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ABSTRACT OF THE DISSERTATION 

EXERGOECONOMIC ANALYSIS OF SOLAR ORGANIC RANKINE CYCLE FOR 

GEOTHERMAL AIR CONDITIONED NET ZERO ENERGY BUILDINGS  

by 

Rambod Rayegan 

Florida International University, 2011 

Miami, Florida 

 Professor Yong X. Tao, Major Professor 

This study is an attempt at achieving Net Zero Energy Building (NZEB) using a 

solar Organic Rankine Cycle (ORC) based on exergetic and economic measures. The 

working fluid, working conditions of the cycle, cycle configuration, and solar collector 

type are considered the optimization parameters for the solar ORC system.  

In the first section, a procedure is developed to compare ORC working fluids 

based on their molecular components, temperature-entropy diagram and fluid effects on 

the thermal efficiency, net power generated, vapor expansion ratio, and exergy efficiency 

of the Rankine cycle. Fluids with the best cycle performance are recognized in two 

different temperature levels within two different categories of fluids: refrigerants and 

non-refrigerants. Important factors that could lead to irreversibility reduction of the solar 

ORC are also investigated in this study.  

In the next section, the system requirements needed to maintain the electricity 

demand of a geothermal air-conditioned commercial building located in Pensacola of 

Florida is considered as the criteria to select the optimal components and optimal 

working condition of the system. The solar collector loop, building, and geothermal air 
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conditioning system are modeled using TRNSYS. Available electricity bills of the 

building and the 3-week monitoring data on the performance of the geothermal system 

are employed to calibrate the simulation. The simulation is repeated for Miami and 

Houston in order to evaluate the effect of the different solar radiations on the system 

requirements. 

The final section discusses the exergoeconomic analysis of the ORC system with 

the optimum performance. Exergoeconomics rests on the philosophy that exergy is the 

only rational basis for assigning monetary costs to a system’s interactions with its 

surroundings and to the sources of thermodynamic inefficiencies within it. 

Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex of the 

annual exergy loss to the capital cost can be considered a key parameter in optimizing a 

solar ORC system from the thermodynamic and economic point of view. It also shows 

that there is a systematic correlation between the exergy loss and capital cost for the 

investigated solar ORC system. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

Buildings have a significant impact on energy consumption. The Net Zero Energy 

Building (NZEB) concept is a promising approach to overcoming the energy crisis of our 

time. The NZEB is a residential or commercial building with greatly reduced energy 

needs achieved through efficiency gains such that the balance of energy needs can be 

supplied with renewable technologies on an annual basis. This study is an attempt at 

achieving NZEB using a solar-assisted geothermal heat pump.  

Air conditioning systems are usually the most energy consuming devices in 

regular residential and commercial buildings especially in hot and humid climates. 

Among different air conditioning systems, the heat pump is the most common system in 

which the amount of heat absorption from its condenser in cooling mode, has a great 

effect on the efficiency of the system. Ground Source Heat Pumps (GSHPs) use the 

relatively constant temperature of ground. Heat is extracted from the ground and 

delivered to the space during the winter, and removed from the space and rejected into 

the ground during the summer. The cooling Energy Efficiency Ratio (EER) of a GSHP is 

higher than its heating EER which makes the GSHP a better choice for cooling 

dominated regions. For this reason GSHPs have recently become more popular for 

residential and commercial space cooling applications. 

Electricity generation for a GSHP is another challenge. It is clear that in a net zero 

energy building, the input energy of the electricity generation system should be a form of 



 
2 

 
 

sustainable energy. Solar radiation has the highest capacity and the lowest replenishment 

time among sustainable energies. There are different technologies available to convert 

solar radiation to electricity. Because of the low efficiency and high capital costs of PV 

panels and also the high energy consumption and CO2 production rate of the 

manufacturing process of PV panels, this technology has not been widely commercialized 

for residential and commercial building application. Enhancement of the PV panel 

manufacturing process may alter this conclusion in the future. Therefore the use of solar 

irradiation as a heat source to run heat engines is of great interest.  

Because of the limitation of solar irradiation and efficiency of collectors, the 

conventional Rankine cycle is economically feasible only for large scale power plants. 

The Organic Rankine cycle (ORC) is a substitutive technology which is applicable for 

small scale power generation for use in residential and commercial buildings. ORC 

employs low grade heat from different sources such as biomass, geothermal, solar and 

waste heat of industrial processes. The main difference between ORC and the 

conventional Rankine cycle is in the working fluid. The boiling point of the working fluid 

in ORC is much lower than steam, hence there is no need to achieve high temperatures to 

generate vapor for running a micro-turbine or expander. As a result ORC can be driven at 

lower temperatures than the Rankine cycles that use water.  

Hot and humid climate has been selected for the study due to its high solar 

intensity and long solar radiation time through the year. In addition in such a cooling 

dominant region, the GSHP system has a better annual performance and electricity 

demand profile of the building better follows the electricity generation profile by the 

solar ORC system.  
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A solar ORC can be optimized with respect to different parameters. Parameters 

that will be considered for solar ORC optimization in this study are as follows: the 

working fluid, the working conditions of the cycle, the cycle configuration and the solar 

collector type.  

In most of the papers that have been reviewed so far ORC optimization has been 

done for a limited number of fluids or the optimization procedure has been applied on an 

ORC system using one specific working fluid. 

 Mago et al. (2008) determined the influence of the boiling point temperature on 

the system thermal efficiency for both basic and regenerative ORCs by comparing 

simulation results for R113, R123, R245ca and Isobutane. Angelino et al. (1984) suited 

the performance of the ORC system employing seven linear hydrocarbons from C4H10 

(n-butane) to C10H22 (n-decane). Hung (1995) compared ORC efficiency and 

irreversibility for selected refrigerants and hydrocarbons. He selected R-113 and R-123 

from refrigerants and p-Xylene (C8H10), Toluene (C7H8) and Benzene (C6H6) from 

aromatic hydrocarbons. Hettiarachchi et al. (2007) compared a geothermal ORC optimum 

performance for ammonia, R123, n-Pentane and PF5050 as the working fluid. Thermal 

stability over the range of operating temperatures and a minimal degradation rate over 

time is the only criteria in the preliminary selection of the working fluids for a given 

ORC in Prabha’s analysis (2006). A regenerative cascade cycle with toluene as the 

topping fluid and butane as the bottoming fluid is the optimized solar ORC plant relative 

to this study. 

A comparison between Toluene and some selected siloxanes for different 

superheating temperatures, condensation temperatures and recuperator’s efficiencies in a 
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100 KW power ORC in the medium range temperature has been carried out by Delgado-

Torres and Garcia-Rodriguez (2007a). 

Karellas and Schuster (2008) studied the effects of using working fluids at their 

supercritical region on the ORC performance. The R-245fa was chosen as the working 

fluid for calculations. 

As can be seen, because of the wide variety of fluid parameters and the cycle 

conditions that have been considered in the literature, there have been very limited 

attempts at systematically categorizing the selection of working fluids, working condition 

and cycle configuration for an ORC. In addition previous investigations on the ORC 

using solar heat are very limited and often emphasize the optimized cycle that results in 

different working conditions for different working fluids. The best performance of each 

fluid in a Rankine cycle has not been compared under the relatively same benchmark 

conditions for solar heat applications. The employment of a specific solar collector in a 

specific geographic region often limits its temperature range. Therefore the highest 

allowed temperature for a working fluid in the ORC is not necessarily achievable through 

solar heat source. Therefore it is necessary to develop a meaningful procedure to compare 

capabilities of working fluids when they are employed in solar Rankine cycles with 

similar working conditions.  

 

1.2 Exergoeconomic Point of View 

Among the methods that have been used to evaluate the performance of a thermal 

energy system, there are techniques that combine thermodynamic and economic 

principles. Thermoeconomics is a general term that describes any combination of a 
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thermodynamic analysis with an economic one. Compared with energy, exergy is a more 

consistent measure of economic value. Exergoeconomics rests on the philosophy that 

exergy is the only rational basis for assigning monetary costs to a system’s interactions 

with its surroundings and to the sources of thermodynamic inefficiencies within it. The 

ratio Rex of the exergy loss to the capital cost is the key parameter of exergoeconomic 

analysis of energy systems.  

Ozgener et al. (2007) believe that for any technology there is an appropriate value 

for Rex where the design of the device is more successful if the Rex for that device 

approaches that appropriate value. Rosen et al. (2003a) speculate that mature 

technologies have achieved a balance of exergy loss and capital cost over the time that is 

appropriate to the circumstances.  

The main perspective in the exergoeconomic analysis of the Solar ORC system in 

this study is to examine the relation between the exergy loss and the capital cost for the 

optimal solar ORC system using the exergoconomic key parameter Rex. 

 

1.3 Objectives and Significance of Study 

Fossil fuel depletion, atmospheric pollution, global warming and ozone layer 

destruction are serious problems experts face in finding more sustainable ways to satisfy 

the requirements of human life. Buildings account for 40% of the energy used annually 

worldwide. In the U.S. about as much construction and demolition waste is produced as 

municipal garbage. As a result, both the constructions and Heating, Ventilating and Air 

Conditioning (HVAC) industries are under increasing pressure from government and 

environmental groups to replace conventional methods with more sustainable processes. 
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This research can give us applied guidelines for using sustainable resources of 

energy for space air conditioning. By considering how the solar collector type, solar 

collector size, working fluid selection, temperature and pressure of each section of cycle 

influence the exergy loss, as well as their effects on the capital cost of the solar ORC 

system, for a building with a specific power demand a unique combination of all these 

parameters - the optimized condition - will be determined. This will inevitably be an 

important step toward creating a sustainable society.  

 

1.4 Framework of the Research  

This research mainly focuses on employing exergoeconomic principles in order to 

select optimal working fluids, cycle configuration, solar collector type and operation 

conditions for solar ORCs to maintain power demand of a building in hot and humid 

climate. Among above mentioned parameters, the selection of working fluids is the base 

to determine the optimal performance of ORCs. In other words, other parameters 

including cycle configuration, solar collector type, and operation conditions are addressed 

in the selection process of working fluids for solar ORCs. 

Chapter 2 presents a comprehensive review on the ORC literature. Second law 

efficiency and exergetic studies on ORCs have thus far drawn less attention by 

researchers. In addition, in most of papers that have been reviewed so far ORC 

optimization has been done for a limited number of fluids or the optimization procedure 

has been applied on an ORC system using one specific working fluid. In general, there is 

no systematic procedure in the literature to compare capabilities of working fluids when 

they are employed in ORCs with similar working conditions. 
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Chapter 3 is an attempt at filling above mentioned gaps in selecting working 

fluids for the solar ORCs with a consideration of exergetic measures. In this chapter, a 

procedure is developed to compare ORC working fluids in two different operation 

conditions (i.e., two different temperature levels). The comparison is based on fluids 

molecular components, temperature-entropy diagram of the fluid, and fluid effects on the 

thermal efficiency, net power generated, vapor expansion ratio, and exergy efficiency of 

the Rankine cycle. Fluids with the best cycle performance are recognized in two different 

temperature levels within two different categories of fluids: refrigerants and non-

refrigerants. The optimal cycle configuration for the selected working fluids is identified 

through an exergetic analysis.  

In Chapter 4, the optimization process is finalized by identifying the best collector 

type and its corresponding temperature level, and exergoeconomic principles are applied 

on the optimal solar ORC.  In the first section of chapter 4, the best collector-temperature 

combination for the solar ORC which maintains the electricity demand of a geothermal 

air-conditioned commercial building located in Pensacola of Florida is determined with 

exergetic and economic considerations. Selected fluids in chapter 3 are employed in this 

analysis. The solar collector loop, building, and geothermal air conditioning system are 

modeled using TRNSYS. Available electricity bills of the building and the 3-week 

monitoring data on the performance of the geothermal system are employed to validate 

the simulation. By the end of this section, the optimal working fluids, cycle 

configuration, solar collector type, and operation conditions of the solar ORC are 

determined.  

Second section of chapter 4 discusses the exergoeconomic analysis of the optimal 



 
8 

 
 

solar ORC system. The analysis shows that the ratio Rex of the annual exergy loss to the 

capital cost can be considered a key parameter in optimizing a solar ORC system from 

the thermodynamic and economic point of view. It also shows that there is a systematic 

correlation between the exergy loss and capital cost for the investigated solar ORC 

system. The framework of the research can be summarized and illustrated in Fig. (2.1). 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.1 Framework of the research.  
Note: All steps are taken with exergetic considerations. 
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CHAPTER 2 

A CRITICAL REVIEW ON SINGLE COMPONENT WORKING FLUIDS FOR 

ORGANIC RANKINE CYCLES (ORCs) 

 

2.1 Introduction 

 The main difference between the ORC and the conventional Rankine cycle is the 

working fluid. The boiling point of working fluid in the ORC is much lower than steam, 

hence there is no need to achieve high temperatures to generate vapor for running a 

micro-turbine or expander. As a result ORCs can be driven at lower temperatures than the 

Rankine cycles that use water.  

The selection of working fluid and operation conditions has a great effect on the 

system operation, and its energy efficiency and impact on the environment. The selection 

of working fluid is the base to determine the optimal performance of ORCs. In other 

words, other optimization parameters including cycle configuration, solar collector type, 

and operation conditions are addressed in the selection process of working fluids for solar 

ORCs. 

The main advantage of using multicomponent organic fluids in the Rankine cycle 

is non-isothermal phase change processes in the evaporator and condenser. Siloxanes 

have the same advantage among single component working fluids. In addition, 

muticomponent organic fluids cover an unlimited number of fluids and studies on them 

are more fundamental than practical. For those reasons this literature review has been 

narrowed to single component working fluids to reach to more practical conclusions.   
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Single component organic fluids have different categories which have desirable 

and undesirable properties for use in ORC. This chapter presents a critical review on 

single component working fluids in Organic Rankine Cycles (ORCs). The study focuses 

on practical considerations for providing guidelines for the categorization of working 

fluids based on their capabilities and shortcomings for power generation in a Rankine 

cycle. 

 

2.2 General criteria for Selecting Working Fluids in ORC 

There are some general desirable properties of the working fluids in a 

thermodynamic cycle regardless of its application that help reduce equipment size and 

decrease different types of fluid loss (i.e. heat and  pressure loss) while passing through a 

component or fluid interaction with its environment. Some of these desirable properties 

of working fluids in ORCs can be listed as follows: 

• Small specific volume 

• Low viscosity and surface tension 

• High thermal conductivity 

• Suitable thermal stability 

• Non-corrosive, non-toxic and compatible with engine materials and lubricating 

oils 

• Moderate vapor pressure in the range (0.1-2.5 Mpa) in the heat exchange units 

• High availability and low costs 

• Low safety, health and environmental hazards 
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Low Ozone Depletion Potential (ODP) is one of the most important 

environmental characteristic of the fluid used as the working fluid in the ORC system. 

Chlorine containing fluids are not Ozone-safe and have been banned by Montreal 

protocol and thus should be avoided in new systems.  

We can also recognize properties of working fluids that are generally beneficial 

for ORCs and help us for preliminary selection of fluids before computing calculations. 

 Depending on the slope of the temperature-entropy curve to be infinity, positive, 

or negative, working fluids can be classified into isentropic, dry, or wet respectively. Dry 

or isentropic working fluids are more appropriate for ORC systems. This is because dry 

or isentropic fluids are superheated after isentropic expansion. Therefore there is no 

concern for existing liquid droplets at the turbine outlet. 

When the heat source is waste heat, organic fluids with lower specific 

vaporization heat are preferred. Lower vaporization heat of the working fluid causes the 

heat transfer process in the evaporator to occur mostly at variable temperature. Therefore 

the temperature profile of the working fluid in the evaporator better follows the 

temperature profile of heating fluid in the heat source. This means that the temperature 

difference between fluids in the heat exchanger is reduced as illustrated in Fig. 2.1. 

Hence the irreversibility in the heat transfer process is decreased. 

A few parameters which have the main effects on the cycle’s thermodynamic 

performance are introduced as follows: 

• Critical Temperature: At the fixed evaporating temperature (Teva) and 

condensing temperature (Tcon) the higher critical temperature (Tcr) results in 

higher pressure ratio but lower condensing pressure which could conflict with 
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- Desirable thermodynamic properties 

- Flammability issues  

2. Perfluorocarbons (Fully fluorinated hydrocarbons) (Hexaflourobenzene) 

are/have: 

- Extremely inert and stable 

- Extreme molecular complexity 

- Thermodynamically undesirable 

3. Partially flouro-substituted straight chain hydrocarbons 

- There are several zero ODP fluids among them  which are of considerable 

potential interest 

4. Siloxanes (MM, MM/MDM/MD2M) 

- Attractive for a mix of physical and thermal properties (low toxicity and 

flammability level; high molecular mass; prolonged use as a high 

temperature heat carrier) 

- They are often available as mixtures rather than as pure fluids 

- Isobaric condensation and evaporation are not isothermal and exhibit a 

certain glide 

  

As we can see there is no single category of fluids that satisfies all desirable 

properties for use in an ORC system.  Hence after preliminary selection of fluids by 

discarding chlorine containing and wet fluids, we seek an optimization process that may 

lead to the final choice for better cycle performance. 
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In most of papers that have been reviewed so far ORC optimization has been done 

for a limited number of fluids or the optimization procedure has been applied on an ORC 

system using one specific working fluid.   

