
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

5-27-2011

Modeling Security and Cooperation in Wireless
Networks Using Game Theory
Charles A. K. Kamhoua
Florida International University, kkcharlesa@yahoo.fr

DOI: 10.25148/etd.FI11072602
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Kamhoua, Charles A. K., "Modeling Security and Cooperation in Wireless Networks Using Game Theory" (2011). FIU Electronic
Theses and Dissertations. 436.
https://digitalcommons.fiu.edu/etd/436

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/436?utm_source=digitalcommons.fiu.edu%2Fetd%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


 

 

FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

 

MODELING SECURITY AND COOPERATION IN WIRELESS NETWORKS USING 

GAME THEORY  

 

 

 

 

 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

ELECTRICAL ENGINEERING 

by 

Charles Alexandre Kenmogne Kamhoua 

2011 

 

 
  



 

ii 
 

To:  Dean Amir Mirmiran     
 College of Engineering and Computing     

 
This dissertation, written by Charles Alexandre Kenmogne Kamhoua, and entitled 
Modeling Security and Cooperation in Wireless Networks using Game Theory, having 
been approved in respect to style and intellectual content, is referred to you for judgment. 

 
We have read this dissertation and recommend that it be approved. 

 
 

_______________________________________ 
Deng Pan 

 
_______________________________________ 

Kang K. Yen 
 

_______________________________________ 
Norman D. H. Munroe 

 
_______________________________________ 

Kia Makki, Co-Major Professor 
 

_______________________________________ 
Niki Pissinou, Co-Major Professor 

 
 

Date of Defense: May 27, 2011 
 

The dissertation of Charles Alexandre Kenmogne Kamhoua is approved. 
 
 

_______________________________________ 
  Dean Amir Mirmiran 

  College of Engineering and Computing 
 
 

_______________________________________ 
Dean Lakshmi N. Reddi 

University Graduate School 
 
 
 
 

Florida International University, 2011 
 



 

iii 
 

 

 

 

 

 

 

 

 

 

 

 

© Copyright 2011 by Charles Alexandre Kenmogne Kamhoua 

All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

DEDICATION 

To my late father Roger Kamhoua, my mother Solange Kamhoua, and my wife 

Francine Kamhoua. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

ACKNOWLEDGMENTS 

I would like to express my gratitude to my advisers Dr. Niki Pissinou and Dr. Kia 

Makki. I am indebted to Dr. Niki Pissinou who introduced me to the area of game theory. 

Besides game theoretic applications to Telecommunication Networks, this research 

empowered me to have a better understanding of rationality, human behavior, and social 

interactions. The advices and guidance she provided allowed me to overcome significant 

challenges during my dissertation. I have also been fortunate to have Dr. Kia Makki 

actively involved in my research. I thank him for his invaluable guidance and for pushing 

me to always publish high quality papers. I hope to be able to live up to his expectations 

in the future. 

I am thankful to Dr. Deng Pan, Dr. Kang Yen, and Dr. Norman Munroe for 

serving on my dissertation committee. Their constructive comments have improved the 

quality of this work. They have been helpful during the entire Ph.D. process. 

I also feel deep gratitude towards my collaborator and co-authors. Colonel Jerry 

Miller (Ret.) at the Applied Research Center has always been available to answer any of 

my questions. My frequent exchanges with Dr. Kami Makki have been reflective. 

I also thank the excellent faculty members of the Electrical and Computer Engineering 

Department. Their lectures and class projects have been influential. In particular, I 

received valuable support and encouragement from Dr. Jean Andrian. 

Additionally, I show gratitude to Dr. Kevin Kwiat of Air Force Research 

Laboratory. Our initial conversation on fault tolerant networks and network security has 

been insightful. 



 

vi 
 

Because of their constant motivation, I would like to thank my fellow lab mates at 

the Telecommunication and Information Technology Institute. Particularly, I thank 

Chanii Haley and Anthony Barreto for reading and removing the typos in my early 

writing. Likewise, I appreciate the comments of undergraduate students I have mentored 

over the last three years in the NSF/REU program. 

I am grateful to the faculty members of ENSET at the University of Douala where 

I did my undergraduate studies. Especially, I thank my thesis advisors Dr. Martin 

Mbouenda and Mr. Felix Paune. Also, I show gratitude to Mr. Lazare Kamdem for his 

true support. 

I am lucky to have close friends like Merlin Ngachin and Serge Feuze. I am glad 

of the stimulation and support they have provided. As graduate students themselves, they 

clearly understood all the challenges I was going through. 

Furthermore, words are not enough to express the love and blessings from my 

family members. They have always been patient and have motivated my desire to pursuit 

graduate studies. Especially, my communication with Olivier Tsemogne at the beginning 

of my dissertation deepened my motivation to undertake a research topic related to game 

theory. Also, I would like to appreciate all the devotion and sacrifice made by Veronique 

Maga for making this dissertation possible. 

Finally, I would like to acknowledge that my graduate studies have been partially 

funded by the US National Science Foundation and Florida International University 

through the Applied Research Center, the Electrical Engineering Department, and the 

Telecommunication and Information Technology Institute. 

 



 

vii 
 

ABSTRACT OF THE DISSERTATION 

MODELING SECURITY AND COOPERATION IN WIRELESS NETWORKS USING 

GAME THEORY 

by 

Charles Alexandre Kenmogne Kamhoua 

Florida International University, 2011 

Miami, Florida 

Professor Niki Pissinou, Co-Major Professor 

Professor Kia Makki, Co-Major Professor 

This research involves the design, development, and theoretical demonstration of 

models resulting in integrated misbehavior resolution protocols for ad hoc networked 

devices. Game theory was used to analyze strategic interaction among independent 

devices with conflicting interests. Packet forwarding at the routing layer of autonomous 

ad hoc networks was investigated. Unlike existing reputation based or payment schemes, 

this model is based on repeated interactions. To enforce cooperation, a community 

enforcement mechanism was used, whereby selfish nodes that drop packets were 

punished not only by the victim, but also by all nodes in the network. Then, a stochastic 

packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic 

demand that was pervasive in other works. To address the concerns of imperfect private 

monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was 

developed that reduces the impact of noise in cooperation. This scheme also eliminated 

the need to infer the private history of other nodes. Moreover, it simplified the 

computation of an optimal strategy. The belief-free approach reduced the node overhead 
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and was easily tractable. Hence it made the system operation feasible. Motivated by the 

versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, 

leading to the development of a framework for mitigating routing selfishness and 

misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed 

strategy rather than independently choosing a rational strategy. A range of simulations 

was carried out that showed improved cooperation between selfish nodes when compared 

to older results. Cooperation among ad hoc nodes can also protect a network from 

malicious attacks. In the absence of a central trusted entity, many security mechanisms 

and privacy protections require cooperation among ad hoc nodes to protect a network 

from malicious attacks. Therefore, using game theory and evolutionary game theory, a 

mathematical framework has been developed that explores trust mechanisms to achieve 

security in the network. This framework is one of the first steps towards the synthesis of 

an integrated solution that demonstrates that security solely depends on the initial trust 

level that nodes have for each other. 
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CHAPTER 1 

INTRODUCTION 

The widespread nature of wireless communication networks nurtures the dream of 

interconnection between any device, anytime, anywhere in the world. The fulfillment of 

this vision requires the participation of several nodes, from multiple network domains 

with different objectives and preferences. With the rapid advances in computer and 

wireless communications devices and associated techniques, mobile sensor networks are 

becoming feasible and attracting more and more research attention recently. This is 

because future wireless communication will entail autonomous devices, such as sensors, 

smart phones, and computers, to be interconnected in an ad hoc manner and without any 

underlying networked infrastructure. An ad hoc network is a temporary, on the fly, 

connection between typically autonomous devices where each device decides whether 

and to what extent it wishes to participate in the network. In the pursuit of their own 

interests, the participating devices could therefore misbehave – either by being selfish or 

by being malicious [1-20]. Selfish nodes attempt to save scarce resources such as battery 

power, bandwidth, memory spaces, and computational power. As a consequence, each 

node will strive to save its limited supply while competing to gain access to others’ 

resources with the goal of maximizing their own capacity. 

In such an autonomous ad hoc network, each node could misbehave. We can distinguish 

at least three types of misbehaving nodes: faulty, selfish and malicious nodes. Faulty 

nodes do not follow the recommendations of the protocol because they are damaged. 

Selfish nodes strive to maximize their individual outcome. A selfish node will misbehave 
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if the protocol recommendation is not consistent with its self-interest. Malicious nodes 

attempt to destroy the network. They launch various attacks such as Denial of Service 

and selective forwarding.  

The primary function of a network is to guarantee a secure connection between different 

nodes. Therefore, the primary issue that would arise in autonomous ad hoc networks 

would be about packet forwarding. In our targeted scenarios, nodes are selfish and there 

is no infrastructure. When the sender is not in the communication range of the 

destination, the packets go through multi hop communication. Intermediate nodes 

between the sender and the destination are requested to forward the packet for others. 

But, there is a cost in battery power and bandwidth associated with forwarding packets 

and therefore, it is not in the best interest of an intermediate node to forward packets. Yet, 

if all nodes refuse to forward packets for others, the network collapses. However, no node 

is interested in this outcome. This situation is similar to the n persons Prisoners’ Dilemma 

Game (PDG) found in game theory. Therefore, in our work we use the repeated PDG to 

model the packet forwarding game in a network [1-4]. 

As we can see, selfish node behavior may result in, at the least, network performance 

degradation. Thus, efficient mechanisms need to be designed to enforce node cooperation 

at all layers. In fact, aside from the selfish behavior at the routing layers that we describe 

above, selfishness and conflicting interests can also cause several types of misbehaviors 

in other layers of networks without central managers. For instance, at the physical layer, a 

node can selfishly increase its power to successfully transmit its packets. The natural 

response of other selfish nodes would be to also increase their power. The result would be 



 

3 
 

an unacceptable interference level that deteriorates the network operation. Looking at the 

MAC layer, some nodes may disregard the back off period in an attempt to send more 

packets. Instead of waiting for other nodes to finish sending their packet, each node may 

attempt to quickly send its own packets. As a consequence, there may be an increase in 

collision that could dramatically affect the network performance. Let’s also consider the 

transport layer; the most widely used protocol in this layer is the Transmission Control 

Protocol (TCP). The flow allocation achieved by TCP is almost fair as a result of the 

additive increase and multiplicative decrease of the window size at each end point. The 

window size is the number of packets a node sends at once. A node using TCP must cut 

the window size in half after packet loss due to congestion. A selfish node may be 

reluctant to decrease its window size during congestion to maximize its own flow 

allocation. If all nodes adopt such behavior, congestion will be aggravated. 

Alongside selfish behavior, the research in this dissertation examines autonomous 

network security. Security mechanisms in traditional networks rely on trusted systems 

like certificate authorities to operate. In the absence of such an authority, nodes are 

required to trust each other to secure the network and protect their privacy. Trust, in this 

context, can be understood as the belief or the confidence a node has about the 

appropriate participation of others in the security mechanism. Without trust, no intelligent 

node will participate in any security mechanism that involves the collaboration of several 

nodes to be successful. Absolutely, numerous security mechanisms require some level of 

trust in their design and implementation [21-26]. 
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In addition to autonomous ad hoc networks, we looked into traditional wireless networks. 

We considered a service provider with a multitude of users. Upgrading the network 

infrastructure to accommodate the exponential increase in bandwidth demand observed in 

recent years is costly for the service providers. A provider would prefer to minimize their 

investment in upgrading the network while maximizing the number of customers using 

the product. On the other hand, without regular upgrades to the network from the 

provider, there may be more congestion, more delays, and generally, a low Quality of 

Service (QoS). One option available to unsatisfied users is to quit their provider. Surely, 

there is a conflict of interest between a service provider and its users. The optimum 

behavior of the provider will be connected to the users’ strategies and organization. 

We can see that independent nodes are involved in strategic interactions at all protocol 

layers to secure the network or when interacting with their provider. The success of one 

node behavior will depend on the behavior of other nodes. Game theory is the unifying 

mathematical framework able to model the conflict faced by the different nodes in each 

situation mentioned above and scrutinize the possible solutions with a precise 

characterization of their properties. This justifies the use of game theory as the main 

method employed in our investigation. In addition, when appropriate, we relaxed the 

assumption of node rationality used in the game theory model to advance a framework 

based on Evolutionary Game Theory (EGT) [4-5]. 

It becomes evident that the realization of the ideal of interconnection between any device, 

anytime, anywhere in the world and other computing paradigms is not possible if 

efficient mechanisms were not designed to stimulate nodes’ participation or provide 
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adequate compensation to all network entities. Clearly, a network protocol at all layers 

must take into account the self-interest of independent nodes performing 

separate optimization.  Cooperation among ad hoc nodes can also protect a network from 

malicious attacks. In the absence of a central, trusted entity, new classes of distributed 

security mechanisms and privacy protections require cooperation among several ad hoc 

nodes to protect a network from malicious attacks [21-23]. This dissertation specifically 

addresses selfish and malicious nodes. The interconnection among selfishness, 

cooperation, and network security is investigated. 

1.1 Research Objective  

The main objective of this dissertation is to use game theory and EGT to model and 

analyze strategic interactions in wireless networks with selfish and malicious users. Our 

objective for this research is threefold: 

1. Design distributed game theoretic and EGT algorithms using only local 

information to enforce nodes cooperation at the routing layer of the network and 

optimize network performance with autonomous nodes, incomplete information, 

and imperfect monitoring. 

2. Use game theory and EGT to analyze new security mechanism for networks with 

autonomous nodes without a central manager or a trusted authority. 

3. Investigate and propose adequate game theoretic solutions to the tremendous 

increase in bandwidth demand due to an expansion of the number of smart 

phones, iPhones, PDAs, and other mobile devices. 
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Specially, our work focuses on:  

• The study of various techniques for incorporating imperfect monitoring, imperfect 

information, incomplete information into the game model for networks using both 

game theory and EGT. 

• Comparing the performance of models developed using game theory and EGT 

and investigating the underlying assumptions of those theories in the context of ad 

hoc networks with mobile nodes and dynamic change in the network topology. 

• Designing game theoretic and EGT algorithm for autonomous networks that 

achieve performance similar to those of cooperative networks with a central 

authority. 

• Providing a detailed mathematical analysis of autonomous network security 

models to capture in a general contest the equilibrium conditions in the network. 

• Predicting the user and provider behaviors under diverse noise levels and different 

monitoring schemes. 

1.2 Significance 

This research has significant impact in several areas. First, our work on enforcing 

cooperation at the routing layers provides significant insight into the problem of 

distributed decision-making, self-adaptation, self-management, random interactions, and 

the resource efficiency needed to cope with rapid changes in network topology. Our 

approach leads to a precise characterization of the properties of cooperation in ad hoc 
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networks. Second, this research establishes one of the first solid frameworks for 

integrating realistic network conditions into autonomous network models. By realistic, 

we mean incorporating noise, private monitoring, and private information into the model. 

This work allows the self-interest of individual nodes to be in agreement with the 

common interest or better network performance. Further, as with traditional networks, 

autonomous networks need to be secured to authenticate the nodes, prevent misuse, 

detect anomalies, and protect user’s privacy. Our research provides novel concepts and 

fundamental knowledge concerning the modeling, analysis, design, and robust control of 

complex real-time dynamic systems, including distributed autonomous network security. 

This work evaluates distributed security mechanism adequate for ad hoc networks. 

Clearly, this research facilitates the secure interconnection of autonomous devices in the 

cyberinfrastucture for the good of each user.  

1.3 Organization and Contribution 

This dissertation is divided in nine Chapters. Each Chapter presents specific research 

contributions and has been peer reviewed, presented at international conferences, and 

published. Chapter 2 is about the related works that provide a critical analysis of the 

contribution of other researchers.  

We start with the packet forwarding game. Initially, in Chapter 3 [1], we assumed 

perfect monitoring and rational nodes. We analyzed the consequences of traffic load 

inequality on the packet forwarding game. Unequal traffic loads arise in the network 

because existing routing protocols in multi hop networks are designed to choose the 

shortest available path between the sender and the destination. As a consequence, the 



 

8 
 

traffic load at the center of the network is significantly higher than at the border. A 

community enforcement mechanism is used to compel all nodes to cooperate. The 

defectors are punished not only by the victim, but also by any node that observes that 

defection. The set of individually rational and feasible payoffs is precisely characterized. 

This is the first work to derive the exact utility function of each node according to its 

position in a static network. Then, we show that if a load balancing algorithm is not used 

in a distributed static network, cooperation ultimately breaks down as the number of 

nodes increases. 

Subsequently, in Chapter 4 [2], the packet forwarding game model is a stochastic PDG. 

A stochastic dimension is introduced to eliminate the unrealistic assumption in other 

works that each node has packets to send in each time slot or that any two neighbors have 

uniform network traffic demands. A game theoretic algorithm, sequential equilibrium of 

the packet forwarding game able to enforce cooperation with a limited number of 

punishments is developed.  

Thereafter, in Chapter 5 [3], noise and imperfect monitoring are considered. Congestion, 

interference, and noise create inconsistency between observed actions and the true actions 

of a node in a distributed network. We use a belief-free equilibrium approach because it is 

easily tractable. The need to infer other nodes’ private history is eliminated and the 

computation of optimal strategy is simplified. Nodes are indifferent between cooperation 

and defection at all histories. The simple strategy designed works with all types of 

monitoring technology: perfect monitoring, imperfect public monitoring, and imperfect 

private monitoring. 
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Ultimately, in Chapter 6 [4], we relax the assumption of rationality used in game 

theoretic models and use the framework of EGT. Nodes do not choose strategies 

themselves but are pre-programmed to play a pure or mixed strategy. Pavlov and its 

variant pPavlov are proposed to enforce node cooperation. Both Pavlov and pPavlov are 

Evolutionary Stable Strategies (ESS) and are stable in the replicator dynamic. It is shown 

that pPavlov is more appropriate than Pavlov if the discount factor is low. 

The second part of my dissertation is presented in Chapter 7 [21] and involves 

autonomous network security. As with traditional networks, these networks need to be 

secured to authenticate the nodes, prevent misuse, detect anomalies, and protect user 

privacy. Network security and privacy protection without a central manager is 

challenging. In autonomous networks, many security mechanisms and privacy 

protections require the cooperation of several nodes to defend the network from 

malicious attacks. For instance, new researches have presented a light weight 

cryptographic technique for distributed network based on hierarchical multi-variable 

symmetric functions. However, those algorithms use a polynomial of degree k and are 

therefore k-secure. This means that if k nodes do not protect their key, an attacker can 

break the security mechanism and have access to all encrypted communication. If that 

happens, there is no need for a node to encrypt the message because they can easily be 

decrypted. A rational node may even prefer not to encrypt because encrypting a message 

will have no other purpose than creating a useless and costly message overhead. 

Therefore, we particularly investigated when, for each node, it is cost-effective to freely 

participate in the security mechanism or protect its privacy depending on whether that 
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node believes or trusts that all other nodes or at least a minimum number of other nodes 

will do the same. In this case, each node is involved in a trust dilemma that we also 

model using the mathematical framework of game theory and EGT. We demonstrate that 

the end result (secured or unsecured network) solely depends on the initial trust level that 

the nodes have for each other. Consequently, it is not possible for the nodes to move from 

the low trust equilibrium (unsecured network) to the high trust equilibrium (secured 

network). This is the first work to model the connection between security and trust in 

autonomous ad hoc network. 

Chapter 8 [27] presents the last part of this work. The demand on mobile data usage has 

exponentially increased since the introduction of iPhones in 2007. The network became 

congested as millions of users tried to browse websites and social networks, send e-mails, 

stream multimedia, and transfer files simultaneously. An immediate solution for the 

providers would be to change their pricing strategy with the goal of slowing down heavy 

users and decreasing the bandwidth demand. From the users’ standpoint, network 

providers must constantly upgrade their infrastructure to accommodate new applications 

and devices. However, upgrading the infrastructure will be costly for the provider. A 

provider goal is to maximize its revenues by attracting the maximum number of 

customers while minimizing the infrastructure cost. On the other hand, the users would 

prefer a regular upgrade of the network to have less congestion, less delays and a high 

QoS. Moreover, users that experience bad connection will be tempted to switch 

providers. The dynamic communication market and the users’ and provider’s interaction 

are analyzed in the framework of repeated game theory. Noise in users’ monitoring is 
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considered. Two scenarios are compared: individual and independent actions of users as 

opposed to the collective actions of users. The result indicates that collective actions 

achieve a higher welfare to users compared to independent actions. 

As you can see, this research investigates multiple network functions and takes into 

consideration the self-interest of autonomous agents while at the same time achieving a 

system performance close to that of traditional networks with unconditionally cooperative 

nodes. Independent nodes perform separate optimizations and reaches efficient 

equilibrium under our proposed models. Chapter 9 concludes this dissertation and 

proposes several directions for future research.  
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CHAPTER 2 

RELATED WORK 

In this Chapter, we give a brief survey of related research in three areas: packet 

forwarding games, network security games, and user provider games. Also, before 

discussing related work in packet forwarding games, we will present two other 

approaches used to induce autonomous node cooperation, namely the virtual currency 

system and the reputation mechanism. We will summarize each approach and identify 

their problems and limitations. 

2.1 Virtual Currency System 

Nuglets and Sprite are the two most popular approaches that use the virtual currency 

system to address cooperation. Both offer direct incentives to cooperating nodes. We first 

present Nuglets followed by Sprite. 

Buttyan and Hubeau [28], use an economic approach to propose Nuglets, a virtual 

currency system. The authors present two models to pay the packet forwarding service: 

the packet trade model and the packet purse model. In the packet trade model, the sender 

does not pay to send a packet. The next hop buys the packet and sells it for more Nuglets 

until the destination that pays the total cost of forwarding the packet. The intermediate 

nodes have some incentives to forward the packet and earn Nuglets. This model is 

vulnerable to network overload because senders can send unimportant messages through 

the network and do not have to pay. The Packet purse model solves the network overload 

problem. In this model, the senders pay to send a packet by loading some Nuglets in the 
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packet. Each intermediate node acquires some Nuglets from the packet before forwarding 

it. If a packet does not have enough Nuglets, it is dropped. Both models require tamper 

resistant software and hardware to store the correct amount of Nuglets. In addition, nodes 

at the periphery of the networks do not have the same opportunity to accumulate the 

virtual currency. Another serious difficulty includes the per-hop charge to forward a 

packet or the possibility of collusion in case of auction to find the cheaper next hop. 

In [28], Zhong et al. propose Sprite. Sprite focuses on selfish nodes and does not address 

the case of malicious and faulty nodes. Sprite relies on a central authority: the Credit 

Clearance Service (CCS). Nodes keep a receipt of each message they receive. They 

submit those receipts to the CCS to claim payment. The CCS determines the credit to 

each intermediate node and charges the sender. This system does not target a balanced 

payment but motivates nodes to cooperate. Also, Sprite cautiously computes payment to 

prevent cheating and collusion among nodes. Unlike Nuglets, Sprite does not require 

tamper proof hardware. However, the fact that the CCS is a central authority violates a 

premise of ad hoc networks which are distributed in their nature. 

2.2 Reputation System 

Unlike the virtual currency system, which provides direct incentives to cooperating 

nodes, reputation systems punish non-cooperating nodes. Many models have been used to 

model reputation, in particular, the Beta reputation system [24, 30-31] which has a strong 

foundation in statistics. Here, a watchdog mechanism, in each node, is used to monitor 

the behavior of its neighbors. After sending a packet, the node listens and observes if the 

packet has been forwarded or not, and records the result in a reputation table. Those 
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models assume that omnidirectional antennas are used. A second assumption is the 

promiscuous mode of the wireless interface. Models differ on whether to share reputation 

information or not. First hand information is obtained by a node itself. Second hand 

information is reputation information that the node receives from other nodes. Second 

hand information helps to accelerate the convergence time of the algorithm. However, 

propagating second hand information creates traffic load in the network. Models also 

differ in weight given to new and old information. When giving more weight to new 

information, cooperating nodes can lose their reputation in low network activity. On the 

other hand, when giving more weight to old information, a malicious node can 

accumulate a good reputation and start dropping packets with impunity. Another common 

assumption is that all packet loss is due to misbehavior. Thus, packet losses due to 

congestion or noise are not taken into account.  

Marti et al [32] proposed a system with two tools. A watchdog that listens to the its 

neighbors and identifies misbehaving nodes; and a pathrather, that selects the best route 

to avoid malicious nodes. The system achieves an acceptable throughput in the presence 

of misbehaving nodes. However, this system does not eliminate misbehaving nodes. 

Misbehaving nodes can send their own packets in the network even though they do not 

forward packets from other nodes. 

Michiardi and Molva [33] develop CORE (Collaborative Reputation), a reputation 

mechanism for mobile ad hoc networks (MANET). The mechanism uses three types of 

reputation: subjective reputation from first hand information, indirect reputation from 

second hand information, and functional reputation calculated with respect to different 
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functions like routing and forwarding. Functional reputations are combined into the 

global reputation by giving accurate weight to each function. This combination is a 

problem in itself; combining reputation does not allow the mechanism to trust a node for 

a specific function and not for others. The weight to give to each function is also 

problematic. Moreover, only positive information is propagated to avoid DoS. However, 

malicious nodes can collude, propagate positive reputation of each other in the network, 

and gain longer access. Core is simulated using the Dynamic Source Routing (DSR) 

protocol and shows adequate performance. 

Buchegger and Boudec [34], recommend Cooperation Of Nodes-Fairness In Dynamic Ad 

hoc NeTworks (CONFIDENT). CONFIDENT detects and isolates misbehaving nodes. 

The CONFIDENT protocol has four components: the monitor, the reputation system, the 

path manager, and the trust manager. The monitor is similar to the watchdog, the 

reputation system rates nodes, the trust manager issues ALARM messages, and the path 

manager makes decisions. Unlike CORE, CONFIDENT propagates only negative 

information. The authors argue that malicious behavior is the exception, not the norm. 

However, this allows misbehaving nodes, even without collusion, to mount false 

accusation attacks and then eliminate cooperating nodes from the network.  

Ganeriwal and Srivastava [31] introduce a Reputation-based Framework for Sensor 

Networks (RFSN). First and second hand information are used for reputation, but only 

first hand information is propagated. This prevents trust recommendations from looping 

back at the originating nodes. Moreover, only positive information is transmitted. This is 

to avoid bad-mouthing attacks. To combine direct information and second hand 



 

16 
 

information and obtain a new reputation value, Dempster-Shafer belief theory is used. 

This is to take into account the fact that reputation information from the most trusted 

nodes must have more weight. Nodes with low reputation are detected and eliminated 

from the networks. Aging is used to give more weight to fresh information. Thus, 

cooperating nodes can lose their reputation in low network activity. 

2.3 Game Theory 

Game theory is used to model strategic interaction among rational players. It cannot be 

used to model irrational misbehavior of faulty nodes. Nevertheless, it is adequate to 

mitigate selfishness and malicious behaviors. In ad hoc network, the players are the 

nodes. Each node wants to maximize its own utility (payoff). That means sending the 

most possible packets while forwarding the least packets and saving energy and 

bandwidth. The best objective in a network is to converge to a Pareto efficient Nash 

equilibrium [35]. However, the main challenge is that the allocations in the Nash 

equilibrium are not always Pareto efficient [35]. The following are some of the 

approaches using game theory. A survey on wireless ad hoc networks games is available 

in [20]. 

Srinivasan et al. [7], motivated cooperation in a network using Generous Tit For Tat 

(GTFT). The authors proved that GTFT is a Nash equilibrium of the forwarding game. 

However, to compute the equilibrium of the game, each node must know all nodes in the 

network, its own utility, and the utility of all the other nodes. This is a strong requirement 

for distributed networks. Our work in Chapter 3-5 presents distributed game theoretic 

algorithms able to enforce autonomous nodes’ cooperation. 
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Yan [10], and also Yan and Hailes [11-12] developed models for cooperation in wireless 

multi-hop networks. They used the Prisoners’ Dilemma game as the base of their model. 

They assumed that any two neighbors have uniform network traffic demand. We believe 

this is not always the case in a network. This assumption is relaxed in Chapter 3-5. 

Felegyhazi et al. [6] used game theory in combination with graph theory to investigate 

and prove the conditions under which cooperation can evolve in the network. The authors 

concluded that the probability of full network cooperation is very small. Nonetheless, as 

the authors point out, local subsets of cooperating nodes may exist. Actually, this model 

relies on a dependency loop. However, a node may not be able to know its dependency 

loop in a fully distributed network. Each node only knows its neighbors as opposed to the 

full network topology. Clearly, dependency loop will not be common knowledge among 

nodes. 

Jade et al. [9] combined virtual currency and Stochastic Game Theory (SGT) to 

formulate an optimal policy to forward packets towards route in peer-to-peer networks. 

When a source node requests data from the destination, each intermediate node is paid a 

virtual currency to relay the packet. Their optimal policy is achieved based on cost, free 

bandwidth, and service capacity. Their incentive-based routing protocol shows better 

performance compared to the DSR protocol. 

