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ABSTRACT OF THE DISSERTATION

QCD STRUCTURE OF NUCLEAR INTERACTIONS

by

Carlos G. Granados

Florida International University, 2011

Miami, Florida

Professor Misak Sargsian, Major Professor

The research presented in this dissertation investigated selected processes involv-

ing baryons and nuclei in hard scattering reactions. These processes are characterized

by the production of particles with large energies and transverse momenta. Through

these processes, this work explored both, the constituent (quark) structure of baryons

(specifically nucleons and∆-Isobars), and the mechanisms through which the interac-

tions between these constituents ultimately control the selected reactions.

The first of such reactions is the hard nucleon-nucleon elastic scattering, which was

studied here considering the quark exchange between the nucleons to be the dominant

mechanism of interaction in the constituent picture. In particular, it was found that

an angular asymmetry exhibited by proton-neutron elastic scattering data is explained

within this framework if a quark-diquark picture dominatesthe nucleon’s structure in-

stead of a more traditionalSU(6) three quarks picture. The latter yields an asymmetry

around 90o center of mass scattering with a sign opposite to what is experimentally

observed.

The second process is the hard breakup by a photon of a nucleon-nucleon system in

light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in3He, and∆∆-isobars

production in deuteron breakup were analyzed in the hard rescattering model (HRM),

which in conjunction with the quark interchange mechanism provides a Quantum Chro-

modynamics (QCD) description of the reaction. Through the HRM, cross sections for

both channels in3He photodisintegration were computed without the need of a fitting
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parameter. The results presented here forpp breakup show excellent agreement with

recent experimental data.

In ∆∆-isobars production in deuteron breakup, HRM angular distributions for the

two ∆∆ channels were compared to thepn channel and to each other. An important

prediction from this study is that the∆++∆− channel consistently dominates∆+∆0, which

is in contrast with models that unlike the HRM consider a∆∆ system in the initial state

of the interaction. For such models both channels should have the same strength. These

results are important in developing a QCD description of theatomic nucleus.
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CHAPTER I

INTRODUCTION

This introduction presents an overview of the progress madein nuclear physics towards

achieving an unified description of the strong nuclear force; a description that can match

the phenomenological successes of the standard model of electroweak interactions. In

line with the specific goals of the studies presented in this dissertation, the following

sections place emphasis on the search for an elementary particle description of nucleon

nucleon, and more generally hadron hadron interactions. Section I.1 addresses the dis-

covery of the nucleus and of its constituents (nucleons) theproton and the neutron as

well as the concerns that led to the discovery of the nuclear force. SectionI.2 describes

the road towards formulating a field theory of the strong nuclear force motivated by

the quantum electrodynamics (QED) description of electromagnetic interactions. It

also outlines the experimental and phenomenological work that lead to the discovery

of quarks and gluons and to the formulation of quantum chromodynamics (QCD) as

the fundamental field theory of the strong interaction. SectionI.3 focuses on general

features of hard exclusive processes, and on how the resultsfrom QCD phenomenology

explored in sectionI.2 can be used here to investigate the QCD mechanisms through

which the particles involved in these processes interact. This section introduces the

framework and some aspects of the methodology in which the processes of interest in

this dissertation are studied in the chapters that follow.

I.1 The Strong Interaction

The discovery of subatomic particles in the late XIX and earlyXX century in conjunc-

tion with the formulation of special relativity and Quantum mechanics steered major

efforts and developments in physics towards identifying the fundamental structure of

matter. These developments resulted in the formulation of theStandard Model (SM)

of particle physics, which has met outstanding phenomenological success in describ-

ing electromagnetic and weak interactions. All the fundamental elementary particles
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(fermions) are subject to either of these two interactions;more generally, they are sub-

ject to the electroweak interaction which unifies the two interactions under a consis-

tent mathematical framework. The validation of the SM has been achieved through

the experimental programs that test phenomenological predictions emanating from this

framework. Such tests are facilitated by major advances in accelerator technologies

that allow studies at ever increasing energy regimes and much improved detection and

particle identification capabilities. These conditions have made possible the production

and direct detection of leptons and of the otherwise hypothetical weak bosons which

mediate the weak interaction and that are predicted by the standard model.

On the other hand, the standard model picture of the strong interaction faces a more

challenging phenomenological treatment. In the SM, the strong interaction is described

by quantum chromodynamics (QCD), a quantum field theory in which quarks and glu-

ons are respectively the elementary fermions and bosons. But these quarks and gluons

are confined in hadrons (a family of particles of which protons and neutrons are part of)

and have not been directly observed as free particles. However, as is discussed in the fol-

lowing sections, the existence of the strong force was postulated to explain the stability

of the nucleus as a system of protons and neutrons (nucleons); thus in a first approach,

a theory of the strong interaction would have nucleons as its fundamental elementary

particles to later on include mesons as the elementary bosons. The origins of this de-

scription are summarized below and in sectionI.2, in which it’s also emphasized that its

validity is limited to separation distances at which the interacting nucleons can still be

considered elementary particles. At separation distancessmaller than 1fm (10−15m), the

nucleons’ internal structures (quark-gluon distributions) play a more active role in the

interaction, and approaches assuming elementary (structureless) nucleons are no longer

suited for describing phenomena at this scale.

After introducing QCD, the theory of interactions of quarksand gluons, in section

I.2, sectionI.3 comments on general features that allow the use of QCD approaches

for developing a quantitative description of the strong nuclear force at separation dis-

tances in this regime (<1fm). In the chapters that follow, the reactions of interest in this
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dissertation are investigated within the framework of QCD approaches.

The Atomic Nucleus

The atomic nucleus concentrates most of the atomic mass in a radius about 106 times

smaller than the atomic radius. It also carries the net positive charge that balances the

electronic cloud surrounding it in a neutral atom. This accepted picture of the atom

was partially completed by Rutherford in 1911 [1] when results from a scattering ex-

periment of alpha particles incident upon a thin film of gold showed that some small,

but larger than expected, portion of the beam was deflected atlarge angles while most

of the beam passed through the film with almost no deflection [2]. Rutherford showed

that under a coulomb interaction, the observed deflection ofalpha particles at large an-

gles could only be explained by a large charge and mass concentration in a very small

volume at the center of each gold atom. The picture of the atom then switched from

the one in which the positive charge was uniformly distributed throughout the atom

(J. Thompson’s model) and according to which the large angle deflection of the alpha

beam would had been much more suppressed, to the one in which themass and the net

positive charge were concentrated in a small volume (nucleus) surrounded by orbiting

electrons that expand to the atom’s size [1].

This ‘planetary’ model of the atom was still plagued with flaws.The most impor-

tant being the fact that the atom’s stability under this model would contradict classical

electrodynamics. The orbiting electrons are acceleratingand therefore should radiate

electromagnetic waves losing kinetic energy to their electromagnetic field and therefore

decaying by spiraling down towards the nucleus under the Coulomb force. This issue

was then solved by the emerging quantum mechanics picture ofthe atom, in which the

orbital structure of the electronic distribution was replaced by discrete quantum states

of the electronic field surrounding the nucleus. An atom could only radiate or absorb

energy when transitioning between these states, while the lowest energy state has still a

definite finite energy.
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The Strong Nuclear Force

Concerns about the composition of the nucleus were still to be addressed as well. One

of the early models of the nucleus in which it consisted of protons and electrons has

stability issues. The huge repulsing force that positive charges would experience at the

nuclear distances could not be balanced by the overall charge distribution of the atom.

The nucleus would quickly disintegrate under the Coulomb repulsion. Therefore, a

force of a different nature was thought to be responsible forkeeping the nucleus’ com-

ponents in place. This nuclear force should be much strongerthan the electromagnetic

force at nuclear distances, but it should have a range limited to the nuclear distances as

well since the evidence of this force is not found anywhere else outside the nucleus.

Nuclear Composition

A lot of progress was made in understanding the nuclear structure of atoms by assum-

ing the existence of this force, but without a detailed theory of its origin the successes

were only confined to some general features. This picture wasmuch improved by the

discovery of the neutron by James Chadwick in 1932 [3]. The nucleus was now thought

of as a system of nucleons (protons (positive charge carriers) and neutrons (of neutral

charge)) confined by an effective nuclear potential. Both neutrons and protons are the

sources of the force field generated by this potential which at the nuclear scale is at-

tractive. Because neutrons are not meaningful sources of anelectromagnetic field, their

presence in nuclei helped explain the stability trend of theatoms with increasing atomic

number. As the atomic number (the number of protons in the nucleus) increases, the

ratio of the number of neutrons to protons has to increase as well in order to balance the

increasing electromagnetic repulsion felt by the protons with an increasing number of

attractive nuclear force sources. The short range of the nuclear force will also constrain

the size of the stable nuclei.

The existence of neutrons in nuclei also solved the contradiction regarding the ob-

served spin of nuclei inherent to the early (proton-electron) nuclear models. Under
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these models the14N nucleus was made of 14 protons and 7 electrons, both particles

with total spin 1/2. Their corresponding spins will add up toa system with a total half

integer spin. However, it was observed that14N obeys Bose statistics which implies that

its total spin was of integer value. Because, like protons and electrons, neutrons are

fermions (particles with half integer spin ), the14N nucleus made up of 7 protons and 7

neutrons would naturally account for expected total integer spin of the14N nucleus.

Just as for the atom, a quantum mechanics picture of the nucleus emerged in which

discrete nuclear states correspond to the different configurations of protons and neutrons

filling different nuclear energy levels. Transitions between nuclear states could involve

energy absorption or energy emission in the form of radiation.A nucleus with fixed

atomic and mass numbers would have a unique photon emission spectrum coming from

the decays of its allowed exited states just as an atom of a given element would. A decay

to a different nuclear state in which the atomic and/or the mass numbers are altered is

signaled by the emission of massive charged or neutral particles such as neutrons, alpha

particles and beta particles. At this stage, it was understood that the two (and more)

body nucleon-nucleon interactions had to be the source of the nuclear potentials which

makes a nucleus a bound system.

Force Carriers

A picture of nucleon-nucleon (NN) interaction was however yet to be reached to the

level at which for instance the electromagnetic interaction was then understood. Through

quantum electrodynamics (QED), the relativistic quantum field theory of electromag-

netism, charged particles interact by transferring energy and momentum to one another

through the exchange of field quanta (photons). In 1935, H. Yukawa proposed that just

as in electromagnetism the Coulomb force was the result of theexchange of virtual

photons, the strong nuclear force as well results from the exchange of corresponding

virtual bosons (mesons)[4]. The short range nature of this strong force comes from

these mesons having nonzero masses. While in the non-relativistic limit the photon

exchange interaction among charged particles can be effectively described by the clas-
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sic form of the Coulomb potential (∼1/r), the strong interaction mediated by massive

mesons is in the nonrelativistic limit dominated by the Yukawa potential (e−µr/r), with

µ being the mass of the exchanged meson. Therefore, the mass ofthe exchange meson

would define the range of the force. A candidate for the particle mediating the nucleon

nucleon interaction was found in 1947. Known as theπ meson or pion, it has zero

spin (scalar) and could have a charge of +e (π+), -e(π−) or no charge (π0) with a mass

µ ∼140MeV. Later on, other heavier mesons of spin 1 (vector mesons) ρ andω were

discovered [5][6]. Contribution from the exchange of these vector mesons to the (NN)

interaction are thought to be relevant in understanding thebehavior of the (NN) force

at distances far smaller than those were this force is acceptably described by either the

pion exchange model or the Yukawa potential1. However, as the distance between the

interacting nucleons keeps getting smaller, the particle exchange mechanisms required

to explain the empirical behavior of the strong force grow innumber and complexity.

I.2 From Hadrons to QCD

The meson field theory for the strong interaction was motivatedby the phenomeno-

logical success of QED. This theory tries to include all possible interactions between

nucleons in such a way that preserves the increasing number of global symmetries. Evi-

dence of these symmetries2 arose from the discovery not only of new mesons, but also of

new fermions that seem to interact via the strong interaction. The latter was concluded

from the observed high rates ( half lives of∼ 10−24s) at which these fermions were decay-

ing into nucleons that could only be explained by strong interaction couplings. These

fermions along with the lighter and more stable nucleons came to form a new category

of particles named baryons. Mesons and baryons form the group of particles that can

interact through the strong interaction also known as hadrons. While baryons played a

role analogous to that of fermions in QED, mesons as mentionedearlier assumed a role

analogous to that of photons, as the carriers of the nuclear force.

1See e.g. Ref.[7] for an extended overview of the meson theory of nuclear interactions.
2Each symmetry of the strong interaction was inferred from experimental evidence of certain conservation

laws, some of which included the conservation of isospin andstrangeness.

6



Isospin

The nuclear force for instance contributes with the same strength in both proton proton

(pp) and neutron neutron (nn) interaction. This experimental fact suggests that under

the strong interaction protons and neutrons are different states of the same particle. In

analogy with the spin formalism, this set of two states is labeled by a quantum number

called isospin (I). Each state is in this set is labeled by another quantum number(T )

analogous to the spin projection (m). Each state then can be transformed into the other

by a rotation in this internal ’isospace’. By convention, for a proton (neutron)I = 1/2

andT = +1/2(−1/2). Then app system is turned into ann system through a rotation in

the isospace. As mentioned earlier the strength of the forceremains the same after this

rotation is performed. Therefore, the strong interaction is symmetric under rotations

in the isospace. For now, the known mesons,π, ρ andω have integer isospins, and the

isospin symmetry of the strong interaction holds on reactions involving them as well.

Isospin conservation puts specific restrictions on the structure of theNN interactions

through meson exchange.

Meson field theoretic approach

The isospin invariance of the strong interaction is utilized to obtain an appropriate rep-

resentation of the elements of a meson exchange theory of the strong interaction. This

invariance is also taken into account when writing the equations that govern the general

dynamics under this interaction. In this framework, protons and neutrons are repre-

sented by Pauli spinors fromSU(2)I fundamental representation, while mesons (the field

quanta) belong to the triplet representation ofSU(2) (see e.g. Refs. [7] and [8]):

ΨN =







ψp

ψn






, (I.1)
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and

Φπ =















φ
π++φ

π−√
2

i
φ
π+−φ

π−√
2

φπ0















, (I.2)

which transform under an infinitesimalSU(2)I rotation (parametrized by an isovectorε)

following,

ΨN → (1 − iε · τ/2)ΨN (I.3)

Φπ → Φπ − ε× Φπ. (I.4)

τ is a vector formed by Pauli matrices (the generators of transformations inSU(2)).

For a nucleonΨN in a pion fieldΦπ,

(i/∇−mN)ΨN (x) = g0iγ5(τ · Φπ(x))ΨN (x), (I.5)

which corresponds to the Dirac equation modified by a canonical transformation (“min-

imal substitution”) of the momentum operator,i/∇→ i/∇−g0iγ5(τ ·Φπ(x)), in analogy to what

is done for a charged particle in a electromagnetic field to account for interactions.γ5

ensures parity conservation, andgo is a coupling constant to be determined experimen-

tally. Similarly, as in electromagnetism in the presence ofa charged currentJem the

electromagnetic fieldA(x) obeys∇2A(x) = Jem(x), the pion field in the strong interaction

obeys,

(∇2 −m2
π)Φπ(x) = −g0Ψ̄N(x)iγ5τΨN (x), (I.6)

in which Ψ̄N(x)iγ5τΨN (x) is identified as the isotopic nucleon current. Eqs. (I.5) and (I.6)

are covariant underSU(2)I. The homogeneous versions of these equations correspond to

the Dirac and Klein-Gordon equations for a free nucleon and pion field respectively. In

a more formal treatment Eqs. (I.5) and (I.6) can be obtained after minimizing the action
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under the Lagrangian density

Ls =
1

2
[(∂µΦπ)(∂

µΦπ)−m2Φ2
π] +

[

iΨ̄N/∇ΨN −mΨ̄NΨN

]

− ig0Ψ̄Nγ
5τ · ΦπΨN ,

(I.7)

i.e., from

δS = δ

∫

d4xLs(ΨN , ∂µΨN , Ψ̄N ,Φπ, ∂µΦπ) = 0,

which yields the Euler-Lagrange Equations

∂µ
∂Ls

∂∂µΨ̄N

− ∂Ls

∂Ψ̄N

= 0,

resulting in Eq.I.5, and

∂µ
∂Ls

∂∂µΦπ

− ∂Ls

∂Φπ

= 0,

resulting in Eq.I.6.

The Lagrangian density in the form of Eq.(I.7) is invariant under the transformations

in Eq.(I.4). This symmetry in conjunction with Euler-Lagrange equations leads to

∂µ

(

∂Ls

∂∂µΨN

(

−i τ
2

)

ΨN −
∂Ls

∂∂µΦπ

× Φπ

)

= 0

in which the quantity in parentheses is identified as the conserved currentJµ corre-

sponding to theSU(2)I symmetry. Explicitly, from Eq.(I.7),

Jµ = 1/2Ψ̄NγµτΨN + (Φπ × ∂µΦπ) . (I.8)

FromJ0 we then obtain the three components of isotopic charge of the system,

I =

∫

d3xJ0 =

∫

d3x
[

1/2Ψ†
NτΨN + (Φπ × ∂0Φπ)

]

, (I.9)

which is a constant of motion. Because the Lagrangian density inEq.(I.7) should satisfy

the conservation of the electric charge, it should be also symmetric underU(1) transfor-
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mations on electrically charged fields,

ΨN → Ψ− i|ε|
(

1 + τ3
2

)

Ψ (I.10)

Φπ → Ψπ + ε× Φπ. (I.11)

It can be shown that from this symmetry it follows that the electrical charge of the

systemQ is a constant of motion as well. Likewise, the baryonic numberB,

B = 2(Q− I3)

is a constant of motion in interactions underLs in Eq.(I.7).

Scattering matrix The fact that the conservation ofB, I, andQ charges in strong in-

teractions is well established experimentally drew efforts into developing a field theory

of pions and nucleons based on a Lagrangian such as Eq.(I.7) and on the observed sym-

metries. The free parameters of such a theory according to Eq.(I.7) would in principle

be the nucleon and the pion masses, and the pion nucleon coupling constantg which

are experimental observables. A quantitative analysis is then developed to evaluate the

phenomenological accuracy ofLs. This is usually done by studying scattering processes

for which the cross section can be calculated from entries ofa scattering matrixSif .

The scattering matrix is the probability amplitude of a system (generally a mul-

tiparticle system)in an initial state in which there’s no interaction to evolve through

interaction into a final state also away from the region of interaction, i.e.,

Sif = LimT→∞ 〈φf , T |φi,−T 〉 , (I.12)

in whichφi andφf are solutions of equations such as the homogeneous versions of Eqs.

(I.5) and (I.6). In the Heisenberg picture (ses e.g. Ref [9]) Eq.(I.12) can be written

making explicit the role of a time evolution operator:

Sif = LimT→∞
〈

φf |T
[

e−iH(2T )
]

|φi

〉

, (I.13)
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in which the HamiltonianH is given as a function of the field operatorsφ(x) andπ(x) =

∂0φ(x) andT [...] stands for the time ordering of the product of operators in [...], e.g.,

T [φ(x)φ(y)] = θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x)

These products come from the expansion ofe−iH(φ)t. Because the initial and final states

in an scattering reaction are generally different, the nontrivial entries of theS matrix

become the entries of a transition matrixT which relate toS through

S = 1 + iT.

An invariant matrix elementM is then defined by removing the condition of 4-momentum

conservation, i.e.,

〈{pf}|iT|{pi}〉 = 2π4δ(
∑

pi −
∑

pf)iM({pi} → {pf}).

If the interaction is weak, the invariant matrix elements can be computed from the

lowest order terms of an expansion of Eq.(I.13). The terms of such expansion can be

graphically represented by Feynman Diagrams such as the oneshown in Fig.I.1. The

vertex factors are determined from the interaction terms ofthe Lagrangian or Hamilto-

nian, while the propagators or internal lines are obtained from the equations of motion

derived from the free Lagrangian. e.g., from

(q2 −m2)Gij
π (x, x

′) = δ(x− x′)δij

we obtain the pion propagator,

Gij
π (x, x

′) =

∫

d4q

(2π)4
e−iq(x−x′)Gij

π (q), (I.14)

in which

Gij
π (q) =

iδij

q2 −m2
π

(I.15)
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enters as a factor in calculatingM in momentum space, as illustrated in Fig.I.1. Ex-

ternal lines emerge from taking theT → ∞ limit in defining the scattering matrix as in

Eq.(I.13). The corresponding factors for external lines are corresponding representa-

tions in momentum space of solutions for the free equations of motion.

N

N’

ij
(q 2 −m 2 ) −1

N 5
i

N
(p)

N’ 5
j

N’
(p’)

π

Figure I.1: Nucleon Nucleon scattering through the one pion exchange
mechanism.

Feynman Diagrams The matrix elementsM for NN scattering through the pion

exchange mechanism are then computed based on an expansion in which the lowest

order term ing (of second order) is illustrated in Fig.(I.1). This term corresponds to

the one pion exchange (OPE) mechanism which is assumed in OPE models to suffi-

ciently well describe the interaction at large distances (r>2fm). From Fig.(I.1), M for

NN scattering within OPE can be expressed as,

− iMOPE = ig0Ψ̄N(p+ q)γ5τ
iΨN(p)

iδij

q2 −m2
π

ig0Ψ̄
′
N(p

′ − q)γ5τ iΨ′
N(p

′), (I.16)

in which iδij

q2−m2
π

is the pion’s propagator according to Eq. (I.14).

It is possible to obtain the interaction potential from Feynman diagrams in the non-

relativistic limit. For instance, a radial potential can bederived from an angular inte-

gration of the Fourier transform of the s-wave component of this scattering amplitude.
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It yields (see e.g. [8]),

Vs(r) = −2f 2

[

emπr

r
− 4π

m2
π

δ3(r)

]

, (I.17)

in which f 2 =
g20
4π

(

mπ

2M

)2. The first term in Eq.(I.17) corresponds to the Yukawa poten-

tial which properly describes the long-range attraction. Ashort-range repulsion is ac-

counted for by the Dirac delta term in Eq.(I.17). However, because of its nonrelativistic

character, Eq.(I.17) is only accurate for distances at which the Yukawa potential is ac-

curate. In such a region, the parameterf and consequentlyg0 can be set. It is found

that experimentallyg

4π

2 ∼ 14, i.e., theπN coupling constant is much larger than 1. The

use of a traditional expansion ofM in orders ofg0 is not well justified in this case; the

diagrams of higher order ing0 higher are not necessarily suppressed. Such diagrams

involve multiple pion exchanges and become more significantat smaller distances with

a contribution to theNN potential behaving as∼ e−nmπr in which n corresponds to the

number of pions exchanged.

Calculations for diagrams with two or more pion exchanges are considerably more

tedious and complicated and did not correlate well with experimental data. Alterna-

tively, it was argued that multiple uncorrelated pion exchanges contribute little to the the

NN force, and that instead additional heavier mesons in place of correlations between

the exchanging pions would explain theNN interaction at smaller distances. Particu-

larly, the short range repulsion and a spin orbit force arisenaturally by considering one

vector-meson exchange diagrams. Theρ andω vector mesons were discovered in the

early 60s as resonances of 2π and 3π states respectively. Both mesons have spin 1 and

isospins 1 and 0 respectively. Accordingly, their couplings to nucleon currents are of

the form

Ψ̂N

(

−gvγµφ(v)
µ −

fv
4M

σµν(∂µφ
(v)
ν − ∂νφ(v)

µ )

)

ΨN ,

which are added to the Lagrangian and/or Hamiltonian as interaction terms along with

the corresponding kinetic energy terms.

The strong attraction at the mid range of theNN force however requires the inclusion
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of yet another kind of meson. It was namedσ meson and should have 0 spin and 0

isospin, and a mass in the range of 400-800 MeV. The existence of such a meson has

not yet been established at least as a field particle in meson field theories. However,

many other mesons were discovered increasing the density ofdegrees of freedom of

the theory and consequently the number of interaction termsin the Lagrangian. Baryon

resonances of nucleons and mesons such as∆-isobars needed to be included as well

which contributed largely to the previously neglected uncorrelated multipion exchange

diagrams. The number of free parameters such as coupling constants grew dramatically

and soon the Isospin invariance together with the more fundamental symmetries (parity

and Lorentz invariance) did not seem to sufficiently constrainthe Lagrangian of the

theory to a limited form desired for a field theory of fundamental degrees of freedom

such as in QED (that has only one coupling constant).

Renormalization and the Landau pole The large number of free parameters meant

that the developing theory lacked predictive power. Speciallyin the short range in

which contributions other than the one meson exchange become relevant. This issues

and the fact that hadrons were shown to have internal structure restricted the validity

of the meson field theoretic approach to distances at which deviations from conceptual

structureless hadrons are negligible.

Furthermore, limitations to the perturbative approach also arise from divergences in

meson meson interaction diagrams such as the one shown in Fig. (I.2a). Such diver-

gences are dealt through renormalization schemes by isolating a divergent term from a

convergent part of the diagram and then introducing counterterms into the interaction

Lagrangian. These counter terms generate extra diagrams that cancel the divergent term

in the original diagram.

The renormalized Lagrangian is then used to redefine parameters such as mass, cou-

pling constant and wave function normalizations. Diagramsare then calculated using

the redefined parameters in following Feynman rules. A scale dependence for instance

is introduced in the renormalized or effective coupling constant ḡ. The value of this
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constant is now going to depend on the four momentum transfered at each vertex of a

diagram. It also depends on its valueg measured at some other scale. In the case of QED

g = e =
√
4πα, with α ≈ 1

137
measured at almost zero momentum transfer (Q2 = −q2 = µ2).

The renormalized QED coupling constant is shown to deviate little from this value for

a large range of energies. At the energy of the Z boson mass (90GeV),α ≈ 1/127. These

small values justify the use of perturbative expansions in powers ofα in the study of

numerous phenomena at many energy scales in QED. Nevertheless, in the asymptotic

limit (−q2 →∞), the value of the running coupling constant is given by:

α(Q2) =
α(µ2)

1− α(µ2)

3π
log
(

Q2

µ2

) (I.18)

which is not very useful at energy scales in whichα becomes greater than one, and of

not use at all once−q2 reaches the pole value (see e.g. Ref. [10]). For QED however,

α(Q2) increases very slowly from1/137, and the pole onα(Q2) is estimated to occur

at energies∼ 10100′sGeV , far beyond the Plank scale (∼ 1019GeV) and outside the energy

domain where physical phenomena can be currently studied. Just as in QED, in a meson

field theoretic approach to the strong interaction, treating divergent diagrams such as

Fig. (I.2a) requires adding counter terms to the Lagrangian that generate diagrams such

as Fig. (I.2b), and consequently a redefinition of the coupling constant (see Eq.(I.19))

that in the asymptotic limit just as Eq.(I.18), grows withQ2 and has a pole at some scale.

However, the measured coupling constant at low energies(∼ 100sMeV) is already much

larger than 1 (g2/4π ∼ 14), which leads to a near pole also atQ ∼ 100′s MeV, making an

issue of the convergence of an expansion of theS matrix in series of Feynman diagrams.

g =
g(µ)

1− 3g(µ)

16π2 log
Q

µ

(I.19)

Effective field Theories Due to the singularities discussed abuve, a meson field

theoretic approach to theNN force is not well suited for phenomena at energy scales of

few GeV. At these energies the internal structures of nucleons and mesons play more
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a) b)

4

Figure I.2: (a) Divergent fermion loop. (b) Counter term

explicit roles in their interaction that cannot be accounted for by using hadronic degrees

of freedom. More fundamental variables are sought for a theory of the strong interaction

that can be extended to all scales where the strong force is dominant. These variables

were later associated with the internal constituents of hadrons (quarks and gluons).

A new Lagrangian, the QCD Lagrangian, is constructed from terms involving quark

and gluonic fields, and from such a Lagrangian a consistent quantitative description

of strong interaction phenomena is expected to emerge for allenergy scales of inter-

est. It turns out that in working which such a Lagrangian, there is not an analytic way

of effectively computing observables at low energies. Instead, an effective field the-

ory is developed constructing a new Lagrangian with the sameglobal properties of the

QCD Lagrangian, such as its invariance under chiral transformations in the massless

quark limit. In this limit, these transformations flip the helicity of the quark fields. The

spontaneous breaking of such symmetry gives rise to a set of massless pseudoscalar

bosons which are identified with the lightest pseudoscalar mesons. It is also shown that

the masses of these mesons come from the explicit breaking of the chiral symmetry

when quark mass terms are added to the fermionic part of the QCD Lagrangian. Hence,

hadronic degrees of freedom emerge through spontaneous andexplicit symmetry break-

ing of the free quark Lagrangian.

An effective Lagrangian is accordingly written to group these effective hadronic

degrees of freedom and observables are computed through the resulting Feynman dia-

grams, which now are ordered in powers of (p2

Λχ
) where p is some external momentum,

andΛχ ∼1GeV is known as the chiral scale. A perturbative approach is then valid as

long as this parameter remains small, i.e., for energies of the order of hundreds MeV.
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Thus, again, the use of the hadronic degrees of freedom in the analytical computation

of observables based on a field theory is limited to a certain energy regime.

While the quark mass term in the effective Lagrangian break chiral symmetry, mass

differences between quark species breaksSU(2) isospin invariance. A larger,SU(3) flavor

symmetry, is also broken by these mass differences. This symmetry is suggested by the

discovery of hadrons with ‘strange’ decaying properties asit is described in the next

section. ‘Strange’ pseudoscalar mesons named kaons compliment pions to form the

group of eight light pseudoscalar mesons associated with theeight Goldstone bosons

emerging from the spontaneous breaking of chiralSU(3)R × SU(3)L symmetry.

Strangeness

In 1947 a new particle was discovered with the property of decaying into two hadrons

p andπ− at a rate much slower (half life∼ 10−10s) than typical decays through the strong

interaction (1020s). It was namedΛ0 and since the net number of baryons or baryon

number (B) was thought to be a conserved quantity regardless of the nature of an inter-

action, theΛ0 particle was concluded to be a baryon with a ‘strange’ decayingproperty

accordingly named “strangeness”. This property was also observed around the same

time in the discovery of a meson namedK which would decay into two pions, and in

the discovery of a set of three baryons calledΣ+, Σ− andΣ0 that ‘slowly’ decay into a

nucleon and a pion.

The half lives ofΛ, Σ andK are typical in weak interaction processes such as beta

and pion decays. Evidence of them taking part in strong interaction processes was

found through the discovery of a resonance (Σ(1385)) in the reactionK−p→ Λ0π+π−. The

ResonanceΣ(1385) decays into a finalΛπ system with a half live of∼ 10−22s which is

characteristic of the strong interaction. This reaction and many others involving strange

particles that followed were found to occur at these high rates. The common property

of these reactions was that if one strange particle was present in the initial state, one

strange particle will be present in the final state of the reaction as well. This is not the

case for the weak decays explored earlier.
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However, in some cases in which two or more strange particles were present in the

initial state of a strong reaction, the final state did not necessarily have the same number

of strange particles. This is the case for instance in the reaction

K0Λ0 → π−p. (I.20)

To infer a conservation law related to strangeness, a new additive quantum numberS

was introduced. As the baryonic number is positive for baryons and negative for an-

tibaryons, the strangeness quantum number can also take positive or negative values.

While for nucleonsS = 0, for K mesons (kaons)S = +1, and forΛ and Σ baryons

S = −1 with corresponding antihadrons having opposite strangeness. With this conven-

tion the empirical evidence shows that reactions under the strong interactions conserve

strangeness.

Naturally, to preserve isospin as a good quantum number, values for bothS andT

should be assigned to the discovered strange baryons supported by the empirical ev-

idence. TableI.1 shows these assignments along with corresponding masses(M) and

spin quantum numbersJ. It also includes the heavier baryon named “cascade” (Ξ) in

reference to the two step weak strange decay (Ξ → Λπ → Nππ) observed in its discovery

that generated a cascade of particles. This behavior is understood if forΞ, S = −2 which

is also consistent withS conservation in strong reactions involvingΞ.

SU(3) Flavor and the Quark Model

Table I.1 suggests the classification of the shown hadrons in families of isospin (I)

multiplets of a given strangeness (S). These multiplets coincide with dimensional rep-

resentations of theSU(2) group of unitary transformations. The dimension of the rep-

resentation would correspond to the number of particles in the multiplet. For instance,

the family of pions is a three dimensional representation ofSU(2), while the dimension

of theΞ multiplet is2.

The conservation of strangeness hinted to a larger symmetry group for the strong

interaction. The proposed group was theSU(3)-flavor symmetry group, of whichSU(2)
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Hadron M(GeV2) J B S I T

p 0.938 1
2

1 0 1
2

+1
2

n 0.940 1
2

1 0 1
2
− 1

2

Λ 1.116 1
2

1 -1 0 0

Σ+ 1.189 1
2

1 -1 1 +1

Σ0 1.192 1
2

1 -1 1 0

Σ− 1.197 1
2

1 -1 1 −1
Ξ0 1.315 1

2
1 -2 1

2
− 1

2

Ξ− 1.322 1
2

1 -2 1
2

+ 1
2

π+ 0.140 0 0 0 1 +1

π0 0.135 0 0 0 1 0

π− 0.140 0 0 0 1 −1
K+ 0.494 0 0 1 1

2
+ 1

2

K0 0.498 0 0 1 1
2
− 1

2

K̄0 0.494 0 0 -1 1
2

+ 1
2

K− 0.494 0 0 -1 1
2
− 1

2

Table I.1: Hadron Families

was a subgroup. While the fundamental representation ofSU(2) is two dimensional,

which is realized in the nucleon and cascade duplets in TableI.1, the dimension of

the fundamental representation forSU(3) is 3. And while the two states in theSU(2)I-

fundamental representation are labeledu (or up for T = +1/2) andd (or down for T = −1/2),

the states in the fundamental representation ofSU(3)f are labeledu, d ands.

