method of characteristics converts the two partial differential equations of 

motion and continuity into four ordinary differential equations. These equations are then 

expressed in finite difference form, using the method of specified time intervals, and 

solutions are carried out with use of computers [1]. 

 The numerical solution is driven through characteristics equations, ܥା and ିܥ, 

mapped in the Cartesian coordinate system (ݔ,  and ,ݐ∆ and the chosen time interval (ݐ

number of divisions ܰ + 1, are interconnected by the following relation: ∆ݐ = ∆௫௖          (4-1) 

where ܿ is the wave speed propagation through the pipe. 

 For the time increment, it is used a method of specified interval which maps the 

Cartesian coordinate system (ݔ,  in a fixed mesh and, hence, a solution ordered in time (ݐ

and space (ݔ) is obtained. 

 Figure 4-1 and Figure 4-2, respectively, show the characteristic equations and the 

solution in a Cartesian coordinate system (ݔ,  .(ݐ

 In this presented work, the transient propagation speed was considered constant, 

which restricts the characteristics curves to straight lines. 

 From Figure 4-1, knowing the variables ܸ(ݔ, ,ݔ)݌ and (ݐ ,ݔ)ܪ or (ݐ  at points A (ݐ

and B for a given time interval, it is possible to integrate simultaneously the equation 

valid through ܥା between A and P and the equation valid through ିܥ between B and P 

and the result gives the value for ܸ(ݔ, ,ݔ)݌ and (ݐ ,ݔ)ܪ or (ݐ  at point P for subsequent (ݐ

time [1]. 
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Figure 4-1: Characteristics curves in the Cartesian coordinates system [1] 

 

Figure 4-2:  (x,t) grid for solving single pipe problem [1] 
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4.1.1. Characteristics equations 

The momentum and continuity equations for a pair of quasi-linear hyperbolic 

partial differential equations in terms of two dependant variables, velocity, V, and 

hydraulic grade line elevation, Hx, and two independent variables, distance along the 

pipe, x, and time, t. 

The major terms of the momentum (3-39) and continuity (3-57) equations are 

transformed by the method of characteristics into equations (4-2) and (4-3) [1] ܮଵ = ௫ܪ݃ + ௧ܸ + ௙ଶ஽ ܸ|ܸ| = 0      (4-2) 

ଶܮ = ௧ܪ + ௔మ௚ ௫ܸ = 0        (4-3) 

These equations are presented for a straight featureless pipeline.  The presence of 

90° elbows in a pipeline effects both the velocity and the hydraulic grade line elevation 

along the pipeline.   

I propose adding a loss term based on the geometry of a pipeline with 90° elbows 

to the equation of motion (4-2).  In order to develop the loss term the lengths of the pipe 

sections between the elbows must be known.   ܩ௝ = ௖೒௦ೕ             

where ݏ௝  represents the length of the jth pipe section between elbows of the N sections 

present in the test bed and ܿ௚ is the coefficient of geometric impedance. ܿ௚ is a parameter 

to be optimized along with the friction factor for the overall pipeline, f.  L1 can be 

redefined by including the geometric loss term as ܮଵ = ௫ܪ݃ + ௧ܸ + ௙ଶ஽ ܸ|ܸ| + ௖೒௦ೕ = 0      (4-2*) 
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These equations are combined linearly using an unknown multiplier λ. 

ܮ = ଵܮ + ଵܮߣ = ߣ ቂܪ௫ ௚ఒ + ௧ቃܪ + ቂ ௫ܸߣ ௔మ௚ + ௧ܸቃ + ௙ଶ஽ ܸ|ܸ| + ௖೒௦ೕ = 0  (4-3*) 

Any two real, distinct values of λ will again yield two equations in terms of two 

dependent variables H and V that are in every way equivalent to equations (4-2*) and   

(4-3*).  Appropriate selection of the two particular values of λ leads to simplification of 

equation (4-3*).  In general variables V and H are functions of x and t.  If the independent 

variable x is permitted to be a function of t, then from calculus 

ௗுௗ௧ = ௫ܪ ௗ௫ௗ௧ + ௧ܪ         ௗ௏ௗ௧ = ௫ܸ ௗ௫ௗ௧ + ௧ܸ      (4-4) 

Now, by examination of equation (4-3*) with equation (4-4) in mind, in can be 

noted that if 

ௗ௫ௗ௧ = ௚ఒ = ఒ௔మ௚          (4-5) 

Equation (4-4*) becomes the ordinary differential equation ߣ ௗுௗ௧ + ௗ௏ௗ௧ + ௙ଶ஽ ܸ|ܸ| + ௖೒௦ೕ = 0       (4-6*) 

The solution of equation (4-5) yields the two particular values of λ: ߣ = ± ௚௔         (4-7) 

By substituting these values back into equation (4-6), the particular manner in 

which x and t are related is given, 

ௗ௫ௗ௧ = ±ܽ         (4-8) 

This show the change in position of a wave related to the change in time by the 

wave propagation velocity a.  When the positive value of λ is used in equation (4-5), the 

positive value of λ must be used in equation (4-6). A similar parallelism exists for the 
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negative λ.  The substitution of these values into equation (4-7) leads to two pairs of 

equations which are grouped and identified as C+ and C- equations [1]. 

C+: 

௚௔ ௗுௗ௧ + ௗ௏ௗ௧ + ௙ଶ஽ ܸ|ܸ| + ௖೒௦ೕ = 0       (4-9*) 

ௗ௫ௗ௧ = +ܽ         (4-10) 

C – : − ௚௔ ௗுௗ௧ + ௗ௏ௗ௧ + ௙ଶ஽ ܸ|ܸ| + ௖೒௦ೕ = 0      (4-11*) 

ௗ௫ௗ௧ = −ܽ         (4-12) 

Thus the two real values of λ have been used to convert the original two partial 

differential equations into two total differentia equations, (4-9*) and (4-11*), each with 

the restriction that it is only valid when the respective equations (4-10) and (4-12) are 

valid. 

No mathematical approximations have been made in this transformation of the 

original partial differential equations.  Thus, every solution of this set will be a solution 

of the original system given by equations (4-2) and (4-3). 

4.2. Finite-difference equations 

 A pipeline is divided into ܰ equal sections, each ∆ݔ in length as shown in Figure 

4-2. A time-step size is computed, ݀ݐ = ቀ ଵ௏ା௔ቁ  and (4-10) is satisfied by a positively ,ݔ݀

sloped diagonal of the grid, shown by the line ܲܣതതതത. If the dependent variables ܸ(ݔ, ,ݔ)ܪ and (ݐ  then (4-9), which is valid along C+ line, can be integrated ,ܣ are known at (ݐ

between the limits A and P and thereby be written in terms of unknown variables ܸ(ݔ,  (ݐ
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and ݔ)ܪ,  at point P. Equation (4-11*) is satisfied on negatively sloped diagonal of the (ݐ

grid, shown by the line ܲܤതതതത. Integration of the ିܥ compatibility equation along the line ܲܤതതതത, for which conditions are known at B and unknown at P, leads to a second equation in 

terms of the same two unknown variables at P. A simultaneous solution yields conditions 

at the particular time and position in the xt-plane designated by point P. 

 In order to represent (4-9*) and (4-11*) in a finite-difference form, some 

assumptions must be made: 

• Pipe slope is assumed constant in a given section; 

• Friction factor is assumed constant, as explained in the previous section; and 

 The integration of the positive compatibility and characteristic equations, 

respectively (4-9*) and (4-10), yields ( ௉ܸ − ஺ܸ) + ௚௔ ௉ܪ) − (஺ܪ − ௚௔ ቀ௏ುା௏ಲଶ ቁ ௉ݐ)஺௉ߙ݊݅ݏ −      (஺ݐ

  + ௙(௧ುି௧ಲ)ଶ஽ ௉ܸ| ஺ܸ| + ௖೒௦ೕ = 0    (4-13a) 

௉ݔ) − (஺ݔ = ( ஺ܸ + ௉ݐ)(ܽ −  ஺)      (4-13b)ݐ

 A similar integration of the ିܥ equations, (4-11*) and (4-13b), provides a set of 

equations that can be solved numerically ( ௉ܸ − ஻ܸ) − ௚௔ ௉ܪ) − (஻ܪ + ௚௔ ቀ௏ುା௏ಳଶ ቁ ௉ݐ)஻௉ߙ݊݅ݏ −      (஻ݐ

+ ௙(௧ುି௧ಳ)ଶ஽ ௉ܸ| ஻ܸ| + ௖೒௦ೕ = 0    (4-14a) 

௉ݔ) − (஻ݔ = ( ஻ܸ − ௉ݐ)(ܽ −  ஻)      (4-14b)ݐ

 Substituting ܸ = ܳ ൗܣ , where ܳ is volumetric flow rate, back into eqs. (4-13a) and 

(4-14a), gives 
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௔௚஺ (ܳ௉ − ܳ஺) + ௉ܪ) − (஺ܪ − ቀொುାொಲଶ஺ ቁ ௉ݐ)஺௉ߙ݊݅ݏ −      (஺ݐ

+ ௙(௧ುି௧ಲ)ଶ஽௚஺మ ܳ௉|ܳ஺| + ௖೒௦ೕ = 0     (4-15) 

 

௔௚஺ (ܳ௉ − ܳ஻) − ௉ܪ) − (஻ܪ + ቀொುାொಳଶ஺ ቁ ௉ݐ)஻௉ߙ݊݅ݏ −      (஻ݐ

+ ௙(௧ುି௧ಳ)ଶ஽௚஺మ ܳ௉|ܳ஻| + ௖೒௦ೕ = 0    (4-16) 

 Equations (4-15) and (4-16) are basic algebraic relations that describe the 

transient propagation of flow and piezometric head in a pipeline [1]. 