Sagduyu and Ephremides [8] used SGT to address the cross layer problem of joint 

Medium Access Control (MAC) and routing in ad hoc wireless networks. They used a 

simple network consisting of a transmitter, a relay node, and a common destination to 

present their model. At the routing layer, the transmitter can send its packet directly to the 
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destination or through the relay node, while the relay decides to accept packets from the 

transmitter or to send its own packets. At the MAC layer, the transmitter and the relay 

decide to transmit or to wait in each time slot. Each node selects the probability 

distribution of the available actions with the objective of optimizing their individual 

performance measure of throughput, delay, and energy consumption. Because the sender 

is in the communication range of the destination in this model, our outstanding problem 

of cooperation in multi-hop networks packet forwarding is not addressed. 

Srivastava and DaSilva [13] relax the assumption of perfect monitoring. They model the 

network packet forwarding game as a game of imperfect public monitoring. In such a 

game, past actions of nodes are imprecise and noisy, but it is assumed that nodes 

commonly observe a public signal about the actions of others. However, the availability 

of such signals in a distributed network is not always guaranteed.  

Ji et al. [14-15] use a game of imperfect private monitoring to model noise in the network 

packet forwarding game. A public signal is not needed. Nodes do not have common 

knowledge about the history of the game but each node has a private history of the game. 

Each node needs to infer the private history of other nodes based on their own imperfect 

observations. Those inferences become complicated in the long term. This is called a 

belief-based approach because the equilibrium strategy depends on the opponents’ private 

history. We present a simpler approach in Chapter 5, namely a belief-free equilibrium 

approach. A belief-based approach requires more computational power than our model. 

Next to the work of Ji et al, Yu and Liu [17] propose a game theoretic approach to a 

secure cooperation in ad hoc network.  
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Comparably, mechanism design has been used to enforce node cooperation and develop 

optimum and truthful routing mechanism. By definition, mechanism design is a field of 

game theory that investigates how privately known preference of several strategic players 

can be aggregated toward a desirable outcome. The desirable outcome is sometimes the 

maximization of some utility function or to have strategic players truthfully reveal their 

private information. 

Brahma [18] proposes a path auction based routing to enforce node cooperation. Each 

node announces their privately known capacity and cost. His scheme ensures that each 

node maximizes its profit by truthfully reporting their cost and capacity. His model is 

supported by theoretical demonstration as well as simulation. However, to prevent selfish 

nodes from dropping packets after collecting the payment, he proposes that the 

destination make the payment. Consequently, as mentioned before, malicious nodes can 

freely send useless packets to saturate the network. 

Finally, Neely [36] suggests free market to induce node cooperation. A different market 

model is proposed in [37]. 

2.4 Evolutionary Game Theory 

Researchers have also used EGT to motivate cooperation in multi-hop networks. Unlike 

game theory, EGT does not assume rational nodes. EGT derives from game theory and 

evolutionary biology. EGT can be used to analyze the evolution of strategies in a 

network. Specifically, EGT can describe how the frequencies of strategies change over 
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time depending on their relative success. Moreover, EGT helps identify which strategies 

will resist random mutation in the long term. 

Crosby and Pissinou [5] used EGT in multi-domain Wireless Sensor Networks (WSN) to 

develop a new protocol: Patient Grim Strategy (PGS). A player following PGS 

cooperates and continues cooperating until the other player defects N times and then 

defects forever. A drawback of PGS is its inability to cooperate again after N defections. 

Thus, in case of network congestion or noise, cooperating nodes can be punished or 

eliminated from the network forever. The result can be the collapse of the network when 

all nodes defect. 

Komathy and Narayanasamy [19], used Tit For Tat (TFT), Pavlov, and generic 

algorithms to improve the Ad hoc On-demand Distance Vector algorithm (AODV). Their 

results show that AODV-Pavlov and AODV-TFT achieve a higher packet delivery ratio 

than the normal AODV. Chapter 6 proposes a packet forwarding game based on EGT. 

2.5 Network Security Game 

The interest of using game theory to address network security challenge has increased in 

recent years. In general, the main objective of the attacker is to intelligently choose its 

strategy to maximize the damage to the network while the manager tries to minimize the 

damage. The attacker’s and the defender’s objectives are strictly opposed. This justifies 

the use of a zero-sum game to model network security [38]. When each player applies the 

best response to its opponent strategy, the game reaches the well known Nash 

equilibrium. Neither the attacker nor the manager can unilaterally make a profitable 
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deviation from the Nash equilibrium. Other models relax the assumption of rationality 

used in game theory and use the mathematical framework of EGT to model network 

security [39]. 

In the game presented in [40], the strategy and the payoffs are assumed to be common 

knowledge. In this case, the network security game is a game of complete information. 

Otherwise, we have a game of incomplete information that can be formulated as a 

Bayesian game as in [41]. The network security game can also be modeled as a static 

game [40-41], a repeated game, or more generally as a stochastic game [38, 42]. A 

stochastic game is a generalization of a repeated game. In a repeated game, players play 

the same stage game in all periods, whereas in a stochastic game, the stage game can 

randomly change from one period to the next. Game theory also provides a solid 

framework to model intrusion detection in a network [41, 43]. A survey of game theory 

as applied to network security is provided in [44]. A detailed presentation of game theory 

and EGT is found in [35] and [45] respectively. Our approach to network security game 

is presented in Chapter 7. 

2.6 User Provider Game 

There is a rich literature on game theoretic modeling of user-provider interactions. 

Hassan et al [46] show that the user can use a brinkmanship technique to provide credible 

threats to the provider and therefore constraint the provider to allocate more resources to 

users. Sengupta et al [47] investigate a market in which multiple service providers 

compete to get a large portion of the spectrum and sell it to the maximum number of 

users. Other works analyzing provider’ price competition to attract users include [48-50]. 
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The work in [51] examines one provider’s Nash equilibrium price under asymmetric 

information. A comprehensive survey of wireless service providers and user’s 

interactions can be found in [52]. Chapter 8 analyzes the game between one service 

provider and its multitude of users. 
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CHAPTER 3 

GAME THEORETIC ANALYSIS OF COOPERATION IN AUTONOMOUS 

MULTI-HOP NETWORKS: THE CONSEQUENCES OF UNEQUAL TRAFFIC 

LOAD 

Researchers have investigated non cooperative issues in wireless sensor networks and 

mobile ad hoc networks in the past decade. In particular, packet forwarding is of critical 

importance in such multi-hop networks. This is because there are no preexisting 

infrastructures. Each node must not only send and receive its own packets but also relay 

packets to other nodes. However, most works overlook the fact that the traffic load at the 

center of the network is significantly higher than at the border when using existing 

routing protocols. Therefore, a node at the center is requested to forward more packets 

than a node at the border of the network. This inequality in traffic load can break down 

many solutions proposed to motivate node cooperation. In this Chapter, we quantify the 

number of packets a node is requested to forward as a function of its position. We show 

that, if a load balancing algorithm is not used in a distributed static network, cooperation 

ultimately breaks down as the number of nodes increases. We support our result with 

mathematical proofs. 

3.1 Introduction  

Wireless ad hoc networks and WSN are distributed in their nature. They do not rely on a 

preexisting infrastructure. They are self configurable. They can promptly be deployed in 

case of disaster recovery. Packets go through a multi-hop communication route from a 
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sender to a destination if the destination is not in the communication range of the sender. 

Therefore, each node is at the same time a terminal and a router. As a terminal, a node 

sends and receives its own packets. As a router, a node is requested to relay packets from 

other nodes. Most routing protocols in multi-hop networks assume full cooperation of 

nodes to participate in route discovery, route maintenance, and packet forwarding. The 

assumption of full node cooperation is true when the nodes have the same managers. 

Only the collective interest of the global network is taken into consideration. Individual 

nodes follow all the recommendations of the routing protocols and so there is no conflict 

of interests in those networks.  

However, in a multi-hop network without a central authority, the decision to cooperate 

becomes decentralized and, in extreme cases, each node is autonomous and decides only 

for its own best interests. This creates conflict between self and collective interests. A 

selfish node is tempted to drop packets from other nodes to save energy and bandwidth. 

For instance, in Vehicular Ad Hoc Network (VANET), each vehicle is equipped with a 

node to provide communication between nearby vehicles. Nodes in VANET are 

autonomous. In fact, many other applications in the future will require autonomous 

devices to interact, and cooperation will be the first problem to solve in such networks. 

There are several approaches to motivate cooperation in ad hoc networks. In models 

using virtual currency [28-29], the sender must pay intermediate nodes to relay packets. 

Intermediate nodes accumulate the virtual currency and use it in the future to send their 

own packets. Thus, nodes at the center of the network accumulate more virtual currency 

compared to nodes at the border. Thus, a border node may not have enough virtual 
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currency to send its packets. On the other hand, in models using a reputation system [31-

34], nodes must relay packets to maintain a good reputation. Nodes with bad reputation 

are eliminated [31, 33-34]. Therefore, maintaining a good reputation is more costly for a 

node at the center while being cheap for a border node. In fact, no reputation mechanism 

can guaranty full cooperation in the network if for some nodes, the cost to maintain a 

good reputation is higher than the benefit. Other approaches use game theory [1-3, 6-11, 

13-17] and evolutionary game theory [4-5] to model cooperation. However, the games 

designed and the strategies developed do not fully characterize the set of individually 

rational and feasible payoffs that directly depend on the traffic load distribution in the 

network. 

Unequal traffic loads arise in the network because existing routing protocols in multi-hop 

networks are designed to choose the shortest available path between the sender and 

destination. The result is a higher traffic load at the center compared to the border of the 

network [53-54]. When the nodes are moving according to the random waypoint (RWP) 

mobility model [55], the nodes are concentrated in the center of the network creating an 

increase of traffic inequality compared to static nodes [56-57]. Accordingly, we will 

scrutinize traffic load balancing algorithms in the context of cooperation. However, the 

goal is not to discuss a specific load balancing algorithm. 

The main contribution of this Chapter is to provide an analytical cost benefit analysis of 

cooperation in packet forwarding using game theory. We use a top down analytical 

approach starting from the global network level and translate the result to the local node 

level. Our analytical results allow for interpretation of selfish node cooperation in a 
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general context. To the best of our knowledge, there is no paper that takes the unequal 

traffic load in networks into account when evaluating the proposed solution to solve the 

problem of cooperation. Finally, we recommend a community enforcement mechanism to 

sustain node cooperation.  

The rest of the Chapter is divided as follows. In Section 3.2, we evaluate the exact traffic 

load at any node located at any point in a randomly deployed multi-hop network. Section 

3.3 is committed to the general assumptions of this Chapter as well as Chapter 4, 5 and 6. 

Section 3.4 presents our game model. After, we use the results of Section 3.2 to provide 

an analytical cost benefit analysis of cooperation for any selfish rational node in the 

network in Section 3.5. To do that, we use a game theoretic approach. Section 3.6 is 

dedicated to our theoretical results. Section 3.7 concludes the Chapter. 

3.2 Traffic Load Analysis 

In this analysis, we start by assuming that a shortest path routing algorithm is used as in 

most routing protocol. We will examine this assumption later in this Section. We also 

presuppose a dense ad hoc network such that the packets from the sender to the 

destination follow an almost straight line. We start to analyze the traffic load distribution 

in a straight line to determine that of a rectangle followed by the special case of a square. 

Then, we determine an exact value of the traffic relayed by a node depending on its 

position. We start our analysis with a static ad hoc network before taking into account 

node mobility for MANET. We also examine the special case of WSNs. 
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A. Traffic load distribution in a straight line 

 

 

 

Figure 3.1 Line segment 

Let us consider a straight line with center O, see Fig.3.1. Suppose that n static nodes are 

randomly and uniformly distributed on a segment [−𝑥𝑚, 𝑥𝑚] to form a dense ad hoc 

network. Consider point A on the line such that the Euclidean distance 𝑂𝐴 = 𝑥. The 

proportion of nodes to the left of A is  (𝑥𝑚+𝑥)
2𝑥𝑚

 . Similarly, the proportion of nodes to the 

right of A is (𝑥𝑚−𝑥)
2𝑥𝑚

. Let us consider a node i located in A. Node i is requested to forward a 

packet in multi-hop communication in the segment if the sender is located to the left of A 

and the destination is located to the right of A or vice versa. Therefore, the relative 

likelihood that node i is requested to forward a packet is proportional to 2 ∗ (𝑥𝑚+𝑥)
2𝑥𝑚

∗

(𝑥𝑚−𝑥)
2𝑥𝑚

 . This means that the probability density function of the number of packets 

forwarded by a node X is in the form 

𝑓𝑋(𝑥) = 𝑘
(𝑥𝑚 + 𝑥)(𝑥𝑚 − 𝑥)

𝑥𝑚2
. 

k is a scaling factor. 

Moreover, we must have  

-𝑥𝑚 𝑥 +𝑥𝑚 

𝑂 𝐴 
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� 𝑓𝑋(𝑥)𝑑𝑥 = 1
∞

−∞
⇒ � 𝑘

(𝑥𝑚 + 𝑥)(𝑥𝑚 − 𝑥)
𝑥𝑚2

𝑑𝑥 = 1
𝑥𝑚

−𝑥𝑚
. 

Thus, 𝑘 = 3
4𝑥𝑚

. And finally, 

𝑓𝑋(𝑥) =
3

4𝑥𝑚3
(𝑥𝑚2 − 𝑥2).                                     (1) 

This result is consistent with the result obtained in [57] where the primary analysis is the 

spatial node distribution of the random waypoint mobility model.  

B. Traffic load distribution in a rectangle 

As in the straight line, suppose that n static nodes are randomly and uniformly distributed 

in the rectangle to form a dense ad hoc network. The traffic generated can be decomposed 

into two types, which are, a horizontal traffic and a vertical traffic. Consider again a node 

i located in A(x, y). Let us assume that the horizontal traffic is independent of the vertical 

traffic. Therefore, the joint probability density function 𝑓𝑋,𝑌(𝑥,𝑦) of the number of 

packets forwarded is given by: 

𝑓𝑋,𝑌(𝑥,𝑦) = 𝑓𝑋(𝑥) ∗ 𝑓𝑌(𝑦) ⇒ 

𝑓𝑋,𝑌(𝑥,𝑦) =
3

4𝑥𝑚3
(𝑥𝑚2 − 𝑥2) ∗

3
4𝑦𝑚3

(𝑦𝑚2 − 𝑦2) ⇒ 

𝑓𝑋,𝑌(𝑥,𝑦) =
9

16𝑥𝑚3 𝑦𝑚3
(𝑥𝑚2 − 𝑥2)(𝑦𝑚2 − 𝑦2).                            (2) 

In WSNs, all data collected are transmitted to the sink. The sender destination pair of a 

packet is not random. The optimum position of the sink, to save energy and minimize end 
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to end delay, is the center of the network. If the sink is unique, static, and located at the 

center, a similar reasoning shows that: 

𝑓𝑋,𝑌(𝑥,𝑦) =
(𝑥𝑚 − |𝑥|)(𝑦𝑚 − |𝑦|)

𝑥𝑚2 .𝑦𝑚2
.                         (3) 

C. Expected Euclidean distance between two random nodes 

The average distance traveled by a packet in an ad hoc network deployed in a rectangle is 

equivalent to the expected Euclidean distance between two random points in a rectangle. 

The exact analytical solution to this problem is evaluated in [58]. The result is given in 

Theorem 1. 

Theorem 1: Let a and b be any positive real constants. Let 𝑅 = ([0,𝑎] × [0, 𝑏]) ∩ ℝ2 

designates a rectangle of dimension a and b. Let P and Q be independent random 

variables, each with uniform distribution over R. Let the Euclidean distance between P 

and Q be the random variable 𝐷 = 𝑑(𝑃,𝑄). The expected value of D is given by: 

𝐸[𝐷] =
𝑎5 + 𝑏5 − (𝑎4 − 3𝑎2𝑏2 + 𝑏4)√𝑎2 + 𝑏2

15𝑎2𝑏2
 

+
𝑎2

6𝑏
𝑙𝑛 �

𝑏 + √𝑎2 + 𝑏2

𝑎
� +

𝑏2

6𝑎
𝑙𝑛 �

𝑎 + √𝑎2 + 𝑏2

𝑏
� .     (4) 

Remember that in our rectangle, 𝑎 = 2𝑥𝑚 and 𝑏 = 2𝑦𝑚.  

In the special case of a square, 𝑎 = 𝑏 and 

𝐸[𝐷] =
2 + √2

15
+
𝑙𝑛�1 + √2�

3
≈ 0.521405𝑎 = 1.04281𝑥𝑚.                              (5) 
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The value of 𝐸[𝐷] is not exactly the same in WSNs. In fact, 𝐸[𝐷] is evaluated for a 

random sender and destination pair whereas the destination is the sink in WSNs. 

D. Number of packets under transmission in  the network 

Here we evaluate the total number of packets under transmission as in [56]. Let λ specify 

the average packet sending rate between any two nodes in the network. The total number 

of packets sent by a node i is(𝑛 − 1)𝜆. Thus, the total sending rate of packets is 𝛬 =

𝑛(𝑛 − 1)𝜆. Let d be the constant transmission range of all nodes. The average number of 

hops a packet travels from the sender to the destination in a dense multi-hop route 

is 𝐸[𝐷] 𝑑⁄ . Let 1 µ⁄  represent the transmission time of a packet. Thus, if the network is 

not congested or the queuing delay can be neglected, the average time a packet spends in 

the network is 𝐸[𝐷]
(𝑑 .µ). From Little’s law, the average number of packets under transmission 

in the network is:  

𝑁� =
𝛬.𝐸[𝐷]
(𝑑 . µ) =

𝑛(𝑛 − 1)𝜆𝐸[𝐷]
(𝑑 . µ) .                                       (6) 

E. Total traffic at a node 

In any time unit, the total number of packets transmitted by a node has two components. 

The packets generated by the node itself and the packets forwarded from other nodes. 

Clearly, we have: 

𝑃𝑇 = 𝑃𝐺 + 𝑃𝐹 .                                                                  (7) 

𝑃𝑇 is the total number of packets transmitted per time unit 
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𝑃𝐺  is the total number of packets generated per time unit 

𝑃𝐹 is the total number of packets forwarded per time unit 

𝑃𝐺 = (𝑛 − 1)𝜆.                                                               (8) 

𝑃𝐺  is the same for all nodes regardless of the node location. However, as explained 

before, the number of packets forwarded by a node 𝑃𝐹 depends of the node position. The 

value of 𝑃𝐹 is: 

𝑃𝐹(𝑥,𝑦) = 𝑁� ∗ 𝑓𝑋,𝑌(𝑥,𝑦) =
𝑛(𝑛 − 1)𝜆𝐸[𝐷]

(𝑑 . µ) 𝑓𝑋,𝑌(𝑥,𝑦).                               (9) 

F. Node mobility 

Node mobility has several effects on multi-hop network performance. The exact node 

mobility is approximated by a mobility model to facilitate analytical analysis and 

implementation in network simulators. There are many mobility models for MANET. 

However, starting with a uniform distribution of nodes over a domain as we assume in 

this Section, the node distribution over that domain does not always remain uniform in 

the long run. Therefore, the quantitative results about the probability density function of 

the number of packets forwarded by a node (1), (2), (3) and the expected Euclidean 

distance between sender and the destination nodes (4), (5), are modified according to the 

node mobility model. Nevertheless, all those results are preserved if the node mobility 

model maintains a uniform distribution of nodes.  
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The most commonly used mobility model is RWP first proposed in [55]. When the nodes 

move according to RWP, the node density at the center of the network is higher than the 

node density at the border [56-57]. As a result, the probability density function of the 

number of packets forwarded by a node is more condensed at the center of the network 

when compared to a uniform node distribution. Equivalently, the traffic load relayed by a 

node at the center of the network, when the nodes are moving according to RWP, is much 

higher than when the nodes are uniformly distributed. 

G. Load balancing algorithm 

Considering the result in this Section, obtained when using a shortest path routing 

algorithm, one clearly understands the importance of using a load balancing algorithm to 

reduce the traffic load at the center of the network. However, regardless of the approach, 

load balancing algorithms always increase the path length of packets and thus 𝐸[𝐷]. 

Certainly, there is a tradeoff between load balancing and path length. The main goal of 

load balancing algorithms in the literature is to reduce battery consumption, end to end 

delay, and network congestion. 

3.3 General Assuptions 

We assume that each node is autonomous. We model a wireless multi-hop network as an 

arbitrary connected undirected graph G (V, E). V is a set of n nodes. E is the set of edges. 

Node i and node j are elements of V. (i, j) is an element of E if and only if i is in the 

communication range of j. In this case, we also say that i is in the neighborhood of j. The 

nodes have the same communication range d. Therefore, the neighborhood relation is 
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symmetric. We consider the communication channel to be bidirectional. We presume that 

nodes communicate via multi-hop communication if the sender is not in the 

communication range of the receiver. Thus, packets, from source to destination, are 

forwarded by intermediate nodes. When forwarding a packet, the total cost for a node in 

battery and bandwidth is β. When a node drops a packet as a result of defection, we 

suppose there is no cost or gain for that node. Packets are equal in size. We presume that 

the costs for receiving and listening are equally distributed in the network. Thus, those 

costs are ignored. No node trusts any other node but itself. Each node has only two 

choices: cooperate or defect. A node cooperates when it forwards a packet on time and 

defects when it does otherwise. We assume time is divided into time slots and that each 

time slot is just long enough to send and receive a packet if there is one to send or receive 

and to decide to cooperate or defect. Each node is equipped with an omnidirectional 

antenna and operates in promiscuous mode to monitor its neighbors using a mechanism 

similar to the watchdog [32]. These assumptions are valid for this Chapter as well as 

Chapter 4, 5, and 6. 

3.4 Game Model 

The number of nodes n is large enough to form a dense network. We neglect the traffic 

from direct communication between two neighbors. The value of the reward for the 

sender is ν. To be clear, if a packet is dropped by an intermediate node, there is no reward 

for the sender or any other node. We consider that future payoffs are discounted by a 

common discount factor δ after every time unit and nodes maximize the average δ-

discounted average payoff (19). 
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We assume that each node acts rationally. This means that each node is intelligent, 

selfish, and independently performs a cost benefit analysis to decide whether to forward a 

packet or not while interactively taking into account the decision of other nodes. Under 

this game model and the above assumptions, for a single interaction, we can see that the 

packet forwarding game generally has the following three properties: 

1. For any number of cooperating nodes, the payoff of defectors is higher than the 

payoff of cooperators. In other words, Defect is the dominant strategy. This is 

because cooperators spend their energy to forward packets whereas defectors use 

the network freely. 

2. The payoffs of cooperators and of defectors increase with the number of 

cooperating nodes. This is because more routes become available. 

3. Lastly, the total payoff obtained by summing all the individual payoffs increase 

with the number of cooperating nodes. As we will see in the next Section, this last 

property does not always hold. Forwarding all packets is not always globally 

efficient. 

This is an n persons Prisoner’s Dilemma Game. Therefore, a rational node must defect in 

this game if the game is played one time. Moreover, if the game is repeated and the 

players know the end of the game, a backward induction argument shows that 

cooperation is impossible among rational players. However, if the interactions are 

repeated, cooperation can emerge if no player knows the end of the game. This is because 
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a defection will prompt a future defection from other nodes and taking the future 

discounted payoff into account can make defection unprofitable. 

3.5 Game Theoretic Analysis of Cooperation 

In this Section, we perform a cost benefit analysis of cooperation. We determine under 

which conditions cooperation can be supported as equilibrium in the packet forwarding 

game. We first evaluate the global network payoff before evaluating the individual 

payoffs of different nodes. 

A. Global Network payoff 

Let us consider the exceptional case where all nodes in the network fully cooperate to 

forward packets and where all packets sent reach the destination. This consideration is 

only to quantify the total payoff of full cooperation. The sender’s gain is ν when a packet 

reaches the destination. In the long run, the number of packets sent equal the number of 

packets reaching the destination. In a time unit, the gain G of each node is: 

𝐺 = 𝑃𝐺 . 𝜈 = (𝑛 − 1). 𝜆. 𝜈.                                             (10) 

This gain is common for all nodes regardless of their positions. The total gain𝐺𝑇 in the 

network will be:  

𝐺𝑇 = 𝑛𝐺 = 𝑛(𝑛 − 1). 𝜆. 𝜈 = 𝛬. 𝜈.                        (11) 

On the other hand, the cost to forward a packet is β. The total cost per time unit 𝐶𝑇 to 

relay all the packets is the total number of packets under transmission in the network 

times the cost to forward a packet. This means that: 
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𝐶𝑇 = 𝑁�.𝛽 =
𝑛(𝑛 − 1)𝜆𝐸[𝐷].𝛽

(𝑑 . µ) =
𝛬.𝐸[𝐷].𝛽

(𝑑 . µ) .              (12) 

The global network payoff 𝑈𝑇 will be the difference between the total gain and the total 

cost. Thus, 

𝑈𝑇 = 𝐺𝑇 − 𝐶𝑇 = 𝛬. 𝜈 −
𝛬.𝐸[𝐷].𝛽

(𝑑 . µ) .                             (13) 

Instead of full cooperation, let us consider the case that all nodes defect. Obviously, the 

total cost to forward packets is zero and so is the total gain. Therefore, we have 𝑈𝑇 = 0. 

In summary, full cooperation in a network is globally better than full defection if and 

only if:  

𝑛(𝑛 − 1). 𝜈 −
𝑛(𝑛 − 1).𝐸[𝐷].𝛽

(𝑑 . µ) > 0 or 
(𝑑 . µ)
𝐸[𝐷] >

𝛽
𝜈

.                           (14) 

Theorem 2: In a wireless multi-hop network, full node cooperation globally yields a 

higher payoff than full defection if and only if: 

𝑛(𝑛 − 1). 𝜈 −
𝑛(𝑛 − 1).𝐸[𝐷].𝛽

(𝑑 . µ) > 0 or 
(𝑑 . µ)
𝐸[𝐷] >

𝛽
𝜈

.                        (14) 

Remark 1: This is a general result. It is true for ad hoc networks as well as WSNs and is 

indifferent to node mobility. This result is also independent of the average packet sending 

rate between two nodes 𝜆 and the number of nodes n. Clearly, full cooperation can be 

globally efficient regardless of the number of nodes.  
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Remark 2: When (14) does not hold, we do not have an n persons Prisoner’s Dilemma 

Game because the third condition specified in Section 3.4 is not respected. Surely, if (14) 

does not hold, no mechanism can permanently guarantee full cooperation among selfish 

nodes. This is because some individual nodes will find cooperation harmful. In other 

words, (14) is a necessary condition of full cooperation. 

B. Individual node payoff 

Suppose that all nodes cooperate. Let us consider a node i located in A(x, y) in a two 

dimensional area. The gain of node i is given in (10). The cost of cooperation for node i 

is: 

𝐶𝑖(𝑥,𝑦) =
𝑛(𝑛 − 1)𝜆.𝐸[𝐷].𝛽

(𝑑 . µ) 𝑓𝑋,𝑌(𝑥,𝑦).                     (15) 

Note that those costs are not uniformly distributed in the network. The cost to forward 

packets is maximal at the center and is zero at the border. The payoff of node i is: 

𝑈𝑖(𝑥, 𝑦) = (𝑛 − 1). 𝜆. 𝜈 −
𝑛(𝑛 − 1)𝜆.𝐸[𝐷].𝛽

(𝑑 . µ) 𝑓𝑋,𝑌(𝑥,𝑦).                     (16) 

Theorem 3: In a wireless multi-hop network, full node cooperation for a node i located in 

A(x, y) yields a higher payoff than full defection if and only if: 

 (𝑛 − 1). 𝜆. 𝜈 −
𝑛(𝑛 − 1)𝜆.𝐸[𝐷].𝛽

(𝑑 . µ) 𝑓𝑋,𝑌(𝑥,𝑦) > 0 .            (17) 

Remark 3: If (17) holds for all nodes, full node cooperation has an individually rational 

and feasible payoff for all nodes.  
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Remark 4: We observe that (14) can hold, but (17) does not hold for some nodes because 

of traffic load inequality in the network. In this case, it is essential to design a load 

balancing algorithm that minimizes the maximum traffic load and as a consequence may 

allow (17) to hold for all nodes. However, if (17) holds for all nodes, (14) must also hold. 

Finally, if in a multi-hop network, (17) initially holds for all nodes, a load balancing 

algorithm to force node cooperation is optional.  

C. Strategy development 

The strategies we develop in this Subsection should be able to force self interested nodes 

to achieve full network cooperation. Those strategies should also be consistent with the 

following characteristics of our network: 

1. Autonomy: each node independently decides to cooperate or defect based on its 

self interest. 

2. Local views: each node can perfectly monitor the behavior of its neighbors using a 

watchdog mechanism [32]. In other words, a node does not have a global view of 

the network and can decide solely based on local information available in its 

communication range. An effective strategy should rely only on self observation. 

In fact, a mechanism using second hand information to allow each node to have a 

global view of the network may be manipulated. Also, packets containing second 

hand information are costly and can be dropped.  

3. Decentralization: there is no central authority. The network is distributed and self 

organized. 
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4. Mobility: nodes can be mobile or fixed. Node mobility reduces the discount factor 

in the game between two neighboring nodes because future interactions are less 

probable. Selfish nodes in MANET may avoid the center of the network, but if all 

nodes follow this strategy, it results in another dilemma. 