Because of the wide variety of fluid parameters and the cycle conditions that have 

been considered in the literature there have been very limited attempts at systematically 

categorizing the selection of working fluids for an ORC.  In the following sections we 

will fill this gap by categorizing the results in the literature based on our selection criteria. 

 

2.3 Studies Based on Critical Temperature 

Bruno et al. (2008) have accomplished a wide-ranging study on the working 

fluids in an ORC system that produces energy for running a reverse osmosis desalination 

system. The authors considered the Aspen plus software library as their reference. At the 

first step they discarded chlorine included, wet and isentropic fluids.  

During the second step for the preliminary selected working fluids the optimum 

high and low pressure of the saturated cycle maintaining the maximum first law 

efficiency of the cycle were found. 

In general, employing a fluid with higher critical temperature results in higher 

efficiency but lower condensing pressure. Three groups of fluids can be recognized in the 

results: (A) fluids with a high efficiency close to 30% with low condensing pressures 

under atmospheric pressure, such as the siloxane fluids, (B) fluids with atmospheric 

pressure at the condensing section and with medium efficiency of around 20%, such as n-

Pentane and Isopentane. Isopentane has the best performance according to the efficiency 

(27.2 %) and the minimum pressure in the cycle (1 bar). Therefore Isopentane is the best 
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choice for the ORC cycle if the heat source can provide the proper evaporating 

temperature (about 180 ºC) (C) there is another group of fluids such as Isobutane working 

at high condensing pressures showing an efficiency lower than 15%. 

For a practical comparison between fluids at this stage, a complementary study is 

necessary to increase the group A condensing pressure to atmospheric pressure and repeat 

the simulation process to find the cycle efficiency at new working conditions.  

In the last step for four different types of solar collectors the optimization to find 

the best high temperature in a superheated ORC cycle has been done by Bruno and his 

coworkers (2008). Generally, superheating in an ORC increases the first law efficiency of 

the cycle with a very low slope but decreases the second law efficiency of the cycle. Then 

superheated cycles are never recommended unless in cases which high power output is 

desired even by running a low efficiency cycle. In addition, in solar cycles increasing the 

maximum temperature of the collector increases the heat loss from the collector.  

Except for the general trend of increasing the efficiency of the cycle with the 

critical temperature of the working fluid no discussion about the relation between fluid 

properties and the ORC efficiency can be found in the Bruno and his coworkers’ study 

(2008). 

Drescher and Bruggemann (2007) fulfilled an inclusive research to identify the 

most suitable fluids for ORC in biomass power and heat plants. In this study the Design 

Institute for Physical Properties (DIPPR) database has been considered as the reference. 

For preliminary selection, the authors extracted cycle pressure and temperature 

requirements for an ORC with a biomass heat source from literature.  
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About 700 substances of the DIPPR database pass the pre-selection criteria and 

are included in the subsequent comparison. 

The efficiency of the 100 best-suited fluids ranges from 24.3% to 25.4% for the 

regenerative ORC. According to the results, the efficiency rises to approximately 25% at 

1 MPa with a slight decrease for higher pressures. The slight decrease can be explained 

by the needed work of the feed pump. This means that there is an optimal maximum 

process pressure. 

     In Drescher and Bruggemann’s study (2007), a detailed analysis for typical 

fluids was carried out to demonstrate critical temperature effect on the cycle efficiency. 

Results and typical fluid properties are shown in Table 2.1. 

 

Table 2.1 Optimization results for a regenerative biomass ORC (Drescher and 
Bruggemann, 2007) 

Working fluid 
Tcr 

(ºC) 
Pcr 

(MPa) 
Pmax 

(MPa) 
Tmax 

(ºC) 
Pmin  

(kPa) 
Tmin  

(ºC)
[(h5-h4)/(h6-h3)] 

(%) 
η 

(%) 
OMTS 291 1.44 1.34 287 13.8 90 15 22.5 
Toluene 319 4.11 2.00 263 54.1 90 42 23.2 

Ethylbenzene 344 3.61 2.00 297 24.3 90 36 24.3 
Propylbenzene 365 3.20 1.41 300 11.4 90 40 24.9 
Butylbenzene 388 2.89 0.92 300 5.0 91 43 25.3 

 

To illustrate the influence of vaporization enthalpy (h5 - h4), its ratio to input 

enthalpy (h6 - h3) has been considered as an index that we call the vaporization enthalpy 

ratio. Fig. 2.2 shows the different states of the fluid in the plan layout and typical T-S 

diagram for a regenerative ORC.  

Toluene has the highest vaporization enthalpy ratio, but at a low temperature 

level. Thus, toluene shows the worst efficiency of the alkylbenzenes. On the other hand 
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Mago et al. (2008) determined the influence of the boiling point temperature (Tbp) 

on the system thermal efficiency for both basic and regenerative ORCs by comparing 

simulation results for R113, R123, R245ca and Isobutane. Since fluids with higher 

boiling temperature have higher critical temperature, this study can be considered as a 

critical temperature based study.   

The results demonstrate that the fluid which shows the best thermal efficiency is 

the one that has the highest boiling point among the selected fluids (R113, Tbp = 47.59 

ºC),  while  the  fluid  with  the  worst  thermal efficiency has the lowest boiling point 

temperature (Isobutane, Tbp = -11.61ºC). Therefore, it can be concluded that the higher 

the boiling point temperature of the organic fluid the better the thermal efficiency that 

will be achieved by the ORC. 

 

2.4 Studies Based on Molecular Complexity 

Invernizzi et al. (2007) presented a relation between molecular complexity (σ) and 

thermodynamic properties of the fluid. They also introduced the acentric factor (ω) as a 

new effective factor on the cycle performance. Molecular complexity and acentric factor 

are defined by equations (2.1) and (2.2) respectively. 

 

ߪ ൌ ൬ ௖ܶ௥ܴ൰ ൬߲߲ܵܶ൰ௌ௏, ೝ்ୀ଴.଻ 																																																																																																												(2.1)	߱ ൌ െ1 െ log൫ ௥ܲௌ௔௧൯ ೝ்ୀ଴.଻ 																																																																																																						(2.2) 
 

where Pr and Tr are reduced pressure and temperature respectively. 
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Invernizzi and his coworkers’ analysis has been done for an ORC that employs 

exhaust gas of a micro –gas turbine as a heat source. The working fluids have been 

selected from fluids with critical temperatures between 180 ºC and 320 ºC with positive 

molecular complexity. Categories of selected fluids are linear and branched 

hydrocarbons, linear CFCs, aromatic fluoro-carbons, and linear and cyclic siloxanes.  

In a comparison made among different working fluids with the same heat source 

(1 kg/s of 300 ºC hot gas), condensing temperature (30 ºC) and evaporating temperature 

(170 ºC) it can be seen: 

• The ORC thermodynamic efficiency mostly increases with the molecular 

complexity because of its effect on critical temperature and subsequently on 

regeneration efficiency. 

• At the fixed molecular complexity, fluids with higher Tcr have higher 

thermodynamic efficiency. 

• The overall efficiency is influenced by both thermodynamic and heat recovery 

efficiencies. The thermodynamic efficiency increases and heat recovery 

efficiency decreases with increasing molecular complexity σ as implied in 

Table 2.2. The predominant effect is related to the heat recovery efficiency so 

that an increase of the molecular complexity σ results in a decrease of the 

power output of the recovery cycle. 

• From this analysis it can be concluded that from a thermodynamic point of 

view it would be better to employ fluids with a rather low molecular 

complexity; thanks to the less specific heat duty requested by the regenerator 

and to their higher capacity of cooling the micro-turbine exhausts. 
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• Preliminary design of turbine shows us that the lower molecular complexity in 

single stage turbines lead to lower isentropic efficiency at the same turbine 

size. 

Table 2.2 Optimization results for a regenerative waste heat ORC for fluids with 
different molecular complexity (Invernizzi et al., 2007) 

Working fluid n-Pentane C6F6 MM MD2M 
Molecular complexity 7 13 29 72 
Exit gas temperature 74 90 106 120 

Power out put 46 46 43 43 
 

As different types of molecules show different thermal and physical behaviors, it 

makes more sense if we look for the relationship between cycle operation and fluid 

properties at least among fluids with some common characteristics.  

Study of seven linear hydrocarbons from C4H10 (n-butane) to C10H22 (n-decane) 

shows the increase in molecular complexity has the effect of rising the fluid critical 

temperature while reducing its critical pressure. This means the fluid with more 

molecular complexity has the higher normal boiling point.  

For a cycle with the high and low temperatures equal to 100ºC and 40ºC 

respectively the following results have been obtained: 

• Condensation pressure variation :  From 377 to 0.49 kPa 

• Evaporation pressure variation: From 1508 to 9.56 kPa  

• Pressure ratio variation: From 4 to 20 

• Optimized stage rotating speed variation in turbine: From 57000 rpm to 1800 

rpm 

• Turbine mean diameter variation: From 0.074 to 2.11 m 
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• Efficiency variation: increasing with molecular complexity, mainly if the 

cycle includes regeneration. 

• Pump work variation: decreasing with molecular complexity 

 

2.5 Comparison in Efficiency among Selected Fluids 

Hung (1995) compared ORC efficiency and irreversibility for selected 

refrigerants and hydrocarbons. He selected R-113 and R-123 from refrigerants and p-

Xylene (C8H10), Toluene (C7H8) and Benzene (C6H6) from aromatic hydrocarbons. A 

constant 10 MW waste heat source is employed. The cycle is saturated. Irreversibility and 

efficiency of the cycle have been compared between selected working fluids. 

Irreversibility changes are completely dependent on the heat source conditions.  

At a fixed heat source temperature (TH=600 K) when turbine inlet pressure varied 

from 500 to 1800 kPa, the following observations have been made: 

• For all fluids, irreversibility of the cycle (Irr.) is decreasing with increasing 

inlet turbine pressure. 

• Irr. p-Xylene<Irr. Toluene< Irr. Benzene < Irr. R113 < Irr.  R123 

• Among aromatic hydrocarbons : The higher molecular weight, the lower 

irreversibility 

For a fixed temperature difference between the turbine inlet and the heat source 

(15ºC) when turbine inlet pressure varied from 800 to 2200 kPa, the following 

observations have been made:  

• Irr.  R123 < Irr. R113<Irr. Benzene <Irr. Toluene < Irr. p-Xylene  

• For all fluids, irreversibility is increasing with increasing inlet turbine 
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pressure. 

ORC efficiency calculations for the selected fluids at different turbine inlet 

pressures show that: 

•  η  R123< η R113<η Benzene <η Toluene < η  p-Xylene  

• For all fluids, efficiency is increasing with increasing inlet turbine pressure. 

• The working fluids with higher boiling temperature will have greater 

efficiency. 

• The lower condenser exit temperature (lower ambient temp), the higher 

efficiency. 

• System efficiency and total irreversibility have opposite trends. Using the 

operation conditions at the intersection point of the efficiency curve and the 

availability ratio (ratio of the available energy to the total energy obtained 

from the heat source) curve would lead to the optimal balance between the 

two conflicting factors. 

 

Hettiarachchi et al. (2007) compared a geothermal ORC optimum performance 

for ammonia, R123, n-Pentane and PF5050 as the working fluid. The ratio of the total 

heat exchanger area to net power output is considered as the objective function. 

Ammonia has minimum objective function and maximum geothermal water 

utilization (Net work / Geothermal water mass flow rate), but not necessarily maximum 

cycle efficiency. PF5050 and Ammonia have the worst performance from the exergy 

efficiency point of view. This means not considering the objective function, Ammonia 

cannot be a choice because of its low ORC cycle and exergy efficiency.   
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The fluids, n-Pentane and R123, have better cycle efficiency than PF5050, 

although the latter has better physical and chemical characteristics compared to other 

fluids considered. 

Liu et al. (2004) examined the influence of various working fluids on the thermal 

efficiency and on the total heat-recovery efficiency of ORC for a waste heat recovery 

system. Finding a relation between the molecular structure of the fluid and its T-S vapor 

saturation line slope is one of the achievements of Liu and his coworkers’ study.  The 

results show that the presence of a hydrogen bond in certain molecules, such as water, 

ammonia, and ethanol results in wet fluids and is considered as inappropriate for ORC 

systems. The authors claim that although the thermal efficiency for working fluids with 

lower critical temperature is lower; the critical temperature of the fluid has not significant 

effect on the thermal efficiency of the cycle. An explanation for the contradiction 

between this conclusion and previous studies may lie on the use of a correlation (Watson 

relation) to calculate the vaporization enthalpy of the fluid by Liu and his coworkers 

(2004). The heat recovery efficiency is higher for higher inlet temperatures of the waste 

heat and higher critical temperature fluids. The effect of the heat source temperature 

profile on the system performance has been approved by the results of Liu and his 

coworkers’ study (2004). 

Thermal stability over the range of operating temperatures and a minimal 

degradation rate over time is the only criteria in preliminary selection of the working 

fluids for a given ORC in Prabha’s analysis (2006). 
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Benzene is the most thermally stable of the candidate working fluids. Next after 

Benzene is Toluene. Isobutane is a thermally stable fluid in Low temperature range. In 

this study the author concentrates on cascade solar ORCs. 

A regenerative cascade cycle with toluene as the topping fluid and butane as the 

bottoming fluid is the optimized solar ORC plant relative to Prabha’s study. 

A comparison between Toluene and some selected siloxanes for different 

superheating temperatures, condensation temperatures and recuperator’s efficiencies in a 

100 KW power ORC in the medium range temperature has been carried out by Delgado-

Torres and Garcia-Rodriguez (2007b). 

Direct solar vapor generation configuration of solar ORC has been analyzed and 

characterized with LS3 and IND300 Parabolic Trough Collector (PTC) models. The 

Parabolic Trough Collector has been depicted in Fig. 2.4. 

In the working fluid selection part D4, D5, MM and MD4M were considered 

from siloxanes. Then D5 and MD4M were discarded because of their low condensation 

pressure in the temperature range of 35-115 ºC. The ORC system with a vaporization 

temperature 10 to 15ºC lower than the critical temperature for each fluid has been 

simulated.   

In a 100 kW gross mechanical output solar ORC with identical condensation 

temperatures toluene presents the overall efficiency followed by D4 and MM. The 

difference between toluene and D4 and MM is particularly important if the regeneration 

process is not considered. 
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From the results obtained, isopentane is selected as the most suitable working 

fluid for the low temperature cycle since pentane and isopentane shows superior behavior 

but the normal boiling point of pentane is above 35ºC. 

It should be pointed out that the above discussion does not consider the difference 

or similarity of the thermal properties among the fluids.  

 

2.6 ORCs at Supercritical Region 

Karellas and Schuster (2008) studied the effects of using working fluids at their 

supercritical region on the ORC performance. The R-245fa was chosen as the working 

fluid for calculations. The authors found that in a high temperature ORC that employed 

exhaust gas at a temperature around 490 ºC, supercritical cycle achieved more than 9% 

relative efficiency gain with respect to the subcritical one. 

In the low temperature ORC with a geothermal heat source at temperatures 

between 80 ºC and 160 ºC supercritical cycle showed a different behavior. Two working 

fluids have been taken into consideration because of their critical points: the working 

fluids R134a and R227ea. In most cases the supercritical cycle has lower thermal 

efficiency than the subcritical one. The expansion in the turbine ends in the two-phase 

area, so no recuperator can be used. That is the reason why the thermal efficiency in these 

cases of supercritical parameters is much lower than the subcritical ones, in which a 

recuperator is used.  

Angelino et al. (2000) showed for a waste heat ORC that using toluene at its 

supercritical region increased recovered thermal power with respect to the subcritical 

cycle with no significant change in the cycle thermal efficiency. The Maximum 
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temperatures for subcritical and supercritical cycles were 308.6 °C and 342.1 °C 

respectively. 

Zhang et al. (2006) analyzed a novel solar energy-powered Rankine cycle for 

combined power and heat generation using supercritical carbon dioxide. Results show 

higher efficiency than conventional Rankine cycle with water at maximum temperatures 

between 32 ºC and 177.4 ºC but the efficiency is still low (less than 12%)) to be proper 

for practical power plants. 

 

2.7 Major Findings 

The above literatures on working fluids for Organic Rankine Cycles (ORCs) can 

be analyzed as below:   

In general, using supercritical cycles are only recommended for relatively high 

temperature cycles and for lower temperatures the first law efficiency of supercritical 

cycles are even lower than subcritical ones. In addition, saturation cycles have an 

advantage of being less expensive and involving simpler heat exchangers. 