 Substituting eqs.(4-13b) and (4-14b) into (4-15) and (4-16), respectively, results 

௔௚஺ (ܳ௉ − ܳ஺) + ௉ܪ) − (஺ܪ − ቆ ொುାொಲଶ஺ቀೂಲಲ ା௔ቁቇ ௉ݔ)஺௉ߙ݊݅ݏ − (஺ݔ +     

௙(௫ುି௫ಲ)ଶ஽௚஺మቀೂಲಲ ା௔ቁ ܳ௉|ܳ஺| + ௖೒௦ೕ = 0   (4-17) 

௔௚஺ (ܳ௉ − ܳ஻) − ௉ܪ) − (஻ܪ + ቆ ொುାொಳଶ஺ቀೂಳಲ ି௔ቁቇ ௉ݔ)஻௉ߙ݊݅ݏ − (஻ݔ +     

௙(௫ುି௫ಳ)ଶ஽௚஺మቀೂಳಲ ା௔ቁ ܳ௉|ܳ஻| + ௖೒௦ೕ = 0   (4-18) 

 In (4-17), since ݖ௉ and ݖ஺  are the vertical heights in relation to the reference line 

established to the pipe center line in Figure 3-4, then ߙ݊݅ݏ஺௉ = ௭ುି௭ಲඥ(௫ುି௫ಲ)మା(௬ುି௬ಲ)మା(௭ି௭ಲ)మ       

 (4-19) 

 Plugging (4-19) into (4-17), valid along ܥା, gives 

௔௚஺ (ܳ௉ − ܳ஺) + ௉ܪ) − (஺ܪ − ቆ ொುାொಲଶ஺ቀೂಲಲ ା௔ቁቇ (௭ುି௭ಲ)(௫ುି௫ಳ)ඥ(௫ುି௫ಲ)మା(௬ುି௬ಲ)మା(௭ି௭ಲ)మ   
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+ ௙(௫ುି௫ಲ)ଶ஽௚஺మቀೂಲಲ ା௔ቁ ܳ௉|ܳ஺| + ௖೒௦ೕ = 0     (4-20) 

 Since the same is valid for (18-4)  ,ିܥ becomes 

௔௚஺ (ܳ௉ − ܳ஻) − ௉ܪ) − (஻ܪ − ቆ ொುାொಳଶ஺ቀೂಳಲ ି௔ቁቇ (௭ುି௭ಲ)(௫ುି௫ಳ)ඥ(௫ುି௫ಲ)మା(௬ುି௬ಲ)మା(௭ି௭ಲ)మ   

+ ௙(௫ುି௫ಳ)ଶ஽௚஺మቀೂಳಲ ି௔ቁ ܳ௉|ܳ஻| + ௖೒௦ೕ = 0    (4-21) 

  For a rectangular grid, 

• Characteristic curve valid along C+ 

௔௚஺ (ܳ௉ − ܳ஺) + ௉ܪ) − (஺ܪ − ቆ ொುାொಲଶ஺ቀೂಲಲ ା௔ቁቇ ∆௫∆௭ඥ∆௫మା∆௬మା∆௭మ        

+ ௙୼௫ଶ஽௚஺మቀೂಲಲ ା௔ቁ ܳ௉|ܳ஺| + ௖೒௦ೕ = 0       (4-22) 

• Characteristic curve valid along C –  

௔௚஺ (ܳ௉ − ܳ஻) − ௉ܪ) − (஻ܪ − ቆ ொುାொಳଶ஺ቀೂಳಲ ି௔ቁቇ ∆௫∆௭ඥ∆௫మା∆௬మା∆௭మ      

+ ௙୼௫ଶ஽௚஺మቀೂಳಲ ି௔ቁ ܳ௉|ܳ஻| + ௖೒௦ೕ = 0      (4-23) 

 By solving eqs.(4-22) and (4-23) for ܪ௉ ܪ௉ = ஺ܪ − ௔௚஺ (ܳ௉ − ܳ஺) + ∆௫∆௭ଶ஺ඥ∆௫మା∆௬మା∆௭మ (ொುାொಲ)ቀೂಲಲ ା௔ቁ       

− ௙୼௫ଶ஽௚஺మ ொು|ொಲ|ቀೂಲಲ ା௔ቁ + ௖೒௦ೕ    (4-24) 

௉ܪ = ஻ܪ + ௔௚஺ (ܳ௉ − ܳ஻) − ∆௫∆௭ଶ஺ඥ∆௫మା∆௬మା∆௭మ (ொುାொಳ)ቀೂಳಲ ି௔ቁ       

+ ௙୼௫ଶ஽௚஺మ ொು|ொಳ|ቀೂಳಲ ି௔ቁ + ௖೒௦ೕ     (4-25) 

 Calling 
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ܤ = ௔௚஺          (4-26) 

ܵ = ∆௫∆௭ଶ஺ඥ∆௫మା∆௬మା∆௭మ        (4-27) 

ܴ = ௙୼௫ଶ஽௚஺మ         (4-28) 

 Hence  ܪ௉ = ஺ܪ − ௉ܳ)ܤ − ܳ஺) + ܵ (ொುାொಲ)ቀೂಲಲ ା௔ቁ − ܴ ொು|ொಲ|ቀೂಲಲ ା௔ቁ + ௖೒௦ೕ       (4-29) 

௉ܪ = ஻ܪ + ௉ܳ)ܤ − ܳ஻) − S (ொುାொಳ)ቀೂಳಲ ି௔ቁ + ܴ ொು|ொಳ|ቀೂಳಲ ି௔ቁ + ௖೒௦ೕ    (4-30) 

 Rearranging equations above 

௉ܪ = ቈܪ஺ + ஺ܳܤ + ܵ ொಲቀೂಲಲ ା௔ቁ + ܨ ொಲቀೂಲಲ ା௔ቁ቉       

− ቈܤ − ଵቀೂಲಲ ା௔ቁ (ܵ − ܴ|ܳ஺| − ቉(ܨ2 ܳ௉ + ௖೒௦ೕ    (4-31) 

௉ܪ = ቈܪ஻ − ஻ܳܤ − ܵ ொಳቀೂಳಲ ି௔ቁ − ܨ ொಳቀೂಳಲ ି௔ቁ቉       

+ ቈܤ + ଵቀೂಳಲ ି௔ቁ (−S + ܴ|ܳ஻|) + 2F቉ ܳ௉ + ௖೒௦ೕ    (4-32) 

 The solution to a problem in fluid transients usually begins with steady-state 

conditions at time zero, so that ܳ, ܪ are known initial values at each section of Figure 

3-3, for ݐ = 0. The solution consists of finding ܳ, ܪ,  for alternate grid point along ݐ = ݐ then proceding to ,ݐ∆ =  and so on, until the desired time duration has been ,ݐ∆2

covered. At any interior grid intersection point, point P at section i, the two compatibility 

equations are solved simultaneously for the unknows ܳ௜௧ାଵ, ܪ௜௧ାଵ. Equations (4-31) and 

(4-32) may be written in a simple form, namely  
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௜௧ାଵܪ = ௉௧ܥ − ௉௧ܳ௜௧ାଵܤ + ௖೒௦ೕ        (4-33) 

௜௧ାଵܪ = ெ௧ܥ + ெ௧ܳ௜௧ାଵܤ + ௖೒௦ೕ       (4-34) 

in which the coefficients ܥ௉௧, ܤ௉௧, ܥெ௧ and ܤெ௧ are known constants when the 

equations are applied. Their values in the ܥା and ିܥ compatibility equations are, 

respectively 

௉௧ܥ = ቎ܪ௜ିଵ௧ + ௜ିଵ௧ܳܤ + ܵ ொ೔షభ೟ቆೂ೔షభ೟ಲ ା௔ቇ + ௖೒௦ೕ ቏     (4-35) 

௉௧ܤ   = ቎ܤ − ଵቆೂ೔షభ೟ಲ ା௔ቇ ൬ܵ − ܴ|ܳ௜ିଵ௧ | + ௖೒௦ೕ ൰቏     (4-36) 

ெ௧ܥ = ቎ܪ௜ାଵ௧ − ௜ାଵ௧ܳܤ − ܵ ொ೔శభ೟ቆೂ೔శభ೟ಲ ି௔ቇ − + ௖೒௦ೕ ቏     (4-37) 

ெ௧ܤ  = ቎ܤ + ଵቆೂ೔శభ೟ಲ ି௔ቇ (−S + ܴ|ܳ௜ାଵ௧ |) + + ௖೒௦ೕ ቏    (4-38) 

 By first eliminating ܳ௜ in eqs.(4-33) and (4-34), the value for ܪ௜௧ାଵ 

௜௧ାଵܪ = ቀ஼ು஻ಾା஼ಾ஻ು஻ುା஻ಾ ቁ௧ + ௖೒௦ೕ        (4-39) 

 Then ܳ௜ may be found by substituting (4-39) directly into  (4-33) or (4-34). Hence 

ܳ௜௧ାଵ = ቀ஼ುି஼ಾ஻ುା஻ಾቁ௧ + ௖೒௦ೕ        (4-40) 

 Numerical values of ܪ and ܳ are found at alternate grid intersection points as 

shown in Figure 3-2.  Examination of this grid shows that the end points of the system 

begin influencing the interior points after the first time step. Therefore, in order to 
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complete the solution to any desired time, it is necessary to introduce the appropriate 

boundary conditions [1]. 