All together, those four characteristics make cooperative behavior hard to achieve. There 

are two main means to constrain selfish nodes to cooperate that capitalize on long term 

relationships. Using personal enforcement, only the node that is a victim of defection 

punishes the defector. However, using a community enforcement mechanism [59], 

defection is punished not only by the victim, but also by any other node that observes the 

defection. In our model, the victim of defection is the sender of a packet. A packet can be 

dropped a few hops away or outside the communication range of the sender. Therefore, a 

personal enforcement mechanism is not robust in a distributed network given the four 

characteristics above. Without any credible punishment, the essential feature that 

motivates cooperation is lost and thus, cooperation is impossible. 

A community enforcement mechanism to force node cooperation in the network is more 

robust. Each node should punish its neighbor after a defection regardless of whether or 

not that node is the victim. This way, each packet can be monitored hop by hop until the 

destination. Each node forwards the packet in fear of being punished by its own neighbor. 

This is even more effective if the nodes are static. In this scenario, one approach can be to 

analyze the network packet forwarding game as several two players game in each link (i, 

j). Each node i will be involved in as many games as neighbors it has. However, the 

different games involving node i will not be independent and analyzing the correlation 
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among those games will be an enigmatic problem. For instance, a node i with five 

neighbors can stop cooperation with three of those neighbors and continue to cooperate 

with the other two neighbors while sending the packets it generates through those two 

neighbors. This is one reason that makes the general equilibrium analysis of such network 

packet forwarding games complicated.  

To avoid this complication, let us consider another strategy also based on community 

enforcement. Suppose that the nodes have two types. A node is of type c if it has never 

observed a defection in the past, and otherwise, it becomes type d forever. Let us also 

consider a strategy that requires each node to play its type. Therefore, if all nodes use this 

contagious strategy, a single defection spreads like an epidemic in the whole network. 

The ultimate choice a selfish node has to make is between cooperating forever and a 

future network collapses where all nodes defect forever. Cooperation is enforced in the 

network because each node fears to start the contamination process and destroy its future 

gain. This strategy is valuable in a network if each node can perfectly monitor the 

behavior of its neighbors. Next, we prove that this strategy is Subgame Perfect Nash 

Equilibrium (SPE) of the packet forwarding game if full cooperation has an individually 

rational and feasible payoff. 

D. Equilibrium analysis 

Theorem 4:  The contagious strategy described above is a SPE if for all node i, (17) holds 

and,  

𝐶𝑖
𝑈𝑖
≤
𝛿(1+𝐻𝑚𝑎𝑥)

1 − 𝛿
.                                   (18) 
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𝐻𝑚𝑎𝑥 is the maximum number of hops between two nodes. 

𝐶𝑖 and 𝑈𝑖 are according to (15) and (16) respectively.  

Proof: when (17) holds for all nodes, full cooperation has a feasible and individually 

rational payoff. Assuming (17) holds for all nodes; let us check if a type c player has an 

incentive to defect when not observing any defection. Let σ be our contagious strategy. 

Since we assume that the nodes maximize the average δ-discounted average, node i's 

expected payoff is: 

𝑉𝑖(𝜎) = (1 − 𝛿)�𝛿𝑡𝑈𝑖(𝑎𝑡)
∞

𝑡=0

.                                                 (19) 

at is the players’ action at time t 

Let σ’ be a strategy that deviates from σ only once. According to the one-shot deviation 

principle of dynamic programming,   σ is a SPE if and only if: 

𝑉𝑖(𝜎) ≥ 𝑉𝑖(𝜎𝑖′,𝜎−𝑖)                                                            

⇒ (1 − 𝛿)�𝛿𝑡𝑈𝑖(𝜎)
∞

𝑡=0

≥ (1 − 𝛿)�𝛿𝑡𝑈𝑖(𝜎𝑖′,𝜎−𝑖)
∞

𝑡=0

 

⇒  𝑈𝑖�𝜎𝑖′,𝜎−𝑖� − 𝑈𝑖(𝜎) ≤�𝛿𝑡𝑈𝑖(𝜎)
∞

𝑡=1

−�𝛿𝑡𝑈𝑖(𝜎𝑖′,𝜎−𝑖)
∞

𝑡=1

 

⇒  𝐶𝑖 ≤
𝛿𝑈𝑖

1 − 𝛿
−�𝛿𝑡𝑈𝑖(𝜎𝑖′,𝜎−𝑖)

∞

𝑡=1

.                           (20) 
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We can derive the maximum value of the second term in the right hand side of (20). To 

do that, we consider a scenario in which after deviation, the packets from the deviating 

node are not dropped until full network contamination. We assume a dense network and 

uniform contamination in all directions. We consider also a traffic load such that each 

node sends at least one packet to each of its neighbors in each time unit. Thus, the 

maximum number of time units until full network contamination is 𝐻𝑚𝑎𝑥 = 𝐷𝑚𝑎𝑥
𝑑

. 

(Assuming static nodes, but we have a similar result for mobile nodes)   

𝐷𝑚𝑎𝑥 is the maximum distance in the network. 

d is the communication range. 

Therefore,  

�𝛿𝑡𝑈𝑖�𝜎𝑖′,𝜎−𝑖�
∞

𝑡=1

≤ 𝑈𝑖(𝛿 + 𝛿2 + ⋯+ 𝛿𝐻𝑚𝑎𝑥) 

⇒�𝛿𝑡𝑈𝑖�𝜎𝑖′,𝜎−𝑖�
∞

𝑡=1

≤
𝑈𝑖𝛿(1 − 𝛿𝐻𝑚𝑎𝑥)

1 − 𝛿
.                             (21) 

Combining (20) and (21), a type c player keeps cooperating if: 

𝐶𝑖 ≤
𝛿𝑈𝑖

1 − 𝛿
−
𝑈𝑖𝛿(1 − 𝛿𝐻𝑚𝑎𝑥)

1 − 𝛿
=
𝑈𝑖𝛿(1+𝐻𝑚𝑎𝑥)

1 − 𝛿
 

⇒
𝐶𝑖
𝑈𝑖
≤
𝛿(1+𝐻𝑚𝑎𝑥)

1 − 𝛿
.                        (18)   

                                                                                                                                             ■ 
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We can see that (18) must hold for δ close enough to 1. 

3.6 Theoretical Results 

The utility function (16) of a node 𝑈𝑖(𝑥,𝑦)as a function of its coordinate (x, y) in a static 

ad hoc network is represented in Fig.3.2. We can see that 𝑈𝑖(𝑥,𝑦) has a minimum 

at 𝑥 = 𝑦 = 0, the center of the network. For the indicated parameters, 𝑈𝑖(𝑥,𝑦) > 0 for all 

nodes and full cooperation has an individually rational and feasible payoff. If we decrease 

the gain ν from 6 to 5, we will have 𝑈𝑖(𝑥,𝑦) < 0 for some nodes at the center and those 

nodes cannot cooperate. They will cause a massive traffic disruption in the network since 

a relatively greater number of routes go through those nodes compared to others. 

 

Figure 3.2. Ui(x,y): xm=ym=0.5; d=0.1; n=500; λ=1; β=1; ν=6; μ=1000. 
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Figure 3.3. Ui(n): xm=ym=0.5; d=0.1; λ=1; β=1; ν=6; μ=1000. 

The utility function (16) as a function of the number of nodes in a static ad hoc network is 

represented in Fig. 3.3. 𝑓𝑋,𝑌(𝑥,𝑦) = 0 for a border node and makes 𝑈𝑖(𝑛)a linear and 

increasing function of n. However, for any other node, 𝑓𝑋,𝑌(𝑥,𝑦) > 0 and 𝑈𝑖(𝑛) is a 

second degree polynomial. Starting from one node, as the number of nodes increases, 

there is an optimum number of nodes that maximize the payoff followed by a decrease. 

Finally, we have a maximum number of nodes above which 𝑈𝑖(𝑛)becomes negative and 

cooperation will be impossible for node i. Therefore, in a static network without a load 

balancing algorithm, cooperation ultimately breaks down as the number of nodes 

increases. 
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3.7 Conclusion  

We have analyzed the consequences of traffic load inequality on cooperation in multi-hop 

networks. We specify the conditions under which cooperation has an individually rational 

and feasible payoff. We show that community enforcement mechanisms can compel 

selfish nodes to cooperate using only local information. We prove that, without a load 

balancing algorithm in a static network, cooperation breaks down in a large distributed 

network.  

We assumed perfect monitoring in our model. In Chapter 5, we will analyze cooperation 

under imperfect monitoring. In the future, we will also consider network congestion and 

queuing delay. 
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CHAPTER 4 

MITIGATING SELFISH MISBEHAVIOR IN AUTONOMOUS WIRELESS 

MULTI-HOP NETWORK USING STOCHASTIC GAME THEORY 

Cooperation is a critical issue in autonomous multi-hop networks. This is because there is 

no infrastructure. Each node in the network is at the same time a terminal and a router. 

Moreover, cooperation to forward a packet from other nodes is costly. As such, it is not 

in the best interest of an individual node to cooperate. In this Chapter, we propose Punish 

Only n Times (PONT): a distributed algorithm based on SGT that can force intelligent 

selfish autonomous nodes to cooperate without a contract in a multi-hop network. 

4.1 Introduction 

Multi-hop wireless communication includes WSN, ad hoc networks, and peer-to-peer 

(P2P) networks. They are networks without infrastructure. Each node of the network is at 

the same time a router and a terminal. Therefore, communication between a sender and a 

receiver that are not in range of each other relies on the cooperation of intermediate nodes 

to forward packets. In many application domains, including some military applications, 

nodes have the same manager. 

However, this is not the case in other applications, where sensors are embedded in any 

device to form a ubiquitous computing environment, such as health monitoring networks 

and VANET. In the latter scenario, each vehicle is equipped with a sensor, but sensors 

from different vehicles are not managed by the same authority. Here, sensors are 

autonomous but still have to cooperate and forward packets from others. In this situation, 
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cooperation and trust can no longer be assumed as “de facto”. A node, especially a selfish 

node, could send its own packets and not forward packets from others. If all nodes adopt 

such a solution, it will be a costly one and the network will collapse because basic 

functions such as packet forwarding cannot be accomplished. 

In this Chapter, we present PONT, a model based on SGT. To the best of our knowledge, 

this is one of the first works that uses SGT to model cooperation in multi-hop networks. 

We believe that this is one of the most promising approaches. Especially since network 

interactions are random processes, nodes are becoming exceptionally intelligent and 

game theory formalizes rational nodes collaboration. We present the conditions under 

which autonomous selfish nodes cooperate and support our result by a mathematical 

proof and MATLAB plots. This Chapter deals only with selfish nodes and proposes an 

algorithm to force them to cooperate although any model able to detect and eliminate 

faulty and malicious nodes can be incorporated. 

The game model in this work is similar to those using the Prisoners’ Dilemma game [4-5, 

10-12]. However, we introduced a stochastic dimension to eliminate the unrealistic 

assumption that each node has packets to send in each time slot or that any two neighbors 

have uniform network traffic demand. Also, our model does not reward intermediate 

nodes. 

The next Section presents our stage game model. Section 4.3 contains the analysis of the 

repeated game. Section 4.4 exposes our theoretical results and Section 4.5 concludes the 

Chapter. 
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4.2 Stage Game Model 

 

 

Figure 4.1: Simple Network illustration. 

We use the simple bidirectional static ad hoc network in Fig. 4.1 to illustrate our model. 

The general assumptions of Section 3.3 apply here. The network consists of seven nodes 

in a straight line. We analyze the interactions between two nodes, node i and node j. 

Node i needs the cooperation of node j to relay its packets to node 4 and node 5. On the 

other hand, node j needs the cooperation of node i to relay its packets to nodes 1, 2 and 3. 

In general, each node in a network is involved in a packet forwarding game with each of 

its neighbors.  

In some peer-to-peer applications, such as file downloading, the destination is interested 

in receiving packets from the sender. However, in other applications, such as 

advertisement, the sender is interested in having its packets reach the destination. In both 

cases, the intermediate nodes are not rewarded but are required to spend energy to relay 

packets. For this reason, this model does not reward intermediate nodes in multi-hop 

communication but punishes defecting nodes. We present the case of applications in 

which only the sender is rewarded, but all results can easily be transposed to the cases 

that reward only the destination or both the sender and the destination. The cost to relay a 

packet is β.  

 j  i  3  2  1  4  5 
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 Node i requests node j to relay two types of packets. The first type are packets from node 

i itself and the second type are from nodes 1, 2 and 3. When node i sends a packet 

originating from node 1, 2 or 3 to node j and node j relays that packet, node i is not 

rewarded because node i is a relay node in this scenario. However, if node j relays a 

packet from node i to node 4 or 5, node i is rewarded and we can distinguish two cases. 

In the first case, where the destination is node 4, node i gets the full reward price λ. 

However, in the second case, where the destination is node 5, node i gets a partial reward 

price γ. In this second case, a packet from node i needs to be relayed by both node j and 

node 4 to reach the destination node 5 to give the full reward price λ to node i. The partial 

reward γ represents the increase in the expectation to get the reward price λ if node j and 

all the other intermediate nodes relay the packet until the destination.  

A node cooperates if it relays a packet on time regardless of the type of packet, this 

means regardless of if the node that observes the packet being forwarded originated the 

packet or not. A node defects otherwise. We assume that time is divided into time slots. 

Each time slot is just long enough to send and/or receive one packet. We presuppose that 

sending or receiving a packet in a time slot is a Bernoulli process. The probability that 

node i requests node j to relay a packet in a time slot is 𝑝𝑖 and vice versa. The probability 

that node i is the originator of a packet given that node i requests node j to relay a packet 

in a time slot is  𝑞𝑖 and vice versa. Note that the possibility that node i can request node j 

to relay a packet that originates from node 1, 2 or 3 will impact 𝑞𝑖. Moreover, note that 𝑞𝑖 

is generally small for center nodes compared to border node. Our model can easily 
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capture the consequences of unequal traffic load on cooperation as developed with more 

details in the last Chapter [1]. 

There will be three possibilities for each node in each time slot. For instance, the 

possibilities for node i will be: 

1- Send its own packet to node j which happens with probability 𝑝𝑖𝑞𝑖 

2- Forward a packet from another node (node 1, 2, 3) to node j with probability 

𝑝𝑖(1 − 𝑞𝑖) 

3- Not have any packet to send which happens with probability (1 − 𝑝𝑖) 

There are nine (32) possible interactions between nodes i and j in a time slot. Each 

possibility will constitute a state of our stochastic game. The nine states are shown in 

Table 4.1. The 1 and 0 in Table 4.1 represent the Success or Failure in a time slot of the 

Bernoulli process. We have 16 lines to represent all the 24 combinations of events from 

𝑝𝑖,𝑝𝑗 , 𝑞𝑖, 𝑞𝑗 . Note that two or four lines can give us the same state. Also, when a node 

does not have a packet to send in a time slot, there is no need to differentiate if that node 

is a sender or a forwarder.  

Since we have a Bernoulli process, the state in the next time slot is independent of the 

current or past state. Moreover, the states are not defined by the action of the players but 

by discrete events (𝑝𝑖,𝑝𝑗 , 𝑞𝑖, 𝑞𝑗) independent from one time slot to the next. 

Consequently, our game model will be a repeated asymmetric game with random states.  
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Figure 4.2: Stage game model in extensive form 
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TABLE 4.1: PROBABILITY DISTRIBUTION OF THE STOCHASTIC GAME 

STATES 

Line  𝑝𝑖 𝑝𝑗 𝑞𝑖  𝑞𝑗 Probability state 
1 1 1 1 1 𝑝𝑖𝑝𝑗𝑞𝑖𝑞𝑗 𝑧1 1 
2 1 1 1 0 𝑝𝑖𝑝𝑗𝑞𝑖(1 − 𝑞𝑗) 𝑧2 2 
3 1 1 0 1 𝑝𝑖𝑝𝑗(1 − 𝑞𝑖)𝑞𝑗 𝑧3 3 
4 1 1 0 0 𝑝𝑖𝑝𝑗(1 − 𝑞𝑖)(1 − 𝑞𝑗) 𝑧4 4 
5 1 0 1 1 𝑝𝑖(1 − 𝑝𝑗)𝑞𝑖 𝑧5 5 
6 1 0 1 0 
7 1 0 0 1 𝑝𝑖(1 − 𝑝𝑗)(1 − 𝑞𝑖) 𝑧6 6 
8 1 0 0 0 
9 0 1 1 1 (1 − 𝑝𝑖)𝑝𝑗𝑞𝑗 𝑧7 7 
10 0 1 1 0 (1 − 𝑝𝑖)𝑝𝑗(1 − 𝑞𝑗) 𝑧8 8 
11 0 1 0 1 (1 − 𝑝𝑖)𝑝𝑗𝑞𝑗 𝑧7 7 
12 0 1 0 0 (1 − 𝑝𝑖)𝑝𝑗(1 − 𝑞𝑗) 𝑧8 8 
13 0 0 1 1 (1 − 𝑝𝑖)(1 − 𝑞𝑗) 𝑧9 9 
14 0 0 1 0 
15 0 0 0 1 
16 0 0 0 0 

 

The stage game in extensive form is shown in Fig. 4.2. Table 4.1 shows the probability 

distribution of the game states. The state of the game in a time slot is random.  We 

characterize that by a nature player in decision node 0.  From that decision node, each 

branch corresponds to a state with the associated probability. 

When the two nodes have a packet to send, they make decisions simultaneously. This is 

represented in the first four states of Fig 4.2 by the dotted line between the two decision 

nodes of node j. In states 5, 6, 7 and 8, only one node has a decision to make because the 

other node does not have any packet to forward and therefore does not decide to 

cooperate or defect. 
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Let us transform the game into its strategic form for further analysis. Table 4.2 shows the 

result after all calculations. In fact, in each time slot, the payoffs have two parts. For node 

i those parts are: the expected reward from node j cooperation 𝑝𝑖𝑞𝑖𝛾𝑖 and the expected 

cost  𝑝𝑗𝛽𝑖 to relay a packet from node j. If node j decides to cooperate in a time slot, the 

probability that node i sends its own packet to be relayed is 𝑝𝑖𝑞𝑖 and therefore, the 

expected gain in that time slot for node i is 𝑝𝑖𝑞𝑖𝛾𝑖. Also, if node i decides to cooperate, 

the probability that node j sends a packet to node i is 𝑝𝑗. Thus, node i’s expected cost 

is 𝑝𝑗𝛽𝑖. All the payoffs can be evaluated this way. 

The strategic form of the game confirms the result from the extensive form. Defect is the 

dominant strategy of the stage game. Mutual cooperation is Pareto efficient if we have: 

𝑝𝑖𝑞𝑖𝛾𝑖 − 𝑝𝑗𝛽𝑖 > 0,                                                                                                                           (1) 

And  

𝑝𝑗𝑞𝑗𝛾𝑗 − 𝑝𝑖𝛽𝑗 > 0.                                                                                                                          (2) 

TABLE 4.2: STAGE GAME IN STRATEGIC FORM 

 Node j 

Cooperate Defect 

Node i Cooperate {𝑝𝑖𝑞𝑖𝛾𝑖 − 𝑝𝑗𝛽𝑖;  𝑝𝑗𝑞𝑗𝛾𝑗 − 𝑝𝑖𝛽𝑗} {−𝑝𝑗𝛽𝑖;  𝑝𝑗𝑞𝑗𝛾𝑗} 

Defect {𝑝𝑖𝑞𝑖𝛾𝑖;  −𝑝𝑖𝛽𝑗} {0; 0} 

We can say that the stage game in strategic form is a Prisoners’ Dilemma game with 

random payoffs or a Stochastic Prisoners’ Dilemma (SPD) game. 
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A recurrent and important parameter of this model is the expected cost over gain ratio. 

Let us call this ratio x. We have for any node i of the network: 

𝑥𝑖 =
𝛽𝑖
𝛾𝑖

.                                                                          (3) 

When we normalize the payoff with that of mutual cooperation, we have the game in 

Table 4.3. We suppose that 𝑔𝑖,𝑔𝑗 > 0 since otherwise, mutual cooperation is not Pareto 

efficient. An allocation is Pareto efficient if there is no other allocation that can make at 

least one individual better off without making any other individual worse off. Fig. 4.3 

gives the high level description of PONT for node i playing against an opponent, node j. 

The next Section illustrates this algorithm and shows that it is a Nash equilibrium.  

TABLE 4.3: STAGE GAME WITH NORMALIZED PAYOFF 

 Node j 

Cooperate Defect 

Node i Cooperate {1;1} {−𝑔𝑖; 1 + 𝑔𝑗} 

Defect {1 + 𝑔𝑖;−𝑔𝑗} {0; 0} 

𝑔𝑖 =
𝑝𝑗𝛽𝑖

𝑝𝑖𝑞𝑖𝛾𝑖 − 𝑝𝑗𝛽𝑖
> 0 and 𝑔𝑗 =

𝑝𝑖𝛽𝑗
𝑝𝑗𝑞𝑗𝛾𝑗 − 𝑝𝑖𝛽𝑗

> 0.                                     (4) 

4.3 Repeated Game Analysis 

The last Section shows us that the only equilibrium of our stage game is when both 

players defect. This is not beneficial in a multi-hop network. The ultimate result will be 

the collapse of the network. In this Section, we will analyze the conditions under which 
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Start by cooperation, Ci 
If (Ci, Cj) then 

Ci in the next time slot node i decides (state 1, 2, 3, 4, 7, 8) 
Else 

If (Ci, Dj) then 
Play Di n times in state 1, 3, 7 and Ci in states 2, 4, 8 then 

While playing Di,  
Count the number b of Dj 

End 
If b=0 

Play Ci 
Else 

Play Di forever 
End  

End  
If (Di, Cj) then 

While node j play Dj n times in state 1, 2, 5 and Cj elsewhere  
Node i play Ci in all states it can decide 

End 
End 
If (Di, Dj) then 

While node i play Di n times in state 1, 3, 7 and Ci elsewhere 
Node j plays Dj n times in state 1, 2, 5 and Cj elsewhere 

End 
End 

End 

repeating this stage game indefinitely will yield the nodes that will always cooperate just 

from the expectation of future gain. We assume that each node has a unique identity that 

cannot be falsified. We also assume that the “sender address” of a packet cannot be 

falsified.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: High level description of PONT for node i playing against j 
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We assume perfect monitoring, no error in perception and no error in implementation. 

This means for instance that when node i defects; node i knows that it defected and its 

neighbor node j knows that node i defected with no ambiguity. We will relax this 

assumption in the next Chapter. We consider that sending or receiving a packet is a 

Poisson process and we use its discrete time version, namely the Bernoulli process. Each 

node is autonomous, selfish, and rational. This means that each node acts only for its own 

self-interest. Lastly, we suppose that all nodes discount future payoff by a common 

discount factor δ with 0 ≤ 𝛿 < 1 and want to maximize the expected δ-discounted 

average of their sequence of payoffs (8). We will first present our distributed algorithm, 

PONT. Then, we will show that PONT is a SPE of the game. 

4.3.1 PONT Algorithm and Description 

PONT starts playing cooperate and continues playing cooperate until the opponent 

defects. If the opponent defects, PONT defects n times in the states that the opponent is 

the originator of the packet, but PONT cooperates in the other states where the opponent 

is the forwarder. After the n defections, PONT resumes cooperation. Any subsequent 

defection of the opponent when PONT is still punishing a previous defection causes 

PONT to punish forever. However, PONT can be extended to not punish subsequent 

defections forever but for a limited number of time slots. The number of punishments n is 

a parameter that can be adapted. It must be common knowledge among players. As we 

will see later, an increase in the value of n makes punishment more severe, discourages 

opportunistic deviation, but also decelerates or discourages the return to mutual 

cooperation in case of an unavoidable defection caused by network congestion. We 
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present here the general case when n can be any natural number but in practice, the 

optimum number of punishments n must be the smallest number large enough to 

discourage opportunistic deviations taking into account different parameters such as 

𝑝𝑖,𝑝𝑗 , 𝑞𝑖, 𝑞𝑗 , 𝑥𝑖 , 𝑥𝑗 , and 𝛿. Note that PONT does not randomize and is therefore a pure 

strategy.  

Let us mention three important properties of PONT here. First, PONT defects by 

dropping only the packets originating from the opponent. This guarantees that the 

opponent, after a defection, will not send n packets for which it is the forwarder, knowing 

they will be dropped, and then not directly lose anything after a defection. This attribute 

makes the cooperative equilibrium more stable because it assures that the network 

packets from other nodes are not affected by the punishment. Second, PONT guarantees 

that two players come back to mutual cooperation after an imperative defection. A node 

can be imposed to defect during network congestion, for instance. When that happens, the 

defecting node is aware of it, accepts the n punishments and then the two nodes resume 

mutual cooperation. If both PONT players defect simultaneously, they punish each other 

and come back to mutual cooperation. Third, a node that is playing PONT must punish 

after a defection even though it is not the originator of the dropped packet. Since 

punishment consists of dropping n packets originating from the defecting node, and since 

dropping a packet is not costly, selfish nodes would not withhold punishment regardless 

of whether they originated the packet or not. This feature is particularly interesting in a 

distributed multi-hop network for two reasons. First, no node can monitor its own packets 

until a destination located several hops away. Second, even if it was possible for a node 
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to monitor its own packets until the destination, the opportunity for that node itself to 

punish the node that dropped the packet a few hops away will be rare and make 

cooperation among nodes more difficult. 

4.3.2 Proof of PONT Cooperative Equilibrium 

Theorem 1:  PONT is a SPE of the stochastic packet forwarding game if for any two 

neighbor nodes in the network, node i and node j, we have: 

p𝑖q𝑖
pj

> 𝑥𝑖,                                                                                                                                         (5) 

And  

p𝑗q𝑗
p𝑗

> 𝑥𝑗 .                                                                                                                                        (6) 

And for any node i in the network, we have: 

�
𝛿𝑝𝑖𝑞𝑖

1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)
��

1 − � 𝛿𝑝𝑖𝑞𝑖
1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)

�
𝑛

1 − � 𝛿𝑝𝑖𝑞𝑖
1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)

�
� ≥ 𝑥𝑖 .                      (7) 

Proof: 

According to the Folk Theorem and the stage game in strategic form in Table 4.2, we can 

support (Ci, Cj) as equilibrium if and only if the expected utility of (Ci, Cj) for each node 

is higher than the expected utility of (Di, Dj). This means (1) and (2) are respected and 

therefore (5) and (6) hold. 
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Considering that (5) and (6) are respected, cooperation is then Pareto efficient. We use 

the one-shot deviation principle [60] to show that PONT is a SPE when inequality (7) is 

true. In fact PONT is a SPE if and only if there is no profitable one-shot deviation. We do 

not need to check all alternative strategies. We need only compare the equilibrium payoff 

to that of an alternative strategy that deviates only once and comes back to the 

equilibrium strategy [60]. 

Let σ be our strategy, PONT. Since it is assumed that the players maximize the expected 

δ-discounted average, player i's expected payoff is: 

𝑈𝑖(𝜎) = 𝐸𝜎{(1 − 𝛿)�𝛿𝑡𝑢𝑖(𝑠𝑡,𝑎𝑡)}
∞

𝑡=0

.                                     (8) 

st is the state at time t 

at is the players’ action at time t 

Eσ represents the expected gain of strategy σ. 

Let σ’ be a strategy that deviates from σ only once. 

σ is a SPE if and only if: 

𝑈𝑖(𝜎) ≥ 𝑈𝑖�𝜎𝑖′,𝜎−𝑖�                                                 (9) 

⇒ 𝐸{(1 − 𝛿)�𝛿𝑡𝑢𝑖(𝜎)}
∞

𝑡=0

≥ 𝐸{(1− 𝛿)�𝛿𝑡𝑢𝑖(𝜎𝑖′,𝜎−𝑖)}
∞

𝑡=0
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⇒ 𝐸{(1 − 𝛿)𝑢𝑖(𝜎) + (1 − 𝛿)�𝛿𝑡𝑢𝑖(𝜎)}
∞

𝑡=1

≥ 𝐸{(1 − 𝛿)𝑢𝑖�𝜎𝑖′,𝜎−𝑖� + (1 − 𝛿)�𝛿𝑡𝑢𝑖(𝜎𝑖′,𝜎−𝑖)}
∞

𝑡=1

 

⇒  𝐸{�𝛿𝑡𝑢𝑖(𝜎)
∞

𝑡=1

−�𝛿𝑡𝑢𝑖(𝜎𝑖′,𝜎−𝑖)}
∞

𝑡=1

≥ 𝐸{𝑢𝑖�𝜎𝑖′,𝜎−𝑖� − 𝑢𝑖(𝜎)} 

⇒ 𝐸 ��𝛿𝑡�𝑢𝑖(𝜎) − 𝑢𝑖�𝜎𝑖′,𝜎−𝑖��
∞

𝑡=1

� ≥ 𝐸{𝑢𝑖�𝜎𝑖′,𝜎−𝑖� − 𝑢𝑖(𝜎)}.                    (10) 

The first term of inequality (10) represents the expected future loss and the second term is 

the current gain from deviation of the equilibrium or defection. Inequality (10) is intuitive 

and simple. From (10), a strategy of the stochastic game is a SPE if the expected future 

loss exceeds the current gains from opportunistic deviation. 