The baryons in TableI.1 can be arranged in a eight-dimensional representation of

SU(3) as represented in the inI3, Y -plane (withY = S +B andI3 = T ) Fig.I.3. Because of

the mass differences between baryons, this symmetry is actually broken. This octet is

part of the representations from arising from combining threeSU(3) fundamental repre-

sentations,3⊗3⊗3=3⊗(6⊕3*)=10S⊕8MS⊕8MA⊕1 (see e.g. [11]). Sub-indexesS, A andM

stand for symmetric, antisymmetric and mixed under the interchange of flavors.

TheJ = 3/2 baryons were later presumed to form the 10-dimensional representation

of SU(3) allowed in3⊗3⊗3. This picture was completed by the discovery of a baryon

with S = −3 (Ω−) in 1964.

The pion triplet in TableI.1 is built from a combination of the isospin doublet2,

and its conjugate representation which explains the presence of antimesons to complete

the triplet,2⊗2*=3⊕1. In SU(3) with the same idea, the mesons should be arranged in
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Σ+Σ−

Σ0

Λ0

Y

T

Ξ0 Ξ+

pn
1

−1

−1/2 +1/2

J=1/2

Figure I.3: Baryon octet

Σ+*Σ−*
Σ0*

Y

T

Ξ0* Ξ+*

∆+∆0

1

−1

−1/2 +1/2

Ω−

∆− ∆++

J=3/2

−2

−3/2 +3/2

Figure I.4: Baryon decuplet
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multiplets from3⊗3*=8⊕1. This structure corresponds to a 8-dimensional multiplet and

a singlet. The mesonsη andη′ were discovered in 1961, and join the mesons in Table

I.1 to complete the8 and1 representations as shown in Fig.I.5. Here,SU(3) is broken

by the mass difference between the mesons.

π+π−

π0

η

Y

T

K− K0

K+K0

1

−1

−1/2 +1/2

η’

J=0

Figure I.5: Meson nonet

Despite the elegance of associating the hadron families with representations of a

symmetry group, there was not a concrete explanation of why only some of theSU(3)

representations were realized in nature. In particular, why there was not a hadron family

associated with the fundamental representation ofSU(3) (i.e. 3) as it was the case for

SU(2)I.

Gell-Mann [12] and Zweig [13] suggested in 1964 that this family of particles ex-

ists. They were named quarks, and it was further proposed thathadrons were actually

systems of confined quarks from which they attain their intrinsic properties. The par-

ticles in this fundamentalSU(3) triplet are named after their flavorsu, d ands, and as

it’s illustrated in Fig.I.6, their baryon numbers areB = 1/3, andB = −1/3 for their cor-

responding antiparticles in the conjugate representation. Then in accordance with the

group theory formalism of representations, baryons are nowstates of a system made up

of three quarks3⊗3⊗3, and mesons are states of a system of a quark and and antiquark

(from the conjugate of the fundamental representation)3⊗3∗. This way the hadrons’

baryonic numbers result from the sum of their respective constituent quarks’ baryonic
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numbers.

Y

T

J=1/2

s
1

−1

−1/2 +1/2

u d
s

ud

1

−1

−1/2 +1/2

Figure I.6: Quarks inSU(3)f fundamental representation

The hadrons’ spin states should now come from the combination ofthe spin states

of their two or three constituent quarks. In the language of representations, they are

multiplets of dimensions allowed by2⊗2 for mesons, and2⊗2⊗2 for baryons, where

2 is the fundamental representation ofSU(2)-spin. The allowed multiplets are1⊕3 for

mesons and2MS
⊕2MA

⊕4 for baryons (MS andMA means symmetric and antisymmetric

with respect to the exchange of the spins of the first two quarks) . This means that

mesons can be grouped in multiplets of spinJ = 0 andJ = 1, while baryons are grouped

in two multiplets of spinJ = 1/2 and one withJ = 3/2.

TheseSU(2)-spin representations are then combined with theSU(3)f representations

to fully characterize a hadronic (|h〉) state in terms of its constituent quarks’ states

(|qq...〉). For instance in the Bras-Kets notation a meson|m〉 or a baryon|b〉 with defined

spin and flavor numbers is expanded in|qq̄〉 or |qqq〉 respectively according to:

|h(J, Jz, I, T, Y )〉 =
∑

Jz1,Jz2,T1,T2,Y1,Y2

CJ,Jz

Jz1,Jz2
CI,T,Y

T1,T2,Y1,Y2
× |q1q̄2〉,

(I.21)

and

|b(J, Jz, I, T, Y )〉 =
∑

Jz1,Jz2,Jz3,T1,T2,T3,Y1,Y2,Y3

CJ,Jz

Jz1,Jz2,Jz3
CI,T,Y

T1,T2,T3,Y1,Y2,Y3
× |q1q2q3〉,

(I.22)
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where

qi = q(Jzi, Ti, Yi),

and the coefficientsC are Clebsch-Gordan coefficients of the expansion. The labeling

of CI,T,Y is simplified understanding that there is an additional dependency from the la-

beling of the hadron’s multiplet, i.e., a pair of numbers (p,q) analogous toJ in SU(2)

that define a representation inSU(3)f . The values of theC coefficients for bothSU(2)-

spin andSU(3)-flavor also depend on the symmetry properties of the spin and flavor

representations of|h〉, i.e., the sub indexesS, A, andM . Then, the combined represen-

tation (SU(2),SU(3)) of which |h〉 is part of inherits a symmetry subindex as well from

the product of the symmetries of the spin and flavor representations: For instance, the

Symmetric: (S, S) (M,M) (A,A)

Antisymmetric: (S,A) (M,M) (A,S)

Mixed: (S,M) (M,S) (M,M) (M,A) (A,M)

Table I.2: Symmetry of (SU(2), SU(3)) representations.

baryon decuplet is symmetric only in the spin-flavor combination (4,10). In fact, the

only symmetric combined representations of ((2⊗2⊗2),(3⊗3⊗3)) are in (2,8) and (4,10),

which correspond to the observed baryonJ = 1/2 octet andJ = 3/2 decuplet. How-

ever, if as assumed quarks are fermions, according to Pauli’s principle they should only

form antisymmetric states, therefore in principle a combination such as (4,10) should

not exists for baryons. The contradiction is more explicit inbaryons such as the∆++

resonance. In its ground state|J = 3/2, Jz = +3/2〉, all its constituent quarks are in the

same state (|u(J = 1/2, Jz = +1/2)〉), which is forbidden for identical fermions regardless

of the exactness ofSU(3)f . The anomaly was later resolved by introducing the concept

of color charge which eventually led to the formulation of quantum chromodynamics

(QCD), the fundamental theory of the strong interaction.

The Parton Model

Aside from the conflict between the idea of fermionic quarks and the exclusion prin-

ciple, at the time there was not yet direct empirical evidence of their existence as real
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particles. The phenomenological successes of theSU(3)f model in describing the hadron

spectrum did not require quarks to be real particles. However, if in fact they exist and

are the building blocks of hadrons, the strong interaction should be more fundamen-

tally described through a theory of interactions between quarks. In this light, nucleons,

and hadrons in general are composite systems of more elemental particles. The dis-

crete nature of their structure was later revealed through experiments in deep inelastic

scattering.

From inelastic proton-proton scattering experiments it was observed that most of the

hadrons emerging from the collision were vastly produced collinear with the collision

axis. The strong suppression at large angles hints that the collision evolves in a very

weakly interacting or dilute medium.

Deep inelastic electron proton scattering experiments however showed that high en-

ergy electrons have a large probability of scattering off protons with a significant en-

ergy and momentum transfer. This meant that electrons were being deflected through

the interaction with very localized concentrations of charge within the proton. In the

Hadrons

q

k

P

proton

electron

Figure I.7: Deep inelastic scattering

parton model proposed by Feynman in 1969 (see Refs.[14] and [15]), the electrons in-

teract incoherently with nearly structureless particle-like entities named partons inside

the hadrons. The incoherence of this interaction is better understood in a reference

frame where the hadron’s longitudinal momentumP → ∞ accordingly named infinite

momentum frame. Having that in the rest frame, partons inside the hadron interact
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by exchanging finite energy and momentum, their interactiontimes are finite as well.

Then, when boosted to this “infinite momentum” frame the interaction time between

partons is extremely dilated such that they appear basically free to the electromagnetic

probe.

k k’

p
q

P parton

proton

electron

Figure I.8: Parton picture of electron hadron interaction in DIS

Scaling in DIS

In the parton model developed by Bjorken and Paschos [16], the cross section fore+p→

e′ + X is constructed from the cross section of an elementary electronparton elastic

scattering (see Fig.(I.8)). Assuming that such parton of some specie (flavor, spin,...)i

is a fermion (qi), the invariant amplitude for this elementary scattering is obtained using

Feynman rules and for the spin averaged squared amplitude wehave,

¯|M
eqi→eqi

| = 8e4Q2
i

t2

(

ŝ2 + û2

4

)

, (I.23)

in which eQi is the electric charge of the struck partonqi, and the invariantŝs, t̂, andû are

the Mandelstam variables for this subprocess:

ŝ = (p+ k)2 t̂ = (k − k′)2 = q2

û = (p− k′)2 (I.24)
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such that in the massless limit they satisfyŝ + t̂ + û = 0. Then, for the differential cross

section we have,

dσeqi→eqi

dt̂
=

1

16πs
¯|M|2

=
2πα2Q2

i

ŝ2

(

ŝ2 + (ŝ+ t̂)2

t̂2

)

. (I.25)

The invariantŝs, t̂, and û defined in Eq. (??) can be related to the Mandelstam

variabless = (P + k)2, t = (k− k′)2 andu = (P − k′)2 defined for thee+ p→ e+X reaction by

assuming that the parton’s momentum is collinear with the proton’s momentum. Then,

definingξ such thatp = ξP in the infinite momentum frame, we have that,

ŝ = ξs t̂ = t, (I.26)

in which ξ can be related to experimental variables. In the massless limit, for the parton

we have that,

0 ≈ (p+ q)2 = 2p · q + q2 = 2ξP · q + q2.

Then withQ2 = −q2,

ξ = x ≡ Q2

2P · q , (I.27)

that in the lab reference frame corresponds tox = Q2

2Mpq0
. Equation (I.25) then corre-

sponds to the differential cross section for an electron scattering off a quasi free parton

of speciei concentratingx times the momentum of its parent proton (measured in the

infinite momentum frame).

Eq.(I.25) can now be written in terms of measurables, Q2, andx as,

dσeqi→eqi

dQ2
=

2πα2Q2
i

Q4

(

1 +

(

1− Q2

xs

)2
)

(I.28)

Thus, Eq.(I.28) is the contribution toe+ p→ e+X from the scattering of the electron

from any single parton of speciei and momentum fractionx. The total contribution of
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partons of speciei and momentum fractionx is going to be weighed by the probability

fi(x) of finding one of such parton in the proton.

To obtain the differential cross section for thee + p → e + X reaction, Eq.(I.28) is

weighed byfi(x), summed over all parton species and integrated over all momentum

fractionsx to yield,

dσ

dQ2
=

∫

dx
∑

i

fi(x)
dσeqi→eqi

dQ2

=

∫

dx
∑

i

fi(x)Q
2
i

2πα2

Q4

(

1 +

(

1− Q2

xs

)2
)

, (I.29)

On the other hand, from general principles the differentialcross section of the inclusive

reactione+ p→ e+X can be expressed as follows,

dσ

dQ2
=

∫

dx
4πα2

Q4

(

y2F1(x,Q
2) +

(

1− y −
M 2

px
2y2

Q2

)

F2(x,Q
2)

x

)

, (I.30)

in which F1 andF2 are inelastic structure functions, andy = P ·q
P ·k . In the larges limit

(s >> Mp, y ≈ Q2

sx
), comparing Eq.(I.29) and Eq.(I.30) one obtains

2xF1(x,Q
2) = F2(x,Q

2) =
∑

i

Q2
ixfi(x). (I.31)

The first equality is well supported by experiments. It is known as the Callan-Gross

relation, and is a consequence of the partons having spin1
2
. Then, as it follows from

Eq.(I.31), the inelastic structure functions, that can be extracted experimentally, are

expected to become independent ofQ2 within the parton model. This independence is

referred as Bjorken scaling. Such prediction was confirmed in1969 by the SLAC-MIT

experiment in which the scaling behavior expected from Eq.(I.29) was confirmed for

1GeV2 < Q2 < 8GeV2.

The experimental confirmation of the Bjorken scaling inep → eX scattering seemed

to validate the picture of the nucleon to be a collection of almost free constituents (par-

tons) as seen by a hard electromagnetic probe. Partons are then identified with the

quarks introduced in the previous section, and the parton’sspeciei is associated with
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Figure I.9: Bjorken Scaling emerges from the the electron’sincoherent scat-
tering of the proton’s partons in DIS

the quark’s flavor. However, the observed scaling contradicts a quantum field theory

that would describe the interaction between these quarks. Since they do interact to be

bound in nucleons, even at the smallest distances they are expected to exchange field

quanta and deviations from a scaling pattern were to be expected instead.

The above mentioned conflict was resolved in the 1970’s by the discovery of field

theories in which the interaction is characterized by asymptotic freedom (the strength

of the interaction decreases asQ2 increases). Such behavior was discovered as a result

of the regularization of diverging diagrams that, similar to QED andφ4 field theories, in-

troduces aQ2 dependence in the redefinition of the coupling constant. However, unlike

QED andφ4, the value of the running coupling constant in these new theoriescan de-

crease to zero asQ2 →∞. This feature favors the main assumption of the parton model,

namely that at very short distances the interaction betweenthe partons in the nucleon

is negligible. Nevertheless, deviations from scaling in DIS are still expected from a fi-

nite probability of field quanta emission by the probed quark. They become significant

for largerQ2 or for smallerx than those reached by the SLAC-MIT experiment. Such

violations of Bjorken scaling can be systematically studied through perturbation theory

thanks to the smallness of the coupling constant.

Quarks now become the fundamental fermions in a quantum field theory that de-

scribes the strong force, while hadrons become multiquark systems bounded by their

interaction under such force. As described in the followingsection such interaction not

only binds quarks inside hadrons, but it also solves the apparent contradiction between

the fermionic nature of quarks and the exclusion principle.
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Color Charge and QCD

In order to keep quarks as fermions and for them to obey Pauli’s statistics, Greenberg

proposed in 1964 [17] that a group of seemingly identical quarks should differ at least in

a hidden quantum number for them to form a ground state hadron. This hidden quantum

number was named ‘color’ or color charge, and its hidden property means that it cannot

be observed, or that it cannot be probed in any observed particle. This proposition is

in agreement with the fact that theSU(3)f fundamental representation is not realized

in nature, if it’s assumed that quarks have a nonzero color charge. Since quarks are

‘colored’ objects, they have to be confined within colorlesssystems such as hadrons.

In the language of representations, quarks are color non-singlets that combine to

form the color singlet hadrons. A meson for instance is formed by a quark of colorc

and an antiquark of color−c such that the total color of the system is 0 . For a baryon

where the color charges of its quarks arec1, c2, and c3 we have thatc1 + c2 + c3 = 0.

Then, a quark within the baryon could carry any color chargec provided that the color

charges of the other two balance it through the above relation. The smaller number of

independent options forc is 3, thus a quark may be on one of three color states or on a

linear combination of three states traditionally labeledR, G andB afterred, green andblue

in analogy with theory of colors where the combination of red, green and blue yields

white.

The special unitary groupSU(3) is then the simpler choice to represent a quark color

state. These states then belong to the fundamental representation of SU(3)-color or 3.

Now, a system of a colored quark and an anticolored antiquarkcan be represented by

3⊗3∗=1⊕8 as discussed earlier regardingSU(3)-flavor. Likewise, three colored quark

states are represented by3⊗3⊗3=1⊕8⊕8⊕10. Unlike SU(3)-flavor, only the singlets (1)

are observed in nature.

The e+ e+ → Hadrons reaction

As opposed toSU(3)-flavor,SU(3)-color is an exact symmetry. While a quark in a flavor

state has specific mass and charge, it’s color state is independent of any other intrin-
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Figure I.10: Elementary particle picture ofe−e+ → Hadrons

sic property. The absence of color nonsinglets constrains direct evidence for this color

degree of freedom hence direct evidence of this symmetry. Indirect evidence however

is found in experiments in electron positron collisions where the energy from the anni-

hilation creates multiple hadrons emerging from such collisions. The mechanism that

creates these hadrons should start with the creation of a quark (q) and an antiquark (q̄)

from a photon to which thee, e+ pair fused to. Theq and q̄ pair is created with enough

center of mass (c.m.) energy, that it can create moreqq̄ pairs from the vacuum ultimately

hadronizing before reaching the detectors. As it is assumedin the parton model of DIS,

for e−e+ → hadrons the dynamics of the reaction is mainly dictated by the elementary

subprocesse−e+ → qiq̄i, whose total cross section in the massless limit differs from that

of e−e+ → µ−µ+ only by a electric charge factorQi and by a color charge factor. Summing

over all the possible color states ofq in the colorlessqq̄ system, this color charge factor

is 3, thus,

σ(e−e+ → qiq̄i) = 3Q2
iσ(e

−e+ → µ−µ+), (I.32)

and summing over all possible quark flavorsi in order to obtain the total cross section

for e−e+ → hadrons,

σ(e−e+ → hadrons) =
∑

i

σ(e−e+ → qiq̄i)
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= 3
∑

i

Q2
iσ(e

−e+ → µ−µ+). (I.33)

Then, the existence of aSU(3) color degree of freedom implies that

R ≡ σ(e−e+ → hadrons)

σ(e−e+ → µ−µ+)
= 3

∑

i

Q2
i (I.34)

The ratioR then depends on the number of quark flavors that can be producedin the

elementary pair creation. The number depends on the center of mass energy of thee−e+

system. If the center of mass (c.m.) energy equals the mass ofthe lightestqq̄ bound state

for a given quark flavor, that flavor enters in the sum in Eq.(I.34). Then, for different

flavor families we have,

R =
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)2
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(
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)2
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)2
]

= 2 for u, d, s

2 + 3
(

2
3

)2
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3
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(
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)2
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(I.35)

A comparison of Eq.(I.35) with experimental data is illustrated in Fig.(I.11). The agree-

ment improves as the center of mass energy√
s increases far from the flavor threshold

resonances regions. A description for such regions would involve more complex mech-

anisms than the one discussed here. The results displayed inFig.(I.11) strongly suggest

the existence of a 3-degenerated color degree of freedom which consequently reinforces

the parton-quark picture of hadronic structure.

However, the main motivation for the study of hadronic structure, understanding the

fundamental origin of the strong nuclear force, requires a description of how quarks,

the elementary constituents of hadrons, interact. As described so far, evidence of the

existence of these elementary particles is based on the notionof noninteracting mul-

tiquark configurations, but as mentioned earlier such configurations are possible as an

asymptotic limit in a field theory describing interactions between quarks. Just as QED

describes interactions involving electrical charged particles and photons, this field the-

ory describes interactions of color-charged quarks and thecorresponding field quanta.

Like photons in QED, these field quanta are bosons and they couple to corresponding
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Figure I.11: World data one+e− → hadrons cross sections (top) andR (botton)
as a function of the center of mass energy (

√

(s)) of the system [18].

color-charged currents, thus the name Quantum Chromodynamics (QCD) for this field

theory.

Gauge Field Theory of Quarks and Gluons

The QCD field quanta are known as gluons, from the expectation thatthe force emerg-

ing from quarks emitting/absorbing gluons binds (glues) them to form hadrons. Just as

pions, the field quanta of the previously studiedSU(2)isospin meson field theory, carried

isospin charge and formed a 3-dimensional representation of SU(2)isospin, gluons carry

color-charge and correspond to a 8-dimensional representation of SU(3)color. Unlike pi-

ons which are pseudo-scalar (spin 0) fields, and like photons, gluons are vector (spin

1) fields. Taking these considerations into account when writing representations of the

elements of the quark gluon field theory, we have that for a quark field of a given flavor,

taking into account color degrees of freedom,

q(x) = φq(x)















q1

q2

q3















, (I.36)
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while a gluon field is represented by,

Gµ(x) = {Gµ
i (x)} (I.37)

in which (i=1,...8). Under a globalSU(3)color transformation,

q(x)→ q′(x) = e
−iθiλi

2 q

¯q(x)→ ¯q′(x) = ¯q(x)e
iθiλi

2 , (I.38)

in which {θi} is a set of 8 real constant parameters.{λi} are the Gell-Mann matrices, the

generators of theSU(3) group of transformations that as Pauli matrices inSU(2) satisfy

the commutation relations

[

λi

2
,
λj

2

]

= if ijk λk

2
(I.39)

and the normalization condition,

tr (λiλj) = 2δij (I.40)

.

The Lagrangian density for a noninteracting quark field,

L = q̄(x) (i/∇−m) q(x) (I.41)

is invariant under the transformations in Eq.(I.38). Quark-gluon dynamics arises how-

ever if we require the Lagrangian of the theory to be invariant under localSU(3) trans-

formations,U(x), i.e., if a space-time dependency is introduced in the set of parameters

θ in Eq.(I.38). Then,

q(x)→ q′(x) = U(x)q(x) = e
−iθi(x)λi

2 q

¯q(x)→ ¯q′(x) = ¯q(x)U−1(x) = q̄e
iθi(x)λi

2 . (I.42)

The Lagrangian densityL in Eq.(I.41) is not invariant under these transformations. This
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is because of the differential operator∇ acting on the parametersθ(x) which generates

extra terms in the transformed Lagrangian. However, if a newLagrangian is built from

Eq.(I.41) by replacing∇ with

Dµ ≡ ∂µ − ig
λi

2
Gi

µ(x), (I.43)

thus obtaining,

LI = q̄(x) (i/D−m) q(x). (I.44)

Having that under the localSU(3) transformation of Eq.(I.42),

λiGi
µ(x)→ U(x)λiGi

µ(x)U
−1(x)− i

g
[∂µU(x)]U−1(x), (I.45)

the new Lagrangian densityLI in Eq.(I.44) is then invariant under localSU(3) trans-

formations, since Eq.(I.45) guarantees thatDq(x), known as the covariant derivative of

q(x), transforms by the same rule asq(x). Equation (I.45) is known as aSU(3) gauge

transformation onGµ(x), andGµ
i (x) are known as gauge fields which then are chosen to

represent gluons. Thus,Dq introduces a quark-gluon interaction term (q̄γλGq) in a local

SU(3) invariant Lagrangian. A special case,U(1) gauge transformations correspond to

the local gauge symmetry of the QED Lagrangian that gives riseto the photon fermion

interaction1.

As it stands, Eq.(I.44) accounts for the dynamics of the quark field. However just as

in QEDGmu fields by themselves should contribute to the total Lagrangian. They do so

through the gauge invariant term,

Lg = −1

4
F i

µνF
µν
i (I.46)

in which,

λi

2
F i

µν = ∂µ
λi

2
Gi

µ − ∂ν
λi

2
Gi

µ − ig
[

λi

2
,
λj

2

]

Gi
µG

j
ν . (I.47)

1See e.g. Refs, [9] and [19] for a complete introduction of gauge field theories and their quantization
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Because of the Abelian nature ofU(1), in QED the third term in Eq.(I.47) is zero. In

QED, Fµν is recognized as the electromagnetic tensor, and classically theequations of

motion obtained from Eq.(I.46) yield the homogeneous or free Maxwell equations for

electric and magnetic fields.

For QCD on the other hand, from Eq.(I.39), the commutator term in Eq.(I.47) is not

zero andFµν is not a linear function ofGµ. Consequently, Eq.(I.46) introducesgGG∂µG

andg2GGGG terms in the total Lagrangian which now takes the following form,

L = q̄(x) (iγµ∂µ −m) q(x) + gq̄(x)γµ λ
i

2
Gi

µ(x)q(x) −
1

4
F i

µνF
µν
i . (I.48)

These three-gluon and four-gluon fields terms give then riseto elementary interactions

between gluons at the lowest an the next to lowest order expansions in the coupling con-

stant (αs = g2

4π
) in the perturbative approach to QCD’s elementary processes. Fig.(I.12)

illustrates the building blocks for such interactions according to Eqs.(I.47) and (I.48).

In contrast, from a QED Lagrangian, only an analogous to the first vertex in Fig.(I.12)

is present.

q

g

(a) (b) (c)

~ gQCD
~gQCD ~g2

QCD

Figure I.12: Elementary interactions inLQCD. (b) and (c) are introduced by
L} (Eq.(I.46) from the nonabelian nature ofSU(3)color

Asymptotic Freedom and pQCD

In perturbation theory, the expansion of QCD observables in Feynman diagrams in-

volves loop contributions such as those to the gluon propagator displayed in Fig.(I.13).

Factors corresponding to the tree-gluon vertex in Fig.(I.12) generate the gluon loop di-

agram correction to the gluons Green’s function. As it is thecase for QED, for QCD,

these contributions diverge individually, with such divergences emerging from the in-

tegration over all momentum space of the loop momentum variable not fixed by 4-
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momentum conservation. Thus, as discussed earlier, through renormalization schemes

these divergences can be absorbed in the redefinition of the parameters of the theory

such that the methodology of perturbative expansions in Feynman diagrams can be

safely applied.

Figure I.13: Contributions to the gluon propagator. The loopdiagrams are
divergent, and their regularization leads to theQ2 dependence in the redefi-
nition of the coupling constant (Eq.(I.49)).

A scale dependence is then introduced in the redefinition of theQCD’s coupling

constant. In the largeQ2 limit it’s found that at the one loop correction,

αs(Q
2) =

α(µ2)

1 + α(µ2)

12π
(33− 2nf)log

(

Q2

µ2

) , (I.49)

in whichα(µ2) is the value of the coupling constant measured at some scaleµ2, andnf is

the number of quark flavors in the theory. With the substitution,

Λ2 ≡ µ2exp

[ −12π
(33− 2nf)αs(µ2)

]

, (I.50)

Eq.(I.49) can be rewritten,

αs(Q
2) =

12π

(33− 2nf)log
(

Q2

Λ2

) . (I.51)

Unlike α for QED in Eq.(I.18), provided thatnf ≤ 16, αs for QCD in Eq.(I.51) decreases

towards zero asQ2 → ∞. Thus, the interaction mediated by gluon exchanges grows

weaker as the distance between the interacting particles becomes smaller. This property

is known as Asymptotic Freedom and its discovery by David Gross, Frank Wilczek [20]

and David Politzer [21] in the 1970’s validated within the framework of a field theory

the main assumption on which the earlier parton model successfully described phe-

nomena such as scaling inep → eX. Namely, that to a electromagnetic probe with high

36

Introduction/IntroductionFigs/qcdren.eps


resolution (largeQ2) quarks deep inside the nucleon behave basically as free particles.

Quantum chromodynamics then provides an important feature inunderstanding prop-

erties of hadronic structure. It also provides a methodology for examining corrections

to results predicted within the parton model approximation. Equation (I.49) is valid

for momentum energy scales at whichαs < 1. For such momentum-energy regime,

the use of perturbation theory at the elementary particle level is well justified. There-

fore, corrections to results from the parton model arise from calculable diagrams of

gluon emissions by the struck parton. For instance, the leading order correction to the

structure functionF2 is of orderααs and it comes from the superposition of the gluon

emission diagrams in Fig.(I.14). The quark emerging from the second or third diagrams

p

zp zp

(a) (b) (c)

Figure I.14: (a) quark-photon interaction controlling theQ2 dependence inep
DIS. (b) and (c) gluon emission diagrams introducing aQ2 dependence inF2

and braking the scaling in Eq.(I.31).

carries a fractionz of the momentum of the initial parton. Unlike the situation in the

first diagram, this quark can also carry transverse momentumrelative to the virtual pho-

ton’s in the infinite momentum frame. This transverse momentum is balanced by the

transverse momentum of the emitted gluon to recover the zerotransversity of the initial

quark. Therefore, The elementary cross sections of theseγ∗q → gq subprocesses are de-

pendent on thisz momentum fraction, and on the transverse momentum that the quark

acquires after emitting the gluon. After integrating over all possible values allowed for

this transverse momentum, we have that;

σ̂(γ∗q → gq) = αQ2
i σ̂0

∫ (p⊥)max

µ2

dp2⊥
p2⊥

αs

2π
Pqq(z)

= αQ2
i σ̂0

αs

2π
Pqq(z)log

(

Q2

µ2

)

(I.52)

whereσ̂0 = 4π2α/ŝ, andPqq(z) =
4
3

1+z2

1−z
is called splitting function and represents the prob-
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ability of a quark emitting a gluon that carries a1 − z fraction of the parent quark’s

momentum.

For the second line in Eq.(I.52) it is used that

(p2⊥)max =
ŝ

4
= Q2 1− z

4z
,

and aµ cut off is introduced to regularize the divergence whenp⊥ → 0. Thus, as opposed

to the parton model approximation, QCD predicted gluon emissions introduced aQ2

dependence in the elementary parton electron interaction.As a result, the structure

functions are corrected as follows,

F2(x,Q
2)

x
=
∑

q

e2q (q(x) + ∆q(x,Q2)) , (I.53)

with

∆q(x,Q2) =
αs

2π
log

(

Q2

µ2

)∫ 1

x

dy

y
q(y)Pqq

(

x

y

)

. (I.54)

The parton model limit is met when the above fluctuation is negligible.Then,q(x) = fq(x)

and Eq.(I.31) is recovered from the general form,

F2(x,Q
2)

x
=
∑

q

e2qq(x,Q
2). (I.55)

Experimental data onF2 is shown in Fig.(I.15). Deviations from scaling behavior ofF2

are observed across values ofx being more dramatic at smallx at which asQ2 increases

the structure function increases as well. The structure functionF2 scales approximately

in the region0.2 < x < 0.3, while for largerx it slowly decreases with increasingQ2.

Equation (I.54) can be rewritten to formally exhibit theQ2 evolution of the distribution

functionsq(x,Q2) (see e.g. Ref. [22]),

d

dlogQ2
q(x,Q2) =

αs

2π

∫ 1

x

dy

y
q(y,Q2)Pqq

(

x

y

)

. (I.56)

Thus, from the preexisting knowledge of an experimentally extracted distribution func-

tion for some fixedQ2 = Q2
0, through Eq.(I.56), q(x,Q2) can be computed for any large

38



1 10 100 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1 1 10 100

0.6

0.4

0.8

1

1.2

1.4

1.6

1.8

Proton

BCDMS

E665

NMC

SLAC

x = 0.0009

x = 0.00125

x = 0.00175

x = 0.0025

x = 0.004

x = 0.005

x = 0.007

x = 0.008

x = 0.009

x = 0.0125

x = 0.0175

x = 0.025

x = 0.035

x = 0.05

x = 0.07

x = 0.09

x = 0.10

x = 0.11

x = 0.14

x = 0.18

x = 0.225

x = 0.275

x = 0.35

x = 0.45

x = 0.50
x = 0.55

x = 0.65

x = 0.75

x = 0.85

F
2
(x

,Q
2
) 

+ 
c(

x
)

F
2
(x

,Q
2
) 

+ 
c(

x
)

Q2  (GeV/c)2 Q2  (GeV/c)2

Figure I.15:Q2 behavior ofF2. Figure taken from Ref. [23]

value ofQ2. The evolution from this fixedQ2
0 is dominated by theQ2 dependence ofαs,

i.e., q(x,Q2) evolves logarithmically withQ2, and thus, for largeQ2 the deviation from

scaling is rather a subtle effect as can be seen in Fig.(I.15).

Equation (I.56) is further corrected by considering that the struck quark mayhave

come from a quark-antiquark splitting of a prexisting gluonin the proton. The con-

tribution from pair creation toq(x,Q2) depends on a preexisting distribution of gluons

(g(x,Q2)). Then, Eq.(I.56) becomes

d

dlogQ2
q(x,Q2) =

αs

2π

∫ 1

x

dy

y

(

q(y,Q2)Pqq

(

x

y

)

+ g(y,Q2)Pqg

(

x

y

))

, (I.57)

in which the splitting functionPqg = z2+(1−z)2

2
represents the probability for the struck

quark to carry az fraction of the momentum of the initial gluon. The functionPqg(z) can

be obtained from the cross section of the subprocessγ∗g → qq̄ in the same way thatPqq(z)

is obtained from the cross section of the subprocessγ∗q → gq.

Solving Eq.(I.57) requires knowingg(x,Q2). Because gluon sources in the nucleon

are both quark and preexistent gluons an evolution equationanalogous to Eq.(I.57) can
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be derived through the same methodology forg(x,Q2) yielding

d

dlogQ2
g(x,Q2) =

∑

q

αs

2π

∫ 1

x

dy

y

(

q(y,Q2)Pgq

(

x

y

)

+ g(y,Q2)Pgg

(

x

y

))

, (I.58)

in which the splitting functionsPgq(z) andPgg(z) can be obtained from elementary dia-

grams of a gluon emitted with az momentum fraction of parent quark or a parent gluon

respectively. In all we have forz < 1 the following splitting functions

Pqq(z) = Pgq(1− z) =
4

3

1 + z2

1− z

Pqg(z) =
z2 + (1− z)2

2

Pgg(z) = 6

(

1− z
z

+
z

1− z + z(1− z)
)

. (I.59)

The equations (I.57andI.58) are known as the DGLAP (Dokshitzer [24],Gribov and

Lipatov [25], and Altarelli-Parisi [26]) QCD evolution equations, and they describe the

internal longitudinal momentum structure of the nucleon asit evolves in the largeQ2

region.