4.2.1. Boundary conditions 

 At either end of a single pipe only one of the compatibility equations is available 

in the two variables. For the upstream end (Figure 4-3a),  (4-34) holds along the ିܥ 

characteristic, and for the downstream bounday (Figure 4-3b),  (4-33) is valid along the ܥା characteristic. These are linear equations in ܳ௜௧ାଵ and ܪ௜௧ାଵ; each conveys to its 

respective boundary the complete behavior and response of the fluid in the pipeline 

during the transient. An auxiliary equation is needed in each case that specifies ܳ௜௧ାଵ, ܪ௜௧ାଵ or some relation between them. That is, the auxiliary equation must convey 

information on the behavior of the boundary to the pipeline. This may be just the end 

condition of the pipeline, or it may be a different element or facility attached to the end of 

the pipe. Each boundary condition is solved independent of the other boundary, and 

independently of the interior point calculations [1] by satisfying the appropriate one of 

the characteristic equations. 
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Figure 4-3: Characteristics boundaries [1] 

4.2.1.1 Hydraulic unit at the upstream end (pressurization of the system) 
 

 Considering a hydraulic unit at the upstream end, for which the hydraulic grade 

line is assumed constant during duration of the transient flow. This boundary condition 

may be described as ܪଵ௧ାଵ =  ோ         (4-41)ܪ

which ܪோ is the elevation of hydraulic grade-line. 

 Since ܪଵ is known, ܳଵ is determined by direct solution of  (4-34), using the 

Taylor series approximation for the normal Cauchy stress tensor,  (4-23). ܳଵ௧ାଵ = ுభି஼ಾ೟஻ಾ೟ + ௖೒௦ೕ         (4-42) 

 The subscript “1” refers to the upstream section, at point P, Figure 4-3a; ܥெ௧, ܤெ௧,  ܳଵ௧ and ܳ௜ାଵ௧  are variables in the computational procedure but are dependent only 

on known values from the previous time step, in this case, point B, section 2 [1]. 
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4.2.1.2 Hydraulic unit at the upstream end (depressurization of the system)  

Considering a hydraulic unit at the upstream end for which the hydraulic grade 

line is assumed constant during duration of the transient flow. For depressuriaztion of the 

system, the boundary condition may be described as 

ଵ௧ାଵܪ = 0         (4-43) 

 Since ܪଵ is known, ܳଵ is determined  (4-42) 

ܳଵ௧ାଵ = − ஼ಾ೟஻ಾ೟ + ௖೒௦ೕ         (4-44) 

4.2.1.3 Time Varying Hydraulic unit at the upstream end 

 Considering a hydraulic unit at the upstream end for which the hydraulic grade 

line is assumed to vary with time for the duration of the transient flow.  For a sinusoidal 

variation of 10 sin(ݐߨ) the boundary condition may be described as 

ܤ = ௖௚஺           (4-45) 

ெܥ = ଶܪ  − ଶܳܤ + ௙∆௫ଶ௚஽஺మ ܳଶ|ܳଶ|       (4-46) 

௉భܪ     = ோܪ +  10 sin(ݐߨ)                      (47-4) ܳ௉భ = ൫ܪ௉భ − ெ൯ܥ ⁄ܤ          (4-48) 

4.2.1.4 Dead end at the downstream end 

 The downstream end of a pipeline that is divided into N sections is the section 

NS=N+1, Figure 4-3b. If the pipeline contains a closed end, then the boundary condition 

is described as 

ܳேௌ௧ାଵ = 0         (4-49) 
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 Applying this boundary condition in  (4-33) and eq. (4-24), then ܪேௌ௧ାଵ = ௉௧ܥ + ௖೒௦ೕ         (4-50) 

4.2.1.5 Air Pocket at the downstream end 

 Considering a pocket of air trapped in a system at the downstream end.  The 

volume of air trapped is assumed to be small compared to the volume of liquid volume in 

a computing reach.  The air is assumed to follow the reversible polytropic relation 

஺V௡ܪ =  (51-4)          ܥ

 Where ܪ஺ is the absolute head equal to the gauge pressure plus barometric 

pressure head,  

஺ܪ = ௉ܪ  − ݖ +  ഥ          (4-52)ܪ

  V is the volume of trapped air, n is the polytropic exponent, and C is a constant.  

The exponent n depends on the thermodynamic process followed by the gas in the vessel.  

If a perfect gas is assumed, at the one extreme the process may be isothermal, n = 1, or at 

the other limit it may be isentropic (reversible, adiabatic), n = 1.4.  The particular 

situation dictates the type of process, the latter being more conservative since it predicts 

larger pressure changes for the same volume change.  For small chambers with fast 

response times the process may be taken as isentropic.  In larger systems with a large 

water volume and small air mass the transformation may approach an isothermal process. 

In this work an average value of 1.2 was used for simulations. Since equation (4-52) 

applies at any instant in time it is written at the end of a time increment by introducing 

the continuity equation. 
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௉ܪ) + ഥܪ − (ݖ ቀV − ∆t ொುିொଶ ቁ௡ =  (53-4)         ܥ

In this equation V is the volume of air at the beginning of the time increment.  

Newton’s Method is used to solve equations (4-9*) and (4-53) simultaneously. When 

combined these two equations may be written as ܨଵ = ൫ܥ௉ − ௣ܳܤ − ݖ + ഥ൯ܪ ቀV − ܳ௉ ∆୲ଶ − ୕∆୲ଶ ቁ௡ − ܥ = 0      (4-54) 

which is a nonlinear equation in the variable ܳ௉.  Newton’s method finds a 

correction to an estimated value of ܳ௉by use of the expression ܨଵ + ௗிభ஽ொು ∆ܳ = 0           (4-55) 

 where after simplification  

 
ௗிభ஽ொು = ௡∆௧஼ଶቀ୚ିೂುషೂమ ∆୲ቁ − ܤ ቀV − ∆t ொುିொଶ ቁ௡

        (4-56) 

 The FORTRAN code for this boundary condition may take the following form, 

beginning with an estimated value ܳ௉ of at the end of the time increment. 

4.2.1.6 Blockage at the downstream end  

Considering a blockage to fully impede the flow in the pipeline and to be cylinder 

with planar ends this condition is modeled within the MMOC as a dead end.  The 

pressure in the last computational reach, ெܲெை஼, is applied to a finite element model of 

the blockage for the duration of a fluid time step.  If the applied pressure force overcomes 

the static frictional forces, ܨ௦, which keep the blockage in place movement occurs during 

the time step the updated position of the blockage is returned to the MMOC.  This axial 

motion of the blockage lengthens of the last computational reach thereby increasing the 
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volume of the fluid simulation. Once the plug is moving the dynamic coefficient of 

friction is used in place of the static. 

• The friction force exerted on the blockage by the pipe walls is equal to  

o ܨ௦ =  ௦ܰ when stationaryߤ

o ܨ஽ =  ஽ܰ when in motionߤ

• The check for the onset of motion is 

o ( ெܲெை஼ − ஺ܲ௠௕.)ܣ஻௟௢௖௞௔௚௘ ൑  ௦ܨ

• The motion of the blockage is tracked as a particle 

o ܽାଵ ஻௟௢௖௞௔௚௘ = ( ெܲெை஼ − ஺ܲ௠௕.)ܣ஻௟௢௖௞௔௚௘ −  ஽ܨ

o ݒ஻௟௢௖௞௔௚௘ = ܽିଵ ஻௟௢௖௞௔௚௘݀ݐெெை஼ 

o ∆ݔ஻௟௢௖௞௔௚௘ = ெெை஼ݐ஻௟௢௖௞௔௚௘݀ݒ + 0.5ܽାଵ ஻௟௢௖௞௔௚௘݀ݐெெை஼ଶ 

o ݔ஻௟௢௖௞௔௚௘ = ଵ ஻௟௢௖௞௔௚௘ିݔ +  ஻௟௢௖௞௔௚௘ݔ∆

• Blockage exit criteria 

o ݔ஻௟௢௖௞௔௚௘ ൐  ை௨௧௟௘௧ݔ 

4.3. Pipeline Characterization through Optimization 

The process of representing a pipeline as a numerical model is herein referred to 

as pipeline characterization.  Characterizing a pipeline requires the specification of 

parameters for the physical arrangement of the system such as the pipe diameter, wall 

thickness, modulus of elasticity, and section length.  Parameters representing the 

environmental conditions, barometric pressure and temperature, must also be specified.  

All of these parameters are easily observed and measured or gathered from manufacture’s 



56 
 

specifications.  In addition to these the parameters that describe the losses which occur as 

a transient propagates in the system must be specified.  The principle parameter used to 

quantify pipeline losses is the Darcy-Weisbach friction factor [38]. 

The Darcy-Weisbach friction factor represents the loss of energy of a fluid 

traveling in a pipeline due to internal viscous dissipation and friction with the pipe walls.  

It is well documented for steady state flow.  The surging flows in transient pipeline 

conditions fluctuate between the laminar, transitional, and turbulent flow regimes.  In the 

transitional and turbulent flow the relations for the friction factor are non-linear such as 

the Colebrook equation.  These equations are often solved by iterative methods for a 

particular fluid velocity and Reynolds number [17]. 

 The proposed loss coefficient, cg, represents the loss of energy of a fluid due to 

partial reflection of transient pressure pulses at small radius 90° elbows.  The effect of an 

isolated small radius 90° elbow on a transient’s propagation have been studied by 

Valentine, Phillips, and Walker [14].  The study results reveal that for low frequency 

waves, a partial negative pressure reflection occurs at the elbow and the strength of this 

reflection is of the order of 15% to 30% of that of the incoming wave; the amount of the 

reflection depends strongly upon the ratio of the wall thickness to the mean tube radius, is 

somewhat dependent upon the total bend angle, but is relatively insensitive to the radius 

of curvature of the elbow. 