From the extensive form game of Fig. 4.2, in any state that node i can make a decision 

and deviate from cooperate to defect, the associated gain is βi. Thus, 

𝐸{𝑢𝑖�𝜎𝑖′,𝜎−𝑖� − 𝑢𝑖(𝜎)} = 𝛽𝑖.                                                 (11) 

Now, let us evaluate the future loss from the time of defection. In fact, in (10) 

𝑢𝑖(𝜎) − 𝑢𝑖�𝜎𝑖′,𝜎−𝑖� = �𝛾𝑖 𝑖𝑓 𝑗  𝑑𝑟𝑜𝑝 𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑓𝑟𝑜𝑚 𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�                                      (12) 

As explained in the game model, a node i originates a packet in a time slot with 

probability 𝑝𝑖𝑞𝑖. Then, the opponent node j will drop the packet successfully in a time 

slot with probability 𝑝𝑖𝑞𝑖. The probability distribution of the number of trials in a 
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sequence of Bernoulli trials needed to get a specified number (integer-valued) of success 

is a Pascal distribution. After a defection, a PONT player drops only the next n packets 

originating from the defecting node. Thus, dropping n packets is a 𝑃𝑎𝑠𝑐𝑎𝑙(𝑛,𝑝𝑖𝑞𝑖) 

process. Specifically, the probability mass function of this Pascal distribution will be: 

𝑓(𝑡) = Pr(𝑋 = 𝑡) = 𝐶𝑡−1𝑙−1(1 − 𝑝𝑖𝑞𝑖)𝑡−𝑙(𝑝𝑖𝑞𝑖)𝑙.                                  (13) 

X is the total number of time slots needed to drop l packets. 

Therefore, 

𝐸 ��𝛿𝑡�𝑢𝑖(𝜎) − 𝑢𝑖�𝜎𝑖′,𝜎−𝑖��
∞

𝑡=1

� = ��𝛿𝑡
∞

𝑡=1

𝑛

𝑙=1

𝛾𝑖𝐶𝑡−1𝑙−1(1 − 𝑝𝑖𝑞𝑖)𝑡−𝑙(𝑝𝑖𝑞𝑖)𝑙              (14) 

= 𝛾𝑖�
(𝑝𝑖𝑞𝑖)𝑙

(1 − 𝑝𝑖𝑞𝑖)𝑙
�𝛿𝑡𝐶𝑡−1𝑙−1(1 − 𝑝𝑖𝑞𝑖)𝑡
∞

𝑡=1

𝑛

𝑙=1

 

= 𝛾𝑖�
(𝑝𝑖𝑞𝑖)𝑙

(1 − 𝑝𝑖𝑞𝑖)𝑙
�𝐶𝑡−1𝑙−1[𝛿(1 − 𝑝𝑖𝑞𝑖)]𝑡
∞

𝑡=1

𝑛

𝑙=1

 

= 𝛾𝑖�
(𝑝𝑖𝑞𝑖)𝑙

(1 − 𝑝𝑖𝑞𝑖)𝑙
[𝛿(1 − 𝑝𝑖𝑞𝑖)]�𝐶𝑡−1𝑙−1[𝛿(1 − 𝑝𝑖𝑞𝑖)]𝑡−1

∞

𝑡=1

𝑛

𝑙=1

 

= 𝛾𝑖�
(𝑝𝑖𝑞𝑖)𝑙

(1 − 𝑝𝑖𝑞𝑖)𝑙
[𝛿(1 − 𝑝𝑖𝑞𝑖)]�𝐶𝑡𝑙−1[𝛿(1 − 𝑝𝑖𝑞𝑖)]𝑡

∞

𝑡=0

𝑛

𝑙=1

 

= 𝛾𝑖�
(𝑝𝑖𝑞𝑖)𝑙

(1 − 𝑝𝑖𝑞𝑖)𝑙
[𝛿(1 − 𝑝𝑖𝑞𝑖)] �

[𝛿(1 − 𝑝𝑖𝑞𝑖)]𝑙−1

(1 − [𝛿(1 − 𝑝𝑖𝑞𝑖)])𝑙�
𝑛

𝑙=1

. 

We have the last equality because (15) holds for a fixed l and any number y, 
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�𝐶𝑡𝑙𝑦𝑡
∞

𝑡=0

=
𝑦𝑙

(1 − 𝑦)𝑙+1 .                                                    (15) 

Then 

𝛾𝑖�
(𝑝𝑖𝑞𝑖)𝑙

(1 − 𝑝𝑖𝑞𝑖)𝑙
[𝛿(1 − 𝑝𝑖𝑞𝑖)] �

[𝛿(1 − 𝑝𝑖𝑞𝑖)]𝑙−1

(1 − [𝛿(1 − 𝑝𝑖𝑞𝑖)])𝑙�
𝑛

𝑙=1

= 𝛾𝑖��
𝛿𝑝𝑖𝑞𝑖

1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)
�
𝑙𝑛

𝑙=1

 

= 𝛾𝑖 �
𝛿𝑝𝑖𝑞𝑖

1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)
��

1 − � 𝛿𝑝𝑖𝑞𝑖
1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)

�
𝑛

1 − � 𝛿𝑝𝑖𝑞𝑖
1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)

�
�. 

Thus, (10) implies 

𝛾𝑖 �
𝛿𝑝𝑖𝑞𝑖

1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)
��

1 − � 𝛿𝑝𝑖𝑞𝑖
1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)

�
𝑛

1 − � 𝛿𝑝𝑖𝑞𝑖
1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)

�
� ≥ 𝛽𝑖,                               (16) 

And finally 

�
𝛿𝑝𝑖𝑞𝑖

1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)
��

1 − � 𝛿𝑝𝑖𝑞𝑖
1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)

�
𝑛

1 − � 𝛿𝑝𝑖𝑞𝑖
1 − 𝛿(1 − 𝑝𝑖𝑞𝑖)

�
� ≥ 𝑥𝑖                                 (7) 

                                                                                                                 ■ 

Remark 1: The left part of (7) is a geometric sequence with common ratio 𝛥 =

� 𝛿𝑝𝑖𝑞𝑖
1−𝛿(1−𝑝𝑖𝑞𝑖)

�. The expected loss incurred by node i when node j drops the lth packet 

is 𝛾𝑖𝛥𝑙. The left term of (16) is thus the total expected loss from the n dropped packets. 

Equation (16) can also be written as: 
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𝛾𝑖𝛥1 + 𝛾𝑖𝛥2 + 𝛾𝑖𝛥3 + 𝛾𝑖𝛥4 + ⋯+ 𝛾𝑖𝛥𝑛 ≥ 𝛽𝑖.                      (17) 

Equation (17) discloses the fact that the future losses of a node after a single deviation 

from the equilibrium strategy are discounted by Δ instead of δ. We call Δ the adjusted 

discount factor. 

4.4 Theoretical Results 

 

Figure 4.4: Adjusted discount factor vs. Discount factor (𝒑𝒊𝒒𝒊 = 𝟏,𝟎.𝟓,𝟎.𝟏) 



 

64 
 

Most works use simulation to support their model due to the complexity of network 

interactions. However, we assert that analytical approaches better describe PONT and 

express more explicit quantitative results. We use a few plots from MATLAB to visualize 

our results. We analyze first the adjusted discount factor followed by the minimum 

discount factor able to force cooperation among selfish nodes. 

An increase in Δ increases the future loss of a node after an opportunistic deviation and 

then reinforces nodes cooperation. Fig. 4.4 indicates that the adjusted discount factor Δ 

increase with the discount factor 𝛿. This is a natural result from the definition of 𝛿. 

 

Figure 4.5: Adjusted discount factor vs. Probability 𝒑𝒊𝒒𝒊(𝜹 = 𝟎.𝟗𝟗, 𝟎.𝟓, 𝟎.𝟏) 



 

65 
 

Fig. 4.5 show that Δ increases with the product of probabilities 𝑝𝑖𝑞𝑖. This testifies that 

cooperation can be facilitated when each node sends its own packets at a higher rate. 

Accordingly, when 𝑝𝑖𝑞𝑖 = 0,Δ = 0, the nodes’ cooperation breaks down. In fact, there is 

no reason for a rational node to cooperate when it does not expect to send its own 

packets. We also observe in Fig. 4.5 that Δ ≤ 𝛿 with equality if and only if 𝑝𝑖𝑞𝑖 = 1. In 

short, for any value of 𝑝𝑖𝑞𝑖 we have 0 ≤ Δ ≤ 𝛿 < 1. 

As explained above, as 𝛿 increases, Δ increases and so does the left part of (7). Therefore, 

if we replace in (7) the superior or equal sign (≥) with the equal sign (=), we find the 

minimum discount factor (𝛿𝑚𝑖𝑛) capable of forcing nodes to cooperate. 

Fig. 4.6 represents 𝛿𝑚𝑖𝑛as a function of the cost over gain ratio xi for the two extreme 

values of n. n=1 for one period punishment and n=infinite for infinite punishment. 

Remember that, in this model, we have 0 ≤ 𝛿 < 1. Thus, 𝛿𝑚𝑖𝑛 ≥ 1 means that 

cooperation is impossible. In Fig. 4.6, for 𝑛 = 1, 𝛿𝑚𝑖𝑛 ≥ 1 when 𝑥𝑖 ≥ 1. Consequently, 

for one period of punishment, cooperation is impossible if 𝑥𝑖 ≥ 1 or 𝛽𝑖 ≥ 𝛾𝑖. On the 

contrary, when 𝛽𝑖 ≤ 𝛾𝑖, one period punishment should be enough when nodes have a 

large discount factor. 

In general, it can be proven that the number of punishments n should be greater than the 

cost over gain ratio xi to allow cooperation. For 𝑛 > 𝑥𝑖, cooperation is possible for a large 

enough 𝛿. Accordingly, n does not need to be infinite in order for PONT to force 

cooperation among patient nodes. An infinite n should be avoided to allow the possibility 

of mutual cooperation in the future after a single defection. 
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Figure 4.6: Minimum discount factor 𝜹𝒎𝒊𝒏 vs. Cost over gain ratio xi 

(𝒏 = 𝟏,𝒏 = ∞,𝒑𝒊 = 𝒒𝒊 = 𝟎.𝟓) 

Fig. 4.6 affirms that for infinite n, 𝛿𝑚𝑖𝑛 < 1 regardless of how big xi becomes. The graph 

is limited to 𝑥𝑖 = 10 but in fact 𝛿𝑚𝑖𝑛 = 1 is the horizontal asymptote of this graph. 

Therefore, in the extreme case that n is infinite, cooperation is always possible for a large 

discount factor (close to 1), regardless of how big xi is. Note that the value of xi still needs 

to satisfy (5). According to (5), in the limiting case we have equality; an increase of xi 

implies either an increase of 𝑝𝑖𝑞𝑖 or a decrease of 𝑝𝑗. This means that, for a high value of 



 

67 
 

xi, node i cooperates if it sends its own packet at a high rate while being requested to 

forward costly packets at a lower rate. 

Fig. 4.7 clarifies that 𝛿𝑚𝑖𝑛 decreases as the probability  𝑝𝑖𝑞𝑖 that a node sends its own 

packet in a time slot, increases. In addition, 𝛿𝑚𝑖𝑛 decreases with the number of 

punishments n. Thus, the number of punishments can be increased when the discount 

factor is low and cannot motivate cooperation. However, n should be just large enough to 

motivate cooperation. 

 

Figure 4.7: Minimum discount factor 𝜹𝒎𝒊𝒏 vs. Probability 𝒑𝒊𝒒𝒊  

(𝒏 = 𝟏,𝒏 = ∞,𝒙𝒊 = 𝟎.𝟐) 
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 In summary, the results from Theorem 1 shows that when the nodes in a network use the 

PONT algorithm, cooperation is always possible among sufficiently patient nodes 

(discount factor close to 1) for a finite number of punishments (n) higher than the cost 

over gain ratio (xi) when each node has packets to send �𝑝𝑖𝑞𝑖 ≠ 1 and 𝑝𝑗𝑞𝑗 ≠ 1�. 

4.5 Conclusion  

In this work, we focused on local interaction to design PONT, a distributed algorithm 

SPE of the packet forwarding game in multi-hop wireless communication. We used the 

mathematical framework of SGT to prove that cooperation is possible among sufficiently 

patient nodes if each node has packets to send. We analyzed in detail the impact on 

cooperation of parameters such as the packet sending rate, the packet forwarding rate, the 

cost to forward a packet, the payoff to the sender when the packet reaches the destination, 

and most importantly the discount factor of the nodes. 

Our game model is a SPD game instead of an Iterated Prisoners’ Dilemma (IPD) game. 

The intermediate nodes are not rewarded when forwarding a packet but are punished if 

they drop a packet. In case of defection, the last node to forward the packet has the 

responsibility to punish, not the originator of the packet. Only the sender (or destination) 

of a packet is rewarded. We believe this reward mechanism to be realistic. Moreover, our 

model incorporates the pragmatic case when some nodes do not have a packet to send in 

a number of time slots or do not have uniform traffic demand.  

We based our analysis on two neighboring nodes’ interaction to make reasonable 

predictions for each node in the global network. This way, we avoided a centralized 
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approach to solve the problem of cooperation in distributed networks. In fact,  solving the 

problem of cooperation with equilibrium or the utility function, designed to incorporate 

full network parameters to be calculated, will be demanding but less convenient and most 

likely subject to manipulations. 

The main advantage of this model is that it is fully distributed. This is consistent with the 

nature of multi-hop ad hoc networks. Each node is only required to know its neighbor, 

not the full topology of the network. Each node takes the decision to cooperate or defect 

only from the information that it can determine or monitor itself. This way, our model is 

more robust against selfish and malicious nodes that can attempt to manipulate some 

information for their interests. The full analysis in this model is done at the packet level, 

not at the route or network level. 

In this Chapter we assumed that the interactions between node i and node j are 

independent of the interaction between node i and node k, for instance. In contrast, we 

can have a scenario in which a selfish node i simply refuses to forward messages from 

node j and avoids node j by re-routing all of its traffic through node k. We will investigate 

this scenario in the future. In the next Chapter, we will consider imperfect monitoring 

when there is noise in observing the neighbor’s actions. In the future, we will implement 

PONT on an adequate routing protocol in a real multi-hop network to analyze the impact 

of network flow, network topology, and node mobility. 
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CHAPTER 5 

BELIEF-FREE EQUILIBRIUM OF PACKET FORWARDING GAME IN AD HOC 

NETWORKS UNDER IMPERFECT MONITORING 

Future applications will require autonomous devices to be interconnected and form ad 

hoc networks. In such networks, cooperation will be the first problem to solve at all 

layers of the protocol stack. This work deals with one of the basic functions of a network, 

namely packet forwarding. We model packet forwarding as a stochastic game in which 

each node monitors the behavior of its neighbors. We consider the realistic scenario when 

the monitoring technology used by the nodes is imperfect. In reality, there can be 

inconsistencies between the true action of a node and the observations of its neighbors. 

Therefore, in an ad hoc network, each node receives only noisy private information about 

the past play of its neighbors. We develop a simple one period memory strategy that 

constrains self-interested nodes to cooperate under noise. We use a belief-free approach. 

A belief-free approach delivers a tremendous computational advantage because nodes’ 

belief about the neighbors’ private history does not need to be computed. We support our 

results by mathematical proofs and simulations. 

5.1 Introduction 

Ad hoc networks are networks without infrastructure. Each node is at the same time a 

terminal and a router. As a terminal, each node sends and receives its packets. As a 

router, each node performs different functions such as route discovery, route maintenance 
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and, packet forwarding. In many applications, nodes have the same manager and fully 

cooperate to achieve the common goal of the network. 

However, future applications will require autonomous devices to be interconnected. Each 

node will be its own manager and will act of its own self-interest. Selfish nodes will be 

tempted to drop packets from other nodes to save critical resources such as battery power 

and bandwidth. However, the network collapses if all nodes refuse to relay other nodes’ 

packets; no node benefits from such an outcome. This situation is similar to the 

Prisoners’ Dilemma Game found in game theory. Thus, the PDG will be the basis of our 

model. 

In recent years, researchers have used game theory to model the packet forwarding game 

in ad hoc networks [1-3, 6-11, 13-17]. The basic idea behind the packet forwarding game 

theoretic model is to use repeated interaction among nodes to provide the necessary 

incentive to cooperate. Future packets originating from defectors are dropped to punish 

them. If for each node, at all times the future lose is greater than the current gain from 

defection, the network reaches a Nash equilibrium where all selfish nodes always 

cooperate. In a cooperative Nash equilibrium no node can profit by dropping packet 

unilaterally. Moreover, forwarding costly packets is the best response to the behavior of 

other nodes. 

However, the implicit assumption of perfect monitoring is present in most papers [1-2, 6-

11]. The packet forwarding game equilibrium constructed in those papers are not robust 

when considering noise. A game is of perfect monitoring if the history of chosen actions 

is common knowledge among the players. Perfect monitoring is a strong assumption in a 
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distributed network for three primary reasons. First, no node can directly monitor the 

behavior of nodes outside its communication range. Second, generally, in game 

theoretical models, each node is equipped with a watchdog mechanism [32] to monitor 

the actions of other nodes in its communication range and perform the best response 

based on the observed actions. A node’s watchdog mechanism cannot monitor those 

actions at the same time that the node sends or receives packets. Third, even though a 

node decides to cooperate, a packet can be dropped because of transmission errors and 

link breakages. Surely, there will be congestion, interference, collisions, and noise that 

create inconsistency between observed actions and the true actions in a distributed 

network. 

Srivastava and DaSilva [13] relax the assumption of perfect monitoring. They model the 

network packet forwarding game as a game of imperfect public monitoring. In such a 

game, past actions of nodes are imprecise and noisy but it is assumed that nodes 

commonly observe a public signal about the actions of others. However, the availability 

of such signals in a distributed network is not always guaranteed.  

Ji et al. [14-15] use a game of imperfect private monitoring to model noise in the network 

packet forwarding game. A public signal is not needed. Nodes do not have common 

knowledge about the history of the game but each node has a private history of the game. 

Each node needs to infer the private history of other nodes based on their own imperfect 

observations. Those inferences become complicated in the long term and require more 

computational power than our model. This is called a belief-based approach because the 

equilibrium strategy depends on the opponents’ private history. 
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A sequential equilibrium [60] is belief-free if, after every history, each player’s 

continuation strategy is optimal independently of the opponents’ history [60-67]. We use 

a belief-free equilibrium approach because it is easily tractable. The need to infer other 

nodes private history is eliminated and the computation of optimal strategy is simplified. 

The work in [16] is closely related to this Chapter. However, the equilibrium constructed 

in [16] is more complex than ours. A node using our strategy starts by cooperating and 

cooperates for sure after observing (with the possibility of erroneous observation) that the 

opponent cooperated in the last stage. The node cooperates with a probability less than 

one (to be carefully calculated in Section 5.2) if it observed the defection of the opponent 

in the last stage. As, you can see, our strategy depends on a single parameter, the 

probability to cooperate after observing a deviation from the opponent. Also, contrary to 

[16], our strategy does not depend on a node’s own action. Only the last action of the 

opponent is needed. Therefore, our model easily translates from a two nodes game to an n 

nodes game using new research from [67]. Last but not least, our model introduces a 

stochastic dimension to the game to synthesize the randomness of network interaction, 

the traffic load inequality in the network and the border effect. Our game model is a 

stochastic PDG. As such, this Chapter extends the work in the last Chapter [2] while 

considering noise. Our simulation results indicate that our simple strategy enforces 

cooperation among autonomous nodes and is robust to noise with only a small 

performance degradation compared to a network with a central manager. 

Other approaches that address the problem of cooperation in ad hoc networks include 

EGT [4-5], reputation mechanisms [31-34] and virtual currency systems [28-29]. EGT 
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relaxes the assumption of rationality used in game theory but relies on the statistical 

distribution of strategies used in the network. Moreover, nodes do not choose strategy in 

EGT models. Nodes are programmed to use certain strategies in the game. Reputation 

mechanisms require each node to monitor its neighbor and compute a reputation for each 

neighbor. Nodes with a low reputation are either avoided [32] or isolated [31, 33-34]. 

Virtual currency systems give a virtual payment to intermediate nodes to relay packets. 

The payment collected by each node can be used to send its own packets. The remainder 

of this Chapter is organized as follows: Section 5.2 presents our repeated game model 

with two nodes. The stage game model is similar to the one presented in Chapter 4 in 

Section 4.2. Section 5.3 proposes an extension of the two node model in Section 4.2 for n 

nodes. Section 5.4 presents our simulation results, and Section 5.5 concludes the Chapter. 

5.2 Repeated Game under Imperfect Private Monitoring 

We analyzed the stochastic game in Table 4.2 under perfect monitoring in Chapter 4 and 

in [2]. Recall that after payoff normalization, the gain from deviation 

𝑔𝑖 =
𝑝𝑗𝛽𝑖

𝑝𝑖𝑞𝑖𝛾𝑖 − 𝑝𝑗𝛽𝑖
> 0.                                      (1) 

We now consider the impact of noise caused by watchdog imperfection. We can have 

inconsistencies between the observed action of node and the true action. For instance, in 

Fig. 4.1, node j can relay a packet from node i at the same time that node i is receiving a 

packet from node 3. Therefore, node i is not able to observe that node j cooperated. Node 

i will observe a defection from node j even though node j cooperated. Moreover, although 
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a node decides to cooperate, a packet can be dropped because of transmission error and 

link breakage. We now extend that model to an imperfect private monitoring model. 

One of the most important results in repeated games is the folk theorem. That is, self 

interested agents can achieve any individually rational and feasible payoff if they are 

engaged in a long term relationship with repeated and frequent interactions. The folk 

theorem has been proven under perfect monitoring and imperfect public monitoring but 

the folk theorem for imperfect private monitoring is still an active research area [60-68]. 

The main difficulty is that players are not able to coordinate to punish a deviation from 

the equilibrium strategy because players have different observations of other players’ 

actions. The history of the game is private. 

 Bhaskar and Obara [68] prove that the symmetric efficient outcome can be approximated 

in any PDG. Their approach is belief-based. That requires each player to infer the 

opponents’ private history. Their results are applied to ad hoc networks in [14-15]. Our 

model uses the current advances in research presented in [60-67]. Ely and Valimaki [61] 

use a belief-free approach to prove the folk theorem in the two players PDG. Ely et al. 

[62] provide a characterization of the set of belief-free equilibrium payoffs in all two-

person games for any discount factor and any accuracy of the monitoring technology. 

Yamamoto proves that the payoff of mutual cooperation can be achieved in the n player 

PDG [65] and later proves the folk theorem in n person PDG in the limit as the noise in 

monitoring vanishes and the discount factor is close to one [66]. Takahashi [67] uses a 

belief-free equilibrium approach in the context of community enforcement. A simple 

presentation of belief-free equilibrium is found in [64]. An interested reader is 
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recommended to read [60] and [63] for a detailed presentation on repeated games under 

different forms of monitoring.  

A. Model 

In this Section, we analyze the two node game. The players are nodes i, (i=1, 2). In fact, 

each node is involved in a two node game with each of its neighbors. Each node chooses 

action 𝑎𝑖 from the set 𝐴𝑖={C, D}. C designates cooperation, and D designates defection. 

A profile of actions is a vector 𝑎 ∈ 𝐴 = 𝐴𝑖 × 𝐴𝑗 . Also, each node receives a signal 𝑦𝑖 

from the set 𝑌𝑖 = {𝑐𝑖,𝑑𝑖}. 𝑐𝑖 and 𝑑𝑖 are the observation of cooperation and defection by 

node i respectively.  

A monitoring technology is a collection of probability distributions  {𝑚(. |𝑎):𝑎 ∈ 𝐴} 

over 𝑌 = 𝑌𝑖 × 𝑌𝑗. This means that each node receives a signal 𝑦𝑖 ∈ 𝑌𝑖 , and that each 

signal profile (𝑦𝑖,𝑦𝑗) is obtained with probability 𝑚�𝑦𝑖,𝑦𝑗�𝑎�. The marginal distribution 

over node i’s signal is denoted 𝑚𝑖(. |𝑎). Node i’s realized payoff 𝑟𝑖(𝑎𝑖,𝑦𝑖) depends on the 

action 𝑎𝑖and the private signal 𝑦𝑖. Thus, the expected payoff of node i from action profile 

 𝑎 is: 

𝑢𝑖(𝑎) = � 𝑚�𝑦𝑖 ,𝑦𝑗�𝑎�
�𝑦𝑖,𝑦𝑗�∈𝑌

𝑟𝑖(𝑎𝑖,𝑦𝑖).                   (2) 

Node i’s private history in the repeated game is ℎ𝑖𝑡 = (𝑎𝑖1,𝑦𝑖1, … , 𝑎𝑖𝑡−1,𝑦𝑖𝑡−1). A profile of 

history is a vector ℎ𝑡 = (ℎ𝑖𝑡, ℎ𝑗𝑡). Node i’s sequence of stage game payoffs is (𝑢𝑖𝑡)𝑡=1∞ . We 

consider that all nodes discount future payoffs by a common discount factor δ with 
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0 < 𝛿 < 1 and want to maximize the expected δ-discounted average of their sequence of 

payoffs. Therefore, the repeated game payoff is:  

(1 − 𝛿)�𝛿𝑡−1
∞

𝑡=1

𝑢𝑖𝑡.                                            (3) 

We presuppose that the monitoring technology or watchdog mechanism in each node is ε-

perfect. A monitoring technology is ε-perfect if 𝑚𝑖�𝑐𝑖�𝑎𝑖,𝐶𝑗� > 1 − 𝜀 and 

𝑚𝑖�𝑐𝑖�𝑎𝑖,𝐷𝑗� < 𝜀 with 𝜀 ≥ 0.  𝑚𝑖�𝑐𝑖�𝑎𝑖,𝐶𝑗� and 𝑚𝑖�𝑐𝑖�𝑎𝑖,𝐷𝑗� represent the probability 

that node i observes a cooperative behavior from node j given that node j cooperated or 

defected respectively. 

This definition gives us the possibility to study the packet forwarding game under several 

forms of monitoring structures. 

• A game will be of perfect monitoring if 𝜀 = 0. 

• A game will be of imperfect public monitoring if nodes’ signals are perfectly 

correlated. 

• Monitoring is conditionally independent if 𝑚𝑖(. |𝑎) and 𝑚𝑗(. |𝑎) are 

independent distributions for each player’s action profile 𝑎. 

We consider that in a network, one node’s observation of an action profile is 

conditionally independent of another node’s observation of that same profile. Also, the 

probability distribution over the signal received by a node depends only on its opponent’s 
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action. Moreover, each node’s history of the game is private. Therefore, we will use a 

conditionally independent ε-perfect private monitoring. Then, we have: 

𝑚𝑖(𝑦𝑖|𝑎) = �
1 − 𝜀,   if 𝑦𝑖 = 𝑐𝑖 and 𝑎𝑗 = 𝐶𝑗 , or

             𝑦𝑖 = 𝑑𝑖 and 𝑎𝑗 = 𝐷𝑗 ,
𝜀,                    otherwise,

�                                      (4) 

And 

𝑚𝑗�𝑦𝑗�𝑎� = �
1 − 𝜀,   if 𝑦𝑗 = 𝑐𝑗  and 𝑎𝑖 = 𝐶𝑖 , or

             𝑦𝑗 = 𝑑𝑗  and 𝑎𝑖 = 𝐷𝑖,
𝜀,                    otherwise,

�                                   (5) 

The joint probability distribution is given by: 

𝑚(𝑦|𝑎) = 𝑚𝑖(𝑦𝑖|𝑎)𝑚𝑗�𝑦𝑗�𝑎�.                                   (6) 

B. Strategy Description 

A strategy 𝜎𝑖 for node i is a sequence of functions (𝜎𝑖𝑡)𝑡=1∞  where 𝜎𝑖𝑡 maps each ℎ𝑖𝑡to a 

probability distribution over 𝐴𝑖. We consider the strategy σ with one period memory: 

�
𝜎𝑖1 = 𝐶𝑖  with probability 1,

𝜎𝑖𝑡 = 𝐶𝑖 with probability 1 if 𝑦𝑖𝑡−1 = 𝑐𝑖,
𝜎𝑖𝑡 = 𝐶𝑖 with probability 𝜔𝑖 if 𝑦𝑖𝑡−1 = 𝑑𝑖.

�                                     (7) 

 

With 

𝜔𝑖 = 1 −
𝑔𝑗

𝛿(1 − 2𝜀)�1 + 𝑔𝑗�
.                          (8) 
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Figure 5.1: Finite State Machine of the strategy σ when noise in monitoring vanishes 

The finite state machine of σ is represented in Fig. 5.1 for the two node game when noise 

in the monitoring technology vanishes (𝜀 = 0). The states are represented in circles. C 

and D represent the action of each player in a given state. The state (𝐶𝑖 ,𝐶𝑗) is an 

absorbing state. When noise in the monitoring technology vanishes, the players start in 

the state (𝐶𝑖,𝐶𝑗) and remain there forever. In the presence of noise (𝜀 ≠ 0), nodes can 

move to other states. However, there is always a possibility to come back to the state 

(𝐶𝑖 ,𝐶𝑗). If an opponent deviates from σ, σ punishes the opponent by diminishing the 

probability of cooperation from 1 to ω in the next time slot. This diminution is enough to 
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force selfish nodes to cooperate if the discount factor is close enough to 1. We analyze 

the equilibrium of σ and show how to calculate ω in the next Subsection. 