It can be noticed from the survey that there is no specific category of fluids that 

satisfies all desirable characteristics for an ORC system. In the majority of papers no 

specific relation between thermodynamic properties and cycle performance can be 

recognized.  

For the better observation of the results in the literature, a number of fluids have 

been chosen and the most important characteristics of the fluids and the cycle have been 

summarized in Table 2.3. In this selection there are four linear hydrocarbons (Pentane, 

Hexane, Heptane, and Octane), two branched hydrocarbons (Isobutane and Isopentane), 
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two aromatic hydrocarbons (Benzene and Toluene) and four refrigerants (R218, 113, 

R123, and R236ea).  

 

The following findings can be illustrated: 

• The higher critical temperature allows setting the evaporation temperature at a 

higher level that leads to the higher efficiency of the cycle. 

• In the fluids of one category, at the fixed Teva and Tcon, the higher critical 

temperature results in higher pressure ratio but lower condensing pressure. 

• Fluids with higher pressure ratio in the cycle have higher vapor expansion 

ratio across the turbine as illustrated in Fig. 2.5. Thus the higher vapor 

expansion ratio is an undesirable subsequence of using high critical 

temperature fluid in a Rankine cycle. If for a small amount of work, a high 

vapor expansion ratio occurs across the turbine, supersonic flow problems, 

higher turbine size or greater number of stages are inevitable.  

• Generally, high efficiency ORCs are achievable by using hydrocarbons rather 

than refrigerants. It means hydrocarbons have a higher potential to produce 

power in a Rankine cycle than refrigerants because of their relatively high 

critical temperature.  But Hydrocarbons are more flammable in comparison 

with refrigerants. 

• The molecular complexity increases with the number of atoms in the molecule 

for homologous fluids. 

• In linear hydrocarbons fluids with higher number of atoms have higher critical 

and boiling temperatures, higher molecular complexity, and higher molecular 



 
30 

 
 

mass and higher efficiency.  As shown in Fig. 2.6, the variation of above 

mentioned parameters, excluding efficiency, is very close to linear with 

respect to the number of atoms in the molecule.  

• Except in linear hydrocarbons no relation between molecular mass and cycle 

efficiency can be recognized. 

• In hydrocarbons, acentric factor increases with their molecular complexity. 

Thus acentric factor can be used as an index to compare hydrocarbons’ 

wetness. 

• Molecular mass mostly is in inverse relation with vapor expansion ratio across 

the turbine. Therefore turbines in cycles using heavier fluids are smaller or 

have less number of stages. 

• Among refrigerants, fluids with higher critical temperature have higher 

normal boiling point and higher efficiency as demonstrated in Fig. 2.7.  

 

As different fluids show different pros and cons, fluid selection is completely 

dependent on the priorities in the project design. Hence, after preliminary selection of 

fluids by discarding chlorine containing and wet fluids, the optimization process gives us 

the final choice for better cycle performance. Second law efficiency and exergetic studies 

on ORCs have thus far drawn less attention by researchers. In general, there is no 

systematic procedure in the literature to compare capabilities of working fluids when they 

are employed in ORCs with similar working conditions. In chapter 3 a study to fill these 

gaps for the solar ORCs will be done. 
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Table 2.3 Summary of the most important characteristics of the fluids and cycle for selected fluids  

Fluid Isobutane Isopentane n-Pentane n-Hexane n-Heptane n-Octane 
Relative Vapor Density (air=1) 2 2.2 1.8 1.3 3.46 3.94 

NFPA,  
NPCA-HMIS 
Hazard Codes 

Health 1 1 1 1 1 0 
Flammability 4 4 4 3 3 3 

Instability 
/Reactivity 

0 0 0 0 0 0 

Flash Point (ºC) Flammable Gas < -51 - 49 -23.3 - 4 13 
Autoignition Temperature (ºC) 460 420 309 225 285 220 

Critical Temperature (ºC) 134.7 187.2 196.6 234.7 267.0 296.2 
Boiling Temperature (ºC) -12 28 36 69 98 126 

Reduced Teva 0.981 0.981 0.983 0.989 0.988 0.989 
Specific Vaporization Heat 

at Th (kJ/kg) 
116.41 111.45 109.75 85.65 80.95 75.01 

Vaporization Heat Ratio 
 at Th (%) 

30.2 25.2 23.9 17.8 15.9 15.4 

Vapor Expansion Ratio 13 49 52 180 650 627 
Molecular Complexity 1.14 7.20 6.5 11.6 17.6 23.5 

Molecular Mass (kg/kmol) 58.1 72.2 72.2 86.2 100.2 114.2 
Acentric Factor 0.185 0.2296 0.251 0.299 0.349 0.393 

Reported Condition 

Saturated 
regenerative 

cycle 
Th=126.9ºC 
Ph=32 bar 
Tl=29.9 ºC 

Pl=4 bar 

Saturated 
regenerative 

cycle 
Th=178.5ºC 
Ph=30 bar 
Tl=26.8 ºC 
Pl=1 bar 

Saturated 
regenerative 

cycle 
Th=188.7ºC 
Ph=30 bar 
Tl=35.9 ºC 

Pl=1 bar 

Saturated 
regenerativ

e cycle 
Th=229ºC 
Ph=28 bar 
Tl=34.4 ºC 
Pl=0.3 bar 

Saturated 
regenerative 

cycle 
Th=260.3 ºC 

Ph=25 bar 
Tl=28.7 ºC 

Pl=0.075 bar 

Saturated 
regenerative 

cycle 
Th=289.7 ºC 
Ph=23 bar 
Tl=52.2 ºC 

Pl=0.075 bar 

Efficiency at Reported 
Condition 

13.94 27.2 16.74 29.28 29.67 33.75 
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Table 2.3 Summary of the most important characteristics of the fluids and cycle for selected fluids (Continued) 

Fluid Benzene Toluene R218 R113 R123 R236ea 
Relative Vapor Density (air=1) 1.2 3.1 6.65 2.9 5.3 N/A 

NFPA,  
NPCA-HMIS 
Hazard Codes 

Health 2 2 1 1 2 N/A 
Flammability 3 3 0 0 1 N/A 

Instability 
/Reactivity 

0 0 0 1 0 N/A 

Flash Point (ºC) -11 4 N/A N/A N/A N/A 
Autoignition Temperature (ºC) 498 480 N/A 680 770 N/A 

Critical Temperature (ºC) 288.9 318.6 71.9 214.1 183.7 139.3 
Boiling Temperature (ºC) 80 111 -36.8 48 27.8 6.2 

Reduced Teva 0.960 0.983 0.990 0.958 0.926 0.983 
Specific Vaporization Heat 

at Th (kJ/kg) 
166.06 104.34 25.55 64.53 93.91 59.20 

Vaporization Heat Ratio 
 at Th (%) 

24.8 18.3 31.1 28.5 42.9 32.12 

Vapor Expansion Ratio 195.5 841.9 4.0 43.9 16.3 14.8 
Molecular Complexity 4.22 8.91 4.68 6.59 1.68 3.02 

Molecular Mass (kg/kmol) 78.1 92.1 188 187.4 152.9 152.0 
Acentric Factor 0.2092 0.266 0.317 0.25253 0.28192 0.3794 

Reported Condition 

Saturated basic 
cycle 

 
Th=266.5ºC 
Ph=37 bar 
Tl=40.0 ºC 
Pl=0.25 bar 

Saturated 
regenerative 

cycle 
Th=308.4ºC 
Ph=35 bar 
Tl=39.5 ºC 
Pl=0.075bar 

Saturated 
regenerative 

cycle 
Th=68.6ºC 
Ph=25 bar 
Tl=29.9 ºC 
Pl=10 bar 

Saturated 
basic cycle 
Th=193.5º

C 
Ph=25 bar 
Tl=40.0 ºC 
Pl=0.78 bar 

Saturated 
basic cycle 

 
Th=150.0 ºC 
Ph=21 bar 
Tl=40 ºC 

Pl=1.54 bar 

Saturated 
regenerative 

cycle  
Th=132.2 ºC 

Ph=30 bar 
Tl=36.4 ºC 
Pl=3.00 bar 

Efficiency at Reported 
Condition 

24.5 29.43 4.6 18.2 15.9 13.67 



 

33 
 

 

Fig. 2.5 Pressure ratios and vapor expansion ratio across the turbine for selected fluids 
 

 

 

 

 

Fig. 2.6   Variation of the fluid and cycle characteristics for linear hydrocarbons 
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Fig. 2.7   Variation of the critical temperature, boiling temperature and efficiency for 
refrigerants 
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CHAPTER 3 

A PROCEDURE TO SELECT WORKING FLUIDS FOR SOLAR ORGANIC 

RANKINE CYCLES 

 

3.1. Introduction 

Previous investigations on the ORC using solar heat are very limited and often 

emphasize the optimized cycle that results in different working conditions for different 

working fluids. The best performance of each fluid in a Rankine cycle has not been 

compared under the relatively same benchmark conditions for solar heat applications in 

previous studies. The employment of a specific solar collector in a specific geographic 

region often limits its temperature range. Therefore the highest allowed temperature for a 

working fluid in the ORC is not necessarily achievable through a solar heat source. The 

main purpose of this study is to develop a meaningful procedure to compare capabilities 

of working fluids when they are employed in solar Rankine cycles with similar working 

conditions.  

The procedure is presented based on working fluids molecular components, 

temperature-entropy diagram and fluid effects on  thermal efficiency, net power 

generated, vapor expansion ratio, and exergy efficiency of the Rankine cycle. Refprop 8.0 

database has been considered as the reference in this study. This program, developed by 

the National Institute of Standards and Technology, provides tables and plots of the 

thermodynamic and transport properties of industrially important fluids and their 

mixtures with an emphasis on refrigerants and hydrocarbons. Refprop 8.0 consists of 85 

pure fluids and 55 predefined mixtures. Among them 63 pure fluids and 54 predefined 
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mixtures are organic. R508A and R508B have very low critical temperatures. Therefore 

they are not proper to be employed in a Rankine cycle. A total of 115 pure fluids and 

predefined mixtures from the Refprop 8.0 database are investigated. 

Irreversibility in solar thermal systems is relatively high because of the high 

temperature difference between the solar collector and the apparent sun temperature. 

Important factors that could lead to irreversibility reduction of the solar ORC by collector 

efficiency improvement and using regenerative cycles are investigated at the last section 

of this chapter. 

 

3.2. Preliminary Selection 

 In the preliminary selection Chlorine included fluids and wet fluids should be 

discarded. Chlorine containing fluids are not Ozone-safe and have been banned by 

Montreal protocol and thus should be avoided in new systems. Among pure fluids of the 

Refprop 8.0 database, 12 fluids are chlorine included. Six of them are CFCs and six fluids 

are HCFCs. Among predefined mixtures, there are 28 chlorine included fluids. 23 

mixtures are CFC included; three mixtures are HCFC included and two of them include 

both CFC and HCFC.  

Depending on the slope of the temperature-entropy curve to be infinity, positive, 

or negative, working fluids can be classified into isentropic, dry, or wet respectively. Dry 

or isentropic working fluids are more appropriate for ORC systems. This is because dry 

or isentropic fluids are superheated after isentropic expansion. Therefore there is no 

concern for existing liquid droplets at the turbine outlet. The slope of the temperature-

entropy curve for some wet fluids is very close to infinity. Furthermore the isentropic 
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efficiency of turbine is less than 100% in the practical cycle. Subsequently the turbine 

outlet will be in the dry region that means employing such a fluid causes no problem for 

the turbine. There are four wet fluids among the final preselected fluids. Table 3.1 shows 

the critical properties of preselected organic fluids with their critical properties. 

 

3.3. Thermodynamic cycle  

The heat absorption process in an ORC may end in a saturated vapor state or 

superheated vapor state. Generally, superheating in an ORC increases the thermal 

efficiency of the cycle with a very low slope but decreases the exergy efficiency of the 

cycle. Then superheated cycles are never recommended unless in order to gain more 

power at the expense of losing efficiency. In addition, increasing the maximum 

temperature of the collector in solar cycles increases the heat loss of it. Because of these 

reasons the saturated Rankine cycle has been investigated in this study instead of a 

superheated cycle. 

  Assumptions of the analysis are as follows: steady state condition; no pressure 

drop in heat exchangers and connecting pipes, and isentropic efficiencies of the pump and 

the turbine are equal to 0.8. 

During the next step we should determine the practical pressure and temperature 

limits of the cycle. As the higher pressure ratio leads to a higher efficiency, we prefer to 

expand higher and lower pressure limits of the cycle, but there are always some practical 

restrictions. 
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Table 3.1 Preselected working fluids 

Working fluid Alternative 
name(s) 

Pcr 
(MPa) 

Tcr 

(°C) 
Acetone* - 4.700 234.9 
Benzene - 4.894 288.9 
Butane - 3.796 152.0 
Butene - 4.005 146.1 
Perfluorobutane C4F10 2.323 113.2 
Perfuoropentane C5F12 2.045 147.4 
Cis-butene - 4.225 162.6 
Cyclohexane - 4.075 280.5 
Decane - 2.103 344.5 
Dodecane - 1.817 384.9 
Difluomethane R32, E134 4.228 147.1 
Heptane - 2.736 267.0 
Hexane - 3.034 234.7 
Isobutane - 3.64 134.7 
Isobutene - 4.010 144.9 
Isohexane - 3.040 224.5 
Isopentane - 3.396 187.2 
Neopentane - 3.196 160.6 
Nonane - 2.281 321.4 
Octane - 2.497 296.2 
Pentane - 3.370 196.5 
Octafluoropropane R218 2.640 71.9 
1,1,1,2,3,3,3-Heptafluoropropane R-227ea    2.999 102.8 
1,1,1,2,3,3-Hexafluoropropane R-236ea 3.502 139.3 
1,1,1,3,3,3-Hexafluoropropane R-236fa 3.200 124.9 
1,1,2,2,3-Pentafluoropropane R-245ca    3.925 174.42 
1,1,1,3,3-Pentafluoropropane R-245fa     3.640 154.0 
1,1,1,3,3-Pentafluorobutane R-365mfc  3.240 186.75 
Octafluorocyclobutane R-C318 2.777 115.2 
Toluene - 4.126 318.6 
Trans-butene - 4.027 155.5 
R413Aa - 4.022 96.6 
R423Aa - 3.563 99.1 
R426Aa - 4.088 99.8 

                   * Wet fluids 
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Near critical pressure, small changes in temperature are equivalent to large 

changes in pressure that make the system unstable. Therefore a reasonable distance 

between the higher limit of the cycle and the critical point of the fluid should be 

considered. But there is no unique interpretation of the reasonable distance from critical 

point in the literature. Drescher and Bruggemann (2007) suggested setting the higher 

pressure limit of the cycle 0.1 MPa lower than critical pressure. Delgado-Torres and 

Garcia-Rodriguez (2007b) considered the higher temperature of the cycle to be 10-15 °C 

lower than critical temperature. Because of the difference between the critical properties 

of working fluids, a fixed pressure or temperature interval near the critical point of the 

fluid may not be a consistent way to determine the distance between the higher limit of 

the cycle and the critical point of the fluid. For example a 15 °C temperature difference 

next to the critical point of Dodecane is equivalent to a 0.332 MPa pressure difference, 

while for R-227ea it is equivalent to 0.800 MPa. 

The slope of the temperature –entropy diagram has been used to determine the 

higher limit of the Rankine cycle in this study. To avoid the presence of liquid in every 

single section of the turbine, the highest input pressure of the turbine is the pressure that 

the slope of temperature-entropy diagram is equal to infinity at that point (point “A” in 

Fig. 3.1). Calculating the higher pressure and temperature limit of the cycle based on this 

criterion shows that for most of fluids a large capacity of producing power is neglected. 

For example for R32 and Cis-butene, point “A” is 45.1°C and 44.6°C lower than their 

own critical temperature respectively. 
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Fig. 3.1    Higher pressure limit of the ORC 
 
 

To modify this criterion, increasing the higher limit of the cycle in expense of 

liquid droplet presence across a small portion of the turbine process is proposed. As has 

been shown in Fig. 3.1, by increasing the higher pressure limit of the cycle from Ph1 to 

Ph2 liquid droplets present in the turbine across BD. The maximum mass fraction of 

liquid in this process belongs to point C. In the modified method the highest allowed 

mass fraction of the liquid across the turbine is restricted to one percent. In this method 

for both R32 and Cis-butene, higher pressure limit of the cycles are 25°C lower than their 

own critical temperature. 

Condensing temperature has been set to 25°C in this study. If necessary, the 

condenser temperature is raised to make the condenser pressure equal to 5 kPa, the lowest 

pressure accepted for the condenser. Table 3.2 shows the practical higher and lower limit 
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of the cycle for each working fluid. Decane, Dodecane, Octane, and Nonane are removed 

from the list because of their high condensing temperatures.  