 It is proposed in this thesis that the effect of multiple small radius 90° elbows in a 

pipeline is strongly dependant on their positions in the pipeline and the lengths of straight 

sections of pipe which connect them. 
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4.3.1. Approach 

 The values of the Darcy-Weisbach friction factor, f, and the proposed geometric 

loss coefficient, cg, are not known a priori for transient pipeline flows.  When at least a 

pair of pressure sensor time histories is available for a given pipeline f and cg can be 

determined by fitting the MMOC simulation results to the time histories.  The resultant 

Darcy-Weisbach friction factor, f, and geometric loss coefficient, cg, along with the 

parameters for the physical arrangement and environmental conditions are said to 

characterize the pipeline.   

4.3.2. Selection of optimization method 

The objective in characterizing a pipeline is to produce a model of the pipeline 

that accurately predicts the transient pressure heads along the pipeline.  The physical and 

environmental parameters defining the pipeline are fixed, the values of the Darcy-

Weisbach friction factor, f, and the proposed geometric loss coefficient, cg, are the design 

variables, and the objective is to minimize the error between the peak pressure predicted 

by the MMOC and that observed in the experimental pressure sensor time histories.  

The Darcy-Weisbach friction factor, f, has a non-linear relationship to pressure 

head across the laminar, transitional, and turbulent flow regimes.  The relationship of the 

proposed geometric loss coefficient, cg, to pressure head is not known and is likely non-

linear.   Local minima are likely in such a non-linear design space.  Gradient-based 

optimization methods may return local minima rather than the true global minima.  For 

this reason non-gradient based methods were considered.  The differential evolution 

algorithm presented in EML5509 “Mechanical Design Optimization” by Profs. 
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Dulikravich, Colaco, and Orlande in Spring 2009 and depicted below in Figure 4-4 is a 

robust and efficient method [39].  Differential evolution was selected over other non-

gradient based methods such as simulated annealing or particle swarm for its greater 

efficiency in domains with numerous local minima. 

4.3.3. Implementation 

The MMOC algorithm was incorporated into the differential evolution algorithm 

as a design evaluation as shown below in Figure 4-4.   

 

Figure 4-4: Pipeline characterization flow chart 

In this implementation each design is a set of input parameters to MMOC where 

the majority are fixed.  The only design variables are the Darcy-Weisbach friction factor, 

f, and the proposed geometric loss coefficient, cg.  Each design is evaluated in the 
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objective function for how well it predicts the maximum pressure observed in the 

experimental pressure sensor time histories.   

Table 1: Pipeline characterization design variables 

Design Variable Minimum Maximum 

Darcy-Weisbach friction factor, f 0.01 0.05 

Geometric loss coefficient, cg 0.01 1.00 

 

As shown in Figure 4-4 optimization begins with an initial population of 20 

designs of random values for Darcy-Weisbach friction factor, f, and geometric loss 

coefficient, cg, within the ranges described in   



60 
 

 above.  This first generation is evaluated in the objective function.  Three 

members are chosen randomly to combine to form a new design in the second generation. 

New designs which more accurately predict the maximum pressure in the pipeline replace 

their predecessors in the population and the process continues until the convergence 

criteria are reached.   

4.4. Pump Operation Optimization 

Safe and efficient operation of a pump at the inlet to a pipeline is a clear goal in 

pipeline operations.   Once a pipeline is characterized with MMOC as described in 

chapter 4.3 the model can be used to predict the transients that will be observed in the 

system.  The objective of achieving a desired peak pressure at a specific position in the 

pipeline can be achieved with an appropriate pump operation schedule.  The appropriate 

schedule for a pipeline can be determined by optimizing the pressure profile applied to 

the pipeline.  The objective of the optimization is the minimization of the difference 

between the simulated peak pressure and the target peak pressure at the target location. 

4.4.1. Selection of optimization method 

The pump operation parameters, peak applied pressure and hold time, have a non-

linear relationship to the peak pressure generated in the pipeline due to the constructive 

and destructive wave interference between the forward and reflected pressure pulses.  It is 

possible that over the range of the parameters shown in Table 2 that multiple local 

minima exist.  Gradient-based optimization methods may return local minima rather than 

the true global minima.  For this reason non-gradient based methods were considered.  

The differential evolution algorithm presented in EML5509 “Mechanical Design 
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Optimization” by Profs. Dulikravich, Colaco, and Orlande in Spring 2009 and presented 

below in Figure 4-5 is a robust and efficient method.  Differential evolution was selected 

over other non-gradient based methods such as simulated annealing or particle swarm for 

its greater efficiency in domains with numerous local minima. 

4.4.2. Implementation 

The MMOC algorithm was incorporated into the differential evolution algorithm 

as a design evaluation as shown below in Figure 4-5 

 

Figure 4-5: Pump Operation Optimization flow chart 

In this implementation each design is a set of input parameters to MMOC where 

the majority are fixed.  The only design variables are the peak pressure applied, P, and 

the duration that the peak pressure is maintained (hold time), th.  Each design is evaluated 
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in the objective function for how well it predicts the maximum pressure observed in the 

experimental pressure sensor time histories.   

Table 2: Pump Operation Design Variables 

Design Variable Minimum Maximum 

285ft and 621ft Test Cases   

Peak pressure applied, P (Psi) 20 60 

Hold time, th (s) 0.1 10 

1797ft Test Case   

Peak pressure, P (Psi) 20 60 

Hold time, th (s) 5 15 

 

As shown in Figure 4-5 optimization begins with an initial population of 20 

designs of random values for peak pressure applied, P, and hold time, th, within the 

ranges described in Table 2above.  This first generation is evaluated in the objective 

function.  Three members are chosen randomly to combine to form a new design in the 

second generation. New designs which more accurately predict the maximum pressure in 

the pipeline replace their predecessors in the population and the process continues until 

the convergence criteria are reached.   

4.5. Blockage Detection 

4.5.1. Assumptions 

• The geometry and anchoring conditions of the pipeline is known. 
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• Pipeline is fully blocked by a single cylindrically shaped elastic material with an 

outer diameter equal to the inner diameter of the pipeline but is otherwise clean 

and free of partial blockages. 

• The blockage is stationary and perfectly reflects the transient pulse. 

• Access to the pipeline for instrumentation is limited to the inlet of the pipeline. 

• The coefficients of friction and geometric loss have been determined for the 

pipeline when it was unblocked.  

4.5.2. Approach 

The experimental data from the pressure sensor at the inlet is compared with the 

pressure predicted in the MMOC model of a pipeline with at blockage at the outlet of the 

pipeline.  If the peak pressure at the inlet in the simulated data does not match the 

experimental data the last segment of the pipeline is shortened by 10% of its length and 

the MMOC is simulation is re-run.  This progressive shortening of the last pipeline 

segment continues until the peak pressure at the inlet in the simulation matches the peak 

pressure at the inlet in the experimental data and the blockage is located or the segment is 

completely removed.  If the blockage was not located in the last segment then the 

pipeline continues to be shortened in increments of 10% of the last remaining segment 

until the blockage is located. 

This approach enables the blockage to be located with limited access to the 

pipeline while considering the varying wave speeds in the pipeline due to varying pipe 

diameters, materials, anchoring, and or elbows. 
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4.5.3. Implementation 

Considering a limited access pipeline typical of DOE transfer lines the blockage 

can be located by recording the pressure at the pump and at the inlet to the pipeline.  For 

fluid and pipeline combinations with wave speeds on the order of 1400m/s the pump 

should be positioned at least 12.8 m (42 ft) from the inlet in order for the reflected 

transient to be clearly distinguished from the forward transient.  

A short duration transient pressure pulse is initiated at the pump, propagates 

through the pipeline and is reflected by the blockage.  The sensors at the pump and the 

inlet record the time history of the pressure at each location.  The data is input into the 

MMOC model.  The experimental data from the pressure sensor at the inlet is compared 

with the pressure predicted in the MMOC model of a pipeline with at blockage at the 

outlet of the pipeline.  If the peak pressure at the inlet in the simulated data does not 

match the experimental data the last segment of the pipeline is shortened by 10% of its 

length and the MMOC is simulation is re-run.  This progressive shortening of the last 

pipeline segment continues until the peak pressure at the inlet in the simulation matches 

the peak pressure at the inlet in the experimental data and the blockage is located or the 

segment is completely removed.  If the blockage was not located in the last segment then 

the pipeline continues to be shortened in increments of 10% of the last remaining 

segment until the blockage is located. 

4.6. Blockage Removal 

4.6.1. Assumptions 

• The pipeline is rigid. 
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• The pipeline is fully blocked by a cylindrical shaped elastic material with an outer 

diameter equal to the inner diameter of the pipeline and length of 1 meter. 

• The pipeline is evacuated of fluid downstream of the blockage where ambient 

pressure exists. 

• The pressure differential across the blockage acts to compress and dilate it. 

o The upstream and downstream ends of the blockage remain planar. 

o The circumferential surface of the blockage remains that of a cylinder.  

• The dilation of the blockage increases the normal force the blockage exerts on the 

pipe in which it is lodged. 

• The friction force exerted on the blockage by the pipe walls is equal to  

o ܨ௦ =  ௦ܰ when stationaryߤ

o ܨ஽ =  ஽ܰ when in motionߤ

• The blockage moves as a single cylindrical volume.  

4.6.2. Approach 

The blockage is considered to be a collection of infinitely many particles 

interacting together through contact as a deformable body inside of a rigid pipe.  The 

blockage has distributed forces acting on its boundaries; hydraulic pressure at the 

upstream end, ambient pressure at the downstream end and friction on the circumference.  