Going back to Eq.(I.29), to account for the evolution of parton distributions withQ2,

the cross section forep→ eX is corrected to

dσ

dQ2
=

∫

dx
∑

q

q(x,Q2)
dσeq→eq(x,Q

2)

dQ2
. (I.60)

The evolution equations show that the factorization impliedin the parton model is val-

idated by the slow evolution ofq(x,Q2) at largeQ2. In contrast, as seen in Eq.(I.28) the

elementary subprocess’s cross section has a large dependence onQ2. Thus, for these

kinematics the short distance physics of the reaction is mostly contained in this elemen-

tary subprocess’ dynamics while the long distance effects are isolated in factors such as

the parton distributionsq(x) in Eq.(I.60).

These factors then describe the dynamics of partons (quarksand gluons) as they

interact to form hadrons. The full description of these factors however is beyond the

reach of pQCD, because the behavior of the coupling constant isnot longer described

by Eq.(I.51). How this effective coupling behaves at long distances is not well under-
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stood; Eq.(I.51) is no longer valid forQ2 < Λ ≈ 200MeV , at which valuesαs > 1, making

perturbative expansions in Feynman diagrams no longer convergent.

The strength of the interaction between quarks is believed togrow as the distance be-

tween them increases which leads ultimately to the confinement of quarks into hadrons.

Although the dynamics of this confinement cannot be describedby pQCD, general fea-

tures of hadrons’ structure are expected to be described through the use of the QCD

Lagrangian in nonperturbative approaches of which LatticeQCD is the most widely

accepted.

In addition to explaining the deviation from the scaling pattern of structure functions

in DIS, from the behavior ofαs dictated by Eq.(I.51), QCD also introduces corrections to

the results in Eq.(I.35) for e, e+ annihilation into hadrons. Accounting for gluon emission

by one of the quarks of the created quark antiquark pair introduces an additional energy

dependency inR,

R = 3
∑

q

e2q

(

1 +
αs(Q

2)

π

)

. (I.61)

Again QCD predicts a scaling violation of orderlogQ2 for the otherwiseQ2 independent

behavior ofR. Current experimental data however do not reach a region where this

difference is observable as seen in Fig.(I.11), thus making the effects of gluon emission

negligible.

If now within this approximation the reactionee+ → hX (with h a hadron of a given

specie) is considered, its cross section is also predicted to scale according to

1

σ

dσ

dz
(ee+ → hX) =

∑

q
e2q
[

Dh
q (z) +Dh

q̄ (z)
]

∑

q
e2q

(I.62)

in which Dh
q (z) is known as a fragmentation function, and similarly to the parton dis-

tribution functions inep → eX, it represents the probability that the hadronh carries a

fraction z = 2Eh

Q
of the energy of the parent quark (q) in the quark antiquark pair from

which it is produced. Likewise, the scaling predicted by Eq.(I.62) is broken by alogQ2

evolution of the fragmentation functions arising from gluon emission. Another source
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of scale breaking arises from the crossing of the charm threshold at which the heavy

cc̄ system is created almost at rest and subsequently decaying weakly into many lowz

hadrons.

Drell-Yan processes .

Hadron-hadron interactions can be naturally approached through the same method-

ology applied to the electroproduction processes. One standard example is the reaction

pp → l−l+X in which a lepton-antilepton pair is created at large transverse momentum

in a proton-proton collision. It is known as the Drell-Yan process and proceeds at the

parton level as shown in fig.(I.16). The Drell-Yan cross section within the quark-parton

q(x)

p

q(y)

p

l −

l +

Figure I.16: Drell-Yan process.pp→ l−l+ in the QPM

model (QPM) is,

dσ

dQ2
(pp→ l−l+X) =

∑

q

∫

dx

∫

dyq(x)q̄(y)
dσ

dQ2
(qq̄ → l+l−), (I.63)

in which

dσ

dQ2
(qq̄ → l+l−) = e2q

4πα2

9Q2
δ(Q2 − (xp1 + yp2)

2), (I.64)

with x andy being the fraction of the respective parent nucleons momenta carried by

the quark and antiquark participating in the annihilation subprocess, andQ2 being the

invariant mass of thel−l+ system.

For larges andQ2 we have thatQ2 = xys. Making this condition explicit in Eq.(I.63)
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yields

dσ

dQ2
(pp→ l−l+X) =

4πα2

9Q4

∑

q

e2q

∫

dx

∫

dyq(x)q̄(y)δ

(

1− xy s

Q2

)

, (I.65)

which suggest the introduction of a scaling variablew = xy = Q2

s
resulting in the scaling

law,

Q4 dσ

dQ2
(pp→ l−l+X) = F(w) (I.66)

This scaling is well satisfied by experimental data from whichF(w) can be extracted.

Also, just as it happens in DIS ande−e+ → hX the scaling predicted in Eq.(I.66) is broken

by logQ2 coming from corrections to fig.(I.16) including quark gluon interactions.

Cross sections and other observables of numerous processesinvolving hadrons can

be studied by making use of parton distribution functions and fragmentation functions.

The universality of these functions further allows the study of QCD subprocesses con-

trolling αn order corrections in reactions such as those shown in fig.(I.17)

f

D

h

p

D

h

f

p

f

p

a) b)

Figure I.17: Typical inclusive DIS processes involving gluons in the corre-
sponding parton subprocesses.

These studies are made possible by the large kinematic variables involved in the

reactions (s,Q, pT) that allow the use of pQCD in describing the dynamics of the embed-

ded subprocess. The kinematic ranges in which this description is applied is known as

the hard kinematic regime, and the controlling subprocesses are known as hard subpro-

cesses. Consequently, the short distance factors such as the cross sections of the hard

subprocesses and the long distance factors such as parton distribution functions (f) and

fragmentation functions (Dh) are known as hard factors and soft factors respectively.
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Asymptotic freedom has allowed the experimental study of QCD at the elementary

particle level. Because of confinement, in experiments, thereactions studied do not pro-

duce free quarks or gluons which are the fields associated with the degrees of freedom

in the QCD interaction Lagrangian. But because at large energy and momentum scales

the QCD’s coupling constant weakens and changes slowly, the elementary particle pro-

cesses at the core of these reactions dominate the kinematicdependence of the reaction

and thus the short distance dynamics, making the study of thereaction an almost direct

study of the hard subprocess. Corrections to this picture are also a test of QCD, since in

the hard kinematics, such corrections come from the calculable pQCD evolution of the

soft factors.

The kind of reactions considered so far are of the formab → (cd...)X, i.e., in exper-

iments only particles(cd...) in the final state are detected, whileX sums up all those

that are not. The final states of these reactions then are not specified. The cross sec-

tions given are obtained including all possible final states, thus these kind of reaction

are known as inclusive or semi-inclusive reactions. The extensive study of inclusive

reactions has reinforced QCD as the theory of the strong interaction that arises from the

interactions between quarks and gluons. However, preciselybecause all the hadronic

states are not completely resolved a description of the strong force can’t be extracted

through QCD from inclusive processes alone.

In what follows we focus on a more constrained kind of processes known as exclu-

sive reactions. Such processes are of the formAB → (CDE...), thus all the particles in the

final state are detected. The role of QCD degrees of freedom in hadronic structure and

in hadronic interactions is more carefully investigated here because of the constrains of

constructing the final hadron states from the scattered elementary particles. This diffi-

culty is of course avoided through the parton model in the previously studied inclusive

reactions.
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I.3 Hard Exclusive Processes

In this section we introduce a methodology and a formalism that is closely followed in

the study of the processes of interest in this dissertation.

With the purpose of developing a QCD description of interactions between hadrons

(as bound states of quark systems) and at the same time gaining further insight into

their quark structure, the studies of exclusive reactions at large momentum transfer

have attracted particular interest. These hard processes facilitate the study of the short

distance regime of the strong nuclear force in reactions such as hard proton proton(pp)

and proton neutron(pn) elastic scattering. The characteristic kinematic region for hard

exclusive processes is defined by large kinematic variables, i.e. s,−t,−u >> m2
N , and t

s
,

and u
s

fixed.

To illustrate the extent through which the analysis of hard exclusive scattering pro-

cesses potentially probes the quark-gluon dynamics that underlies hadronic processes

we first consider the reactionγ∗N → N . Fig.(I.18) illustrates how the reaction may

proceeds at the constituent quark level.

TH

*

p p+q

k k−q

N

e

Figure I.18:ep elastic scattering factorization according to Eq.(I.67).

The large momentum transfer by the virtual photon to the nucleon is distributed

among the constituents through the hard subprocessTH. Unlike the situation in inclusive

DIS, here, coherence is required to form the outgoing nucleon, thus all the constituents

are involved in the hard subprocess. Fig.(I.18) also suggests the factorization of the hard

scattering amplitude (TH) from the soft factors corresponding to the constituent distri-

butions of the incoming (ϕ) and outgoing (ϕ∗) nucleons. These factors are convoluted
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in the matrix element [27] of the diagram in Fig.(I.18),

GM =
1

2p+

〈

N(λ′ =
1

2
)|J+|N(λ =

1

2
)

〉

=
1

α2

∫

[dx]

∫

[dy]ϕ∗(yi)TH(xi, yi, Q)ϕ(xi). (I.67)

This matrix element in the infinite momentum frame corresponds to the nucleons’s mag-

netic form factor which at large−t = Q2 ands >> −t can be extracted from experiments

using the relation

dσ

dt
(ep→ ep) = 2πα2G

2
M (t)

t2
. (I.68)

In Eq.(I.67),

[dx] = δ(1 −
nN
∑

j

xj)

nN
∏

i

dxi,

in which xi (yi) is the fraction of the initial (final) nucleon’s light cone momentum car-

ried by its constituenti. Theϕ(x) (ϕ∗(y)) is the amplitude for finding in the incoming

(outgoing) nucleon the configuration of near on-shell partons entering (leaving) the hard

TH blob.

Quark wave functions of hadrons

The nucleon shown in Fig.(I.18) is represented by a system of three partons, three

quarks that in this case is the minimum number of quarks that are needed to reconstruct

the helicity and isospin of the nucleon. The nucleon in Fig.(I.18) illustrates what is

known as the minimal component of the Fock expansion of the nucleon wave function.

In Fock space the nucleon is expanded in states with a definite number of constituents,

i.e,

ψ = qqq + qqqg + qqqq̄q + ...
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Labeling each component byN (number of constituents) the nucleon wave function in

terms of its quark and gluon constituents is given by [28]

|p, h〉 =
∑

N

∫

[dx][d2kT ]
1√

x1...xN

ψ(xi, kiT , hi)|xi, kiT , hi〉, (I.69)

in which

[d2kT ] = δ2

(

N
∑

j=i

kjT

)

N
∏

i=1

d2kiT ,

where|xi, kiT , hi〉 represents an individual constituent state. In the light cone gauge [27],

the amplitudesϕ(x) in Eq.(I.67) is related toψ(xi, kiT , hi) by

ϕ(x1, ..., xN ) =

∫

[d2kT ]ψ(xi, kiT , hi, fi), (I.70)

in which it is understood that the additional helicity and flavor expansion coefficients

such as those in Eq.(I.22) are contained inϕ(x).

Scaling Laws

The hard subprocess in Fig.(I.18)involves the far off shell (k2
i ∼ Q2 >> m2

i ) propaga-

tion of the incoming nucleon’s constituents into the outgoing constituents that form the

final nucleon. A typical diagram contributing to theeqqq → eqqq subprocess is shown

in Fig.(I.19). It is known as a minimally connected diagram and guaranteesthat the

q

x
1
p

x
2
p

x
3
p

x
1
p+q y

1
(p+q)

y
2
(p+q)

y
3
(p+q)

(x
1
−y

1
)p+(1−y

1
)q

(y
3
−x

3
)p +y

3
q

Figure I.19: Typical minimally connected diagram contributingto TH in eN

elastic scattering.

momentumq transfered by the electron probe steers all the quarks collinearly in the di-

rection of the outgoing nucleon. AtQ2 → ∞ this kind of diagrams dominate inTH since

they represent the lowest order interaction inαs among the constituent quarks. TheQ2
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asymptotic dependence ofTH can then be obtained from pQCD. Having that the quarks

in TH interact through vector exchange, each pair of external linescontributes a factor

∼ Q. This is seen for instance in the vertex element,

ū(h′ = h, k + q)γµu(h, k)|Q2→∞ ∝ Q (I.71)

in which u are quark helicity spinors. Ifh′ 6= h this factor behaves as1
Q
. Each fermion

propagator contributes a factor of∼ 1
Q

and each vector boson propagator contributes a

factor∼ 1
Q2 , thus resulting in

TH ∼ α(
αs

Q2
)2TH(x, y)

which from Eq.(I.67)and Eq.(I.68) leads to

dσ

dt
(ep→ ep) ∼ (αα2

s)
2

t6
, (I.72)

or for fixed c.m. angle ofep→ ep scattering (t/s fixed, t, s→∞, ands >> −t),

dσ

dt
(ep→ ep)→ (αα2

s)
2

s6
f(t/s). (I.73)

The contributions toTH from diagrams with additional constituent lines taking part in

the hard subprocess fall off as powers ofαs

Q
faster as compared to the contribution from

Fig.(I.18) that contains the minimal number of constituents. Hence, the minimal Fock

component of the nucleon contributes to the dominant term ofthe scattering amplitude.

Through the same rules that lead to Eq.(I.73), for theeπ → eπ scattering reaction we

have that,dσ
dt
∼ 1

s4
, while it is known that foreµ → eµ, dσ

dt
∼ 1

s2
. Thus in general we have

that foreH → eH,

s2s2+NH
dσ

dt

eH→eH

∼ fH(
t

s
), (I.74)

in whichNH is the number of minimal constituents in particleH.

A hadron hadron scattering amplitude in the hard kinematic regime can be factorized

48



+
C

D

+ + ...

TH

B

A

Figure I.20: NN elastic scattering controlled by theTH expansion of con-
nected constituent diagrams.

similarly to Eq.(I.67) in the following form:

Mab→cd =

∫

∏

i=a,b,c,d

[dxi]ϕ
∗
C(xc)ϕ

∗
D(xc)TH(xi, s, t)ϕA(xc)ϕB(xc). (I.75)

Then in the above equationTH is dominated by connected diagrams involving con-

stituents from the minimal Fock components of the interactinghadrons such as those

shown in Fig.(I.75) for nucleon nucleon (NN) elastic scattering. Although there are at

least thousands of such diagrams contributing toTH, they contain the same number of

fermion and vector boson external and internal lines. Then as before, at fixed angle in

the asymptotic limit there is a√s factor per each pair of quark external lines, a1√
s

per

each quark internal line, and a1
s

factor per each vector gluon internal line. Then for

NN elastic scattering,TH ∼ 1
s4
T (x, θc.m.), and for theNN elastic scattering amplitude one

obtains,

MNN→NN ∼
1

s4
M(t/s), (I.76)

and

dσ

dt

NN→NN

∼ 1

s2
|M|2NN→NN

∼ 1

s10
fNN(t/s). (I.77)

In general, the asymptotic energy dependence of the invariant amplitudes and of the

cross sections for exclusive processes is given respectively by the forms (see Refs. [29],
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and [30]),

M ∼ s− 1
2
(nA+nB+nC+nD+...−4)

M(t/s), (I.78)

and as in Eq.(I.77),

dσ

dt
∼ s−(nA+nB+nC+nD+...−2)f(t/s), (I.79)

in which nH is the minimal number of constituents of particleH (H = ABCD...) taking

part in the hard subprocess, whilef(t/s) is an angular function that becomes invariant

under a change of energy scale. The dimensions of the scale invariantf(t/s) are given by

the number of constituents taking part of the elementary hard subprocesses (for instance,

f(t/s) is dimensionless foreµ → eµ) consequently determining the power fall-off of the

energy (s) dependence of the differential cross section.

Evidence of a power law fall-off in energy distributions at fixed angle has been

observed in experiments for several hard processes involving hadrons, with many of

them closely fitting the scaling behavior predicted by Eq. (I.79) (see e.g. Refs.[31, 32,

34, 33, 35, 36]). Empirical agreement with Eq. (I.79) however does not necessarily

implies the perturbative approach used here to arrive at this scaling law. Nonetheless,

the correlation between the number of constituents and the energy dependence of the

exclusive reactions evidenced by this result hints to the dominance of minimal Fock

component of the partonic wave functions of the hadrons participating in the reactions.

Quark Interchange

In the constituent picture, the processes through which hadrons in an exclusive reaction

interact include the mechanisms shown in Fig.(I.21). Unlike the situation involving

reactions at low energy and low momentum transfer, in which thereactions proceed

through the exchange of mesons, as illustrated in Fig.(I.21) hard exclusive processes

involving hadrons proceed through the exchange of quarks orgluons. QCD excludes

the mechanism of one gluon exchange in hadron-hadron exclusive scattering because
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hadrons are color singlets (of zero color charge), but the exchange of one gluon would

result in a net transferring of color charge from one hadron tothe other producing

two non-singlet particles in the final state. The latter scenario is not observed in na-

ture, therefore gluon exchange mechanisms in hadron-hadron scattering involve the ex-

change of two gluons, as shown in Fig.(I.21a), or more such that it can ensure a net

transfer of zero color charge between the interacting hadrons. The other mechanisms of

interaction shown in Fig.(I.21) (b) and (c), correspond to quark-antiquark annihilation

and quark interchange. The quark-antiquark annihilation mechanisms are considered

in scattering reactions in which one of the hadrons participating contains antiquarks

of corresponding quarks from the second hadron. The reaction then proceeds through

the annihilation of a quark from one hadron with an antiquarkfrom the other hadron.

Quark interchange mechanisms are considered for instance inelastic scattering reac-

tions in which both hadrons contain quarks of common flavor. It has been argued that

A

B

C

D

A

B

C

D

A

B

C

D

(a) (b)

(c)

Figure I.21: QCD description of exclusive hadron-hadron scattering through
(a) gluon exchange, (b) quark-antiquark annihilation and (c) quark inter-
change.

the quark interchange mechanism dominates the exclusive scattering of hadrons that

posses quarks of common flavor among their constituents [108, 107].

The dominance of the quark interchange mechanism has been experimentally con-

cluded when comparing for instance data on large angle scattering for proton proton

(pp) and proton antiproton (pp̄) elastic reactions. It was found that at large angle, thepp
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cross sections largely dominatespp̄ [37]. At 90o c.m angle of scattering and 10GeV of

beam momentum, the cross section ofpp elastic scattering is more than 24 times larger

than that ofpp̄ [37]. If gluon exchange mechanisms ( Fig. (I.21a)) were the dominant

mechanisms of interaction, the cross sections for both reaction would be expected to be

similar because these mechanisms do not depend on the quark-antiquark composition of

the interacting baryons. Because there are no quarks of common flavor between protons

and antiprotons, quark interchange mechanisms do not contribute inpp̄ elastic scattering

while they do inpp elastic scattering. Having that the cross section ofpp elastic scatter-

ing is much larger than that ofpp̄, it is concluded that quark interchange dominatespp

elastic scattering [37].

(a) (b)

A

B

C

D

A

B D

C

Figure I.22: Scattering channels in the quark exchange mechanism of
baryon-baryon (BB) exclusive scattering.

Quark exchange in baryon baryon exclusive scatteringBABB → BCBD proceeds through

either of the two channels illustrated in Fig.(I.22)(a) and (b). The scenario (a) corre-

sponds to the exchanging quarks scattering in theu channel while the residual system

scatters in thet channel, while in (b) the residual system scatters in theu channel while

the ‘exchanging’ quarks scatter in thet channel. As it follows from the previous sec-

tion, at fixed angle, the energy dependence of these two contributions is the same. The

angular dependence on the other hand goes asCtF (t/s) for Fig.(I.22)(a), andCuF (u/s)

for Fig.(I.22)(b). While F comes from the interaction among constituents, the coeffi-

cientsCt, andCu come from the quark wave functions of the baryons participating in

the interaction. AppendixB illustrates how these coefficients are obtained from a given

flavor-helicity expansion of the quark wave functions of theinteracting baryons. In such

approach, the residual system consists of the two remainingquarks in the minimal Fock

component of the wave function of the interacting baryon.
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I.4 Hard Processes Involving Nuclei

The descriptions of nuclear processes based on QCD is met with the empirical difficulty

of quarks and gluons not being experimentally observable particles. Up to certain scale

they are instead ‘hidden’ within the hadrons that mediate and take part of the interaction

binding nucleons in the nucleus. The experimental constrains and the computational

challenges brought on by confinement made the pursuing of a truly elementary particle

description of the nucleus very impractical when compared tothe alternative effective

field theoretical frameworks.

Nonetheless, reactions involving nuclei in the hard kinematic regime (at energy

scales in which pQCD may be applicable) can probe the quark-gluon dynamics of small

size nucleon-nucleon (NN) configurations ( small enough such that their overlapping

dynamics takes the nucleons’ internal structure into account). Such configurations are

expected to be naturally present in dense nuclear matter.

SmallNN configurations can also be probed in light nuclei for instance through ex-

clusive reactions in which nuclei absorb enough energy to break into nucleons emerg-

ing with large relative transverse momenta. This kind of reactions is the focus of the

research work detailed in chaptersIII andIV in which the explicit role of subnucleonic

degrees of freedom is investigated in selected hard processes involving light nuclei.

The following section lists the main features of characteristic approaches developed to

incorporate QCD in the description of these processes.

Hard breakup of NN system in nuclei

In the research work described in this dissertation, we focused on the reactionγ + A →

(NN)+(A−2) in which(NN) is produced at large center of mass angle. Two-body breakup

reactions involving nuclei at high momentum and energy transfer play an important role

in studies of nuclear QCD. The uniqueness of these processesis in the effectiveness by

which large values of invariant energy are produced at rather moderate values of beam
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energy. For a photodisintegration process of anNN system we have that,

sγNN ≈ 4m2
N + 4EγmN , (I.80)

in which the produced invariant energy grows with the energyof the probe twice as

fast as compared, for example, to hard processes involving two protons, in which case

sNN = 2m2
N + 2E ·mN . As it follows from Eq.(I.80), already at photon energies of2 GeV

the produced invariant mass on one nucleon,M ∼
√

SγNN

2
, exceeds the threshold at which

deep-inelastic processes become important,M & 2 GeV.

Combining the above property with a requirement that the momentum transfer in the

reaction exceeds the masses of the particles involved in thescattering (−t,−u � m2
N) in

order for the reaction to reach the hard scattering kinematic regime. In this regime it is

expected that only the minimal Fock components dominate in thewave function of the

particles involved in the scattering. Assuming that all theconstituents of minimal Fock

component participate in a hard scattering, it is expected that the energy dependence

of the reaction follows the constituent counting rule of Eqs.(I.78) and (I.79) [29, 30] .

These predictions have been confirmed for a wide variety of hard processes involving

leptons and hadrons (see e.g. Refs.[31, 32, 34, 33, 35, 36]).

One of the most interesting aspects of the constituent-counting rule is that its ap-

plication allows us to check the onset of quark degrees of freedom in hard reactions

involving nuclei [51, 52]. This is essential for probing the quark-gluon structure of nu-

clei. For example, if quarks are involved in hard photodisintegration of the deuteron

then according to Eqs.(I.78) and (I.79) one expects thatdσ
dt
∼ s−11 [51].

During the last decade there were several experiments in which 900 c.m. photodis-

integration of the deuteron had been studied at high photon energies [53, 54, 55, 56,

57, 58, 59, 60]. These experiments clearly demonstrated the onset ofs−11 scaling for

the differential cross section at 900 c.m., starting atEγ ≥ 1 GeV. Also, the polarization

measurements[57, 60] were generally in agreement with the prediction of the helicity

conservation – a precursor of the dominance of the mechanism of hard gluon exchange

involving quarks.
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Even though two-body scattering experiments demonstrate clearly an onset of quark

degrees of freedom in the reaction, they do not affirm the onset of the perturbative QCD

(pQCD) regime. Indeed it has been argued that the validity of constituent-counting

rule does not necessarily lead to the validity of pQCD(see e.g. Refs.[61, 62]). In

several measurements in which the constituent quark rule works pQCD still underes-

timates the observed cross sections sometimes by several orders of magnitude (see e.g.

Refs.[63, 64]). The latter may indicate a substantial contribution becauseof nonper-

turbative effects although one still may expect sizable contributions from pQCD due

to generally unaccounted hidden color components in the hadronic and nuclear wave

functions[65].

A similar situation also exists for the case of hard photodisintegration involving nu-

clei. Even though experiments clearly indicate the onset ofs−11 scaling for the cross sec-

tion of for exampleγd→ pn reactions at 900c.m., one still expects sizable nonperturbative

effects. Theoretical methods of calculation of these effects are very restricted. They use

different approaches to incorporate nonperturbative contributions in the process of hard

photodisintegration of the deuteron. The reduced nuclear amplitude (RNA) formalism

includes some of the nonperturbative effects through the nucleon form factors[66, 67],

while in the quark-gluon string model (QGS)[68] nonperturbative effects are accounted

for through the reggeization of scattering amplitudes. Also recently, large c.m. an-

gle photodisintegration of the deuteron for photon energiesup to 2 GeV was calcu-

lated within point-form relativistic quantum mechanics approximation[69] in which the

strength of the reaction was determined by short range properties of theNN interaction

potential.

In the QCD hard rescattering model (HRM)[70, 72] it is assumed that the energetic

photon knocks-out a quark from one nucleon in the deuteron which subsequently ex-

periences hard rescattering with a quark of the second nucleon. The latter leads to the

production of two nucleons with large relative momentum. The summation of all the

relevant rescattering diagrams results in a scattering amplitude in that the hard rescat-

tering is determined by the large-momentum transferpn scattering amplitude, which
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includes noncalculable nonperturbative contributions. Experimental data are used to

estimate the hardpn scattering amplitude. The HRM allows us to calculate the abso-

lute cross section of900 c.m. hard photodisintegration of the deuteron without using

additional adjustable parameters.

Also, within the QGS[74] approximation and the HRM[43, 75] rather reasonable

agreement has been obtained for polarization observables[60].

Hard photodisintegration of 3He

Although all the above-mentioned models describe the major characteristics of hard

photodisintegration of the deuteron they are based on very different approaches in the

calculation of the nonperturbative parts of the photodisintegration reaction. To inves-

tigate further the validity of these approaches it was suggested in Ref.[76] to extend

the studies of high energy two-body photodisintegration tothe case of large angle c.m.

breakup of two protons from the3He target. In this case not only do the predictions

of the above-described models (RNA, QGS, HRM) for absolute cross section diverge

significantly, but also the two-proton breakup reaction from 3He provides additional ob-

servables such as spectator-neutron momentum distributions that can be used to check

further the validity of the models.

Detailed analysis of reactions involving hard breakup of both pp andpn pairs from

the3He target is presented in chapterIII . New insight into the nature of large c.m. angle

scattering is gained through the comparative study ofpp andpn breakup processes. One

important observation is that the relative strength ofpp to pn breakup is larger than the

one observed in low energy reactions. This characteristic is related to the onset of quark

degrees of freedom in hard breakup reactions in which effectively more charges are

exchanged between two protons than between proton and neutron.

Another signature of the HRM is that the shapes of the energy dependencies ofs11-

scaled differential cross sections ofpp andpn breakup reactions mirror the shapes of the

energy dependencies ofs10-scaled differential cross sections of hard elasticpp and pn

scatterings.
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Within the HRM one observes also thatpp andpn hard breakup processes are sensi-

tive to different components of the3He ground state wave function, resulting in different

spectator-nucleon momentum dependencies forpp andpn hard breakup cross sections.

Because of the different ground state wave function components involved inpp and

pn breakup reactions, the HRM also predicts significantly different magnitudes for trans-

ferred longitudinal polarizations for these two processes.
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CHAPTER II

PROTON NEUTRON ELASTIC SCATTERING

This chapter looks into an asymmetry in the angular distribution of hard elastic proton-

neutron scattering with respect to 900 center of mass scattering angle. It will be demon-

strated that the magnitude of the angular asymmetry is related to the helicity-isospin

symmetry of the quark wave function of the nucleon. An estimate of the asymme-

try within the quark-interchange model of hard scattering demonstrates that the quark

wave function of a nucleon assuming the exact SU(6) symmetry predicts an angular

asymmetry opposite to that of experimental observations. On the other hand the quark

wave function derived from the diquark picture of the nucleon produces an asymmetry

consistent with the data. Comparison with the data allows extracting the relative sign

and the magnitude of the vector and scalar diquark componentsof the quark wave func-

tion of the nucleon. These two quantities are essential in constraining QCD models of

a nucleon. Overall, it is concluded that the angular asymmetry of a hard elastic scatter-

ing of baryons provides a new venue in probing quark-gluon structure of baryons and

should be considered as an important observable in constraining the theoretical models.

For several decades elastic nucleon-nucleon scattering athigh momentum transfer

(−t,−u ≥ M 2
N GeV2) has been one of the important testing grounds for QCD dynamics

of the strong interaction between hadrons. Two major observables considered were the

energy dependence of the elastic cross section and the polarization properties of the

reaction.

Predictions for energy dependence are determined by the underlying dynamics of the

hard scattering of quark components of the nucleons. One such prediction is derived

from the quark-counting rule [29, 30] according to which the differential cross section

of two-body elastic scattering (ab → cd) at high momentum transfer behaves likedσ
dt
∼

s−(na+nb+nc+nd), whereni represents the number of constituents in particlei (i=a,b,c,d).

For elasticNN scattering, the quark-counting rule predictss−10
NN scaling which agrees

reasonably well with experimental measurements (see e.g. Refs.[34, 33, 35, 36]). In
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addition to energy dependence, the comparison [37] of the cross sections of hard exclu-

sive scattering of hadrons containing quarks with the same flavor with the scattering of

hadrons that share no common flavor of quarks demonstrated that the quark-interchange

represents the dominant mechanism of hard elastic scattering for up to ISR energies (see

discussion in [38]).

For polarization observables, the major prediction of the QCD dynamics of hard

elastic scattering is the conservation of helicities of interacting hadrons. The latter

prediction stems from the fact that the gluon exchange in massless quark limit conserves

the helicity of interacting quarks.

The quark counting rule and helicity conservation however do not describe com-

pletely the features of hard scattering data. The energy dependence ofpp elastic cross

section scaled bys10NN exhibits an oscillatory behavior which indicates the existence of

other possibly nonperturbative mechanisms for the scattering[39, 40]. These expecta-

tions are reinforced also by the observed large asymmetry,Ann at some hard scattering

kinematics[41] which indicates an anomalously large contribution from double helicity

flip processes. These observed discrepancies however do notrepresent the dominant

features of the data and overall one can conclude that the bulkof the hard elasticNN

scattering amplitude is defined by the exchange mechanism ofvalence quarks which

interact through the hard gluon exchange (see e.g. Refs.[42, 38]). Quark-interchange

mechanism also reasonably well describes the90 c.m. hard break-up of two nucleons

from the deuteron[70, 43].

However, the energy dependence of a hard scattering cross section, except for the

verification of the dominance of the minimal-Fock componentof the quark wave func-

tion of nucleon, provides rather limited information aboutthe symmetry properties of

the valence quark component of the nucleon wave function.

In this chapter it is demonstrated that an observable such asthe asymmetry of a hard

elastic proton-neutron scattering with respect to900 c.m. scattering may provide a new

insight into the helicity-flavor symmetry of the quark wave function of the nucleon.
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Namely we consider

A900(θ) =
σ(θ) − σ(π − θ)
σ(θ) + σ(π − θ) , (II.1)

whereσ(θ) - is the differential cross section of the elasticpn scattering. We will dis-

cuss this asymmetry in the hard kinematic regime in which the energy dependence of

the cross section is∼ s−10. Our working assumption is the dominance of the quark-

interchange mechanism (QIM) in theNN elastic scattering at these kinematics.

b d

ca

Figure II.1: Typical diagram for quark-interchange mechanism ofNN → NN

scattering.

Within the QIM, the characteristic diagram forpn elastic scattering can be repre-

sented as it’s shown in Fig.II.1. Here, one assumes a factorization of the soft part of

the reaction in the form of the initial and final state wave functions of nucleons, and of

the hard part which is characterized by the QIM scattering that proceeds with five hard

gluon exchanges. This hard factor generates the energy dependence in accordance to

the quark counting rule. In order to calculate the absolute cross section of the reaction,

one needs to sum hundreds of diagrams similar to one of Fig.II.1. However, for the

purpose of estimation of the asymmetry in Eq.(II.1) the important observation is that

the hard scattering kernel is flavor-blind and conserves helicity. As a result, one expects

that the angular asymmetry will be generated mainly throughthe underlying spin-flavor

symmetry of the quark wave functions of the interacting nucleons.