C. Efficiency Analysis 

We start with the general case as presented in [61] before going on to obtain our specific 

strategy. In the following equation, 𝜋𝑎𝑗𝑎𝑖
𝑗  represents the probability that node j cooperates 

given that in the last time slot node j played the action 𝑎𝑗 and observed 𝑎𝑖 from node i. 

We want to construct the four probabilities 𝜋𝑎𝑗𝑎𝑖
𝑗 such that the history of play becomes 

irrelevant and therefore calculating posterior belief over the private history of the 

opponent is not necessary. This can be represented by dynamic programming equations 

in (9) through (12). Clearly, this means that the four probabilities {𝜋𝑎𝑗𝑎𝑖
𝑗 :𝑎𝑗𝑎𝑖 ∈ {𝐶,𝐷}2} 

must be such that: 

• If node j plays C in a time slot, node i obtains the average payoff 𝑉𝐶𝑖 and is 

indifferent between playing C and D. This is represented by (9) and (10). 

• If node j plays D in a time slot, node i obtains the average payoff 𝑉𝐷𝑖  and is 

indifferent between playing C and D. This is represented by (11) and (12). 

𝑉𝐶𝑖 = (1 − 𝛿) + 𝛿𝑉𝐶𝑖�(1 − 𝜀)𝜋𝑐𝑐
𝑗 + 𝜀𝜋𝑐𝑑

𝑗 � + 𝛿𝑉𝐷𝑖 �𝜀�1 − 𝜋𝑐𝑑
𝑗 � + (1 − 𝜀)�1− 𝜋𝑐𝑐

𝑗 ��.      (9) 

𝑉𝐶𝑖 = (1 − 𝛿)(1 + 𝑔𝑖) + 𝛿𝑉𝐶𝑖�𝜀𝜋𝑐𝑐
𝑗 + (1 − 𝜀)𝜋𝑐𝑑

𝑗 � 

+𝛿𝑉𝐷𝑖 �(1− 𝜀)�1 − 𝜋𝑐𝑑
𝑗 � + 𝜀�1 − 𝜋𝑐𝑐

𝑗 ��.    (10) 
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𝑉𝐷𝑖 = −𝑔𝑖(1 − 𝛿) + 𝛿𝑉𝐶𝑖�(1− 𝜀)𝜋𝑑𝑐
𝑗 + 𝜀𝜋𝑑𝑑

𝑗 � 

+𝛿𝑉𝐷𝑖 �𝜀�1 − 𝜋𝑐𝑑
𝑗 � + (1 − 𝜀)�1− 𝜋𝑑𝑐

𝑗 ��.    (11) 

𝑉𝐷𝑖 = 𝛿𝑉𝐶𝑖�𝜀𝜋𝑑𝑐
𝑗 + (1 − 𝜀)𝜋𝑑𝑑

𝑗 � + 𝛿𝑉𝐷𝑖 �(1 − 𝜀)�1 − 𝜋𝑑𝑑
𝑗 � + 𝜀�1 − 𝜋𝑑𝑐

𝑗 ��.                      (12) 

Expressing the probabilities as a function of the two payoffs and the monitoring error, we 

get: 

𝜋𝑐𝑐
𝑗 =

�𝑉𝐶𝑖 − 𝛿𝑉𝐷𝑖 �(1− 2𝜀) + (1 − 𝛿)�𝑔𝑖 + 𝜀 − (1 − 𝜀)(1 + 𝑔𝑖)�
𝛿(1 − 2𝜀)�𝑉𝐶𝑖 − 𝑉𝐷𝑖 �

.          (13) 

𝜋𝑐𝑑
𝑗 =

�𝑉𝐶𝑖 − 𝛿𝑉𝐷𝑖 �(1− 2𝜀) + (1 − 𝛿)�𝜀 − (1 − 𝜀)(1 + 𝑔𝑖)�
𝛿(1 − 2𝜀)�𝑉𝐶𝑖 − 𝑉𝐷𝑖 �

.                  (14) 

𝜋𝑑𝑐
𝑗 =

(1 − 𝛿) �𝑔𝑖(1 − 𝜀) + 𝑉𝐷𝑖 (1− 2𝜀)�

𝛿(1 − 2𝜀)�𝑉𝐶𝑖 − 𝑉𝐷𝑖 �
.                                                   (15) 

𝜋𝑑𝑑
𝑗 =

(1 − 𝛿)�𝑉𝐷𝑖 (1− 2𝜀) − 𝑔𝑖𝜀�
𝛿(1 − 2𝜀)�𝑉𝐶𝑖 − 𝑉𝐷𝑖 �

.                                                               (16) 

We can see that (13) through (16) have two-dimensional indeterminacy or two free 

variables. Thus, using the first free variable, we can set:  

𝑉𝐶𝑖 − 𝑉𝐷𝑖 = (1 − 𝛿)(1 + 𝑔𝑖),                     (17) 

And it is easy to verify that taking (17) into (13) through (16), we get:  

𝜋𝑐𝑐
𝑗 = 𝜋𝑑𝑐

𝑗 =
(1 − 2𝜀)𝑉𝐶𝑖 − (1 − 2𝜀)(1 − 𝛿)(1 + 𝑔𝑖) + (1 − 𝜀)𝑔𝑖

𝛿(1 − 2𝜀)(1 + 𝑔𝑖)
,         (18) 
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and 

𝜋𝑐𝑑
𝑗 = 𝜋𝑑𝑑

𝑗 =
(1 − 2𝜀)𝑉𝐶𝑖 − (1 − 2𝜀)(1 − 𝛿)(1 + 𝑔𝑖) − 𝜀𝑔𝑖

𝛿(1 − 2𝜀)(1 + 𝑔𝑖)
.                    (19) 

Moreover, subtracting (18) and (19) give: 

𝜋𝑐𝑐
𝑗 − 𝜋𝑑𝑑

𝑗 =
𝑔𝑖

𝛿(1 − 2𝜀)(1 + 𝑔𝑖)
.                 (20) 

Therefore, using the second free variable, we can also set:  

�
𝜋𝑐𝑐
𝑗 = 𝜋𝑑𝑐

𝑗 = 1, and

𝜋𝑐𝑑
𝑗 = 𝜋𝑑𝑑

𝑗 = 𝜔𝑗 = 1 −
𝑔𝑖

𝛿(1 − 2𝜀)(1 + 𝑔𝑖)
.
                                 (21) � 

We can verify that when the discount factor is close to 1 (𝛿 → 1) and noise in the 

monitoring vanishes (𝜀 → 0), we have: 

0 < 𝜔𝑗 = 𝜋𝑐𝑑
𝑗 = 𝜋𝑑𝑑

𝑗 < 𝜋𝑐𝑐
𝑗 = 𝜋𝑑𝑐

𝑗 = 1.                     (22) 

Equation (22) indicates that our strategy is well defined. In fact, we must have the four 

probabilities {𝜋𝑎𝑗𝑎𝑖
𝑗 :𝑎𝑗𝑎𝑖 ∈ {𝐶,𝐷}2} in the interval [0, 1]. The same way, we can have a 

similar strategy for node i. However, since the game is asymmetric, we will have 𝜔𝑖 ≠

𝜔𝑗. Node i’s strategy is a best reply to node j’s strategy. The strategy profile �𝜋𝑖 ,𝜋𝑗� will 

be a sequential equilibrium and thus a belief-free equilibrium by construction since 

player’s belief about the opponent’s private history is irrelevant. Also, from (21), we 

must have for the two nodes 
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𝜀 <
1
2
−

𝑔
2𝛿(1 + 𝑔)

<
1
2

.                          (23) 

If 𝜀 > 1
2
, the noise in the monitoring technology is so pervasive that a node’s opponent is 

more likely to observe a defection when the node cooperates. In this case, intelligent 

nodes prefer to always defect. The incentive to cooperate is lost due to noise. 

Moreover, the fact that 𝜋𝑐𝑑
𝑗 = 𝜋𝑑𝑑

𝑗 < 𝜋𝑐𝑐
𝑗 = 𝜋𝑑𝑐

𝑗  provides the incentive to cooperate. A 

deviation by a node from cooperation to defection increases the chance that the opponent 

will defect in the future and thus diminishes its continuation value from 𝑉𝐶𝑖 to 𝑉𝐷𝑖 . The 

difference between those continuation values balances the gain from deviation in any 

time slot (17).  

Finally, after all calculations, we can see that: 

𝑉𝐶𝑖 = 1 −
𝜀𝑔𝑖

1 − 2𝜀
.                                                  (24) 

Therefore, as noise in the monitoring technology vanishes, both nodes get the payoff of 

full cooperation. This shows the efficiency of our belief-free equilibrium strategy. In 

summary, the belief-free equilibrium approach has several advantages [66]. 

• A belief-free equilibrium can be used with any type of monitoring technology, 

from perfect monitoring to the extreme case where the monitoring technology is 

fully noisy and fully private [62]. 
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• A belief-free equilibrium strategy can have one period memory. A memory one 

strategy can be represented by a finite state machine, an automaton or a Markov 

process.  

• Node belief about the opponent’s private history is irrelevant to its best reply. 

This represents a tremendous advantage over a belief-based equilibrium. The 

computational power needed to compute the equilibrium is reduced.  

• Continuing to play a belief-free equilibrium is sequentially rational even if a node 

receives additional information about the opponent’s history. 

• A belief-free equilibrium can be used with a community enforcement mechanism 

as in [67]. We will use a model similar to [67] when extending our model to n 

nodes in the next Section. 

5.3 Extension to N Nodes 

 

 

 

 

 

 

Figure 5.2: Randomly deployed network in a rectangle 
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Figure 5.2 represents 13 nodes randomly deployed in a rectangular area. As we did in 

Section 4.2 with Fig.4.1, we will use the network in Fig. 5.2 to clearly expose some 

complications in modeling the full network packet forwarding game before presenting 

some solutions. 

First of all, the packet forwarding game in a network is not an isolated game. It is part of 

the routing game at the routing layer which also depends on the nodes’ interactions at the 

MAC layer and the transport layer. At the MAC layer, there can be congestion that 

causes nodes to drop packets. A protocol such as TCP at the transport layer recommends 

packet retransmission if a packet is lost. Retransmitting packets will influence the packet 

forwarding game because of the extra cost involved. At the routing layer, routing packets 

in MANETs generally involves four steps (not common to all routing protocols): 

• Route discovery: when a sender wants to communicate with a destination 

outside its communication range, it broadcasts a route request message that is 

relayed until the destination. The destination sends back a route reply for each 

route request received. 

• Route selection: the sender selects one route among the routes available to it. 

• Packet forwarding: the sender sends the packets that are relayed along the 

selected route until the destination. This is our main focus. 

• Route maintenance: when a node observes a link breakage, for instance due to 

node mobility, it reports that to other nodes using a route error message. 
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Each of these steps involves strategic interactions with severe conflict of interest. Each 

step can be modeled by a game. For instance, in the route selection game, when node 1 

wants to send packets to node 9, node 1 may have to choose between several routes. One 

possible route goes through nodes i, j, and l, and the second possible route goes through 

node 2, 4, 5, 6, 7, and 8. Considering its best interest, node 1 will most likely choose the 

first route because of shorter delay whereas nodes i, j, and l will prefer the second route 

to be used to avoid a higher cost in the packet forwarding game. Moreover, node 1’s 

decision to use the first route instantly increases the probabilities 𝑝𝑖, 𝑞𝑖, 𝑝𝑗, 𝑞𝑗 in the 

interaction between node i and j. This is one of the reasons indicating that a stochastic 

game better models packet forwarding than a repeated game. 

In this Chapter, we focus only on the packet forwarding game and do not consider the 

specifics of any routing protocol or the interactions from other layers. The packet 

forwarding game analysis manifests several difficulties. As we stated before, the first 

complication is that there is less incentive to cooperate with border nodes, such as nodes 

1, 3, and 9 if the network is static. Those nodes are useless to their neighbors in the 

packet forwarding game. Therefore, border nodes can easily be disconnected in a static 

network if we rely only on the two player game. 

The second problem concerns node mobility that creates dynamic changes of neighbors. 

The third problem concerns the monitoring technology in distributed networks. In 

general, a node has no private signal at all about the actions of nodes outside its 

communication range. As a consequence, monitoring cannot be ε-perfect in n node 

interactions. For instance, in Fig.5.2, the action of node 3 is completely unknown to node 
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9. ε-perfect monitoring in the n node game will imply that node 9 can monitor the action 

of node 3 with the probability of observing an erroneous signal being less than ε. This is 

not possible without an external system or database recording each node’s action that is 

accessible to all nodes. 

A. Model Extension Using a Database 

 The existence of an appropriate database where each node submits a report indicating 

other nodes’ actions as the one described in [29] facilitate the game analysis and can 

solve the three problems presented here. In fact, the model described in [29] is cheat-

proof, selfish nodes cannot manipulate the data to their advantage. The database is not a 

central manager; the database does not impose the action to be taken by a node. Each 

node remains free to decide to cooperate or not. Using a belief-free equilibrium approach, 

the database will not store the reputation or the full history of the game but only the last 

action of each node. Recall that node belief about the opponent’s private history is 

irrelevant. In this case, there are three papers [65-67] that provide a formal proof that a 

belief-free equilibrium strategy can enforce cooperation in n player PDGs under 

imperfect private monitoring. The payoff of mutual cooperation is achieved in the limit as 

noise in monitoring and discounting vanishes. 

We use the approach presented in [67] which is a relatively simple approach that can 

easily translate our two node game of Section 5.2 to an n node game. The research from 

that paper allows us to treat the n person PDG under imperfect private monitoring when 

each node observes only the last action of a single node at the beginning of each stage. 

Such mathematical development has a tremendous importance for distributed network 
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packet forwarding game modeling. Only the noisy observation of the opponent’s last 

action is relevant, not the player’s own action. This is consistent with the belief-free 

equilibrium strategy we developed for the two node game in Section 5.2. In fact, 

independent and indifferent equilibria [67] must satisfy the following two properties:  

• Players are indifferent between cooperation and defection at all histories. 

• Players choose actions independently of their own record of play. 

Therefore, our strategy in Section 5.2 is not only a belief-free equilibrium but also an 

independent indifferent equilibrium. 

A mechanism that requires defection to be punished not only by the victim but by any 

other node that observes the defection is called community enforcement. We consider a 

large MANET of 2n nodes. The network topology is dynamically changing and nodes 

interact with different nodes over time. At the beginning of each time slot, neighboring 

nodes are randomly matched in pairs to play the PDG in Table 4.3. Thus, in each time 

slot, there are n pairs of nodes playing the PDG. Without loss of generality, we consider 

symmetric payoff. Moreover, the matching is uniform and independent across time. Note 

that in our game, the incentive a node has to deviate when its opponent cooperates (g) 

equals the loss from cooperating when the opponent deviates. Thus, our game is neither 

strictly submodular nor strictly supermodular. 

Nodes observe past action through direct observation or the database. This means that if a 

node did not directly monitor its current opponent’s last action, possibly because it was 

outside its communication range, it can freely observe that from the database. There can 
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be noise when observing the node’s last actions in the database or when observing an 

opponent’s action directly. 

A database gives the incentive to each node to always cooperate with all nodes regardless 

of node position, node mobility or the network topology. A defection in a time slot 

increases the probability that the next opponent from the next time slot will defect in such 

a way that a node is always indifferent between cooperation and defection. The only 

difference with the two node game is that in the two node game, each node has a single 

opponent and that single opponent will increase its probability of future defection if 

observing a defection. However, in the n node game, any node that defects has its action 

recorded in the database. In the next time slot, its opponent (which may be a different 

node) observes that defection from the database and punishes by increasing the 

probability of defection.  

Another excellent characteristic of our strategy is that the long-run equilibrium is robust 

to one time shock. In fact, if a small percentage of nodes mistakenly defect in a time slot, 

that defection increases the probability the future partners will defect and so on. However 

after all computations [67], the fraction of cooperation in the network remains constant 

over time. 

B. Model Extension without a Database 

When a database is not available in the network, enforcing cooperation in the network is 

more complex. Full cooperation should be achieved if each node cooperates with all of its 

neighbors. In Section 5.2, we have presented a simple belief-free equilibrium strategy for 
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the two node game. Each node in Fig. 5.2 is involved in a two node game with each of its 

neighbors. The total number of such games in an ad hoc network will be equal to the 

number of links or wireless connections between nodes. However, a two node interaction 

is not independent of the other interactions in the network. Those games are correlated 

and the correlations between those games are complex to analyze. These correlations are 

neglected in other papers. 

To illustrate the connections between the two node games, consider that mutual 

cooperation is Pareto efficient between any two neighbors in Fig. 5.2. Thus, as we 

showed previously, a sequential equilibrium can enforce cooperation in the two player 

game between node i and node j. However, node i has the option to end cooperation with 

node j, and to avoid punishment, reroutes all its packets through node k. As a result, the 

rate at which node i requests node k to relay packets increases (𝑝𝑖 increases) and so does 

the cost to node k to continue to cooperate with node j. Then, node k may decide to stop 

cooperation with node i if cooperation is no longer Pareto efficient ( 𝑔𝑘 < 0). As a 

consequence, the traffic at node 5 increases dramatically. Node 5 may also stop 

cooperating with node 4 resulting in a network disconnection, which has a worse 

outcome for node i compared to the initial one. Therefore, rational nodes in distributed 

networks can behave optimally from local and incomplete information, but the final 

outcome becomes damaging for them. A very small change of decision from a single 

node can destabilize the network cooperative equilibrium.  

One may argue that the above scenario is impossible using a backward induction 

argument. That is, node i may have anticipated this sequence of action and not stopped 
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cooperating with node j in the first place. Node i is worse off after network disconnection 

than before since it can now transmit its messages to only a small portion of the network. 

However, a backward induction argument does not work here because in distributed self 

organized MANETs without a database, the network topology is not common knowledge 

among the nodes. Each node knows only its neighbors but not their neighbors’ neighbors. 

A rational node cannot predict the effect that its actions would have on the actions of 

other rational nodes. 

Nevertheless, a belief-free equilibrium like the one we present in this Chapter is more 

robust against such a dramatic scenario compared to a belief based approach because the 

history of the game is irrelevant. In fact, when two nodes reach an outcome that is worse 

for the two, they can easily start to cooperate again and increase the number of available 

routes in the network. Using a belief-based approach [14-15], a node that defects 

successively for a few time slots causes its neighbors to correctly infer its private history 

and switch to defection forever. Our strategy can forgive after any number of defections. 

Lastly, we can improve the network performance by recommending that, in the 

punishment phase (cooperation with probability less than 1), a node drops only the next 

packet originating from the punished neighbor. This way, packets from other nodes in the 

network are not affected while at the same time each node has the incentive to cooperate 

since it fears having some of its packets dropped in the future. However, this will extend 

the memory length of our strategy and increase its complexity. 
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5.4 Simulation Results 

 

Figure 5.3: Variation of ω with ε and q 

In this Section, we analyze by simulation the impact of noise on our belief-free 

equilibrium strategy. We also consider the traffic load inequality by considering different 

values for the probability 𝑞𝑖defined before. In our simulation, we set 𝛾 = 10𝛽. This 

implies that it is globally efficient to relay a packet up to a maximum of 10 hops. Also, 
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we set 𝑝𝑖 = 𝑝𝑗. Thus, from (1), we have  𝑔𝑖 = 1
10𝑞𝑖−1

. Also, 𝛿 = 0.999 is the default 

value. 

Figure 5.3 shows the variation of the probability with which a node cooperates after 

observing the opponent’s defection (ω) as a function of the observation error (ε) and the 

probability q (21). We can see that ω decreases with ε and also decreases with q. There is 

a maximum value of ε above which 𝜔 < 0.  

When the observation error increases, nodes are more tempted to defect because the 

probability that their opponent will not observe that defection increases. To balance that 

temptation, a node should punish more severely after observing a defection by decreasing 

its probability of cooperation. The same way, a decrease in q increases g (1) which makes 

defection more profitable and cooperation among nodes more difficult. Therefore, we can 

say that a decrease of ω when q decreases is required to provide the necessary incentive 

for nodes to cooperate. 

Figures 5.4 and 5.5 represent the variation of the probability of node cooperation as a 

function of time in the interaction between two nodes. That probability can be obtained 

analytically by a Markov analysis since our strategy obeys the Markov property. 
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Figure 5.4: Variation of the probability of cooperation with time and ε. 

In Fig. 5.4, we fix 𝑞 = 0.25 and focus on the impact of noise. 𝑞 = 0.25  will be a node 

for which 3 out of 4 packets it requests to forward come from other nodes. For different 

values of noise, the probability of cooperation quickly converges to the steady state after 

less than twenty time slots. Moreover, the probability of cooperation in the steady state is 

close to one in the limit as noise in monitoring vanishes.  
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Figure 5.5: Variation of the probability of cooperation with time and q. 

In Fig. 5.5, we fix 𝜀 = 0.1 and observe the change with q. The case 𝑞 = 1 corresponds to 

a border node that requests only the packets it originates to be forwarded. Similarly, 

 𝑞 = 0.125 will be a node close to the center for which 7 out of 8 packets it requests to 

forward come from other nodes. Recall that q can represent the proportion of packets that 

a node originates among the total packets a node requests to forward. As we can see, the 

probability of cooperation will not be the same for all nodes in the network with the same 

noise level. Saturated nodes will cooperate less. 
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We analyze our belief-free equilibrium strategy (BFES) in multi-hop communication. 

There are h hops between the sender and the destination (ℎ ∈ [1,10]). We consider a 

channel lost probability of 𝜇 = 0.01. 

 

Figure 5.6: Variation of the normalized session throughput with the number of hop 

and noise for static nodes 
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Figure 5.7: Variation of the normalized session throughput with the number of hop 

and noise for mobile nodes 

Figures 5.6 and 5.7 represent the variation of the normalized session throughput with the 

number of hops in the route and noise for static and mobile nodes respectively. In the 

graph, full cooperation corresponds to a network with a central manager where node 

cooperates unconditionally. We can see that, with up to 5 hops, and 5% observation error, 

the normalized throughput decreases with BFES is less than 5% compared to that of 

unconditional cooperators both for static and mobile nodes.  
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In the game theoretical perspective, node mobility decreases the discount factor. This is 

because the expected number of future interactions decreases with node mobility. In fact, 

the expected number of future interactions is exponentially distributed with mean 1
1−𝛿

. In 

the case of static nodes, 𝛿 = 0.999 means that at the beginning of each time slot, each 

node expects the packet forwarding game to be repeated 1000 times. For mobile nodes, 

we decrease δ,  𝛿 = 0.8. 

5.5 Conclusion  

We used the belief-free equilibrium concept to develop a packet forwarding game model. 

We took into account the fact that some inconsistency between a node’s true action and 

its neighbors’ observation of that action exists in a network. Our model is presented 

under imperfect private monitoring. A stochastic dimension is introduced to consider the 

different packet forwarding rates among nodes in ad hoc networks. Our two node model 

can easily be extended to a MANET of n nodes. Simulation results show that our model 

is robust to noise, traffic inequalities, and node mobility. 

The model presented is simple and our packet forwarding game equilibrium relied on a 

single parameter: the probability of cooperation after observing a defection. That 

probability was adjusted such that the history of the game became irrelevant. However, it 

is not sure that the belief-free equilibrium approach will be robust if there is private 

payoff information. In fact, in the two node game for instance, each player needs to know 

its opponent payoff to perfectly balance the probability of cooperation after observing a 

defection in such a way that its opponent is indifferent between cooperation and defection 
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after all histories. Considering private payoff information under a belief-free equilibrium 

approach is still an open research problem. 
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CHAPTER 6 

MITIGATING ROUTING MISBEHAVIOR IN MULTI-HOP NETWORKS USING 

EVOLUTIONARY GAME THEORY 

Multi-hop wireless networks have been an active research area for decades; however, the 

solutions proposed to solve routing misbehaviors are still not robust. In this Chapter, we 

use the EGT framework to address one issue of routing misbehavior, the problem of 

selfishness. We propose the use of distributed algorithms that are able to force selfish 

nodes to cooperate and forward packets from other nodes, despite their desire to 

“conserve energy” by not forwarding external packets. 

6.1 Introduction 

The lack of circumscribed infrastructure is a defining feature of the multi-hop wireless 

network, as practically all of the nodes in such a network must function as both a router 

and a client. For multi-hop traffic, in which the sender and receiver are not adjacent, 

communication depends upon the cooperation of intermediate nodes. This type of multi-

hop wireless communication is an essential ingredient in WSN, ad hoc networks, P2P 

networks and wireless mesh networks (WMN). However, without a common routing 

authority, cooperation and trust between nodes cannot be guaranteed, and may result in 

network breakdown.  

Nodes, in many application domains, including military applications, do share a manager 

in order to properly route traffic; however, this is not always the case. For example, 

networks made up of sensors embedded in devices to form a ubiquitous computing 
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environment, such as health monitoring networks or VANET may provide an 

infrastructure where each vehicle or node can be equipped with one or more autonomous 

sensors without a common manager. In order for these networks to operate, each sensor 

(node) must forward packets from the others. Any node, especially a selfish node, could 

refuse to forward any packets except its own. If all nodes operate in this manner, the 

network will not function.  

Packet forwarding failure is far more critical in multi-hop networks, as has been 

demonstrated by Tanachaiwiwat et al [69] where the research indicates that only a small 

percentage of misbehaving nodes has a large impact on the network. In their research, 

Tanachaiwiwat et al. [69] found that if 5% of the nodes in a grid-sensor network are 

misbehaving, 60% of routes are affected. In a randomly placed sensor network, 35% of 

routes are affected. If the number of misbehaving nodes increases to only 10%, the 

number of affected routes rises to an incredible 88% in a grid-sensor network and 54% in 

a randomly placed sensor network. In a mobile ad hoc network, throughput is reduced by 

20% if 10% of the nodes in that network misbehave [32]. From the above data, it 

becomes obvious that a small number of misbehaving nodes creates large problems in the 

network. 

In general, there are three types of misbehaving nodes in a multi-hop wireless network: 

faulty nodes, selfish nodes, and malicious nodes. Faulty nodes have defects that do not 

allow them to follow the recommendations of the protocol. Selfish nodes do not forward 

packets to save resources such as battery and bandwidth. Malicious nodes launch various 

attacks such as DoS. 
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In this Chapter, we focus on selfish nodes and present a model based on EGT in which 

we demonstrate that the model is able to encourage selfish nodes to cooperate and 

forward packets from others with only one period of punishment if nodes are sufficiently 

patient. For the case of impatient selfish players, we recommend more sophisticated 

algorithms with limited punishments.  

In Section 6.2, we present our game model. Next, in Section 6.3, we describe some 

strategies from other researches that are useful in refining the model and which 

complement the model by their analysis as outlined in Section 6.4. In Section 6.5 we 

present our simulation results and in Section 6.6 our conclusions. 

6.2 Game Model 

The assumptions presented in Section 3.3 apply here. In multi-hop networks, sending, 

receiving, or forwarding packets are random processes. If all nodes cooperate by 

forwarding other nodes’ packets, all nodes will benefit, but each of them will have to 

expend some energy to forward others’ packets. Also, a selfish node in a network of 

cooperating nodes benefits even more because it does not expend any energy to forward 

packets from others. In fact, each node is better off choosing defect rather than cooperate 

regardless of the number of nodes who choose to cooperate. However, the network 

collapses if all nodes behave selfishly and then all nodes loose. 

This situation is similar to the Prisoners’ Dilemma game found in game theory and we 

use it as the base of our model. In this game, the players are the n nodes, n >> 1. Pairs of 
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nodes are repeatedly drawn with equal probability to play the Prisoners’ Dilemma game. 

The nodes are programmed to play the same pure or mixed strategy. For the stage game, 

the pure strategies of a node are: Cooperate (C) or Defect (D). For the repeated game, the 

strategies of a node are any deterministic or random combination of C and D depending 

on the history of the game. 

From the previous assumptions and for consistence with the notation in the Prisoners’ 

Dilemma game, the payoff of the stage game is calculated as follows. We assume that all 

nodes spend the same energy at the cost of β to send or forward a packet. All nodes have 

packets to send and the expected gain for cooperation, γ, is equal for all nodes. When a 

node drops a packet as a result of defection, we assume that there is no cost or gain for 

that node. Thus, if both players cooperate, each of them gets the reward price   R= γ - β. 

This is because each node gains γ for having its packet forwarded, but has to spend the 

energy of cost β to send a packet for the others. Nodes get the punishment price P = 0 for 

mutual defection. This is justified by the fact that no nodes spend or gain anything. When 

one defects and the other cooperates, the defector gets the temptation price T = γ when 

the cooperator gets the sucker price S = -β. 