Table 3.2 Practical limits of the ORC for preselected working fluids 

Working fluid Maximum
Peva 

(MPa) 

Maximum
Teva 

(°C) 

Minimum
Pcon 

(kPa) 

Minimum 
Tcon 

(°C) 
Acetone 3.379 213 30.7 25 
Benzene 4.067 274 12.7 25 
Butane 3.013 138 234.7 25 
Butene 2.808 125 297.2 25 
C4F10 2.057 107 268.3 25 
C5F12 1.803 141 84.7 25 
Cis-butene 3.035 142 213.7 25 
Cyclohexane 3.665 272 13.0 25 
Decane 1.896 337 5.1 85 
Dodecane 1.723 381 5.1 121 
E134 2.747 125 212.8 25 
Heptane 2.410 258 6.1 25 
Hexane 2.680 226 20.2 25 
Isobutane 2.890 121 350.5 25 
Isobutene 2.877 125 305.0 25 
Isohexane 2.682 216 28.2 25 
Isopentane 2.887 177 91.8 25 
Neopentane 2.788 152 171.4 25 
Nonane 2.059 314 5.0 65 
Octane 2.200 287 5.0 44 
Pentane 2.865 186 68.3 25 
R218 1.899 57 867.5 25 
R-227ea     2.352 91 455.2 25 
R-236ea 2.955 132 205.9 25 
R-236fa 2.288 108 272.4 25 
R-245ca     2.951 158 100.8 25 
R-245fa      2.817 140 149.4 25 
R-365mfc   2.712 177 53.4 25 
R-C318 2.314 106 312.5 25 
Toluene 3.576 307 5.1 31 
Trans-butene 2.906 136 234.1 25 
R413A 1.839 59 720.2 25 
R423A 2.966 90 598.0 25 
R426A 1.562 55 687.8 25 
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3.4. Analysis  

The equations used to calculate the different parameters to evaluate the 

performance of the cycle are presented in this section. The first law of thermodynamics is 

applied to the individual components of the cycle and the second law of thermodynamics 

is applied to the whole cycle to determine heat transfer, work input and output, and 

irreversibility of the cycle. The first law of thermodynamics for steady state steady flow 

processes when potential and kinetic energy changes are negligible can be expressed as: 

 ܳ െܹ ൌ ሶ݉ (݄௢௨௧ െ ݄௜௡)																																																																																																											(3.1) 
 

where Q, W, ሶ݉ , hout and hin are the heat transfer rate, the power exchange, the mass flow 

rate and outgoing and incoming flow enthalpies respectively.                                               

The irreversibility rate for a cycle in steady state steady flow condition can be 

expressed as: ܮ௘௫ ൌ ଴ܶ ௚ܵ௘௡ ൌ ଴ܶ ሶ݉ ෍(ݍ௝ ௝ܶൗ ) ൌ ௜௡ݔܧ െ  (3.2)																																																															௢௨௧ݔܧ
where Lex, T0, Sgen, Exin and Exout are the irreversibility (exergy loss), the entropy 

generation rate and incoming and outgoing exergy flows respectively. qj is the heat 

transfer per unit mass and Tj is the temperature of the jth component of the cycle. 

 

3.4.1 Basic cycle 

Fig. 3.2 shows a general representation of the actual saturated basic Rankine cycle 

in the T-s diagram considering assumptions that were mentioned in the previous section. 
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States 1a and 3a are the actual exit states of the pump and the turbine, respectively, and 

1s and 3s are the corresponding states for the isentropic case. Heat transfer and power in 

each component of the cycle are calculated by applying the first law of thermodynamics 

on them. 

  

 

 

 

 

 

 

 

Fig. 3.2    Actual saturated basic ORC 
 

Evaporator: 

௘௩௔ݍ  ൌ ݄ଶ െ ݄ଵ௔                                                                                                           (3.3) 
Turbine/ Expander:                                              ݓ௧ ൌ ݄ଶ െ ݄ଷ௔                                                                                                               (3.4) 
Condenser:                                                        ݍ௖௢௡ ൌ ݄ଷ௔ െ ݄ସ                                                                                                            (3.5)	
Pump:   ݓ௣ ൌ ݄ଵ௔ െ ݄ସ               (3.6)		
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where qeva, wt, qcon, and wp are absolute values of heat transfer in evaporator, turbine 

power, heat transfer in condenser and pump power respectively. 

The thermal efficiency of the cycle is: 

 

௧௛ߟ ൌ (݄ଶ െ ݄ଷ௔) െ (݄ଵ௔ െ ݄ସ)	݄ଶ െ ݄ଵ௔ 																																																																																													(3.7) 
                                                                                                                                                                        

The procedure to calculate required enthalpies has been depicted in Fig. 3.3.  

 

 

 

 

 

 

Fig. 3.3   Enthalpy calculation procedure in a saturated basic ORC  
 

 

Heat transfer components to/from a solar ORC have been shown in Fig. 3.4. The 

solar collector receives solar radiation at the rate Q*. Q0 and Qcon represent the solar 

collector ambient heat loss and heat rejection through the condenser respectively. Eq. 

(3.2) can be rewritten as: 

 

௚ܵ௘௡ ൌ ܳ଴଴ܶ ൅ ܳ௖௢௡௅ܶ െ ܳ∗ܶ∗ 																																																																																																													(3.8) 
        

݄ସ ൌ ݄௙	ܽݐ	 ௖ܶ௢௡ 

ଵ௦ݏ ൌ 	ݐܽ	௙ݏ=ସݏ ௖ܶ௢௡ ݄ଵ௦ ൌ ݄( ௘ܲ௩௔,  (ଵ௦ݏ
௦,௣ߟ ൌ ௪೛,ೞ௪೛,ೌ ൌ ௛భೞି௛ర௛భೌି௛ర       →				 ݄ଵ௔ ൌ ௛భೞି௛రఎೞ,೛ ൅ ݄ସ 

݄ଶ ൌ ݄௚	ܽݐ	 ௘ܶ௩௔ 

ଷ௦ݏ ൌ 	ݐܽ	௚ݏ=ଶݏ ௘ܶ௩௔ ݄ଷ௦ ൌ ݄( ௖ܲ௢௡,  (ଷ௦ݏ
௦,௧ߟ ൌ ௪೟,ೌ௪೟,ೞ ൌ ௛మି௛యೌ௛మି௛యೞ      →		 ݄ଷ௔ ൌ ݄ଶ െ ௦,௧(݄ଶߟ െ ݄ଷ௦) 
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where T*
 is the apparent sun temperature as an exergy source, T0 is the ambient 

temperature , and TL is the temperature of the heat carrying fluid in condenser. In this 

study the value suggested by Petela for T*
 is adopted that is approximately equal to ¾ Ts, 

where Ts is the apparent black body temperature of the sun, which is about 6000K. 

Therefore, the T* considered here is 4500 K.  

 

 

 

 

 

 

 

 

 

Fig. 3.4   Heat transfer components to/from a solar ORC 
 

 

Assuming that the temperature difference between the heat carrying fluid and the 

condenser is ∆T yields 

 		 ௅ܶ ൌ ௖ܶ௢௡ െ ∆ܶ                                                                                                            (3.9)	
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∆T has been considered 15°C in this analysis. The net heat absorption by the 

evaporator (Qeva) will be the difference between the solar radiation received by the 

collector (Q*) and the solar collector ambient heat loss (Q0). 

 ܳ௘௩௔ ൌ ܳ∗ െ ܳ଴                                                                                                          (3.10) 
 

The solar collector’s efficiency ηc is defined as that fraction of the solar radiation 

which reaches the receiver and is absorbed there: 

 

௖ߟ ൌ ܳ௘௩௔ܳ∗ 																																																																																																																																			(3.11) 
   

By using Eqs. (3.9), (3.10), and (3.11), Eq. (3.8) can be written as: 

 

௚ܵ௘௡ ൌ ܳ௘௩௔ߟ௖ ൤1 െ ௖଴ܶߟ െ 1ܶ∗൨ ൅ ܳ௖௢௡௅ܶ 																																																																																						(3.12) 
                                                                  

The only parameter that we should determine to fulfill calculations is the solar 

collector efficiency. Every single type of a solar collector has its own formula to calculate 

its efficiency that is a function of the geometry of the collector and the thermo physical 

properties of the materials that have been used to build it.  In this analysis the Parabolic 

Trough Collectors (PTCs) suggested by Delgado-Torres and Garcia-Rodriguez (2007a) 

are adopted: LS-3 and IND300.  
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The LS-3 model is one of the biggest collectors within the family of commercial 

PTCs that has been used in some of the largest solar energy plants built in Mojave Desert 

in California. It was also the PTC chosen to demonstrate the technical feasibility of the 

direct steam generation process within the scope of Direct Solar Steam (DISS) project. 

The efficiency of the LS-3 PTC is given by the following expression: 

 

)௅ௌଷߟ തܶ௔௕௦, ,௕ܩ ߮) ൌ .	௢௣௧,଴ߟ .(߮)ܭ ௘ܨ െ ௅ܷௌ௔௕௦ܥ௚ 	 . ( തܶ௔௕௦ െ ଴ܶ)ܩ௕ 																																													(3.13) 
                           

where ηopt,0 is the collector efficiency at a zero incidence angle, ߮ is the angle of 

incidence of the direct solar radiation, K(߮) is the incidence angle modifier, Fe is the dirt 

degree of the collector mirrors, ௅ܷ௔௕௦ is the thermal loss coefficient per unit area of the 

absorber tube, Cg is the geometric concentration ratio, തܶ௔௕௦ is the absorber’s tube average 

temperature, T0 is the ambient temperature and Gb is the direct solar irradiance. 

The thermal loss coefficient per unit area of the tube is given by Eq. (3.14). 

 

௅ܷ௦௔௕௦ ൌ ܽ ൅ ܾ( തܶ௔௕௦ െ ଴ܶ) ൅ ܿ( തܶ௔௕௦ െ ଴ܶ)ଶ 				඄ܹ݉ଶ.  (3.14)																																																					ඈܭ
 

The values for the coefficients a, b, and c are shown in Table 3.3. The rest of the 

parameters in Eq. (3.13) are set as follows: ηopt,0 =0.77, K(߮)=1, Fe=0.967, Cg=26.2, 

T0=300K, and Gb=850 W/m2. In this analysis it has been assumed that the average 
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temperature of the working fluid in the collector and the average temperature of the 

absorber’s tube are the same. 

 

Table 3.3 Values of the coefficients for the thermal loss coefficient of the LS-3 PTC 
absorber tube [Delgado-Torres and Garcia-Rodriguez (2007a)] 

 a b c തܶ௔௕௦ ൏ 200Ԩ 0.68726 0.002 2.6 x 10-5 200Ԩ ൏ തܶ௔௕௦ ൏ 300Ԩ 1.43324 -0.01 4.6 x 10-5 തܶ௔௕௦ ൐ 300Ԩ 2.89547 -0.016 6.5 x 10-5 

 
 
 

The IND300 model is a smaller PTC in comparison to the LS-3 made by the 

Israeli company Solel Solar Systems. The IND300 PTC’s efficiency is given by Eq. 

(3.15). 

 
ூே஽ଷ଴଴ߟ  ൌ 0.733 െ 0.238ቆതܶ௪௙ െ ଴ܶܩ௕ ቇ െ ௕ܩ	0.0013 ቆ തܶ௪௙ െ ଴ܶܩ௕ ቇଶ 																														(3.15) 
                                                   

where തܶ௪௙is the average temperature of the working fluid in the collector.T0 and Gb for 

IND300 PTC have the same value for the LS-3 model. 

 

The exergy efficiency of the cycle is defined by: 

 

௘௫ߟ ൌ ݈݀݁݅݌݌ݑݏ	ݕ݃ݎ݁ݔܧ݀݁ݎ݁ݒ݋ܿ݁ݎ	ݕ݃ݎ݁ݔܧ ൌ ௡ܹ௘௧௥ܹ௘௩ ൌ ௡ܹ௘௧௡ܹ௘௧ ൅ ௘௫ܮ ൌ ௡ܹ௘௧௡ܹ௘௧ ൅ ଴ܶ ௚ܵ௘௡ 																										(3.16) 
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where Wnet  is the net power output of the cycle. 

 

3.4.2 Regenerative cycle 

To reduce the high irreversibility of the solar ORC, regenerative ORC with 

regeneration efficiency εreg = 0.8 has been investigated in this study. Fig. 3.5 shows a 

general representation of the actual saturated regenerative Rankine cycle in the T-s 

diagram. Regeneration efficiency is expressed by: 

 

௥௘௚ߝ ൌ ݄ହ െ ݄ଵ௔݄ହᇱ െ ݄ଵ௔ 																																																																																																																							(3.17) 
                                                                                           

 

 

 

 

 

 

 

 

Fig. 3.5    Actual saturated regenerative ORC 
 

 
Regeneration has no effect on the turbine and pump power but heat transfer 
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the basic cycle. Applying the first law of thermodynamics on the evaporator and 

condenser processes yields: 

 

Evaporator: ݍ௘௩௔ ൌ 	݄ଶ െ ݄ହ                                                                                                          	(3.18) 
Condenser:                                                        ݍ௖௢௡ ൌ ݄଺ െ ݄ସ                                                                                                           (3.19) 
 

The procedure to calculate enthalpies of common states with basic cycle (4, 1a, 2, 

and 3a) are exactly the same. The enthalpy calculation procedure of states 5 and 6 has 

been shown in Fig. 3.6. It should be noticed that in this procedure it is assumed that the 

regenerator is well insulated and changes in kinetic and potential energies are negligible. 

For exergy efficiency calculations in the regenerative ORC, the same equations of the 

basic ORC are applicable. 

 

 

 

 

 

 

Fig. 3.6   Supplementary enthalpy calculation procedure in a saturated regenerative ORC  
 
 

 

ହܶᇱ ൌ ଷܶ௔ ൌ ܶ( ௖ܲ௢௡, ݄ଷ௔)݄ହᇱ ൌ ݄( ௘ܲ௩௔, ହܶᇱ) 

݄ଷ௔ െ ݄଺ ൌ ݄ହ -݄ଵ௔      →  ݄଺ ൌ ݄ଷ௔ െ ݄ହ +݄ଵ௔       

௥௘௚ߝ ൌ ௛ఱି௛భೌ௛ఱᇲି௛భೌ       →  ݄ହ ൌ ݄ଵ௔ ൅ ௥௘௚(݄ହᇲߝ െ ݄ଵ௔) 
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3.5. Results and discussion 

In this section four main subjects will be discussed. The first subject is to choose 

dominant factors influencing the performance of an ORC. The second is the calculation 

of maximum practical thermal efficiency of an ORC through employing each working 

fluid. The third subject is to complete the comparing procedure of working fluids, started 

at section 2, based on their effects on the performance of the ORC. The fourth subject 

focuses on investigation of different methods to reduce irreversibility of the ORC. 

 

3.5.1. Dominant factors influencing the performance of an ORC 

The first factor which is always the center of attention among different factors in a 

Rankine cycle is the thermal efficiency or the first law efficiency of the cycle. For a 

specific working fluid and particular amount of input heat rate the higher thermal 

efficiency leads to the higher net power output. As we want to compare different working 

fluids in the Rankine cycle, the net power output should be considered along with the 

thermal efficiency.  

If for a small amount of work, a high vapor expansion ratio occurs across the 

turbine (VER), supersonic flow problems, higher turbine size or greater number of stages 

are inevitable. Thus the high vapor expansion ratio across the turbine is an undesirable 

factor in an ORC. Exergy efficiency or second law efficiency is the factor which helps us 

to choose working fluids that recover a greater portion of input exergy of the cycle. 

Consequently; thermal efficiency, net power output, vapor expansion ratio across 

the turbine, and exergy efficiency of the cycle are the most important factors to be 

considered as the performance improvement of an ORC. 
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3.5.2. Maximum thermal efficiency of the ORC for different working fluids 

Maximum practical thermal efficiency and corresponding performance factors for 

preselected working fluids are calculated in this section. Because of the increasing trend 

of ηth, wnet, VER, and ηex with Teva in all fluids, their maximum happen at maximum Teva. 

Figure 3.7 shows this increasing trend for R-236ea as an example. Calculation results for 

best possible performance of each working fluid in an ORC can be seen in Table 3.4. 

Results have been sorted from smallest to largest maximum Teva.  