The amplitude of the hard elastica + b → c + d scattering of Fig.II.1, within quark-

interchange approximation, can be presented as follows:

〈cd | T | ab〉 =
∑

α,β,γ

〈ψ†
c | α′

2, β
′
1, γ

′
1〉〈ψ†

d | α′
1, β

′
2, γ

′
2〉

×〈α′
2, β

′
2, γ

′
2, α

′
1β

′
1γ

′
1 | H | α1, β1, γ1, α2β2γ2〉 · 〈α1, β1, γ1 | ψa〉〈α2, β2, γ2 | ψb〉,
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(II.2)

in which (αi, α
′
i), (βi, β

′
i) and (γi, γ′

i) describe the spin-flavor quark states before and after

the hard scattering,H, and

Cj
α,β,γ ≡ 〈α, β, γ | ψj〉, (II.3)

describes the probability amplitude of finding theα, β, γ helicity-flavor combination of

three valence quarks in the nucleonj[42].

To be able to calculate theCj
α,β,γ factors, one represents the nucleon wave function

through the helicity-flavor basis of the valence quarks. We use a rather general form

separating the wave function into two parts characterized by two (e.g. second and third)

quarks being in spin zero - isosinglet and spin one - isotriplet states as follows:

ψi3N ,hN =
N√
2

{

σ(χ(23)
0,0 χ

(1)
1
2
,hN

) · (τ (23)
0,0 τ (1)

1
2
,i3
N

) +

ρ
1
∑

i323=−1

1
∑

h3
23=−1

〈1, h23;
1

2
, hN − h23 |

1

2
, hN〉〈1, i323;

1

2
, i3N − i323 |

1

2
, i3N〉

×(χ(23)
1,h23

χ(1)
1
2
,hN−h23

) · (τ (23)

1,i323
τ (1)

1
2
,i3
N

−i323
)
}

, (II.4)

in which j3N andhN are the isospin component and the helicity of the nucleon. Here,the

ki’s are the light cone momenta of quarks. These momenta is represented by (xi, ki⊥), in

which xi is a light cone momentum fraction of the nucleon carried by thei-quark. We

defineχj,h andτI,i3 as helicity and isospin wave functions, wherej is the spin,h is the

helicity, I is the isospin andi3 its third component. The Clebsch-Gordan coefficients are

defined as〈j1,m1; j2,m2 | j,m〉. Here,ΦI,J represents the momentum dependent part of the

wave function for (I = 0, J = 0) and (I = 1, J = 1) two-quark spectator states respectively.

Since the asymmetry in Eq.(II.1) does not depend on the absolute normalization of

the cross section, a more relevant quantity for us is the relative strength of these two

momentum dependent wave functions. For our discussion we introduce a parameter,ρ:

ρ =
〈Φ1,1〉
〈Φ0,0〉

(II.5)

which characterizes an average relative magnitude of the wave function components
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corresponding to (I = 0, J = 0) and (I = 1, J = 1) quantum numbers of two-quark “specta-

tor” states. Note that the two extreme values ofρ define two well know approximations:

ρ = 1 corresponds to the exact SU(6) symmetric picture of the nucleon wave function

andρ = 0 will correspond to the contribution of only the scalar diquarkconfiguration

in the nucleon wave function (see e.g. Ref.[44, 45, 46, 47] in which this component

is referred as a scalar or good diquark configuration ([qq]) as opposed to a vector or

bad diquark configuration denoted by(qq)). In further discussionsρ is kept as a free

parameter.

To calculate the scattering amplitude of Eq.(II.2), we assume the conservation of the

helicities of the quarks participating in the hard scattering. This allows us to approxi-

mate the hard scattering part of the amplitude,H, in the following form:

H ≈ δα1α
′

1
δα2α

′

2
δβ1,β1′δγ1,γ′

1
δβ2,β2′δγ2,γ′

2

f(θ)

s4
. (II.6)

Inserting this expression into Eq.(II.2) for the QIM amplitude, one obtains[42]:

〈cd | T | ab〉 = Tr(MacM bd) (II.7)

with:

M i,j
α,α′ = Ci

α,βγC
j
α′,βγ + Ci

βα,βC
j
βα′,β + Ci

βγαC
j
βγα′ , (II.8)

where we sum over the all possible values ofβ andγ. Furthermore, we separate the

energy dependence from the scattering amplitude as follows:

〈cd | T | ab〉 = 〈hc, hd | T (θ) | ha, hb〉
s4

, (II.9)

and define five independent angular parts of the helicity amplitudes as:

φ1 = 〈++ | T (θ) | ++〉; φ2 = 〈−− | T (θ) | ++〉;

φ3 = 〈+− | T (θ) | +−〉; φ4 = −〈−+ | T (θ) | +−〉;

φ5 = 〈−+ | T (θ) | ++〉. (II.10)
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Here, the “-” sign in the definition ofφ4 follows from the Jacob-Wick helicity convention[48]

according to which a (-1) phase is introduced if two quarks that scatter toπ − θcm angle

have opposite helicity (see also Ref.[42]).

Using Eqs.(II.7,II.8) for the non-vanishing helicity amplitudes of Eq.(II.10) one ob-

tains:

for pp→ pp:

φ1 = (3 + y)F (θ) + (3 + y)F (π − θ)

φ3 = (2− y)F (θ) + (1 + 2y)F (π − θ)

φ4 = −(1 + 2y)F (θ)− (2 − y)F (π − θ) (II.11)

and forpn→ pn:

φ1 = (2− y)F (θ) + (1 + 2y)F (π − θ)

φ3 = (2 + y)F (θ) + (1 + 4y)F (π − θ)

φ4 = 2yF (θ) + 2yF (π − θ) (II.12)

with φ2 = φ5 = 0 due to helicity conservation. Here:

y = x(x + 1) with x =
2ρ

3(1 + ρ2)
(II.13)

andF (θ) is the angular function. Note that theρ = 1 case reproduces the SU(6) result of

Refs.[42] and [38]. The results of Eqs.(II.11) and (II.12) could be obtained also through

the formalism of the H-spin introduced in Ref.[38]. In this case, the helicity amplitudes

are expressed through the average number of quarks to be found in a given helicity-spin

state. These numbers will be directly defined through the wave function of Eq.(II.4).

Introducing the symmetric and antisymmetric parts of the angular functionF as

follows:

s(θ) =
F (θ) + F (π − θ)

2
; a(θ) =

F (θ)− F (π − θ)
2

, (II.14)
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Figure II.2: Asymmetry ofpn elastic cross section. Solid dotted line - SU(6),
with ρ = 1, dashed line diquark-model withρ = 0, solid line - fit withρ = −0.3.

and using Eq.(II.12) for the asymmetry as it is defined in Eq.(II.1) one obtains:

A900(θ) =
6a(θ)s(θ)(1 − 2y − 3y2)

a(θ)2(1− 3y)2 + 3s(θ)2(3 + 6y + 7y2)
. (II.15)

One can make a rather general observation from Eq.(II.15), that for the SU(6) model,

(ρ = 1, y = 4
9
) and for any positive function,a(θ) at θ ≤ π

2
, the angular asymmetry has a

negative sign opposite to the experimental asymmetry (Fig.II.2). Note that one expects

a positivea(θ) at θ ≤ π
2

from general grounds based on the expectation that in the hard

scattering regime the number oft-channel quark scatterings dominates the number of

u-channel quark scatterings in the forward direction.

As it follows from Eq.(II.15), a positive asymmetry can be achieved only for1 −

2y − 3y2 > 0, which according to Eq.(II.13) imposes the following restrictions onρ:

ρ < 0.49 or ρ > 2.036. The first condition indicates the preference for the scalar diquark-

like configurations in the nucleon wave function, while the second one will indicate

the strong dominance of the vector-diquark component which contradicts empirical

observations[44, 45, 46].

In Fig.II.2 the asymmetry ofpn scattering calculated with SU(6) (ρ = 1) and pure
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scalar-diquark (ρ = 0) models are compared with the data. In these estimates we use

F (θ) = C · sin−2(θ)(1 − cos(θ))−2 as the dependence of the angular function[49], which is

consistent with the picture of hard collinear QIM scattering of valence quarks with five

gluon exchanges, and reproduces reasonably well the main characteristics of the angular

dependencies of bothpp andpn elastic scatterings. Note that using a form of the angular

function based on nucleon form-factor arguments[38, 42], F ≈ (1 − cos(θ))−2 will result

in the same angular asymmetry.

The comparisons show that the nucleon wave function (II.4) with a scalar diquark

component (ρ = 0) produces the right sign for the angular asymmetry. On the other

hand, even large errors of the data do not preclude to concludethat the exact SU(6)

symmetry (ρ = 1) of the quark wave function of nucleon is in qualitative disagreement

with the experimental asymmetry.

Using the above defined angular functionF (θ), A900 is fitted in Eq.(II.15) to the data

at −t,−u ≥ 2 GeV2 varying ρ as a free parameter. We used the Maximal Likelihood

method of fitting excluding those data points from the data setwhose errors are too

large for meaningful identification of the asymmetry. The best fit is found for

ρ ≈ −0.3± 0.2. (II.16)

The nonzero magnitude ofρ indicates the small but finite relative strength of a bad/vector

diquark configuration in the nuclear wave function as compared to the scalar diquark

component. It is intriguing that the obtained magnitude ofρ is consistent with the10%

probability of “bad” diquark configuration discussed in Ref.[46].

Another interesting property of Eq.(II.16) is the negative sign of the parameterρ.

Within a qualitative quantum-mechanical picture, the negative sign ofρ may indicate

for example the existence of a repulsion in the quark-(vector- diquark) channel as op-

posed to the attraction in the quark - (scalar-diquark) channel. It is rather surprising that

both the magnitude and sign agree with the result of the phenomenological interaction

derived in the one-gluon exchange quark model discussed in Ref.[45].

In conclusion, we demonstrated that the angular asymmetry ofhard elasticpn scat-
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tering can be used to probe the symmetry structure of the valence quark wave function

of the nucleon. We demonstrated that the exact SU(6) symmetrydoes not reproduce

the experimental angular asymmetry of hard elasticpn scattering. The use of nucleon

wave functions consistent with the diquark structure results in an asymmetry in better

agreement with the empirically observed. The fit to the data indicates10% probability

for the existence of bad/vector diquarks in the wave function of nucleons. It also shows

that the vector and scalarqq components of the wave function may be in opposite phase.

This will indicate a different dynamics forq − [qq] andq − (qq) interactions.

The relative magnitude and the sign of the vector(qq) and scalar[qq] components can

be used to constrain different QCD predictions which requirethe existence of diquark

components in the nucleon wave function. These quantities inprinciple can be checked

in Lattice calculations. The angular asymmetry studies canbe extended also to include

the scattering of other baryons such as∆-isobars (which may have a larger fraction of

vector diquark component), as well as strange baryons whichwill allow us to study the

relative strength of(qq) and[qq] configurations involving strange quarks.
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CHAPTER III

HARD BREAKUP OF A NUCLEON NUCLEON SYSTEM IN THE 3He
NUCLEUS

This chapter investigates the large angle photodisintegration of two nucleons from the

3He nucleus within the framework of the hard rescattering model (HRM). In the HRM

a quark of one nucleon knocked out by an incoming photon rescatters with a quark of

the other nucleon leading to the production of two nucleons with large relative momen-

tum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-

nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon

break-up reaction through the convolution of photon-quarkscattering,NN hard scat-

tering amplitude and nuclear spectral function which can becalculated using a nonrel-

ativistic 3He wave function. The photon-quark scattering amplitude can beexplicitly

calculated in the high energy regime, whereas forNN scattering one uses the fit of the

available experimental data. The HRM predicts several specific features for the hard

breakup reaction. First, the cross section will approximately scale ass−11. Secondly, the

s11 weighted cross section will have the shape of energy dependence similar to that ofs10

weightedNN elastic scattering cross section. Also one predicts an enhancement of the

pp breakup relative to thepn breakup cross section as compared to the results from low

energy kinematics. Another result is the prediction of different spectator momentum

dependencies ofpp andpn breakup cross sections. This is because of the fact that same-

helicity pp-component is strongly suppressed in the ground state wave function of 3He.

Because of this suppression the HRM predicts significantly different asymmetries for

the cross section of polarization transferNN breakup reactions for circularly polarized

photons. For thepp breakup this asymmetry is predicted to be zero while for thepn it is

close to2
3
.

This chapter is organized as follows: SectionIII.1, within the HRM, presents a

detailed derivation of the differential cross section of the reaction of hard breakup of

two-nucleons from a3He target. In SectionIII.2 the formulas derived in the previous
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section are used to calculate the differential cross section of a proton-neutron breakup

reaction, while in SectionIII.3 calculations are done for a two-proton breakup reaction.

SectionIII.4 considers the relative contribution of two- and three-body processes for

hard breakup reactions involvingA ≥ 3 nuclei. In SectionIII.5 numerical estimates are

presented for differential cross sections ofpn andpp breakup reactions. In SectionIII.6

the polarization transfer mechanism of the HRM is discussed, and estimates of the

asymmetry of the cross section with respect to the helicity of the outgoing proton are

presented. Results are summarized in SectionIII.7.

The details of the derivation of the hard rescattering amplitude are given in Ap-

pendixC. The quark-interchange contribution to the hardNN elastic scattering am-

plitude is discussed in AppendixD. AppendixB describes a method for calculating

quark-charge factors within quark-interchange mechanismof NN hard elastic scatter-

ing. A complete list of HRM helicity amplitudes for high energy two-nucleon breakup

is presented in AppendixG for both, deuteron and3He photodisintegration.

III.1 Hard Photodisintegration of Two Nucleons from 3He

Reference frame and kinematics

We are considering a hard photodisintegration of two nucleons from the3He target

through the reaction:

γ +3 He→ (NN) +Ns, (III.1)

in which two nucleons(NN) are produced at large angles in the “γ-NN” center of mass

reference frame with momenta comparable to the momentum of the initial photon,

q (>1 GeV/c). The third nucleon,Ns, is produced with very small momentumps � mN.

(Definitions of four-momenta involved in the reaction are given in Fig.III.1.)

We consider “γ-NN” in a “ q+ = 0” reference frame, where the light-cone momenta1

1The light-cone four-momenta are defined as(p+, p−, p⊥), wherep± = E ± pz. Here thez axis is defined
in the direction opposite to the incoming photon momentum.
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q

q

Figure III.1: Typical hard rescattering diagram for theNN photodisintegra-
tion from the3He target.

of the photon and theNN pair are defined as follows:

qµ ≡ (q+, q−, q⊥) = (0,
√

s′NN , 0),

pµNN ≡ (pNN+, pNN−, pNN⊥) = (
√

s′NN ,
M 2

NN√
s′NN

, 0), (III.2)

wherepµNN = pµ
3He− p

µ
s , M 2

NN = pµNNpNN,µ, ands′NN = sNN −M 2
NN . Here the invariants,sNN

andtNN are defined as follows:

sNN = (q + pNN )
2 = (pf1 + pf2)

2

tNN = (q − pf1)2 = (pf2 − pNN )
2. (III.3)

As it follows from Eq.(III.2) in the limit of M2
NN

s′
NN

→ 0 the “q+ = 0” reference frame

coincides with the center of mass frame of theγ-NN system. As such it is maximally

close to the reference frame used for theγd→ p+ n reaction in Refs.[70] and [43].

69

Chapter2/Chapter2Figs/fig1.eps


Hard rescattering model

The hard rescattering model is based on the assumption that inthe hard two-nucleon

photodisintegration reaction, two nucleons with large relative momenta are produced

because the hard rescattering of a fast quark from one nucleonwith a quark from the

other nucleon. In this scenario the fast quark is knocked outfrom a low-momentum

nucleon in the nucleus by an incoming photon. This approach isan alternative to the

models in which it is assumed that the incoming photon breaksthe preexisting two-

nucleon state which has very large relative momentum in the nucleus.

The validity of the HRM is derived from the observation that theground state wave

functions of light nuclei peak strongly at small momenta of bound nucleons,p ∼ 0. Thus,

diagrams in which an energetic photon interacts with bound nucleons of small momenta

will strongly dominate the diagrams in which the photon interacts with bound nucleons

that have relative momentap ≥ mN.

The resulting scenario that the HRM sketches out is as follows (see e.g. Fig.III.1):

first, the incoming photon will knock out a quark from one of thenucleons in the nucleus

and then the struck quark that now carries almost the whole momentum of the photon

will share its momentum with a quark from the other nucleon through the exchanged

gluon. The resulting two energetic quarks will recombine withthe residual quark-gluon

systems to produce two nucleons with large relative momentum(∼q). This recombina-

tion will contain gluon exchanges and also incalculable nonperturbative interactions.

Note that for the quark-gluon picture discussed above to be relevant the interme-

diate massesmint produced after the photon absorption should exceed the mass scale

characteristic for deep inelastic scattering,W ∼ 2.2 GeV. Using the relationmint ≈
√

m2
N + 2EγmN , from the requirement thatmint ≥W one obtains the conditionEγ ≥ 2 GeV.

Additionally, to ensure the validity of quark degrees of freedom in the final state rescat-

tering, one requireskrel ≥ 1 GeV/c for the relative momentumkrel, of two outgoing nucle-

ons. All of these imposes a restriction on the incoming photonenergy,Eγ ≥ 2 GeV, and

for transferred momenta−t,−u ≥ 2 GeV2. Note that provided a smooth transition from
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hadronic to quark-gluon degrees of freedom in nuclei one expects the validity of the

HRM to extend to even lower values ofEγ (&1 GeV). This expectation was confirmed

in recent measurements of angular dependencies of theγd→ pn cross section for a wide

range of incoming photon energies[59].

To calculate the differential cross section of the hard photodisintegration reaction of

Eq.(III.1) within the HRM one needs to evaluate the sum of hard rescattering diagrams

similar to the one presented in Fig.III.1. We start with analyzing the scattering ampli-

tude corresponding to the diagrams of Fig.III.1. Using Feynman rules and applying the

light-cone wave function reduction described in AppendixC, we obtain

〈λ1f , λ2f , λs | A | λγ , λA〉 =
∑

(η1f ,η2f ),(η1i,η2i),(λ1i,λ2i)

∫

{

ψ
†λ2f ,η2f
N (p2f , x

′
2, k2⊥)

1− x′
2

ūη2f (p2f − k2)

[−igT F
c γ

ν ]
i[/p1i − /k1 + /q +mq]

(p1i − k1 + q)2 −m2
q + iε

[−iQieε
λγ

⊥ γ⊥]uη1i(p1i − k1)
ψλ1i,η1i

N (p1i, x1, k1⊥)

(1− x1)

}

1

×
{

ψ
†λ1f ,η1f
N (p1f , x

′
1, k1⊥)

1− x′
1

ūη1f (p1f − k1)[−igT F
c γ

µ]uη2i(p2i − k2)
ψλ2i,η2i

N (p2i, x2, k2⊥)

(1− x2)

}

2

×

Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π)3

dx2

x2

d2k2⊥
2(2π)3

ΨλA,λ1i,λ2i,λs
3He (α, p⊥, ps)

(1− α)
dα

α

d2p⊥
2(2π)3

− (p1f ←→ p2f ) , (III.4)

where the(p1f ←→ p2f ) part accounts for the diagram in Fig.III.1(b). Here the four-

momenta,p1i, p2i, ps, k1, k2, r, p1f andp2f are defined in Fig.III.1. Note thatk1 andk2 define

the four-momenta of residual quark-gluon system of the nucleons without specifying

their actual composition. We also definex1, x′
1, x2 andx′

2 as the light-cone momentum

fractions of initial and final nucleons carried by their respective residual quark-gluon

systems:x1(2) =
k1(2)+

p1(2)i+
and x′

1(2) =
k1(2)+

p1(2)f+
. For the3He wave function,α =

p2+
pNN+

is the

light-cone momentum fraction of theNN pair carried by one of the nucleons in the pair,

andp⊥ is their relative transverse momentum. The scattering process in Eq.(III.4) can

be described through the combination of the following blocks: (a)ΨλA,λ1i,λ2i,λs
3He (α, p⊥, ps),

is the light-cone3He-wave function that describes a transition of the3He nucleus with

helicity λA into three nucleons withλ1i , λ2i, andλs helicities, respectively. (b) The

term in {...}1 describes the “knocking out” of anη1i-helicity quark from aλ1i-helicity

nucleon by an incoming photon with helicityλγ. Subsequently, the knocked-out quark
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exchanges a gluon, ([−igT F
c γ

ν ]), with a quark from the second nucleon producing a final

η2f -helicity quark that combines into the nucleon “2f” with helicity λ2f . (c) The term in

{...}2 describes the emergingη2i-helicity quark from theλ2i -helicity nucleon then then

exchanges a gluon, ([−igT F
c γ

µ]), with the knocked-out quark and produces a finalη1f-

helicity quark that combines into the nucleon “1f” with helicity λ1f . d) The propagator

of the exchanged gluon isGµν(r) = dµν

r2+iε
with polarization matrix,dµν (fixed by the light-

cone gauge), andr = (p2 − k2 + l) − (p1 − k1 + q), with l = (p2f − p2i). In Eq.(III.4) theψλ,η
N

represents everywhere anη-helicity single quark wave function of aλ-helicity nucleon

as defined in Eq.(C.14) anduτ is the quark spinor defined in the helicity basis.

The denominator of the struck quark’s propagator can be represented as follows:

(p1i − k1 + q)2 −m2
q + iε = (1− x1)s

′
NN (αc − α+ iε), (III.5)

where

αc = 1 +
1

s′NN

[

m̃2
N −

m2
s(1− x1) +m2

qx1 + (k1 − x1p1)
2

x1(1− x1)

]

(III.6)

Herem2
s andm̃2

N ≈ m2
N are defined in Eqs.(C.8) and (C.11), andmq represents the current

quark mass of the knocked out quark. In what follows, we use thefact that the3He wave

function strongly peaks atα = 1
2
, which corresponds to the kinematic situation in which

two constituent nucleons have equal share of theNN pair’s light-cone momentum. Thus

one expects that the integral in Eq.(III.4) is dominated by the value of the integrand at

α = αc =
1
2
. This allows us to performα-integration in Eq.(III.4) through the pole of the

denominator (III.5) atα = αc, i.e. keeping only the−iπδ(α− αc) part of the relation

1

αc − α+ iε
= −iπδ(α− αc) + P

1

αc − α
,

and later replacingαc by 1
2
. Using this relation to estimate the propagator of the struck

quark at its on-mass shell value (α = αc) allows to write,

(/p1i − /k1 + /q)on shell+mq =
∑

ζ

uζ(p1 − k1 + q)ūζ(p1 − k1 + q)
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. Then for the scattering amplitude of Eq.(III.4) one obtains

〈λ1f , λ2f , λs | Ai | λγ , λA〉 =
∑

(η1f ,η2f ),(η1i,η2i),(λ1i,λ2i),ζ

∫

{

ψ
†λ2f ,η2f
N (p2f , x

′
2, k2⊥)

1− x′
2

ūη2f (p2f − k2)[−igT F
c γ

ν ]

i · uζ(p1 − k1 + q)ūζ(p1 − k1 + q)

(1− x1)s′
[−iQieε

λγ

⊥ γ⊥]uη1i(p1i − k1)
ψλ1i,η1i

N (p1i, x1, k1⊥)

(1 − x1)

}

1
{

ψ
†λ1f ,η1f
N (p1f , x

′
1, k1⊥)

1− x′
1

ūη1f (p1f − k1)[−igT F
c γ

µ]uη2i(p2i − k2)
ψλ2i,η2i

N (p2i, x2, k2⊥)

(1− x2)

}

2

Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π)3

dx2

x2

d2k2⊥
2(2π)3

ΨλA,λ1i,λ2i,λs
3He (αc, p⊥, ps)

(1− αc)αc

d2p⊥
4(2π)2

− (p1f ←→ p2f ) . (III.7)

Next, we evaluate the matrix element of the photon-quark interaction using on-mass

shell spinors for the struck quark. Taking into account the fact that(p1i − k)+ � |k⊥|,mq,

for this matrix element we obtain

ūζ(p1i − k1 + q)[−iQieε
λγ

⊥ γ⊥]uη1i(p1i − k1) = ieQi2
√

2E2E1(λγ)δ
λγζδλγη1i (III.8)

whereE1 = (1 − α)(1 − x1)

√
s′
NN

2
andE2 = (1− (1 − α)(1 − x1))

√
s′
NN

2
.

Further explicit calculations of Eq.(III.7) require the knowledge of quark wave func-

tions of the nucleon. Also, one needs to sum over the multitude of the amplitudes rep-

resenting different topologies of quark knock-out rescattering and recombinations into

two final nucleon states.

This difficulty can be circumvented by again using that the3He wave function strongly

peaks atα = 1
2

. We evaluate Eq.(III.7) setting everywhereαc = 1
2
. Such approximation

significantly simplifies further derivations. As it followsfrom Eq.(III.6) theαc =
1
2

con-

dition restricts the values ofx1 of the recoil quark-gluon system tox1 ∼ k2
1⊥

s′
NN

, thereby

ensuring that the quark-interchange happens for the valence quarks withxq = 1 − x1 ∼ 1.

The latter allows us to simplify Eq.(III.8) settingE1 = E2 =

√
s′
NN

4
. Using these approxi-

mations and substituting Eq.(III.8) into Eq.(III.7) one obtains

〈λ1f , λ2fλs |Mi | λγ , λA〉 = i[λγ ]e
∑

(η1f ,η2f ),(η2i),(λ1i,λ2i)

∫

Qi√
2s′
×
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[{

ψ
†λ2f ,η2f
N (p2f , x

′
2, k2⊥)

1− x′
2

ūη2f (p2f − k2)[−igT F
c γ

ν ] uλγ
(p1 − k1 + q)

ψ
λ1i,λγ

N (p1i, x1, k1⊥)

(1− x1)

}

{

ψ
†λ1f ,η1f
N (p1f , x

′
1, k1⊥)

1− x′
1

ūη1f (p1f − k1)[−igT F
c γ

µ] uη2i(p2i − k2)
ψλ2i,η2i

N (p2i, x2, k2)

(1 − x2)

}

Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π)3

dx2

x2

d2k2⊥
2(2π)3

]

QIM
ΨλA,λ1i,λ2i

3He (α =
1

2
, p2⊥)

d2p2⊥
(2π)2

− (p1f ↔ p2f ) . (III.9)

Note that due to theδ factors in Eq.(III.8) the helicity of the knocked out quark in

Eq.(III.9) is equal to the helicity of incoming photon, that isη1i = λγ.

To proceed, we observe that the kernel,[. . .]QIM representing the quark-interchange

mechanism (QIM) of the rescattering in Eq.(III.9) can be identified with the quark-

interchange contribution in theNN scattering amplitude (see AppendixD). Such iden-

tification can be done by observing that in the chosen reference frame,q+ = 0, and

the quark wave function of the nucleon depends on the quark’slight-cone momen-

tum fraction and transverse momentum only, which are the same in both Eqs.(III.9)

and (D.4). For our derivation we also use the above-discussed observation that the

α = αc = 1
2

condition ensures that the quark-interchange happens for the valence quarks

with xq = 1 − x1 ∼ 1. This justifies our next assumption, that valence quarks carry the

helicity of their parent nucleon (i.e.η1i = λi). The last assumption allows us to perform

the summation of Eq.(III.9) over the helicities of the exchanged quarks (η2i, η1f , η2f) and

to use Eq.(D.4) to express the QIM part in Eq.(III.9) through the corresponding QIM

amplitude ofNN scattering. Summing for all possible topologies of quark-interchange

diagrams we arrive at

〈λ1f , λ2f , λs |M | λγ , λA〉 = ie[λγ]×
{

∑

i∈N1

∑

λ2i

∫

QN1
i√
2s′
〈λ2f ;λ1f | TQIM

NN,i(s, l
2) | λγ ;λ2i〉ΨλA

3He(p1, λγ ; p2, λ2i, ps, λs)
d2p⊥
(2π)2

+
∑

i∈N2

∑

λ1i

∫

QN2
i√
2s′
〈λ2f ;λ1f | TQIM

NN,i(s, l
2) | λ1i;λγ〉ΨλA

3He(p1, λ1i; p2, λγ , ps, λs)
d2p⊥
(2π)2

}

(III.10)

where nucleon momentap1 andp2 have half of their c.m. momentum fractions andp⊥ is

their relative transverse momentum with respect to the direction of the photon momen-

tum [see Eq.(III.16)]. Here, for example,QN
i · 〈λ2f ;λ1f | TQIM

NN,i(s, l
2) | λ1;λ2〉 represents the
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quark-interchange amplitude ofNN interaction weighted with the charge of those inter-

changing quarksQN
i that are struck from a nucleonN by the incoming photon. The sum

(
∑

i∈N

) can be performed within the quark-interchange model ofNN interaction which

allows us to represent theNN scattering amplitude as follows [38]:

〈a′b′|TQIM
NN |ab〉 =

1

2
〈a′b′|

∑

i∈a , j∈b

[IiIj + ~τi~·τj]Fi,j(s, t)|ab〉 (III.11)

whereIi andτi are the identity and Pauli matrices defined in the SU(2) flavor (isospin)

space of the interchanged quarks. The kernelFi,j(s, t) describes an interchange ofi and

j quarks.1.

Using Eq.(III.11) one can calculate the quark-charge weighted QIM amplitude,Qi ·

〈a′b′|TQIM
NN,i|ab〉, as follows:

∑

i∈N

QN
i 〈a′b′|TQIM

NN,i|ab〉 =
1

2
〈a′b′|

∑

i∈a , j∈b

[IiIj + ~τi~·τj ](Qi)Fi,j(s, t)|ab〉

= QN
F · 〈a′b′|TQIM

NN |ab〉, (III.12)

whereQN
F are the charge factor that are explicitly calculated using themethod described

in Appendix C. These factors can be expressed through the combinations of valence

quark chargesQi of nucleonN and the number of quark interchanges for each flavor of

quark,NQi
, necessary to produce a given helicityNN amplitude, as follows,

QN
F =

Nuu(Qu) +Ndd(Qd) +Nud(Qu +Qd)

Nuu +Ndd +Nud

. (III.13)

Next we discuss the light-cone wave function of3He that enters in Eq.(III.10). The

important result that allows us to evaluate the wave function is the observation that two

nucleons that interact with the photon share equally theNN pair’s c.m. momentum

(pNN), i.e., α = 1
2
. If we constrain the third nucleon’s light-cone momentum fraction

αs =
3·ps+
p3He+

=
3(Es+pzs)

E3He+pzs+pz
NN

≈ 1 and transverse momentumps⊥ � mN , then the momenta of all

the nucleons in the nucleus are nonrelativistic. In this case one can use the calculation of
1The additional assumption of helicity conservation allowsus to express the kernel in the form[38]

Fi,j(s, t) =
1

2
[IiIj + ~σi~·σj ]F̃i,j(s, t), whereIi andσi operate in the SU(2) helicity (H-spin) space of exchanged

(i, j) quarks[38]. However for our discussion the assumption of helicity conservation is not required.
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triangle diagrams, which provides the normalization of nuclear wave functions based on

baryonic number conservation to relate LC and nonrelativistic nuclear wave functions

as follows[77, 78]

Ψ3He(α, p⊥, αs, ps,⊥) =
√
2(2π)3mNΨ3He,NR(α, p⊥, αs, ps,⊥) (III.14)

where forΨ3He,NR we can use known nonrelativistic3He wave functions (see e.g.,[80]).

Substituting Eqs.(III.12) and (III.14) into Eq.(III.10) for the two-nucleon photodis-

integration amplitude we obtain

〈λ1f , λ2f , λs |M | λγ , λA〉 =
i[λγ ]e

√
2(2π)3√

2S′
NN

×
{

QN1
F

∑

λ2i

∫

〈λ2f ;λ1f | TQIM
NN (sNN , tN) | λγ ;λ2i〉ΨλA

3He,NR(~p1, λγ ; ~p2, λ2i; ~ps, λs)mN

d2p⊥
(2π)2

+

QN2
F

∑

λ1i

∫

〈λ2f ;λ1f | TQIM
NN (sNN , tN) | λ1i;λλ〉ΨλA

3He,NR(~p1, λ1i; ~p2, λγ ; ~ps, λs)mN

d2p⊥
(2π)2

}

(III.15)

where in the Lab frame of the3He nucleus, defining thez direction along the direction

of qLab one obtains

α = E2−p2z
MA−Es−psz

; p⊥ =
p1⊥ − p2⊥

2
,

αs =
Es+psz
MA/A

; ~p1 + ~p2 = −~ps, (III.16)

with all the momenta defined in the Lab frame.

Equation(III.15) allows us to calculate the unpolarized differential cross section of

two nucleon breakup in the form

dσ

dtd3ps/(2Es(2π)3)
=

|M̄|2
16π(s−M 2

A)(sNN −M 2
NN)

(III.17)

wheres = (kγ + pA)
2 and

|M̄|2 = 1

2
· 1
2

∑

λ1f ,λ2f ,λs,λγ ,λA

|〈λ1f , λ2f , λs |M | λγ , λA〉|2 . (III.18)

76



As follows from Eq.(III.15) the knowledge of quark-interchange helicity amplitudes

of NN elastic scattering will allow us to calculate the differential cross section of hard

NN breakup reaction without introducing any adjustable parameter.