The pressure forces act normal to the upstream and downstream faces.  The friction 

forces act to resist the motion of the blockage. 
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The standard development of the equilibrium equation for a general three 

dimensional body can be found in the excellent introductory text by Krysl [40].  The 

result is  

׬ ߩ ௗ௩ሬറௗ௧௏ ܸ݀ = ׬ ሬܾറ௏ ܸ݀ + ׬ ௏்ߚ ⇒  റܸ݀ߪ ߩ  ௗ௩ሬറௗ௧ = ሬܾറ +  റ          (4-57)ߪ்ߚ

where ݉, is the mass, ܸ, is the volume and ܵ, is the bounding surface of the 

volume ܸ.  ሬܾറ is body force and ݐറ are the distributed forces or tractions acting on the 

bounding surface ܵ.  The six independent components of the Cauchy stress tensor.  These 

six components are stated conveniently as a stress vector [40] in Cartesian coordinates for 

simplicity 

ሬ࣌ሬറ = ൣ࣌࢞, ࣌࢟, ,ࢠ࣌ ࣎࢞࢟, ,ࢠ࢞࣎ ࢀ൧ࢠ࢟࣎
                 (4-58) 

 is the stress divergence operator [40] ்ߚ

ࢀࡰ૜ࢼ = ێێۏ
ࣔۍێ ࣔ࢞ൗ ૙ ૙૙ ࣔ ࣔ࢟ൗ ૙૙ ૙ ࣔ ൗࢠࣔ     ࣔ ࣔ࢟ൗ ࣔ ൗࢠࣔ ૙ࣔ ࣔ࢞ൗ ૙ ࣔ ൗ૙ࢠࣔ ࣔ ࣔ࢞ൗ ࣔ ࣔ࢟ൗ ۑۑے

ېۑ
     (4-59) 

This statement of the dynamic equilibrium of a point particle (4-57) [40] 

represents the inertial force (mass times acceleration) on the left and the body force and 

the force generated by a stress gradient across the particle and the right.  The stress term 

will be replaced by the measurable strains through the use of the symmetric gradient or 

strain displacement operator, ߚ, which is the un-transposed stress divergence operator ்ߚ. 

߳ =  (10-4)            ݑߚ
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where ݑ is the displacement vector.  The strain displacement operator, ߚ, links 

displacements in terms of their components in the global Cartesian basis to strains.     

 The blockage material is modeled at isotropic in this work and as such has a 

material stiffness matrix in 3D, ܦଷ஽  [40] 

ଷ஽ܦ = ێێۏ
ߣۍێێ + ܩ2 ߣ ߣߣ ߣ + ܩ2 ߣߣ ߣ ߣ + ܩ2 0 0 00 0 00 0 ܩ 0           0            0 0           0            0 0           0            00 0 00 ܩ 00 0 ۑۑےܩ

 (21-4)      ېۑۑ

 Where the shear modulus, ܩ = ாଶ(ଵାఔ)  and the Lamé constant is   ߣ = ாఔ(ଵାఔ)(ଵିଶఔ) 
 The derivation of the dynamic equilibrium of a point particle in terms of 

measurable strains can be simplified for the blockage from its statement in three 

dimensions to two dimensions due to its axial symmetry.  First the equilibrium equations 

are stated in cylindrical coordinates by letting r = radial direction, z = axial direction and 

θ = circumferential direction.  In terms of shear stresses, ߬, normal stress, ߪ, body force, ሬܾറ, mass density, ߩ, and acceleration, ݑሷ  
ଵ௥ డఙഇడఏ + డఛೝഇడ௥ + ଶఛೝഇ௥ + డఛ೥ഇడ௭ + ሬܾറఏ = ሷݑߩ  ఏ     (4-32) 

డఙೝడ௥ + ଵ௥ డఛೝഇడఏ + ఙೝିఙഇ௥ + డఛ೥ഇడ௭ + ሬܾറ௥ = ሷݑߩ  ௥     (4-43) 

డఙ೥డ௭ + ଵ௥ డఛ೥ഇడఏ + డఛೝ೥డ௥ + ఛೝ೥௥ + ሬܾറ௭ = ሷݑߩ  ௭      (4-54) 

The constitutive equations that relate stress to strain are 
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௥ߪ = ா(ఔାଵ)(ଶఔିଵ) ሾ(ߥ − ௥ߝ(1 − ఏߝ)ߥ +  ௭)ሿ      (4-65)ߝ

ఏߪ = ா(ఔାଵ)(ଶఔିଵ) ሾ(ߥ − ఏߝ(1 − ௥ߝ)ߥ +  ௭)ሿ       (4-66)ߝ

௭ߪ = ா(ఔାଵ)(ଶఔିଵ) ሾ(ߥ − ௭ߝ(1 − ௥ߝ)ߥ +  ఏ)ሿ       (4-67)ߝ

Krysl provides a clear development of the standard simplifications for 

axisymmetric volumes [40].  The result of the simplification is (4-68) and (4-69) 

డఙೝడ௥ + డఛೝ೥డ௥ + ఙഇ௥ + ሬܾറ௥ = ሷݑߩ ௥          (4-68) 

డఛೝ೥డ௥ + డఙ೥డ௭ + ሬܾറ௭ = ሷݑߩ ௭          (4-69) 

Which can be stated in matrix form [40] 

ߩ ൜ݑሷ ௥ݑሷ ௭ൠ = ൥߲ ൗݎ߲       0       1 ൗݎ     ߲ ൗ0ݖ߲  ߲ ൗݖ߲      0     ߲ ൗݎ߲ ൩ ቐ ఏ߬௥௭ቑߪ௭ߪ௥ߪ + ቊሬܾറ௥ሬܾറ௭ቋ     (4-70) 

For analysis of the blockage in this work gravity and other body forces are 

neglected, ቊሬܾറ௥ሬܾറ௭ቋ = ቄ00ቅ.  The larger time step required in the MMOC algorithm for the 

fluid in the pipe enables the analysis of the blockage to be static and accelerations 

neglected, ൜ݑሷ ௥ݑሷ ௭ൠ = ቄ00ቅ.  The constitutive equation for an axisymmetric volume may then 

be stated as [40] 
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ቐ ఏ߬௥௭ቑߪ௭ߪ௥ߪ = ൦ߣ + ܩ2 ߣߣ ߣ + ܩ2 ߣ           ߣ0  0           0ߣ           ߣ0  ߣ + ܩ2 00 ൪ܩ ቐ ߳௥߳௭߳ఏߛ௥௭ቑ         (4-71) 

To solve equations (4-70) and (4-71) the variational principles in the small 

displacement theory of elasticity [41] will be used by letting  

r,u = radial direction, radial displacement  

z, v = axial direction, axial displacement 

θ, w = circumferential direction, circumferential displacement 

The principle of virtual work for axisymmetric volumes may be stated as [41] 

ߜ ∭ ,ݑ)஺௫௜ܣ ܸ݀(ݒ − ∭ ൫ሬܾറ௥ݑߜ + ሬܾറ௭ݒߜ൯ܸ݀௏௏        

− ∬ ݑߜݎ̅) + ௌܵ݀(ݒߜ̅ݖ = 0    (4-72) 

Where ∭ ൫ሬܾറ௥ݑߜ + ሬܾറ௭ݒߜ൯ܸ݀௏ = 0 since body forces are neglected and  

,ݑ)஺௫௜ܣ (ݒ = ாఔଶ(ଵାఔ)(ଵିଶఔ) ቀడ௨డ௥ + డ௩డ௭ቁଶ + ܩ ൤ቀడ௨డ௥ቁଶ + ቀడ௩డ௭ቁଶ൨     

+ ଶீ ቀడ௨డ௭ + డ௩డ௥ቁଶ
   (4-73) 

4.6.3. Implementation 

The statement of the principle of virtual work for volumes [41] is implemented in 

MeshFree [42] through Microsoft Visual C++ 2010 Express.  meshFree is a mesh-less 
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method  that exactly treats all given boundary conditions by utilizing the Rvachev’s 

Function Method (RFM).  The RFM utilizes approximate distance functions that vanish 

on the corresponding geometric boundaries of the model to exactly satisfy the boundary 

conditions.  The approximate distance functions, boundary conditions, and basis 

functions are assembled into a solution structure.  The solution structure contains the 

necessary degrees of freedom in the form of coefficients of the basis functions.  Linear 

combinations of basis functions are used to approximate the differential equations in the 

problem.  Any sufficiently complete system of basis functions can be used: polynomials. 

B-splines, functions forming a partition of unity, or even finite element functions [5].   In 

this work 2D B-splines are used. 

 

Figure 4-6: Boundary Conditions for Blockage Removal 

 

The blockage is modeled in meshFree as an axisymmetric slice of a cylinder as 

shown in Figure 4-6.  The blockage is constrained from radial expansion by the rigid pipe 

walls and is loaded by the fluid pressure on one end and the atmospheric pressure on the 
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other.  The boundary conditions in the radial direction are modeled as a line of symmetry 

along the axis of the pipe and blockage and as a Dirichlet condition at the pipe wall.  The 

boundary conditions in the axial direction at the blockage faces are represented as natural 

conditions.  Table 3 shows the mathematical formulation and the corresponding solution 

structure for the Dirichlet conditions used in this work. Where w = 0 on the boundary and 

is positive elsewhere.   is a linear combination of basis functions  with 

unknown coefficients .   