 
 

                      
 

                              (a)                                                                           (b) 
 

Fig. 3.7 Variation of performance factors with respect to Teva of an ORC employing R-
236ea as working fluid (a) VER and wnet (b) ηth and ηex 

 
 

Results shown in Table 3.4 confirm conclusions of chapter 2. The higher critical 

temperature allows setting the evaporation temperature at a higher level that leads to the 
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Table 3.4 Maximum delivery of an ORC employing different working fluids  

Working 
fluid 

Maximum 
Teva 

(°C) 

Minimum 
Tcon 

(°C) 

Maximum 
ηth  
(%) 

Maximum 
wnet 

(KJ/Kg) 

Maximum 
VER 

Maximum 
ηex for 

IND300 
(%) 

Maximum 
ηex for 
LS-3 
(%) 

R426A 55 25 6.37 11.92 2.35 4.74 4.86 
R218 57 25 5.73 5.03 2.86 4.28 4.38 
R413A 59 25 7.05 12.60 2.66 5.25 5.38 
R423A 90 25 10.28 16.50 6.93 7.59 7.85 
R-227ea 91 25 10.11 14.06 7.65 7.49 7.74 
R-C318 106 25 11.22 16.20 11.74 8.31 8.62 
C4F10 107 25 10.53 13.87 13.47 7.85 8.13 
R-236fa 108 25 12.31 22.93 12.02 9.07 9.43 
Isobutane 121 25 13.78 58.08 11.73 10.10 10.55 
Butene 125 25 14.78 66.53 12.08 8.62 8.94 
Isobutene 125 25 14.65 66.27 12.35 10.70 11.20 
E134 125 25 14.79 37.08 16.29 10.80 11.31 
R-236ea 132 25 14.29 30.40 21.60 10.48 10.97 
Trans-
butene 

 
136 

 
25 15.84 77.05 16.17 11.53 12.11 

Butane 138 25 15.48 74.78 17.61 11.30 11.86 
R-245fa 140 25 15.57 40.04 26.50 11.37 11.94 
C5F12 141 25 12.37 21.31 38.19 9.28 9.71 
Cis-butene 142 25 16.50 82.09 25.91 11.98 12.62 
Neopentane 152 25 15.52 71.78 26.90 11.40 11.99 
R-245ca 158 25 16.96 48.20 43.12 12.34 13.03 
Isopentane 177 25 17.75 97.10 50.62 12.94 13.75 
R-365mfc 177 25 17.55 56.28 84.27 12.82 13.61 
Pentane 186 25 18.51 108.12 67.40 13.45 14.34 
Acetone 213 25 22.54 155.44 128.27 15.87 17.24 
Isohexane 216 25 19.27 123.32 169.34 14.07 15.17 
Hexane 226 25 20.08 135.54 232.50 14.59 15.81 
Heptane 258 25 20.81 158.24 720.95 15.14 16.64 
Cyclohexane 272 25 23.49 170.22 508.92 16.71 18.48 
Benzene 274 25 25.79 179.00 428.71 17.88 19.92 
Toluene 307 31 25.60 190.82 1106.28 17.87 20.09 

 
 

a higher potential to produce power in a Rankine cycle than refrigerants because of their 

relatively high critical temperature. On the other hand hydrocarbons are more flammable 

in comparison to refrigerants.  These results add to previous conclusions that the exergy 

efficiency has almost the same trend of thermal efficiency with respect to the critical 
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temperature of the fluid. In general, the same as thermal efficiency, the exergy efficiency 

of refrigerants are lower than hydrocarbons.  

 

3.5.3. Comparing procedure of preselected working fluids 

A specific solar collector in a region with a definite direct solar irradiance can 

maintain temperatures within restricted limits. Therefore the highest allowed temperature 

for a working fluid in the ORC is not necessarily achievable through solar heat source. 

Thus    the    capabilities    of    different working fluids should be compared in ORCs 

with similar collector temperatures. Solar collectors can be categorized based on the 

temperature level that they can maintain. Generally there are three temperature level solar 

collectors:  

(1) Low temperature solar collectors: with the output temperature less than 85 °C. 

Flat plate solar collectors are in this category. 

(2) Medium temperature solar collectors: with the output temperature below 130-

150 °C. Most evacuated tube collectors are in this category. 

(3) High temperature solar collectors: with the output temperature higher than 150 

°C. Parabolic trough collectors are mainly in this category. 

High temperature solar collectors are suitable for large scale power generation 

applications. In this section a comparison between performance factors of ORCs 

employing different working fluids at Teva=85 °C and 130°C will be made. Figures (3.8) 

to (3.13) show variation of performance factors of the ORC for different working fluids 

at two evaporating temperatures. 
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As it can be observed for almost all fluids in both evaporating temperatures, the 

thermal efficiency and exergy efficiency of the ORC have the same trend with respect to 

changing working fluids. Therefore the thermal efficiency and exergy efficiency of the 

cycle play the same role in selecting the proper working fluid. 

The main criterion to select working fluid is considered the cycle thermal/exergy 

efficiency in this study. Among fluids with the same order of the cycle thermal/exergy 

efficiency, the net power output of the ORC is a determinant factor to select the working 

fluid. The third step will be eliminating fluids with a high VER at the close level of 

efficiencies and wnet. 

As maximum thermal efficiency calculations show and Figures (3.8) to (3.13) 

confirm, refrigerants have a lower capacity to produce power through the ORC. On the 

other hand refrigerants are less flammable and in some cases less hazardous than non-

refrigerant fluids.  Therefore fluids can be analyzed in two different categories: 

refrigerants and non-refrigerants.   

Figures (3.8) and (3.9) show that among refrigerants, R245fa, R265mfc, and 

R245ca provide higher cycle efficiency and wnet. R365mfc have a higher VER in the 

cycle but almost the same cycle efficiency and wnet as shown in Fig. (3.10). Thus the final 

refrigerants selected at medium temperature level (Teva=130°C) will be R245fa and 

R245ca. 

For non-refrigerants, at the medium temperature level, Toluene, Cyclohexane, 

Acetone, and Benzene provide a higher cycle efficiency as illustrated in Fig. (3.8). 

Among them, Acetone and Benzene produce more wnet as can be recognized in Fig. (3.9). 

Fig. (3.10) shows that Benzene has higher VER in the cycle, but because of higher cycle 
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efficiency with respect to Acetone, we will keep it in our final fluids’ list.  According to 

Fig (3.8) and (3.9), there are eight non-refrigerant fluids, cycle efficiency and wnet of 

which are about the same level. However their cycle efficiency and power level is lower 

than cycle efficiency and power level of the other four non-refrigerant fluids mentioned 

above, it is good to find the most suitable fluids out of this group to add to the final 

fluids’ list. Fig. (3.10) shows that from this group of eight, Butane , Isopentane, Trans-

butene, and Cis-butene have a lower VER in the cycle, so they can be in the final list as 

medium performance non-refrigerants. 

 

 

Fig. 3.8 Thermal and exregy efficiency of the ORC for different working fluids at 
Teva=130°C 
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Fig. 3.9 Net output power of the ORC for different working fluids at Teva=130°C 
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(b) Acetone and Benzene in the high performance non-refrigerant group 

(c) Butane, Isopntane, Trans-butene, and Cis-butene in the medium performance 

non-refrigerant group 
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temperature level analysis. The only liquid that is included in the medium temperature 

analysis but it is not included in the low temperature analysis is Acetone. Acetone is a 

wet fluid whose slope of temperature-entropy curve is very close to infinity. The 

isentropic efficiency of the turbine is assumed 80% in this study. With this amount of 

isentropic efficiency the fluid across the turbine falls into the wet region for Teva less than 

124°C. This means that for Acetone in addition to the higher limit, there is lower limit for 

Teva. 

 

 

Fig. 3.10 Vapor expansion ratio in the ORC for different working fluids at Teva=130°C 
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Fig. (3.11) and (3.12) show that among refrigerants R245fa, R365mfc, E134, and 

R245ca provide a higher cycle efficiency and wnet. R365mfc has a higher VER but almost 

the same cycle efficiency and wnet as shown in Fig. (3.13). Thus the final refrigerants 

selected at the low temperature level (Teva=85°C) will be R245fa, E134, and R245ca. 

 For non-refrigerants at the low temperature level Toluene, Cyclohexane and 

Benzene provide higher cycle efficiency as illustrated in Fig. (3.11). As can be seen in 

Fig. (3.12) and (3.13), their wnet and VER are at the same level. As depicted in Fig (3.11) 

and (3.12), eleven non-refrigerant fluids have very close cycle efficiencies and power 

outputs. Although their cycle efficiencies and power outputs are lower than cycle 

efficiencies and power outputs of non-refrigerants mentioned above, it is good to pick the 

most suitable fluids out of this group as it has been done for the medium temperature 

level. Fig. (3.11) shows that from this group of eleven, Butene has a lower exergy 

efficiency; Toluene, Isohexane, Pentane, Hexane, and Heptane have a higher VER as 

illustrated in Fig. (3.13). Since Butane, Isobutene, Isopentane, Trans-butene, and Cis-

butene have a lower VER in the cycle, they can be in the final list as medium 

performance non-refrigerants. 

All together, the final selected fluids for a solar ORC at the low temperature level 

are as follows:  

(a) R245fa, E134 and R245ca in the refrigerant group  

(b) Benzene and Cyclohexane in the high performance non-refrigerant group 

(c) Butane, Isobutene, Isopentane, Trans-butene, and Cis-butene in the medium 

performance non-refrigerant group 
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Fig. 3.11 Thermal and exregy efficiency of the ORC for different working fluids at 
Teva=85°C 
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the collector efficiency for two selected models, IND300 and LS-3, for most analyzed 

fluids in this study is close to 70% for a large interval of Teva. Calculations show that the 

exergy efficiency variation with respect to collector efficiency at each temperature level 

not only has the same trend but also the exergy efficiency enhancement percentage is 

almost the same for all selected fluids.  It is also correct for the irreversibility reduction 

trend and percentage.  

 

 

Fig. 3.12 Net output power of the ORC for different working fluids at Teva=85°C 
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Fig. 3.13 Vapor expansion ratio in the ORC for different working fluids at Teva=85°C 
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       (a) 
 

 
 

 
 

        (b) 
 

Fig. 3.14 (a) Irreversibility reduction, (b) Exergy efficiency enhancement by increasing 
collector efficiency from 70% to 100% for Isopentane. 
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The second method to reduce irreversibility of a cycle is using the regenerative 

cycle instead of the basic cycle. Regeneration reduces the absorption heat while keeping 

the net power output constant. In other words regeneration enhances thermal and exergy 

efficiency simultaneously. For the 11 selected fluids regenerative cycles with 

regeneration efficiency εreg = 0.8 have been investigated at low and medium temperature 

levels.  As illustrated in Table 3.5, in contrast with collector efficiency improvement 

effect on the exergy efficiency of the cycle, regeneration’s effect on the exergy efficiency 

of the ORC is fluid dependent.  

Table 3.5 Regeneration Effects on thermal efficiency, exergy efficiency, and 
irreversibility of a solar ORC employing IND300 and LS-3 solar collectors for different 

working fluids 

Working 
fluid 

Teva= 85°C Teva= 130°C 

∆ηth 

(%) 
 

∆ηex 

(%) 
for 

IND300 

∆Lex 

(%) 
for 

IND300

∆ηex 

(%) 
for 

LS-3 

∆Lex 

(%) 
for 

LS-3 

∆ηth 

(%) 
 

∆ηex 

(%) 
for 

IND300 

∆Lex 

(%) 
for 

IND300 

∆ηex 

(%) 
for 
LS-
3 

∆Lex 

(%) 
for 

LS-3 

Acetone NA NA NA NA NA 0.02 0.02 0.14 0.02 0.15 
Benzene 0.18 0.13 1.55 0.14 1.60 0.94 0.62 5.35 0.70 5.75 
Butane 0.91 0.64 7.96 0.68 8.19 1.75 1.18 10.84 1.30 11.43
Cis-butene 0.40 0.29 3.58 0.30 3.70 0.73 0.54 5.10 0.60 5.41 
Cyclohexane 0.76 0.53 6.28 0.57 6.48 2.27 1.48 12.23 1.66 13.02
E134 0.52 0.37 4.71 0.39 4.85 NA NA NA NA NA 
Isobutene 0.62 0.44 5.52 0.46 5.69 NA NA NA NA NA 
Isopentane 1.32 0.92 10.97 0.98 11.27 3.15 2.07 17.47 2.30 18.39
R245ca 1.05 0.74 8.95 0.78 9.19 2.35 1.57 13.75 1.74 14.49
R245fa 1.01 0.72 8.82 0.76 9.06 2.04 1.37 12.44 1.51 13.09
Trans-
butene 0.56 0.40 5.01 0.43 5.16 1.02 0.69 6.45 0.76 6.83 

 

Molecular complexity (σ) is proposed as a criterion to find a trend of regeneration 

effect on the ORC performance. Molecular complexity is defined as: 

ߪ ൌ ൬ ௖ܶ௥ܴ൰ ቀәݏәܶቁௌ௏, ೝ்సబ.ళ 																																																																																																											(3.20) 
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where Pr and Tr are reduced pressure and temperature respectively, R is gas constant and 

SV stands for saturation vapor. 

 The higher slope of the entropy-temperature diagram results in higher molecular 

complexity. Table 3.6 shows the molecular complexity of selected fluids. 

 

Table 3.6 Molecular complexity of working fluids 

Working fluid σ 
Acetone -2.13 
Benzene 4.22 
Butane 1.78 
Cis-butene -1.18 
Cyclohexane 8.97 
E134 -0.3 
Isobutene 0.56 
Isopentane 7.2 
R245ca 4.33 
R245fa 2.76 
Trans-butene 0.14 

 
 

Figures (3.15) and (3.16) show thermal and exergy efficiency enhancement and 

irreversibility reduction of the ORC by using the regenerative cycle for selected working 

fluids. In these figures fluids are arranged in the horizontal axis in ascending order of 

molecular complexity. 

At both temperature levels and based on all performance factors discussed in this 

section higher molecular complexity results in a more effective regenerative cycle. The 

only exceptions to this rule are Benzene and Cyclohexane. This means that the 

regeneration will be more effective in ORCs employing high molecular complexity 

working fluids if they are not Cyclohydrocarbons.  
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(a) 
 

 
 

(b) 
Fig. 3.15 (a) Thermal and exergy efficiency enhancement, (b) Irreversibility reduction by 
using regenerative ORC based on molecular complexity of working fluids (Teva=130°C) 
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(a) 

 

(b) 

Fig. 3.16 (a) Thermal and exergy efficiency enhancement, (b) Irreversibility reduction by 
using regenerative ORC based on molecular complexity of working fluids (Teva=85°C) 
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3.6. Conclusions 

A comprehensive list of working fluids has been analyzed to find the most 

suitable fluids to operate a solar ORC. A procedure to compare working fluids 

capabilities when they are employed in the solar Rankine cycles with similar working 

conditions has been proposed. This procedure can be summarized and illustrated in Fig. 

(3.17). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17 Proposed selection procedure of the working fluid in a solar ORC 
 

Discarding chlorine included fluids 

Discarding highly wet fluids 

Calculating thermal efficiency, exergy 
efficiency, net power generated, and vapor 

expansion ratio 

Setting higher temperature level of the 
cycle based on the collector type 

Categorizing working fluids into: 
- Refrigerants 
- High performance non-refrigerants  
- Medium performance non-refrigerants 

Choosing working fluids in the following 
order: 

- Highest thermal/exergy efficiency 
- Highest net power generated  
- Lowest vapor expansion ratio 
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At the first step of the procedure Chlorine included fluids and wet fluids have 

been discarded. The slope of the temperature-entropy curve for some wet fluids is very 

close to infinity. These fluids have been selected at this step. 

The maximum practical thermal efficiency and corresponding performance 

factors for preselected working fluids confirm that fluids with higher critical temperature 

have better performance in the ORC. Calculation shows that the thermal efficiency higher 

than 25% and the exergy efficiency higher than 20% are achievable in ORCs.  

In the next step a comparison between different ORC working fluids based on 

fluids effect on the thermal /exergy efficiency, net power generated, and vapor expansion 

ratio of the Rankine cycle has been accomplished. Thermal efficiency and exergy 

efficiency of the ORC have the same trend with respect to changing working fluids. 

Therefore thermal efficiency and exergy efficiency of the cycle play the same role in 

selecting a proper working fluid. In the investigation, two temperature levels for Teva have 

been considered which are 85 °C and 130 °C as representatives of low temperature and 

medium temperature solar collectors. 

The main criterion for selecting a working fluid in this study was the 

thermal/exergy efficiency. After that among fluids with the same order of thermal/exergy 

efficiency, net power output of the ORC is a determinant factor to select the working 

fluid. The third step will be eliminating fluids with a high vapor expansion ratio at the 

close level of cycle efficiencies and power outputs. 

Fluids have been divided into two groups: refrigerants and non-refrigerants. 

Fluids with the best performance in the ORC have been recognized in each group. In the 

non-refrigerant’s group, two different subdivisions have been considered: high 
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performance fluids and medium performance fluids. The reason for this subdivision is 

that most non-refrigerants are in the medium performance group. Then by considering all 

non-refrigerants as one group, a large group of fluids would be omitted from analysis.  