We assume that the following inequalities hold: γ>β>0. In fact, it will not be globally 

more efficient to forward packet than to discard packets when γ<β. We can observe that 

T>R>P>S. Moreover, we have: 2R>T+S. This makes two runs of mutual cooperation 

collectively more efficient than an alternation of cooperation and defection. The stage 

game of our model is represented in Table 6.1. 
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We can see that Cooperate is strictly dominated by Defect. Therefore, the only Nash 

equilibrium is Defect. The two players get the punishment prize P. However, if the two 

players choose to cooperate, the two players will get the Pareto efficient outcome R. We 

can see that when rational intelligent players play the game, they will achieve a non-

efficient outcome. This illustrates that the Nash equilibrium is not always Pareto efficient. 

Nevertheless, when the game is played repeatedly, cooperation among players can 

emerge. Players could cooperate expecting future gain and reach an efficient equilibrium 

while all players cooperate.  

In our game model, we assume that no single node knows the end of the game and that at 

any time; all nodes believe that there is a large probability ω that the game will continue. 

Then, future payoffs are discounted by ω. Also, at any time, the expected duration of the 

game is 1
1−𝜔

 time slots. Consequently, the game is infinite if ω=1. ω < 1 in our model. 

TABLE 6.1: THE STAGE GAME MODEL IN STRATEGIC FORM 

 Player j 

Cooperate Defect 

Player i Cooperate {γ - β, γ – β} {-β, γ} 

Defect {γ, -β} {0,0} 

 

6.3 Strategy Description 

The Iterated Prisoner’s Dilemma is the Prisoner’s Dilemma repeated over time. This has 

been used to model similar situations found in other fields of science such as biology and 
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economics, where researchers from multi-disciplinary fields have investigated 

cooperative behavior [70-72]. Memory one strategies, such as these in which present 

actions depend only on the most recent action, are suitable for wireless networks due to 

the nodes’ limited battery and computational power. Moreover, memory one strategies 

are easier to model, as they can be described by a finite state machine, a Markov Process 

or an automaton. The ultimate goal is to find the best strategy that will result in 

cooperation in the network without being exploited by defectors.  

Axelrod [72] simulated the IPD in a tournament using different strategies. In his 

simulation, TFT was the winner. A TFT player begins with cooperation and then repeats 

the opponent’s action in the last move. However, TFT is a strategy vulnerable to error in 

perception or stochastic perturbation. When two players use TFT, if one cooperates and 

the other, because of noise perceives a defection, the result will be an alternating cycle of 

cooperation and defection resulting in a non-efficient payoff. 

Nowak and Sigmund [70] simulated all randomly generated strategies with memory one 

in the presence of noise and identified the emergence in the long run of a strategy called 

Pavlov. This strategy outperforms TFT. A Pavlov player cooperates if and only if the 

player and the opponent used the same move in the previous round. Unlike TFT, Pavlov 

is immune to errors in perception. 

Boerlijst et al. [71] improved Pavlov using tagging to produce pPavlov. pPavlov is a 

memory one strategy like Pavlov and TFT. However, pPavlov applies two periods of 

punishment instead of one in Pavlov. pPavlov follows Pavlov in most case. However, 

pPavlov has two taggings for defect: D0 and D1. pPavlov normally plays D1, and plays D0 
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only after a mutual defection or an erroneous defection. In a game between two pPavlov 

players, an erroneous defection is followed by two rounds of mutual defection and then 

mutual cooperation. In this case, the successive states are: (C, D0), (D1, D1), (D0, D0), (C, 

C). pPavlov, like other memory one deterministic strategies, can be represented by a 

finite state machine. 

 

Figure 6.1: Finite state machine of pPavlov.[71] 

Fig. 6.1 gives the finite state machine of pPavlov. The vertices of the graph represent the 

states. The pPavlov player state is at the lower position and the opponent state is in the 

upper position. The opponent can choose to Cooperate (C) or Defect (D). Therefore, from 
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each state, we have two transitions. The arrows indicate the transitions. Solid lines 

indicate the moves specified by the pPavlov strategy; dotted lines indicate the alternative 

moves. One advantage of pPavlov is that pPavlov only monitors its own tagging and is 

immune to errors in perception. Since pPavlov applies two periods of punishment instead 

of one, a strategy based on pPavlov is safer against defectors than those based on the 

classic Pavlov. An opponent who always chooses Defect takes advantage of Pavlov every 

two rounds but only exploits pPavlov every three rounds. Similar memory one strategies 

can be designed using the appropriate tagging to provide any number of punishments 

before returning to mutual cooperation. The extreme case is Grim which punishes forever 

after a defection. 

6.4 Analysis 

We will use the framework of EGT to analyze the previous strategy. EGT has its 

foundation in game theory and evolutionary biology. Evolutionary biology studies the 

processes of change in populations of organisms. Selection and mutation are two 

important mechanisms of change in evolutionary biology. Mutation provides diversity in 

the population, whereas selection promotes some characteristics over others. Therefore, 

two key concepts of EGT are ESS that deals with mutation mechanisms and the replicator 

dynamic that deals with selection mechanisms. The assumptions of rationality and 

common knowledge used in game theory are relaxed in EGT. Unlike game theory, where 

players are intelligent, rational and choose strategies, in EGT, players are programmed to 

perform some strategies in the game. Players are randomly and repeatedly drawn from 

large populations and play the same pure or mixed strategies. The payoff is the individual 
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fitness or expected number of surviving offspring. Now, let us be more formal in our 

analysis. We start with the ESS concept followed by the replicator dynamic. 

A strategy x is an ESS if and only if: 

𝑢[𝑥, 𝜀𝑦 + (1 − 𝜀)𝑥] > 𝑢[𝑦, 𝜀𝑦 + (1 − 𝜀)𝑥],                           (1) 

for a small proportion of mutant 𝜀. 

u is the utility function or payoff 

x and y are the incumbent and mutant strategy, respectively. 

Definition 1: A strategy x is an ESS if for every strategy y ≠x there exist some 𝜀𝑦̅  ∈ (0,1) 

such that inequality (1) holds for all 𝜀 ∈ (0, 𝜀𝑦̅). 

Considering the linearity of u, (1) can be written as:  

(1 − 𝜀)𝑢(𝑥, 𝑥) + 𝜀𝑢(𝑥,𝑦) > (1 − 𝜀)𝑢(𝑦, 𝑥) + 𝜀𝑢(𝑦,𝑦) 

For small values of 𝜀, (1) is equivalent to either 

𝑢(𝑥, 𝑥) > 𝑢(𝑦, 𝑥) ∀𝑦,                                                                                                                (2) 

or 

𝑢(𝑥, 𝑥) = 𝑢(𝑦, 𝑥) and 𝑢(𝑥,𝑦) > 𝑢(𝑦, 𝑦) ∀𝑦 ≠ 𝑥.                                                             (3) 

Equations (2) and (3) represent ESS as first formulated by Smith in [73]. 
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A population of individuals programmed to play an ESS resist against mutation. This 

means that such a population cannot disappear in the long run evolution. 

Let us turn our attention to the replicator dynamic. As described previously, ESS focuses 

on mutation while the replicator dynamic highlights the role of selection. This model was 

first proposed by Taylor and Jonker [74]. Formally, the population dynamics for the 

population shares xi is given by: 

𝑥̇𝑖 = �𝑢�𝑒𝑖 , 𝑥� − 𝑢(𝑥, 𝑥)�𝑥𝑖.                                                         (4) 

𝑢�𝑒𝑖, 𝑥� is the expected payoff to pure strategy i at a random match. 

𝑢(𝑥, 𝑥) is the payoff of an individual drawn at random in the population or the average 

payoff per individual. 

𝑥𝑖 is the proportion of individuals programmed to pure strategy i and its time derivative is 

𝑥̇𝑖. 

Equation (4) is a system of differential equations that allows us to draw an important 

conclusion. Subpopulations programmed with better than average strategies grow 

whereas   subpopulations programmed with worse than average strategies sink. Another 

important factor to note is that an ESS is stable in the replicator dynamic (4). In the next 

Section, our simulator implements the discrete time version of the replicator dynamic. 

In [71], the authors proved that Pavlov is an ESS when the probability ω of a next round 

is such that: 

R +  ωR > 𝑇 +  𝜔𝑃.                                                                     (5) 
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Pavlov is ESS, meaning here that if there is a small, but non-zero probability of mis-

executing a move, every strategy that departs from what a Pavlov rule would command 

will gain less against a Pavlov player than it would have by following the Pavlov rule. 

Now, let us see why pPavlov is also ESS. pPavlov is ESS if in the finite state machine of 

pPavlov in Fig. 6.1, the payoff discounted step by step following the branch of pPavlov is 

always higher than any alternative payoff. This is the case if: 

R +  ωR +  ω2R > 𝑇 +  𝜔𝑃 + ω2P.                                        (6) 

The probability ω is less for pPavlov compared to that of Pavlov. This is good because 

players can cooperate even if a next round is less probable or when players are less 

patient. To better comprehend (5) and (6), take P=0 as it is in our game model. In fact, the 

more severely a strategy punishes, the lower the value of the discount factor ω needed for 

that strategy to be ESS. Thus, when Pavlov is ESS, pPavlov is also ESS under the same 

condition. Furthermore, in the extreme case of infinite punishment, Grim is ESS if: 

𝑅
1 − ω

> 𝑇.                                                                                       (7) 

Equation (7) shows us that in the extreme case of Grim, we can have an ESS if ω is very 

close to 1. However, Grim is not a wise solution in wireless networks because occasional 

noise or congestion can damage cooperation forever. TFT can also mitigate selfishness 

but TFT is not ESS. In fact, TFT can be invaded by unconditional cooperators which in 

turn are invaded by defectors. 
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To summarize, Pavlov and pPavlov are ESS. This implies first that they cannot be 

invaded. Second, Pavlov and pPavlov are also dynamically stable in the replicator 

dynamic. Third, in a network of nodes following Pavlov or pPavlov, no selfish node will 

benefit by dropping packets and saving energy if (5) and (6) hold respectively. Thus, 

selfish nodes will be constrained to cooperate and cooperation will be maintained for the 

good of each node. For the three reasons above, we first recommend Pavlov to mitigate 

selfish behavior in multi-hop networks. However, when the probability ω is not high 

enough for (5) to hold, a memory one strategy, using tagging which applies more than 

one period of punishment, like pPavlov, must be used. 

6.5 Simulations 

TABLE 6.2: THE STAGE GAME PAYOFF 

 Player j 

Cooperate Defect 

Player i Cooperate {4,4} {-1,5} 

Defect {5,-1} {0,0} 

 

In this Section, we use the simulator from [75] to present our simulation result. This 

simulator implements a round robin tournament combined with the discrete time version 

of the replicator dynamic (4). The vertical axis in all figures shows the population share 

that is related to the payoff by (4). The stage game payoff is shown in Table 6.2. Those 

payoffs are for β = 1and γ = 5. This can be justified since a packet will go through more 
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than five intermediates nodes before reaching the destination in a multi-hop network, on 

average. Thus, for global efficiency we should have at least γ = 5β. Let us analyze a few 

scenarios. 

A. Cooperator vs Defector 

In this scenario, we have two types of nodes. The first type is preprogrammed to the pure 

strategy that always defects whereas the second type always cooperates. Originally, there 

are 25 defectors and 75 cooperators. Following the payoffs in Table 6.2, we have: 

 u(Cooperate, Cooperate) = 4 and  

u(Defect, Cooperate) = 5 . Then,  

u(Cooperate, Cooperate) <  u(Defect, Cooperate) 

 

Figure 6.2 Dynamic of Cooperator vs Defector 
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It follows from (2) that Always Cooperates is not an ESS. Fig. 6.2 shows that 

Cooperators are invaded by Defectors. The population and payoff of Defectors increase 

whereas that of Cooperators decrease and become extinct after six generations. Next, 

confrontations only happen between Defectors which yield a payoff of zero. That 

explains the fall back to zero after the maximum. 

B. Pavlov vs Defector 

 

Figure 6.3 Dynamic of Pavlov vs Defector 

In this scenario and the following analysis, we consider the performance of Pavlov, 

which as we discus in Section 6.4, is similar to pPavlov. Fig. 6.3 shows the increase in 

payoff and populations of Pavlov. At the same time, the payoff of Defectors converges to 

zero after only 20 generations. 
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C. Pavlov, Defector and cooperator 

 

Figure 6.4: Dynamic of Pavlov, Defector and Cooperator 

At the beginning, we have a mixture of 35 Cooperators, 35 Defectors, and only 30 

Pavlov. After 25 generations, only Pavlov and Cooperator survive. A few Cooperators 

survive because Defectors vanish due to interactions with Pavlov. Note that interaction 

between Pavlov and Cooperators yield mutual cooperation and then the same payoff for 

both strategies. This is the reason why a few Cooperators can survive. In case of noise or 

stochastic perturbation that make monitoring imperfect, no Cooperator can survive. This 

is because Pavlov exploits unconditional Cooperators by defecting when they cooperate. 
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D. Pavlov, Defector, cooperator and Random 

This scenario tests the effect of faulty and malicious nodes. Faulty nodes play randomly 

because they are damaged. Malicious nodes can play Always Defect to perform a DoS. 

The simulation result in Fig. 6.5 shows a complete domination of Pavlov. With an initial 

population of 25 each, only Pavlov survives. The payoff and population share of 

Defectors starts increasing until the Cooperators and the Random are extinct. Then, 

Defectors only oppose Pavlov resulting in the decrease of payoff and population share of 

Defectors. 

 

Figure 6.5 Pavlov, Defector, Cooperator, and Random 
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E. Pavlov, Defector, cooperator, Random, TFT 

 

Figure 6.6: Pavlov, Defector, Cooperator, Random, TFT 

We repeat the previous scenario adding TFT. The result in Fig. 6.6 shows Pavlov 

outperforming TFT as shown by Nowak and Sigmund in [70]. 

6.6 Conclusion 

We have used EGT to recommend Pavlov and its extension pPavlov for multi-hop 

networks. Both are ESS and then a Nash equilibrium of the packet forwarding game. 

Mathematical and simulation results show that both promote cooperation among selfish 

nodes. Pavlov and its extension are distributed algorithms and therefore require only local 

information. Those algorithms do not require a common knowledge of the network or any 

rationality of the nodes, as do models based on traditional game theory. pPavlov has an 
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advantage over Pavlov because it can force nodes to cooperate even though the discount 

factor is smaller.  

In the future, we will implement Pavlov and pPavlov in a real multi-hop network 

environment and evaluate their performance for different network flows and topology. We 

will also consider asymmetric links in the network. 
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CHAPTER 7 

GAME THEORETIC MODELING AND EVOLUTION OF TRUST IN 

AUTONOMOUS NETWORKS: APPLICATION TO NETWORK SECURITY AND 

PRIVACY  

Future applications will require autonomous devices to be interconnected to form a 

network. Such networks will not have a central manager; each node will manage itself and 

will be free to decide participation in any network function. As with traditional networks, 

these networks need to be secured to authenticate the nodes, prevent misuse, detect 

anomalies and protect user privacy. Network security and privacy protection without a 

central manager will be challenging. Several security mechanisms and privacy protections 

will require the cooperation of several nodes to defend the network from malicious 

attacks. We particularly investigate when, for each node, it is cost-effective to freely 

participate in the security mechanism or protect its privacy depending if that node believes 

or trusts that all other nodes, or at least a minimum number of other nodes, will do the 

same. In this case, each node will be involved in a trust dilemma that we will model using 

the mathematical framework of game theory and evolutionary game theory. The well 

known stag hunt game will be our basic game model. This Chapter will clearly present the 

interconnection between cooperation, trust, privacy, and security in a network. 

7.1 Introduction 

Multi-hop networks include ad hoc networks, sensor networks, peer-to-peer networks, and 

WMN. The main challenges in such networks are limited battery power, limited 
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computational power, the lack of infrastructure (or limited infrastructure for WMN), and 

node mobility. In these networks, the sender and the destination directly communicate if 

they are in the power range of each other, otherwise, the sender and destinations 

communicate via multi-hop communication. Generally, a packet goes through several 

intermediate nodes before reaching the destination. All of these constraints make security 

and privacy protection in autonomous multi-hop networks more complicated compared to 

traditional networks. 

Network security is closely related to trust. Security mechanisms in traditional networks 

rely on trusted systems like certificate authorities to operate. One of the differences is that 

security mechanisms can use efficient cryptographic algorithms to guarantee access 

control in the networks, but cannot detect and eliminate a malicious node that already 

participates in the network with all keys in its possession. To do that, we sometimes need a 

trusted system supported by a reputation system that requires each node to track the past 

behavior of its neighbors [31-34]. 

The nodes are autonomous if they have the freedom to choose their action and pursue 

only their self-interest. Autonomous nodes do not have a common manager. This is the 

case when autonomous devices are interconnected to form a network. For instance, in 

VANET, each car is equipped with a node. Nodes from different cars can communicate, 

but each node manages itself and is in charge of its own security in the network. Securing 

this autonomous network is a challenging problem because there is no central and trusted 

manager to protect the whole network. Thus, only distributed security mechanisms are 

viable in autonomous networks such as VANET. 
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Network security must rely on the cooperation of all nodes (or at least the majority of 

nodes) to protect the network. In many attack scenarios, a single node will not be able to 

defend itself if other nodes do not participate in the defense mechanism. However, a node 

will be protected if it defends itself and a minimum number of other nodes (the threshold) 

participate in the defense mechanism. If the threshold is not reached, a node that defends 

itself is worse off compared to a node that does not defend itself. This is because a node 

that defends itself wastes resources and ends up not being protected. However, if the 

threshold is reached, it is better for all nodes to participate in the defense mechanism to 

protect itself; thus, the network will be secured. As a result, if a node has a high 

expectation (trust) that the other nodes will participate in the security mechanism, it will 

also participate. A node should not participate otherwise. 

This scenario describes the strong connection between trust, cooperation and security. In 

multi-hop network, trust is the confident expectation that the other nodes will cooperate 

and participate in the security mechanism or any other network function. Trust can help 

facilitate cooperation and security. Moreover, when the interactions are repeated, 

cooperation increases a node’s reputation and therefore its trustworthiness. Privacy 

relates to security in the sense that security mechanisms need to be implemented and 

enforced to protect user privacy. 

As we can see, network security and privacy in autonomous networks can be modeled as 

a strategic interaction. Any node’s decision to participate or not in the security 

mechanism affects the decision of other nodes and the final result i.e., a secure or 

insecure network, protected or unprotected private information. Game theory is the 
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branch of applied mathematics that formalizes strategic interaction among autonomous 

rational agents. If the agents are not assumed to be rational, EGT applies. We will use the 

game theoretic framework to model trust and use EGT to capture the dynamic evolution 

of trust behavior in the network. We will apply our result to network security and 

privacy. 

Trust is a fundamental concept that has been studied across several disciplines including 

sociology, psychology, anthropology, philosophy, economy, political science, and 

theology. To the best of our knowledge, this is the first work that models trust in multi-

hop networks in the framework of game theory and EGT.  

The remainder of this Chapter is organized as follows:  in Section 7.2, we present some 

basic principles on applying game theory to network security. In Section 7.3, we present 

a few scenarios where a network requires mutual trust to be effective, and model them as 

a game. In Section 7.4, we analyze the evolution of trust using EGT. Section 7.5 presents 

our simulation results and Section 7.6 concludes the Chapter. 

7.2 Background on Game Theory and Evolutionary Game Theory Applied to 

Network Security 

Most of the previous works that apply game theory to network security assume a network 

with a central manager. In those works, network security is modeled as a game between 

the central manager and an attacker. The attacker has several strategies at each layer.  

At the physical layer, an attacker can create interference or jam the wireless media. At the 

MAC layer, an attacker can perpetrate a MAC address spoofing, an address resolution 
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protocol (ARP) attack, or a dynamic host configuration protocol (DHCP) starvation. At 

the routing layer, the attacker strategies can be address spoofing, Internet protocol (IP) 

fragmentation attack, man in the middle attack, sinkhole attack, selective forwarding, 

DoS and distributed denial of service (DDoS). At the transport layer, the attacker can 

employ user datagram protocol (UDP) flooding, internet control message protocol 

(ICMP) flooding, TCP session poisoning, and TCP SYN flooding. At the application 

layer, the attacker can use  domain name server (DNS) poisoning, introduction of viruses, 

worms and Trojans, introduction of sniffers, read, add, delete or modify data, or guest 

username and password. An attacker can also use a combination of these strategies. 

Moreover, there can be several attackers. 

To protect the network, the strategies available to the manager are for instance: use 

antivirus software, use cryptographic techniques, install an intrusion detection system 

(IDS) and/or an intrusion prevention system (IPS), move critical data between different 

hosts, reconfigure the network, shut down the network, or a combination of these 

strategies. The network vulnerabilities and the defense mechanisms are presented in more 

detail in [76].  

The utility function of the network security game maps each attacker and defender 

strategy to a payoff. This payoff depends on the cost to implement each strategy, the 

damage that a successful attack can create to the network, and the benefit of a successful 

attack to the attacker.  

In the game presented in [40], the strategy and the payoffs are assumed to be common 

knowledge. In this case, the network security game is a game of complete information. 
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Otherwise, we have a game of incomplete information that can be formulated as a 

Bayesian game as in [41]. The network security game can also be modeled as a static 

game [40-41], a repeated game, or more generally as a stochastic game [38, 42]. A 

stochastic game is a generalization of a repeated game. In a repeated game, players play 

the same stage game in all periods, whereas in a stochastic game, the stage game can 

randomly change from one period to the next. 

In all these games, the main objective of the attacker is to intelligently choose its strategy 

to maximize the damage to the network while the manager tries to minimize the damage. 

The attacker’s and the defender’s objective are strictly opposed. This justifies the use of a 

zero-sum game to model network security [38]. When each player applies the best 

response to its opponent strategy, the game reaches the well known Nash equilibrium. 

Neither the attacker nor the manager can unilaterally make a profitable deviation from the 

Nash equilibrium. Other models relax the assumption of rationality used in game theory 

and use the mathematical framework of EGT to model network security [39].  

In an autonomous network, packet forwarding is a challenging problem because of the 

cost associated with forwarding packets. If not well addressed, the result will be selective 

forwarding and DoS, which are both important security concerns. A few works attempt to 

mitigate selfish routing misbehavior in the framework of game theory [1-3, 6-11, 13-18] 

and evolutionary game theory [4-5]. Game theory also provides a solid framework to 

model intrusion detection in a network [41, 43]. A survey of game theory as applied to 

network security is provided in [44]. A detailed presentation of game theory and EGT is 

found in [35, 60] and [45] respectively. 
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To summarize, game theory and EGT provide useful mathematical tools to analyze 

network security. If the game has a unique equilibrium, the manager can easily predict 

the attacker’s behavior. However, besides selective packet forwarding, the very important 

case of security and privacy protection for autonomous nodes where there is no central 

manager is not yet well investigated. This is investigated in the next Section. Specifically, 

the main contribution of this Chapter [21] is to investigate security mechanisms and 

privacy protection schemes that require the cooperation of several nodes or agents to be 

effective and highlight the importance of trust in such a scenario. 

7.3 Network Security and Privacy Protection in Autonomous Networks  

Security in autonomous networks no longer depends on a central manager as was the case 

in the previous Section. Moreover, a node alone cannot defend itself from some of the 

attacks presented in the last Section. To achieve network security, autonomous nodes need 

to cooperate with and trust other nodes. Cooperation and trust will also be required for 

privacy protection. We give two examples here to motivate our model. 

The first example is about privacy protection. In autonomous networks such as VANET, a 

subset of users can decide to share their private information. As in social networks such as 

Facebook, each user will at first decide to share its private information with another or not. 

Sharing private information with a friend has several benefits. For instance, a friend can 

have quick information about your location, your destination, or your daily and weekly 

schedule. You can also get from your friend private and useful information freely that 

otherwise would be costly to get. However, a malicious user or an enemy can undermine 

your reputation or cause several other damages from your private information. Protecting 
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your privacy is successful if and only if you and all other persons or agents in possession 

of your private information also protect it. Moreover, private information protection in a 

network is costly. Not only do you need to buy expensive antivirus and authentication 

software to protect your privacy but also all your friends need to do the same. It will be 

cost effective to protect your private information if and only if you trust that all of your 

friends are also protecting that information. The decision to protect your private 

information or not will depend on how much you value your privacy, the cost to protect it, 

and foremost, the trust you have in others already in possession of that private 

information. We will later formalize those relationships. 

The second example comes from the work of Gupta et al. [23] extended by He et al. [22]. 

Gupta et al. [23] and He et al. [22] present a light weight cryptographic technique, a 

distributed authenticated key establishment scheme for WMN [22] and cellular-based 

heterogeneous wireless ad hoc networks [23] based on hierarchical multi-variable 

symmetric functions. They provide a method to generate a symmetric secret key to allow 

encrypted communication and authentication among any two nodes. Other interesting 

properties of their algorithm are: key independence, random generation, mobility, and 

handoff management. However, their algorithm uses a polynomial of degree k and is 

therefore k-secure [22-23]. This means that if k nodes do not protect their key, an attacker 

can break the security mechanism and have access to all encrypted communication. If that 

happens, there is no need for a node to encrypt the message because they can easily be 

decrypted. A rational node may even prefer not to encrypt because encrypting a message 

will have no other purpose than creating a useless and costly message overhead. This is 
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just an illustration. In fact, several security mechanisms in distributed autonomous 

networks need the solidarity, cooperation and trust of several nodes to be implemented. 

In the two examples above, the dilemma that each autonomous node faces when freely 

deciding to protect its private information or to participate in the security mechanism can 

be formalized as a game. This is a well known dilemma first presented by the French 

philosopher Jean-Jacques Rousseau. The dilemma is called the stag hunt game. We will 

first present the two players stag hunt game before generalizing it to n players. 

A. The two nodes’ trust game 

Let us consider a network with two autonomous nodes, node i and node j. Each node has 

two strategies, protect (P) or not protect (NP). The network is secured or both nodes’ 

privacy is protected if and only if both nodes choose P. The reward from security or 

privacy for each node is γ. The cost to a node to protect itself is β. We make the 

reasonable assumption that the reward from security or privacy exceeds the cost to 

protect itself. Thus, we have 𝛾 > 𝛽 > 0. The nodes decide simultaneously. Table 7.1 

represents the strategic form of this game. 

TABLE 7.1: TWO NODES TRUST GAME 

 Node j 

Protect Not Protect 

Node i Protect {γ-β, γ-β} {-β, 0} 

Not Protect {0, -β} {0; 0} 
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If both players play P, each player gets the payoff γ-β because they spend resources to 

protect themselves at the cost of β and get the reward γ from being protected. On the 

contrary, if both players play NP, each player gets the payoff of zero because no player 

spends any resource and no player is rewarded. Finally, if the two players adopt different 

strategy, the player that plays NP gets zero and the one that plays P gets the negative 

payoff –β. This is because playing P needs both players to be successful. 

This game is the stag hunt game. Contrary to the Prisoners’ dilemma game which has a 

unique Nash equilibrium, The stag hunt game presents two pure strategies Nash 

equilibrium, (P, P) and (NP, NP) and a mixed strategy equilibrium where each node 

plays P with probability 𝛽
𝛾
 and plays NP with probability 1 − 𝛽

𝛾
. The equilibrium (P, P) is 

Pareto efficient with both players protects and each player gets the payoff γ-β. The other 

equilibrium, (NP, NP) is less efficient, no node protects and each node gets zero. Recall 

that an allocation is Pareto efficient if there is no other allocation that can make at least 

one individual better off without making any other individual worse off. We can also say 

that the equilibrium (P, P) payoff dominates [35] the equilibrium (NP, NP) because 𝛾 −

𝛽 > 0.  

Let 𝑢𝑖 represents the utility function of node i. The resistance [35] of the equilibrium 

(NP, NP) against the equilibrium (P, P) is the largest number λ such that 0 ≤ 𝜆 ≤ 1 and 

𝑢𝑖 ��𝜆𝑃𝑗 + (1 − 𝜆)𝑁𝑃𝑗�,𝑁𝑃𝑖� ≥ 𝑢𝑖 ��𝜆𝑃𝑗 + (1 − 𝜆)𝑁𝑃𝑗�,𝑃𝑖�, 

⇒ 𝜆𝑢𝑖�𝑃𝑗 ,𝑁𝑃𝑖� + (1 − 𝜆)𝑢𝑖�𝑁𝑃𝑗 ,𝑁𝑃𝑖� ≥ 𝜆𝑢𝑖�𝑃𝑗 ,𝑃𝑖� + (1 − 𝜆)𝑢𝑖�𝑁𝑃𝑗 ,𝑃𝑖�, 
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⇒ 0 ≥ 𝜆(𝛾 − 𝛽) + (1 − 𝜆)(−𝛽), 

⇒ 𝜆 ≤
𝛽
𝛾

.                                        (1) 

Taking the largest number λ, the resistance of (NP, NP) against (P, P) is 𝜆 = 𝛽
𝛾
. Similarly, 

the resistance of the equilibrium (P, P) against the equilibrium (NP, NP) is 1 − 𝜆 = 𝛾−𝛽
𝛾

. 