Table 3: meshFree Solution Structures 

Boundary Condition Mathematical Formulation Corresponding Solution 
Structure 

General Dirichlet   

Wall   

Symmetry   

 

 

Figure 4-7: R-Function for Symmetry Boundary 

 

Figure 4-8: R-function for Wall Boundary 
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Figure 4-9: Combined R-Function for Blockage in the Radial Direction 

Figure 4-7 and Figure 4-8 show the Rvachev’s functions for the symmetry 

boundary and the wall boundary respectively.  Figure 4-9 shows the intersection of the 

wall and symmetry boundary condition Rvachev’s functions.  This combined Rvachev’s 

function is used to form the solution structure in the radial direction as 

         (4-74) 

 In the axial direction the blockage is free to deform along the symmetry plane but 

is the fixed along the pipe wall.  The solution structure for the axial direction is 

          (4-75) 

The stress distribution on the surface of the blockage adjacent to the pipe wall is 

integrated to determine the normal force applied to the pipe wall.  The normal force is 

returned to the MMOC Blockage boundary condition algorithm as described in section 

4.2.1.6.   
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4.7. Web Application Development 

4.7.1. Resources 

The MAIDROC Laboratory hosts a high performance computing cluster, Tesla.  

This computing resource has 250+ CPU’s, 300+ GB RAM and 8.5+ TB of distributed 

and shared hard drive space.  The cluster is connected to the FIU internet and the world 

wide web through a web portal machine, MAIDROC, which hosts the MAIDROC 

Laboratory website [43].  The website includes cluster monitoring pages which utilize 

PHP: Hypertext Preprocessor (PHP) on an Apache web server.  PHP is a general-purpose 

scripting language originally designed for web development to produce dynamic web 

pages. For this purpose, PHP code is embedded into the HTML source document and 

interpreted by a web server with a PHP processor module, which generates the web page 

document. It also has evolved to include a command-line interface capability and can be 

used in standalone graphical applications. 

4.7.2. Approach 

The input files needed by MMOC require the specification of several parameters: 

• 5 for each pipe, length, diameter, friction factor, orientation and inclination 

• 2 to describe the initial condition of the flow in the pipeline, flow rate and 

pressure datum 

• 2 selections for the boundary conditions that then may require additional 

parameters 

• 3 for the environmental conditions, ambient pressure and temperature and 

gravitational acceleration 
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• 3 for the solution procedure, time step, the maximum reach adjustment, and the 

termination time 

For long pipelines the input process can be tedious and error prone.  A PHP input 

enables each field to be checked for values within allowable ranges, for illegal characters 

and for being left blank.  This error checking routine prompts the user to correct 

erroneous entries and or fill in blank fields and save valuable time by preventing 

simulations with poor input data from being run.  The feed back to the user also expedites 

the trouble shooting process.   

Post processing the results of a MMOC simulation requires generating plots of the 

pressure and flow rate time histories from the respective output files.  These files are 

often large, several megabytes of tab-delimited floating point numbers, for long pipelines 

or lengthy simulations.  It is common that the files are so large that Microsoft Excel lags 

considerably when preparing plots for them if it can at all.  GNUplot [44], a freely 

available open-source plotting utility is capable of handling large data sets, is highly 

customizable, and can be utilized interactively or through script files.  The ability to 

generate plots in an automated routine with GNUplot is ideal for rapid visualization of 

simulation results from MMOC. 

4.7.3. Implementation 

A password protected web site was developed to enable authorized users of the 

Tesla cluster in the MAIDROC Laboratory to create, load, and edit simulations, launch 

them on the cluster, and visualize their results in minutes.  The web site is a proof of 



73 
 

concept that engineering simulation software can be driven by users through a web 

interface. 
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CHAPTER V 

5. RESULTS AND DISCUSSION 

5.1. Pipeline Characterization 

During the technology evaluation of NuVision’s Fluidic Wave Action 

Technology at FIU’s ARC the 285ft test pipeline was constructed and utilized as shown 

in Figure 5-1.   Measurements from Pressure transducers P1 to P13 positioned as shown 

in Figure 5-1 were recorded during the evaluation and used as the input to MMOC.  A 

Piecewise least squares fit to the data from P1 is used as the inlet boundary condition in 

MOC and MMOC. 

5.1.1. 285ft Test Pipeline 

 

Figure 5-1: Schematic of 285ft Pipeline [3] 

 

 The MMOC model of the 285 ft pipeline is shown in Figure 5-2.  The 

experimental data from one trail in the technology evaluation is shown in Figure 5-3 and 



75 
 

Figure 5-4.  The best results attainable through optimization of the unmodified MOC, are 

shown in Figure 5-3 and documented in Table 4 alongside the results from MMOC.  

 

Figure 5-2: Pipeline Model for 285ft Case 

Table 4 shows the increase in accuracy of an order of magnitude by including the 

proposed geometric loss coefficient to account for the effect of 90° elbows in the 

pipeline.  Figure 5-3 and Figure 5-4 show that in addition to more accurately predicting 

the peak pressure the addition of the geometric loss coefficient more accurately captures 

the transient wave form and the total energy propagating through the pipeline.  The final 

results were obtained after 20 generations of optimization. 
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Table 4: Comparison of MOC and MMOC for 285 ft Case 

 Pressure Error (Psi) Time Error (s) 

Method of Characteristics   

Friction Coefficient, ݂ = 0.021 8.6 0.8 

Modified Method of Characteristics   

Friction Coefficient, ݂ = 0.0232
0.2 0.03 

Geometric Loss Coeff., ܿ௚ = 0.282

 

Figure 5-5 displays the difference in pressure between the MMOC simulation and 

the experimental data.  Figure 5-6 displays the difference in time of occurrence of the 

peak pressure between the MMOC simulation and the experimental data.  In both figures 

the results are shown for the range of friction coefficients and geometric loss coefficients 

which were available to the genetic algorithm during optimization.  Examination of 

Figure 5-5 reveals the family of values for friction coefficients and geometric loss 

coefficients which produce accurate pressure predictions from the MMOC simulation.  

Examination of Figure 5-6 reveals the family of values for friction coefficients and 

geometric loss coefficients which produce accurate time of peak pressure predictions 

from the MMOC simulation.  It is notable that the families of values for accurate pressure 

and time predictions overlap substantially for this test pipeline.   
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Figure 5-3: Comparision of MOC and Experimental Results for NuVision 285ft 
Pipeline 
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Figure 5-4:Comparision of MMOC and Experimental Results for NuVision 285ft 
Pipeline 
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Figure 5-5: Characterization of NuVision 285ft Pipeline by Pressure 
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Figure 5-6: Characterization of NuVision 285ft Pipeline by Time Error 

5.1.2. 621ft Test Pipeline 

During the technology evaluation of NuVision’s Fluidic Wave Action 

Technology at FIU’s ARC the 621ft test pipeline was constructed and utilized as shown 

in Figure 5-7.   Measurements from Pressure transducers P1 to P13 positioned as shown 

in Figure 5-7 were recorded during the evaluation and used as the input to MMOC.  A 

Piecewise least squares fit to the data from P1 is used as the inlet boundary condition in 

MOC and MMOC. 
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Figure 5-7: Schematic of 621ft Pipeline [3] 

The MMOC model of the 621ft pipeline is shown in Figure 5-8.  This case differs 

from the 285ft test configuration in two significant ways.  Firstly, pipes 2 and 4 are 

significantly longer than those in the 285ft test case.  Secondly, the pump operation 

schedule has a greater peak pressure and a duration that is 150% of the 285ft case.  The 

experimental data from one trail in the technology evaluation is shown in Figure 5-9 and 

Figure 5-10.  The best results attainable through optimization of the unmodified MOC, 

are shown in Figure 5-9 and documented in  
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Table 5 alongside the results from MMOC.  

 

Figure 5-8: Pipeline Model for 621ft Case 
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Table 5 shows the increase in accuracy of an order of magnitude by including the 

proposed geometric loss coefficient to account for the effect of 90° elbows in the 

pipeline.  Figure 5-9 and Figure 5-10 show that in addition to more accurately predicting 

the peak pressure the addition of the geometric loss coefficient more accurately captures 

the transient wave form and the total energy propagating through the pipeline. 
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Table 5: Comparison of MOC and MMOC for 621 ft Case 

 Pressure Error (Psi) Time Error (s) 

Method of Characteristics   

Friction Coefficient, ݂ = 0.021 10.4 1.2 

Modified Method of Characteristics   

Friction Coefficient, ݂ = 0.0334
0.6 0.12 

Geometric Loss Coeff., ܿ௚ = 0.15

 

Figure 5-11 displays the difference in pressure between the MMOC simulation 

and the experimental data.  Figure 5-12 displays the difference in time of occurrence of 

the peak pressure between the MMOC simulation and the experimental data.  In both 

figures the results are shown for the range of friction coefficients and geometric loss 

coefficients which were available to the genetic algorithm during optimization.    

Examination of Figure 5-11 reveals the family of values for friction coefficients and 

geometric loss coefficients which produce accurate pressure predictions from the MMOC 

simulation.  Examination of Figure 5-12 reveals the family of values for friction 

coefficients and geometric loss coefficients which produce accurate time of peak pressure 

predictions from the MMOC simulation.  It is notable that the families of values for 

accurate pressure and time predictions overlap less substantially for this test pipeline than 

they do for the 285ft pipeline. 
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Figure 5-9:Comparision of MOC and Experimental Results for NuVision 621ft 
Pipeline 
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87 
 

 

Figure 5-10:Comparision of MMOC and Experimental Results for NuVision 621ft 
Pipeline 

 

Figure 5-11: Characterization of NuVision 621ft Pipeline by Pressure 
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Figure 5-12: Characterization of NuVision 621ft Pipeline by Time Error 

5.1.3. 1797ft Test Pipeline 

During the technology evaluation of NuVision’s Fluidic Wave Action 

Technology at FIU’s ARC the 1797ft test pipeline was constructed and utilized as shown 

in Figure 5-13.   Measurements from Pressure transducers P1 to P13 positioned as shown 

in Figure 5-13 were recorded during the evaluation and used as the input to MMOC.  A 

Piecewise least squares fit to the data from P1 is used as the inlet boundary condition in 

MOC and MMOC. 
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Figure 5-13: Schematic of 1797ft pipeline [3] 

The MMOC model of the 1797ft pipeline is shown in Figure 5-14.  This case 

differs from both the 285ft and 621ft test configurations in three significant ways.  First, 

there are two additional pipes and the two additional 90° elbows.  Second, pipes 1 

through 6 are approximately 5 times longer.  Third, the pump operation schedule is 

distinct and has the greatest applied pressure of the three test cases. The experimental 

data from one trail in the technology evaluation is shown in Figure 5-15 and Figure 5-16.  