At medium temperature level the final selected refrigerants through the introduced 

procedure are R245fa and R245ca. The final selected non-refrigerants at Teva=130 °C are 

Acetone and Benzene with the high performance and Butane, Isopentane, Transbutan, 

and Cis-butene with the medium performance. 

At the low temperature level only a few numbers of fluids have been changed in 

comparison to fluids selected at the medium temperature level. At Teva=85 °C, E134 has 

been added to the selected refrigerants at Teva=130 °C. In the non-refrigerants group 

Acetone has been replaced by Cyclohexane and Isobutene has been added to the fluids 

with the medium performance capability. 

Collector efficiency improvement and use of regenerative ORC instead of the 

basic cycle to reduce irreversibility of a solar ORC were investigated in the last section. 

Exergy efficiency enhancement and irreversibility reduction have been calculated for all 

11 selected fluids when the collector efficiency increases from 70% to 100% at low and 

medium temperature levels. Calculation results show that the theoretical limit for 

irreversibility reduction through collector efficiency improvement for two selected 

collector models, IND300 and LS-3, is 35%.  It also shows this limit is 5% for the exergy 

efficiency enhancement. For the 11 selected fluids a regenerative cycle with regeneration 

efficiency εreg = 0.8 have been investigated at low and medium temperature levels.  In 

contrast to collector efficiency improvement effect on the exergy efficiency of the cycle, 

regeneration’s effect on the ORC is fluid dependent. Calculation results show, at the two 
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temperature level studied, the regeneration will be more effective in ORCs employing 

high molecular complexity working fluids except for Cyclohydrocarbons.  
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CHAPTER 4 

EXERGOECONOMIC ANALYSIS OF SOLAR ORGANIC RANKINE CYCLE 

FOR A BUILDING IN HOT AND HUMID CLIMATE 

 

4.1 Introduction  

In chapter 3 the optimal working fluids and cycle configuration have been 

determined by employing governing equations of basic and regenerative thermodynamic 

cycle with a consideration of exergetic measures. In this chapter, the optimization process 

of the solar ORC is finalized by identifying the best collector type and its corresponding 

temperature level, and exergoeconomic principles are applied on the optimal solar ORC.  

In the first section of chapter 4, the best collector-temperature combination for the solar 

ORC which maintains the electricity demand of a geothermal air-conditioned commercial 

building located in Pensacola of Florida is determined with exergetic and economic 

considerations. The 11 selected fluids in chapter 3 are employed in this analysis. The 

solar collector loop, building, and geothermal air conditioning system are modeled using 

TRNSYS. TRNSYS is a transient systems simulation FORTRAN program with a 

modular structure for simulating energy systems. TRNSYS is also notably powerful for 

steady problems. Available electricity bills of the building and the 3-week monitoring 

data on the performance of the geothermal system are employed to validate the 

simulation. The effect of the different solar radiations on the system requirements is also 

investigated. By the end of this section, the optimal working fluids, cycle configuration, 

solar collector type, and operation conditions of the solar ORC are determined.  

Second section of chapter 4 discusses the exergoeconomic analysis of the optimal 
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solar ORC system. Among the methods have been used to evaluate the performance of a 

thermal energy system, there are techniques that combine thermodynamic and economic 

principles. Thermoeconomics is a general term that describes any combination of a 

thermodynamic analysis with an economic one. Compared with energy, exergy is a more 

consistent measure of economic value. Exergoeconomics rests on the philosophy that 

exergy is the only rational basis for assigning monetary costs to the system interactions 

with its surroundings and to the sources of thermodynamic inefficiencies within it. The 

ratio Rex of the exergy loss to the capital cost is the key parameter of exergoeconomic 

analysis of energy systems.  

Geothermal systems and thermal power plants have been investigated through 

Exergoeconomic analysis while there are no studies to date on exergoeconimc evaluation 

of a solar ORC. For the first in this study, the exergoeconomic concept will be applied on 

a solar ORC in order to investigate the relation between the exergy loss and capital cost 

of the system. 

 

4.2 TRNSYS Software 

TRNSYS is a transient systems simulation FORTRAN program with a modular 

structure for simulating energy systems. TRNSYS is also notably powerful for steady 

problems. A TRNSYS project is typically setup by connecting components graphically in 

an interface called Simulation Studio. TRNSYS components are often referred to as 

Types. 

One of the key factors in TRNSYS’ success over the last 35 years is its open, 

modular structure. The source code of the kernel as well as the component models is 
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delivered to the end users. This simplifies extending existing models to make them fit the 

user’s specific needs. The DLL-based architecture allows users and third-party 

developers to easily add custom component models, using all common programming 

languages (C, C++, PASCAL, FORTRAN, etc.). In addition, TRNSYS can be easily 

connected to many other applications, for pre- or post-processing or through interactive 

calls during the simulation (e.g. Microsoft Excel, Matlab, COMIS, etc.). 

The main visual interface of TRNSYS is the Simulation Studio. From there, you 

can create projects by drag-and-dropping components to the workspace, connecting them 

together and setting the global simulation parameters. The Simulation Studio saves the 

project information in a TRNSYS Project File. When a simulation is run; the Simulation 

Studio also creates a TRNSYS input file. The TRNSYS input file is a text file that 

contains all the information on the simulation but no graphical information. 

The simulation Studio also includes an output manager from where the 

programmer can control which variables are integrated, printed and/or plotted, and a 

log/error manager that allows studying in detail what happened during a simulation. 

Many additional tasks can be performed from the Simulation Studio such as to generate 

projects using the "New Project Wizard", generate a skeleton for new components using 

the Fortran Wizard, view output files, and view and edit the components proformas. A 

proforma is the input/output/parameters description of a component. 

 

4.3 Building and GSHP System Description 

Pensacola is a city in the state of Florida which has the hot and humid climate. 

Hot and humid climate has been selected for the study due to its high solar intensity and 
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long solar radiation time through the year. In addition in such a cooling dominant region, 

the GSHP system has a better annual performance and electricity demand profile of the 

building better follows the electricity generation profile by the solar ORC system.  

The building is a one story commercial building with 395 m2 floor area located in 

downtown Pensacola and is served by grid power. Its operation started on August 2010. 

The building consists of 8 offices, 1 conference room, 1 break room, 1 lay out room, 1 

computer server room, two bathrooms, and a front office desk. 

Table 4.1 shows key properties of constituent layers of the building envelope’s 

main components. 

The building has been equipped with two 6 ton geothermal heat pump units that 

condition the north zone and south zones of the building and a small 1 ton unit that 

compensates the heat load of the computer server’s room. Each 6 ton unit is a 

WaterFurnace™, Envision ND072 and the 1 ton unit is a WaterFurnace™, Versatec 

V012. The GSHP system utilizes a closed loop vertical U-tube heat exchanger, which is 

composed of 14 boreholes reaching a depth of 300 feet. All buried pipes are made of 

Polyethylene. U-tube pipes are ¾” with 0.433 W/m.K thermal conductivity. 

 

4.4 Building and GSHP System Modeling Details  

  The system consists of three main subsystems: the building, the GSHP system 

and the ORC system. In this section the building and the GSHP modeling details will be 

presented.  

TRNSYS 17 has been employed for the modeling of the building and the GSHP 

system. The TRNSYS model of the building and the geothermal system has been 
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depicted in Fig. 4.1. The main TRNSYS modules used are the following: 

• Weather data (Type 109): serves the main purpose of reading weather data at 

regular time intervals from a data file. 

 

Table 4.1 Key properties of constituent layers of the building envelope’s main 
components 

Component
Constituent 

layer(s) 
Key properties 

U-value   
[W/m2K] 

Exterior    
wall 

Concrete 

Thickness=15.2 
cm 

0.251 

Density=2400 
kg/m3 

Gypsum 
board 

Thickness=1.6 
cm 
Density=900 
kg/m3 

Polystyrene

Thickness=13.0 
cm 
Density=25 
kg/m3 

Face brick 

Thickness=9.20 
cm 
Density=1922 
kg/m3 

Roof 

Plaster 
board 

Thickness=1.0 
cm 

0.156 

Density=950 
kg/m3 

Horizontal 
air gap 

NA 

Polystyrene

Thickness=12.7 
cm 
Density=25 
kg/m3 

Roof Deck 

Thickness=35 
cm 
Density=530 
kg/m3 

Window Glass SHGC=0.397 1.26 
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Fig 4..1 Building and 

 

GSHP system TTRNSYS modell 
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• Psychrometrics (Type 33): takes the dry bulb temperature and relative 

humidity of moist air as input and calculates the other thermodynamic 

properties of moist air. 

• Sky temp (Type 69): determines an effective sky temperature, which is used 

to calculate the long-wave radiation exchange between an arbitrary external 

surface and the atmosphere. 

• Building (Type 56): models the thermal behavior of a building having 

multiple thermal zones. 

• Thermostat_N/Thermostat_S (Type 108): is modeled to output five on/off 

control functions that can be used to control a system having a two stage heat 

source, an auxiliary heater, and a two-stage cooling system. For this study 

only the first stages of heating and cooling have been applied to the model. 

• GSHP_N/GSHP_S/GSHP_SER (Type 504): models a single-stage liquid 

source heat pump. 

• V Ground Loop (Type 557): models a vertical heat exchanger that interacts 

thermally with the ground. 

• Buried Pipe (Type 31): models the fluid flow in a horizontal buried pipe. 

• Circulation pump (Type 3): models the performance of a variable speed pump. 

In the created TRNSYS model, there is no continuous flow modulation. 

Consequently, the outlet flow rate and the power used are at their maximum 

value. 

• Diverter (Type 647): models a diverting valve that splits a liquid inlet mass 

flow into fractional outlet mass flows. 
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4.5 Calibration Procedure 

The performance of the GSHP system has been monitored for 20 days between 

Feb 18th and March 9th 2011. Monitoring data and available electricity bills of the 

building have been employed to calibrate the building and GSHP system simulation.  

The TRNSYS model has been run for the monitoring period and 5 billing periods 

for calibration purposes. Table 4.2 shows the assumptions that have been made in the 

modeling.  In this table the number of people and the type and number of equipment have 

been assumed based on collected information from the owner of the building. The 

building is a commercial building and the number of people as well as the equipment 

used during the first month the business ran was less than the following months. Some 

equipment such as the computer server work 24/7 but most of the equipment’s power 

consumption coincides with the personal use of those present. Lighting power has been 

extracted from the lighting plan of the building. Heating and cooling set point 

temperatures have been derived from thermostats in the building. The occupants did not 

change thermostats set points upon exiting the building.  

The following monitoring equipment was installed in the building: 

• FLXIM™, Fluxus F601 ultrasonic energy meter, that was installed on the 

main ground loop to measure and log the water flow rate and supply and 

return temperatures of the main loop. 

• Shenitech® STUF-R1B ultrasonic energy meter, which was installed on one 

of the 6 ton units that serves the north zone of the building to measure and log 

the water flow rate and supply and return temperatures of the unit.  
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Table 4.2 Made assumptions in modeling building and GSHP.  
Schedule A: Weekdays From 8:00 AM to 5:00 PM, Schedule B: 24/7 

Simulation period I: 1st billing period (7/30/2010-8/12/2010) 
Simulation period II: All other billing period, monitoring period, and   annual period  

Schedule
Simulation 

Period 
I II 

Number of 
People 

A 4 8 

lighting [W/m2] A 13 13 

Equipment [W] A 920 920 
Equipment [W] B 920 4600 

Heating 
set 

point 
[°F] 

North 
Zone 

B 72 72 

South 
Zone 

B 70 70 

Cooling 
set 

point 
[°F] 

North 
Zone 

B 75 75 

South 
Zone 

B 73 73 

 
 
 

• Wattnode® single phase AC power meter with CR-200 series Campbell 

Scientific data logger to measure and log the power consumption of the north 

zone heat pump unit. 

• Hobo® data logger to measure and log the temperature and relative humidity 

of the inside and outside of the building. 

 

Measured data by ultrasonic energy meters have been used to adjust the passing 

flow through main ground loop and each heat pump unit. 

Figure 4.3 shows the power consumption of the north zone heat pump unit based 

on measured data and simulation results.  
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Fig 4.3 The electrical power consumption of the north zone heat pump unit based on 
measured data and simulation results  

 
The electrical power consumption of the north zone heat pump based on 

simulation results is 28.3 kWh while the measured power consumption is 22.8 kWh 

which is 20 percent lower than simulation results. The discrepancy is the result of the 

difference between real weather data and the TRNSYS weather data. TRNSYS weather 

data has been calculated based on the statistical weather data of previous years in the 

region. 

Figures 4.4 and 4.5 illustrate the monthly average indoor and outdoor temperature 

for each hour in every day in February and March in Pensacola. As can be seen the 

difference between indoor measured temperature and simulation data is negligible for the 

most part of the day, while the TRNSYS outdoor temperature is lower than the measured 

data most of the time.   

The temperature difference between the inside and outside of the building plays a 

key role in heat transfer rate from/to building. Table 4.3 shows the temperature difference 

between the inside and outside of the building for February and March in Pensacola 
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based on measured data and simulation results. ΔTME and ΔTTR in Table 4.3 are defined 

using Equations (4.1) and (4.2). 

 ∆ ெܶா ൌ ( ௜ܶ௡௦௜ௗ௘ െ ௢ܶ௨௧௦௜ௗ௘)ெ௘௔௦௨௥௘ௗ                                                                           (4.1)	∆ ்ܶோ ൌ ( ௜ܶ௡௦௜ௗ௘ െ ௢ܶ௨௧௦௜ௗ௘)்ோேௌ௒ௌ                                                                               (4.2) 
 

 

Fig 4.4 Monthly average of indoor and outdoor temperatures for each hour of every day 
in February in Pensacola  

 
 

The monitoring data show that the monitored heat pump unit had worked in 

heating mode   during   the   whole   monitoring   period.  It can be seen by viewing the 

simulation results and measured data that there are some hours of the day which units 

have been off. In February the system never turned on from 9 AM to Midnight every day. 

The average of ΔTME for hours of the day which the system is on equals to 6.6. This 

average for ΔTTR is equal to 8.6. It means that the average of ΔTME is 23 percent less than 
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the average of ΔTTR which can justify the 20 percent power consumption difference of 

simulation results and measured power consumption. 

 

Fig 4.5 Monthly average of indoor and outdoor temperature for each hour of every day in 
March in Pensacola  

 
In the next step the TRNSYS model was run for the 5 billing periods. Table 4.4 

shows the power consumption of the building based on simulation results and available 

billing information. As can be seen in Table 4.4 simulation results are in good conformity 

with the actual power consumption extracted from electricity bills of the building.  

 

4.6 ORC System Modeling Details  

There are two steps in the ORC system analysis.  

1. Modeling solar collector loop in order to calculate the annual heat gain of 

each collector unit at the specified working temperature. 

2. Calculating the required number of collector units based on: 

• Calculated  collector’s annual heat gain in step one 
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• Thermal efficiency of ORC cycle for   different working fluids (From 

chapter 3).  

• Annual power demand of the building resulting from building and GSHP 

modeling. 

 
 

Table 4.3 Temperature difference between the inside and outside of the building for 
February and March in Pensacola based on measured data and simulation results.   

February March 
Hour 

of 
the 
day 

ΔTTR   

[°C]  
ΔTME  
[°C] 

ΔTTR   

[°C]  
ΔTME   

[°C] 

1 9.9 5.1 10.0 7.4 
2 9.9 5.3 10.0 7.6 
3 10.0 5.4 10.1 8.0 
4 10.1 5.7 10.2 8.3 
5 10.0 5.9 10.0 8.2 
6 9.9 6.1 10.1 8.0 
7 9.7 5.8 10.0 7.1 
8 9.3 4.4 8.9 5.8 
9 8.6 2.2 7.4 5.5 
10 8.4 1.5 6.8 6.0 
11 7.9 1.0 6.2 6.4 
12 7.3 0.9 5.6 6.6 
13 6.7 1.4 5.2 6.7 
14 6.5 1.8 5.2 6.9 
15 6.6 2.4 5.6 7.2 
16 7.0 2.9 6.0 7.7 
17 7.6 3.4 6.7 8.1 
18 7.7 3.0 6.9 7.4 
19 8.3 3.2 8.0 7.2 
20 8.7 3.4 8.9 7.2 
21 9.0 3.7 9.5 7.2 
22 9.0 4.0 9.9 7.3 
23 9.2 4.3 10.2 7.6 
24 9.3 4.5 10.5 7.7 
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                 Table 4.4 Power consumption of the building in Pensacola based on simulation results and available billing information 

Billing 
Period 

Simulation Results 
Billed Total 

Power 
Consumption  

[kWh]  

100x                
1- (Simulation power/ 

Billed power )         
[%] 

HVAC 
Power 

Consumption 
[kWh] 

Non-HVAC Power Consumption    
[ kWh] Total Power 

Consumption 
[KWh] Equipment Lighting Total 

7/30/2010    
-   

8/12/2010 
987.80 307.74 493.46 801.20 1789.00 1688.00 5.98 

8/13/2010    
-   

9/16/2010 
2608.87 1467.42 1028.04 2495.46 5104.33 5072.00 0.64 

9/17/2010    
-  

10/13/2010 
1639.49 1173.00 822.43 1995.43 3634.92 3668.00 -0.90 

10/14/2010   
- 

11/11/2010 
1229.99 1291.70 904.68 2196.38 3426.36 3379.00 1.40 

11/12/2010   
- 

12/13/2010 
1123.66 1348.72 945.80 2294.52 3418.18 3610.00 -5.31 
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In chapter 3, 11 fluids have been suggested to be employed in solar ORCs for two 

temperature levels of Teva which are 85°C and 130°C. 