Because the assumption ofαc = 1
2

plays a major role in the above derivations we

attempt now to estimate the theoretical error introduced bythis approximation. This

approximation by its nature is a “peaking” approximation that is used in loop calcu-

lations involving Feynman diagrams (one such example is the calculation of radiative

effects in electroproduction processes; see, e.g., [79]). One way to estimate the accuracy

of the approximation is to identify the main dependence of theintegrand in Eq.(III.7)

on αc which can be evaluated exactly and compare with its evaluation at αc = 1
2
. Using

Eq.(III.8) as well as Eq.(III.6) that allows us to relatedx1

x1
to dαc

αc
, and assuming that the

quark wave functions of nucleons atαc ∼ 1
2

are less sensitive toαc, one arrives at

R(ps) =
4ΨλA,λ1i,λ2i,λs

3He (αc =
1
2
, p⊥, ps)

∫

dαc

αc

Ψ
λA,λ1i,λ2i,λs
3He (αc,p⊥,ps)√

(1−αc)αc

. (III.19)

This ratio depends on the kinematics of the spectator nucleon, and for the case ofps ≤

100 MeV/c, R(ps) ≈ 1.1, which corresponds to∼20% of uncertainty in the cross section

of the reaction calculated with theαc = 1
2

approximation. The uncertainty increases

with an increase of the momentum of the spectator nucleon. This can be understood

qualitatively because, for large center of mass momenta of theNN pair, theα = 1
2

peak

of the nuclear wave function is less pronounced.

Quark-interchange and hardNN elastic scattering amplitudes

The possibility of usingNN elastic scattering data to calculate the cross section in

Eqs.(III.17) and (III.18) is derived from the assumption that the quark-interchange

mechanism provides the bulk of theNN elastic scattering strength at high energies and

large c.m. angles. This is a rather well-justified assumption. Experiments on exclu-

sive large−t two-body reactions [82] demonstrated clearly the dominance of the quark-

interchange mechanism for the scattering of hadrons that share common quark flavors.
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The analysis of these experiments indicate that contributions from competing mecha-

nisms such as pure gluon exchange or quark-antiquark annihilation are on the level of

few percent. This fact justifies our next approximation, to substitute quark-interchange

NN amplitudes in Eq.(III.15) with actualNN helicity amplitudes as follows:

< +,+|TQIM
NN |+,+ > = φ1

< +,+|TQIM
NN |+,− > = φ5

< +,+|TQIM
NN |−,− > = φ2

< +,−|TQIM
NN |+,− > = φ3

< +− |TQIM
NN | −+ > = −φ4. (III.20)

All other helicity combinations can be related to the above amplitudes through the parity

and time-reversal symmetry. The minus sign in the last equation above is due to the

Jackob-Wick phase factor (see, e.g., Ref.[42]), according to which one gains a phase

factor of (−1) if two quarks that scatter byπ−θ angle in c.m. have opposite helicities [48].

Note thatφi’s are normalized in such a way that the cross section forNN scattering is

defined as

dσNN→NN

dt
=

1

16π

1

s(s− 4m2
N)

1

2
(|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + 4|φ5|2). (III.21)

Because in the hard breakup regime the momentum transfer−tN � m2
N, one can

factorize the helicityNN amplitudes from Eq.(III.15) at sNN and tN values defined as

follows:

sNN = (q + pNN )
2 = (pf1 + pf2)

2,

tN = (pf2 − pNN/2)
2 =

tNN

2
+
m2

N

2
− M 2

NN

4
. (III.22)

Using this factorization in Eq.(III.15) for the spin averaged square of the breakup am-

plitude one obtains

¯|M|2 = (e22(2π)6

2s′NN

1

2
{2Q2

F |φ5|2S0 +Q2
F (|φ1|2 + |φ2|2)S12+
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[

(QN1
F φ3 +QN2

F φ4)
2 + (QN1

F φ4 +QN2
F φ3)

2)
]

S34

}

, (III.23)

whereQF = QN1
F +QN2

F andS12, S34, andS0 are partially integrated nuclear spectral func-

tions:

S12(t1, t2, α, ~ps) = NNN

1
2
∑

λ1=λ2=− 1
2

1
2
∑

λ3=− 1
2

∣

∣

∣

∣

∫

Ψ
1
2
3He,NR(~p1, λ1, t1; ~p2, λ2, t2; ~ps, λ3)mN

d2p⊥
(2π)2

∣

∣

∣

∣

2

, (III.24)

S34(t1, t2, α, ~ps) = NNN

1
2
∑

λ1=−λ2=− 1
2

1
2
∑

λ3=− 1
2

∣

∣

∣

∣

∫

Ψ
1
2
3He,NR(~p1, λ1, t1; ~p2, λ2, t2; ~ps, λ3)mN

d2p⊥
(2π)2

∣

∣

∣

∣

2

(III.25)

and

S0 = S12 + S34. (III.26)

In the above equationst1 andt2 are the isospin projections of nucleons in3He. The wave

function is normalized to2
3

for proton and1
3

for neutron. The normalization constants,

NNN renormalize the wave function to onepp and twonp effective pairs in the wave

function withNpp = 1
2

andNpn = 4.

Equations.(III.17) and (III.23) together with Eqs.(III.20),(III.24),and (III.25) allow

us to calculate the differential cross section of bothpp andpn breakup reactions off the

3He target. Notice that, on the qualitative level, as it follows from Eqs.(III.17) and

(III.23) in the limit of s � M 2
3He and sNN � m2

N, the HRM predicts ans−11 invariant

energy dependence of the differential cross section provided that theNN cross section

scales ass−10. However the numerical calculations of Eq.(III.23) require a knowledge of

theNN helicity amplitudes at high energy and momentum transfers. Our strategy is to

use Eq.(III.21) to expressNN breakup reactions directly through the differential cross

section ofpn andpp elastic scatterings rather than to use helicity amplitudes explicitly.

III.2 Hard breakup of proton and neutron from 3He.

We consider now the reaction

γ +3 He→ (pn) + p, (III.27)
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in which one proton is very energetic and produced at large c.m. angles with the neu-

tron, while the second proton emerges with low momentum. 100 MeV/c. In this case

the hard rescattering happens in thepn channel. Using theφ3 ≈ φ4 relation for hardpn

scattering amplitude (see, e.g., Refs [42, 38, 49]) for breakup amplitude of Eq.(III.23)

one obtains

¯|M|2 = (Qpn
F e)22(2π)6

2s′NN

1

2
{2|φ5|2S0 + (|φ1|2 + |φ2|2)S12 + (|φ3|2 + |φ4|2)S34} , (III.28)

whereQ(pn)
F = Qp

F +Qn
F can be calculated using Eqs.(III.12) and (III.13). On the basis of

the SU(6) flavor-spin symmetry of nucleon wave functions, for the helicity amplitudes

of Eq.(III.20) using the method described in AppendixB one obtains

Qpn
F =

1

3
. (III.29)

We can further simplify Eq.(III.28) noticing that for thepn pair in 3He one hasS12 ≈

S34 ≈ S0

2
. This is due to the fact that in the dominantS state two protons have opposite

spins and therefore the probability of finding one proton witha helicity opposite to that

of the neutron is equal to the other proton having the same helicity as the neutron’s.

Using this relation and Eq.(III.21) for thepn breakup reaction one obtains

| M̄ |2= (eQF,pn)
2(2π)6

s′NN

16πsNN(sNN − 4m2
N)
dσpn→pn(sNN , tN )

dtN

Spn
0

2
. (III.30)

Inserting it in Eq.(III.17) for the differential cross section one obtains

dσγ3He→(pn)p

dt d
3ps
Es

= αQ2
F,pn16π

4
Spn

0 (α = 1
2
, ~ps)

2

sNN (sNN − 4m2
N )

(sNN − p2NN )
2(s−M 2

3He)

dσpn→pn(sNN , tN )

dtN
,

(III.31)

whereα = 1
137

and dσpn→pn

dtN
is the differential cross section of hardpn scattering evaluated

at values ofsNN and tN defined in Eq.(III.22). The spectral functionSpn
0 is defined in

Eq.(III.26) and corresponds to:

Spn
0 (α, ~ps) = 4

1
2
∑

λ1,λ2,λ3=− 1
2

∣

∣

∣

∣

∫

Ψ
1
2
3He,NR(~p1, λ1,

1

2
; ~p2, λ2,−

1

2
; ~ps, λ3)mN

d2p⊥
(2π)2

∣

∣

∣

∣

2

. (III.32)
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III.3 Hard breakup of two protons from 3He

We now consider the reaction

γ +3 He→ (pp) + n, (III.33)

in which two protons are produced at large c.m. angles while the neutron emerges as a

spectator with small momentum (ps ≤ 100 MeV/c).

The relation betweenS12 andS34 is very different from that in thepn case. As a

result of the fact that two protons cannot have the same helicity,in theS state one has

thatS12 � S34. The estimates of the spectral functions based on the realistic3He wave

function[80] gives S12

S34
∼ 10−4. Therefore one can neglect theS12 term in Eq.(III.23).

The next observation is that forpp scattering the helicity amplitudesφ3 and φ4 have

opposite signs because of the Pauli principle (see, e.g., Refs.[48, 42]). Using the above

observations and neglecting the helicity-nonconserving amplitudeφ5 for thepp-breakup

amplitude we obtain

¯|M|2 = (e22(2π)6

2s′NN

1

2
{2(Qp

F |φ3| −Qp
F |φ4|)2S34} . (III.34)

The charge factorQp
F depends on the helicity amplitude it couples; therefore one esti-

mates it for the combination of(Qp
F |φ3| − Qp

F |φ4|). Using SU(6) symmetry for the distri-

bution of given helicity-flavor valence quarks in the protonand through the approach

described in AppendixB we obtain

(Qp
F |φ3| −Qp

F |φ4|) = Qpp
F (|φ3| − |φ4|) (III.35)

with

Qpp
F =

5

3
. (III.36)

It is worth noticing that because of explicit considerationof quark degrees of freedom

the effective charge involved in the breakup is larger for the case of two protons than

for proton and neutron [see Eq.(III.29)]. This is characteristic of the HRM model in
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which a photon couples to a quark and more charges are exchanged in thepp case than

in the pn case. This is rather opposite to the scattering picture considered based on

hadronic degrees of freedom in which case the photon will coupleto an exchanged

meson andpp contribution will be significantly suppressed because no charged mesons

can be exchanged within thepp pair.

To be able to estimate the cross section of thepp breakup reaction through the elastic

pp scattering cross section we introduce a parameter

C2 =
φ2
3

φ2
1

≈ φ2
4

φ2
1

, (III.37)

which allows to express the differential cross section of the reaction (III.33) in the fol-

lowing form:

dσγ3He→(pp)n

dt d
3ps
Es

= αQ2
F,pp16π

4Spp
34 (α =

1

2
, ~ps)

2β2

1 + 2C2

sNN (sNN − 4m2
N)

(sNN − p2NN )
2(s−M 2

3He)
×

dσpp→pp(sNN , tN )

dt
, (III.38)

where we also introduced a factorβ,

β =
|φ3| − |φ4|
|φ1|

, (III.39)

which accounts for the suppression from the cancellation betweenφ3 andφ4 helicity

amplitudes of elasticpp scattering.1 The spectral functionSpp
34 in Eq.(III.38) is expressed

through the3He wave function according to Eq.(III.25) as follows:

Spp
34 (α, ~ps) =

1

2

1
2
∑

λ1=−λ2=− 1
2

1
2
∑

λ3=− 1
2

∣

∣

∣

∣

∫

Ψ
1
2
3He,NR(~p1, λ1,

1

2
; ~p2, λ2,

1

2
; ~ps, λ3)mN

d2p2,⊥
(2π)2

∣

∣

∣

∣

2

. (III.40)

III.4 Two- and three-body processes inNN breakup reactions

For a two-body hardNN breakup mechanism to be observed it must dominate the three-

body/two-step processes. This is especially important forpp breakup processes, (III.33)

1This cancellation was overlooked in earlier estimates of the cross section ofpp photodisintegration from3He
target (see, e.g., [76]).
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q

Figure III.2: Diagram corresponding to three-body processes in which the
hard breakup of thepn pair is followed by a soft charge-exchange rescattering
of the neutron off the spectator proton.

because according to Eqs.(III.38 and III.39) the two-body contribution is suppressed

because of a cancellation betweenφ3 andφ4 helicity amplitudes.

At low to intermediate range energies (Eγ ∼ 200 MeV) it is rather well established

that thepp breakup reaction proceeds overwhelmingly through a two-step(three-body)

process[83, 84, 85, 86, 87, 88] in which the initial breakup of thepn pair (dominated by

π± exchange) is followed by a charge-interchange final state interaction of the neutron

with the spectator proton. Other two-step processes include the excitation of intermedi-

ate∆ isobars in thepn system with the subsequent rescattering off the spectator neutron,

which produces two final protons.

The dominance of three-body processes at low energies is related mainly to the fact

that the two-bodypp breakup is negligible because of the impossibility of charged-pion

exchanges between two protons that absorb an incoming photon.

At high energy kinematics within the HRM the interaction between protons is car-

ried out by exchanged quarks because of which the relative strength ofpp breakup is

larger.

To estimate the strength of three-body processes at high energy kinematics, one

needs to calculate the contribution of diagrams similar to Fig. III.2. Because the charge-

exchange rescattering at the final stage of the process in Fig.III.2 takes place at proton

momentap′f > mN, one can apply an eikonal approximation[91, 92] to estimate its con-

tribution.
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For Eγ ≥ 2 GeV assuming that the HRM is valid for the first (pn breakup) stage

of the reaction, for the amplitude of three-body/two-step process within the eikonal

approximation[91, 92] one obtains

M3body ≈ eQF,pn(2π)
3

2
√
2s′NN

T hard
pn→pn(tN )×

∫

ΨλA
3He,NR(~p1, t1; ~p2, t2; ~ps − ~k⊥)mN

T chex
pn→np(k⊥)

sNN

d2p⊥
(2π)2

d2k⊥
(2π)2

, (III.41)

where we suppressed helicity indices for simplicity and choose the isospin projections,

t1 = −t2 = 1
2
, corresponding to the initialpn pair that interacts with the photon. Here

T hard
pn→pn(tN ) is the hard elasticpn scattering amplitude andT chex

pn→np represents the amplitude

of the soft charge-exchangepn scattering. Because of the pion-exchange nature of the

latter it is rather well established that this amplitude is real and can be represented as

∼√sAeB
2
t, whereA andB are approximately constants[89].

Two main observations follow from Eq.(III.41) and the above-mentioned property

of the charge-exchange amplitude: First, three-body and two-body amplitudes [see,

e.g., Eq.(III.15)] will not interfere, since one is real and the other is imaginary.The

fact that these two amplitudes differ by order ofi follows from the general structure of

rescattering amplitudes (see, e.g., Ref.[92]). Equation (III.15) corresponds to a single

rescattering amplitude, while Eq.(III.41) to a double rescattering amplitude.

Second, because of the energy dependence of the charge-exchange scattering amplitude

at small angles, the three-body contribution will scale like s−12 as compared to the two-

body breakup contribution.

Using Eq.(III.41) one can estimate the magnitude of the contribution of three-body

processes in thepp breakup cross section as follows:

dσγ3He→(pp)n
three−body

dt d
3ps
Es

≈ dσγ3He→(pn)p
two−body

dt d
3ps
Es

Spnp(ps)

Spn
0 (ps)

(III.42)

whereSpn
0 (ps) is defined in Eq.(III.32) and forSpnp(ps) based on Eq.(III.41) one obtains

Spnp(ps) =
Npn

16s2NN

|
∫

ΨλA
3He,NR(~p1, ~p2, ~ps − ~k⊥)mNT

chex
pn→np(k⊥)

d2p⊥
(2π)2

d2k⊥
(2π)2

|2 . (III.43)
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Here both spectral functions are defined atα = 1
2
.

Using Eqs.(III.42) and (III.43) and the parametrization ofT chex
pn→np from Ref.[89] one

can estimate the relative contribution of three-body processes numerically. Note that

this contribution is maximal atαs = 1 and increases with an increase of the momentum

of ps. However because of the charge-exchange nature of the second rescattering, this

contribution decreases linearly with an increase ofs.1

III.5 Numerical Estimates

For numerical estimates we consider the center of mass reference frame ofγNN system,

for which according to Eq.(III.3) one obtains

tN,N = − (sNN −M 2
NN )

2
√
sNN

(
√
sNN −

√

sNN − 4m2
Ncos(θc.m.)) +m2

N , (III.44)

whereM 2
NN = pµNNpNN,µ and pµNN = pµ3He − pµs . Using the above equation we obtain for

tN [Eq.(III.22)], which defines the effective momentum transfer in theNN scattering

amplitude, the following relation:

tN = − (sNN −M 2
NN )

4
√
sNN

(
√
sNN −

√

sNN − 4m2
Ncos(θc.m.)) +m2

N −
M 2

NN

4
. (III.45)

One can also calculate the effective c.m. angle that enters in theNN scattering amplitude

as follows:

cos(θNc.m.) = 1− (sNN −M 2
NN )

2(sNN − 4m2
N)

(
√
sNN −

√

sNN − 4m2
Ncos(θc.m.))√

sNN

+
4m2

N −M 2
NN

2(sNN − 4m2
N)
. (III.46)

The above equations define the kinematics of hardNN rescattering.

Energy dependence and the magnitude of the cross sections

We are interested in energy dependences of the hard breakup reactions of Eqs.(III.27)

and (III.33) at fixed and large angle production of two fast nucleons in the “γ-NN” cen-

ter of mass reference frame. Particularly interesting is the case ofθc.m.=900 for which

1Notice that for the case of diagonalpn → pn rescatteringTpn→np(k⊥) = sσtote
B
2 t and as a result the

probability of the rescattering is energy independent.
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Figure III.3: . Energy dependence ofs11 weighted differential cross sections
at 90o c.m. angle scattering in ”γ-NN”system. In these calculations one inte-
grated over the spectator nucleon momenta in the range of0-100 MeV/c.

as it follows from Eq.(III.46) cos(θNc.m.) = 0.5. This means that the cross sections of hard

breakup reactions at these kinematics will be defined by theNN elastic scattering at

θNc.m. = 600. In Fig.III.3 theEγ ands dependencies of thes11NN weighted differential cross

sections are presented for the cases of thepp andpn breakup reactions. In the calculation

we integrated over the spectator nucleon’s momentum in the range of (0-100) MeV/c

and over the whole range of its solid angle. Also for the parameterC in Eq.(III.37) we

usedC = 1
2
, consistent with an estimate obtained within the quark-interchange model of

pp scattering (see, e.g.,[42, 38]). The estimation of the factorβ, which takes into account

the cancellation betweenφ3 andφ4 helicity amplitudes in Eq.(III.38) requires the knowl-

edge of the angular dependence for helicity amplitudes. Forthis we used the helicity

amplitudes calculated within thequark-interchange model[38, 42] with phenomenolog-

ical angular dependencies estimated usingF (θc.m.) = 1
sin2(θcm)(1−cos(θcm))2

(see, e.g., Refs.

[38, 49]) which describes reasonably well the data at hard scattering kinematics.

Several features of the HRM calculations are worth discussing in Fig.III.3: First,

the breakup cross sections in average scale likes−11
NN . Note that the absolute (nonscaled)
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Figure III.4: Invariant energy dependence ofs10 weighted differential cross
sections of elasticpp scattering atθc.m. = 90o andθc.m. = 60o. are fitted using the
parametrization described in AppendixF of the available world data [90].

values of the cross sections drop by five orders of magnitude inthe 2-8 GeV of photon

energy range. Next, the shapes of thes11 weighted differential cross sections reflect the

shapes of thes10 weighted differential cross sections ofpp andpn scattering atθc.m. = 60o.

[see Figs.(III.4) and (III.5)]. It is worth noting that as follows from Figs.(III.4) and

(III.5) the fits used in the calculation ofpp andpn breakup reactions contain uncertain-

ties on the level of 10% forpp breakup (forsNN ≥ 24 GeV2) and up to 30% forpn breakup

reactions. Consequently, one can conclude that the calculated shape of the energy de-

pendence of thepn breakup reaction in Fig.(III.3) does not have much predictive power.

However, for thepp breakup the calculated shape, for up tosNN ≤ 24 GeV2, is not ob-

scured by the uncertainty of thepp data and can be considered as a prediction of the

HRM.

Analysis of the first experimental data onpp photodisintegration of the3He nucleus

at high momentum transfer from Jefferson Lab [94] has shown excellent agreement

with the HRM predictions. Atθc.m = 90o ands >12GeV2, the cross section scales with

s11 according to counting rules, and as shown in Figs.III.6 andIII.7, the experimental
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energy distribution of the breakup process at this kinematics is remarkably similar but

for a power ofs, to the experimental energy distribution ofpp elastic scattering atθNc.m. =

60o.

It is worth mentioning that considered features of the HRM are insensitive to the

choice of the above-discussed parameters ofC andβ, because they only define the ab-

solute magnitude of thepp breakup cross section.
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Figure III.5: Invariant energy dependence ofs10 weighted differential cross
sections of elasticpn scattering atθc.m. = 90o andθc.m. = 60o. Curves are fitted
using the parametrization described in AppendixF of the available world
data [90].

The next feature of the calculations in Fig.III.3 is the magnitude of thepn and pp

breakup cross sections. Thepn breakup cross section [Eq.(III.31)] does not contain any

free parameter, and similar to the HRM prediction for the breakup of the deuteron[70],

it is expressed through the rather well-defined quantities.For the estimate ofpp breakup,

however, one needs to know the relative strength of theφ3 andφ4 amplitudes as com-

pared toφ1 as well as the extent of their cancellation at kinematics ofsNN andtN defined

in Eqs.(III.22) and (III.45). Our calculation, determined by phenomenologically justi-

fied estimates of factorsC andβ in Eq.(III.38) results in thepp breakup cross section

which is about ten times smaller than the cross section for thepn breakup. This result
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tering. These data is used in Eq.(III.38) to calculate the HRM cross section
of pp breakup shown in Fig.III.6.
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indicates however, an increase ofpp breakup cross section relative to thepn breakup

cross section as compared to the results from the low energy breakup reactions. As it

was mentioned in Sec.III.4, at low energies (∼ 200 MeV) the cross section ofpp pho-

todisintegration from3He is significantly smaller (by almost two orders of magnitude

according to Ref.[83]) than thepn-breakup cross section.

Note that the factorsC andβ introduce an additional uncertainty in estimating the

magnitude of thepp-breakup cross section. While the factorC can be evaluated in the

quark-interchange model thus staying within the frameworkof the considered model,

the factorβ is not constrained by the theoretical framework of the model. The latter

is sensitive to the angular dependence,F (θc.m.), of the helicity amplitudes. To esti-

mate the uncertainty associated withF (θc.m.) we varied it around the form,F (θc.m.) =

1
sin2(θc.m.)(1−cos(θc.m.))2

in such a way that the results were still in agreement with angular

distribution ofpp scattering at−t,−u > 1 GeV2. We found that this variation changes the

HRM prediction for the magnitude ofpp-breakup cross section as much as40%.

10
-3

10
-2

10
-1

1

10

0 100 200 300 400 500
ps⊥  (MeV/c)

σ pn
p/

σ pp

10
-3

10
-2

10
-1

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
αs

σ pn
p/

σ pp

Eγ=2 GeV

(a)

(b) ps⊥ = 0

αs= 1

Figure III.8: Dependence of the ratio of the cross section ofthree-body/two-
step process discussed in Sec.V to the cross section of the two-body pp

breakup atEγ = 2 GeV on (a) transverse momentum of the spectator neu-
tron pst atαs = 1 and on (b)αs at pst = 0.

Becausepp breakup cross section is still by a factor of 10 smaller than thepn cross
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section, one needs to estimate the contribution due to three-body processes in which

hardpn breakup is followed by soft charge-exchange rescattering. Theestimate based

on Eq.(III.42) is given in Fig.III.8 where the ratio of three-body to two-body breakup

cross sections is evaluated for different values ofαs and transverse momentum of the

spectator neutron,ps⊥.

Because of the eikonal nature of the second rescattering in three-body processes,

one expects the cross section to be maximal atαs = 1. As Fig.III.8(a) shows in this

case, the three-body process is a correction to the two-bodybreakup process,∼2% for

ps⊥ = 100 MeV/c and∼ 17% for ps⊥ = 200 MeV/c. Then, starting atps⊥ ¿ 300 MeV/c

the three-body process dominates the two-body contribution. The latter can be verified

by observing an onset ofs−12 scaling at large (≥ 300 MeV/c) transverse momenta of the

spectator neutron in the case of hardpp breakup reactions. FigureIII.8(b) shows also

that the three-body contribution will be always small forps⊥ ≈ 0 MeV/c, and for a wide

range ofαs, which again reflects the eikonal nature of the second order rescattering in

which case the recoiling of the spectator nucleons happens predominantly at∼ 90o (see,

e.g., [93]). Note that one expects the above estimate of the three-bodycontribution to

contain an uncertainty of 10-15%, representing the generallevel of accuracy of eikonal

approximations.

On the basis of Fig.III.8 one can expect that overall, for small values ofps ≤100-

150 MeV/c in the high energy limit (Eγ > 2 GeV) one expects two-body breakup mech-

anisms to dominate for bothpp andpn production reactions.

Spectator nucleon momentum dependence

The presence of a spectator nucleon in the hard two-nucleon breakup reaction from3He

gives us an additional degree of freedom in checking the mechanism of the photodisin-

tegration. As follows from Eqs.(III.31) and (III.32) and Eqs.(III.38) and (III.40) thepn

andpp breakup cross sections within the HRM are sensitive to different components of

the nuclear spectral function. This is a result of the fact that thepp component with the

same helicities for both protons is suppressed in the groundstate wave function of the

91



3He target. Thus one expects rather different spectator-momentum dependencies forpp

andpn breakup cross sections.
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Figure III.9: Dependence of thes11 weighted 90o c.m. breakup differential
cross section on the light-cone momentum fraction of of spectator nucleon,
αs, calculated atEγ = 4 GeV andps⊥ = 0. (a) The solid line is forpp breakup
reactions, and the dashed line is forpn breakup reactions. Calculations are
normalized to the cross sections atαs = 1. (b) Ratio of thepn to pp breakup
cross sections normalized to their values atαs = 1.

The quantity that we consider for numerical estimates is notthe momentum of the

spectator but rather the momentum fraction of the target carried by the spectator nu-

cleon,αs. This quantity is Lorentz invariant with respect to boosts in theq direction,

which allows us to specify it in the Lab frame as follows:

αs ≡
Es − ps,z
MA/A

= αA − α1f − α2f (III.47)

whereαi =
Ei−pi,z
MA/A

for i = A, 1f , 2f and z axis in the Lab frame is defined parallel to

the momentum of incoming photonq. Note that the photon does not contribute to the

above equation becauseαq = 0. In definition ofαs we use a normalization such that for

a stationary spectatorαs = 1. Theαs dependencies of the differential cross sections for

pp andpn breakup reactions normalized to their values atαs = 1 are given in Fig.III.9(a).
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One feature ofαs dependence is the asymmetry of the cross section aroundαs = 1 with

cross sections dominating atαs > 1. This property can be understood from the fact that

the momentum fraction of theNN pair that breaks up is defined throughαs as follows:

αNN = 3− αs. (III.48)

The latter quantity defines the invariant energy of theNN pair as follows

sNN =M 2
NN + EγmnαNN . (III.49)

Because the cross section within the HRM is proportional tos−10
NN ,1 it will be enhanced

at small values ofsNN that will correspond to smaller values ofαNN or larger values of

αs.

The difference of the cross sections because of the different composition of the

nuclear spectral functions entering thepp and pn breakup reactions can be seen in

Fig.III.9(b) in which case one calculates the ratio ofpn to pp breakup cross sections

normalized to their values atαs = 1. The drop of the ratio in Fig.III.9.(b) at values close

to αs = 1 is the result of the suppression of the same-helicity two-protoncomponent

in the ground state nuclear wave function at small momenta. In this case the spectral

function is sensitive to the higher angular momentum components of the ground state

nuclear wave function. This yields a wider momentum distribution for thepp spectral

function as compared to that forpn because no same-helicity state suppression exits

for the latter. The estimates indicate that differences inαs dependencies ofpp andpn

breakup cross sections are rather large and can play an additional role in checking the

validity of the HRM.

III.6 Polarization transfer of the hard rescattering mechanism

One of the unique properties of the hard rescattering mechanism of two-nucleon breakup

is that the helicity of the nucleon from which a quark is struck is predominantly defined

1An additional negative power of invariant energy is provided by 1

s−M2
A

factor in the differential cross section
of the reaction [see Eqs.(III.31,III.38)].

93



by the helicity of the incoming photonλ1i = λγ [see Eq.(III.15)]. This property is a re-

sult of the fact that in the massless quark limit the helicityof the struck quark equals the

helicity of the photon,η1i = λγ, and assuming that at largex the quark carries almost all

the helicity of the parent nucleon one obtainsλ1i ≈ η1i = λγ.

Because within the HRM, the energetic struck quark shares its momentum with

a quark of the other nucleon through a hard gluon exchange, it will retain its initial

helicity when it merges into the final outgoing nucleon. It willalso havex′ ∼ x ∼ 1,

which allows us to conclude that the final outgoing nucleon willacquire the large part

of struck quark’s (as well as the photon’s) helicity. This mechanism will result in a large

(photon) polarization transfer for the hard two-nucleon breakup reactions.

An observable that is sensitive to polarization transfer processes is the quantityCz′,

which for a circularly polarized photon measures the asymmetry of the hard breakup

reaction with respect to the helicity of the outgoing proton.

A large value ofCz′ was predicted within the HRM for the hard breakup of the

deuteron in Ref.[43] that was observed in the recent experiment of Ref.[60].

For the case of the3He target an additional experimental observation will be a com-

parison ofCz′ asymmetries forpp andpn breakup channels. For the3He target we define

Cz′ as follows:

Cz′ =

∑

λ2f ,λs,λa

{

|〈+, λ2f , λs |M | +, λA〉|2 − |〈−, λ2f , λs |M | +, λA〉|2
}

∑

λ1fλ2f ,λs,λa

|〈λ1f , λ2f , λs |M | +, λA〉|2
. (III.50)

Using Eq.(III.15) and the definitions of Eq.(III.20) for Cz′ one obtains

Cz′ =
(|φ1|2 − |φ2|2)S++ + (|φ3|2 − |φ4|2)S+−

2|φ5|2S+ + (|φ1|2 + |φ2|2)S++ + (|φ3|2 + |φ4|2)S+− , (III.51)

where

S±,±(t1, t2, α, ~ps) =
1
2
∑

λA=− 1
2

1
2
∑

λ3=− 1
2

∣

∣

∣

∣

∫

ΨλA
3He,NR(~p1, λ1 = ±

1

2
, t1; ~p2, λ2 = ±

1

2
, t2; ~ps, λ3)mN

d2p2,⊥
(2π)2

∣

∣

∣

∣

2

(III.52)
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andS+ = S++ + S+−.

As follows from Eqs.(III.51) and (III.52) one predicts significantly different magni-

tudes forCz′ for pp andpn breakup cases.

For thepp breakup,S++
pp � S+−

pp due to the smallness of the nuclear wave function

component containing two protons in the same helicity state. As a result one expects

Cpp
z′ ≈

|φ3|2 − |φ4|2
|φ3|2 + |φ4|2

∼ 0, (III.53)

while for thepn break up caseS++
pn ≈ S+−

pn then one obtains

Cpn
z′ ≈

|φ1|2 + |φ3|2 − |φ4|2
|φ1|2 + |φ3|2 + |φ4|2

∼ 2

3
, (III.54)

where in the last part of the equation we assumed that|φ3| = |φ4| = 1
2
|φ1|.

III.7 Summary

The hard rescattering mechanism of a two-nucleon breakup from the3He nucleus at

large c.m. angles is derived from the assumption of the dominance of quark-gluon

degrees of freedom in the hard scattering process involvingtwo nucleons. The model

explicitly assumes that the photodisintegration process proceeds through the knock-

out of a quark from one nucleon with a subsequent rescattering ofthat quark with a

quark from the second nucleon. While photon-quark scattering is calculated explicitly,

the sum of all possible quark rescatterings is related to thehard elasticNN scattering

amplitude. Such a relation is found assuming that quark-interchange amplitudes provide

the dominant contributions to the hard elasticNN scattering.

The model allows one to calculate the cross sections of the hard breakup ofpn andpp

pairs from3He expressing them through the amplitudes of elasticpn andpp scatterings,

respectively.

Several results of the HRM are worth mentioning: First, the HRMpredicts an ap-

proximates−11 scaling consistent with the predictions of the quark-counting rule. How-

ever, the model by itself is nonperturbative because the bulk of the incalculable part of
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the scattering amplitude is hidden in the amplitude of theNN scattering that is taken

from the experiment.

Second, because the hardNN scattering amplitude enters into the final amplitude of

the photodisintegration reaction, the shape of the energy dependence of thes11 weighted

breakup cross section reflects the shape of thes10 weightedNN elastic scattering cross

section. Because of a better accuracy ofpp elastic scattering data forsNN ≤ 24 GeV2, we

are able to predict a specific shape for the energy dependenceof the hardpp breakup

cross section at photon energies up toEγ ≤ 5 GeV. This prediction and the overall

compliance with counting rules have been confirmed by a recent experiment on3He

photodisintegration carried out at Jefferson Lab by the Hall A collaboration [94].

Another observation is that, whens−11 scaling is established, the HRM predicts an

increase of the strength of thepp breakup cross section relative to thepn breakup as

compared to the low energy results. This is the result of the feature that within the

quark-interchange mechanism ofNN scattering one has more charges flowing between

nucleons in thepp pair than in thepn pair. This situation is opposite in the low energy

regime when no charged meson exchanges exist for thepp pair. Even though the large

charge factor is involved in thepp breakup its cross section is still by a factor of ten

smaller than the cross section of thepn breakup. Within the HRM, this is due to cancel-

lation between the helicity conserving amplitudesφ3 andφ4, which have opposite signs

for thepp scattering.