The equilibrium (NP, NP) risk dominates the equilibrium (P, P) if and only if the 

resistance of (NP, NP) against (P, P) is greater than the resistance of (P, P) against (NP, 

NP). This means that 𝛽
𝛾

> 1
2
. Also, 𝛽

𝛾
 is called the risk factor for the equilibrium (P, P). 

Another way to understand the risk factor and trust is as follows. Node i is uncertain 

about what node j will do but believes that some distribution over node j’s strategies 

predicts its behavior. Consequently, node i will choose its own strategy to maximize its 

own expected utility payoff. For instance, if node i assigns the probability 𝜋𝑖𝑗 to the event 

that node j will play P. We can say that  𝜋𝑖𝑗 is the trust that node i has for node j. The 

expected payoff of node i when playing P against node j is: 

𝐸[𝑢𝑖(𝑃𝑖)] = 𝜋𝑖𝑗(𝛾 − 𝛽) + �1 − 𝜋𝑖𝑗�(−𝛽).                (2) 

On the other hand, node i always gets zero when playing NP against node j. Thus, 

𝐸[𝑢𝑖(𝑁𝑃𝑖)] = 0.                           (3) 

Therefore, node i, acting rationally will maximize its expected utility and play P if and 

only if: 
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𝐸[𝑢𝑖(𝑃𝑖)] ≥ 𝐸[𝑢𝑖(𝑁𝑃𝑖)] ⇒ 𝜋𝑖𝑗 ≥
𝛽
𝛾

.                 (4) 

Therefore, even though the equilibrium (P, P) payoff dominates the equilibrium (NP, NP) 

in this game, the two players may fail to protect the network or their privacy if one of 

them does not trust the others to play P. In other words, it is risky for a node to play P 

because that node may lose β if the other node does not also play P. For that reason, both 

nodes may end up playing NP resulting in the equilibrium (NP, NP). In short, the more 

efficient equilibrium where each node protects itself and consequently protects the entire 

network is reached only if the two nodes trust each other.  

We acknowledge that the possibility of future interactions in other game models can 

promote cooperation and trusting behavior because nodes want to maximize the long 

term utility [1-20]. However, in the privacy game example, once players’ privacy is 

compromised, they may not be interested in protecting it in the future. Other models of 

trust in the network use a reputation system [31-34]. A node reputation is calculated as a 

function of the past behavior. A node’s trustworthiness is the expected value of its 

reputation. In our model, traditional mechanisms based on past or future interactions that 

create trust are not available. Nevertheless, trust can denote the disposition to engage in 

uncertain and risky interactions with others with the possibility of reward or lost.  

B. The n nodes’ trust game 

There are several possible extensions of this basic two-node game to n nodes in an 

autonomous network. Let us start with the privacy protection game. We consider a subset 

of n nodes sharing private information. For the sake of simplicity, we suppose that the 
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game only has two outcomes: full privacy if all agents sharing the private information play 

P and no privacy if one of them plays NP. As in the two-node game, nodes that play P 

receive a payoff γ-β if the n-1 other nodes also play P and receive a payoff –β otherwise. 

Nodes that play NP always receive a payoff of zero. 

Therefore, a node will prefer to play P if and only if it believes that n-1 other nodes will 

also play P. Otherwise, a node prefers to play NP. To simplify the analysis, we present the 

symmetric case when the trust that the nodes have for each other is the same. We note the 

value of that trust π. Formally, after similar development as in (2), (3), (4) a node prefers 

to play P if and only if: 

𝜋𝑛−1 ≥
𝛽
𝛾

.                                         (5) 

After the privacy game, let us analyze the security game. We consider n nodes in a 

distributed autonomous network. We also consider a security mechanism that requires the 

cooperation of a fraction of nodes to be successful. We note that fraction α,  0 < 𝛼 ≤ 1. 

Let us consider a k-secure algorithm in a network of n nodes. If 𝑘 ≤ 𝑛, the fraction of 

nodes that need to cooperate for the algorithm to be successful is  𝛼 = 𝑛−𝑘
𝑛

. Similarly to 

the privacy game, it is better for a node to play P if and only if it believes that at least αn-1 

other nodes will also play P. If the belief on the cooperation of one node is π, the belief on 

the cooperation of m nodes among n-1 other nodes is: 

�
𝑚

𝑛 − 1
� 𝜋𝑚(1 − 𝜋)𝑛−𝑚−1.                                      (6) 

Moreover, for a node, playing P is optimum if: 
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� �
𝑚

𝑛 − 1
�

𝑛−1

𝑚=⌈𝛼𝑛−1⌉

𝜋𝑚(1 − 𝜋)𝑛−𝑚−1 ≥
𝛽
𝛾

.                           (7) 

Or 

� �
𝑚

𝑛 − 1
�

⌊𝛼𝑛−1⌋

𝑚=0

𝜋𝑚(1 − 𝜋)𝑛−𝑚−1 ≤
𝛾 − 𝛽
𝛾

.                       (8) 

⌊𝛼𝑛 − 1⌋ and ⌈𝛼𝑛 − 1⌉ are the Floor and Ceiling function respectively. 

7.4 Evolutionary Game Theoretic Analysis of Trust 

In the last Section, we saw that individual rational choices can result in trusting behavior. 

In this Section, we study how trusting and distrusting behaviors interact. We present in 

what condition trusting behavior can be the result of a long term evolutionary process. 

EGT is the application of game theory to evolution. Game theoretic concepts easily 

translate to evolution because the effectiveness of one animal’s behavior depends on the 

proportion of other animals genetically programmed to use that behavior or other 

behaviors. The main difference between EGT and game theory is that EGT does not 

assume the rationality of the players. Evolution is driven by two main mechanisms: 

random mutation that provides diversity in the population and a selection mechanism that 

promotes some variety over others. Equivalently, EGT has two main solution concepts: 

ESS that deals with mutation and the replicator dynamic that examines the selection 

mechanism. 
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A strategy x is an ESS [73] if for every strategy y ≠x there exist some 𝜀𝑦̅  ∈ (0,1) such 

that for all 𝜀 ∈ �0, 𝜀𝑦̅�, either 

𝑢(𝑥, 𝑥) > 𝑢(𝑦, 𝑥) ∀𝑦,                                                                    (9) 

Or 

𝑢(𝑥, 𝑥) = 𝑢(𝑦, 𝑥) and 𝑢(𝑥,𝑦) > 𝑢(𝑦,𝑦) ∀𝑦 ≠ 𝑥.               (10) 

ESS resists against mutation. Moreover, from (9) and (10), strict Nash equilibrium are 

ESS and ESS are Nash equilibrium. However, some Nash equilibrium may not be ESS. 

Thus, ESS requires a strategy not only to be rational (Nash equilibrium) but also to be 

stable. 

The replicator dynamic [74] gives the population dynamics for the population shares of 

xi. The replicator dynamic is given by the differential equation: 

𝑥̇𝑖 = �𝑢�𝑒𝑖, 𝑥� − 𝑢(𝑥, 𝑥)�𝑥𝑖.                                                      (11) 

𝑢�𝑒𝑖, 𝑥� is the expected payoff to pure strategy i (i= P or NP) at a random match. 

𝑢(𝑥, 𝑥) is the payoff of an individual drawn at random in the population or the average 

payoff per individual. 

𝑥𝑖 is the proportion of individuals programmed to pure strategy i and its time derivative is 

𝑥̇𝑖. 
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Figure 7.1: Dynamic of the population share of 𝒙𝑷 

The replicator dynamic indicates that subpopulations programmed with better than 

average strategies growth whereas subpopulations programmed with worse than average 

strategies vanish.  

We indicated before that our trust game of Table 7.1 has three Nash equilibria. Two are 

in pure strategies and one is in a mixed strategy. The mixed strategy Nash equilibrium is 

neither ESS nor stable in the replicator dynamic. The two pure strategies Nash 

equilibrium are strict Nash equilibrium and therefore ESS. Moreover, those two strict 

Nash equilibria are stable in the replicator dynamic. As represented in Fig. 7.1, the basing 

of attraction of the two pure strategies Nash equilibrium intersect at the mixed strategy 

Nash equilibrium. 

Figure 7.1 shows that it is impossible to move from the low trust equilibrium (NP, NP) to 

the high trust equilibrium (P, P) through an evolutionary process. The final state depends 

entirely on the initial condition. Clearly, if starting with a low proportion of nodes 

playing P (𝑥𝑃 < 𝜆), the final state will have all nodes playing NP (𝑥𝑃 = 0). The same 

way, if starting with a high proportion of nodes playing P (𝑥𝑃 > 𝜆), the final state will 

have all nodes playing P (𝑥𝑃 = 1). The work in [77] analyzes the dynamic of the n 

players stag hunt game. 

0 1 λ 
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7.5 Simulation Results  

In all these simulations, we fix 𝜆 = 𝛽
𝛾

= 1
2
. Thus, in the two player trust game of Table 7.1, 

the high trust equilibrium (P, P) does not risk dominate the low trust equilibrium (NP, NP) 

and vice versa. 

The replicator dynamic (11) is implemented in Fig. 7.2 and 7.3. In Fig. 7.2, the initial 

population is constituted of 51% of agent playing P and 49% of agent playing NP. 

Therefore, this initial composition is in the basing of attraction of the high trust 

equilibrium (P, P). We can see that the number of agents playing P increases whereas the 

number of agents playing NP decreases. The agents playing NP vanish after only twelve 

generations. 

 

Figure 7.2: Evolution of trust in a two population’s model when the initial condition 

favors the emergence of trust 
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Figure 7.3: Evolution of trust in a two population’s model when the initial condition 

does not favor the emergence of trust 

In Fig. 7.3, we reverse the initial proportion of agents playing P and NP. As a 

consequence, the initial condition becomes in the basing of attraction of the low trust 

equilibrium (NP, NP). The number of agents playing P sinks. 

Figure 7.4 represents the minimum trust requirement to protect your privacy as a function 

of the number of agents sharing the private information (5). From this graph, we can 

mention that, if a vast number of agents share private information, protection of that 

private information is cost effective if and only if there is a complete mutual trust among 

the agents (π close to 1). 
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Figure 7.4: Minimum trust requirement to protect your privacy as a function of the 

number of agents sharing the private information 

7.6 Conclusion 

In this work, we investigated network security and privacy in autonomous multi-hop 

network as a game between the nodes in the network. Each node has the freedom to 

participate in the privacy protection or security mechanism to protect itself or not. We 

examined the applications that require the cooperation of others to be successful and 

modeled it as trust dilemma. We first performed an analysis of trust then captured the 

EGT implication. Both the game theoretic and EGT analysis indicated that mutual trust is 

necessary to cooperate and reach the efficient equilibrium where all nodes protect the 

network or protect their privacy. In the replicator dynamic model, the initial condition 

fully determines the final state (trusting behavior or not).  
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In the future, we will consider the case of incomplete information when each node payoff 

from security or privacy is not common knowledge but private information. We will also 

investigate other game theoretic models of trust in a network. 
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CHAPTER 8 

GAME THEORETIC ANALYSIS OF USERS AND PROVIDERS BEHAVIOR IN 

NETWORK UNDER SCARCE RESOURCES 

The demand on mobile data usage is exponentially increasing since the introduction of 

iPhones in 2007. The network became congested as millions of users tried to browse 

website and social networks, send e-mail, stream multimedia, and transfer file 

simultaneously. An immediate solution for the providers will be to change their pricing 

strategy with the goal to slow down heavy users and then decrease the bandwidth demand. 

From the users’ standpoint, network providers must constantly upgrade their infrastructure 

to accommodate new applications and devises. However, upgrading the infrastructure will 

be costly for the provider. A provider would prefer a minimum investment to upgrade the 

network while attracting the maximum number of customers. On the other hand, without 

regular upgrade of the network from the provider, there may be more congestion, more 

delay and generally a low QoS at the user dissatisfaction. Moreover, users that experience 

bad connection will be tempted to switch providers. We analyze the dynamic 

communication market and the users and providers’ interaction in the framework of 

repeated game theory. We consider noise in user’s monitoring. We also compare two 

scenarios: individual and independent action of users as opposed to the collective action of 

users. 
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8.1 Introduction 

In recent years, we have observed an increase of the number of smart phones, iPhones, 

PDAs, and other mobile devices. Moreover, the number of users is increasing in countries 

all over the world. Beside voice communication, those mobile devices support multimedia 

applications such as videos and TV that consume a tremendous amount of bandwidth. The 

number of new multimedia applications exponentially increases each year. Those 

multimedia applications become part of our everyday life. The users are more and more 

interested in new applications. However, the increase of the number of users and the 

number of applications coupled with the high bandwidth requirement of those applications 

tend to saturate the network. All network carriers are striving to keep their network 

capacity above the data demand. In fact, for the last four years, the demand in data 

network has been doubling each year. However, we do not observe a similar growth in 

network capacity. As a consequence, networks become more congested over the years as 

the demand in bandwidth from the users grows faster than network capacity. Network 

providers are slow to increase the network capacity because of the cost involved. Clearly, 

there is a conflict of interest between the network provider’s profit and the user’s 

satisfaction. We will model this conflict of interest in the framework of game theory. 

Recall that game theory is the branch of applied mathematics that models and analyzes 

strategic interaction among rational decision makers. 

One cause of the high increase in bandwidth demand was the pricing mechanism practiced 

by the provider. Service provider used to practice a flat rate model instead of a usage- 

based one. As a consequence, for most operators, a very small percentage of users are 
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responsible for the majority of traffic. For instance, in December 2009, the AT&T CEO 

confirmed that 3 percent of its Smartphone’s users generate about 40 percent of its data 

traffic [78]. This is at the disadvantage of both the majority of users and the providers. The 

low traffic users in a flat price model subsidize the high traffic users. 

Several providers quickly realized the drawback of a flat rate pricing mechanism and 

adopted a tiered pricing model. As an example, AT&T adopted a tiered pricing model in 

June 2010. Verizon followed. Sprint, and others will certainly follow soon. This is a 

strategic move on the providers’ part. The benefits to a provider of tiered pricing model 

are three fold. First, the demand of bandwidth is reduced. In fact, higher price for higher 

tiers enforce low bandwidth usage. Second, the necessary investment to keep up with a 

good QoS is reduced and can even be eliminated. Last but not least, the providers can 

increase their profit. 

There is rich literature on game theoretic modeling of user provider interactions. Hassan et 

al [46] show that the user can use a brinkmanship technique to provide credible threats to 

the provider and therefore compel the provider to allocate more resources to users. 

Sengupta et al [47] investigate a market in which multiple service providers compete to 

get a large portion of the spectrum and sell it to a maximum number of users. Other works 

analyzing provider price competition to attract users include [48-50]. The work in [51] 

examines one provider’s Nash equilibrium price under asymmetric information. A 

comprehensive survey of wireless service providers and user’s interactions can be found 

in [52]. An application of game theory to packet forwarding is found in [1-3]. 
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This Chapter considers one provider and multiple users. User/provider interaction will be 

modeled as a repeated game. The threat available to a user is based solely on repeated 

interactions. The prospects of future loss of customers will oblige the providers to invest 

in the network. A customer will monitor the channel condition and QoS and leave a 

service provider that does not invest in the network to provide a good QoS. We will also 

consider the impact of noise on monitoring. It is possible that a service provider invests to 

improve the QoS while a customer still experience congestion and delay due to the non-

reliability of the wireless channel. 

We will consider two scenarios in our analysis. The first scenario deals with independent 

users that observe the provider’s action (act) separately. The second case is about the users 

who observe and react collectively. We will show that collective monitoring is better in 

the sense that it increases the monitoring accuracy. Thus, a more efficient equilibrium is 

reached under collective monitoring. Moreover, acting collectively increases the 

bargaining power of users and can force the provider to make substantial investments and 

increase the supply of bandwidth. Certainly, the best solution to mobile data explosion 

should not be solely based on price increase, to decrease the demand on bandwidth, but 

also on adequate investment to increase the bandwidth supply. This research focuses on 

increasing the bandwidth supply. 

The remainder of this Chapter is organized as follows. Section 8.2 is about the stage game 

model between a user and a provider. Section 8.3 analyzes repeated interactions under 

perfect monitoring. Section 8.4 considers noise in monitoring. Section 8.5 extends the one 
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user model to n independent users. Section 8.6 analyzes the collective action of the n 

users. Section 8.7 presents the numerical results and Section 8.8 concludes the Chapter. 

8.2 Stage Game Model      

We consider a service provider with several users. The service provider owns the network 

infrastructure. The service provider is responsible for the network administration and 

maintenance. We assume that the demand in bandwidth from the users’ devices and 

applications increases with time. Then, the users experience more congestion and delay if 

the provider does not increase the network capacity. Therefore, the service provider should 

periodically invest in the network infrastructure to accommodate the extra network traffic 

demand and maintain the same QoS. The new investment in network infrastructure can be 

in the form of new cell towers, change from cable to fiber optic to increase the capacity in 

the backbone of the network, or simply change in modulation techniques or software 

upgrades.  

We assume that time is divided in periods. The length of a period is T. A period T can be a 

month to correspond with the billing cycle. At the end of each period, the service provider 

has two strategies or choices: Invest in the network (I) or cooperate or Not to Invest (NI) 

or defect. On the other hand, at the end of each period, a user can either Keep the Provider 

(KP) or cooperate if satisfied with the QoS or Change the Provider (CP) or defect if not 

satisfied. We consider that a user is free to change the provider at the end of each period if 

not satisfied. This means that there is no contract that prevents the user from switching the 

provider. We assume that there is no monopoly or there are several service providers that 

the users can choose from.  
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TABLE 8.1 STAGE GAME IN STRATEGIC FORM 

 Provider 

I NI 

User KP A, a C, b 

CP B, c D, d 

For the sake of simplicity, we start by presenting a two players’ game between one user 

and a service provider. The n user’s case will be the subject of Section 8.5. In this Section, 

we assume perfect monitoring and will consider imperfect monitoring in Section 8.4. 

Therefore, we presuppose that a user experiences a good QoS if the provider has invested 

and experiences a bad QoS otherwise. The user and the provider decide simultaneously. 

The strategic form of the user/provider game is represented in Table 8.1. 

Let us examine the payoff structure of the game. The payoff or utility function 

characterizes the players’ satisfaction given a profile of action. For the user, we need to 

establish an ordinal relation between the payoff A, B, C and D. The user prefers the 

provider to invest than not to invest, thus 𝐴,𝐵 ≥ 𝐶,𝐷. Also, if the provider chooses to 

invest (I), the user has a good QoS and prefers KP to CP. In other words, we have 𝐴 > 𝐵. 

However, if the provider chooses NI, the user will prefer CP to KP. This means that 𝐷 >

𝐶. Finally, we have for the user: 𝐴 > 𝐵 ≥ 𝐷 > 𝐶. 

Without loss of generality, we assign a quantitative value to the user payoffs. We consider 

that when a user changes the provider, he is indifferent to the past provider’s behavior and 

did not incur any gain or loss from that provider’s action. Then, we have 𝐵 = 𝐷 = 0 . Let 

f be the periodic fee the user pays to the provider. Let v be the value to the user of the 
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service received from the provider. The two possible values of v will be 𝑣 if the user 

receives a good QoS and 𝑣 if the QoS is bad. We assume that 𝑣 > 𝑓 > 𝑣. Thus, we have: 

𝐴 = 𝑣 − 𝑓 > 0 and 𝐶 = 𝑣 − 𝑓 < 0. When we normalize the payoffs to that of mutual 

cooperation (KP,I), we have 1 = 𝐴 = 𝑣 − 𝑓 > 0 > 𝑣−𝑓
𝑣−𝑓

= 𝐶
𝑣−𝑓

= −𝑙. Here, l represents 

the loss due to bad service. 

We now analyze the provider payoff. If the user cooperates or keeps the provider (KP), the 

provider prefers not to invest (NI) to invest (I). This is obvious since investing is costly. 

Then, we have 𝑏 > 𝑎. Similarly, if the user plays CP, the provider again prefers NI to I. 

Then, we have 𝑑 > 𝑐. As we can see, for one-shot games, the provider always prefers NI 

to I regardless of what the user does. Therefore, cooperation (I) is dominated by defection 

(NI). We assume that the market conditions are such that the service provider prefers to 

invest in the network and keeps its user than not to invest and loose them. Thus, we must 

have 𝑎 > 𝑑. Finally, we have for the provider: 𝑏 > 𝑎 > 𝑑 > 𝑐. 

As for the user, let us find the quantitative values of the provider’s payoff. Let e be the 

average expense required to accommodate a user with a good QoS and f be the periodic 

fee the user pays to the provider. We assume that 𝑓 > 𝑒 > 0. Thus, we have: 𝑓 = 𝑏 >

𝑎 = 𝑓 − 𝑒 > 0 = 𝑑 > 𝑐 = −𝑒. When we normalize the payoffs to that of mutual 

cooperation (KP, I), we have: 𝑔 > 1 > 0 > 1 − 𝑔 with 𝑔 = 𝑓
𝑓−𝑒

. Table 8.2 shows the 

strategic form of the game with normalized payoff. We can see that Table 8.2 represents 

an asymmetric game. 
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TABLE 8.2: STAGE GAME WITH NORMALIZED PAYOFFS 

 Provider 

I NI 

User KP 1, 1 -l, g 

CP 0, 1-g 0, 0 

This stage game has a unique Nash equilibrium. Mutual defection (CP, NI) is the Nash 

equilibrium. At the Nash equilibrium, the provider will not invest and the user will change 

provider. At a Nash equilibrium profile, no player can increase its payoff by a unilateral 

deviation. Moreover, each player plays a best response to the behavior of other players. 

However, the Nash equilibrium in this game is not Pareto efficient. Recall that an 

allocation is Pareto efficient if there is no other allocation that can make at least one player 

better off without making any other player worse off. The Pareto efficient outcome is 

mutual cooperation (KP, I) where provider invests and the user stays. We show in the next 

Section that the provider and the user can reach the Pareto efficient outcome when the 

interactions are repeated. 

8.3 Repeated Game Model 

There are two players: a user and a provider. The stage game in Table 8.2 is repeated 

over time. The provider discounts future payoff by a common discount factor δ and we 

have 0 ≤ 𝛿 < 1. Player i (𝑖 ∈ {User, Provider}) sequence of stage game payoffs 

is (𝑢𝑖𝑡)𝑡=1∞ . The provider is a long-lived player [60] and wants to maximize the expected 
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δ-discounted average of its sequence of payoffs. Therefore, the provider’s repeated game 

payoff is given by:  

(1 − 𝛿)�𝛿𝑡−1
∞

𝑡=1

𝑢𝑖𝑡.                                            (1) 

The users are short-lived players and are concerned only with the payoff in the current 

period. This means that the user plays the myopic best reply to the provider’s action. We 

consider the following strategy for the user: Start by cooperating and continue to 

cooperate until you observe a defection, defect forever after a defection. This simple 

strategy is called Grim Trigger strategy. The strategy is grim because it does not forgive. 

Also, it needs a trigger (a defection) to defect forever. 

The main concept used to analyze a repeated game under perfect monitoring is the SPE 

[60]. A strategy profile is a SPE of the repeated game if it represents a Nash equilibrium 

after every history or subgame of the repeated game. SPE is a stronger criterion than the 

Nash equilibrium. SPE eliminates Nash equilibrium in which players’ threats are not 

credible. 

Theorem 1: The strategy profile where both the user and the provider use grim trigger is 

SPE if and only if:  

𝛿 ≥
𝑔 − 1
𝑔

.                            (2) 

Proof: A strategy profile is SPE if and only if there are no profitable one-shot deviations 

[60]. One –shot deviation of the provider is not profitable if: 
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1 ≥ (1 − 𝛿) �𝑔 + �𝛿𝑡−10
∞

𝑡=1

� = (1 − 𝛿)𝑔 

⇒ 𝛿 ≥
𝑔 − 1
𝑔

. 

Moreover, when the provider cooperates, the best response of the user is to cooperate. 

Also, when the provider defects, the best response of the user is to defect                          ▄ 

8.4 Imperfect Monitoring Game 

Up to now, we did not consider noise when a player monitors the opponent behavior. In 

fact, it is not realistic to assume that a user can perfectly monitor the provider behavior. 

Even if the provider invests in the in the network infrastructure, a user can still experience 

a low QoS due to the non-reliability of the wireless channel. Random events such as 

weather conditions can impose performance degradation on the wireless network. On the 

other hand, it is reasonable to assume that a provider knows for sure when a user decides 

to stay or to leave. Therefore, the user’s action will be public while the provider’s action 

will be private. However, there is a public signal 𝑦2 ∈ �𝑦,𝑦� indicating the past action of 

the provider. Thus, we have a game of imperfect public monitoring.  

Let 𝑎1 ∈ {𝐾𝑃,𝐶𝑃} and 𝑎2 ∈ {𝐼,𝑁𝐼} be the user and provider’s action respectively. Also, ε 

denotes the error in user’s monitoring. The distribution of the public signal 𝑦2 is given by: 

𝑚2(𝑦|𝑎) = � 1 − 𝜀,   if 𝑎2 = 𝐼
        𝜀,   if 𝑎2 = 𝑁𝐼

�                                    (3) 
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We assume that 0 < 𝜀 < 1 − 𝜀 < 1. This ensures that it is more likely that the user 

observes the high quality signal 𝑦 when the provider plays I and observes the low quality 

signal 𝑦 when the provider plays NI. As before, we consider that the user plays KP when 

observing the good signal 𝑦 and plays CP forever when observing the bad signal 𝑦. 

Let 𝑉𝑎1,𝑎2(𝜀, 𝛿) represents the repeated game payoff of the provider given the action 

profile (𝑎1,𝑎2). We have the following Bellman equation [79], 

𝑉𝐾𝑃,𝐼 = (1 − 𝛿) + 𝛿�(1 − 𝜀)𝑉𝐾𝑃,𝐼 + 𝜀𝑉𝐶𝑃,𝑁𝐼�,                       (4) 

𝑉𝐾𝑃,𝑁𝐼 = (1 − 𝛿)𝑔 + 𝛿�𝜀𝑉𝐾𝑃,𝐼 + (1 − 𝜀)𝑉𝐶𝑃,𝑁𝐼�.                         (5) 

Equation (4) and (5) represent the repeated game payoff as a function of the initial payoff 

and future payoff. The future payoffs depend on the signal observed and take noise into 

account with the possibility of good and bad observations. 

In any period, the provider prefers cooperation to defection if: 

𝑉𝐾𝑃,𝐼 ≥ 𝑉𝐾𝑃,𝑁𝐼 ⇒ 

(1 − 𝛿) + 𝛿�(1− 𝜀)𝑉𝐾𝑃,𝐼 + 𝜀𝑉𝐶𝑃,𝑁𝐼� ≥ (1 − 𝛿)𝑔 + 𝛿�𝜀𝑉𝐾𝑃,𝐼 + (1 − 𝜀)𝑉𝐶𝑃,𝑁𝐼� ⇒ 

𝑉𝐾𝑃,𝐼 ≥ 𝑉𝐶𝑃,𝑁𝐼 +
(1 − 𝛿)(𝑔 − 1)
𝛿(1 − 2𝜀) .                            (6) 

Equation (6) shows that the provider is willing to cooperate if the payoff of mutual 

cooperation 𝑉𝐾𝑃,𝐼 exceeds that of mutual defection 𝑉𝐶𝑃,𝑁𝐼 by at least (1−𝛿)(𝑔−1)
𝛿(1−2𝜀) . This 

difference in payoff vanishes as noise decreases and the discount factor becomes close to 
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1. As a consequence, the provider will invest in the network at any given period under two 

conditions. First, the provider must be sufficiently patient. Future gain will have almost 

the same value as current payoff. Second, the provider must be convinced that the users 

are able to accurately monitor its behavior. For instance, the provider will find its 

investment in the network useless if that investment does not translate into a better QoS to 

a vast majority of users. 

Let us evaluate the maximum value of 𝑉𝐾𝑃,𝐼. From (4), the maximum value of 𝑉𝐾𝑃,𝐼 is 

achieved when 𝑉𝐶𝑃,𝑁𝐼is maximum. Then, taking (6) with equality, we have: 

𝑉𝐶𝑃,𝑁𝐼 = 𝑉𝐾𝑃,𝐼 −
(1 − 𝛿)(𝑔 − 1)
𝛿(1 − 2𝜀) .                                                  (7) 

Replacing (7) into (4) gives us: 

𝑉𝐾𝑃,𝐼𝑀𝑎𝑥 = 1 −
𝜀(𝑔 − 1)
(1 − 2𝜀) .                                                               (8) 

A necessary condition for the provider to cooperate is to have 𝑉𝐾𝑃,𝐼𝑀𝑎𝑥 ≥ 0. This means 

that: 

𝜀 ≤
1

1 + 𝑔
.                                                        (9) 

Equation (9) indicates that monitoring must be more precise when the temptation to defect 

or g increases. 
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8.5 Extention to N Independent Users 

We consider a service provider with n users in a dynamic market. Each user independently 

monitors the channel condition to infer the provider’s action. A user leaves the provider 

forever after experiencing a bad QoS or observing a low quality signal 𝑦. A user stays 

with the provider otherwise. Let x denotes the total investment required from the provider 

to accommodate the n users and f the periodic fee paid by each user.  