 
For solar collector loop modeling, low temperature and medium temperature solar 

collectors should be selected first. Desired output temperature of the collector plays a key 

role in selecting the proper collector. The heat-carrying fluid temperature in the collector 

should be higher than the highest temperature in the ORC. As the working fluid in the

evaporator of the ORC is in the phase change status with constant temperature, the 

temperature of the heat-carrying fluid in the collector should be high enough at the 

beginning of the heat transfer process with ORC in order to retain its heat capacity up to 

the end of the process. For this reason, the desired collector output temperature for low 

and medium ORC have been considered 120°C and 165°C respectively.  

Table 4.5 shows the specifications of selected solar collectors for low and 

medium temperature ORCs. Being SRCC (Solar Rating and Certification Corporation) 

certified, and having relatively high efficiency have been considered in selecting the 

supplier and model of the collectors. 

XCELTHERM® HT from Radco Industries has been selected as the heat-carrying 

fluid in the collectors. XCELTHERM® HT has an appropriate heat capacity and 

relatively low viscosity in comparison to similar commercial products. 

The TRNSYS model of the solar collector loop has been depicted in Fig. 4.6. The 

main TRNSYS modules used are as follows: 

• Weather (Type 109): serves the main purpose of reading weather data at 

regular time intervals from a data file. 
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• Collector (Type 1 for flat plate collector-Type 71 for evacuated tube 

collector): models the thermal performance of a flat plate/evacuated tube 

collector. 

• Controller (Type 22): An iterative feedback controller that calculates the 

control signal required to maintain the controlled variable at a specified set 

point.  

• Pump (Type 110): models a variable speed pump that is able to maintain any 

outlet mass flow rate between zero and a rated value. The mass flow rate of 

the pump varies linearly with control signal setting. 

 

Table 4.5 Selected solar collector specifications 

Supplier SunMaxx Solar 
Apricus 

Inc. 

Model 
TitanPowerPlus-

SU2 
AP-20 

Type Flat plate 
Evacuated 

tube 

ORC temperature level Low 
Low       

-          
Medium 

Gross area [m2] 1.99 2.96 

Efficiency 
coefficients

a0 0.754 0.456 

a1       

[w/m2K] 
3.43 1.3509 

a2            

[w/m2K2]
0.0106 0.00381 

Unit price at May 2011 
[USD] 

786.85 1048.00 
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regenerative ORC has the better performance in comparison to the basic ORC. It is for 

this reason that the regenerative ORC is considered in this chapter.  

The collector heat-carrying fluid leaves the heat transfer process with the ORC at 

a relatively high temperature. This heat capacity can be used for water heating purposes. 

Water heating efficiency, ηWH, combined heat and power efficiency, ηCHP, the required 

collector area and the collector expense for the whole system has been compared for 

different ORC working fluids in Pensacola in Tables 4.6 to 4.8. Water heating efficiency, 

and combined heat and power efficiency are defined by equations (4.3) and (4.4) 

respectively. 

                                                                                                 

ௐுߟ ൌ  (4.3)																																																																ݎ݋ݐ݈݈ܿ݁݋ܿ	ݎ݈ܽ݋ݏ	ݕܾ	݊݅ܽ݃	ݕ݃ݎ݁݊݁	݈ܽݐ݋ܶݕ݃ݎ݁݊݁	݃݊݅ݐ݄ܽ݁	ݎ݁ݐܹܽ
 

஼ு௉ߟ ൌ ݕ݃ݎ݁݊݁	݃݊݅ݐ݄ܽ݁	ݎ݁ݐܹܽ ൅ ݎ݋ݐ݈݈ܿ݁݋ܿ	ݎ݈ܽ݋ݏ	ݕܾ	݊݅ܽ݃	ݕ݃ݎ݁݊݁	݈ܽݐ݋ܶ݇ݎ݋ݓ	ݐݑ݌ݐݑ݋	ݐ݁݊	ܥܴܱ 																																											(4.4) 
 

In the real case the circulation pump works continuously throughout the year 

regardless of heat pump units’ working status. The total power consumption of the 

system will be decreased if the running time of the circulation pump is synchronized with 

the heat pump units’ running time by using a proper controller. 
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Table 4.6 Low temperature flat plate collector ORC system performance and collector requirements for different working fluids in 
Pensacola 

Fluid 
ηWH     

[%] 
ηCHP    

[%] 

Required 
area 

Synchronized 
pumping     

[m2] 

Required 
area 

continuous 
pumping    

[m2] 

Collector 
expense 

Synchronized 
pumping        

[ x 1000 USD] 

Collector 
expense 

Continuous 
pumping        

[ x 1000 USD] 

Required area   
(or collector 

expense) 
reduction by 
synchronized 

pumping   
[%] 

Benzene 52.37 64.62 802.97 924.21 317.89 365.89 13.12 

Butane 47.93 59.88 822.85 946.08 325.76 374.54 13.03 

Cis-butene 48.64 60.42 834.77 959.99 330.48 380.05 13.04 

Cyclohexane 52.28 64.86 783.10 898.38 310.02 355.66 12.83 

E134 49.90 61.56 844.71 969.93 334.41 383.98 12.91 

Isobutene 46.90 58.57 842.72 967.94 333.62 383.20 12.94 

Isopentane 50.23 62.67 791.05 908.31 313.17 359.59 12.91 

R245ca 49.12 61.33 806.95 926.20 319.46 366.67 12.88 

R245fa 48.02 60.05 818.87 940.11 324.18 372.18 12.90 

Trans-butene 48.24 60.06 832.79 956.02 329.69 378.47 12.89 
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Table 4.7 Low temperature evacuated tube collector ORC system performance and collector requirements for different working 

fluids in Pensacola 

Fluid 
ηWH     

[%] 
ηCHP    

[%] 

Required 
area 

Synchronized 
pumping      

[m2] 

Required 
area 

continuous 
pumping    

[m2] 

Collector 
expense 

Synchronized 
pumping       

[ x 1000 USD] 

Collector 
expense 

Continuous 
pumping       

[ x 1000 USD]

Required area    
(or collector 

expense) 
reduction by 
synchronized 

pumping       
[%] 

Benzene 52.30 64.54 645.28 742.96 228.46 263.05 13.15 

Butane 47.86 59.82 660.08 760.72 233.70 269.34 13.23 

Cis-butene 48.57 60.35 671.92 769.60 237.90 272.48 12.69 

Cyclohexane 52.21 64.79 627.52 722.24 222.18 255.71 13.11 

E134 49.82 61.49 677.84 778.48 239.99 275.62 12.93 

Isobutene 46.83 58.50 677.84 778.48 239.99 275.62 12.93 

Isopentane 50.16 62.60 636.40 728.16 225.32 257.81 12.60 

R245ca 49.05 61.26 648.24 742.96 229.51 263.05 12.75 

R245fa 47.95 59.98 657.12 754.80 232.66 267.24 12.94 

Trans-butene 48.17 59.99 668.96 766.64 236.85 271.43 12.74 
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Table 4.8 Medium temperature evacuated tube collector ORC system performance and collector requirements for different 
working fluids in Pensacola 

Fluid 
ηWH     

[%] 
ηCHP    

[%] 

Required 
area 

Synchronized 
pumping      

[m2] 

Required 
area 

continuous 
pumping    

[m2] 

Collector 
expense 

Synchronized 
pumping       

[ x 1000 USD] 

Collector 
expense 

Continuous 
pumping       

[ x 1000 USD]

Required area   
(or collector 

expense) 
reduction by 
synchronized 

pumping     
[%] 

Acetone 54.00 71.41 837.68 962.00 296.58 340.60 12.92 

Benzene 55.96 74.49 787.36 902.80 278.77 319.64 12.79 

Butane 41.46 58.28 867.28 994.56 307.06 352.13 12.80 

Cis-butene 45.69 62.29 879.12 1009.36 311.26 357.37 12.90 

Cyclohexane 55.54 74.74 760.72 873.20 269.34 309.16 12.88 

Isopentane 50.65 69.19 787.36 902.80 278.77 319.64 12.79 

R245ca 47.68 65.48 819.92 941.28 290.30 333.26 12.89 

R245fa 42.62 59.70 852.48 979.76 301.82 346.89 12.99 

Trans-butene 43.32 59.83 882.08 1012.32 312.30 358.42 12.87 
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The presented results in Tables 4.6 to 4.8 show that the best collector-temperature 

combination for supplying the building power is the low temperature evacuated tube solar 

collector. In the real case, the minimum required collector area among all possible 

options is 722.54 m2 which belongs to the low temperature ORC using the evacuated tube 

solar collector and Cyclohexane as its working fluid.  This amount can be reduced to 

627.52 m2 by synchronizing circulation pump running time with the heat pump units’ 

running time. It can be seen however that the power consumption rate of the circulation 

pump is low in comparison to units’ power consumption; non-stop working of the pump 

can increase the required collector area and the corresponding expense up to 13 percent. 

After Cyclohexane, Isopentane with a 728.16 m2 required collector area, and Benzene 

and R245ca each with a 742.96 m2 required collector area to maintain the power demand 

of the building are the best working fluids to be employed in the ORC system. 

Isopentane is a more optimal choice for working fluid in comparison to 

Cyclohexane, Benzene, and R245ca. Cyclohexane is a smog generating pollutant. Smog, 

which is ground-level Ozone, is formed when volatile organic compounds and oxides of 

nitrogen interact in the presence of sunlight. Exposure to elevated smog levels can cause 

serious respiratory problems, such as aggravate asthma and lead to increased respiratory 

infection rates. Benzene is also not a suitable choice due to its carcinogenic properties, 

while R245ca has a relatively high global warming potential, which makes it more 

undesirable as a working fluid. 

While the thermal efficiency of the ORC for none of the fluids in this study can 

exceed 19.2 % at low or medium temperature levels, relatively high combined heat and 

power efficiencies up to 74% are achievable which makes the use of the ORC technology 



 

95 
 

more reasonable. 

 

4.8 Solar Radiation Intensity Effect on the Solar ORC Performance 

In this section the effect of solar radiation intensity on the performance of the 

suggested technology is investigated. Pensacola, Miami and Houston have been selected 

as the representatives of hot and humid climate.  

The required collector area for running the solar ORC which employs low 

temperature evacuated tube collector and Isopentane as the working fluid for the above 

mentioned cities have been depicted in Figure 4.7. As can be seen in Figure 4.7 the 

variation of required collector area versus working fluid has the same trend in all three 

cities. For all working fluids, the required collector area for Pensacola is less than that of 

Miami but more than that of Houston. 

 

 

Fig 4.7 Required collector area for running the solar ORC which employs low 
temperature evacuated tube collector and Isopentane as the working fluid for Pensacola, 

Miami and Houston 
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To find the reason for this trend, the monthly power generation of the 

aforementioned ORC system per collector unit and monthly average of solar radiation 

incident upon the collector surface for Miami, Pensacola and Houston have been 

presented in Figures 4.8 and 4.9. 

Figures 4.8 and 4.9 show that the monthly variation of the power generation of the 

ORC per collector unit and the average solar radiation incident upon the surface follow 

the same pattern. This conformity is not just due to the order but the amount as well. For 

example, in months like January, February and December where the differences between 

the average solar radiations in the cities are significant, the differences between power 

generations of the system per collector unit in different cities are significant too. In 

months like August, September and October where the differences between average solar 

radiations in the cities are negligible, the power generations of the ORC per collector unit 

in three cities are very close to each other. 

The power demand of the building is different in different cities due to their 

different weather conditions. Hence the annual power demand of the building should be 

considered in order to justify the differences between required collector areas needed to 

run the suggested ORC system in the cities presented in Fig. 4.7. Table 4.9 shows the 

annual power demand of the building and annual power generation per collector unit of 

the aforementioned ORC system in Pensacola, Miami and Houston.  

Houston has the minimum power generation per collector unit using the suggested 

ORC while the power demand of the building in that city is higher than the demand in 

Pensacola.  Hence in Houston, the maximum collector area needed to run the suggested 
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Fig 4.8 Monthly power generation per collector unit for the solar ORC which employs 
low temperature evacuated tube collector and Isopentane as the working fluid for 

Pensacola, Miami and Houston 

 

 

 

Fig 4.9 Monthly average of solar radiation incident upon the collector surface for Miami, 
Pensacola and Houston 
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ORC system.  In Miami the suggested ORC system can generate 7.4 percent more power 

per collector unit in comparison to the system in Pensacola while the power demand of 

the building in Miami is 14.5 percent more that the demand in Pensacola. Therefore the 

required collector area to run the system in Miami is higher than that in Pensacola. 

 

 
Table 4.9  Annual power demand of the building and the annual power generation per 

collector unit for the solar ORC which employs evacuated tube collector and Isopentane 
as the working fluid for Pensacola,Miami and Houston 

Pensacola Miami Houston 

Annual power 
demand           
[kWh] 

46408.0 53132.6 47784.1 

Annual power 
generation per 
collector unit       

[kWh] 

1684.6 1808.6 1541.1 

 

 
4.9 Economic Comparison between the Solar ORC and PV Panel System  

Because of the low efficiency and high capital costs of PV panels and also the 

high energy consumption and CO2 production rate of the manufacturing process of PV 

panels, this technology has not been widely commercialized for residential and 

commercial building application. 

An economic comparison between the studied solar ORC system and a PV panel 

system that maintains the electricity demand of the building is presented in this section.  

PVWatts™ 2 is used to determine the required PV panel area and number of inverters to 

maintain the power demand of the building. PVWatts™ Grid Data calculator is an 
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internet-accessible simulation tool for providing quick estimates of the electrical energy 

produced by grid-connected crystalline silicon PV system for a location in United States 

from an interactive map. This tool has been provided by National Renewable Energy 

Library and it is available to public.  

The Grid Data calculator employs a PV performance model and hourly typical 

meteorological year (TMY2) weather data to estimate annual energy production for a 

crystalline silicon PV system. It allows users to create estimated performance data of the 

PV system for any location in the United States or its territories by selecting a site on a 

40-km gridded map. PVWatts™ 2 considers data from a climatologically similar typical 

meteorological year data station and site-specific solar resource and maximum 

temperature information to provide PV performance estimation. In version 2, 

performance is first calculated for the nearest TMY2 location and then translated to the 

desired 40-km grid cell location. Grid cell monthly values of solar radiation and 

meteorological parameters are used in the translation process.  

The input factors of the PV system that should be determined by the user are as 

follows:  

• Nameplate DC power rating 

• DC-to-AC derate factor 

• Array type (fixed, sun-tracking with one or two axes of rotation) 

• Tilt angle  

• Azimuth angle  

• Electricity cost 
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Table 4.10 Derate factors for AC power rating at Standard Testing Condition 

Component 
derate factors 

PVWatts 
default Range 

PV module 
nameplate DC 

rating 
0.95 0.80–1.05 

Inverter and 
transformer 

0.92 0.88–0.98 

Mismatch 0.98 0.97–0.995 

Diodes and 
connections 

1.00 0.99–0.997 

DC wiring 0.98 0.97–0.99 
AC wiring 0.99 0.98–0.993 

Soiling 0.95 0.30–0.995 

System 
availability 

0.98 0.00–0.995 

Shading 1.00 0.00–1.00 
Sun-tracking 1.00 0.95–1.00 

Age 1.00 0.70–1.00 

Overall DC-to-
AC derate 

factor 
0.77 0.099–0.960 

 
 
 
The component derate factors are described below. 

• PV module nameplate DC rating derate factor accounts for the accuracy of the 

manufacturer's nameplate rating.  

• Inverter and transformer derate factor reflects the inverter's and transformer's 

combined efficiency in converting DC power to AC power. 

• The derate factor for PV module mismatch accounts for manufacturing tolerances 

that yield PV modules with slightly different current-voltage characteristics. 

Consequently, when connected together electrically, they do not operate at their 
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peak efficiencies.  

• Diodes and connections derate factor accounts for losses from voltage drops 

across diodes used to block the reverse flow of current and from resistive losses in 

electrical connections.  

• DC wiring derate factor for DC wiring accounts for resistive losses in the wiring 

between modules and the wiring connecting the PV array to the inverter.  