The best results attainable through optimization of the unmodified MOC, are shown in 

Figure 5-15 and documented in Table 6 alongside the results from MMOC.  
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Figure 5-14: Pipeline Model for 1797ft Case 

Table 6 shows the increase in accuracy of an order of magnitude by including the 

proposed geometric loss coefficient to account for the effect of 90° elbows in the 

pipeline.  Figure 5-15 and Figure 5-16 show that in addition to more accurately predicting 

the peak pressure the addition of the geometric loss coefficient more accurately captures 

the transient wave form and the total energy propagating through the pipeline. 

Table 6: Comparison of MOC and MMOC for 1797 ft Case 

 Pressure Error (Psi) Time Error (s) 

Method of Characteristics   

Friction Coefficient, ݂ = 0.021 8.6 0.8 

Modified Method of Characteristics   
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Friction Coefficient, ݂ = 0.0232
0.2 0.03 

Geometric Loss Coeff., ܿ௚ = 0.282

 

Figure 5-17 displays the difference in pressure between the MMOC simulation 

and the experimental data.  Figure 5-18 displays the difference in time of occurrence of 

the peak pressure between the MMOC simulation and the experimental data.  In both 

figures the results are shown for the range of friction coefficients and geometric loss 

coefficients which were available to the genetic algorithm during optimization.    

Examination of Figure 5-17 reveals the family of values for friction coefficients and 

geometric loss coefficients which produce accurate pressure predictions from the MMOC 

simulation.  Examination of Figure 5-18 reveals the limited islands of values for friction 

coefficients and geometric loss coefficients which produce accurate time of peak pressure 

predictions from the MMOC simulation.  It is notable that the families of values for 

accurate pressure and time predictions overlap less substantially for this test pipeline than 

they do for the 285ft pipeline or for the 621ft pipeline. 
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Figure 5-15:Comparision of MOC and Experimental Results for NuVision 1797ft 
Pipeline 
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Figure 5-16:Comparision of MMOC and Experimental Results for NuVision 1797ft 
Pipeline 
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Figure 5-17: Characterization of NuVision 1797ft Pipeline by Pressure Error

 

Figure 5-18: Characterization of NuVision 1797ft Pipeline by Time Error 
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5.2. Web Based Implementation 

PHP was successfully utilized to create a password protected web interface for 

MMOC.  The visual organization made possible by the web form greatly facilitates the 

accurate entry of the input parameters.  The error checking provided by the form 

improves the utility of MMOC by pre-empting the need for time consuming trouble 

shooting.  

 

Figure 5-19: Web Form for Pipeline configuration 

 

Figure 5-19 and Figure 5-20 show the web forms for the pipeline configuration 

and boundary conditions for MMOC.  Figure 5-21 shows a typical input file which by 

comparison is far less readable and offers no error checking for inputs by the users. 
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Figure 5-20: Web Form for Boundary Condition Selection 

 

 

Figure 5-21: Input file 

Figure 5-22 displays typical output that is generated by the web interface to 

MMOC in seconds following the submission of a MMOC job to Tesla. 
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Figure 5-22: Sample Web MMOC Plot 

 

5.3. Optimization of the Inlet Hydraulic Unit Operation Schedule 

After a pipeline has been characterized as detailed in section 5.1 the operating 

schedule of the pump at the inlet can be optimized with the goal of producing a peak 

pressure at a specified location in the pipeline.   
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5.3.1. 285ft Test Pipeline 

The objective of the following pump operation optimization for the 285ft pipeline 

is to produce a peak pressure of 73 Psi at pressure sensor P13 at the end of pipe segment 

8.  Figure 5-23 and Figure 5-24 display the pressure error and time error respectively for 

the ranges of hold time and applied pressure detailed in Table 2.   

 

Figure 5-23: Pump Operation Optimization for NuVision 285ft Pipeline by Pressure 
Error 
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Figure 5-24: Pump Operation Optimization for NuVision 285ft Pipeline by Time 
Error 

 Examination of Figure 5-23 and Figure 5-24 reveals that it is possible to achieve 

peak pressures of 73 Psi at pressure sensor P13 for applied pressures between 25 and 40 

psi by varying the duration the pressure is applied by the pump. 

Figure 5-25, Figure 5-26 and Figure 5-27 display the pressure time histories for 

the initial, an intermediate and the final sets of pump optimization parameters as specified 

in Table 7.   

The results show that the pump operation optimization by a genetic algorithm can 

provide a specific recommendation for a pumping schedule to achieve a desired pressure 



100 
 

at a particular position in the 285ft pipeline.  Optimization also reveals the response of 

the system over the range of the input parameters.   

 

Table 7: Pump Operation Optimization Summary for 285ft Case 

 Hold Time (s) Applied Pressure 
(Psi) 

Pressure Error 
(Psi) 

Time Error 
(s) 

Initial 5.1 25.6 6.07 0.2 

Interim 3.1 45.6 86.92 1.1 

Final 1.3 35.2 0.14 0.5 
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Figure 5-25: Initial Pump Optimization Results for 285ft Case 
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Figure 5-26: Interim Pump Optimization Results for 285ft Case 
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Figure 5-27: Final Pump Optimization Results for 285ft Case 
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5.3.2. 621ft Test Pipeline 

The objective of the following pump operation optimization for the 621ft pipeline 

is to produce a peak pressure of 70 Psi at pressure sensor P13 at the end of pipe segment 

8.  Figure 5-28 and Figure 5-29 display the pressure error and time error respectively for 

the ranges of hold time and applied pressure detailed in Table 2.   

 

 

Figure 5-28: Pump Operation Optimization for NuVision 621ft Pipeline by Pressure 
Error 
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Figure 5-29: Pump Operation Optimization for NuVision 621ft Pipeline by Time 
Error 

Examination of Figure 5-28 and Figure 5-29 reveals that it is possible to achieve 

peak pressures of 70 Psi at pressure sensor P13 for applied pressures between 30 and 60 

psi by varying the duration the pressure is applied by the pump. 

Figure 5-30, Figure 5-31 and Figure 5-32 display the pressure time histories for 

the initial, an intermediate and the final sets of pump optimization parameters as specified 

in Table 8.   

The results show that the pump operation optimization by a genetic algorithm can 

provide a specific recommendation for a pumping schedule to achieve a desired pressure 
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at a particular position in the 621ft pipeline.  Optimization also reveals the response of 

the system over the range of the input parameters.   

 

Table 8: Pump Operation Optimization Summary for 621ft Case 

 Hold Time 
(s) 

Applied Pressure 
(Psi) 

Pressure Error 
(Psi) 

Time Error 
(s) 

Initial 2.1 30.4 51.97 2.7 

Interim 5.3 50.4 47.95 0.53 

Final 4.5 42.4 0.001 0.37 

 



107 
 

 

Figure 5-30: Initial Pump Optimization Results for 621ft Case 
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Figure 5-31: Interim Pump Optimization Results for 621ft Case 
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Figure 5-32: Final Pump Optimization Results for 621ft Case 
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5.3.3. 1797ft Test Pipeline 

The objective of the following pump operation optimization for the 1797ft 

pipeline is to produce a peak pressure of 48 Psi at pressure sensor P13 at the end of pipe 

segment 10.  Figure 5-33 and Figure 5-34 display the pressure error and time error 

respectively for the ranges of hold time and applied pressure detailed in Table 2.   

 

Figure 5-33: Pump Operation Optimization for NuVision 1797ft Pipeline by 
Pressure Error 
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Figure 5-34: Pump Operation Optimization for NuVision 1797ft Pipeline by Time 
Error 

Examination of Figure 5-33 and Figure 5-34 reveals that it is possible to achieve 

peak pressures of 73 Psi at pressure sensor P13 for applied pressures between 20 and 60 

psi by maintaining the applied pressure for specific intervals for particular pressures.  

This test case reveals the highly non-linear behavior of transients in a long pipeline with 

90° elbows. 

Figure 5-35, Figure 5-36 and Figure 5-37 display the pressure time histories for 

the initial, an intermediate and the final sets of pump optimization parameters as specified 

in Table 9.   
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The results show that the pump operation optimization by a genetic algorithm can 

provide a specific recommendation for a pumping schedule to achieve a desired pressure 

at a particular position in the 1797ft pipeline.  Optimization also reveals the response of 

the system over the range of the input parameters.   

Table 9: Pump Operation Optimization Summary for 1797ft Case 

 Hold Time 
(s) 

Applied Pressure 
(Psi) 

Pressure Error 
(Psi) 

Time Error 
(s) 

Initial 7.6 40.0 19.5 1.9 

Interim 10.0 38.4 19.7 1.0 

Final 5.6 57.6 0.22 0.22 
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Figure 5-35: Initial Pump Optimization Results for 1797ft Case 

 

 



114 
 

 

Figure 5-36: Interim Pump Optimization Results for 1797ft Case 
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Figure 5-37: Final Pump Optimization Results for 1797ft Case 
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5.4. Blockage Detection 

After a pipeline has been characterized as detailed in section 4.3 the MMOC 

model can be utilized for blockage detection as explained in section 4.5. 