Because of the smallness of thepp breakup cross section, within the eikonal approx-

imation, we estimated the possible contribution of three-body/two-step processes in

which the initial two-body hardpn breakup is followed by the charge-exchange rescat-

tering of an energetic neutron off the spectator proton. We found that this contribution

hass−12 energy dependence and is a small correction for spectator nucleon momenta

≤150 MeV/c. However, the three-body/two-step process will dominate the hard pp

breakup contribution at large transverse momenta of the spectator nucleon starting at

ps⊥ ≥ 350 MeV/c.

The next result of the HRM is the prediction of different spectator-momentum de-
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pendencies of breakup cross section for thepp andpn pairs. This result follows from the

fact that the ground state wave function of3He containing two protons with the same

helicity is significantly suppressed as compared to the samecomponent in thepn pair.

Because of this, thepp spectral function is sensitive to the higher angular momentum

components of the nuclear ground state wave function. Thesecomponents generate

wider momentum distribution as compared to say theS component of the wave func-

tion. As a result the cross section of thepp breakup reaction exhibits wider momentum

distribution as compared to thepn cross section. Additionally because of the strongs

dependence of the reaction, the cross section exhibits an asymmetry in the light-cone

momentum distribution of the spectator nucleon, favoring larger values ofαs.

The final result of the HRM is the strong difference in predictionof the polarization

transfer asymmetry forpp and pn breakup reactions for circularly polarized photons.

Because of the suppression of the same helicitypp components in the3He ground state

wave function, the dominant helicity conservingφ1 component will not contribute to the

polarization transfer process involving two protons. Because of this effect, the HRM

predicts longitudinal polarization transferCz′, for the pp breakup to be close to zero.

Because no such suppression exists for thepn breakup, the HRM predicts a rather large

magnitude forCz′ ≈ 2
3
.

Even though the HRM model does not contain free parameters, for numerical esti-

mates we use the magnitude of elasticNN cross sections as well as some properties of

theNN helicity amplitudes. This introduces certain error in our prediction of the magni-

tudes of the breakup cross sections. For thepn breakup this error is mainly related to the

uncertainty in the magnitude of the absolute cross section of hard elasticpn scattering

which is on the level 30%. For thepp breakup the main source of the uncertainty is the

magnitude of the cancellation betweenφ3 andφ4, which is sensitive to the angular dis-

tribution of helicity amplitudes. The uncertainty that results from the angular function

is on the level of 40 %. These uncertainties should be considered on top of the theoret-

ical uncertainties that the HRM contains due to approximations such as estimating the

scattering amplitude at maximal value of the nuclear wave function atα = 1
2
. The latter
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may introduce an uncertainty as much as20% in the breakup cross section.

In conclusion, having that the HRM energy distribution forpp breakup shows good

agreement with recent experimental data, further experimental evaluation of all the

above-mentioned set predictions will contribute in verifying the validity of the hard

rescattering model. Deeper insight is also expected from progress in extracting the

helicity amplitudes of the hardNN scattering which will allow much improvement re-

garding the accuracy of the HRM predictions.

Mounting evidence favoring a HRM picture ofNN breakup reactions motivates the

study of additional processes within the HRM framework. Onesuch extension is dis-

cussed in the following chapter in which a HRM description ofdeuteron breakup into

∆∆-isobars is presented in contrast with a picture of this breakup channels emerging

from ∆∆ components of the deuteron. It also provides an scenario alternative to that

of a deuteron transitioning from a baryon-baryon to a six quark system as the relative

transverse momentum of the outgoing∆∆ system is asymptotically increased.
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CHAPTER IV

HARD BREAKUP OF THE DEUTERON INTO TWO ∆-ISOBARS

In this chapter, high energy photodisintegration of the deuteron into two∆-isobars at

large center of mass angles is studied within the QCD hard rescattering model (HRM).

According to the HRM, the process develops in three main steps: the photon knocks the

quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark

from the other nucleon sharing the high energy of the photon;then the energetic quarks

recombine into two outgoing baryons which have large transverse momenta. Within the

HRM, the cross section is expressed through the amplitude ofpn→ ∆∆ scattering which

are evaluated on the basis of the quark-interchange model ofhard hadronic scattering.

Calculations show that the angular distribution and the strength of the photodisintegra-

tion is mainly determined by the properties of thepn→ ∆∆ scattering.

Through the HRM, the cross section of the deuteron breakup to∆++∆− is predicted

to be 4-5 times larger than that of the breakup to the∆+∆0 channel. Also, the angular

distributions for these two channels are markedly different. These can be compared

with the predictions derived from the assumption that two hard ∆-isobars are the result

of the disintegration of the preexisting∆∆ components of the deuteron wave function.

In this case, one expects the angular distributions and cross sections of the breakup in

both∆++∆− and∆+∆0 channels to be similar.

IV.1 Introduction

Experiments on large center of mass angle breakup of the deuteron intopn channel and

of a pp system in3He photodisintegration confirmed the prediction of quark-counting

rule[51] according to which the energy dependence of the differential cross section at

large c.m. scattering angles scales asdσ
dt
∼ s−11. However, calculations of the absolute

cross sections require a more detailed understanding of thedynamics of these processes.

The considered theoretical models addressing this task canbe grouped by two distinctly

different underlying assumptions made in the calculations[76]. The first assumes that
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the large c.m. angle nucleons are produced through the interaction of the incoming

photon with a pre-existing hard two nucleon system in the nucleus[66, 67, 96]. The

second approach assumes that the two high momentum nucleons are produced through

a hard rescattering at the final state of the reaction[68, 70, 71, 75, 97] as described in

the previous chapter.

In the hard rescattering model (HRM)[70] in particular, by explicitly introducing

quark degrees of freedom, a parameter-free cross section has been obtained for hard

photodisintegration of the deuteron at 900 c.m. angle [70, 71]. Also, the HRM predic-

tion of the hard breakup of two protons from the3He nucleus described in the previous

chapter agreed reasonably well with the recent experimental data[94].

In this chapter, the HRM approach is extended to calculate hardbreakup of the

deuteron into two-∆-isobars produced at large angles in theγ−d center of mass reference

frame. Within the HRM the relative strength ofγd → ∆++∆− and γd → ∆+∆0 cross

sections is calculated as they compare with theγd→ pn cross section.

The investigation of the production of two energetic∆-isobars from the deuteron has

an important significance in probing possible non-nucleonic components in the deuteron

wave function (see e.g. Refs.[98, 99, 100, 78, 101]). The study of the deuteron photo-

disintegration into∆∆-isobars channels was proposed as a venue for investigating the

evolution of a nucleon-nucleon system into a six quark system. The onset of a six quark

picture of the deuteron could then be marked by a large increase of theγd → ∆∆ cross

section. The latter prediction assumes that such cross section is small for a nucleon

dominated deuteron wave function because of its suppressed∆∆ components. In con-

trast, for a six quark deuteron,NN and∆∆ components contribute with comparable

strength to the deuteron wave function (roughly 10% and 8%, respectively) while more

than 80% is contributed byCC (hidden color) components for which unlikeN or ∆, C

has a color charge.

High energyγd→ ∆∆ with ∆∆ emerging at large transverse momentum is thought to

probe the onset of hidden color components in the deuteron. Assuming that the highpT

∆∆ system was created in the initial state of the interaction, inthe asymptotic limit we
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have that
dσγd→∆∆

dt
∼ dσγd→pn

dt
.

Under this same assumption we also have that,

dσγd→∆++∆−

dt
=
dσγd→∆+∆0

dt
,

since both∆∆ channels in general contribute with the same strength to the spin-isospin

wave function of the deuteron.

In contrast, throughout this chapter, the role of hard rescattering in these processes

will be assessed. It will allow us also to explore another venue for checking the basic

mechanism of high momentum transfer breakup of nuclei into twobaryons. As it will

be shown in the sections that follow, the HRM description of these reactions results in

distinct predictions for angular distribution of the∆-isobar pair at large c.m. production

angle as well as their relative strength compared with the production of thepn pair at

the same kinematics.

Despite experimental challenges associated with the investigation of two∆-isobar

breakup of the deuteron[103], there are ongoing efforts in performing such experiments

at the Jefferson Lab[104, 105] which will provide the opportunity to asses the validity

of the HRM scenario by testing its predictions discussed in this chapter.

IV.2 Hard Rescattering Model

We consider the photoproduction of two baryons,B1 andB2, in the reaction,

γ + d→ B1 +B2 (IV.1)

in which the baryons are produced at large angles in theγ − d center of mass reference

frame.

According to the HRM, the large angle breakup of the NN system proceeds through

the knock-out of a valence quark from one of the nucleons with subsequent hard rescat-

tering of the struck-quark with a valence quark of the secondnucleon. The two quarks

101



then recombine with the spectator systems of nucleons forming two emerging baryons

with large transverse momenta. The hard rescattering provides the mechanism of shar-

ing the photon’s energy among two final baryons.

The invariant amplitude of the photodisintegration Eq.(IV.1) is calculated by apply-

ing Feynman diagram rules to diagrams similar to Fig.IV.1. During the calculation we

introduce undetermined quark wave functions of baryons to account for the transition

of the initial nucleons to the quark-spectator systems, andalso for the recombination of

the final state quarks with these spectator systems into the final two baryon system.

q

Figure IV.1: Deuteron photodisintegration according to the HRM

Fig.IV.1 displays the chosen independent momenta for three loop integration in-

volved in the invariant amplitude. As it was the case for3He photodisintegration in the

previous chapter, two major approximations simplify further calculations. First, using

the fact that the struck quark is very energetic we treat it onits mass shell. Then the

struck quark’s propagator is evaluated at it’s pole value atsuch magnitudes of nucleon

momenta that maximize the deuteron wave function. These approximations allow us to

factorize the invariant amplitude into three distinguished parts. The first, representing

the transition amplitude of the deuteron into the (pn) system, which can be evaluated

using a realistic deuteron wave function. The second is the amplitude of photon-quark

interaction, and the third term represents the hard rescattering of the struck quark with

recombination into a two large transverse momentum baryonicsystem. Combined with

the initial state nucleon wave functions, the rescatteringpart is expressed through the

quark-interchange (QI) amplitude ofpn→ B1B2 scattering. A detailed derivation is given

in sectionIII.1 in conjunction with AppendicesC andD (see also Ref.[70]). After the
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above mentioned factorization is made, the overall invariant amplitude ofγd → B1B2

reaction can be expressed as follows:

〈λ1f , λ2f |M | λγ , λd〉 = ie[λγ ]×
{

∑

i∈N1

∑

λ2i

∫

QN1
i√
2s′
〈λ2f ;λ1f | TQI

(pn→B1B2),i
(s, tN ) | λγ ;λ2i〉Ψλd

d (p1i, λγ ; p2i, λ2i)
d2p⊥
(2π)2

+
∑

i∈N2

∑

λ1i

∫

QN2
i√
2s′
〈λ2f ;λ1f | TQI

(pn→B1B2),i
(s, tN) | λ1i;λγ〉Ψλd

d (p1i, λ1i; p2i, λγ)
d2p⊥
(2π)2

}

(IV.2)

whereλγ,λd, λ1f andλ2f are the helicities of the photon, deuteron and the two outgoing

baryons respectively. HereΨλd

d (p1i, λ1i; p2i, λ2i) is theλd-helicity light-cone deuteron wave

function defined in theq+ = 0 reference frame. The initial light-cone momenta of the

nucleons in the deuteron arep1i = (α1i =
1
2
, p1i⊥ = −p⊥) andp2i = (α2i =

1
2
, p2i⊥ = p⊥) with λ1i

andλ2i being their helicities respectively. The1√
s′

factor withs′ = s−M 2
d comes from the

energetic propagator of the struck quark before its rescattering. The squares of the total

invariant energy as well as the momentum transfer are definedas follows:

s = (q + pd)
2 = (p1f + p2f )

2 = 2Elab
γ Md +M 2

d

t = (p1f − q)2 = (p2f − pd)2 (IV.3)

whereq, pd, p1f andp2f are the four-momenta of the photon, deuteron and two outgoing

baryons respectively. The lab energy of the photon is definedbyElab
γ , andMd is the mass

of the deuteron. The transfer momentum,tN in the rescattering amplitude in Eq.(IV.2)

is defined as:

tN = (p1f − p1i − q)2 = (p2f − p2i) ≈ (p2f −
pd
2
)2 =

t

2
+
m2

B2

2
− M 2

d

4
, (IV.4)

where the approximation in the right hand side follows from the assumption that the

magnitudes of light-cone momentum fractions of bound nucleons dominating in the

scattering amplitude areα1i = α2i =
1
2
, and that the transverse momenta of these nucleons

are negligible as compared to the momentum transfer in the reaction,p2⊥ � |tN |, |uN |.
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In Eq.(IV.2) the following expression

Qi〈λ2f ;λ1f | TQI
(pn→B1B2),i(s, tN ) | λ1i;λ2i〉 (IV.5)

represents the quark-charge weighted QI amplitude ofpn → B1B2 hard exclusive scat-

tering. The factorQi corresponds to the charge (ine units) of the quark that interacts

with the incoming photon. In a further approximation we factorize the hard rescattering

amplitude from the integral since the momentum transfer entering in T(pn→B1B2),i(s, tN )

significantly exceeds the Fermi momentum of the nucleon in the deuteron. Also, after

calculating the overall quark-charge factors, the QI scattering amplitudes are identified

with theNN → B1B2 helicity amplitudes as follows:

〈λ2f ;λ1f | TQI
pn→B1B2

(s, tN ) | λ1i;λ2i〉 = φj(s, θ
N
c.m.), (IV.6)

whereθNc.m. is the effective center of mass angle defined for givens andtN .

The differential cross section for unpolarized scatteringis obtained through:

dσγd→B1B2

dt
=

1

16π

1

(s−M 2
d )
|M̄|2γd→B1B2

(IV.7)

where

|M̄|2γd→B1B2
=

1

3

1

2

∑

λ1f ,λ2f ,λγ ,λd

| 〈λ1f , λ2f |M | λγ , λd〉|2, (IV.8)

with the invariant amplitude square averaged by the number of helicity states of the

deuteron and photon.

IV.3 Cross section of theγ + d→ pn breakup reaction

We derive the amplitude of the breakup of the deuteron into thepn pair from Eq.(IV.2) by

introducing the independent helicity amplitudes ofpn elastic scattering Eq.(B.2) and by

separating the quark-charge factors intoQ̂N1 andQ̂N2 which correspond to the scattering

of the photon off the quark of the first and the second nucleonsin the deuteron. Then,
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for Eq.(IV.8) one obtains:

¯|M|2 =
1

2

1

3

e2

2s′

[

S12

{

|(Q̂N1 + Q̂N2)φ1|2 + |(Q̂N1 + Q̂N2)φ2|2
}

+ S34

{

|Q̂N1φ3 + Q̂N2φ4|2 + |Q̂N1φ4 + Q̂N2φ3|2
}

+ 2S0|(Q̂N1 + Q̂N2)φ5|2
]

, (IV.9)

where the light-cone spectral functions of the deuteron aredefined as follows:

S12 =
1
∑

λ=−1

1
2
∑

(λ1=λ2=− 1
2
)

∣

∣

∣

∣

∫

Ψλd

d (p1, λ1; p2, λ2)
d2p⊥
(2π)2

∣

∣

∣

∣

2

,

S34 =
1
∑

λ=−1

1
2
∑

(λ1=−λ2=− 1
2
)

∣

∣

∣

∣

∫

Ψλd

d (p1, λ1; p2, λ2)
d2p⊥
(2π)2

∣

∣

∣

∣

2

,

S0 = S12 + S34. (IV.10)

Eq.(IV.9) can be further simplified if we assume (see e.g.[49]) that φ3 ≈ φ4, as well as

S12 ≈ S34 =
S0

2
, which results in:

¯|M|2 =
1

2

1

3

e2

2s′
Q2

F,pn

S0

2
[|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + |φ4|2 + 4|φ5|2] . (IV.11)

Using the expression of the differential cross section of elasticpn scattering:

dσNN→NN (s, θNc.m.)

dt
=

1

16π

1

s(s− 4m2
N)

1

2
(|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + 4|φ5|2), (IV.12)

and the relation between the light-cone and non-relativistic deuteron wave functions[77,

70, 106, 81] at small internal momenta:Ψd(α, p⊥) = (2π)
3
2Ψd,NR(p)

√
mN in Eq.(IV.9), for

the differential cross section on obtains from Eq.(IV.7):

dσγd→pn(s, θc.m.)

dt
=
αQ2

F,pn8π
4

s′
dσpn→pn(s, θNc.m.)

dt
S̄0,NR, (IV.13)
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where we neglected the difference between4m2
N andM 2

d . Here the averaged non-relativistic

spectral function of the deuteron is defined as follows:

S̄0,NR =
1

3

λ=1
∑

λ=−1

1
2
∑

λ1,λ2=− 1
2

∣

∣

∣

∣

∫

Ψλd

d,NR(α =
1

2
, p⊥, λ1;α =

1

2
,−p⊥, λ2)

√
mN

d2p⊥
(2π)2

∣

∣

∣

∣

2

, (IV.14)

whereΨd,NR is the non relativistic deuteron wave function, which can be calculated using

realisticNN interaction potentials.

The quark-charge factor,QF,pn = 1
3
[70] accounts for the amount of the effective

charge exchanged between the proton and the neutron in the rescattering. It is esti-

mated by counting all the possible quark-exchanges within the pn pair weighted with

the charge of one of the exchanged quarks (for more details see AppendixB). The

result in Eq.(IV.13) is remarkably simple and contains no free parameters. It canbe

evaluated using the experimental values of the differential cross section of the elastic

pn scattering,dσ
pn→pn(s,θNc.m.)

dt
. The angleθNc.m. entering in thepn → pn cross section is the

center of mass angle of the scattering corresponding to theNN elastic reaction ats and

tN . It is related toθc.m. of thepn photodisintegration by (See AppendixE):

cos(θNc.m.) = 1− (s−M 2
d )

2(s− 4m2
N)

(
√
s−

√

s− 4m2
Ncos(θc.m.))√

s
+

4m2
N −M 2

d

2(s− 4m2
N)
. (IV.15)

It is worth mentioning that as it follows from the equation above,θc.m. = 900 photodisin-

tegration will correspond to theθNc.m. = 600 hardpn elastic rescattering at the final state of

the reaction.

IV.4 Cross section of theγd→ ∆∆ breakup reaction

We use an approach similar to that in Sec.IV.3 to derive the invariant amplitude of the

γd→ ∆∆ reactions. In this case Eq.(IV.2) requires an input of the helicity amplitudes of

the correspondingpn → ∆∆ scattering. One has a total 32 independent helicity ampli-

tudes for this scattering. To simplify further our derivations, we will restrict ourselves

by considering only the seven helicity conserving amplitudes given in Eq.(B.3). Using

these amplitudes in Eq.(IV.2) and separating the quark-charge factors intoQ̂N1 andQ̂N2,
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similar to Eq.(IV.9) one obtains

¯|M|2
γd→∆∆

=
1

2

1

3

e2

2s′

[

S12

{

|(Q̂N1 + Q̂N2)φ1|2 + |(Q̂N1 + Q̂N2)φ6|2 + |(Q̂N1 + Q̂N2)φ7|2
}

+ S34

{

|Q̂N1φ3 + Q̂N2φ4|2 + |Q̂N1φ4 + Q̂N2φ3|2

+ |Q̂N1φ8 + Q̂N2φ9|2 + |Q̂N1φ9 + Q̂N2φ8|2
}]

, (IV.16)

whereS12 andS34 are defined in Eq.(IV.10). Similar to the previous section, we simplify

further the above expression assuming that all helicity conserving amplitudes are of the

same order of magnitude. Assuming also thatS12 ≈ S34 ≈ S0

2
, we obtain

¯|M|2 =
1

2

1

3

e2

2s′
QF,∆∆

S0

2
[|φ1|2 + |φ3|2 + |φ4|2 + |φ4|2 + |φ6|2 + |φ7|2 + |φ8|2 + |φ9|2] , (IV.17)

whereQF,∆∆ = Q̂N1 + Q̂N2 = 1
3

is obtained by using the same approach as for the case of

thepn breakup in Sec.IV.3. Using now the expression of the differential cross section of

pn→ ∆∆ scattering,

dσpn→∆∆(s, θNc.m.)

dt
=

1

16π

1

(s− 4m2
N)

1

2
[|φ1|2 + |φ3|2 + |φ4|2 + |φ4|2 + |φ6|2 + |φ7|2 + |φ8|2 + |φ9|2] (IV.18)

as well as the relation between light-cone and non relativistic deuteron wave function

discussed in Sec.IV.3, from Eq.(IV.7) we obtain the following expression for the differ-

ential cross section of theγd→ ∆∆ scattering:

dσγd→∆∆(s, θc.m.)

dt
=
αQ2

F,∆∆8π
4

s′
dσpn→∆∆(s, θNc.m.)

dt
S̄0,NR, (IV.19)

whereS̄0,NR is given in Eq.(IV.14). The effective c.m. angleθNc.m. entering in the argument

of the differential cross section ofpn → ∆∆ reaction can be calculated by using Eqs.

(IV.3) and (IV.4) (see also AppendixE) to obtain

cosθNc.m. =
1

2
√

(s− 4m2
N) (s− 4m2

∆)

[

s−M 2
d

2
√
s

√

s− 4m2
∆cosθc.m. + s− 4m2

N

]

. (IV.20)

As it follows from Eq.(IV.19), provided there are enough experimental data on high
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momentum transferpn → ∆∆ differential cross sections, theγd→ ∆∆ cross section can

be computed without introducing an adjustable free parameter. However, there are no

experimental data on hard exclusivepn → ∆∆ reactions with sufficient accuracy that

would allow us to make quantitative estimates based on Eq.(IV.19). Instead, in the next

section we will attempt to make quantitative predictions based on the quark-interchange

framework of hard scattering.

IV.5 Estimates of the relative strength of the∆∆ breakup reactions.

The results presented in this section are calculated considering the experimental ob-

servation [37] that the quark-interchange [107] represents the dominant mechanism of

hard exclusive scattering of baryons that carry valence quarks with common flavor. The

quark-interchange mechanism however will not allow us to calculate the absolute cross

sections. Instead, we expect that its predictions will be more reliable for the ratios of

the differential cross sections for different exclusive channels.

As an illustration of the reliability of calculations of cross section ratios in the QI

model, in Fig.IV.2 compares the QI predictions for the ratios ofpn to pp differential cross

sections at900 c.m. scattering. Here, we compare predictions based on SU(6)[42, 38]

and diquark (See chapterII ) symmetry approaches for the valence quark wave function

of the nucleons. As the comparison shows, one achieves a rather reasonable agreement

with the data without any additional normalization parameter. On the basis of this

agreement, we now estimate the ratio of the differential cross sections ofγd → ∆∆ to

the γd → pn cross sections. We use both SU(6) and diquark-symmetry quarkwave

functions of the nucleon and∆-isobars (see AppendixA) in the calculation of thepn→

∆∆ amplitudes (see AppendixB).

To calculate the photodisintegration amplitudes we go backto Eqs.(IV.9) and (IV.16)

and evaluate the quark-charge factors using SU(6) or diquark symmetries of the valence

quark wave functions of baryons. For this we separate thet andu channels in the helicity

amplitudes:

φi(s, θ
N
c.m.) = φt

i(s, θ
N
c.m.) + φu

i (s, θ
N
c.m.) (IV.21)
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Figure IV.2: (Color online) Ratio of thepn→ pn to pp→ pp elastic differential
cross sections as a function ofs at θNc.m. = 900.

and then treat the charge factors for the given nucleonN as:

Q̂Nφl = Qt,N
i φt

l +Qu,N
i φu. (IV.22)

This yields the following expression for the photodisintegration amplitude of Eq.(IV.2)

:

〈λ1f , λ2f |M | λγ , λd〉 = ie[λγ ]×
{

∑

λ2i

1√
2s′

[

QtN1
i φt

i +QuN1
i φu

i

]

λ2i

∫

Ψλd

d (p1, λγ ; p2, λ2i)
d2p⊥
(2π)2

+
∑

λ1i

1√
2s′

[

QtN2
i φt

i +QuN2
i φu

i

]

λ1i

∫

Ψλd

d (p1, λ1i; p2, λγ)
d2p⊥
(2π)2

}

. (IV.23)

γd→ pn scattering

For theγd → pn amplitude, the charge factors calculated for the helicity conserving

amplitudes according to the QI framework yield for both SU(6) and diquark models

(see Appendix B)

QtN1
j = QtN2

j =
QF,pn

2

QuN1
j = −2QuN2

j = 2QF,pn (IV.24)
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with QF,pn = 1
3

and independent of j. Using these relations in Eq.(IV.22), from Eqs.(IV.23)

and (IV.9) one obtains

|M̄|2γd−→pn =
e2

6 · 2s′Q
2
F,pn

{

S12φ
2
1 + S34

[

(

φt
3 + φt

4

2
+ 2φu

4 − φu
3

)2

+

(

φt
4 + φt

3

2
+ 2φu

3 − φu
4

)2
]}

,

(IV.25)

where the different predictions of SU(6) and diquark models follow from the different

predictions for thepn→ pn helicity conserving amplitudes given in Eq.(II.12).

γd→ ∆+∆0 scattering

The calculation for theγd → ∆+∆0 amplitude yields the same quark-charge factors as

for theγd → pn reactions in Eq.(IV.24). Using the helicity amplitudes of thepn → ∆+∆0

scattering from Eq.(B.12) and the expressions for the photodisintegration amplitudes

from Eqs.(IV.23,IV.16) one obtains

|M̄|2γd−→∆+∆− =
1

6

e2

2s′
Q2

F,∆∆ {S12 [|φ1|2 + |φ6|2 + |φ7|2]

+S34

[

(

φt
3 + φt

4

2
+ 2φu

4 − φu
3

)2

+

(

φt
4 + φt

3

2
+ 2φu

3 − φu
4

)2

+

(

φt
8 + φt

9

2
+ 2φu

9 − φu
8

)2

+

(

φt
9 + φt

8

2
+ 2φu

8 − φu
9

)2
]}

, (IV.26)

where the different predictions of SU(6) and diquark models follow from the different

predictions for thepn→ ∆+∆0 helicity conserving amplitudes given in Eq.(B.12).

γd→ ∆++∆− scattering

For the charge factors in theγd → ∆++∆− scattering within the quark-interchange ap-

proximation from Appendix B we obtain:

−QtN1 =
QtN2

2
= QF,∆∆ =

1

3
. (IV.27)
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Inserting these charge factors in Eqs.(IV.23,IV.16) one obtains for the photodisintegra-

tion amplitude:

|M̄|2γd−→∆++∆− =
1

6

e2

2s′
Q2

F,∆∆ {S12 (|φ1|2 + |φ6|2 + |φ7|2)

+ S34

[

(2φ3 − φ4)
2
+ (2φ4 − φ3)

2
+ 5|φ8|2

]}

. (IV.28)

where predictions for the helicity conserving amplitudes of pn → ∆++∆− are given in

Eq.(B.13).

Numerical Estimates

Using Eqs.(IV.25), (IV.26) and (IV.28) with the baryonic helicity amplitudes calculated

in Appendix B we estimate the ratioR(θc.m.) of theγd→ ∆∆ to γd→ pn differential cross

sections at givens andθc.m. angle. For simplicity we consider the kinematics in which

s >> 4m2
∆, which allows to approximate both Eqs.(IV.15) and (IV.20) to,

cosθNc.m ≈
1 + cosθc.m.

2
. (IV.29)

Before considering any specific model for angular distribution, one can make two gen-

eral statements about the properties of the photodisintegration amplitude. First, that

from the absence of theu channel scattering in thepn→ ∆++∆− helicity amplitudes (see

Eq.(B.13)), one observes thatR(θc.m.) can not be a uniform function ofθc.m. Second, that

independent of the choice of SU(6) or diquark models, theγd→ ∆++∆− cross section is

always larger than the cross section of theγd→ ∆+∆− reaction.

We quantify the above observations by parameterizing the angular functionf(θNc.m.),

which enters in Eqs.(II.12,B.12,B.13), in the following form[49]:

f(θ) =
1

sin(θ)2(1− cos(θ))2 (IV.30)

known to describe reasonably well the elasticpp andpn scattering cross sections.

Magnitudes of the ratioR at θc.m = 900 are given in TableIV.1, while the angular

dependencies (solid curves for diquark model and dashed curves for SU(6) model) are
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Figure IV.3: (a)Ratio of theγd → ∆∆ to γd → pn differential cross sections
and (b) ratio of theγd→ ∆++∆− to γd→ ∆+∆0 differential cross sections as a
function ofθc.m..

presented in Fig.IV.3(a). They clearly show strong angular anisotropy and the excess

(by a factor of 4-5) of the∆++∆− breakup cross section relative to the cross section of the

∆+∆0 breakup (Fig.IV.3(b)). These results show that the ratio of theγd→ ∆∆ to γd→ pn

cross sections is very sensitive to the choice of SU(6) or diquark models of the wave

functions. However, because of the absence of isosinglet two-quark state in the∆ wave

functions, theρ parameter dependence that characterizes the choice of SU(6)or diquark

models in the baryons wave functions is factorized and enters only in the normalization

factor of thepn → ∆∆ helicity amplitudes. As a result, the ratio of theγd → ∆++∆− to

γd → ∆+∆0 cross sections (Fig.IV.3b) is independent of the choice between SU(6) and

diquark models for the baryons wave functions.

Finally, it is worth discussing how these results compare withthe predictions of

models in which the production of two∆’s is a result of the breakup of the pre-existing

∆∆ component of the deuteron wave function. In this case, the final state interaction

is dominated by soft scattering of two∆’s in the final state which will induce similar

angular distributions for both∆++∆− and∆+∆0 channels (see e.g.[111, 91]). As a result,

we expect essentially the same angular distribution for both∆++∆− and∆+∆0 production
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channels. Also, because of the deuteron being an isosinglet, the probabilities of finding

preexisting∆++∆− and∆+∆0 are equal. For coherent hard breakup of the preexisting

∆’s we will obtain the same cross section for both the∆++∆− and the∆+∆0 channels.

R(90o)

γd→ BB SU(6) Diquark
γd→ ∆+∆0 0.47 0.11
γd→ ∆++∆− 2.01 0.47

Table IV.1: Strength of∆∆ channels relative topn in deuteron photodisinte-
gration atθc.m = 90o.

One interesting scenario for probing the preexisting∆’s in the deuteron is using the

decomposition of the deuteron wave function, in the chiral symmetry restored limit,

into the nucleonic and non-nucleonic components in the following form[98, 99, 100]:

ΨT=0,S=1 = (
1

9
)

1
2ΨNN + (

4

45
)

1
2Ψ∆∆ + (

4

5
)

1
2ΨCC , (IV.31)

whereΨCC represents the hidden color component ofT = 0 andS = 1 six-quark con-

figuration. Since∆++∆− and∆+∆0 components enter with equal probability in the total

isospinT = 0 configuration, one expects close (≈ 0.8) strengths for deuteron breakup to

∆++∆− or ∆+∆0 channels as compared to the strength of the deuteron breakup into the

pn pair. The latter result should be compared with the similar ratios presented in Table

IV.1 from HRM, and with the HRM angular distributions in FigIV.3.

In contrast to Eq.(IV.31), the pn component of the non relativistic deuteron wave

function largely dominates over other baryon baryon components. From early works

investigating deuteron composition by means of phenomenological and one pion ex-

change potentials (see e.g, Refs.[115, 116, 117, 118, 119]), NN∗ components have been

estimated to contribute overall of the order of 1% withNN∗(1440) ∼ 0.01% , while ∆∆

contributions are estimated in the range 0.01-3%. These twokinds of baryonic states

can be comparable contributions to the deuteron, thus it is expected that at low ener-

gies the channels of deuteron breakup intoNN∗ and∆∆ may be comparable as well

which, in addition to the fact thatN∗(1440) can decay into a nucleon and a pion as well

into a∆-isobar and a pion, would make it difficult to differentiate experimentally. Note
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that deuteron breakup intoNN∗ will not interfere with the amplitude of∆∆ production

at large center of mass angles, since the decay products of theproduced resonances

occupy distinctly different phase spaces in the final state of the reaction.

With pn in the S wave contributing 90% to the deuteron’s wave function,the scenario

of deuteron breakup into thepn channel at low relative transverse momentum clearly

dominates the other baryon-baryon channels emerging from correspondent baryon-

baryon components of the deuteron. The situation at kinematics in which the hard

rescattering approach applies on the other hand can potentiallybe very different. As

seen in Fig.IV.3(a), in the HRM the quark wave functions of the baryons play a crucial

role in the predictions of the strenght of the deuteron breakup to∆∆ channels relative

to thepn channel.

A similar result is expected if these channels are compared with the deuteron breakup

into theNN∗ channels. Quark-wave functions ofN∗(1440), if expanded in the formII.4,

will introduce a different parameterρ∗ (from the fact thatN∗ is a radial excitation of

N) playing the same role as theρ used for nucleons. Then, the relative strength of the

deuteron breakup intoNN∗(1440) channel relative to thepn channel will be determined

by two parameters,ρ andρ∗. Without certainty on which of the considered quark wave-

function approaches is more accurate, it cannot be concluded that a specific channel

dominates for instance at90o c.m. in order to compare with the prediction at the onset

of hidden color components.