• AC wiring derate factor for AC wiring accounts for resistive losses in the wiring 

between the inverter and the connection to the local utility service.  

• The derate factor for soiling accounts for dirt, snow, and other foreign matter on 

the surface of the PV module that prevent solar radiation from reaching the solar 

cells.  

• The derate factor for system availability accounts for times when the system is off 

because of maintenance or inverter or utility outages.  

• The derate factor for shading accounts for situations in which PV modules are 

shaded by nearby buildings, objects, or other PV modules and arrays.  

• The derate factor for sun-tracking accounts for losses for one- and two-axis 

tracking systems when the tracking mechanisms do not keep the PV arrays at the 

optimum orientation.  

• The derate factor for age accounts for performance losses over time because of 

weathering of the PV modules.  

Annual electricity production of each PV panel which is the output of the 

PVwatt™ 2 and the available annual power demand of the building are used to calculate 

the required number of PV panels and inverters to maintain the annual power demand. 
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Table 4.11 shows the specifications of selected PV panel and inverter.  

Table 4.11 Selected PV panel and inverter specifications 

Supplier Kyocera Solar Fronius USA 

Model KD135GX-LPU IG PLUS 5.0-1 

Type 
Multicrystal 

Sicilon module 
Utility 

interactive 

Maximum power at 
STC [w] 

135 NA 

Maximum power 
voltage at STC [V] 

17.7 NA 

Maximum power 
current at STC [A] 

7.63 NA 

Recommended PV 
power [w] 

NA 4250-5750 

Maximum input 
voltage [v] 

NA 600 

Nominal input current 
[A] 

NA 13.8 

Nominal output power 
[w] 

NA 5000 

Gross area [m2] 1.00 NA 

Unit price at May 2011 
[USD] 

365 3320 

 

Table 4.12 shows the required area and total cost for the suggested solar ORC 

system (employing low-temperature evacuated tube and Isopentane as working fluid) and 

PV panel system to maintain the power demand of the building in Pensacola. It can be 

seen for the suggested ORC system the required collector area to maintain the power 

demand of the building is more than 60 percent less than required PV panel area to 

maintain the same amount of power. The total cost to establish the suggested solar ORC 

system is more than 50 percent less than total cost of running a PV panel system to 



 

104 
 

maintain the power demand of the building in Pensacola. 

 

Table 4.12 Required area and total cost for the suggested solar ORC system (employing 
low-temperature evacuated tube and Isopentane as working fluid) and PV panel system to 

maintain the power demand of the building 

System 
Required  

area  
[m2] 

Collector/ PV 
expense       

[ x 1000 USD]

ORC package/Inverter 
expense              

[ x 1000 USD] 

Total cost 
[ x 1000 USD] 

Solar ORC 728.16 257.81 75 332.81 

PV 1839.00 671.24 33.2 704.44 

 
 

4.10 Exergoeconomic Analysis of the Optimal Solar ORC System 

The main objective of this section is to examine the relation between the exergy 

loss and the capital cost of the optimal solar ORC system using the exergoconomic key 

parameter Rex.  Rex is defined by the Eq. (4.5). 

 

ܴ௘௫ ൌ ௚ܭ௘௫௔ܮ 																																																																																																																																						(4.5) 
                                                                                                     

where ܮ௘௫௔   is the annual exergy loss in [kWh] and Kg is the capital cost in [USD]. 

௘௫௔ܮ   is calculated using Eq. (4.6). 

 

௘௫௔ܮ ൌ ௘௫ܮ 		 ௗܲ௔௡ܹ௘௧ 																																																																																																																										(4.6) 
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where  Lex is exergy loss of the cycle in [W],  ௗܲ௔  is the annual power demand of the 

building in [kWh] and Wnet  is the net power output of the cycle in [W].  

ௗܲ௔ is one of the outputs of the building and the GSHP system modeling. Lex and 

Wnet are calculated by Equations (3.2) and (3.1) in chapter 3.  

The main reason that the capital cost is the only considered economic item in this 

study is that the use of other economic details like maintenance cost, interest rate and 

equipment lifetimes increases significantly the complexity of the analysis. There are two 

main justifications for this simplification: 

• Capital costs are often the most significant part of the total cost of the system. 

Hence, the consideration of only capital cost closely approximates the results 

when the total cost of the system is considered. 

• The total cost components other than capital costs often are proportional to 

capital costs. Therefore, the identified trends in the present study will likely be 

in good conformity with those identified when the entire cost term is 

considered.  

 

Ozgener et al. (2007) believe that for any technology there is an appropriate value 

for Rex where the design of the device is more successful if the Rex for that device 

approaches that appropriate value. Rosen et al. (2003a) speculate that mature 

technologies have achieved a balance of exergy loss and capital cost over the time that is 

appropriate to the circumstances.  

Table 4.13 shows the exergy loss, capital cost, payback period and Rex of the 
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ORC system which employs low temperature evacuated tube collector for different 

working fluids in Pensacola. Minor costs such as controllers’ costs, in-line pumps’ costs 

and piping costs have been neglected in comparison to collector and ORC system costs. 

The selected ORC system in this study is a 50 kW EletraTherm™ ORC package.    

 

Table 4.13 The exergy loss, capital cost, payback period and Rex of the ORC system 
which employs low temperature evacuated tube collector for different working fluids in 

Pensacola 

Kg                        
Capital cost [ USD] 

Fluid 

௘௫௔ܮ    
Annual 

exergy loss   
[kWh] 

Collector 
expense   

ORC 
system 
expense  

Total     
capital 

cost      

Payback 
period    
[Year] 

Rex      
[kWh/USD] 

Benzene 443931.36 263048 75000 338048 48.92 1.313 
Butane 455888.98 269336 75000 344336 49.83 1.324 

Cis-butene 463228.06 272480 75000 347480 50.29 1.333 
Cyclohexane 430868.52 255712 75000 330712 47.86 1.303 

E134 468400.30 275624 75000 350624 50.74 1.336 
Isobutene 468175.76 275624 75000 350624 50.74 1.335 
Isopentane 435843.64 257808 75000 332808 48.16 1.310 

R245ca 445392.91 263048 75000 338048 48.92 1.318 
R245fa 452813.18 267240 75000 342240 49.53 1.323 

Trans-butene 461579.86 271432 75000 346432 50.13 1.332 
 

It can be seen that the payback period variation for different fluids follows the 

same pattern as Rex variation. Fluids with lower payback period have a lower Rex. This 

means that Rex is an appropriate parameter for thermodynamic and economic evaluation 

of a solar ORC.  

This analysis is done at different ambient temperatures T0 from 5 to 27 °C, for 

Cyclohexane, Isobutane, R245ca and Benzene. The results have been depicted in Fig. 
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4.11. Equations (4.7) to (4.9) present linear correlations for the Rex of the system for each 

working fluid that has been depicted in Figure 4.11. 

Cyclohexane:           ܴ௘௫( ଴ܶ) ൌ 0.0031	 ଴ܶ ൅ 1.233                                         (4.7)     
 Isopentane:             ܴ௘௫( ଴ܶ) ൌ 0.0031	 ଴ܶ ൅ 1.2257                                       (4.8) 
 R245ca:                  ܴ௘௫( ଴ܶ) ൌ 0.0031	 ଴ܶ ൅ 1.2194                                       (4.9) 

where T0 is the ambient temperature in [°C]. 

 

 

Fig 4.11 Rex variation versus ambient temperature for an ORC system which employs 
low temperature evacuated tube collector in Pensacola 

 

 
Equations (4.7) to (4.9) confirm the exergoeconomic notion that states exergy is 

the commodity of value in the system.  This means that there is a systematic correlation 

between the annual exergy loss and capital cost for the investigated solar ORC system. 
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4.11 Conclusions 

Exergoeconomic analysis of the optimal solar ORC system that maintains the 

electricity demand of a geothermal air conditioned commercial building has been 

accomplished in this chapter. The system requirements needed to run the solar ORC 

system has been considered as the criteria to select the optimal components and optimal 

working condition of the system such as collector type, working fluid and high 

temperature level of the ORC system.    

TRNSYS 17 has been employed for the modeling of the building, GSHP system 

and solar collector loop. The building and GSHP modeling has been calibrated by 

measured data from a 20 day monitoring period and also available billing information. 

The system requirements needed to maintain the electricity demand of the 

building with an ORC system has been compared for the 11 suggested fluids in chapter 3 

for two temperature levels of 85°C and 130°C.  The simulation results show that the best 

collector-temperature combination for supplying the building power is the low 

temperature evacuated tube solar collector. Cyclohexane and Ispentane with respectively 

722.54 m2 and 728.16 m2 and Benzene and R245ca each with a 742.96 m2 required 

collector area are the best working fluids to be employed in the ORC system to maintain 

the power demand of the building in Pensacola. Isopentane is a more optimal choice for 

working fluid in comparison to Cyclohexane, Benzene, and R245ca when considering 

environmental and health issues.  

The effect of solar radiation intensity on the performance of the suggested 

technology was investigated. Pensacola, Miami and Houston were selected as the 

representatives of hot and humid climate cities. The results show that the monthly 
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variation of the power generation of the ORC per collector unit and the average solar 

radiation incident upon the surface follow the same pattern. This means that the solar 

radiation incident upon the collector surface is a determining factor of the required 

collector area to maintain a specific amount of electricity. The effect of weather condition 

on the building load and consequently on the power demand of the building should not be 

neglected. 

An economic comparison between the solar ORC and PV panel system shows the 

suggested ORC system (employing low-temperature evacuated tube and Isopentane as 

working fluid) needs 60 percent less area and 50 percent less money than PV panel 

system to maintain the power demand of the commercial building in Pensacola. 

Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex   of 

the annual exergy loss to the capital cost can be considered as a key parameter in order to 

optimize a solar ORC system from the thermodynamic (exergy-based) and economic 

point of view. It also shows that there is a systematic correlation between the exergy loss 

and capital cost for the investigated solar ORC system. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

This research has been developed the applied guidelines for using a solar organic 

Rankine cycle for space air conditioning. By considering how the solar collector type, 

solar collector size, working fluid selection, temperature and pressure of each section of 

the cycle influence the exergy loss, as well as their effects on the capital costs of the solar 

ORC system, for a building with a specific power demand, a unique combination of all 

these parameters - the optimized condition – has been determined.  

A procedure to compare working fluid capabilities when they are employed in the 

solar Rankine cycles with similar working conditions has been developed. 

The exergoeconomic concept has been applied on the optimal solar ORC in order 

to investigate the relation between the exergy loss and capital cost of the system for the 

first time in this study. A systematic correlation between the annual exergy loss and 

capital cost for the optimal solar ORC system has been derived. 

 

5.1 Conclusions 

A comprehensive list of working fluids has been analyzed to find the most 

suitable fluids to operate a solar ORC. A procedure to compare working fluid capabilities 

when they are employed in the solar Rankine cycles with similar working conditions has 

been proposed. This procedure has been summarized and illustrated in Fig. (5.1).  

The maximum practical thermal efficiency and corresponding cycle performance 

factors confirm that fluids with a higher critical temperature have better performance in 
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the ORC. Calculation shows that a thermal efficiency higher than 25% and an exergy 

efficiency higher than 20% are achievable in ORCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Proposed selection procedure of the working fluid in a solar ORC 
 

Discarding chlorine included fluids 

Discarding highly wet fluids 

Calculating thermal efficiency, exergy 
efficiency, net power generated, and vapor 

expansion ratio 

Setting higher temperature level of the 
cycle based on the collector type 

Categorizing working fluids into: 
- Refrigerants 
- High performance non-refrigerants  
- Medium performance non-refrigerants 
 

Choosing working fluids in the following 
order: 

- Highest thermal/exergy efficiency 
- Highest net power generated  
- Lowest vapor expansion ratio 
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In the investigation, two temperature levels for Teva have been considered which 

are 85 °C and 130 °C as representatives of low temperature and medium temperature 

solar collectors. 

Fluids have been divided into two groups: refrigerants and non-refrigerants. 

Fluids with the best performance in the ORC have been recognized in each group. In the 

non-refrigerant’s group, two different subdivisions have been considered: high 

performance fluids and medium performance fluids. The reason for this subdivision is 

that most non-refrigerants are in the medium performance group. Then by considering all 

non-refrigerants as one group, a large group of fluids would be omitted from analysis. 

At medium temperature level the final selected refrigerants through the introduced 

procedure are R245fa and R245ca. The final selected non-refrigerants at Teva=130 °C are 

Acetone and Benzene with high performance and Butane, Isopentane, Transbutan, and 

Cis-butene with medium performance. 

At the low temperature level only a few numbers of fluids have been changed in 

comparison to fluids selected at the medium temperature level. At Teva=85 °C, E134 has 

been added to the selected refrigerants at Teva=130 °C. In the non-refrigerants group, 

Acetone has been replaced by Cyclohexane and Isobutene has been added to the fluids 

with the medium performance capability. 

Exergy efficiency enhancement and irreversibility reduction have been calculated 

for all 11 selected fluids when the collector efficiency increases from 70% to 100% at 

low and medium temperature levels. Calculation results show that the theoretical limit for 

irreversibility reduction through collector efficiency improvement for two selected 

collector models, IND300 and LS-3, is 35%.  It also shows this limit is 5% for the exergy 
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efficiency enhancement.  

Different configurations of ORCs have different effects on the overall thermal 

efficiency of the cycle, the cycle total irreversibility, cycle second law efficiency, and the 

mass flow rate needed to generate a certain power output. Regenerative ORC is the most 

significant alternative configuration for basic ORC. The finite temperature difference 

during the heat transfer process is the main reason for irreversibility. The regenerative 

cycle reduces the irreversibility by using heat input from other parts of the system. In this 

study it has been investigated by what percentage the regenerative cycle outperforms the 

basic cycle with respect to the working fluid of the cycle. Calculation results show, at the 

two temperature levels studied, the regeneration will be more effective in ORCs 

employing high molecular complexity working fluids except for Cyclohydrocarbons.  

The optimization process has been finalized by identifying the best collector type 

and its corresponding temperature level, and exergoeconomic principles were applied on 

the optimal solar ORC.  The best collector-temperature combination for the solar ORC 

which maintains the electricity demand of a geothermal air-conditioned commercial 

building located in Pensacola of Florida is determined with exergetic and economic 

considerations.  

The system requirements needed to maintain the electricity demand of the 

building with an ORC system has been compared for the 11 suggested fluids in the 

previous section for two temperature levels of 85°C and 130°C.  The simulation results 

show that the best collector-temperature combination for supplying the building power is 

the low temperature evacuated tube solar collector. Cyclohexane and Ispentane with 

respectively 722.54 m2 and 728.16 m2 and Benzene and R245ca each with a 742.96 m2 
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required collector area are the best working fluids to be employed in the ORC system to 

maintain the power demand of the building in Pensacola. Isopentane is a more optimal 

choice for working fluid in comparison to Cyclohexane, Benzene, and R245ca when 

considering environmental and health issues.  

The investigation of solar radiation intensity effect on the performance of the 

suggested technology shows that the monthly variation of the power generation of the 

ORC per collector unit and the average solar radiation incident upon the surface follow 

the same pattern. This means the solar radiation incident upon the collector surface is a 

determining factor of the required collector area needed to maintain a specific amount of 

electricity. The effect of weather condition on the building load and consequently on the 

power demand of the building should not be neglected. 

An economic comparison between the solar ORC and PV panel system shows the 

suggested ORC system (employing low-temperature evacuated tube and Isopentane as 

working fluid) needs 60 percent less area and 50 percent less money than PV panel 

system to maintain the power demand of the commercial building in Pensacola. 

Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex   of 

the annual exergy loss to the capital cost can be considered a key parameter in order to 

optimize a solar ORC system from the thermodynamic (exergy-based) and economic 

point of view. It also shows that there is a systematic correlation between the annual 

exergy loss and capital cost for the investigated solar ORC system. 
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5.1 Future work 

Possible future works include: 

•  Evaluation of different options to reach to net zero energy building such 

as: 

- Installing appropriate equipment to return the surplus electricity to the grid  

- Choosing an appropriate Thermal Energy Storage (TES) system 

- Using PV panels as a supplement to the power generation system and 

finding the best combination of ORC and PV panel system for this option 

 

• All calculations of this study have been done in steady state mode and in 

an annual base. Performing a time dependent analysis will give a better 

understanding of the energy, exergy and cost flow in the system. 

 

• A comprehensive comparison between the solar ORC and PV panel 

system which includes consumed energy and materials in manufacturing process 

of both technologies. 

 

•  Using Compound Parabolic Concentrating (CPC) collectors can be a 

solution to reduce the required collector area while there are no studies to date on 

using CPC collectors to generate power for a residential or commercial building. 

CPC collector products have not been commercialized for public use as of yet. 

For this reason the high price of CPC collectors is the main barrier of use in 

residential or commercial building application.  
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