5.4.1. 285ft Test Pipeline 

 

Figure 5-38: Initial Pipeline for Blockage Detection in 285ft Case 

The MMOC model of the initial pipeline utilized in detecting a blockage by 

matching the pressure trace at the inlet is shown in Figure 5-38.  The model pipeline is 

progressively shortened to locate the blockage as detailed in section 4.5.  At each length 

the peak pressure and its time of occurrence is compared with the pressure time history 
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from the inlet.  The pressure error and time error are displayed in Figure 5-39 as the 

function of pipeline length. 

 

Figure 5-39: Blockage Detection Results for 285ft Case 

 The data shown in Figure 5-39 shows blockage detection by progressively 

shortening a MMOC pipeline model has great sensitivity for both pressure and time.  The 

indicated minimums of pressure error and time error bracket the actual location of the 

blockage at 285ft (86.9m) between 83m and 90m.   
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5.4.2. 621ft Test Pipeline 

 

Figure 5-40: Initial Pipeline for Blockage Detection in 621ft Case 

The MMOC model of the initial pipeline utilized in detecting a blockage by 

matching the pressure trace at the inlet is shown in Figure 5-40.  The model pipeline is 

progressively shortened to locate the blockage as detailed in section 4.5.  At each length 

the peak pressure and its time of occurrence is compared with the pressure time history 

from the inlet.  The pressure error and time error are displayed in Figure 5-41 as the 

function of pipeline length. 
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Figure 5-41: Blockage Detection Results for 621ft Case 

 The data shown in Figure 5-40 shows blockage detection by progressively 

shortening a MMOC pipeline model has great sensitivity for both pressure and time.  The 

indicated minimums of pressure error and time error bracket the actual location of the 

blockage at 621ft (189.3m) between 180m and 191m.   
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5.4.3. 1797ft Test Pipeline 

 

Figure 5-42: Initial Pipeline for Blockage Detection in 1797ft Case 

The MMOC model of the initial pipeline utilized in detecting a blockage by 

matching the pressure trace at the inlet is shown in Figure 5-42.  The model pipeline is 

progressively shortened to locate the blockage as detailed in section 4.5.  At each length 

the peak pressure and its time of occurrence is compared with the pressure time history 

from the inlet.  The pressure error and time error are displayed in Figure 5-43 as the 

function of pipeline length. 
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Figure 5-43: Blockage Detection Results for 1797ft Case 

 The data shown in Figure 5-43 shows blockage detection by progressively 

shortening a MMOC pipeline model has great sensitivity for both pressure and time.  The 

indicated minimums of pressure error and time error bracket the actual location of the 

blockage at 1797ft (547.7m) between 530m and 560m.   

5.5. Blockage Removal 

After a pipeline has been characterized as detailed in section 4.3 and the blockage 

has been detected as explained in section 4.5 the MMOC model for blockage removal can 

be applied as described in section 4.6.   
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5.5.1. Verification 

Figure 5-44 and Figure 5-46 show the good agreement of the axisymmetric model 

implemented in the MeshFree method [5, 42] on the left with the full 3D model analyzed 

in SolidWorks on the right.  Figure 5-45 and Figure 5-47 show the radial displacement 

distribution and axial displacement distribution in elevation respectively.  Table 10 

summarizes the results of the displacement convergence study. 

Table 10: Convergence of Displacement 
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Figure 5-44: Verification of Radial Displacement Distribution 
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Figure 5-45: Verification of Radial Displacement Distribution shown in elevation 

 

Figure 5-46: Verification of Axial Displacement Distribution 
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Figure 5-47: Verification of Axial Displacement Distribution shown in elevation 

Table 11 presents the relative percentages of improvement gained by increasing 

the refinement of the solid works and meshFree simulations by a factor of eight between 

the medium and fine resolution studies.  This barely perceptible change indicates that the 

medium resolution meshFree study adequately resolves the deformation of the blockage 

as modeled in this work.  This resolution is used for integration with the MMOC. 

Table 11: Relative Improvement of Displacement Study 

Improvement (medium to fine) SolidWorks meshFree 

Max radial displacement 0.002% 0.003% 

Max axial displacement 0.009% 0.001% 
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5.5.2. Integration with MMOC 

The pipeline model used in MMOC for the 285ft blockage removal case is shown 

in Figure 5-48.  The blockage is 4ft in length and completely fills the 3 inch diameter 

pipe and is located at the end of pipe 8.  Pipes 9 and 10 extend for a total of 20 meters 

beyond the blockage.  The parameters utilized in this case are listed in Table 12. 

Table 12: Parameters for 285ft Blockage Removal Case 

Blockage length  1.22 m 

Blockage mass 5 kg 

Blockage static friction factor 0.5 

Blockage dynamic friction factor 0.3 

Length to pipeline outlet 20 m 

 



127 
 

 

Figure 5-48: MMOC Pipeline Model for Blockage Removal for 285ft Case 

Figure 5-49 shows the pressures predicted by MMOC at pressure sensors P1, P3, 

P5, P7, and P13.  It can be noted from these pressure histories that the blockage is 

predicted to exit the pipeline at approximately 16 seconds.  This correlates with the 

predicted plug motion show in Figure 5-50. 
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Figure 5-49: Pressure History for Blockage Removal in 285ft Case 
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Figure 5-50: Blockage Motion for 285ft Case 
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CHAPTER VI 

6. CONCLUSIONS AND FUTURE WORK 

Pipeline characterization by optimization with a differential evolution genetic 

algorithm has been shown to produce accurate and predictive MMOC models.  The result 

of this characterizing optimization is the friction factor, ݂, and loss coefficient, ܿ௚, that 

minimize the difference between the peak pressure predicted by MMOC and the 

experimental data as well as the error between the predicted time of occurrence of the 

peak pressure and the experimental data.    

The web application created for MMOC has shown that PHP can support a 

secure, user friendly and error checking interface.  The web application enables timely 

model creation, simulation, and results visualization of pipeline characterization.  

After the friction factor, ݂, and loss coefficient, ܿ௚, have been determined for a 

pipeline the same MMOC model and differential evolution genetic algorithm can be 

successfully used to efficiently determine the optimum pump operation schedule to 

achieve a desired pressure at a particular position in a pipeline. 

A complete blockage in a pipeline that has been characterized can be located by 

the novel approach of progressively shortening the MMOC model of the pipeline until 

the predicted peak pressure at the inlet matches the experimental data at the inlet.  In the 

present implementation the position of the blockage can be determined to within 10% of 

the length of the pipe segment where it is located. 
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The integration of a solid mechanics model for the blockage with the MMOC has 

been verified.  The predicted pressures in the 285ft pipeline during blockage removal and 

the sudden plug motion predicted correlate well with the observations from the 

technology evaluation. 

Future work on pipeline characterization should include further experimental 

work to further explore the geometric loss coefficients relationship to the overall pipeline 

geometry.  An interesting continuation to the work on pipeline characterization has been 

suggested by Professor Dulikravich.  The Darcy-Weisbach friction factor, ݂, is a function 

of the pipeline’s local inner surface relative roughness, ߝ௜ ௜ൗܦ , and the local Reynolds 

Number, ܴ௘௜ = ఘ௔೔(௧)஽೔ఓ೔ .  The Reynolds Number in a pipeline during a transient will vary 

due to the pipe segment diameter, ܦ௜, and the local wave speed, ܽ௜(ݐ), which is time 

dependent.  In some applications, such as those found in off shore oil drilling, the 

temperature variance along a pipeline may not be negligible and may cause a variation in 

viscosity, ߤ௜.  Considering the variance of the Reynolds Number along the pipeline and 

with time and the changes in the relative roughness of the inner surface of the pipeline 

may increase the accuracy of the transients predicted. 

The work on blockage detection should be continued through refinement of the 

search method that utilizes the MMOC model.  Changing the length of the model pipeline 

until the simulated pressure at its inlet matches that of the experimental data has proven 

effective.  Two methods of searching for the blockage location by changing the pipeline 

length are suggested.  The first is to determine the error between MMOC simulations and 
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the experimental data for a limited number of prospective blockage locations.  A cubic 

spline should  

Additionally blockage removal should be further explored experimentally and 

computationally to validate the model and the coupling between MMOC and a solid 

solver.  Lastly extending this work to pipeline networks with branches and parallel pipes 

will broaden its applicability from transfer lines to processing systems and networks. 
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APPENDIX  

A: CODE SNIPPET 

A.1 Airpocket at Downstream End Boundary Condition 

      if(airPocket) then 

         nn=ns(m) 

         nm=nn-1 

         kit=100 

         cp=h(m,nm)+q(m,nm)*(b(m)-r(m)*abs(q(m,nm)) 

         do 71 i=1,kit 

            vp=v-dt*.5*(qp(m,nn)+q(m,nn)) 

            if(vp.lt.vsmall) vp=vsmall 

            f1=(cp-b(m)*qp(m,nn)-z+hbar)*vp**en-c 

            dfdq=-en*dt*c*.5/vp-b(m)*vp**en 

            dq=-f1/dfdq 

 71      qp(m,nn)=qp(m,nn)+dq 

         v=v-dt*.5*(qp(m,nn)+q(m,nn)) 

         if (v.lt.0) v=0. 

         hp(m,nn)=cp-b(m)*qp(m,nn) 

      endif 
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