In a given period, when the provider chooses to invest in the network, the expected 

revenue of the provider in the next period will be: 

𝐸 ���
𝑘
𝑛
� (1 − 𝜀)𝑘𝜀𝑛−𝑘𝑘𝑓

𝑛

𝑘=0

� = (1 − 𝜀)𝑛𝑓.                                     (10) 

k is the number of users observing a good signal. 0 ≤ 𝑘 ≤ 𝑛. 

Equation (10) takes into account the noise level and all combination of subsets of users 

that may experience good or bad signal. The k users that observe the good signal will stay 

with the provider and pay the fee f in the next period. On the other hand, n-k users will 

quit and not pay any fee. This translates into a binomial distribution and the corresponding 

expected value is represented in the right hand side of (10). 

Similarly, when the provider chooses not to invest in the network, its expected revenue in 

the next period will be: 

𝐸 ���
𝑘
𝑛
� 𝜀𝑘(1 − 𝜀)𝑛−𝑘𝑘𝑓

𝑛

𝑘=0

� = 𝜀𝑛𝑓.                                          (11) 
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Therefore, the provider’s cooperation can be enforced if: 

−𝑥 + 𝛿(1 − 𝜀)𝑛𝑓 ≥ 𝛿𝜀𝑛𝑓                                                    (12) 

⇒ 𝛿 ≥
𝑥

(1 − 2𝜀)𝑛𝑓
.                                                           (13) 

If the total investment x is proportional to the number of users and e is the average 

investment per user. Then (13) becomes: 

𝛿 ≥
𝑛𝑒

(1 − 2𝜀)𝑛𝑓
=

𝑒
(1 − 2𝜀)𝑓

. 

Consequently, when noise in monitoring vanishes and the revenue per users f exceeds the 

required investment per user e, there exists 𝛿,0 < 𝛿 < 1 such that the provider is better off 

cooperating when its discount factor is 𝛿 ≥ 𝛿. 

Note that the number of users can fluctuate from one period to the next due to the 

acquisition or loss of customers. Thus, we did not include the total sequence of payoffs. 

However, this analysis captures the essence of the game and players’ interaction. 

8.6 Collective Action of the N Users 

In the last Section, each user independently monitors the channel condition to infer the 

provider action. Moreover, the users decide to stay or to quit the provider independently. 

In this Section, we investigate what should happen if the users coordinate their actions. 

We consider a tamperproof resistant database that helps to coordinate the users’ action and 

observation. At the end of each period, each user sends its observation to the database. 



 

152 
 

There are only two possible observations a user can report depending on the QoS: a good 

observation for a good QoS and a bad observation otherwise. The users agree to 

collectively leave the provider if the ratio of users experiencing a good QoS in a given 

period is below a pre-established cutoff score. Let us call that cutoff score α, 0 ≤ 𝛼 ≤ 1. 

Similar reasoning as in the last Section indicates that the provider cooperates when 

−𝑥 + 𝛿𝑛𝑓𝐸 � � �
𝑘
𝑛
� (1 − 𝜀)𝑘𝜀𝑛−𝑘

𝑛

𝑘=𝛼𝑛

� ≥ 𝛿𝑛𝑓𝐸 � � �
𝑘
𝑛
� 𝜀𝑘(1 − 𝜀)𝑛−𝑘

𝑛

𝑘=𝛼𝑛

� .                    (14) 

The difference here compared to the last Section is that the provider will receive the full 

revenue nf or zero depending on if αn users report a good signal or not. Assuming that the 

provider has a large number of users, which is generally the case, the Binomial 

distribution can be approximated by a Normal distribution. Then, (14) becomes: 

−𝑥 + 𝛿𝑛𝑓 �1 − Φ�
𝛼𝑛 − 𝑛(1 − 𝜀)

�𝑛𝜀(1 − 𝜀)
�� ≥ 𝛿𝑛𝑓 �1 − Φ�

𝛼𝑛 − 𝑛𝜀

�𝑛𝜀(1 − 𝜀)
�� 

⇒ 𝛿 ≥
𝑥

�Φ� 𝛼𝑛 − 𝑛𝜀
�𝑛𝜀(1 − 𝜀)

� − Φ�𝛼𝑛 − 𝑛(1 − 𝜀)
�𝑛𝜀(1 − 𝜀)

��𝑛𝑓
.                             (15) 

Φ represents the cumulative distribution function of the Normal distribution. 

Generally, a solution that enforces cooperation with the lowest discount factor is 

preferable. The discount factor measures the patience of the provider. Also, considering 

the interest rate per period r, the discount factor will be 𝛿 = 1
1+𝑟

. Thus, a high interest rate 

per period implies a low discount factor. Therefore, in a competitive wireless 
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communication market, we want even the least patient provider or those with a high 

interest rate per period to invest in the network for the collective benefit of its users. To 

achieve that, we need to maximize the denominator of (15). 

A straightforward analysis shows that, for 𝜀 ≠ 0 the difference 

�Φ�
𝛼𝑛 − 𝑛𝜀

�𝑛𝜀(1 − 𝜀)
� − Φ�

𝛼𝑛 − 𝑛(1 − 𝜀)

�𝑛𝜀(1 − 𝜀)
�� 

is maximized when 𝛼 = 0.5.  

The message is that when α is too big, the provider will find it risky to invest. In fact, few 

users may report a bad QoS due to noise and cause the provider to lose its entire customer 

base when the users act collectively. On the other hand, if the ratio α is too small, the 

provider may not invest and expect few users to still report a good QoS. Recall that there 

is noise in users’ observation. As a result, a fair value of one half is adequate.  

When we take 𝛼 = 0.5, we have: 

Φ�
𝛼𝑛 − 𝑛𝜀

�𝑛𝜀(1 − 𝜀)
� − Φ�

𝛼𝑛 − 𝑛(1 − 𝜀)

�𝑛𝜀(1 − 𝜀)
� 

= Φ�
𝑛(1 − 2𝜀)

2�𝑛𝜀(1 − 𝜀)
� − Φ�−

𝑛(1 − 2𝜀)

2�𝑛𝜀(1 − 𝜀)
� 

= Φ�
𝑛(1 − 2𝜀)

2�𝑛𝜀(1 − 𝜀)
� − �1 − Φ�

𝑛(1 − 2𝜀)

2�𝑛𝜀(1 − 𝜀)
�� 

= 2Φ�
𝑛(1 − 2𝜀)

2�𝑛𝜀(1 − 𝜀)
� − 1. 
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Therefore, when we take the average investment per user, (15) becomes: 

𝛿 ≥
𝑒

�2Φ� 𝑛(1 − 2𝜀)
2�𝑛𝜀(1 − 𝜀)

� − 1� 𝑓
.                                     (16) 

8.7 Numerical Results 

In this Section, we compare the provider’s behavior when the users act independently to 

when the users act collectively. We consider a service provider with a large number of 

customers; say 10,000 users in a local area, a ZIP code for instance. Users are divided in 

subsets. Subsets of users belong to the same area with similar channel conditions. We also 

assume that the provider uses 20% of its revenue in administrative and operational cost. 

Thus, 

𝑒
𝑓

= 0.8. 

Figure 8.1 compares the minimum discount factor that enforces cooperation in two 

scenarios: individual and independent decision and collective decision. In the case of 

independent user, the minimum discount factor required for the provider cooperation 

equals 1 when the noise level ε reaches 0.1. Therefore, it becomes impossible for the users 

to enforce the provider cooperation with a probability of observation error above 0.1. The 

result is a mutual defection which is not an efficient outcome. The incentive to cooperate 

is lost due to noise.  

However, when the users observe and decide collectively, the provider still has an 

incentive to cooperate with a noise level of 0.49. This is clearly in the advantage of both 
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the provider and the users. Introducing a database that records all users’ observations has, 

as a consequence, the increase of the monitoring accuracy. Moreover, the database gives 

more bargaining power to users. The n+1 player’s game becomes strategically equivalent 

to a two player game. The provider is one of the players and the n users represent the 

second player. 

 

Figure 8.1: Comparison between individual and collective actions of users. α=0.5 

Figure 8.2 shows what will happen if the users are intransigent and request a cutoff score 

of 95%. The provider will cooperate under perfect monitoring or when the noise level is 

below 5%. Therefore, a fair cutoff score of 50% is better that the 95%. This is because the 

provider’s investment becomes unprofitable under noise. 
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Figure 8.2: Comparison of high and fair values of Alpha 

Figure 8.3 analyzes the provider’s action under noise and several other cutoff scores. We 

can see that the provider’s behavior is symmetric on a cut off score of 0.5. Therefore, 

recommending that 75% of users report a good QoS is identical to a request of 25%. 

A straightforward statistical analysis indicates that, for a 3 standard deviation confidence, 

we must have: 

𝑛𝜀 + 3�𝑛𝜀(1 − 𝜀) ≤ 𝛼𝑛 ≤ 𝑛(1 − 𝜀) − 3�𝑛𝜀(1 − 𝜀) ⇒ 
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𝜀 + 3�
𝜀(1 − 𝜀)

𝑛
≤ 𝛼 ≤ (1 − 𝜀) − 3�

𝜀(1 − 𝜀)
𝑛

.                                    (17) 

 

 

Figure 8.3: Comparison between different values of Alpha 

8.8 Conclusion 

This analysis shows that recording the provider’s behavior in a database can have a 

valuable effect for users. The provider is forced to cooperate even with a high observation 

error (close to 0.5!). Collective observation increases the accuracy in monitoring and the 
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bargaining power of users. Previous researches [47-50] have emphasized the competition 

between service providers to guarantee market efficiency. This Chapter focuses on the 

power of repeated interactions and recording the provider’s action. 

Similar results can be obtained if the user does not use the grim trigger strategy presented 

here, but instead decides based on the provider’s reputation. The provider’s reputation will 

depend on the history of percentage of user satisfaction. The mechanism described here is 

easy to implement. An application on a Smartphone can automatically monitor the QoS, 

report it at the end of each period to the database, read other users’ observations, and 

recommend to switch the provider or not, depending on its past behavior or reputation. 

We believe that this recording mechanism combined with the change of pricing strategy 

from flat rate to tiered pricing should avoid network congestion. The tiered pricing should 

decrease the demand in data traffic, whereas recording the provider’s behavior should 

increase the network capacity. 

All along this Chapter, we made the implicit assumption that the provider uses flat rate 

pricing. In the future, we will consider different pricing strategies. 
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CHAPTER 9 

CONCLUSION AND FUTURE WORKS 

This Chapter concludes this dissertation. Our contributions are recapitulated and the 

directions for future research are proposed. 

9.1 Conclusion 

This dissertation addresses several concerns that are universal in social science. Those 

enigmas include rationality, cooperation, selfishness, trust, security, privacy, as well as 

independent and collective decision. Game theory and EGT have been used in this work to 

propose novel solutions to those problems with rigorous mathematical analyses. Those 

dilemmas will become more consequential as nodes in a network have more freedom, 

autonomy, independence, intelligence, and learning capability. 

Repeated interaction has been used to model different scenarios in wireless networks 

including packet forwarding at the routing layers, network security, user and service 

provider interaction. When dealing with packet forwarding, we have presented the 

advantage of repeated interaction over reputation mechanisms and virtual currency 

systems. We have considered both rational and irrational nodes as well as perfect and 

imperfect monitoring. 

With respect to security mechanisms in our analysis, the trust in a central authority, like a 

certificate authority, has been replaced with trust among nodes. Nodes need to trust each 

other to secure the network. 
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The major contributions of this dissertation are summarized as follow: 

1. Mitigation of selfish behavior in autonomous ad hoc networks considering both 

rational and irrational nodes. 

2. Use of repeated, stochastic, and evolutionary games to design distributed 

cooperation algorithm. 

3. Use of community enforcement mechanisms to compel node cooperation under 

non-uniform traffic load distribution. 

4. Analysis of node cooperation in ad hoc network under noise and imperfect private 

monitoring. 

5. Investigate network security and its connection to trust in wireless networks. 

6. Interpret users’ and service providers’ optimal behavior alongside an exponential 

increase in bandwidth demand. 

To place our work in a wider context, it is worth mentioning that the strategies developed 

from Chapter 3 to Chapter 6 can also apply to file sharing in peer-to-peer networks and to 

inter-domain routing. 

9.2 Future Works 

The first part of this PhD research mainly involves enforcing cooperation to forward 

packets at the routing layer. A comprehensive model for an autonomous network can then 

be developed. Clearly, cross layer optimization techniques in the framework of game 
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theory and EGT can be the subject of future research. The incorporation of information 

from other layers in the models developed in this work would be an improvement. For 

instance, MAC and transport layer information can be aggregated to consider network 

congestion, packet loss, and packet retransmission. Also, our model extension without a 

database in Section 5.3 needs further investigation. It is still not clear how the network 

topology will influence the game. Moreover, a general framework for packet forwarding 

games should have both imperfect private monitoring and private payoff information. 

However, as mentioned in Section 5.5, even though belief-free equilibrium strategies are 

robust to imperfect private monitoring, they may not resist private payoff information.  

Additionally, introducing incomplete information to the network security game introduced 

in Chapter 7 can be the subject of future research. In fact, each node payoff, from security 

or privacy, is not common knowledge but private information. 

Finally, in Chapter 8, the users switch to a new service provider if the current service 

provider does not invest sufficient resources to improve the quality of service for the 

users. However, the behavior dynamic of other service providers has not yet been 

considered. Some users may leave a provider while new users join that provider. A 

complete market analysis can be done to investigate the optimum user and service 

provider behavior. It is well known that the market model proposes a simple and almost 

optimum solution to complex resource allocation problems for large scales. Market 

interaction consists of several agents with limited knowledge of the system involved in 

decentralized interaction. Each agent makes its decision in a distributed way. The market’s 

interactions converge to equilibrium that is, for the most part, close to the optimum 
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solution. Moreover, there is a strategic effect in market interaction. The behavior of any 

agent affects the payoff and the behavior of others. Therefore, market interaction can be 

modeled as a game. Furthermore, compared to centralized resource allocation schemes, 

distributed mechanisms based on market principles are robust against strategic 

manipulations from selfish users. 

 

 

 

 

 

 

 

 

 

 

 

 



 

163 
 

APPENDIX 

GAME THEORY AND EVOLUTIONARY GAME THEORY OVERVIEW 

According to Myerson [35], game theory can be defined as the study of mathematical 

models of conflict and cooperation between intelligent rational decision-makers. A 

rational player makes decisions to satisfy his or her self interest. A game can be 

represented in different forms. Most of the time, it is represented in extensive form or in 

strategic (or normal) form. The extensive form of a game is used to formalize sequential 

action of players. In those games, the order in which players act in the game is important. 

On the other hand, a strategic form of a game is formalized as: 

𝛤 = (𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁). 

N is the set of players of game Г, i is a player in N, 𝑆𝑖 is the set of pure strategies that 

players i can choose from, ui is the utility function of player i. A mixed strategy is a 

random combination of two or more pure strategies. A strategy profile is a combination 

of strategies that the players can choose. The set of all possible strategy profiles is 𝑆 =

𝑋𝑗∈𝑁𝑆𝑗. ui is a function defined from the set of strategy profiles S to the set of real 

numbers 𝑅. At any strategy profile, the utility function associates the expected utility 

payoff that player i would get. A game in strategic form can also be represented by a 

matrix as in table A.1. 

For two strategies A and B, A strictly dominates B if A always earns a higher payoff than 

B. A weakly dominates B if A never earns a lower payoff than B and A is superior to B for 

at least one strategy. 
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A. 1. Nash Equilibrium 

A strategy profile is a Nash equilibrium if and only if no player can gain by changing its 

strategy when the other players do not change. Moreover, in a Nash equilibrium, each 

player’s equilibrium strategy is a best-response to other player’s equilibrium strategies. 

Definition 1: A mixed strategy profile σ* is a Nash Equilibrium if, for all players i 

𝑢𝑖(𝜎𝑖∗,𝜎−𝑖∗ ) ≥ 𝑢𝑖(𝑠𝑖,𝜎−𝑖∗ ) for all 𝑠𝑖 ∈ 𝑊𝑖                                                                          (1) 

We have a strict Nash equilibrium if inequality (1) is strict. 

Theorem 1: Given any finite game Г in strategic form, there exists at least one Nash 

equilibrium. 

Proposition 1: The Nash equilibrium is not always unique. 

Theorem 2: A strictly dominated strategy is never a Nash equilibrium. 

This comes from the fact that a strictly dominated strategy can never be optimal. 

An allocation is Pareto efficient if there is no other allocation that can make at least one 

individual better off without making any other individual worse off. 

Proposition 2: A Nash equilibrium is not always Pareto efficient. 

We will illustrate proposition 2 in the following Subsection.  
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A.2. Prisoners’ Dilemma Game 

Table A.1 shows the Prisoners’ Dilemma game in strategic form. In this game, if both 

players cooperate, they get the reward price R. They get the punishment price P if both 

defect. But if one defects when the other cooperates, the defector gets the temptations 

price T while the cooperator gets the suck price S. We also have: T>R>P>S. For the one 

stage game, player can choose to cooperate or to defect. Cooperate is strictly dominated 

by defect. The only Nash equilibrium is both players defect. The 2 players get the 

punishment prize P. However, if the 2 players choose to cooperate, the 2 players will get 

the Pareto efficient outcome R. We can see that when rational intelligent players play the 

game, they will get a non efficient outcome. This illustrates that the Nash equilibrium is 

not always Pareto efficient. We see in the next Section that when the game is played 

repeatedly, cooperation among players can emerge. Players could cooperate expecting 

future gain and reach an efficient equilibrium while all players cooperate.  

TABLE A.1: PRISONNERS’ DILLEMA GAME IN STRATEGIC FORM 

 Player 2 

Cooperate Defect 

Player 1 Cooperate R,R S,T 

Defect T,S P,P 
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A.3. Repeated Game 

A repeated game is some number of repetitions of a base game called the stage game. A 

repeated game is of perfect monitoring if at the end of each period, each player observes 

the strategies chosen by other players. A history of the repeated game at period t ht is the 

list of all players’ actions in all periods before t. A pure strategy for a player in the 

repeated game is a mapping from all possible histories to a stage game strategy. The 

number of repetitions can be finite or infinite. When the end of the game is fixed and 

known to all players, a backward induction argument shows that it is optimum to play a 

Nash equilibrium strategy of the stage game in all periods even though that may not be 

Pareto efficient. For the infinitely repeated game, the payoff of player i   is the infinite 

sequence of payoffs 

 (𝑢𝑖0 + 𝑢𝑖1 + 𝑢𝑖2 + 𝑢𝑖3 … ).  

The average δ-discounted payoff of that sequence is: 

(1 − 𝛿)�𝛿𝑡
∞

𝑡=0

𝑢𝑖𝑡.                                                             (2) 

δ is the discount factor. 0 ≤ 𝛿 < 1. 

The payoff of a pure strategy profile σ is defined as: 

𝑈𝑖(𝜎) = (1 − 𝛿)�𝛿𝑡
∞

𝑡=0

𝑢𝑖  �𝑎𝑡(𝜎)�.                             (3) 

𝑎𝑡(𝜎) is the pure action profile in period t. 
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Definition 2: A strategy profile is a subgame perfect equilibrium if it represents a Nash 

equilibrium of every subgame of the original game. 

Proposition 3: A strategy profile σ is a subgame perfect Nash equilibrium if and only if 

there is no profitable one – shot deviation. 

This proposition is the one – shot deviation principle. 

SPE is a stronger criterion than the Nash equilibrium in repeated game. SPE imposes the 

behavior to be sequentially rational. This means that the behavior must be optimum even 

out of the Nash equilibrium path. 

The minmax payoff of a player is a payoff that minimizes his maximum possible loss. 

Theorem 3: For every pure action profile whose payoff strictly dominates the pure action 

minmax payoff, there exists a SPE of the repeated game in which that action profile is 

played in every period if the players are sufficiently patient. 

This theorem is called the folk theorem. Player’s patience means that the discount factor 

is large. It is one of the most important results in repeated game. It implies that Pareto 

efficient payoff can be achieved in repeated game equilibrium. 

A.4. Stochastic Game 

Stochastic games are also called dynamic games. They are generalizations of repeated 

game. In the repeated game, the same stage game is repeated in all periods. However, in 

stochastic games, the stage game can change randomly or deterministically from period 

to period depending on the history for a fix set of players. A game state of the stochastic 

http://en.wikipedia.org/wiki/Strategy_(game_theory)�
http://en.wikipedia.org/wiki/Subgame�
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game is one of the possible stage games. A description of the stochastic game specifies 

how the game states vary from period to period. In general, the probability of the current 

state depends on the previous state and players’ actions. In the special case that the 

current state is independent of the previous state and players’ actions, we have a repeated 

game with random states that is the base of our model in Chapter 4.  

A.5. Game of Imperfect Monitoring 

Recall that a repeated game is of perfect monitoring if at the end of each period, each 

player observes the strategies chosen by other players. In perfect monitoring game, each 

player precisely observes the past action of all other players without any ambiguity. 

When the action of other players cannot be absolutely observed, players have only noisy 

signal about past plays. The signal observed is randomly correlated to the actions of other 

players. We then have a game of imperfect monitoring. There are two classes of 

imperfect monitoring game: imperfect public monitoring game and imperfect private 

monitoring game. A game is of imperfect public monitoring if the signal of past plays, 

however imprecise and noisy are invariably observed by all players [60]. However, in 

imperfect private monitoring game, the signal of past plays observed by a player is not 

observable by others. A detailed presentation of game theory is done by Myerson [35]. 

Mailath and Samuelsson [60] emphasize repeated games and stochastic games. 

A.6. Evolutionary Game Theory 

EGT has its foundation in game theory and evolutionary biology. Evolutionary biology 

studies the processes of change in populations of organisms. Selection and mutation are 
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two important factors of change in Evolutionary biology. Mutation provides diversity in 

the population while selection promotes some variety over others. The assumption of 

rationality used in game theory is relaxed in EGT. Unlike game theory where players are 

intelligent rational and choose strategies, in EGT, players’ are programmed to some 

strategies in the game. Players’ are randomly and repeatedly drawn from large 

populations. They are not assumed to have common knowledge of the game. The payoff 

is the individual fitness or expected number of surviving offsprings. Two key concepts of 

EGT are ESS and the replicator dynamic.  

A.7. Evolutionary Stable Strategy 

Suppose that the individuals in the initial population are programmed to play the same 

pure or mixed incumbent strategy x. Then, a small group of mutants in proportion 

𝜀 ∈ (0,1), all programmed to play the same pure or mixed strategy y, appear in the 

population. Pairs of individuals are repeatedly drawn with equal probability to play the 

game. Therefore, if an individual is drawn to play the game, the probability that the 

opponent will play the strategy y    is ε, and the probability that the opponent will play the 

strategy x is 1- ε. As a result, the payoff in a match is equivalent to that in the match 

where an individual plays the mixed strategy 𝑤 = 𝜀 𝑦 + (1 − 𝜀)𝑥. It follows that the 

payoff of the incumbent strategy is 𝑢(𝑥,𝑤) or 𝑢[𝑥, 𝜀 𝑦 + (1 − 𝜀)𝑥 ], and that of the 

mutant strategy is 𝑢(𝑦,𝑤) or 𝑢[𝑦, 𝜀 𝑦 + (1 − 𝜀)𝑥 ]. A strategy x is an ESS if and only if: 

𝑢[𝑥, 𝜀 𝑦 + (1 − 𝜀)𝑥 ] > 𝑢[𝑦, 𝜀 𝑦 + (1 − 𝜀)𝑥 ].                                                                        (4) 

for a small proportion of mutant 𝜀. 
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Definition 3: A strategy x is an evolutionary stable strategy if for every strategy y ≠x 

there exists some 𝜀𝑦̅ ∈ (0,1) such that inequality (4) holds for all 𝜀 ∈ �0, 𝜀𝑦̅�. 

Considering the linearity of u, equation (4) can be written as: 

(1 − 𝜀)𝑢(𝑥, 𝑥) + 𝜀𝑢(𝑥,𝑦) > (1 − 𝜀)𝑢(𝑦, 𝑥) + 𝜀𝑢(𝑦, 𝑦).                (5) 

For small values of 𝜀, equation (4) is equivalent to either 

𝑢(𝑥, 𝑥) > 𝑢(𝑦, 𝑥) ∀ 𝑦,                                                                                                                    (6) 

Or 

𝑢(𝑥, 𝑥) = 𝑢(𝑦, 𝑥) and 𝑢(𝑥, 𝑦) > 𝑢(𝑦,𝑦) ∀ 𝑦 ≠ 𝑥,                                                                 (7) 

as first formulated by John Maynard Smith in [73]. 

Proposition 4: If x is an ESS then x is a NE 

This is because otherwise, inequality (6) should not hold. ESS is a stronger criterion than 

Nash equilibrium. 

Proposition 5: Any strict Nash equilibrium is an ESS. 

This is because strict Nash equilibrium always satisfies equation (6) 

Proposition 6: An ESS does not always exist in a game. 

A population of individuals programmed to play an ESS resist against mutation. This 

means that such a population cannot disappear in the long run evolution. 
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A.8. Replicator Dynamic 

As described before, ESS focuses on mutation. Actually, the replicator dynamic 

highlights the role of selection. This model was first proposed by Taylor and Jonker [74]. 

Assume we have a large but finite population of individuals. Assume also that all 

individuals are programmed to a pure strategy 𝑖 ∈ 𝐾 in a symmetric two player’s game. 

Let u be the payoff function. Let 𝑝𝑖(𝑡) ≥ 0 be the number of individuals programmed to 

pure strategy 𝑖 ∈ 𝐾 at time t. Thus, the total population is 𝑝(𝑡) = ∑ 𝑝𝑖(𝑡) > 0𝑖∈𝐾 . Let the 

proportion of individuals programmed to pure strategy i be: 

𝑥𝑖(𝑡) = 𝑝𝑖(𝑡) 𝑝(𝑡)⁄ .                                                     (8) 

The associated population state is defined as the vector 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑘(𝑡) ]. 

Therefore, when the population is in state x, the expected payoff to pure strategy i at a 

random match is 𝑢�𝑒𝑖 , 𝑥� and the payoff of an individual drawn at random in the 

population is 𝑢(𝑥, 𝑥) = ∑ 𝑥𝑖𝑢�𝑒𝑖, 𝑥� 𝑘
𝑖=1 . Assume that payoffs are individual’s fitness 

representing the number of offsprings per unit of time and that strategy is inherited by a 

continuous time reproduction. We obtain the following population dynamic using time 

derivative: 

𝑝̇𝑖 = 𝑝𝑖𝑢�𝑒𝑖 , 𝑥�.                                                        (9) 

Moreover, equation (8) gives us 𝑝(𝑡). 𝑥𝑖(𝑡) = 𝑝𝑖(𝑡) and taking the time derivative on 

both sides gives: 

𝑝̇𝑥𝑖 + 𝑝𝑥̇𝑖 = 𝑝̇𝑖 ⇒ 𝑝𝑥̇𝑖 = 𝑝̇𝑖 − 𝑝̇𝑥𝑖. 
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Also, if we derive 𝑝(𝑡) = ∑ 𝑝𝑖(𝑡)𝑖∈𝐾  on both side and use 𝑢(𝑥, 𝑥) = ∑ 𝑥𝑖𝑢�𝑒𝑖, 𝑥� 𝑘
𝑖=1 we 

get, after iteration, 

𝑝̇ = 𝑝𝑢(𝑥, 𝑥). 

Thus, 𝑝𝑥̇𝑖 = 𝑝̇𝑖 − 𝑝̇𝑥𝑖 ⇒ 𝑝𝑥̇𝑖 = 𝑝𝑖𝑢�𝑒𝑖, 𝑥� − 𝑝𝑢(𝑥, 𝑥)𝑥𝑖, 

and dividing both side by p we finally obtain the population dynamics for the population 

shares 𝑥𝑖 

𝑥̇𝑖 = �𝑢�𝑒𝑖, 𝑥� − 𝑢(𝑥, 𝑥)�𝑥𝑖.                                                        (10) 

Equation (10) gives the replicator dynamic, this system of differential equation allow us 

to draw an important conclusion. Subpopulations programmed with better than average 

strategies grow whereas supbpopulations programmed with worse than average strategies 

sink. 

Let ξ (t, x0) represent the population state at time t when the initial state is x0. 

Proposition 7: If a pure strategy i is strictly dominated, then ξi (t, x0) t→∞ →0 for any x0. 

Properly, strictly dominated strategies perish in the replicator dynamic. 

Weibull [45] provides a more detailed presentation of EGT. 

A.9. Conclusion 

In short, we presented in this Section three important concepts; Nash equilibrium, ESS, 

and the replicator dynamic. We emphasized their similarities and differences. Nash 
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equilibrium is associated with rational players; on the other hand, ESS and the replicator 

dynamic consider programmed players without any assumption of rationality. However, 

all three eliminate strictly dominated strategies. Only Nash equilibrium strategies can 

pass ESS criterions. Also, in the long run, the stationary and stable states in the replicator 

dynamic correspond to aggregate Nash equilibrium behavior. Thus, a population or a 

strategy resists an evolutionary process only if it is rational. Finally, EGT and game 

theory deliver comparable results with different assumptions.  
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