IV.6 Summary

The hard rescattering model of large c.m. angle photodisintegration of a two-nucleon

system was extended to account for the production of two∆-isobars. The HRM allows

to express the cross section ofγd → pn andγd → ∆∆ reactions through the large c.m.

angle differential cross section ofpn→ pn andpn→ ∆∆ scattering amplitudes.

Because of lack of experimental information onpn → ∆∆ scattering, the quark-

interchange model was further applied to calculate the strength of theγd → ∆∆ cross

section relative to the cross section ofγd → pn breakup reaction. We predicted a sig-
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nificantly larger strength for the∆++∆− channel of breakup as compared to the∆+∆0

channel which is related to the relative strength of thepn→ ∆++∆− andpn→ ∆+∆0 scat-

terings. Because of the different angular dependences of these hadronic amplitudes, we

also predicted a significant difference between the angulardependences of photopro-

duction cross sections in∆++∆− and∆+∆0 channels.

These results can be compared with the prediction of the models in which two∆’s

are produced due to the coherent breakup of the∆∆ component of the deuteron wave

function. In this case one expects essentially similar angular distributions and strengths

for the∆++∆− and∆+∆0 breakup channels.
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CHAPTER V

CONCLUSIONS

The preceding chapters presented quantitative approaches that invoke QCD degrees of

freedom in describing reaction mechanisms in nuclear and baryonic interactions. Such

approaches were developed specifically for nucleon-nucleon elastic scattering, and for

photodisintegration of aNN system in light nuclei. Both cases were analyzed in the hard

kinematic regime in which it is expected that hard subprocesses among the baryons’

constituents control the reactions thus enabling the studyof the quark dynamics of the

interaction.

A hard scattering model of high energypn elastic scattering was discussed in chap-

ter II . World data evidenced the energy dependency of this reaction tobe dictated by

the constituent counting rule for a wide range of center of mass angles of scattering

around 90o. The angular dependence on the other hand is also affected by thehelicity-

flavor constituent structure of the interacting nucleons. The structure of the nucleon was

modeled in a quark-diquark picture of the nucleons, and it was shown that such picture

better describes an angular asymmetry observed in the experimental data. Using these

quark wave functions of nucleons in this quark diquark picture, such asymmetry was

obtained as a function of a parameter (ρ) within the quark interchange (QI) model. The

parameter (ρ2) measures the average strength of the quark-vector diquark relative to the

quark-scalar diquark components of the nucleon’s wave function. By fitting the asym-

metry in this model to the experimental asymmetry, it was found that

ρ = −0.3± 0.2,

i.e., scalar diquarks contribute 90% on average to the nucleon helicity isospin structure.

Hence, through this model, the experimental data disfavorsthe traditionalSU(6) three

quark structure of the nucleon in which both quark-diquark components contribute with

the same strength, i.e.,ρ = 1, and that produces an opposite asymmetry. Also, having
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that ρ < 0, indicates that the vector diquark has a negative phase relative to the scalar

diquark component...

In chapterIII , the hard rescattering model (HRM) ofNN breakup was developed for

pp andpn breakup channels in3He photodisintegration at large energy and momentum

transfer. The analysis resulted in quantitative predictions for the differential cross sec-

tions of both channels. A general feature of these cross sections is thes−11 dependence of

the energy distributions that in the HRM arises from understanding the photodisintegra-

tion process in terms of quark degrees of freedom which resultsin such energy depen-

dence behaving according to quark counting rules (See Eq.I.79). The latter prediction

has been verified experimentally for deuteron breakup and recently for pp breakup in

3He at 90o c.m. of theγ − NN system at beam energies larger than 2GeV2. The onset

of QCD degrees of freedom marks also the dominance of a one step/two body process

picture of the reaction. In a hadronic description, this process is suppressed from not

having charged meson exchanges between the two protons. Forpp break up, these ex-

changes are only possible if the neutron participates. The reaction is then dominated

by a three-body/two-step process. Such process is much largely suppressed at the onset

of a explicit quark description of the reaction such as the HRM; its energy dependence

falls off faster thans−12. Calculations for additional observables were also carried out

within the HRM resulting in further numerical predictions on spectator nucleon’s mo-

mentum distributions (See Fig.III.9) and the polarization transfer asymmetryCz′. In

particular forpp it was found thatCz′ is almost canceled, while forpn breakup,Cz′ ≈ 2
3
.

The experimental evaluation of these predictions will properly constrain the validity of

the HRM approach for these reactions.

The hard rescattering mechanism was discussed in chapterIV as it applies to double

∆-isobars production in deutron photodisintegration. These studies were motivated by

the focus on identifying a transition of the deuteron from a baryon-baryon system to a

six quarks system. It is believed that such transition is signaled by a sudden increase of

the double∆-isobars production in relation to the deuteron breakup in thepn channel.
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The latter is believed to dominate at small to moderate transverse momenta from the

dominance of thepn component of the deuteron over the negligible∆∆ components, and

from the assumption that the baryons emerge from a large relative transverse momenta

component of the deuteron wave function.

Such assumption was contrasted in this chapter in which the breakup reaction was

studied instead within the framework of the QCD hard rescattering model (HRM). The

baryons emerging with large transverse momenta are produced in apn rescattering pro-

cess triggered by the incident photon interacting with a lowrelative momentumpn com-

ponent of the deuteron wave function. This rescattering wasmodeled within the quark

interchange mechanism (QIM), and within the HRM, angular distributions for the two

∆∆ channels were obtained and compare to each other and to the breakup topn channel.

From such comparisons illustrated in Fig.IV.3, it was conclude that in the rescatter-

ing picture each∆∆ channel has a distinct angular distribution with∆++∆− dominating

∆+∆−. This is in clear contrast with what is expected if the two∆-isobars emerge from

a∆δ component of the deuteron in which case both∆∆ channels should have the same

strength.

The results concluded above were arrived to from considering the studied reactions

to be controlled by elementary particle subprocesses. Suchan assumption was justi-

fied by the kinematic characteristic of hard processes, i.e., the energy and momentum

invariants were much larger than the masses of the interactingbaryons which facili-

tated for instance a short distance-long distance factorization of scattering amplitudes,

at a quark-baryon level as it is discussed in chapterII , and at the quark-baryon-nuclear

level which corresponds to the hard rescattering model developed in chaptersIII and

IV. This methodology finds a broad range of applications in manymore reactions of in-

terest. Some of them are natural extensions of the processesstudied here. For instance

a program to pursue, as it was pointed in chapterII , is the further development of the

studies presented there as it concerns to the possible strange production channels in ex-

clusiveeN orNN scattering, which would make full use of theSU(6) symmetry of quark
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and diquark states in constructing quark wave-functions ofhadrons providing also a

potential probe of strange quark distributions in nucleons. This program can be as well

continued into studying strange production channels off nuclear targets in breakup re-

actions, and further probing the role of hard rescattering mechanisms analogous to such

studied in chaptersIII andIV. The experimental difficulties brought on by the decays

of the produced hadrons in these processes can soon be overcome by updated capabili-

ties such as the 12GeV upgrade program at Jefferson Lab, whichis also instrumental in

assessing most of the results presented in this dissertation.

Another venue of interest, and also a mayor motivation driving JLAB’s 12GeV up-

grade, is the study of near thresholdJ/ψ production reactions off proton and nuclear

targets. These reactions are relevant in identifying the leading gluon exchange mech-

anisms between hadrons, as well as in extracting gluon contributions to the structure

functions of nucleons at largex. Because of the large mass of thec quark(∼1.2GeV),

thecc̄ fluctuation that will evolve into aJ/ψ meson for instance inγp→ J/ψp has a small

transverse size, and since the threshold invariants are large as well, pQCD approaches to

these processes may apply ( see e.g. Refs. [112], and [113]), and quantitative descrip-

tions can be constructed through factorization methods analogous to those developed

throughout this dissertation. Such is the case also forJ/ψ production off a deuterium

target which study is of interest in probing the hidden colorcomponents of the nuclear

wave function; in a pQCD picture of theγd → J/ψpn reaction’s hard subprocess, the

cc̄ fluctuation of the photon can interact by single gluon exchanges with non-singlet

quark clusters within the nucleus [114]. This mechanism is expected to give a signif-

icant contribution in this reaction. Also,in analogy to what was done in chapterIV, in

an alternative mechanism, this reaction proceeds throughcc̄ fluctuation scattering off

one of the nucleons, then evolving into a hadronic state and rescattering with the sec-

ond nucleon into an outgoing nucleon and aJ/ψ meson. Thus, a variation of the hard

rescattering model can as well be developed for obtaining qualitative and quantitative

predictions for these heavy quark production reactions.

In summary, these phenomena and several more await for a coordinated program
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focusing experimental and theoretical developments into identifying explicit signatures

of quark-gluon dynamics of hadron interactions that shed light into building a compact

QCD description of the strong force. It is one’s expectationfor the methods utilized

and the results reported in this dissertation to further encourage research efforts in such

program in which this methodology can find applicability.
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A Baryonic Wavefunctions

Nucleon and∆-isobar wave functions are built from the minimal Fock component of

the corresponding wave function, initially assuming a quark-diquark expansion where

individual quark wave functions correspond to SU(6) eigenstates. A single quark state

of spin S=1/2 and isospin I=1/2 is joined by a diquark state withS=0 and I=0, or S=1 and

I=1. The former corresponding to what is known as a scalar diquark [qq], and the latter

known as a vector diquark qq. The baryonic wave functions arethen expanded in q[qq]

and q(qq) states with the proper Clebsh-Gordan coefficients and normalization, and

introducing a parameterρ that determines the relative amplitude of the vector diquark

with respect to the scalar diquark sector of the expansion:

ψi3,h ∝ q[qq] + ρ× qqq (A.1)

q[qq] and q(qq) expansions vary according to the baryon’s isospin and helicity. For

instance, for∆-isobar wave functions q[qq]=0 since the total isospin components won’t

add up to I=3/2. A nucleon wave function is expanded as follows,

ψi3N ,hN ∝ qi3N ,hN [qq] + ρ
∑

i3,h=1/2,−1/2

∑

t3,λ=1,0,−1

CN
i,t,i3

N
CN

h,λ,hN
qi

3,h(qq)t
3,λ (A.2)

where i3N, i3,t3, are the third components of the isospin of nucleon, single quark and

diquark respectively, andhN , h andλ are the corresponding helicities.CN
i,t,i3

N
andCN

h,λ,hN

are the Clebsh-Gordan coefficients for isospin and helicityexpansions in q(qq) states

respectively.

Since [qq] and (qq) are singlet×isosinglet and triplet×isotriplet representations of qq

states in order to ensure a symmetric wave function, Eq.(A.2) can be expanded in qqq

states. Doing so for the case of a proton with positive helicity yields,

N(ρ)|p(1/2)〉 =
3 + ρ

2
|u(+)u(+)d(−)〉 − 3− ρ

2
|u(+)d(+)u(−)〉 − ρ|d(+)u(+)u(−)〉

+
3+ ρ

2
|u(+)d(−)u(+)〉 − 3− ρ

2
|u(+)u(−)d(+)〉 − ρ|d(+)u(−)u(+)〉
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+2ρ|d(−)u(+)u(+)〉 − ρ|u(−)u(+)d(+)〉 − ρ|u(−)d(+)u(+)〉 (A.3)

where, u and (+) represent q with i3=1/2 and h=1/2 , and d and (-) represent q with

i3=-1/2 and h=-1/2 respectively, and

N(ρ) =
1

3
√
1 + ρ2

(A.4)

All other nucleon wave functions can also be obtained by properly applying spin or

isospin ladder operators starting from Eq.(A.3), e.g.,

|n(1/2)〉 = τ−|p(1/2)〉 (A.5)

where

τ−|q1q2q3〉 = |(τ−q1)q2q3〉+ |q1(τ−q2)q3〉+ |q1q2(τ−q3)〉 (A.6)

andτ− is constructed from Pauli matrices acting on the quark isospinstate. Similarly,

all ∆-isobar wave functions can be constructed through ladder operators in I=3/2 and

J=3/2 representations starting with∆++ with helicity h∆=3/2,

|∆++(3/2)〉 = |u(+)u(+)u(+)〉 (A.7)

then for instance, to obtain∆++ with helicity h∆=1/2,

|∆++(1/2)〉 = 1√
3
σ−|∆++(3/2)〉 (A.8)

or in general,

|∆i
3

(h− 1)〉 = 1
√

J(J + 1)− h(h− 1)
σ−|∆i

3

(h)〉 (A.9)
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Likewise,

|∆i
3−1(h)〉 = 1

√

I(I + 1)− i3(i3 − 1)
τ−|∆i

3

(h)〉 (A.10)

with σ and τ acting on the three-quark components of the expansion as indicated in

Eq.(A.6) on the helicity and isospin states respectively of the singlequark states.

∆-isobar wave functions

Either through the process described by Eqs.(A.9) and (A.10), or by explicitly ex-

panding each∆-isobar state in q(qq) states and then qqq states through the use of

Clebsh-Gordan coefficients, the following∆-isobar helicity-isospin wave functions are

obtained,

|∆++(3/2)〉 = |u(+)u(+)u(+)〉

|∆++(1/2)〉 =
1√
3
|u(−)u(+)u(+)〉+ 1√

3
|u(+)u(−)u(+)〉+ 1√

3
|u(+)u(+)u(−)〉

|∆++(−1/2)〉 =
1√
3
|u(−)u(−)u(+)〉+ 1√

3
|u(−)u(+)u(−)〉+ 1√

3
|u(+)u(−)u(−)〉

|∆++(−3/2)〉 = |u(−)u(−)u(−)〉

|∆+(3/2)〉 =
1√
3
|d(+)u(+)u(+)〉+ 1√

3
|u(+)d(+)u(+)〉+ 1√

3
|u(+)u(+)d(+)〉

|∆+(1/2)〉 =
1

3
|d(−)u(+)u(+)〉+ 1

3
|d(+)u(−)u(+)〉+ 1

3
|d(+)u(+)u(−)〉

+
1

3
|u(−)d(+)u(+)〉+ 1

3
|u(+)d(−)u(+)〉+ 1

3
|u(+)d(+)u(−)〉

+
1

3
|u(−)u(+)d(+)〉+ 1

3
|u(+)u(−)d(+)〉+ 1

3
|u(+)u(+)d(−)〉

|∆+(−1/2)〉 =
1

3
|d(−)u(−)u(+)〉+ 1

3
|d(−)u(+)u(−)〉+ 1

3
|d(+)u(−)u(−)〉

+
1

3
|u(−)d(−)u(+)〉+ 1

3
|u(−)d(+)u(−)〉+ 1

3
|u(+)d(−)u(−)〉

+
1

3
|u(−)u(−)d(+)〉+ 1

3
|u(−)u(+)d(−)〉+ 1

3
|u(+)u(−)d(−)〉

|∆+(−3/2)〉 =
1√
3
|d(−)u(−)u(−)〉+ 1√

3
|u(−)d(−)u(−)〉+ 1√

3
|u(−)u(−)d(−)〉

(A.11)
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∆0 and∆− wavefunctions are obtained by the replacement u↔d in ∆+ and∆++ wave-

functions respectively.
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B Helicity Amplitudes in the Quark Interchange Model

B.1 Baryon-Baryon Scattering Helicity Amplitudes

We are using helicity states to label the entries of the photodisintegration and the baryon-

baryon scattering matrices. The number of independent helicity amplitudes for a given

ab → cd processes can be expressed through the total spin of the scattering particles as

follows[109, 110]:

N =
1

2
· (2sa + 1)(2sb + 1)(2sc + 1)(2sd + 1) (B.1)

wheresi is the total spin of particle i and for the photon we replace(si+1) by 2. The factor

1
2

follows from the constraint due to the parity conservation.For elastic scattering, there

is a further reduction inN due to time reversal invariance, and if the scattering particles

are identical, or lie in the same isospin multiplet, the number of independent helicity

amplitudes is reduced further[109, 110]. For thepn elastic scattering case, out of the

possible 16 helicity amplitudes only five are independent[110] for which we use the

following notations:

〈

+
1

2
,+

1

2
|T |+ 1

2
,+

1

2

〉

= φ1

〈

+
1

2
,−1

2
|T |+ 1

2
,−1

2

〉

= φ3

〈

−1

2
,+

1

2
|T |+ 1

2
,−1

2

〉

= φ4

〈

−1

2
,−1

2
|T |+ 1

2
,+

1

2

〉

= φ2

〈

−1

2
,+

1

2
|T |+ 1

2
,+

1

2

〉

= φ5,

(B.2)

For thepn → ∆∆ scattering amplitude, we have from Eq.(B.1), N=(2)(2)(4)(4)/2=32

independent helicity amplitudes. We use the following notations for the helicity con-
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serving independent amplitudes ofpn→ ∆∆ scattering:

〈

+
1

2
,+

1

2
|T |+ 1

2
,+

1

2

〉

= φ1

〈

+
1

2
,−1

2
|T |+ 1

2
,−1

2

〉

= φ3

〈

−1

2
,+

1

2
|T |+ 1

2
,−1

2

〉

= φ4

〈

+
3

2
,−1

2
|T |+ 1

2
,+

1

2

〉

= φ6

〈

−1

2
,+

3

2
|T |+ 1

2
,+

1

2

〉

= φ7

〈

+
3

2
,−3

2
|T |+ 1

2
,−1

2

〉

= φ8

〈

−3

2
,+

3

2
|T |+ 1

2
,−1

2

〉

= φ9,

(B.3)

which are consistent with the definitions in Eq. (B.2).

B.1.1 Helicity Amplitudes in the Quark-Interchange Model

Quark Interchange model

Following the approach presented for example in Refs.[107, 42, 38], the scattering am-

plitude for a processab→ cd, in whicha, b, c andd are baryons, is obtained from,

〈cd | T | ab〉 =
∑

α,β,γ

〈ψ†
c | α′

2, β
′
1, γ

′
1〉〈ψ†

d | α′
1, β

′
2, γ

′
2〉

×〈α′
2, β

′
2, γ

′
2, α

′
1β

′
1γ

′
1 | H | α1, β1, γ1, α2β2γ2〉 · 〈α1, β1, γ1 | ψa〉〈α2, β2, γ2 | ψb〉, (B.4)

where (αi, α
′
i), (βi, β

′
i) and (γiγ′

i) describe the spin-flavor quark states before and after the

hard scattering,H, and

Cj
α,β,γ = 〈α, β, γ | ψj〉 (B.5)

describes the probability amplitude of finding anα, β, γ helicity-flavor combination of

three valence quarks in the baryonj. These coefficients are obtained from the expansion
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of the baryon’s spin-isospin wave function in three-quark valence states as follows:

ψi3N ,hN =
N√
2

{

σ(χ(23)
0,0 χ

(1)
1
2
,hN

) · (τ (23)
0,0 τ (1)

1
2
,i3
N

) +

ρ
1
∑

i323=−1

1
∑

h3
23=−1

〈1, h23;
1

2
, hN − h23 |

1

2
, hN〉〈1, i323;

1

2
, i3N − i323 |

1

2
, i3N〉

×(χ(23)
1,h23

χ(1)
1
2
,hN−h23

) · (τ (23)

1,i323
τ (1)

1
2
,i3
N

−i323
)
}

. (B.6)

The indexes 1 and 23 label the quark and the diquark states. The first term corresponds

to quarks 2 and 3 being in a helicity zero isosinglet state, while the second term corre-

sponds to quarks 2 and 3 in helicity 1-isotriplet states. Whereχ andτ represent helicity

and isospin states with helicityh and isospin projectioni3 respectively. For the wave

functions of∆-isobarsσ = 0 andρ = 1, while for nucleon wave functionsσ = 1 and the

parameterρ characterizes the average strength of the isotriplet diquarkradial state rela-

tive to that of the isosinglet state. Two extreme values ofρ = 1 andρ = 0 correspond to

the realization of the SU(6) and good diquark symmetries in the wave function.

Using Eq.(B.6) in Eq.(B.4) for the hadronic scattering amplitude one obtains:

〈cd|TQIM |ab〉 = Aα′

1,α
′

2,α1α2
(θNc.m.)M

ac
α1,α

′
1
M bd

α2,α
′
2
+Aα′

1,α
′

2,α1α2
(π − θNc.m.)M

ad
α1,α

′
1
M bc

α2,α
′
2
, (B.7)

where

M ij
α,α′ = Ci

α,β,γC
j
α′,β,γ + Ci

β,α,γC
j
β,α′,γ + Ci

β,γ,αC
j
β,γ,α′ , (B.8)

which accounts for all possible interchanges ofα andα′ quarks leavingβ andγ quarks

unchanged. In the QI model the interchanging quarks conserve their corresponding

helicities and flavors, this is accounted for in the matrix elements ofA in Eq.(B.7.),

Aα′

1,α
′

2,α1α2
(s, θNc.m.) ∝ δα′

1,α2
δα′

2,α1

f(θNc.m.)

s2
(B.9)

Eq.(B.7) has two terms, first (referred as at term) in which four quarks scatter at
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angleθNc.m. and two (interchanging) quarks scatter atπ − θNc.m. and the second (referred as

a u term) in which two interchanging quarks scatter atθNc.m., while four spectator quarks

scatter atπ − θNc.m..

B.1.2 Helicity Amplitudes in the Quark Interchange Model

Through the above procedure using Eq.(B.7) for the helicity amplitudes ofpn scattering

one obtains:

φ1(θ
N
c.m.) = (2 − y)f(θNc.m.) + (1 + 2y)f(π − θNc.m.) (B.10)

φ2(θ
N
c.m.) = 0

φ3(θ
N
c.m.) = (2 + y)f(θNc.m.) + (1 + 4y)f(π − θNc.m.)

φ4(θ
N
c.m.) = 2yf(θNc.m.) + 2yf(π − θNc.m.)

φ5(θ
N
c.m.) = 0,

were,

y =
2

3

ρ

1 + ρ2

(

1 +
2

3

ρ

1 + ρ2

)

. (B.11)

For pn→ ∆+∆0 scattering amplitudes we obtain:

φ1 =
2

9
N∆∆(2f(θ

N
c.m.)− f(π − θNc.m.))

φ3 =
1

9
N∆∆(4f(θ

N
c.m.) + f(π − θNc.m.))

φ4 =
2

9
N∆∆(f(θ

N
c.m.)) + f(π − θNc.m.)

φ+0
6 =

N∆∆

3
√
3
(2f(θNc.m.)− f(π − θNc.m.))

φ7 =
N∆∆

3
√
3
(2f(θNc.m.)− f(π − θNc.m.))

φ8 =
2

9
N∆∆f(θ

N
c.m.)

φ9 =
1

3
N∆∆f(π − θNc.m.),

(B.12)
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and similarly for the amplitudes of thepn→ ∆++∆− scattering, QI model gives:

φ1 = −2

3
N∆∆f(θ

N
c.m.)

φ3 = −2

3
N∆∆f(θ

N
c.m.)

φ4 = −1

3
N∆∆f(θ

N
c.m.)

φ6 =
−N∆∆√

3
f(θNc.m.)

φ7 =
−N∆∆√

3
f(θNc.m.)

φ8 = −N∆∆f(θ
N
c.m.)

φ9 = 0,

(B.13)

For both sets of equations in (B.12) and (B.13), we have

N∆∆ =
(1 + ρ)2

1 + ρ2
, (B.14)

which shows that the strength of the two∆∆ channels relative to each other is indepen-

dent of the value ofρ. This is not the case for their strengths relative to thepn channel;

from Eqs. (B.11) we see that theρ dependence of the helicity amplitudes inpn → pn

cannot be factorized.

B.1.3 Quark-Charge Factors

In the hard rescattering model, photodisintegration amplitudes are expressed in terms

of hadronic scattering amplitudes weighted by the charges of struck quarks, Eq.(IV.5).

We further split the amplitude of Eq.(IV.5) into t andu channel scatterings:

∑

i

QNk
i 〈λ2f ;λ1f | T(pn→B1B2),i(s, t̃) | λγ ;λ2i〉 =

[

QtNk
j φt

j +QuNk
j φu

j

]

, (B.15)
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whereQt/uN
i is the charge of the quark, struck by the incoming photon from the nucleon

N with furtherθNc.m. or π− θNc.m. scattering. The helicity amplitudes are also split intot and

u parts

φi(θ
N
c.m.) = φt

i(θ
N
c.m.) + φu

i (θ
N
c.m.)

= ctf(θ
N
c.m.) + cuf(π − θNc.m.), (B.16)

with φt andφu corresponding to theθNc.m. or π − θNc.m. scattering terms in Eq.(B.7).

Using the above definitions and Eqs.(B.7,B.8,B.11,B.12,B.13) the charge factorsQt

andQu are calculated using the following relations:

QtNk
j =

Q(αk)Aα′

1,α
′

2,α1α2
Mac

α1,α
′

1
M bd

α2,α
′

2

φt
j

QuNk
j =

Q(αk)Aα′
1,α

′
2,α1α2

Mad
α1,α

′

1
M bc

α2,α
′

2

φu
j

, (B.17)

where summation is understood for repeatedα indices,Q(α) is the charge in e units of a

quarkα and the indexj labels the processab→ cd.
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C Calculation of the 3He(γ,NN)N scattering amplitude

Applying Feynman diagram rules for the scattering amplitude corresponding to the di-

agram of Fig.(III.1)(a) one obtains

〈λf1, λf2, λs |M | λγ , λA〉 =

(N1) :

∫ −iΓN1f
i[/p1f − /k1 +mq]

(p1f − k1)2 −m2
q + iε

iS(k1) · · · [−igT F
c γµ] · · ·

i[/p1i − /k1 +mq](−i)ΓN1i

(p1i − k1)2 −m2 + iε

d4k1
(2π)4

(γq) :
i[/p1i − /k1 + q +mq]

(p1i − k1 + q)2 −m2
q + iε

[−iQieε
⊥γ⊥]

(N2) :

∫ −iΓN2f
i[/p2f − /k2 +mq]

(p2f − k2)2 −m2
q + iε

iS(k2) · · · [−igT F
c γν ]

i[/p2i − /k2 +mq](−i)ΓN2i

(p2i − k2)2 −m2 + ε

d4k2
(2π)4

(3He) :

∫ −iΓ3He · ūλs
(ps)i[/pNN − /p2i +mN ]

(pNN − p2i)2 −m2
N + iε

i[/p2i +mN ]

p22i −m2
N + iε

d4p2i
(2π)4

(g) :
idµ,νδab

[(p2i − k2)− (p1i − k1)− (q − l)]2 + iε
,

(C.1)

where the momenta involved above are defined in Fig.III.1. Note that the terms above

are grouped according to their momenta. As such they do not represent the correct

sequence of the scattering presented in Fig.III.1. To indicate this we separated the

disconnected terms by “· · ·”.

The covariant vertex function,Γ3He describes the transition of the3He nucleus to a

three-nucleon system. The vertex functionΓN describes a transition of a nucleon to one-

quark and a residual spectator quark-gluon system with total momentumki, (i = 1, 2).

The functionS(k) describes the propagation of the off-mass shell quark-gluon spectator

system of the nucleon. As is shown below, this nonperturbative function can be included

in the definition of a nonperturbative single quark wave function of the nucleon.

Using the reference frame and the kinematic conditions described in Sec.III.1 we

now elaborate each labeled term of Eq.(C.1) separately.

(3He)-term. Using the light-cone representation of four-momenta and introducing the

light-cone momentum fraction of theNN pair carried by the nucleon2i asα =
p2i+
pNN+

,

one represents the nucleon propagators as well as the momentum integrationd4p2i in the
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following form:

p22i −m2
N + iε = α · pNN+(p2i− −

m2
N + p22i⊥
αpNN+

) + iε

(pNN − p2i)2 −m2
N + iε = pNN+(1− α)(

M 2
NN

pNN+

− p2i−)− (m2
N + p2i⊥) + iε

d4p2i = pNN+

1

2
dαdp2i−d

2p2i⊥. (C.2)

Using these relations in Eq.(C.1) we can integrate overdp2i− taking the residue at the

pole of the(2i)-nucleon propagator, i.e.,

∫

[...]dp2i−

p2i− − m2
N

+p2
2i⊥

αpNN+
+ iε

= −2πi[...] |
p2i−=

m2
N

+p2
2i⊥

αpNN+

. (C.3)

After this integration one can use the following relations in Eq.(C.1):

/p2i +mN =
∑

λ2i

uλ2i
(p2i)ūλ2i

(p2i)

(pNN − p2i)2 −m2
N = (1− α)(M 2

NN −
m2

N + p22i⊥
α(1− α) )

/pNN − /p2i +mN =
∑

λ1i

uλ1i
(p1i)ūλ1i

(p1i) +
M 2

NN −
m2

N+p22i⊥
α(1−α)

2pNN+

γ+. (C.4)

Furthermore we use the conditionp2NN+ � 1
2
(M 2

NN −
m2

N+p22i⊥
α(1−α)

) to neglect the second term

of the right-hand part of the third equation in Eq.(C.4) . This relation is justified for

the high energy kinematics described in Sec.III.1 as well as from the fact that in the

discussed model the scattering amplitude is defined atα ≈ 1
2
.

Introducing the light-cone wave function of3He [77, 78, 81]

ΨλA,λ1,λ2,λs
3He (α, p⊥) =

ūλ1
(pNN − p)ūλ2

(p)ūλs
(ps)Γ

λA
3He

M 2
NN −

m2
N

+p2
⊥

α(1−α)

(C.5)

and collecting all the terms of Eq.(C.4) in the(3He:) part of Eq.(C.1) one obtains

(3He :) =
∑

λ1i,λi2

∫

ΨλA,λi1,λi2,λs
3He (α, pi⊥)

1− α uλi1
(p1)uλi2

(p2)
dα

α

d2p2i⊥
2(2π)3

. (C.6)
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(N1:). To evaluate this term in Eq.(C.1) we first introduce

x1 =
k1+
p1i+

=
k1+

(1− α)pNN+

,

x′
1 =

k1+
p1f+

=
1− α
1− α′ x1, (C.7)

whereα′ =
p2f+

pNN+
. Furthermore we perform thek1− integration such that it puts the spec-

tator system of theN1 nucleon at its on-mass shell. This will results in

∫

S(k1)dk1− = − 2πi

p1+x1

∑

s

ψs(k1)ψ
†
s(k1) |

k1−=
m2

s+k2
1⊥

p1+x1

, (C.8)

whereψs(k) represents the nucleon’s spectator wave function with massms, and spins.

Note that in the definition ofψs one assumes an integration over all the internal momenta

of the spectator system. Using Eq.(C.8) for the (N1) term one obtains

(N1) :
∑

s

∫ −iΓN1f
i(/p1f − /k1 +mq]

(p1f − k1)2 −m2
q + iε

ψs(k1) · · ·

· · · [−igT F
c γµ]ψ

†
s(k1)

i[/p1i − /k1 +mq](−i)ΓN1i

(p1i − k1)2 −m2 + iε
× dx1

x1

d2k1⊥
2(2π)3

. (C.9)

Now we evaluate the propagator of the off-shell quark with the momentum,p1i − k1.

This yields:

/p1i − /k1 +mq

(p1i − k1)2 −m2
q

=
(/p1i − /k1)on shell +mq

(1 − x1)(m̃2
N1 −

m2
s(1−x1)+m2

qx1+(k1⊥−x1p1⊥)2

x1(1−x1)
)

+
γ+

2(1− α)(1 − x1)pNN+

, (C.10)

where the effective off-shell mass of the nucleon is defined as

m̃2
N =

M 2
NNα(1− α) −m2

N(1 − α)− p2⊥
α

. (C.11)

As it follows from Eq.(C.10) at the high energy limit,p2NN+ � m2
N , one can neglect the

second term of the RHS (off-shell) part of the equation if(1−α)(1− x1) ∼ 1. As is shown
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in Sec.III.1 [see discussion before Eq.(III.9)], the essential values that contribute in the

scattering amplitude correspond toα ≈ 1
2

and(1 − x1) ∼ 1. Therefore the second term in

the right-hand side part of Eq.(C.10) can be neglected. Using the closure relation for

the on-shell spinors for Eq.(C.10) one obtains

/p1i − /k1 +mq

(p1i − k1)2 −m2
q

=

∑

η1i
uη1i(p1i − k1)ūη1i(p1i − k1)

(1− x1)(m̃2
N1 −

m2
s(1−x1)+m2

qx1+(k1⊥−x1p1⊥)2

x1(1−x1)
)
. (C.12)

Similar considerations yield the following expression forthe propagator of the quark

entering the wave function of the final nucleon “1f”:

/p1f − /k1 +mq

(p1f − k1)2 −m2
q

=

∑

η1f
uη1f (p1f − k1)ūη1f (p1f − k1)

(1− x′
1)(m

2
N −

m2
s(1−x′

1)+m2
qx

′

1+(k1⊥−x′

1p1f⊥)2

x′

1(1−x′

1)
)
, (C.13)

wherex′
1 is defined in Eq.(C.7).

By inserting Eqs.(C.12) and (C.13) into Eq.(C.9) and defining quark wave function

of the nucleon as

Ψλ,η
N (p, x, k⊥) =

ūη(p− k)ψ†
s(k)ΓNu

λ
N(p)

m2
N −

m2
s(1−x)+m2

qx+(k⊥−xp⊥)2

x(1−x)

(C.14)

for the(N1 :) term we obtain

(N1 :)
∑

η1f ,η1i,s1

∫

Ψ†λ1f ,η1f (p1f , x
′
1, k1⊥)

(1 − x′
1)

ūη1f (p1f − k1) · · ·

· · · [−igT F
c γµ]uη1i(p1i − k1)

Ψλ1i,η1i(p1i, x1, k1⊥)

(1 − x1)

dx1

x1

d2k1⊥
2(2π)3

. (C.15)

(N2:). This term can be evaluated following similar considerations used above in the

evaluation of the (N1:) term. Introducing light-cone momentum fraction of the specta-

tor system of the second nucleon as

x2 =
k2+
p2i+

=
k2+

αpNN+

,

x′
2 =

k2+
p2f+

=
α

α′ x2 (C.16)
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for the (N2:) term we obtain

(N2 :)
∑

η2f ,η2i,s2

∫

Ψ†λ2f ,η2f (p2f , x
′
2, k2⊥)

(1− x′
2)

ūη2f (p2f − k2) · · ·

· · ·uη2i(p2i − k2)
Ψλ2i,η2i(p2i, x2, k2⊥)

(1− x2)

dx2

x2

d2k2⊥
2(2π)3

. (C.17)

Collecting the expressions of Eqs.(C.6), (C.15) and (C.17) in Eq.(C.1) and rearrang-

ing terms to express the sequence of the scattering, we obtain the expression of the

scattering amplitude presented in Eq.(III.4).
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D Calculation of the nucleon-nucleon scattering amplitude

In this section we consider a hardNN elastic scattering model in which two nucleons

interact through the(QIM). The typical diagram for such scattering is presented in Fig.

D.1. Applying Feynman diagram rules for these diagrams one obtains

Figure D.1: Quark interchange contribution to nucleon-nucleon scattering

TQIM
NN =

(N1) :

∫ −iΓN1f
i[/p1f − /k1 +mq]

(p1f − k1)2 −m2
q + iε

iS(k1) · · · [−igT F
c γµ]

i[/p∗1i − /k1 +mq](−i)ΓN1i

(p∗1i − k1)2 −m2 + iε

d4k1
(2π)4

(N2) :

∫ −iΓN2f
i[/p2f − /k2 +mq]

(p2f − k2)2 −m2
q + iε

S(k2) · · · [−igT F
c γν ]

i[/p2i − /k2 +mq](−i)ΓN2i

(p2i − k2)2 −m2 + ε

d4k2
(2π)4

(g) :
idµ,νδab
r2 + iε

−(p1f ↔ p2f ), (D.1)
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where definitions of the momenta are given in Fig.(D.1). The procedure of reducing the

above amplitude is similar to the one used in the previous section. First we estimate

the propagators of each nucleon’s spectator system at theirpole values,ki,− =
m2

s+k2
i,⊥

xip
+

(i = 1, 2) by performing theki,− integration, which yields

∫

[...]S(ki)dki− = −2πi[...]

xip+

∑

s

ψs(ki)ψ
†
s(ki) |

ki,−=
m2

s+k2
i,⊥

xip+

. (D.2)

Furthermore, becausep2+ >> m2
N one can apply similar to Eqs.(C.12) and (C.13), ap-

proximations for propagators of interchanging quarks leaving and entering the corre-

sponding nucleons. Then using the definition of single quarkwave function according

to Eq.(C.14) for the (N1) and (N2) terms, one obtains similar expressions that can be

presented in the following form:

(N1 :)
∑

η1,2f ,η2,1i,s

∫

Ψ†λ1f ,η1f (p1f , x
′
1, k1⊥)

(1− x′
1)

ūη1f (p1f − k1) · · ·

· · · [−igT F
c γµ]uη1i(p

∗
1i − k1)

Ψλ1i,ηi1(p1i, x1, k1⊥)

(1− x1)

dx1

x1

d2k1⊥
2(2π)3

. (D.3)

The(N2 :) term is obtained from the above equation by replacing1→ 2. Regrouping (N1)

and (N2) terms given by Eq.(D.3) into Eq.(D.1), for the amplitude of nucleon-nucleon

scattering in QIM we obtain

TQIM
NN =

∑

η1iη2iη1fη2f

∫

[{

ψ
†λ2f ,η2f
N (p2f , x

′
2, k2⊥)

1− x′
2

ūη2f (p2f − k2)[−igT F
c γ

ν ] uη1i(p
∗
1i − k1)

ψλ1i,η1i
N (p∗1i, x1, k1⊥)

(1− x1)

}

×
{

ψ
†λ1f ,η1f
N (p1f , x

′
1, k1⊥)

1− x′
1

ūη1f (p1f − k1)[−igT F
c γ

µ]uη2i(p2i − k2)
ψλ2i,η2i

N (p2i, x2, k2⊥)

(1 − x2)

}

Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π)3

dx2

x2

d2k2⊥
2(2π)3

]

. (D.4)

Note that in the above expression we redefined the initial momentum of “N1” nucleon

to p∗1i to emphasize its difference fromp1i which enters in the photodisintegration am-

plitude. In the latter casep1i is not independent and it is defined by the momenta of the
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two remaining nucleons in the3He nucleus.
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E Kinematic Relations in γNN → BB

For the processγ +NN → B1 +B2 we define,

s = (q + pNN )
2 = (p1f + p2f )

2

t = (p1f − q)2 = (p2f − pNN )
2 (E.1)

In our approximation,pNN = 2p1i = 2p2i. Then,

t = m2
B2

+M 2
NN − 2p2fpNN (E.2)

The two emerging baryons are producing from the rescattering of the nucleon absorbing

the incoming photon and the second nucleon in theNN system. For this rescatering we

define,

tN = (p1f − p1i − q)2 = (p2f − p2i)2

=
(

p2f −
pNN

2

)2

=
t

2
+
m2

B2

2
− M 2

NN

4
, (E.3)

where the last equality is obtained using Eq.(E.2).

For the case in whichmB1
= mB2

= mB we have that,

t = m2
B −

s−M 2
NN

2
√
s

(√
s−

√

s− 4m2
Bcosθc.m.

)

, (E.4)

whereθc.m. is the angle of scattering in the center of mass reference frame of theγNN

system. Then from Eq.(E.3),

tN = m2
B −

M 2
NN

4
− s−M 2

NN

4
√
s

(√
s−

√

s− 4m2
Bcosθc.m.

)

(E.5)
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We also have that,

tN = −s
2
+m2

n +m2
B +

1

2

√

(s− 4m2
N) (s− 4m2

B)cosθ
N
c.m., (E.6)

whereθNc.m. is the angle of scattering in the center of mass reference frame of two nucle-

ons scattering into two baryons at a center of mass energy ofEc.m =
√
s

2
. θc.m. andθNc.m. can

be related to each other through Eqs. (E.5) and (E.6),

cosθNc.m. =
1

√

(s− 4m2
N) (s− 4m2

B)

[

s− M 2
NN + 4m2

N

2
− s−M 2

NN

2
√
s

(√
s−

√

s− 4m2
Bcosθc.m.

)

]

.(E.7)

Then for instance if the final state baryons emerge fromγ + NN → B1 + B2 at θc.m. = 900

then in the correspondingN +N → B1 +B2 process,

θNc.m.(θc.m. = 900) = arcos

(

1

2

√

s− 4m2
N

s− 4m2
B

)

. (E.8)
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F Parametrization of NN Elastic Scattering Experimental Cross Sections

Unpolarized nucleon-nucleon elastic scattering data is used to parametrizedσpp

dt
and dσpn

dt

such that they can be used in calculations of photodisintegration of nucleon pairs ac-

cording to the hard rescattering model described above. Forproton-proton, elastic scat-

tering center of mass energy distributions are fitted for different center of mass angles

of scattering through the following parametrization:

dσpp

dt
(s, θcm) =

( s

10GeV 2

)−10

e−
−am(s−sp)2

s R(s, θcm) (F.1)

in units of mb
GeV 2 , in which s is input in GeV 2. With R(s, θcm introducing an oscillation

factor in a fixedθcm energy distribution,

R(s, θc.m.) = Ro

(

1 + asκcos(ωln(ln(
s

Λ2
)) + δ) +

1

4
a2s2κ

)

, (F.2)

in which the parameters adjusted for different center of mass scattering angles are given

in TableF.1.

dσpp

dt
(s, θcm) is then obtained by interpolating at the corresponding centerof mass en-

ergys and center of mass angle of scatteringθc.m. through the fits of energy distributions

at the selected angles in TableF.1.

An alternative parametrization follows the form,

dσpp

dt
(s, θc.m.) =

( s

10

)

(sinθc.m.)
−8γ

R(s, θc.m.)

4
∑

n=0

ans
n, (F.3)

in which the parameters onR(s, θcm) andγ are now fixed toRo = 4.5× 104, a = 0.08, κ = 0.5,

ω = pi

0.06
,λ = 0.1, andδ = −2, ands is replaced bys+ 2GeV 2 in R′s argument fors > 20GeV 2.

The polynomial expansion coefficientsan are given in TableF.2. For s < 20GeV 2 at θ′c.m.s

between55o and90o. For s > 20GeV 2 andn > 0, an = 0 while ao = 1. Then the polynomial
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Fitting parameters
θcm R0 am ln(sp) a κ ω Λ δ

90o 0.055 0.015 3.22 0.120 0.3 52.36 0.10 -1.57
85o 0.065 0.042 3.10 0.100 0.3 62.83 0.10 -4.71
80o 0.077 0.050 3.05 0.090 0.3 62.83 0.10 -4.71
75o 0.100 0.060 3.02 0.090 0.3 62.83 0.10 -4.71
70o 0.120 0.060 3.01 0.150 0.3 57.12 0.09 -1.57
65o 0.220 0.067 3.01 0.080 0.3 54.16 0.09 3.14
60o 0.430 0.065 3.20 0.080 0.3 55.12 0.09 -5.50
55o 0.700 0.060 3.18 0.085 0.3 62.83 0.09 -3.14
50o 2.100 0.033 3.50 0.200 0.3 31.42 0.09 -2.86
45o 5.200 0.033 3.55 0.200 0.3 31.42 0.09 -3.46
40o 20.00 0.020 3.88 0.200 0.3 31.42 0.09 2.42
35o 70.00 0.023 3.88 0.280 0.3 28.56 0.09 1.85
30o 400.0 0.027 3.88 0.280 0.3 19.63 0.09 0.78
25o 4000 0.035 3.88 0.330 0.3 16.53 0.09 0.78
20o 15000 0.030 4.00 0.200 0.3 16.53 0.09 0.78

Table F.1:R(s, θc.m.) (Eq.(F.2)) parameters to be used in Eq.(F.1) for pp elastic
scattering

factor is interpolated inθc.m. to find dσpp

dt
(s, θcm) for s < 20GeV 2.

Fitting parameters
θcm ao a1 a2 a3 a4

90.0o -5.6155 1.9297 -0.21216 1.0073× 10−2 −1.7088× 10−4

82.5o -9.2744 3.2989 -0.39409 2.0202× 10−2 −3.6891× 10−4

77.5o -13.967 5.0478 -0.62805 3.3308× 10−2 −6.2775× 10−4

72.5o -10.865 3.8837 -0.47725 2.5176× 10−2 −4.7326× 10−4

67.5o -6.2905 2.2328 -0.27017 1.4286× 10−2 −2.7048× 10−4

62.5o -8.7180 3.2655 -0.42545 2.3441× 10−2 −4.4937× 10−4

57.5o -10.841 4.0907 -0.54142 3.0252× 10−2 −5.8992× 10−4

Table F.2:R(s, θc.m.) (Eq.(F.2)) parameters to be used in Eq.(F.3) for pp elastic
scattering

Figures (F.1) and (F.2) show angular distribution and energy distribution fits respec-

tively on world data.

Because of fewer experimental data, for proton-neutron,dσpn

dt
is parametrized by

fitting angular distributions at fixed incident momentum, through polynomials oncosθcm

so that,
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Figure F.1: Fits from Eq.(F.1)(solid line) and Eq.(F.3)(dotted line) topp an-
gular distribution data atPLab = 9GeV

dσpn

dt
(s, θcm) = (sinθcm)

−8
4
∑

n=0

cn (cosθcm)
n
, (F.4)

in which the coefficientscn of the sum term are given in TableF.3for selected values of

incident momenta.

Fitting parameters
PLab(GeV/c) co c1 c2 c3 c4

3 1.7700× 10−1 3.1775× 10−1 −2.8763× 10−1 −2.8763× 10−1 3.6249× 10−1

4 2.5404× 10−2 4.4345× 10−2 −2.1687× 10−2 −5.8543× 10−2 1.5246× 10−2

5 4.3600× 10−3 7.5730× 10−3 2.7010× 10−3 −2.8781× 10−3 −2.4397× 10−3

6 1.2508× 10−3 2.5914× 10−3 1.6694× 10−3 −2.8558× 10−3 −2.8406× 10−3

7 3.0720× 10−4 5.9495× 10−4 8.7070× 10−4 −5.0500× 10−4 −1.2625× 10−3

8 6.6280× 10−5 1.4567× 10−4 3.4920× 10−4 3.0956× 10−5 −2.8817× 10−4

9 1.9080× 10−5 3.5100× 10−5 1.3483× 10−4 1.3052× 10−4 1.7023× 10−4

10 6.9002× 10−6 2.0643× 10−5 8.7424× 10−5 3.1467× 10−5 −4.9238× 10−5

12 2.5381× 10−6 1.1734× 10−7 4.5911× 10−6 3.1104× 10−5 3.3758× 10−5

Table F.3: Expansion coefficients of the parametrization forpn elastic scat-
tering of Eq.(F.4).
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Figure F.2: Fits from Eq.(F.1)(solid line) and Eq.(F.3)(dotted line) topp en-
ergy distribution data atθc.m. = 90o
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G Helicity Amplitudes of Photodisintegration

G.1 Helicity Amplitudes in Deuteron Breakup

Using the notation described in appendix A for helicity amplitudes in pn elastic scat-

tering and working out Eq.(IV.2) for B1=p andB2=n we obtain the following scattering

amplitudes forγd→ pn,

〈

+
1

2
,+

1

2
|M|+, λd

〉

= B

(

(Q̂N1 + Q̂N2)φ1

∫

Ψλd

d (p1,+; p2,+)
d2p⊥
(2π)2

+ (Q̂N1 + Q̂N2)φ5

∫

Ψλd
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d2p⊥
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in which the charge operatorŝQNk are defined such that

Q̂Nkφl = QtNk
l φt

l +QuNk
l φu

l (G.2)

While for γ + d → ∆ + ∆, considering only helicity conserving amplitudes, we have

that
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(G.3)

G.2 Helicity Amplitudes of Two-Nucleon Break-Up Reactions off 3He Target

Replacing QIM amplitudes in Eq.(III.15) by NN helicity amplitudes of Eq.(III.20) and

using the antisymmetry of the ground state wave function with respect to the exchange
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of quantum numbers of any two nucleons, one obtains the following expressions for the

helicity amplitudes of two nucleon breakup reactions off the 3He nucleus,〈λ1f , λ2f , λs |

M | λγ , λM〉:

For a positive helicity photon,
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2
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(G.4)

and for a negative helicity photon,
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(G.5)
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whereB = ie
√

2(2π)3√
2s′

NN

. Because the scattering process is considered in the “γ-NN” center

of mass reference frame in which thez direction is chosen opposite to the momentum of

the incoming photon, the bound nucleon helicity states correspond to the nucleon spin

projections1
2

for positive and− 1
2

for negative helicities.

149



LIST OF REFERENCES

[1] E. Rutherford, Phil. Mag. 21, 669 (1911).3

[2] H. Geiger and E. Marsden, Proc. Roy. Soc. A 82, p. 495-500 (1909)3

[3] J. Chadwick, Nature 129, 312 (1932).4

[4] H. Yukawa, Proc. Phys. Math. Soc. Jap. 17, 48 (1935).5

[5] A. R. Erwin, R. March, W. D. Walker and E. West, Phys. Rev. Lett. 6, 628 (1961).
6

[6] M. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho and
S. G. Wojcicki, Phys. Rev. Lett. 6, 300 (1961).6

[7] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).6, 7

[8] J.D. Bjorken and S.D. Drell, “Relativistic Quantum Mechanics”, McGraw-Hill,
19647, 13

[9] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,”Read-
ing, USA: Addison-Wesley (1995) 842 p 10, 34

[10] L. D. Landau and I. Y. Pomeranchuk, Dokl. Akad. Nauk Ser.Fiz. 102, 489 (1955).
15

[11] F.E. Close, “An Introduction to Quarks and Partons”, Academic Press, (1979).19

[12] M. Gell-Mann, Phys. Lett.8, 214 (1964)21

[13] G. Zweig, CERN Report No. 8182/TH401 (1964)21

[14] R. P. Feynman,In the Proceedings of 3rd International Conference on High En-
ergy Collisions, Stony Brook, N.Y., 5-6 Sep 1969, pp 237-258. 24

[15] R. P. Feynman, “Photon-hadron interactions,”Reading 1972, 282p 24

[16] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969). 25

[17] O. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964).29

[18] C. Amsler et al. (Particle Data Group), Physics Letters B667, 1 (2008)viii , 32

[19] T. P. Cheng and L. F. Li, “GAUGE THEORY OF ELEMENTARY PARTICLE
PHYSICS,”Oxford, Uk: Clarendon ( 1984) 536 P. ( Oxford Science Publications)
34

[20] D. J. Gross and F. Wilczek, Phys. Rev. D 9, 980 (1974).36

[21] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).36

[22] F. Halzen and A. D. Martin, “QUARKS AND LEPTONS: AN INTRODUCTORY
COURSE IN MODERN PARTICLE PHYSICS,” John Wiley and Sons, (1984). 38

150



[23] D.E. Groom et al. (Particle Data Group), The European Physical Journal C15
(2000)viii , 39

[24] Yu. L. Dokshitzer. Sov.Phys. JETP, 46:641 (1977).40

[25] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438(1972) [Yad. Fiz. 15,
781 (1972)].40

[26] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977). 40

[27] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980). 46, 47

[28] C. E. Carlson, Int. J. Mod. Phys. E1, 525-560 (1992).47

[29] S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett. 31, 1153(1973); Phys. Rev. D11,
1309 (1975).49, 54, 58

[30] V. Matveev, R.M. Muradyan and A.N. Tavkhelidze, Lett. Nuovo 7, 719 (1973).
50, 54, 58

[31] D. P. Owenet al., Phys. Rev. 181, 1794 (1969).50, 54

[32] P. V. Landshoff, J. C. Polkinghorne and R. D. Short, Nucl.Phys. B 28, 225 (1971).
50, 54

[33] J. V. Allabyet al., Phys. Lett. B 28, 67 (1968).50, 54, 58

[34] C. W. Akerlofet al., Phys. Rev. 159, 1138 (1967).50, 54, 58

[35] M. L. Perlet al., Phys. Rev. D 1, 1857 (1970).50, 54, 58

[36] J. L. Stoneet al., Nucl. Phys. B 143, 1 (1978).50, 54, 58

[37] C. Whiteet al., Phys. Rev. D 49, 58 (1994).52, 59, 108

[38] S. J. Brodsky, C. E. Carlson and H. Lipkin, Phys. Rev. D 20, 2278 (1979).59, 63,
65, 75, 80, 86, 108, 127

[39] B. Pire and J. P. Ralston, Phys. Lett. B 117, 233 (1982); Phys. Rev. Lett. 61, 1823
(1988).59

[40] S. J. Brodsky and G. F. de Teramoud, Phys. Rev. Lett. 60, 1924 (1988).59

[41] D. G. Crabbet al., Phys. Rev. Lett. 41, 1257 (1978).59

[42] G. R. Farraret al., Phys. Rev. D 20, 202 (1979).59, 61, 62, 63, 65, 78, 80, 81,
86, 108, 127

[43] M. M. Sargsian, Phys. Lett. B 587, 41 (2004).56, 59, 69, 94

[44] M. Anselminoet al. Rev. Mod. Phys. 65, 1199 (1993).62, 64

[45] R. L. Jaffe, Phys. Rept. 409, 1 (2005).62, 64, 65

[46] A. Selem and F. Wilczek, arXiv:hep-ph/0602128.62, 64, 65

151



[47] A. Bacchetta, F. Conti, and M. Radici, Phys. Rev. D78, 074010 (2008)62

[48] M. Jacob and G.C. Wick, Annals Phys. 7, 404 (1959).63, 78, 81

[49] G. P. Ramsey and D. W. Sivers, Phys. Rev. D 45, 79 (1992).65, 80, 86, 105, 111

[50] S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973); Phys. Rev. D11,
1309 (1975)

[51] S.J. Brodsky and B.T. Chertok, Phys. Rev. Lett. 37, 269 (1976).54, 99

[52] R. J. Holt, Phys. Rev. C 41, 2400 (1990).54

[53] J. Napolitanoet al., Phys. Rev. Lett. 61, 2530 (1988); S.J. Freedmanet al., Phys.
Rev. C48, 1864 (1993).54

[54] J.E. Belzet al., Phys. Rev. Lett. 74, 646 (1995).54

[55] C. Bochnaet al., Phys. Rev. Lett. 81, 4576 (1998).54

[56] E.C. Schulteet al., Phys. Rev. Lett. 87, 102302 (2001).54

[57] K. Wijesooriyaet al. [Jeff. Lab Hall A Collaboration.], Phys. Rev. Lett. 86, 2975
(2001).54

[58] E. C. Schulteet al., Phys. Rev. C 66, 042201 (2002).54

[59] M. Mirazita et al.[CLAS Collaboration], Phys. Rev. C 70, 014005 (2004)54, 71

[60] X. Jianget al. [Jeff. Lab Hall A Coll.], Phys. Rev. Lett. 98, 182302 (2007)54, 56,
94

[61] N. Isgur and C.H. Llewellyn Smith, Phys. Rev. Lett. 52, (1984) 1080.55

[62] A. Radyushkin, Acta Phys. Pol. B15, 403 (1984).55

[63] G. R. Farrar, K. Huleihel and H. Y. Zhang, Phys. Rev. Lett. 74, 650 (1995).55

[64] T. C. Brooks and L. J. Dixon, Phys. Rev. D 62, 114021 (2000). 55

[65] S. J. Brodsky, AIP Conf. Proc. 792, 279 (2005).55

[66] S.J. Brodsky and J.R. Hiller, Phys. Rev. C 28, 475 (1983). 55, 100

[67] S.J. Brodsky and J.R. Hiller, Phys. Rev. C 30, 412 (1984). 55, 100

[68] V. Y. Grishina, L. A. Kondratyuk, W. Cassing, A. B. Kaidalov, E. De Sanctis and
P. Rossi, Eur. Phys. J. A 10, 355 (2001).55, 100

[69] N. A. Khokhlov, V. A. Knyr and V. G. Neudatchin, Phys. Rev. C 75, 064001
(2007).55

[70] L. L. Frankfurt, G. A. Miller, M. M. Sargsian and M. I. Strikman, Phys. Rev. Lett.
84, 3045 (2000) [arXiv:hep-ph/9904222].55, 59, 69, 88, 100, 102, 105, 106

152



[71] L. L. Frankfurt, G. A. Miller, M. M. Sargsian and M. I. Strikman, Nucl. Phys. A
663-664, 349 (2000) [arXiv:hep-ph/9908392].100

[72] M. M. Sargsian, in proceedings of the workshop on “Exclusive Processes at High
Momentum Transfer,” Newport News, Virginia, May 15-18, 2002. Published in
*Newport News 2002, Exclusive Processes at High momentum transfer, edited
Anatoly Radyushkin and Paul Stoler, pp.369-376. arXiv:nucl-th/0208027.55

[73] R. Gilman and E. Piasetzky (spokespersons), “ Hard Photodisintegration of a Pro-
ton Pair,” Jefferson Lab proposal, E-03-101, 2003.

[74] V. Y. Grishina, L. A. Kondratyuk, W. Cassing, E. De Sanctis, M. Mirazita,
F. Ronchetti and P. Rossi, Eur. Phys. J. A 19, 117 (2004).56

[75] M. M. Sargsian, AIP Conf. Proc. 1056, 287 (2008) [arXiv:0808.3626 [nucl-th]].
56, 100

[76] S. J. Brodskyet al., Phys. Lett. B 578, 69 (2004) [arXiv:nucl-th/0305068].56,
82, 99

[77] L.L. Frankfurt and M.I. Strikman, Phys. Rep. 76, 214 (1981);

[78] L.L. Frankfurt and M.I. Strikman, Phys. Rep. 160, 235 (1988). 76, 105, 133

[79] L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).76, 100, 133

[80] A. Nogga A. Kievsky, H. Kamada, W. Gloeckle, L. E. Marcucci, S. Rosati and
M. Viviani, Phys. Rev. C 67, 034004 (2003).77

[81] M. Sargsian and M. Strikman, Phys. Lett. B 639, 223 (2006). 76, 81

[82] C. G. Whiteet al., Phys. Rev. D 49, 58 (1994).105, 133

[83] J.M. Laget, Nucl. Phys. A 497, 391C (1989).77

[84] J. M. Laget, Phys. Lett. B 151, 325 (1985).83, 90

[85] N. D’Hoseet al., Phys. Rev. Lett. 63, 856 (1989).83

[86] L. Machenil, M. Vanderhaeghen, J. Ryckebusch and M. Waroquier, Phys. Lett. B
316, 17 (1993).83

[87] J. Ryckebusch, M. Vanderhaeghen, L. Machenil and M. Waroquier, Nucl. Phys. A
568, 828 (1994) [arXiv:nucl-th/9307004].83

[88] C. Giusti and F. D. Pacati, Nucl. Phys. A 535, 573 (1991).83

[89] W. R. Gibbs and B. Loiseau, Phys. Rev. C 50, 2742 (1994).83

84, 85

[90] HEPDATA, The Durham HEP database, http://durpdg.dur.ac.uk/hepdata, 2008.ix,
87, 88

153



[91] L. L. Frankfurt, M. M. Sargsian and M. I. Strikman, Phys.Rev. C 56, 1124 (1997).
83, 84, 112

[92] M. M. Sargsian, Int. J. Mod. Phys. E 10, 405 (2001)[arXiv:nucl-th/0110053].83,
84

[93] R. J. Glauber, Phys. Rev. 100 (1955) 242; in. Lectures in Theoretical Physics,
edited by W. Brittain and L. G. Dunham (Interscience Publ., N.Y. 1959). Vol. 1.91

[94] I. Pomerantzet al. [JLab Hall A Collaboration], Phys. Lett. B 684, 106 (2010)
[arXiv:0908.2968 [nucl-ex]].ix, 87, 89, 96, 100

[95] R. A. Gilman and F. Gross, J. Phys. G 28, R37 (2002) [arXiv:nucl-th/0111015].

[96] A. E. L. Dieperink and S. I. Nagorny, Phys. Lett. B 456, 9 (1999).100

[97] M. M. Sargsian, Phys. Lett. B 587, 41 (2004) [arXiv:nucl-th/0309054].100

[98] M. Harvey, Nucl. Phys. A 352, 326 (1981).100, 113

[99] S. J. Brodsky, C. R. Ji and G. P. Lepage, Phys. Rev. Lett. 51,83 (1983).100, 113

[100] S. J. Brodsky and C. R. Ji, Phys. Rev. D 33, 2653 (1986).100, 113

[101] L. Frankfurt, M. Sargsian and M. Strikman, Int. J. Mod.Phys. A 23, 2991 (2008)
[arXiv:0806.4412 [nucl-th]].100

[102] M. M. Sargsianet al., J. Phys. G 29, R1 (2003) [arXiv:nucl-th/0210025].

[103] Patrizia Rossi,Private Communication. 101

[104] D. Dutta, H. Gao, W. Xu, R. Holt, S. Stepanyan and T. Mibe,Search for Non-
Nucleonic Degrees of Freedom in the Deuteron, A letter of Intent to Jefferson Lab
Program Advisory Committee, LOI-05-103, August 25-28, 2005. 101

[105] S. Kuhn,et al Data Mining Initiative,unpublished 2009.101

[106] W. Melnitchouk, M. Sargsian and M. I. Strikman, Z. Phys. A 359, 99 (1997)105

[107] D. W. Sivers, S. J. Brodsky and R. Blankenbecler, Phys.Rept. 23, 1 (1976).51,
108, 127

[108] J. F. Gunion, S. J. Brodsky and R. Blankenbecler, Phys.Rev. D8, 287 (1973).51

[109] M. L. Perl,High Energy Hadron Physics(John Wiley and Sons,1974).

[110] M. L. Perl, J. Cox, M. J. Longo and M. Kreisler, Phys. Rev. D 1, 1857 (1970).
126

[111] L. L. Frankfurt, W. R. Greenberg, G. A. Miller, M. M. Sargsian and M. I. Strik-
man, Z. Phys. A 352, 97 (1995) [arXiv:nucl-th/9501009].126

[112] P. Hoyer, Nucl. Phys. A622, 284C-314C (1997). [hep-ph/9703462].112

154



[113] S. J. Brodsky, P. Hoyer, A. H. Mueller, W. -K. Tang, Nucl.Phys. B369, 519-542
(1992).119

[114] J. M. Laget, R. Mendez-Galain, Nucl. Phys. A581, 397-428 (1995).119

[115] N. R. Nath, H. J. Weber, P. K. Kabir, Phys. Rev. Lett. 26,1404-1407 (1971).119

[116] H. Arenhovel, M. Danos, H. T. Williams, Nucl. Phys. A162, 12-34 (1971).113

[117] P. Benz, P. Soding, Phys. Lett. B52, 367 (1974).113

[118] E. Rost, Nucl. Phys. A249, 510-522 (1975).113

[119] B. Julia-Diaz, D. R. Entem, A. Valcarce, F. Fernandez,“Deuteron NN*(1440)
components from a chiral quark model,” Phys. Rev. C66, 047002 (2002).113

113

155



VITA

CARLOS G. GRANADOS

B.S., Physics
Florida International University,
Miami, Florida

2003-2005 Dean’s list

2005 Graduated Cum Laude, 2005

2005-2009 Graduate Assistant
Florida International University
Miami, Florida

2009 FIU DEA Fellowship Award

2010 JSA Graduate Fellowship Award

Publications and Presentations

C. G. Granados and M. M. Sargsian.Quark Structure of the Nucleon and Angular Asym-

metry of Proton-Neutron Hard Elastic Scattering. Phys. Rev. Lett. 103, 212001 (2009).

C. G. Granados and M. M. Sargsian. Hard Breakup of the Deuteroninto two∆-Isobars.

Phys. Rev. C 83, 054606 (2011).

C. G. Granados and M. M. Sargsian. Hard Breakup of the Deuteroninto two∆-Isobars

(poster). Presented at the International Nuclear Physics Conference 2010. Vancouver,

BC, Canada, July 2010. GRC Photonuclear reactions. Tilton,NH, August 2010.

C. G. Granados. Hard Photodisintegration of3He. Presented at the 4th Workshop on

Exclusive Reactions at High Momentum Transfer. Thomas Jefferson National Acceler-

ator Facility, Newport News, VA, May 2010.

156



C. G. Granados and M. M. Sargsian.∆-Isobar Production in the Hard Photodisin-

tegration of a Deuteron. Presented at the APS April Meeting 2010, Washington, DC,

February, 2010.

C. G. Granados. Angular Distributions in Hard Photodisintegration Processes (∆-

Isobar production in Hard Deuteron Breakup). Presented at the Workshop on High

Energy Nuclear Physics and QCD FIU, Miami, FL February, 2010.

C. G. Granados and M. M. Sargsian. Studying Hard Elastic NN Scattering in Isosinglet

State. Presented at APS April Meeting 2008, Saint Louis, MO,April, 2008.

C. G. Granados and M. M. Sargsian. Probing QCD Structure of NN Interaction in

Hard Disintegration of the Nucleon Pair. Presented at the APS April Meeting 2007,

Jacksonville, FL, April, 2007.

M. M. Sargsian and C. Granados. Hard Break-Up of Two-Nucleonsfrom the 3He

Nucleus. Phys. Rev. C 80, 014612 (2009).

157


	Florida International University
	FIU Digital Commons
	5-25-2011

	QCD Structure of Nuclear Interactions
	Carlos G. Granados
	Recommended Citation


	I INTRODUCTION
	I.1 The Strong Interaction
	I.2 From Hadrons to QCD
	I.3 Hard Exclusive Processes
	I.4 Hard Processes Involving Nuclei

	II PROTON NEUTRON ELASTIC SCATTERING
	III HARD BREAKUP OF A NUCLEON NUCLEON SYSTEM IN THE 3He NUCLEUS
	III.1 Hard Photodisintegration of Two Nucleons from 3He
	III.2 Hard breakup of proton and neutron from 3He.
	III.3 Hard breakup of two protons from 3He
	III.4 Two- and three-body processes in NN breakup reactions
	III.5 Numerical Estimates
	III.6 Polarization transfer of the hard rescattering mechanism
	III.7 Summary

	IV HARD BREAKUP OF THE DEUTERON INTO TWO -ISOBARS
	IV.1 Introduction
	IV.2 Hard Rescattering Model
	IV.3 Cross section of the + dpn breakup reaction
	IV.4 Cross section of the d breakup reaction
	IV.5 Estimates of the relative strength of the  breakup reactions.
	IV.6 Summary

	V CONCLUSIONS
	APPENDICES
	LIST OF REFERENCES
	VITA

